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abstract. This paper proposes to integrate two very different

kinds of methods for data mining, namely the construction of Bayesian

networks from data and the detection of occurrences of Simpson’s

paradox. The former aims at discovering potentially causal knowledge

in the data, whilst the latter aims at detecting surprising patterns in

the data. By integrating these two kinds of methods we can hope-

fully discover patterns which are more likely to be useful to the user,

a challenging data mining goal which is under-explored in the litera-

ture. The proposed integration method involves two approaches. The

first approach uses the detection of occurrences of Simpson’s paradox

as a preprocessing for a more effective construction of Bayesian net-

works; whilst the second approach uses the construction of a Bayesian

network from data as a preprocessing for the detection of occurrences

of Simpson’s paradox.

1 Introduction

Data mining consists of the (semi-)automatic extraction of interesting pat-
terns from real-world data-sets. Data mining is usually considered the core
step in a broader process called knowledge discovery, which includes several
steps related to preprocessing of the data to be mined, the data mining step,
and other steps related to the post-processing of the discovered patterns. A
well-known and informative definition of knowledge discovery is as follows
[Fayyad et al., 1996]:

“Knowledge Discovery in Databases is the non-trivial process of
identifying valid, novel, potentially useful, and ultimately un-
derstandable patterns in data.”
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Although this definition is often quoted in the literature, in general it has
not been taken very seriously by the data mining and knowledge discovery
research community. This claim is supported by the fact that the vast ma-
jority of the data mining literature focuses on discovering patterns that are
valid - or accurate - ignoring the other aforementioned pattern-quality cri-
teria. Unfortunately, the focus on the maximization of predictive accuracy
often hinders the discovery of surprising, novel patterns, which is the kind
of pattern that tends to be more interesting and more useful to the user
[Silberchatz and Tuzhilin, 1996].

One possible explanation for this focus on accuracy in the literature seems
to be that discovering novel, surprising patterns is in general a lot harder
than discovering accurate patterns. A couple of examples can illustrate this
point, as follows.

[Brin et al., 1997] found, in a Census data set, several rules which were
very accurate but were also useless, because they represented obvious pat-
terns in the data, such as “five-year olds don’t work”, “unemployed residents
don’t earn income from work” and “men don’t give birth”. [Tsumoto, 2000]
found 29,050 rules, out of which only 220 (less than 1% of them) were con-
sidered interesting or unexpected by the user.

These two works are examples of the fact that high accuracy is not a
sufficient condition for the interestingness (novelty or surprisingness) or use-
fulness of a pattern. In addition, although high accuracy is clearly a very
desirable property of a discovered pattern, high accuracy is not always a
necessary condition for the usefulness or interestingness of a pattern. For
instance, [Wong and Leung, 2000] found rules with just 40-60% confidence
that were considered, by senior medical doctors, novel and more accurate
than the knowledge of some junior doctors.

This paper focuses on Bayesian networks, an increasingly popular data
mining technique. In terms of the aforementioned pattern-quality crite-
ria, methods for constructing Bayesian networks from data tend to discover
patterns that satisfy the criteria of good accuracy (due to the solid mathe-
matical basis of probability theory) and good comprehensibility (due to the
graphical representation of Bayesian networks). However, methods for con-
structing Bayesian networks are not designed to discover surprising patterns.
Hence, it is quite possible that a certain Bayesian network constructed from
data be accurate and comprehensible to the user, yet not very interesting,
because it is only representing well-known correlations in the data, with-
out representing any novel, surprising pattern to the user. The goal of this
paper is to discuss how to remedy this situation, by integrating methods
for constructing Bayesian network from data with a method for discovering
surprising patterns from data, based on the detection of Simpson’s paradox.
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The remainder of this paper is organized as follows. Section 2 presents an
overview of methods for constructing Bayesian networks from data. Section
3 presents an overview of methods for the discovery of interesting patterns
and Simpson’s paradox. Section 4 describes the proposed method for inte-
grating the two aforementioned kinds of methods, and Section 5 presents
the conclusions.

2 An Overview of Methods for Constructing Bayesian
Networks from Data

A Bayesian network is essentially a directed acyclic graph (DAG) where
each node represents a random variable (an attribute in the context of data
mining) and an edge pointing from node Xi to node Xj means that the
value of variable Xj is directly dependent on the value of the variable Xi.
Assuming discrete variables (which is the focus of this paper), the strength
of the dependence between two variables Xi and Xj connected by an edge
is quantified by the conditional probability of the child variable Xj given
the parent variable Xi.

A very simple example of a Bayesian network is illustrated in Figure 1.1,
showing hypothetical relationships between four variables: the amount of
unhealthy food eaten by a person, whether or not certain genetic factors
are present in a person, the level of bad cholesterol of a person and the
probability of a person having a heart attack. The hypothetical network in
Figure 1.1 basically indicates that the probability of heart attack is directly
dependent only on the level of the cholesterol of a person; whilst the latter
variable is directly dependent on the amount of unhealthy food and genetic
factors associated with that person. The conditional probabilities associated
with the strengths of dependence between the variables are not shown, for
the sake of simplicity.

Unhealthy
food

Genetic
factors

Bad
cholesterol

Heart

attack

Figure 1.1. A very simple, hypothetical example of a Bayesian net-
work involving 4 variables.
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A Bayesian network summarizes the (in)dependencies in the data set
being mined in the sense that the joint probability distribution of the set
of attributes in the data set being mined - denoted by p(X) - is factorized
into the following expression:

p(x) =

M∏

i=1

p(Xi|Par(Xi)), (1.1)

where Par(Xi) is the set of variables that are parent nodes of the Xi node
in the DAG representing the Bayesian network and M is the number of
variables (attributes) in the data set being mined.

There are two major kinds of methods for constructing a Bayesian net-
work from data, namely methods based on conditional independence tests
and methods based on a search guided by a scoring function [Blanco, 2005],
[Korb and Nicholson, 2004]. The former is based on the assumption that
the results of a statistical independence test matches the true independence
relationships in the data. A popular method following this approach is the
PC algorithm [Spirtes et al., 1993]. This algorithm uses the concept of the
order of a conditional independence, which means the number of variables
on which the independence between two variables is conditioned [Shipley,
2000]. Hence, a zero-order conditional independence means an indepen-
dence between two variables without conditioning in any other variable, a
first-order conditional independence means an independence between two
variables conditioning on just one other variable, and so on. This algorithm
starts with the complete undirected graph. Then it reduces the graph by
removing edges with zero-order conditional independence. Next it reduces
the graph again by removing first-order conditional independencies, and so
on. The main problem with this kind of method is that it is very com-
putationally expensive and it does not scale up well to data sets with a
large number of attributes, because, for each pair of variables candidate
to have an independence relationship, it may have to test the conditional
independence for all possible order sizes.

As a result, in the last few years methods based on a different approach,
viz. search guided by a scoring function, have significantly grown in popular-
ity. Methods following this approach can be classified according to different
criteria, such as the kind of search engine that they use, the kind of scoring
function that they use, etc. In our brief review of these methods we focus on
the search engine only, which is more relevant for an understanding of the
discussion in Section 4. A more comprehensive discussion about methods
based on a search guided by a scoring function can be found e.g., in [Blanco,
2005], [Korb and Nicholson, 2004].
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Concerning their search engine, methods following this approach can be
broadly classified into sequential or population-based methods. Sequential
methods work by considering a single candidate solution (a candidate DAG)
at a time. They iteratively modify the current candidate solution, trying to
improve it as assessed by a given scoring function, until a stopping criterion
is satisfied.

The most popular sequential method for constructing Bayesian networks
seems to be the B algorithm, which is essentially a hill-climbing, greedy
method. This algorithm starts with an empty DAG and at each iteration it
adds, to the current candidate solution, the edge that maximizes the value
of the scoring function.

Another popular method is the K2 algorithm, which is also essentially
a hill-climbing, greedy method. Unlike the B algorithm, K2 requires that
the variables be ordered and it requires, as a user-defined parameter, the
maximum number of parents of each variable in the DAG to be constructed.
Hence, K2 performs a more restricted search than the B algorithm.

Population-based methods work by considering a population of candi-
date solutions at a time. They iteratively use information from the current
population of candidate solutions to create new candidate solutions, again
guided by a scoring function, until a stopping criterion is satisfied. In gen-
eral population-based methods perform a global search in the search space,
reducing the risk of getting stuck in local optima in the search space - which
often happens with greedy, hill-climbing methods such as the B and K2 al-
gorithms.

In addition, population-based methods normally are stochastic (non-
deterministic) methods, whereas sequential methods can be either stochastic
or deterministic. (Both the B algorithm and K2 are deterministic methods.)

A major kind of population-based method is evolutionary algorithms
(EAs), and there are several methods designed for estimating the joint prob-
ability distribution p(X) from data in EAs [Larranaga and Lozano, 2002].
These methods vary from the simplest ones - in which p(X) is simply factor-
ized as the product of independent univariate marginal distributions - to the
most complex ones - which can construct an arbitrarily complex Bayesian
network.

Finally, we mention in passing that another important kind of method for
constructing Bayesian networks from data consists of using Markov Chain
Monte Carlo sampling [Husmeier, 2003], [Korb and Nicholson, 2004]. How-
ever, this kind of method is not discussed here because it is not relevant
to the proposed method for integrating Bayesian network construction and
Simpson’s paradox detection, to be discussed in Section 4.
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3 On the Discovery of Interesting (Novel or
Surprising) Patterns and Simpson’s Paradox

There are two basic approaches to discover novel or surprising (unexpected)
patterns in the context of data mining, namely the user-driven (or “subjec-
tive”) approach and the data-driven (or “objective”) approach [Silberchatz
and Tuzhilin, 1996], [Freitas, 2006]. In essence, the user-driven approach
is based on using the domain knowledge, beliefs or preferences of the user;
whilst the data-driven approach is based on statistical properties of the pat-
terns. Hence, the data-driven approach is more generic, independent of the
application domain. This makes it easier to use this approach, avoiding dif-
ficult issues associated with the manual acquisition of the user’s background
knowledge and its transformation into a computational form suitable for a
data mining algorithm. On the other hand, the user-driven approach tends
to be more effective at discovering truly novel or surprising knowledge to the
user, since it explicitly takes into account the user’s background knowledge.

To illustrate these approaches, let us mention one simple example of
each of them. The two following examples will be based on the knowledge
representation of IF-THEN rules, i.e., rules of the form:

IF (a-set-of-conditions-on-some-attributes-is-true)
THEN (predict-a-certain-value-for-another-attribute)

Although this knowledge representation is quite different from Bayesian
networks (the focus of this paper), IF-THEN rules are used in the following
examples because the vast majority of works on the discovery of interesting
patterns have focused on this kind of representation.

An example of user-driven method for discovering interesting patterns is
the use of user-defined general impressions [Liu et al., 1997], [Romao et al.,
2004]. In this case the user specifies general impressions in the form of IF-
THEN rules, such as “IF (job contract length = long term) AND (salary =
high) THEN (credit = good)”. Note that this is a general impression be-
cause its conditions are not precisely defined. By contrast, the data mining
algorithm is supposed to produce rules with well-defined conditions, such
as “job contract length > 4 years” or “salary > £50K”. Once such rules
are produced by the data mining algorithm, the system can match the rules
with the general impressions, in order to find surprising rules. In particu-
lar, if a rule and a general impression have similar antecedents (“IF part”)
but different consequents (“THEN part”), the rule can be considered sur-
prising, in the sense of contradicting a user’s belief (general impression).
For instance, the rule “IF (job contract length > 4 years) AND (salary >
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£50k) AND (Mortgage = yes) THEN (credit = bad)” would be considered
surprising with respect to the aforementioned general impression.

One kind of data-driven method consists of using a data-driven measure
of rule interestingness, which assigns a numerical degree of interestingness to
a rule based on some kind of statistical property of the rule. A classic exam-
ple of this approach is the data-driven rule interestingness measure proposed
by [Piatetsky-Shapiro, 1991], defined as Interest = |A ∩ C| - (|A| × |C|) /
N , where |A ∩ C| is the number of data instances (database records) sat-
isfying both the rule antecedent A and the rule consequent C, |A| and |C|
are the number of data instances satisfying the rule antecedent A and rule
consequent C respectively, and N is the total number of data instances in
the data set being mined. Hence, Interest is a measure of the deviation
from statistical independence between A and C. Note that it measures the
symmetric correlation between A and C, and not an asymmetric implica-
tion, i.e., Interest has the same value for the two “opposite” rules: IF A

THEN C, IF C THEN A. There are more than 50 data-driven measures
of rule quality that have been called rule “interestingness” measures in the
literature. A review of these measures is out of the scope of this paper - the
interested reader is refereed to [Hilderman and Hamilton, 2001], [Tan et al.,
2002] - but it is important to point out that recent results have questioned
the effectiveness of such data-driven rule interestingness measures [Ohsaki
et al., 2004], [Carvalho et al., 2005]. These recent results support the intu-
itive argument that it is difficult to use a purely data-driven approach for
discovering patterns that are truly novel or surprising to the user.

There is, however, another kind of data-driven approach for discovering
surprising patterns which is not based on statistical properties of rules, but
rather based on the idea of detecting occurrences of Simpson’s paradox.
This is the approach followed in this paper, and although it is mainly a
data-driven approach - since occurrences of the paradox are extracted from
the data without the need for background knowledge specified by the user -
it is explicitly designed for discovering surprising patterns to users, based on
the fact that instances of Simpson’s paradox tend to be very surprising to
users in general - almost by definition, due to the nature of the “paradox”.
Hence, this approach tries to combine the best of both worlds (data-driven
and user-driven measures of interestingness) [McGarry, 2005].

An occurrence of Simpson’s paradox can be described as follows [Pearl,
2000]. Let the event C be the apparent “cause” of an event E, the “effect”.
Simpson’s paradox occurs if the event C increases the probability of the
event E in a given population Pop and, at the same time, decreases the
probability of event E in every sub-population of Pop. Let F and ¬F denote
two opposite values of a confounding variable, representing complementary
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properties describing two sub-populations of Pop. Then, mathematically
Simpson’s paradox occurs if the following 3 inequalities hold for a given
data set:

P (E|C) > P (E|¬C), (1.2)

P (E|C, F ) < P (E|¬C, F ), (1.3)

P (E|C,¬F ) < P (E|¬C,¬F ), (1.4)

where P (X|Y ) denotes the conditional probability of X given Y .
To illustrate these concepts, consider the hypothetical example involving

Tables 1.1 and 1.2 [Pearl, 2000]. Table 1.1 shows the number of patients
who recovered (E) or not (¬E), given that they received a drug (C) or no
drug (¬C), as well as the corresponding recovery rate. Table 1.2 shows the
data considering the sub-populations of males and females separately.

Table 1.1. Recovery rates for the entire population.

Recovery
Combined (E) (¬E) Total Recovery rate

Drug
(C) 20 20 40 50%

(¬C) 16 24 40 40%
Total 36 44 80

Table 1.2. Recovery rates for the sub-populations of
males and females separately.

Recovery
Males (E) (¬E) Total Recovery rate

Drug
(C) 18 12 30 60%

(¬C) 7 3 10 70%
Total 25 15 40

Recovery
Females (E) (¬E) Total Recovery rate

Drug
(C) 2 8 10 20%

(¬C) 9 21 30 30%
Total 11 29 40

Observing Table 1.1 only we would conclude that receiving the drug im-

proves the recovery rate. However, when we observe the data partitioned
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by sub-population, as shown in Table 1.2, we observe a reversal of the effect
of receiving the drug, because in each sub-population - i.e., in both the male
and the female sub-populations - receiving the drug reduces the recovery
rate.

This kind of reversal of the effect of the apparent “cause” seems para-
doxical (under a causal interpretation) and tends to be very surprising to
users. However, there is actually an explanation for the paradox. In the
examples of Tables 1.1 and 1.2, the drug seems beneficial overall (in the
entire population) due to a combination of two factors, namely males have
higher recovery rates than females - both in the case of people who receive
the drug and in the case of people who do not receive the drug - and more
males receive the drug.

It is important to note that, strictly speaking, Simpson’s paradox is not
really a paradox in the context of probability theory, because it does not
involve a real contradiction, just an apparent contradiction that is elimi-
nated by providing an explanation for the occurrence of the paradox, as
just discussed in the case of the paradox occurrence shown in Tables 1.1
and 1.2.

A second important and related point is that Simpson’s paradox is well-
known by statisticians in general. Despite these two points, it should be
noted that the apparent contradiction associated with Simpson’s paradox
looks very puzzling (actually, it looks like a real contradiction) to most users,
and, as pointed out by [Fabris and Freitas, 2006], in practice Simpson’s
paradox is usually very surprising to users, who typically have no formal
statistical training. Hence, the discovery of Simpson’s paradox instances is a
valid approach for discovering surprising patterns from data, since the goal
of data mining is to discover patterns that are surprising to users, rather
than to statisticians or data analysts.

A number of occurrences of Simpson’s paradox in real-world data are
reported in [Fabris and Freitas, 1999], [Fabris and Freitas, 2006], [Kohavi,
2005]. The two works by Fabris & Freitas also describe algorithms that
systematically search for occurrences of Simpson’s paradox in data.

An analysis of the computational complexity of an algorithm for detect-
ing occurrences of Simpson’s paradox in data was presented in [Fabris and
Freitas, 2006]. In summary, that analysis showed that the computational
time taken by the algorithm: (a) grows linearly with respect to the num-
ber of data instances (records) in the data; (b) in the best (worst) case, it
has a linear (cubic) growth with respect to the number of categorical (or
discrete) attributes in the data - the algorithm ignores continuous (real-
valued) attributes; (c) grows linearly with respect to the number of values
per categorical attribute.
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4 Integrating Bayesian Networks and Simpson’s
Paradox

So far the construction of Bayesian networks from data and the detection
of Simpson’s paradox in data have been considered as independent tasks
in the data mining literature. Each of these two kinds of methods ignores
the other, and they have been proposed to solve very different data mining
problems.

This paper proposes to integrate these two kinds of methods. The ba-
sic idea of this integration is to combine the advantages of both kinds of
methods, as follows. On one hand, Bayesian networks provide a graphical,
easy-to-interpret representation of the structure of important relationships
in the data, and their causal interpretation is potentially more useful for
intelligent decision making than other knowledge representations that do
not even attempt to represent causal knowledge. On the other hand, algo-
rithms for detecting Simpson’s paradox potentially discover very surprising
patterns to the user. Hence, a synergistic combination of these two kinds of
methods improves our chances of discovering patterns that are both poten-
tially useful and surprising to the user, satisfying the two hardest-to-satisfy
criteria mentioned in Fayyad et al.’s definition of knowledge discovery -
quoted in the beginning of the Introduction.

In this paper we assume “causal sufficiency”, i.e., all relevant variables
involved in the underlying causal process being modeled are present in the
data, so that there are no latent variables.

The remainder of this section is organized as follows. Section 4.1 dis-
cusses some limitations of Bayesian network construction algorithms, which
served as the foundational ideas for the design of the proposed method
for integrating Bayesian network construction algorithms and algorithms
for detecting occurrences of Simpson’s paradox. Section 4.2 discusses the
proposed method itself.

4.1 The Framework for the Proposed Method

First of all, in general Bayesian networks are Independence-maps (I-maps) of
the true probability distribution [Pearl, 1988], [Korb and Nicholson, 2004].
This means that - if the Bayesian network was correctly constructed (see
below) - every independence between variables represented in the network
corresponds to an actual independence in the true probability distribution,
but the converse is not true, i.e., dependencies between variables represented
in the network are not guaranteed to correspond to actual dependencies in
the true probability distribution.

Another limitation of conventional Bayesian network learning algorithms
is that such algorithms learn only up to the Markov equivalence class of
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Bayesian networks [Neapolitan, 2003]. All DAGs that are members of that
class are an I-map of the data, but only one of them is the truly causal
DAG.

In addition to the just-mentioned “theoretical limitations” of Bayesian
networks, there are two other “practical limitations” of Bayesian network
construction methods. First, the problem of learning the optimal topology
of a Bayesian network is NP-hard [Chickering et al., 1994], [Blanco, 2005],
and the size of the search space grows exponentially with the number of
variables in the data set being mined. More precisely, the number of DAGs
that can be generated from a set of M variables - denoted NumDAG(M)
- is given by the following recursive equation [Correa, 2005]:

NumDAG(M) =

M∑

i=1

(−1)i−1CM,i2
i(M−1)NumDAG(M − 1), (1.5)

where the recursion stopping criterion is given by NumDAG(0) = 1 and
CM,i is the number of combinations of i elements that can be taken from
M elements.

Hence, when mining data sets with a large number of attributes - which
are commonplace in the area of data mining - we usually have to accept that
it will not be possible to construct the optimal network within a certain
reasonably-constrained amount of time. This justifies the use of heuristic
methods for constructing a good network (rather than the ideal, optimal
network) within the time constraints determined by the application domain
or the user, and explains the popularity of the heuristic methods reviewed in
Section 2, despite the fact that they usually discover suboptimal solutions.

The second practical problem is that, even if there was a computational
method that could construct the optimal Bayesian network within an ac-
ceptable amount of time in the target application domain, in practice the
actual discovery of the optimal Bayesian network for the target application
domain would still depend on to what extent the following assumption is
satisfied: the probability distribution of the observed data (which is just a

sample of the underlying population) is the same as the probability distri-
bution of the population [Shipley, 2000]. In practice, the data usually has
some sampling variation and/or it is noisy, making it even more difficult
for a computational method to discover the optimal Bayesian network. In
addition, even if there is no sample variation or noise in the observed data,
there can be cases where not all independencies in the data are mirrored
in the structure of the Bayesian network because, in the underlying “causal
process” that produced the data, two causal paths exactly cancel each other
out, thus making the learning of the Bayesian network with classical tech-
niques impossible.
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4.2 The Proposed Method

A major type of spurious dependence in a Bayesian network is the appar-
ent dependence between events C and E (apparent cause and effect) when
in reality this dependence is due to a confounding event F [Pearl, 2000].
This kind of spurious dependence can potentially be discovered by detect-
ing occurrences of Simpson’s paradox, as follows. (This assumes that the
confounding event is observed in the data, of course - recall that we are
assuming there are no latent variables.)

An occurrence of Simpson’s paradox involving a triple of events C, E, F

- whose meanings were explained in Section 3 - is evidence that we should
not always believe that C is a cause of E. This is the basic idea of the
method proposed here. To implement this idea we propose two approaches
for integrating an algorithm for detecting Simpson’s paradox (using algo-
rithms described in [Fabris and Freitas, 2006]) and algorithms for construct-
ing Bayesian networks (reviewed in Section 2). It should be noted that
both approaches involve a “loosely-coupled” integration between the two
aforementioned kinds of algorithm, in the sense that in each of these ap-
proaches first one of the algorithms is run as usual, and the results of that
run are passed to the second algorithm, which is somewhat modified to take
advantage of those results. The development of a more “tightly-coupled”
integration is left for future research.

The first approach, here called “paradox detection before Bayesian net-
work construction”, consists of running a Simpson’s paradox detection al-
gorithm as a kind of “preprocessing step” for the Bayesian network con-
struction algorithm, producing a list of occurrences of the paradox found
in the data. This list of paradox occurrences can then be used to modify
the Bayesian network construction algorithms’ procedures for generating
candidate networks. More precisely, consider a potential dependence of the
form C → E (where C and E are thought to be cause and effect events).
If C and E are associated in an occurrence of Simpson’s paradox where
F is a confounding event, this indicates that the effect E can be caused
by the confounding event F , rather than by the apparent cause C, which
suggests that the dependence C → E might be an apparent one. So, the
Bayesian network construction algorithms could be modified to include, in
the network being constructed, not only the edge C → E, but also the edge
F → E. This would avoid that the constructed network have just that
former edge, and not the latter, which would miss the (potentially causal)
effect of F on E.

The second approach for integrating an algorithm for detecting Simpson’s
paradox and algorithms for constructing Bayesian networks is here called
“paradox detection after Bayesian network construction”. This approach
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consists of using the result of a previously constructed Bayesian network to
prune the search space for the Simpson’s paradox detection algorithm. More
precisely, the Simpson’s paradox detection algorithm will focus its search on
the pairs of variables for which there is a direct dependence represented by
an edge from the potential cause C to the effect E in the Bayesian network.
For each such pair of variables, the paradox detection method will try to
find an occurrence of the paradox involving those two variables - by trying
to find a third variable that acts as a confounding variable F between those
two variables. If an occurrence of the paradox is found involving the two
variables and a third confounding variable, intuitively this occurrence of
the paradox is likely to be particularly surprising to the user. The detection
of this occurrence of Simpson’s paradox would be particularly interesting
if there is no edge in the network pointing from the confounding F to the
effect E, because in this case the paradox detection method would have
detected a pattern not present in the Bayesian network.

At this point it should be noted that the proposed integration method (in
both approaches) has a natural limitation. In particular, it is possible that
the data to be mined does not contain any occurrence of Simpson’s paradox.
If this is the case, then the proposed method will have a limited usefulness.
However, even in this case the application of the method can be considered
to some extent useful, because, if no occurrence of Simpson’s paradox was
detected in the data, we would have an increased degree of confidence that
the dependencies represented in the network are true (rather than spurious)
dependencies, since the candidate dependencies represented in the network
would have passed an additional test - i.e., no confounding variable related
to the dependence was detected. This additional test complements (and not
replaces) conventional methods for evaluating Bayesian networks.

4.3 Preliminary Computational Results

In this section we report preliminary computational results for the proposed
method - in the approach of “paradox detection after Bayesian network
construction” - in the Congressional Voting data set. This is a well-known
public domain data set often used in machine learning research, available
from the UCI Machine Learning Repository1. Each record (example) con-
tains the votes of a United States Congressperson with respect to 16 key
questions - each vote is represented by a binary attribute. In addition, each
record is assigned to one out of two classes: democrat or republican. This
data set is typically used for evaluating a classification algorithm, where the
goal is to predict the Class (party affiliation) of a Congressperson based on

1University of California at Irvine, UCI Machine Learning Repository, World Wide
Web address: http://www.ics.uci.edu/∼mlearn/MLRepository.html
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her/his votes with respect to the 16 questions (attributes). In the context
of this paper, however, we are interested in constructing a Bayesian net-
work from this data set, detecting occurrences of Simpson’s paradox in the
data set, and then integrate the results of these two kinds of data mining
techniques.

To construct this Bayesian network (BN) we used a search procedure
and a scoring metric. The scoring metric evaluates the goodness-of-fit of
a candidate BN structure to the data. The search procedure generates
alternative structures and selects the best one based on the scoring metric.
We use a greedy search algorithm to generate BN structures. As a rule, the
greedy search algorithm starts with an empty network. At each step, it then
adds the edge, considering all possible pairs of nodes, that most increases
the scoring metric of the current network structure. The search terminates
when none of the possible edge additions improve the score of the BN. To
reduce the search space of networks, only candidate networks in which each
node has at most k inward edges (parents) are considered - k is a parameter
determined by the user. For the experiments reported in this paper k = 5.

The scoring metric assigns a score to each candidate BN. Its purpose is
to measure how well that BN describes the given data set. In this work we
use the K2 scoring metric [Cooper and Herskovits, 1991; Heckerman, 1995]
because its requirements exactly match our assumptions about the data
set: (1) that the process that generated the database can be accurately
modeled as a Bayesian network; (2) that given a Bayesian network model
data instances (records) occur independently; and (3) that there are no
latent variables.

The Voting data set has numerous missing values. To cope with this
problem we used the following approach. When computing a given proba-
bility referring to a set of attributes X, a data instance (record) was ignored,
i.e., it was not counted for probability-computation purposes, if the data set
instance had a missing value for any of the attributes in the set X. This
approach to cope with missing values was also used in [Fabris and Freitas,
1999], where, in the computation of probabilities associated with an occur-
rence of Simpson’s paradox involving variables C, E and F , a data instance
was ignored if it had a missing value for any of those three variables. (The
results reported in [Fabris and Freitas, 1999] will be used later in this paper
when analyzing the results of the constructed Bayesian network.)

Once the Bayesian network for the Voting data set has been constructed,
we can ask two related questions: (a) Is there any occurrence of Simp-
son’s paradox in this data set? (b) If the answer to (a) is “yes”, is any
of the paradox occurrences referring to a certain relationship between a
triple of variables (C, E and F in the notation of Section 3) which is not
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a relationship observed in the constructed Bayesian network? In order to
answer these questions we can use some computational results about the
detection of Simpson’s paradox reported in [Fabris and Freitas, 1999]. In
particular, that work reports 4 occurrences of Simpson’s paradox in the
Voting data set, so that the answer to the above question (a) is clearly
“yes”. The answer to question (b) is more elaborate, as follows. In all
the 4 reported occurrences of the paradox, the “effect” (E) variable is the
“Class” attribute. Hence, we looked at the constructed Bayesian network
to identify which attributes are the parents of the Class attribute in that
network. The parent attributes are “El-Salvador-aid”, “Anti-satellite-test-

ban”, “Aid-to-Nicaraguan-Contras”, “MX-missile”, “Immigration”. Out of
these attributes, just one, Anti-satellite-test-ban, occurs as variable C (po-
tential cause) in a paradox reported in [Fabris and Freitas, 1999]. Hence,
our analysis here focuses on this occurrence of the paradox, as shown in
Tables 1.3 and 1.4.

Looking at Table 1.3, with data combined for the entire population, it
seems that Congress Members voting “yes” to Anti-satellite-test-ban are
much more likely to be democrats than Congress Members voting “no” to
the same question. However, looking at Table 1.4, with data partitioned
into two sub-populations based on the kind of vote (“yes” or “no”) to the
Physician-fee-freeze question, there is a reversal of the relationship shown
in Table 1.3. In Table 1.4 Congress Members voting “yes” to Anti-satellite-
test-ban are less likely to be democrats than Congress Members voting “no”
to the same question, in both sub-populations - i.e., for both values “yes”
and “no” of the attribute Physician-fee-freeze.

Note that in the paradox occurrence reported in Tables 1.3 and 1.4 the
potential cause variable (C) is “Anti-satellite-test-ban”, the effect variable
(E) is Class (party affiliation which can be Democrat or Republican), and
the confounding variable (F ) is “Physician-fee-freeze”. Now, let us focus on
two alternative causal models of the relationships between these 3 variables,
as shown in Figure 1.2.

In the causal model of Figure 1.2(a) Physician-fee-freeze affects both
Anti-satellite-test-ban and Class. This suggests that Table 1.4 (the sub-
population-specific table) better represents the causal process underlying
the data. By contrast, in the causal model of Figure 1.2(b) it is Anti-
satellite-test-ban that affects both Physician-fee-freeze and Class, which
suggests that Table 1.3 (the entire-population table) better represents the
causal process underlying the data. This is because in Figure 1.2(b) Physician-
fee-freeze is in the middle of the causal path from Anti-satellite-test-ban to
Class, so we should not condition on Physician-fee-freeze when determining
the effect of Anti-satellite-test-ban on Class. For an analogous and more
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detailed discussion of these points in the context of the artificial data pre-
sented in Tables 1.3 and 1.4, [see Pearl, 2000, Section 6.1]2.

Table 1.3. Democrat rates for the entire population.

Democrat
Anti-sat-ban (E) (¬E) Total Democrat rate

Vote
Yes (C) 197 39 236 83.5%
No (¬C) 55 122 177 31.1%

Total 252 161 413

Table 1.4. Democrat rates for sub-populations based on
different values of Physician-fee-freeze.

Phys-fee-free = yes (F )
Democrat

Anti-sat-ban (E) (¬E) Total Democrat rate

Vote
Yes (C) 2 37 39 5.1%
No (¬C) 12 122 134 9.0%

Total 14 159 173
Phys-fee-free = no (¬F )

Democrat
Anti-sat-ban (E) (¬E) Total Democrat rate

Vote
Yes (C) 195 2 197 99.0%
No (¬C) 43 0 43 100%

Total 238 2 240

Note that neither the causal model in Figure 1.2(a) nor the causal model
in Figure 1.2(b) are represented in the Bayesian network constructed from
the data. Actually, the subset of the network containing the variables Anti-
satellite-test-ban, Class and Physician-fee-freeze, as well as the edge con-
necting these variables in the network, is shown in figure 1.3. The network
in that figure suggests that Class affects Physician-fee-freeze, whilst Figures

2Actually, it should be noted that the causal models in Figure 1.2(a) and Figure 1.2(b)
are analogous to the causal models in Figure 6.2(a) and 6.2(b) in [Pearl, 2000]. By “anal-
ogous” we mean that, once the variables Anti-satellite-test-ban, Class and Physician-fee-
freeze of our Figure 1.2 are mapped into the variables C, E, F of Pearl’s Figure 6.2,
the network of our Figure 1.2(a) has the same structure (the same directed edges) as
the network of Pearl’s Figure 6.2(a), and the network of our Figure 1.2(b) has the same
structure as the network of Pearl’s Figure 6.2(b).
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1.2(a) and 1.2(b) suggest that it is actually the Physician-fee-freeze that
affects the Class.

(b)

Class

"Party affiliation"
(democrat/republican)

Anti-satellite-test-ban

(yes/no)

Physician-fee-freeze

(yes/no)

(a)

Class

"Party affiliation"
(democrat/republican)

Anti-satellite-test-ban

(yes/no)

Physician-fee-freeze
(yes/no)

Figure 1.2. Two alternative causal models for the data in Tables 1.3
and 1.4.

Physician-fee-freeze

(yes/no)

Anti-satellite-test-ban
(yes/no)

Class

"Party affiliation"
(democrat/republican)

Figure 1.3. Relationship among the variables Physician-fee-freeze,
Anti-satellite-test-ban and Class (Party affiliation) as observed in the
Bayesian network constructed for the Congressional Voting data set.

It is beyond the scope of this paper to decide which causal model - Figure
1.2(a), 1.2(b) or 1.3 - better represents the causal process underlying the
data. Such a decision is left to an expert in the meaning of the variables
and American politics, who would make the role of the user in data mining.
In particular, if it is feasible, it would be advisable to perform randomized
controlled experiments to study more precisely the causal dependence be-
tween variables. Note, however, that such controlled experiments are not
always feasible [Shipley, 2000]. It should be recalled that data mining is
mainly used as a decision support technology, rather than as a decision
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making technology - the actual decision is made by human beings using
their expert background knowledge about the application domain.

The main point of the computational results reported in this section was
just to show a kind of “proof of existence” of a situation where the detection
of Simpson’s paradox can discover a (potentially causal) pattern in the data
that is not represented in a Bayesian network constructed from the data.
Such proof of existence constitutes, of course, a very preliminary result.
Much more extensive experiments will be necessary to evaluate to what
extent the proposed method for integrating Simpson’s paradox detection
and Bayesian network construction is really useful in practice, when mining
real-world data sets where a user expert in the data and the application
domain will analyze the discovered patterns.

5 Conclusions

This paper proposed a method for integrating two very different kinds of al-
gorithms, namely algorithms for constructing Bayesian networks from data
and algorithms for detecting occurrences of Simpson’s paradox in data. The
basic idea of this integration is to combine the advantages (from a data min-
ing perspective) of both kinds of algorithms, as follows. First, the causal
interpretation of Bayesian networks is potentially more useful for intelligent
decision making than other knowledge representations used in data mining
- which typically do not even attempt to represent causal knowledge. Sec-
ond, algorithms for detecting Simpson’s paradox potentially discover very
surprising patterns to the user, almost by definition - due to the nature of
the “paradox”.

Hence, intuitively the proposed method improves our chances of (but of
course does not guarantee) discovering patterns that are both potentially
useful and surprising to the user, satisfying two very demanding criteria to
evaluate the quality of the patterns discovered by a data mining algorithm
- an area of research clearly under-explored in the data mining literature.
Since only a preliminary computational result was reported in this paper,
much more extensive computational experiments and analyses of the results
by users, in several real-world data sets, are required in the future.
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