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Abstract
A digraph G is k-geodetic if for any pair of (not necessarily distinct) vertices u, v ∈
V (G) there is at most one walk of length ≤ k from u to v in G. In this paper, we
determine the largest possible size of a k-geodetic digraph with a given order. We
then consider the more difficult problem of the largest size of a strongly-connected
k-geodetic digraph with a given order, solving this problem for k = 2 and giving a
construction which we conjecture to be extremal for larger k. We close with some
results on generalised Turán problems for the number of directed cycles and paths in
k-geodetic digraphs.

Keywords Digraph · Turán Problem · Extremal · k-geodetic · Strong-connectivity

Mathematics Subject Classification 05C35 · 05C20

1 Introduction

Turán problems are a fundamental part of extremal combinatorics. Such a problem
typically asks for the largest possible size of a graph G with a family F of forbidden
subgraphs. When F consists of small cycles, this is equivalent to the girth problem.
Erdős conjectured in 1975 that the largest possible size of a graphwith order n and girth
at least 5 is given by ( 12 + o(1))3/2n3/2 [12]; this conjecture remains open. Lazebnik
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and Ustimenko gave a construction of dense graphs with arbitrarily large girth in [19];
the latest computational results for the problem can be found in [1].

It is natural to extend this problem to directed graphs by asking for the largest
possible size of a strongly connected digraph with order n and no directed cycles of
length at most g. This problemwas solved by Bermond, Germa andHeydemann in [4].
For the degree-restricted case, the well-known Caccetta-Häggkvist Conjecture states
that the girth of a digraph with order n and minimum out-degree r is at most � n

r �.
Theorem 1 [4] Let D be a strongly connected digraph of order n, size m and girth g.
Let k ≥ 2. Then if

m ≥ 1

2
(n2 + (3 − 2k)n + k2 − k),

we must have g ≤ k. This bound is tight.

In this paperwe consider an analogous problemusing a different ‘girth-like’ parameter.
A digraphG is k-geodetic if for any pair of not necessarily distinct vertices u, v there is
at most one walk in G from u to v with length at most k. The geodetic girth of G is the
largest value of k such thatG is k-geodetic, when this value is defined (a bipartite graph
has k-geodetic orientations for arbitrarily large k). By way of motivation, observe that
all orientations of a graph with girth at least 2k+1 are k-geodetic. The geodetic girth is
of interest in a directed analogue of the degree/girth problem [25]. A related problem
was considered in the papers [17, 18, 20, 28], which, for fixed k ≥ 2, determine the
largest size of a digraph with given order such that, for each pair of vertices u, v, there
is at most one u, v-walk with length exactly k.

In the papers [23, 27], Shaska, Ustimenko and Kozicki prove that if f (n, k) is the
largest size of a diregular k-geodetic digraph with order n, then for fixed k we have

f (n, k) ∼ n
k+1
k . They also give a family of digraphs, now known as the permutation

digraphs, which meet this asymptotic bound. These digraphs were introduced in [13]
and some further properties of these digraphs are given in [7]. For d, k ≥ 2 the
permutation digraph P(d, k) is defined as follows. The vertices of P(d, k) are all
permutations x0x1 . . . xk−1 of length k of symbols from the set [d+k] = {0, 1, . . . , d+
k−1}. A vertex x0x1 . . . xk−1 has an arc to all permutations of the form x1x2 . . . xk−1xk
for any xk /∈ {x0, x1, . . . , xk−1}. It is simple to verify that P(d, k) is diregular with out-
degree d and is k-geodetic. The order of P(d, k) is n = (d + k)(d + k−1) · · · (d +1)

and has size m = nd ∼ n
k+1
k . We will see in the final section that these digraphs

have other interesting extremal properties. The result of Ustimenko and Kozicki also
holds in the more general setting of out-regular digraphs, using the following short
argument.

Remark 2 For k ≥ 2 the largest size exout (n; k) of an out-regular k-geodetic digraph

with order n satisfies exout (n; k) ∼ n
k+1
k as n → ∞.

Proof It is known that the order n of a k-geodetic digraph with minimum out-degree
d is bounded below by the directed Moore bound M(d, k) = 1 + d + d2 + · · · + dk

(see [22]). Hence n ≥ dk and, rearranging, d ≤ n1/k . The size m of an out-regular

k-geodetic digraph G with order n thus satisfies m = nd ≤ n
k+1
k . 
�
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In this paper, we consider this problem without the restriction of diregularity. This
problem can be put into the form of a forbidden subgraph problem, as every violation
of k-geodecity in G can be identified with the occurrence of a specific subdigraph of
G; in [27] these subdigraphs are referred to as ‘hooves’ or ‘commutative diagrams’.
In Sect. 2, we find the largest size of a k-geodetic digraph with given order n and
classify the extremal digraphs. We then discuss the more difficult problem of finding
the largest size of a strongly connected k-geodetic digraph; we solve this problem for
k = 2 and give constructions that we conjecture to be extremal for larger k in Sect. 2.
We classify the extremal digraphs for k = 2 in Sect. 3. Finally, in Sect. 4 we study
some generalised Turán problems for k-geodetic digraphs.

A few words concerning notation. If there is an arc in a digraph G from u to v, then
wewrite u → v. The distance d(u, v) between vertices u, v of a digraphG is the length
of a shortest directed path from u to v in G (or ∞ if no such path exists); note that we
may have d(u, v) �= d(v, u) in a digraph. For a vertex u of G the out-neighbourhood
N+(u) of u is defined to be {v ∈ V (G) : u → v}; similarly the in-neighbourhood
of u is N−(u) = {v ∈ V (G) : v → u}. For a vertex u of G, we define N+k(u) :=
{v ∈ V (G) : d(u, v) = k}; similarly, N−k(u) := {v ∈ V (G) : d(v, u) = k}. The out-
degree d+(u) of a vertex u of G is the number of out-neighbours of u, that is d+(u) =
|N+(u)|, and the in-degree of u is d−(u) = |N−(u)|. A vertex with out-degree zero
is a sink and a vertex with in-degree zero is a source. For any other graph-theoretical
terminology not defined here we follow [6].

2 The Largest Size of a k-Geodetic Digraph

In this section,wefirst classify the 2-geodetic digraphswith given order and largest size
without the assumption of diregularity; the corresponding result for larger k follows
immediately. We then solve the more difficult problem of the largest size of strongly
connected 2-geodetic digraphs with given order and give upper and lower bounds for
the extremal size for larger k.

Theorem 3 For n ≥ 4, k ≥ 2, the largest size of a k-geodetic digraph with order n is⌊
n2
4

⌋
.

Proof Orienting all edges of the complete bipartite graph K�n/2�,n/2� in the same
direction yields a k-geodetic digraph for all 2 ≤ k ≤ 2; this gives the required
uniform lower bound for each value of k. Equality is easily checked for 4 ≤ n ≤ 6.

For the upper bound, consider first the graph K−
4 consisting of the complete graph

K4 with one edge deleted. We claim that no graph containing a copy of K−
4 has a k-

geodetic orientation for k ≥ 2. Suppose for a contradiction that a graphG contains two
triangles x, y, z and x, y, z′, where z �= z′. The only 2-geodetic orientation of a triangle
is a directed 3-cycle, so we can assume that x → y → z → x and x → y → z′ → x ;
however there are now two distinct directed paths from y to x of length two, violating
2-geodecity. A simple inductive argument shows the well-known result [8, 10] that for

n ≥ 7, any graph with order n and size greater than
⌊
n2
4

⌋
contains a copy of K−

4 and

the unique K−
4 -free graph with size

⌊
n2
4

⌋
is K� n

2 �, n
2 �. As a k-geodetic digraph with
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k ≥ 3 is also 2-geodetic, the same upper bound applies for larger k. We, therefore,
have equality for k ≥ 2 and n ≥ 4. 
�

We now classify the 2-geodetic digraphs that meet the bound in Theorem 3.

Lemma 4 Let K be a 2-geodetic orientation of a complete bipartite graph Ks,t with
partite sets X and Y , where s ≥ t ≥ 2. If x is any vertex of K that is neither a source
nor a sink, then either d+(x) = 1 or d−(x) = 1.

Proof Let x ∈ X be a vertex of K that is neither a source nor a sink. Suppose that
d+(x) ≥ 2 and d−(x) ≥ 2. Let y ∈ Y be an out-neighbour of x such that y is not
a sink. Hence y → x ′ for some x ′ ∈ X − {x}. If any other out-neighbour y′ of x
has an arc to x ′, then we would have two 2-paths x → y → x ′ and x → y′ → x ′,
violating 2-geodecity, so it follows that x ′ has arcs to every vertex of N+(x) − {y}.
Any in-neighbour y− of x can already reach every vertex of N+(x) by a 2-path via
x . As x ′ has arcs to every vertex of N+(x) − {y}, it follows that x ′ → y− for every
in-neighbour y− of x . However, there are at least two such in-neighbours y−

1 and y−
2

by assumption, so there exist paths x ′ → y−
1 → x and x ′ → y−

2 → x , a contradiction.
It follows that every out-neighbour of x in Y is a sink; and similarly, every in-

neighbour of x is a source. Let x∗ ∈ X − {x}. Then if y+ ∈ N+(x), y− ∈ N−(x), we
have two paths y− → x → y+ and y− → x∗ → y+, which is impossible. Hence we
must have either d+(x) = 1 or d−(x) = 1. 
�
Theorem 5 For n ≥ 7, the 2-geodetic digraphs with largest size are isomorphic to
an orientation of K� n

2 �, n
2 � with all arcs oriented in the same direction, except for a

matching that is oriented in the opposite direction. The number of isomorphism classes
of extremal digraphs is n + 1 for odd n ≥ 7 and n

2 + 1 for even n ≥ 8.

Proof Let K be a 2-geodetic orientation of K� n
2 �, n

2 �; call the partite sets X and Y ,
where |X | ≥ |Y |. If X contains a source, then Y contains no sources and vice versa,
so we can assume that any source of G lies in X . If X contains only sources, then we
recover the construction in Theorem 3, so we can assume that X contains a vertex that
is neither a source nor a sink. As K is 2-geodetic, X cannot contain both sources and
sinks; for example if x1 ∈ X is a source and x2 ∈ X is a sink, then if y1, y2 ∈ Y we
have paths x1 → y1 → x2 and x1 → y2 → x2, which is impossible.

Note that if all vertices are neither a source nor a sink, then both partitions contain
a vertex which is neither a source nor a sink. If s = t = 2, then the result follows by
Lemma 4, so we may assume that |Y | > 2 and X contains a vertex, say x1, which
is neither a source nor a sink. By Lemma 4, any such vertex has either in-degree or
out-degree one; without loss of generality, we assume that N+(x1) = {y1}.

Suppose that X contains a vertex x ′ with d+(x ′) > 1. If x ′ has two out-neighbours
y′, y′′ ∈ Y − {y1}, then x ′ → y′ → x1 and x ′ → y′′ → x1 would be two distinct
x ′, x1-paths of length two. Hence we can assume that N+(x ′) = y1, y for some
y ∈ Y − {y1}. Therefore for any y′ ∈ Y − {y1, y}, we have y′ → x1 and y′ → x ′,
so that y′ has two paths of length two to y1, a contradiction. Applying Lemma 4, we
have the desired result. 
�

For even n, if the matching mentioned in Theorem 5 is chosen to be a perfect
matching, then the resulting digraph is strongly connected; however, all of the extremal
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Fig. 1 A strongly connected
digraph with n = 2r + 1 and
m = r2 + 2 for r = 4 with the
triangle in bold

digraphs in Theorem 5 for odd n contain either a source or a sink. It is therefore natural
to ask for the largest size of a strongly-connected k-geodetic digraph with given order.

Definition 6 For n ≥ k + 1 and k ≥ 2, ex(n; k) is the largest possible size of a
strongly-connected k-geodetic digraph with order n.

Wenowdetermine the exact value of ex(2r+1; 2);we classify the extremal digraphs
for odd n in Sect. 3. Taking a strongly connected 2-geodetic digraph with order 2r and
size r2 and expanding one arc into a directed triangle shows that ex(2r+1; 2) ≥ r2+2
(this construction is shown in Fig. 1). We now show that this lower bound is optimal
and that any 2-geodetic digraph with odd order and larger size contains either a source
or a sink.

Theorem 7 For all r ≥ 1, we have ex(2r+1; k) = r2+2, and any 2-geodetic digraph
with larger size contains a source or a sink. For r ≥ 3, the underlying graph of any
2-geodetic digraph G with order n = 2r + 1 and size m = r2 + 2 that has no sources
or sinks is isomorphic to a graph formed from a triangle T and a copy of Kr−1,r−1 by
joining every vertex in Kr−1,r−1 to exactly one vertex of T .

Proof The result for r ≤ 2 follows easily by computer search, so we can assume that
r ≥ 3. Let G be a 2-geodetic digraph with size m ≥ r2 + 2 and H be the underlying
undirected graph of G; then H is K−

4 -free. We will proceed to show that H contains
a triangle with a special substructure.

Suppose that H is triangle-free. As the size of H is at least r2 + 2, it follows by the
stability results of [11, 24] that H is bipartite.Wewill name the larger partite set X and
the smaller Y . We claim that there are at least three vertices of X that are connected
to every vertex of Y . Otherwise, setting t = |X |, the size of H is bounded above by

f (t) = (t − 2)(2r − t) + 2(2r + 1 − t) = −t2 + 2r t + 2,

where r + 1 ≤ t ≤ 2r + 1 as |X | > |Y |. The function f (t) has its maximum at
t = r + 1, where f (r + 1) = r2 + 1 < m.

Let X ′ be the set of vertices in X that are adjacent to every vertex of Y , and let H ′
be the complete bipartite subgraph of H with partite sets X ′ and Y . By Theorem 5, all
edges of H between X and Y are directed in the same direction with the exception of
a matching M of size at most r in the opposite direction. Taking the converse of G if
necessary, we can assume that the edges of M are directed from Y to X , with all other

123
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edges in the other direction. By assumption, G contains no sources or sinks, so every
vertex of X ′ must be incident with an edge of the matching M .

Therefore if two vertices y, y′ of Y have a common out-neighbour x , then there will
be a vertex x ′ ∈ X ′ that has arcs to both y and y′, and hence has two paths of length
two to x , violating 2-geodecity. Hence the out-neighbourhoods of the vertices of Y are
pairwise disjoint. No vertex of X is a source and so each vertex of X has at least one
in-neighbour in Y . As |X | > |Y | there must be a vertex y ∈ Y that has (at least) two
out-neighbours x1 and x2 in X . If x1 and x2 had a common out-neighbour y′ ∈ Y , then
therewould be two paths of length two from y to y′, sowe have N+(x1)∩N+(x2) = ∅.
Hence there are at most two arcs incident to {x1, x2}, and at most r − 1 arcs incident
from {x1, x2}, so there are at most r + 1 arcs incident with x1 or x2. If we delete x1
and x2, we would thus obtain a 2-geodetic digraph with order n = 2(r − 1) ≥ 4 and
size m′, where

m′ ≥ m − r − 1 ≥ r2 − 2 + 1 > (r − 1)2,

contradicting Theorem 3. Therefore H contains a triangle T .
Let us label the vertices of T by x, y, z. As G is K−

4 -free every vertex of V (G)−T
is adjacent to atmost one vertex of T , so deleting T fromG removes atmost n = 2r+1
arcs. ByTheorem3, the size ofG−T is atmost (r−1)2. Thusm ≤ (2r+1)+(r−1)2 =
r2 + 2, and equality holds only if G − T is an extremal digraph given in Theorem 5
and every vertex of H − T is adjacent to exactly one vertex of T . 
�

We turn now to the question of the largest size of strongly-connected k-geodetic
digraphs for k ≥ 3. It is trivial to provide a stronger upper bound on ex(n; k) than
Theorem 3 for k ≥ 5.

Lemma 8 For k ≥ 5, we have ex(n; k) < n2
k .

Proof Let G be a k-geodetic digraph without sinks. Suppose that G contains a vertex
u with out-degree d+(u) ≥ n

k . As every vertex has out-degree at least one, it follows
that |N+t (u)| ≥ d+(u) = n

k for 1 ≤ t ≤ k, where N+t (u) denotes the set of vertices
at distance t from u. As G is k-geodetic, all of the vertices in these sets are distinct,
so it follows that n ≥ 1 + k n

k , a contradiction. Hence the maximum out-degree of G

is �+ < n
k and, summing over all vertices of G, the size of G is m < n n

k = n2
k . 
�

It follows that lim supn→∞
ex(n;k)

n2
≤ 1

k . We now provide a construction that shows

that 1
k2

≤ lim infn→∞ ex(n;k)
n2

.

Definition 9 Let the quotient and remainder (when n is divided by k) be r and s
respectively; that is n = kr + s, where s ≤ r (this will hold for sufficiently large n).
The vertex set of G(n, k) consists of vertices ui, j for 1 ≤ i ≤ r and 1 ≤ j ≤ k,
as well as s further vertices v1, v2, . . . , vs . We define the adjacencies of G(n; k) as
follows.

(i) ui, j → ui, j+1 for 1 ≤ i ≤ r and 1 ≤ j ≤ k − 1,
(ii) ui,k → vi for 1 ≤ i ≤ s,

123
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Fig. 2 The digraph G(24, 6)

(iii) ui,k → u j,2 for s + 1 ≤ i ≤ r and 1 ≤ j ≤ s,
(iv) ui,k → ui ′,1 for s + 1 ≤ i, i ′ ≤ r and i �= i ′, and
(v) vt → ui,1 for 1 ≤ t ≤ s and all i in the range 1 ≤ i ≤ r .

The digraph G(n, k) is k-geodetic and has sizem = rs+ (k−1)r + s+ (r − s)(r −
1) = r2 + (k − 2)r + 2 s. If r + 1 ≤ s ≤ k − 1, then we have  n

k � ≤ k − 2, which is
equivalent to n ≤ k2 − k − 1; thus these digraphs exist for n ≥ k2 − k. The arcs in
part iii) can also be directed to u j,1; combined with taking the converse of the resulting
digraphs, this generates several different isomorphism classes. These digraphs admit a
particularly simple description when k|n. Let n = kr for some r ≥ 2. ThenG(kr , k) is
k-geodetic and has order kr and size r(r−1)+r(k−1) = r2+(k−2)r = n2

k2
+ (k−2)n

k .
It has vertices ui, j , where 1 ≤ i ≤ r and 1 ≤ j ≤ k and contains the following arcs:

(i) ui, j → ui, j+1 for 1 ≤ i ≤ r and 2 ≤ j ≤ k − 1,
(ii) ui,1 → ui ′,2 for 1 ≤ i, i ′ ≤ r and i �= i ′, and
(iii) ui,k → ui,1 for 1 ≤ i ≤ r .

Observe that G(kr , k) can be derived from the orientation of Kr ,r with a perfect
matching pointing in one direction and all other arcs directed in the opposite direction
by extending the perfect matching into paths of length k − 1. The digraph G(24; 6) is
shown in Fig. 2.

Table 1 displays the results of computational work on the values of ex(n; k) for
some small values of n and k ≥ 3. It can be seen that the digraph G(n, k) has largest
possible size whenever n = kr + s, where s ≤ min{r , k − 1}. In fact, for n and k in
the above range such that k|n, we can say further that the underlying undirected graph
of G(n, k) is the unique graph with size n2

k2
+ (k−2)n

k that has a strongly-connected
k-geodetic orientation. This leads us to make the following conjecture that generalises
Theorem 7.

123
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Table 1 ex(n; k) for some small
values of n and k

n\k 3 4 5 6

7 8

8 10

9 12 10

10 14 12

11 16 14 12

12 20 15 14

13 22 17 15 14

14 24 19 17 16

15 21 18 17

16 20 19

17 22 20

18 21

19 23

Conjecture 10 For k ≥ 2 and sufficiently large n,

ex(n; k) =
⌊n
k

⌋2 − (k + 2)
⌊n
k

⌋
+ 2n.

Also if k|n, then G(n, k) is the unique extremal digraph with that order.

3 Classification of Extremal 2-Geodetic DigraphsWithout Sources
and Sinks

In the previous section, it was shown that for r ≥ 1, any strongly-connected 2-geodetic
digraph with order n = 2r +1 has at most ex(2r +1; 2) = r2 +2 arcs. In this section,
we will classify the strongly-connected 2-geodetic digraphs that achieve this bound.
Our analysis will focus on the case r ≥ 5, for odd n ≥ 11. Computer search shows
that there is a unique extremal strongly-connected 2-geodetic digraph with size r2 +2
for r = 1, three extremal digraphs for r = 2, 29 solutions for r = 3 and 19 solutions
for r = 4; and any 2-geodetic digraphs with larger size contain either a source or a
sink.

Let G be a 2-geodetic digraph with order n = 2r + 1 ≥ 11, size r2 + 2 and no
sources or sinks and let H be the underlying undirected graph of G. By Theorem 7, H
contains a triangle T with vertices x, y, z, which is oriented in G as x → y → z → x
and each vertex in H − T is adjacent to exactly one of x, y or z. Furthermore, G − T
must be one of the r orientations of Kr−1,r−1 given in Theorem 5. Let the bipartition
of Kr−1,r−1 be X ,Y , where X = {x1, . . . , xr−1},Y = {y1, . . . , yr−1}; we can assume
that xi → yi for 1 ≤ i ≤ r − 1 − s for some 0 ≤ s ≤ r − 1, with all other edges
oriented in the other direction, so that there are s sources and s sinks in G − T .

123
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We will say that a partite set is covered by a subset T ′ of T if all of its neighbours
in T belong to T ′; in particular, if all of the neighbours of a partite set, say X , are the
same vertex of T , say x , then X is covered by x . We call a vertex in T bad if it has
neighbours in both partite sets of H − T .

Lemma 11 Any bad vertex of T has degree 4 in H. If n ≥ 11, then there is at most
one bad vertex.

Proof It is easily seen that if a bad vertex has degree at least 5 in H , and hence at least
three neighbours in Kr−1,r−1, then H contains a copy of K−

4 , which is impossible by
Theorem 3. As any bad vertex of T is adjacent to one vertex of X and one vertex of
Y , for r ≥ 5 not all three vertices of T can be bad. Furthermore, if two vertices of T
are bad then the third vertex of T would also have to be bad. 
�
Lemma 12 If there is no bad vertex in T , then either X or Y is covered by a single
vertex of T and s ≤ 1.

Proof If there is no bad vertex, then the neighbours of any vertex of T in Kr−1,r−1
must be entirely contained in one partite set, so one partite set is covered by one vertex
of T and the other partite set is covered by the other two vertices of T .

Concerning the value of s, suppose that s ≥ 2 and that X is covered by x (the
argument for Y is similar). There must be an arc from every sink in X to x . But any
source in Y has arcs to all the sinks in X , and hence will have multiple 2-paths to x ,
contradicting 2-geodecity. 
�
Lemma 13 Any vertex of T with neighbours in X has at most one in-neighbour in X.
Any vertex of T that is joined to at least two non-sink vertices of X has no in-neighbour
among the non-sink vertices of X. Substituting ‘source’ for ‘sink’ and ‘out-neighbour’
for ‘in-neighbour’, the analogous results hold for Y .

Proof Suppose that a vertex of T , say x , has at least two in-neighbours xi and x j in
X . For any � ∈ {1, 2, . . . , r − 1} − {i, j} we have y� → xi → x and y� → x j → x ,
a contradiction.

Now let x be adjacent to vertices xi and x j in X , where we now assume that xi and
x j are not sinks in G − T . If xi → x , then as x has at most one in-neighbour in X
we must have x → x j . Hence there are paths xi → x → x j and xi → yi → x j , a
contradiction. The results for Y follow in a similar manner. 
�

First, we deal with the case that T has no bad vertices. Assume firstly that X is
covered by x . Suppose that s = 1 (Fig. 3a). Then xr−1 and yr−1 are the sink and the
source of G − T respectively. Now x must have an arc from the sink so that it does
not remain a sink in G; hence by Lemma 13, we have x → xi for 1 ≤ i ≤ r − 2. Y is
covered by y and z, and either y or z has an arc to the source yr−1.

If z has an arc to Y , then there would be multiple 2-paths from z to a non-sink
vertex in X ; and similarly, if z has an in-neighbour yi in Y , then there would be 2-
paths yi → z → x and yi → xr−1 → x . Therefore z has no neighbours in Y , so y
must have an arc to yr−1, and by Lemma 13, yi → y for 1 ≤ i ≤ r − 2. This yields
the 2-geodetic digraph Ar , an example of which is shown in Fig. 3a. This digraph is
isomorphic to its converse.
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x

z

y

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

(a) A6

x

y z

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

(b) B6,2

Fig. 3 The graphs A6 and B6,2

Now let X be covered by x and s = 0. By Lemma 13, x → xi for 1 ≤ i ≤ r − 1.
By reasoning similar to the previous case, y and z can have no out-neighbours in Y .
Let the resulting digraph in which y has t in-neighbours in Y be denoted by Br ,t for
0 ≤ t ≤ r − 1 (see Fig. 3b). Each Br ,t is a 2-geodetic extremal digraph.

The case of Y being covered by one vertex of T is symmetric. In particular, we
denote the converse of Br ,t by B ′

r ,t . We have B ′
r ,0

∼= Br ,0 and B ′
r ,r−1

∼= Br ,r−1, but
otherwise these digraphs are pairwise non-isomorphic.

We now turn to the case that there is a bad vertex; say z is bad. Hence d(z) = 4 in
H . It follows by Lemma 11 that x and y each have r − 2 neighbours in Kr−1,r−1, and
each is connected to just one partite set.

Lemma 14 If z is bad, then s ≤ 2. If z is joined to a source in Y , then X is covered
by {y, z} and Y is covered by {x, z}. Likewise, if z is joined to a sink in X, then X is
covered by {x, z} and Y is covered by {y, z}. If s = 2, then z is connected to a source
in Y and a sink in X.

Proof Suppose that s ≥ 3. The bad vertex z is adjacent to one vertex of Y in H − T ,
so the vertex of T that also has edges to Y must have arcs to two or more sources
in Y , violating Lemma 13. This reasoning also demonstrates that if s = 2, then z is
connected to a source in Y and a sink in X .

For any s ≤ 2, suppose that z is joined to a source in Y . Suppose that X is covered
by {x, z}. Then z has a 2-path to every vertex of X via the source, but by Lemma 13, x
has an out-neighbour xi ∈ X , so there will also be a 2-path from z to xi via x , violating
2-geodecity. Hence X must be covered by {y, z}, and hence Y is covered by {x, z}.
The other statement is symmetric to this one. 
�
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(b) D6

Fig. 4 The digraphs C6 and D6

Let s = 2. The sources inG−T are yr−2 and yr−1 and the sinks are xr−2 and xr−1.
By Lemma 14, we can assume that z → yr−2 and xr−2 → z. Also by Lemma 14, X
is covered by {y, z}. There must be an arc from xr−1 to y so that xr−1 is not a sink
in G and y → xi for 1 ≤ i ≤ r − 3, by Lemma 13. Likewise, there is an arc from x
to yr−1. However, we now have two 2-paths from x to the vertices in {x1, . . . , xr−3};
one via y and the other via yr−1, a contradiction. It follows that s ≤ 1.

Let s = 1. The sink and source of G − T are xr−1 and yr−1 respectively (Fig. 4a).
Suppose that z is joined to xr−1 and yr−1. By Lemma 14, X is covered by {y, z} and
Y is covered by {x, z}. By Lemma 13, y → xi for 1 ≤ i ≤ r − 2 and yi → x for
1 ≤ i ≤ r − 2. This gives the single solution Cr , an example of which is shown in
Fig. 4a. Note that the digraph Cr is isomorphic to its converse.

Suppose that z is joined to the source yr−1 but is not joined to the sink xr−1 of
G − T ; say z has an edge to xr−2 in H − T . By Lemma 14, X is covered by {y, z}
and Y is covered by {x, z}. Hence there is an arc xr−1 → y, and by Lemma 13, x
has at most one out-neighbour in Y − yr−1, so that there is a vertex yi with yi → x .
Hence there would be paths yi → x → y and yi → xr−1 → y in G, a contradiction.
We will get a similar contradiction if z is joined to the sink xr−1 in X , but not to the
source yr−1 in Y .

Finally, let z be joined to xi and y j , where 1 ≤ i, j ≤ r − 2. Suppose that
X is covered by {x, z} and Y by {y, z}. If i = j , then the triangle is oriented as
xi → yi → z → xi ; however, this yields paths yi → z → x and yi → xr−1x , so we
must have i �= j . Without loss of generality, we can set i = r − 2 and j = r − 3. The
triangle is now oriented as yr−3 → xr−2 → z → yr−3. There is an arc xr−1 → x , so
by Lemma 13 there are arcs x → xl for 1 ≤ l ≤ r − 3. In this case we would have
paths z → yr−3 → x1 and z → x → x1.

Hence we can assume that X is covered by {y, z} and Y by {x, z}. By Lemma 13,
y has at least two out-neighbours in X , so if x has any out-neighbour in Y then there
would be more than one 2-path from x to an out-neighbour of y in Y . In particular,
we must have z → yr−1, a case that we have already considered.
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Now we can set s = 0. Suppose that z is joined to x1 and y2. As y2 → x1, we must
orient the triangle z, x1, y2 as z → y2 → x1 → z. If X is covered by {x, z} and Y is
covered by {y, z}, then by Lemma 13, x → xi for 2 ≤ i ≤ r − 1, and so there would
be paths z → y2 → x3 and z → x → x3. Hence X must be covered by {y, z} and
Y must be covered by {x, z}. By Lemma 13, we have y1 → x . Hence there are paths
x1 → y1 → x and x1 → z → x .

Therefore we can assume that z is joined to x1 and y1. We must have z → x1 and
y1 → z. If X is covered by {y, z} and Y by {x, z}, then by Lemma 13, y → xi and
yi → x for 2 ≤ i ≤ r − 1. This yields the solution Dr shown in Fig. 4b; the digraph
Dr is isomorphic to its converse. If X is covered by {x, z} and Y by {y, z}, then by a
suitable redrawing of the digraph it can be seen that we obtain a solution isomorphic
to Cr in Fig. 4a.

This completes our classification of the strongly-connected 2-geodetic digraphs
with order n = 2r + 1 and size r2 + 2. We therefore have the following theorem.

Theorem 15 If G is a 2-geodetic digraph with order n = 2r+1 ≥ 11, size m = r2+2
and no sources or sinks, then G is either isomorphic to one of Ar , Br ,0, Br ,r−1,Cr

or Dr or is isomorphic to a member of the family Br ,t , B ′
r ,t for some 1 ≤ t ≤ r − 2.

The digraphs in this list are pairwise non-isomorphic, and so there are 2r + 1 distinct
solutions up to isomorphism.

4 Generalised Turán Problems for k-Geodetic Digraphs

Recently the following extension of Turán’s problem has received a great deal of
attention: given graphs T and H , what is the largest possible number of copies of T
in an H -free graph with order n? Erdős considered this problem in 1962 [9] when T
and H are complete graphs. The largest number of 5-cycles in a triangle-free graph
was treated in [14, 16], and the converse problem of the largest number of triangles
in a graph without a given odd cycle C2k+1 is discussed in [5, 15]. The problem was
considered in greater generality in [2]. To investigate this problem in digraphs, we
define the following notation.

Definition 16 For any digraph Z and k ≥ 2, we denote the largest number of copies
of Z in a k-geodetic digraph by ex(n; Z; k).
Observe that if Z is a directed arc then ex(n; Z; k) = ex(n; k). We will study the
asymptotics of the function ex(n; Z; k) in the cases that Z is a directed (k + 1)-cycle
or a directed path. We begin with the function ex(n;Ck+1; k), where k ≥ 2 and Ck+1
is a directed (k + 1)-cycle. Earlier we made use of the fact that any arc in a 2-geodetic
digraph is contained in at most one triangle; a similar principle applies for larger k.

Lemma 17 Every arc in a k-geodetic digraph is contained in at most one directed
(k + 1)-cycle.

Proof Suppose that an arc xy is contained in two distinct (k + 1)-cycles. Then y has
distinct paths of length k to x , violating k-geodecity. 
�

We now utilise an inductive approach to give an upper bound on the number of
directed (k + 1)-cycles in a k-geodetic digraph.
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Lemma 18 Every k-geodetic digraph with order n contains a vertex with out-degree
at most n1/k .

Proof Assume the contrary. Then for any vertex x , the set N+k(x)will contain at least
n vertices, a contradiction. 
�
Theorem 19

ex(n;Ck+1; k) ≤
n∑

i=1

i1/k = k

k + 1
n

k+1
k + O(n

1
k ).

Proof We claim that

ex(n;Ck+1; k) ≤
n∑

i=1

i1/k .

This is easily verified for small n, giving a basis for induction. Assume that the result
is true for digraphs with order n− 1 and consider a k-geodetic digraph G with order n
and ex(n;Ck+1; k) directed (k + 1)-cycles and, subject to this, the smallest possible
sizem. In particular, every arc of G is contained in a unique Ck+1; otherwise, deleting
this arc would yield a k-geodetic digraph with the same number of (k + 1)-cycles
but smaller size. It follows that we can pair off the in- and out-neighbours of every
vertex according to the corresponding (k+1)-cycles. Hence d−(x) = d+(x) for every
vertex x of G, and every vertex x is contained in exactly d−(x) = d+(x) directed
(k + 1)-cycles.

By Lemma 18, G contains a vertex x with out-degree at most n1/k . Deleting this
vertex, we obtain a k-geodetic digraph with order n − 1 which, by induction, contains
at most �n−1

i=1 i
1/k copies of Ck+1. Deleting x destroyed at most n1/k (k + 1)-cycles,

so the result follows by induction. 
�
In fact, the upper bound is tight up to a multiplicative constant. We can show this

using the permutation digraphs P(d, k) that were discussed in Sect. 2. The permutation
digraph P(d, k) has order n = (d + k)(d + k − 1) . . . (d + 1) and size dn. It is easily
seen that each arc of P(d, k) is contained in a unique (k + 1)-cycle; for example
0123 . . . (k − 1) → 123 . . . (k − 1)k is contained in the unique (k + 1)-cycle

0123 . . . (k − 1) → 123 . . . (k − 1)k → 23 . . . (k − 1)k0

→ · · · → k0123 . . . (k − 2) → 0123 . . . (k − 1).

Hence P(d, k) contains nd
k+1 copies ofCk+1. Therefore, asymptotically, ex(n;Ck+1; k)

is at least 1
k+1n

k+1
k . In particular, ex(n;C3; 2)must lie somewhere between 1

3n
3/2 and

2
3n

3/2. We show that the lower bound is correct.

Theorem 20

ex(n;C3; 2) = 1

3
n3/2 + O(n

1
2 ).
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Proof Let G be a 2-geodetic digraph with order n and N := ex(n;C3; 2) directed
triangles. As before, we can assume that every arc is contained in a unique triangle.
Thus N = 1

3�v∈Gd+(v). For any vertex v, we have �u∈N+(v)d
+(u) = |N+2(v)| ≤

n − 1 − d+(v). By Hölder’s inequality

N = 1

3

∑
v∈G

d+(v) ≤
√
n

3

√∑
v∈G

(d+(v))2.

In the sum
∑

v∈G
∑

u∈N+(v) d
+(u), the term d+(u) appears d−(u) = d+(u) times,

so

N ≤
√
n

3

√∑
v∈G

∑
u∈N+(v)

d+(u) ≤
√
n

3

√∑
v∈G

(n − 1 − d+(v)) =
√
n

3

√
n2 − n − 3N .

Squaring both sides yields N 2 ≤ n
9 (n2 − n − 3N ). Rearranging and solving the

associated quadratic equation, it follows that

N ≤
⌊n
6
(
√
4n − 3 − 1)

⌋
.


�
Remark 21 For infinitely many n, the upper bound in Theorem 20 is at most n

3 off
from the lower bound of the permutation digraph P(d, 2).

Based on this example, we make the following conjecture.

Conjecture 22 For all k ≥ 2 we have

ex(n;Ck+1; k) = 1

k + 1
n

k+1
k + O(n

1
k ).

We turn now to the problem of the largest number of directed paths of given length
in a 2-geodetic digraph. Let P� be the path of length � (so of order �+1). Surprisingly,
there are somedifferences between odd and even length paths; in the following theorem
we show different lower bounds.

Theorem 23 If k ≥ 2 and k divides �, then we have:

ex(n; P�; k) = n(�/k)+1 + O(n1+
�−1
k ).

In particular, for every even l:

ex(n; P�; 2) = n(�/2)+1 + O(n�/2).

If � is odd, we have:

ex(n; P�; 2) ≥ (n/2)(�+3)/2.
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Proof Let �be even and let P(d, k)be apermutationdigraphwith degreed. P(d, k)has
order (d+k)(d+k−1) . . . (d+1). From each vertex x there are at least dk(d−1)(d−
2) . . . (d − � + k) = dl + O(d�−1) distinct �-paths with initial vertex x , so there are

d�+k + O(d�+k−1) distinct �-paths in P(d, k). Thus there are n(�/k)+1 + O(n1+ �−1
k )

distinct �-paths in P(d, k). For an upper bound, consider a path of length � with
vertices 0, 1, . . . , �. By k-geodecity, given the two endpoints of a path of length k,
all of the intermediate vertices are determined. Hence we can only choose vertices
0, k, 2k, . . . , � independently. Hence ex(n; P�; k) is at most n(�/k)+1.

Now let � be odd and consider an orientation of the complete bipartite graph Kr ,r

where n = 2r , in which a perfect matching is oriented in one direction and all other
arcs are oriented in the opposite direction. We have already seen that this digraph is
2-geodetic. The n

2 vertices of one partite set are the initial vertices of ( n2 )(�+1)/2 +
O(n(�−1)/2) distinct �-paths, whereas the vertices in the other partite set are the initial
vertices of only O(n(�−1)/2) �-paths each. Multiplying by n

2 yields the result. 
�
As for paths of odd length, we have an asymptotically sharp result only for P3.

Theorem 24 ex(n; P3; 2) = (n/2)3 + O(n2).

Proof We have a lower bound from Theorem 23. For an upper bound, we denote
the maximum out-degree by � := max

v∈V (G)
{d+(v)} and we assume, without loss of

generality, that � ≥ max
v∈V (G)

{d−(v)}. Let v0 be a vertex with d+(v0) = � and denote

the out-neighbourhood of v0 by N0 := N+
G (v0). Let us assume that v1 is a vertex for

which N1 := N+(v1) − N0 is largest possible.
Note that by 2-geodecity, for each fixed first vertex and last arc we have at most

one path of length three; similarly we have at most one path of length three for each
fixed first arc and last vertex. We will make use of this several times in the following
argument.

There are at most 2n arcs starting from N0 ∪ N1 since G is 2-geodetic. Hence, by
the observation of the previous paragraph, the number of 3-paths starting from N0 or
N1 has quadratic order. Similarly, there are at most a quadratic number of paths of
length three with third vertex lying in N0 or N1. Therefore, since the desired upper
bound for the number of 3-paths is cubic in order, we may ignore paths of length three
which contain a vertex from N0 or N1 as the first or third vertex.

Let us denote the number of vertices in N1 by x . Since there are at most (n−�− x)
choices for the first or the third vertex and at most � choices for the last vertex after
fixing the third vertex, there are at most (n − � − x)2� + O(n2) directed paths of
length three. Using elementary calculus, it is simple to check that we have

(n − � − x)2� ≤ n3

8

if � + x ≥ n
2 or � ≤ 3−√

5
4 n. Hence if � + x ≥ n

2 , the desired inequality follows.

If � + x < n
2 and � > 3−√

5
4 n, then we bound the number of paths of length three

by a different function. The number of arcs in G is at most 2n + �2 + (n − � − x)x ,
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where the 2n term bounds the number of arcs starting at N0 ∪ N1, the second term
bounds the number of arcs entering N0 and the third term bounds the number of
arcs that are not incident from N0 ∪ N1 or incident to N0. So, by choosing the first
vertex and the last arc and neglecting terms of order O(n2), the number of paths
of length three is at most f (x) := (n − � − x)(�2 + (n − � − x)x). We have
f ′(x) = 4�x − 2n� + 3x2 − 4nx + n2, which is positive when x = 0 and is
negative when x = n

2 −�. Therefore themaximum of the function f (x) in the interval

[0, n
2−�] is attained at the smallest zero of f ′(x),which is x0 = 2n−2�−√

n2−2n�+4�2

3 .
Expanding and setting � = zn shows that the number of 3-paths minus n3/8 is
bounded above by

n3
(

− 11

216
− 2

9
z + 5

9
z2 − 11

27
z3 + 2

27
(1 − 2z + 4z2)3/2

)
.

This function is negative in the interval [ 3−
√
5

4 , 1
2 ], completing the proof of the result.
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