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We put the Density-of-States (DoS) approach to Monte-Carlo (MC) simulations under a stress test
by applying it to a physical problem with the worst possible sign problem: the real time evolution
of a non-integrable quantum spin chain. Benchmarks against numerical exact diagonalisation and
stochastic reweighting are presented. Both MC methods, the DoS approach and reweighting, allow
for simulations of spin chains as long as L = 40, far beyond exact diagonalisability, though only
for short evolution times t ≲ 1. We identify discontinuities of the density of states as one of the
key problems in the MC simulations and propose to calculate some of the dominant contributions
analytically, increasing the precision of our simulations by several orders of magnitude. Even after
these improvements the density of states is found highly non-smooth and therefore the DoS approach
cannot outperform reweighting. We prove this implication theoretically and provide numerical
evidence, concluding that the DoS approach is not well suited for quantum real time simulations
with discrete degrees of freedom.

I. INTRODUCTION

The simulation of a real-time evolution of a many-
body quantum system up to some �nite physical time
t is a problem of utmost importance across many areas
of physics. However, it is an NP-hard problem which, in
general, can only be solved on a classical computer in a
time

Tsim ∼ eα(t)ndof (1)

that grows exponentially with the number of degrees of
freedom ndof in a system. Polynomial-time solutions
are only possible on a quantum computer [1, 2]. With
the current state of technology, only relatively small
quantum systems can be reliably simulated on quantum
computers. Therefore, at least for some time we will have
to rely on classical computers to simulate the real-time
evolution of quantum systems. While we certainly cannot
simulate the real-time evolution in polynomial time on a
classical computer, we can try to reduce the coe�cient
α (t) in the exponent in (1).
Conceptually, the simplest approach to simulate real-

time evolutions is to �nd all eigenstates of the Hamilto-
nian using numerical exact diagonalization. This ap-
proach works well for systems with �nite-dimensional
Hilbert spaces, such as quantum spin chains, and al-
lows to calculate any real-time evolution1 in a straight-
forward way. For a chain of L spin-1/2 degrees of free-
dom, such as Ising spins, the Hilbert space dimension
is N = 2L. Correspondingly, the computational cost
of the �plain vanilla� exact diagonalization (ED) scales
as O

(
N3
)
= O

(
23L
)
. Physical results found in most

of the literature scale up to L ≤ 18, see e.g. [3�6].

1 Up to �oating-point round-o� errors, that might become import-
ant at very late times.

More advanced methods, such as the shift-invert method
of exact diagonalization (SIMED) [7] and polynomially
�ltered exact diagonalization (POLFED) [8] allow for ex-
tremely e�cient ED. In particular the POLFED has only
O
(
N2
)
= O

(
22L
)
runtime and O (N) = O

(
2L
)
memory

requirement, both up to polynomial corrections in L and
for a �xed number of eigenvalues. The largest systems
simulated to date (to our knowledge) have L = 26 and
the largest ones used for physics beyond mere algorithmic
proof of principle have L = 24. Unfortunately the poly-
nomial corrections are not speci�ed in the literature but
they appear to be quite signi�cant if these are the largest
sizes possible. In addition, to our knowledge it is only
claimed that the limited number of eigenvalues from the
bulk yield the correct results. The truncation in eigen-
spectrum might well cause relevant artifacts.

Another possible approach is to approximate the

quantum evolution exp
(
iĤt

)
as a product of many ex-

actly treatable factors using a Suzuki-Trotter decom-
position. Instead of exact diagonalization, in this case
we have to perform multiple matrix-matrix multiplica-
tions, with a computational cost that scales as O

(
N2
)
=

O
(
22L
)
for local Hamiltonians. This allows to simulate

spin chains with L ≤ 24 [9, 10].

An alternative to methods based on calculations in the
entire Hilbert space is provided by Monte-Carlo methods,
which replace exact summation over all states with im-
portance sampling. For �nite-temperature equilibrium
partition functions, Monte-Carlo methods typically re-
duce the exponential scaling in the system size L down
to a polynomial one. Monte-Carlo methods can also be
used for bosonic systems in a straightforward way, in con-
trast to exact diagonalization which necessarily relies on
truncations of an in�nite-dimensional Hilbert space.

In the absolute majority of cases, real-time evolu-
tion problems have path integral representations with
oscillatory integrands, either real- or complex-valued.
The most straightforward approach to deal with non-
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positive-de�nite integrands in Monte-Carlo simulations is
reweighting, whereby one performs importance sampling
with the weight proportional to the absolute value of the
integrand, and re-weights the contribution of any �eld
con�guration with the corresponding complex phase of
the integrand. However, in this case the NP-hardness of
the real time evolution problem reveals itself in the ex-
ponentially quick deterioration of statistical power with
the number of degrees of freedom ndof and the evolution
time t. Many contributions with di�erent complex phases
cancel each other, and exponentially many Monte-Carlo
samples are needed to calculate the path integral with
desired precision. This exponential growth of computa-
tional complexity is referred to as the �sign problem�.
In the past decade, the Density of States (DoS) ap-

proach has been advocated as an e�cient way to make
the sign problem milder [11�14]. Starting from a gen-
eric oscillatory path integral representation of a partition
function Z of the form

Z =

∫
Dϕ exp (−SR [ϕ] + iSI [ϕ]) , (2)

the basic idea of the DoS approach is to construct a nu-
merical approximation to the Density of States, or prob-
ability distribution, of the complex phase SI [ϕ]:

ρ (E) =

∫
Dϕ exp (−SR [ϕ]) δ (E − SI [ϕ]) . (3)

Here
∫
Dϕ denotes integration or summation over any

continuous or discrete variables ϕ. Knowing ρ (E), which
can be determined without encountering a sign problem,
we can calculate the full partition function Z as a simple
one-dimensional integral over E

Z =

∫
dEρ (E) eiE . (4)

An important development was the Logarithmic Linear

Relaxation (LLR)LLR method [15�17] based on Robbins-
Monro iterations [18], which allowed to obtain high-
precision results for the Density of States ρ (E) for lattice
models with continuous [19, 20] as well as discrete [21]
degrees of freedom. Applications include the compact
U (1) lattice gauge theory [19], heavy-dense QCD at �-
nite quark density [11, 12], �nite-density Bose gas [13],
�nite-density Hubbard model [20] and the Potts model
[21]. It is fair to say that in all cases the computational
complexity of evaluating the original multi-dimensional
oscillatory path integral (2) translates into the complex-
ity of evaluating the one-dimensional oscillatory integral
(4), which is very sensitive to statistical errors in the
density of states ρ (E). This problem was tackled in [11�
13, 20, 21] by constructing various analytic approxima-
tions to ρ (E) and using them to calculate the integral.
The approximations included polynomial �ts and splines.
Resummations based on Fourier transforms of ρ (E) were
considered in [20]. This allowed to obtain results of prac-
tical signi�cance for lattice sizes that are intractable with
other methods, e.g. the straightforward reweighting.

In this work, we put the DoS/LLR approach under a
stress test by using it to simulate the real-time evolution,
for which the partition function in (2) is strongly domin-
ated by the imaginary part of the action SI . This is hence
a physical problem for which the sign problem is expec-
ted to be maximally strong. As a model of choice, we use
a non-integrable quantum Ising chain with quenched dis-
order [3]. We explicitly quantify the computational cost
required to obtain a �xed error of our measurements, and
compare it with that of the reweighting and exact diagon-
alization methods. We �nd that without further analytic
approximations, the computational cost of evaluating the
one-dimensional integral (4) of the Density of States is
not better than that of simple reweighting. We also crit-
ically examine the smoothness of the DoS, and �nd an ef-
�cient way to remove some of the dominant discontinuit-
ies, which improves the performance of both the DoS and
the reweighting approaches by orders of magnitude. This
also allows us to construct reasonably good polynomial
approximations for the DoS ρ (E), however they turn out
to hardly improve the quality of the results because of the
high number of parameters required. Therefore, for our
particular system, the DoS approach only outperforms
reweighting in very rare cases. Our overall conclusion is
that both Monte-Carlo approaches, LLR and reweight-
ing, are advantageous compared to exact diagonalization
when simulating short-time evolutions for large spatial
system sizes, even allowing for sizes completely inaccess-
ible to ED. On the other hand, exact diagonalization is
clearly better for long times.
We chose the non-integrable quantum Ising chain with

quenched disorder [3] as our test model because it is one
of the simplest non-integrable models which exhibit er-
godic and many-body localization regimes. The Hamilto-
nian of the model reads, in its most general form

H = −σz · J · σz − h · σx, (5)

where σx,z = (σx,z
1 , . . . , σx,z

L ) is the spatial vector of Pauli
x- and z-spin matrices, respectively, J ∈ RL×L is some
coupling matrix and h ∈ RL is a vector of local magnetic
�elds hi.
We work in the ergodic regime, where no symmetry can

accidentally make the sign problem milder. Furthermore,
the model has a straightforward path integral represent-
ation. Its energy spectrum can be easily obtained using
exact numerical diagonalization for chain lengths of or-
der L ≲ 20, which allows to obtain benchmark results for
any real-time observables without any statistical errors.
In this work we focus on one of the simplest real-time
quantities, the in�nite-temperature spectral form-factor

K(t) = ⟨K(t)⟩J =
〈∣∣Tr eiHt

∣∣2〉
J
, (6)

where ⟨·⟩J denotes the average over di�erent disorder
realisations and U(t) is the real time evolution operator
for given disorder J. Universal late-time features of spec-
tral form-factors, such as the �ramp� [22�24], have proven
useful as probes of quantum chaos in strongly-interacting
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many-body systems. In particular, spectral form-factors
are useful for distinguishing ergodic and many-body loc-
alized regimes [25].
Originally, our hope was to apply the DoS/LLR ap-

proach to resolve the ongoing debate about the existence
and the properties of the many-body localization phase
in quantum spin chains [3�6, 9, 10, 26�32]. The debate
is strongly focused on extrapolations towards the ther-
modynamic limit, therefore it is useful to devise methods
that could work for lattice sizes that are currently inac-
cessible for numerical exact diagonalization. While our
improvements to the DoS/LLR approach allow to simu-
late spin chains of lengths as large as L = 40, well beyond
the reach of any exact diagonalization methods, such sim-
ulations are bound to early times t ≲ 1. This is by far
insu�cient to resolve the late-time behavior of spectral
form-factors, which starts distinguishing the ergodic and
the many-body localized regimes at the Heisenberg times
scale t ≳ 2L. Let us note in passing that the necessity
to simulate up to times of order of 2L is very likely to
make the calculation of the spectral form-factor an NP-
hard problem even for a quantum computer. Indeed, the
�no fast-forwarding theorem� [33] is likely to hold for our
Hamiltonian. Therefore, quantum computers will need
an exponentially large computational time Tsim ≳ 2L to
simulate physical evolution up to physical times t ≳ 2L.
The rest of this work is structured as follows. We

provide the details of the model (5) and its classical
1 + 1-dimensional counterpart in Section II. Next, we in-
troduce the DoS/LLR algorithm in Section III and we de-
rive how the algorithm can be optimised in Section IV.
Analytic estimates for the runtimes of all the di�erent
approaches are discussed in Section V and, �nally, the
results of numerical experiments are presented in Sec-
tion VI.

II. THE MODEL

In this work, we follow [3] and consider the Hamilto-
nian (5) with both the nearest-neighbor and next-to-
nearest-neighbor couplings:

Jij = (J0 +∆Ji) δi,j+1 + J2δi,j+2, (7)

where the nearest neighbour coupling contains quenched
disorder ∆Ji that is sampled uniformly from ∆Ji ∈
[−∆J,∆J]. Periodic boundary conditions are applied.
The magnetic �eld term hi = h0 is constant. Through-
out this work we choose h0 = 0.6, J2 = 0.3, J0 = 1, and
∆J = 1 deeply in the chaotic regime.
The real time dynamics of the system as well as the

severity of its sign problem are captured in the spectral
form factor (SFF)

K(t) ≡ ⟨K(t)⟩J (8)

≡
〈
|TrU(t)|2

〉
J

(9)

where ⟨·⟩J denotes the average over di�erent disorder
realisations and U(t) is the real time evolution operator
for given disorder J

U(t) = e− iHt =

Nt∏
j=1

e− i δH

=

Nt∏
j=1

ei δσ
z·J·σz

ei δh·σx

+O (δ)

(10)

with the physical evolution time t and the Suzuki-Trotter
discretization step size δ ≡ t/Nt. This Suzuki-Trotter de-
composition becomes exact in the limit where the number
of time steps Nt → ∞.
The transfer-matrix method allows to relate the Trot-

terised version to a two-dimensional system of classical
spins2

K(t) ∝ Z ≡
∑
{s}

e−S(s) , (11)

where we sum over all possible spin si,k = ±1 combina-
tions, arriving at the action

S = − i
∑
k

∑
i,j

si,kJijsj,k

−
∑
i

∑
k

(
hi −

π

4
i
)
si,ksi,k+1 ,

(12)

Jij := δJij , hi := −1

2
log tan (δhi) . (13)

J and hi are real constants. See appendix A for details
on the derivation.
Any spin �ip results in a change of S by λ

(
hi − π

4 i
)

with λ ∈ {±4, 0} and some contributions of order δ.
Therefore both, real and imaginary part, are signi�cantly
changed even for small δ. In particular, λ = ±4 �ips the
sign of the action.
We split the action into three separate parts

S = iSI + SR + iπSS , (14)

SI := −
∑
k

∑
i,j

si,kJijsj,k (15)

SR := −
∑
i

∑
k

hisi,ksi,k+1 (16)

SS :=
1

4

∑
i

∑
k

si,ksi,k+1 . (17)

Now each of SI , SR and SS is real. Furthermore SS is
an integer and therefore

eiπSS = ±1 (18)

contributes only a sign to the total measure.

2 Such a system can also be interpreted as an anisotropic classical
Ising model with complex coupling coe�cients.
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A. Probability weighted density of states

Monte-Carlo based algorithms can easily implement
the probability density induced by SR whereas the com-
plex phase and real sign contributions by SI and SS re-
spectively pose severe issues. As outlined in equations
(2)-(4) in the introductory Section, in this work we em-
ploy the density of states (DoS) approach, rewriting the
partition sum as

Z =
∑
{s}

e−SRe− iSI e− iπSS (19)

=
∑
{s}

e−SR

∫
R
dE e− iE δ(E − SI)

∑
z=±1

z δz,e− iπSS

(20)

=
∑
z=±1

z

∫
R
dE e− iE

∑
{s}

e−SR δ(E − SI) δz,e− iπSS

(21)

=
∑
z=±1

z

∫
R
dE e− iE ρz(E) . (22)

In the last step we de�ned the DoS ρz (E) as

ρz(E) :=
∑
{s}

e−SR δ(E − SI) δz,e− iπSS . (23)

B. Normalisation

Let us de�ne the auxiliary partition sum

ZR =
∑
{s}

e−SR (24)

=
∑
z=±1

∫
R
dE ρz(E) (25)

which is a sum of manifestly positive contributions and
therefore does not su�er from a sign problem. Note that
all terms containing the coupling J have been dropped
and ZR therefore completely decouples into its one-
dimensional (time-like) parts, i.e.

ZR =
∏
i

ZR,i , (26)

ZR,i = Tr
[
(T2)

Nt
i

]
(27)

= 2Nt

(
coshNt hi + sinhNt hi

)
, (28)

where the last line is the well known solution of the one-
dimensional classical Ising model and can be obtained
by diagonalising the 2 × 2 transfer matrices (T2)i from
equation (A8).
In the full simulation one would usually normalise the

sum over the DoS to one so that the Monte-Carlo estim-

ator (denoted by ⟨·⟩) of the partition sum becomes

⟨Z⟩ = ZR

〈
Z

ZR

〉
, (29)

where ZR is known analytically and
〈

Z
ZR

〉
can be found

by evaluating equation (22) with the normalised es-
timator of ρz(E). Combining this result with equa-
tion (A14), we �nally obtain a formula for the trace of
the quantum mechanical time evolution operator

TrU(t) = AZR

〈
Z

ZR

〉
. (30)

III. THE ALGORITHMS

The canonical choice and baseline algorithm for Monte-
Carlo simulations with a sign problem is reweighting. In
this approach all contributions stemming from the ima-
ginary part of the action are simply considered part of the
observable. In this particular case this means that con-
�gurations are sampled purely from the probability dis-
tribution p(SR) induced by SR (using for instance local
Metropolis-Hastings updates) and the partition sum is
estimated by〈

Z

ZR

〉
=

∑
{s} e

−SRe− iSI e− iπSS∑
{s} e

−SR
(31)

=
∑
{s}

p(SR) e
− iSI e− iπSS (32)

=
〈
e− iSI−iπSS

〉
SR

. (33)

Another natural approach is to estimate the DoS ρ
prior to determining any observables. This can be
done e�ciently using the Logarithmic Linear Relaxation
(LLR) algorithm. The principle idea of LLR was �rst
proposed by Wang and Landau [15] and applied to the
classical Ising model with uniform coupling in two di-
mensions. Later on it has been optimised through the
introduction of the 1/t algorithm [16, 17] in accordance
with the theoretically optimal scheme derived by Robbins
and Monro [18].
Let us consider a classical Ising system of N ≡ LNt

spins. The auxiliary variable E (typically identi�ed as
an `energy', see eq. (23)) is divided into M bins Ei, i =
1, . . . ,M , so that we discretise the DoS

ρi :=

∫ Ei+Ei+1
2

Ei+Ei−1
2

dE ρ(E) , i = 2, . . . ,M − 1 (34)

and for i = 1 (i = M) the lower (upper) bound of the
integral takes the minimal (maximal) value of E. Of
course, the arithmetic mean can be exchanged for any
other value between Ei and its neighbours without chan-
ging the general argument. Discretisation errors are of
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order O
(
h2
)
and further details are discussed in ap-

pendix B.
We write

ρi ≡ eαi (35)

and from now on we aim to estimate the αi as accur-
ately as possible (hence the `logarithmic' in the method's
name). Starting from uniform initial conditions (αi = 0
for all i), we employ an update scheme of Λ steps in total
where at the kth step some con�guration update s 7→ s′

is proposed and accepted with the probability

pacc =
e−SR[s′]

e−SR[s]
·
ρi(s)

ρi(s′)
(36)

= eSR[s]−SR[s′] eαi(s)−αi(s′) , (37)

where i (s) and i (s′) are the bins that correspond to
the imaginary part of the action SI on con�gurations
s and s′, respectively. The DoS of the accepted bin, say
i w.l.o.g., has to be updated

αi 7→ αi + βN,M,Λ(k, i) , (38)

where β ≥ 0. Without prior knowledge of the DoS we
drop the explicit dependence on i. Furthermore we know
from Ref. [18] that the conditions

∞∑
k=0

βN,M,Λ(k) = ∞ , (39)

∞∑
k=0

βN,M,Λ(k)
2 < ∞ (40)

have to hold.3 In particular, they propose a function
asymptotically scaling as 1/k since this is the fastest de-
caying function (up to logarithmic factors) of the required
class and therefore promises best convergence for large k.
The coe�cients in the explicit form

βN,M,Λ(k) =
aN,M,Λ

bN,M,Λ + k
(41)

are of crucial importance and we derive in appendix C
why

aN,M,Λ = ln 2
MN

ln Λ
bN,M,Λ

, (42)

bN,M,Λ = 3M (43)

are a particularly good choice. We are going to use them
throughout the rest of this work.
LLR iterations do not form a Markov chain because

the accept/reject probability depends on the history of

3 Actually these are not exactly the conditions from [18], but they
are equivalent to this simpler version.

the previous updates. Therefore statistical errors cannot
be calculated via straight forward bootstrap procedures
or similar. Instead every simulation presented hereafter
has been repeated Nruns = 40 times and the error has
been estimated from the resulting distribution. In prac-
tice LLR simulations are not always stable but are prone
to outliers. To counteract this e�ect we used the me-
dian as best estimator for observables instead of the more
commonly used mean. Similarly the errors have been ap-
proximated using the 16% and 84% quantiles instead of
the standard deviation. For a normal distribution this
choice of median and quantiles is fully compatible with
the default choice of mean and standard deviation, but
for other distributions it is more stable.

IV. SMALL TRANSVERSE COMPONENT

EXPANSION

The representation (11) of the real-time partition func-
tion in terms of a �nite sum over classical Ising spins im-
plies a �nite number of states, so that technically speak-
ing the DoS (23) is a collection of delta peaks. However,
in the presence of quenched disorder, there are in gen-
eral O

(
2L
)
delta peaks spread randomly over the range

of width O (L) of possible values of SI . As a result, the
bulk of the DoS approaches the continuous function in
the thermodynamic limit L → +∞. For �nite length
L, the apparent continuousness is a mere consequence
of the �nite resolution following from the �xed number
M of bins de�ning the DoS, i.e. the true distribution is
convoluted with a function that is 1 within a bin and 0
everywhere else.
Looking at a typical distribution of the DoS (see �g. 1),

it appears to be fractured into bands. The top one corres-
ponds to the even sector and consists of a few very narrow
peaks. The second (odd) band is closer to a smooth dis-
tribution, though it still features some irregularities. An
alternating descend of smooth bands with roughly equal
step size on a logarithmic scale follows. With the tech-
nically available precision we usually cannot resolve any
but the four highest bands.
It is straight forward to interpret these bands, as

they directly correspond to a particular parity sector
each. Every spin-�ip pair in temporal direction (see �g.2)
changes this sector. It comes with a sign �ip and a
Boltzmann suppression, i.e.

SS 7→ SS − 1 , (44)

SR 7→ SR + 4h , (45)

⇒ p 7→ −p

(
tan

th
Nt

)2

, (46)

where p = e−SR−iπSS is the sign-full `probability' weight
and SS,R as in equation (14). This provides a canonical
way of expanding the DoS ρz(E) and the partition sum
Z in powers of tan th

Nt
, that is around small times t or

transverse �elds h.
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Figure 1. Densities of states in the even (positive) and odd (negative) parity sectors respectively, calculated with LLR0 (left)
and LLR2 (right). The spin chain length is L = 6, the evolution time is t = 1, the number of Monte-Carlo sweeps is Ns = 108.

From now on we will denote simulations restricted to
parity sectors with at least n spin-�ip pairs by LLRn

(or REWn for reweighting). In practice this means that
the acceptance probability in equation (34) is set to zero
for any proposed con�guration with less than n spin-�ip
pairs. Otherwise the sampling algorithm proceeds un-
changed.

Thus, the �plain vanilla� algorithm allowing to visit
the full phase space will be denoted LLR0 and a lot of
our studies will be focused on LLR2 as a good trade o�
between precision and performance. The remaining con-
tributions from all the con�gurations with less than n
spin-�ip pairs are calculated analytically as follows.

A. Leading order: n = 0 spin-�ip pairs

Without any spin �ips in temporal direction the phase
space is con�ned to one of the 2L spatial con�gurations
repeated Nt times. Therefore, the DoS and the classical
partition sum reduce to

ρz(E)|n=0 ∝ δz,1
∑
{s}

δ

E − t
∑
i,j

siJijsj

 , (47)

Z|n=0 =
∑
{s}

eiNt
∑

i,j siJijsj+LNth (48)

=

(
tan

th
Nt

)− 1
2LNt ∑

{s}

ei t
∑

i,j siJijsj (49)

and thus

TrU(t)|n=0 =

(
sin δh cos δh

tan δh

) 1
2LNt ∑

{s}

ei t
∑

i,j siJijsj

(50)

= (cos δh)LNt
∑
{s}

ei t
∑

i,j siJijsj . (51)

The prefactor Z0 ≡ (cos δh)LNt δ→0−→ 1 is clearly an arte-
fact from Trotterisation, but it cannot be dropped in
realistic simulation since it crucially counteracts �nite δ
e�ects in the LLRn simulation itself.
Here we assume that the couplings Jij are non-uniform

and hence the full sum over all con�gurations {s} has
to be calculated. In particular simpler cases, e.g. Jij =
J δi+1,j , the sum can be simpli�ed and therefore the com-
putational complexity reduced dramatically.
Note that the continuum limit of this result corres-

ponds to the h = 0 approximation of the quantum mech-
anical time evolution operator

TrU(t)|n=0 = Tr
[
ei tσ

z·J·σz

eσ
x O(ht)

]
(52)

=
∑
{s}

ei t
∑

i,j siJijsj +O
(
(ht)

2
)
, (53)

where the linear order in ht can be dropped because
Trσx = 0.

B. Next-to-leading odd order: n = 1 spin-�ip pair

Let us now consider the case of a single spin-�ip pair,
that is exactly one of the quantum spins has exactly two
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Figure 2. Visualisation of con�gurations with di�erent numbers n of spin-�ip pairs in the time continuum. Periodic boundary
conditions are applied, so �ips come in pairs only. W.l.o.g. the solid lines represent spin-up and the dotted lines spin-down.
From left to right: n = 0, n = 1, n = 1, n = 4.

di�erent values over time in the z-basis. Some visualisa-
tions can be found in �gure 2. We absorb the probabil-
ity weight − (tan δh)2 and the combinatorial factor Nt/2
(temporal translational invariance yields a factor Nt, ex-
changeability of start and end point of the �ipped region
a factor 1/2) into a new prefactor

Z1 ≡ −Nt

2
(tan δh)2 Z0 . (54)

Now for every con�guration s without �ips there are L
di�erent candidates l for a �ip with Nt − 1 di�erent pos-
sible lengths τ each. We can write the resulting phase

as

SI |n=1 = − (Nt − τ)
∑
i,j

siJijsj−

− τ
∑
i,j

si (1− 2δil) Jij (1− 2δlj) sj

= −

t
∑
i,j

siJijsj − 4τ
∑
j

slJljsj

 . (55)

Combining the pre-factor and the phase leads to

ρz(E)|n=1 = Z1 δz,−1

∑
{s}

∑
l

Nt−1∑
τ=1

δ

E − t
∑
i,j

siJijsj + 4τ
∑
j

slJljsj

 , (56)

TrU(t)|n=1 = Z1

∑
{s}

ei t
∑

i,j siJijsj
∑
l

Nt−1∑
τ=1

e−4 i τ
∑

j slJljsj (57)

= Z1

∑
{s}

ei t
∑

i,j siJijsj
∑
l

e−2 i t
∑

j slJlj
sj
sin
(
2 (Nt − 1)

∑
j slJljsj

)
sin
(
2
∑

j slJljsj

) (58)

with the well-de�ned continuum limit

ρz(E)|n=1 =
(ht)2

2
δz,−1

∑
{s}

∑
l

θ

−

∣∣∣∣∣∣E − t
∑
i,j

siJijsj

∣∣∣∣∣∣+
∣∣∣∣∣∣4τ
∑
j

slJljsj

∣∣∣∣∣∣
 , (59)

lim
δ→0

TrU(t)|n=1 = − (ht)2

2

∑
{s}

ei t
∑

i,j siJijsj
∑
l

e−2 i t
∑

j slJlj
sj sinc

2t
∑
j

slJljsj

 , (60)

where θ denotes the Heaviside step function.

Note that the temporal sum in (55) could be calculated
exactly since it reduced to a geometric series. This allows
an evaluation of the remaining sum in O

(
L2L

)
, i.e. the

same runtime as the contribution without �ips.
Again we could have obtained the continuum result up

to leading order directly from the time evolution operator
using the Zassenhaus formula

TrU(t)|n=1 = Tr
[
ei tσ

z·J·σz

ei th
∑

i σ
x
i

]
+O

(
(ht)4

)
(61)
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= Tr

[
ei tσ

z·J·σz ∏
i

(
1 + ihtσx

i − 1

2
(ht)21

)]
+O

(
(ht)4

)
(62)

=

(
1− 1

2
L(ht)2

)
Tr
[
ei tσ

z·J·σz
]
+O

(
(ht)4

)
.

(63)

Here the cyclic property of the trace ensures that the
simple �rst-order decomposition into σz and σx parts is
equivalent to a symmetric decomposition with an error
of order O

(
(ht)3

)
. Additionally Tr(σx)3 = 0 reduces the

residual error to O
(
(ht)4

)
.

C. Higher orders: n ≥ 2 spin-�ip pairs

In principle, we can follow the steps of the previous
section in order to write down the contribution of the
nth order (n spin �ips) for arbitrary n. The prefactor
(without combinatorics) reads

Zn ≡
(
− tan2 δh

)n
Z0 (64)

and the phase (including combinatorics) generalises to

SI =
∑
k

∑
i,j

si

(∏
l

(
1− 2δilθ(k − τ l1)θ(τ

l
2 − k)

))

× Jij

(∏
l

(
1− 2δljθ(k − τ l1)θ(τ

l
2 − k)

))
sj

(65)

where θ denotes the Heaviside step function and τ l1,2 are
successive �ipping times of spins at spatial position l.
The partition sum has to include all possible combina-
tions of {l} and corresponding τ l1,2.
The evaluation of the partition sum for any n ≥ 2 how-

ever is prohibitively expensive because the temporal sum
can no longer be evaluated analytically. Two di�erent re-
gions �ipped at overlapping times introduce non-trivial
entanglement (see right panel of �g. 2). Another way to
see this is the fact that the �rst-order Trotter decompos-
ition of the time evolution operator results in an error
of order O

(
(ht)4

)
. A higher order treatment therefore

necessitates more complicated decompositions with non-
zero commutators taken into account.

D. Spline �tting

In LLR2 simulations all the leading peaks have been
removed from the DoS so that the remaining function
is relatively smooth and can be approximated by a �t.
Since we do not know anything about the global struc-
ture of the DoS in general, a smooth local approximation

like a cubic spline4 is the canonical choice. Such a spline
with a �xed number of free parameters or degrees of free-
dom (d.o.f.), where d.o.f. smaller or equal the number of
data points, is �tted to the log-DoS as depicted in �g-
ure 3. The �t can then be numerically integrated to high
precision.
A smooth �t comes with two advantages. First, dis-

cretisation errors in SI due to a �nite bin size in (32) are
reduced. In practice this e�ect is usually negligible and
if it is not, a �ner discretisation should be chosen in the
�rst place. More relevantly, �uctuations of neighbouring
bins with large uncertainties are averaged out. This al-
lows decent estimations of the spectral form factor (SFF)
SFF at relatively high noise levels.
The single but crucial disadvantage of �tting the data

is that a priori the optimal number kdof of d.o.f. is com-
pletely unclear. In �gure 3 we show the same data �tted
with di�erent order splines to the e�ect that the left-
most is under-�tted and will yield completely wrong res-
ults, whereas the rightmost is over-�tted and the desired
smoothing e�ect is absent. We use the Bayesian inform-
ation criterion (BIC) [35]

BIC = M ln
(
χ2/M

)
+ kdof ln(M) (66)

to �nd the optimal number of d.o.f. Here M is again the
number of bins of the DoS and χ2 is the usual chi-squared
value. The BIC is supposed to be minimal for the best
choice of kdof.
Overall the �tting allows to extract results from oth-

erwise too noisy data, but they come at the cost of addi-
tional uncertainty and possible bias so that high-precision
data is better evaluated without any �tting. This be-
comes clear from the comparison of the two top plots on
Fig. 5, where the errors obtained from spline-�tted res-
ults are only considerably smaller for small numbers of
Monte-Carlo updates.

E. Origin of the non-smooth DoS

The highly irregular shape of the DoS is the crucial
di�erence to the DoS of models with continuous (and
compact) variables where the LLR approach has been
shown to outperform reweighting signi�cantly [11]. It
is therefore important to understand the origin of this
shape. Naïvely one might think that it has to do with
the random coupling and the chaotic nature of the sys-
tem, but it turns out that this is not the case. Even the
simplest transverse Ising model with constant coupling
and no next-to-nearest neighbour interaction features a
non-smooth DoS.
Qualitatively the origin of the DoS's strange form can

be understood starting with the spikes in LLR0 forming
the highest `band'. In the case when the nearest-neighbor

4 We use the smooth.spline implementation in R [34].
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Figure 3. Spline �ts to log (ρ+(SI)− ρ−(SI)) with di�erent degrees of freedom (d.o.f.) for 538 data points and respective
Bayesian information criterion (BIC), eq. (64). The spin chain length is L = 6, the evolution time is t = 1, the number of
Monte-Carlo sweeps is Ns = 104.

couplings contain quenched disorder ∆Ji, there are 2
L−1

spikes of equal height. In the case of constant coup-
lings, for example, for the conventional transverse �eld
quantum Ising model without quenched disorder, there
are ⌊L/2⌋+1 spikes with binomially distributed heights.
Now the second band, i.e. the single �ip-pair expansion,
can be seen (up to a proportionality factor) as a convolu-
tion of the �rst band with a rectangular function, taking
the value 1 for every SI that can be reached by a single
�ip-pair and the value 0 everywhere else. Thus every
delta-peak smears out to a superposition of rectangle-
shaped functions at the same position, as can be seen in
equation (57). Its width relative to the total range of SI

scales as O (1/L). The generalisation is straight forward.
With every additional �ip-pair the previous distribution
is convoluted with a rectangular function. For instance
the DoS of LLR2 looks like the original spikes of LLR0

convoluted with a triangle function, yielding the `bat-
man' pro�le in �gure 4 for the simple transverse �eld Ising
model with constant coupling Jij = δi,j+1 and L = 6.

Note that the notion of successive convolutions is only
exact up to a single �ip-pair. Beyond, it still allows to
understand the shape of the DoS qualitatively but cru-
cial contributions from interferences between two or more
�ip pairs are neglected (e.g. two �ip pairs might be on
the same spatial site) so that the DoS in not reproduced
correctly.

With larger L the DoS smooths out in the disordered
case. The overall smoothing stems from an exponen-
tially large number of peaks constituting LLR0, not from
a broader smearing of the lower bands, since the convo-
lution always acts on scales of O (1/L).
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Figure 4. Density of states in the even (positive) parity sector,
calculated with LLR2 for the pure transverse Ising model with
constant coupling, i.e. J2 = ∆J = 0. Chain length L = 6;
time, �eld strength and coupling t = h = J0 = 1; number of
Monte-Carlo sweeps Ns = 107.

V. RUNTIME COMPARISON

A. Exact diagonalisation

The straight forward solution for arbitrary times is the
exact diagonalisation of the full 2L-dimensional system.
Since the diagonalisation of a matrix has cubic scaling,
we end up with a runtime in O

(
23L
)
.

In our benchmarks we used the LAPACKE_dsyev routine
provided by the lapacke package in C to calculate the
complete spectrum of the respective Hamiltonian to ma-
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chine precision.
For completeness we also mention that the brute force

approach of simply trying all the combinations in the
classical system to calculate the exact partition sum has
a runtime of O

(
2LNt

)
.

B. Reweighting

Stochastic methods like reweighting cannot be com-
pared to exact methods like ED directly since the com-
putational e�ort crucially depends on the desired preci-
sion ε. It is, however, reasonable to expect square-root
convergence in the amount of statistics due to the central
limit theorem and to set a sweep over the full lattice of
N = LNt sites as the smallest unit of data. With these
assumptions we get a runtime scaling of O

(
LNtε

−2
)
for

a system without a sign problem. It is important to keep
in mind that this is the best case scenario and phenomena
like critical slowing down are completely neglected.
For the sake of simplicity we are going to assume a

small enough and constant Trotter step size δ, so that
Nt ∝ t. Note that this implies exponential runtime even
without a sign problem for physically interesting long

times t ∼ 2L.
The crucial change we have to introduce for systems

with a sign problem is a factor of the statistical power

Σ =

∣∣∣∣ ZZR

∣∣∣∣ , (67)

that is the modulus of the expectation value of the com-
plex phase. This modi�cation leads to a runtime scaling
of

Tsim ∼ O
(
Ltε−2Σ−2

)
, (68)

so in the following we have to estimate the magnitude of
Σ as best we can. It is clear that we cannot calculate
it exactly since that would allow to solve the complete
initial quantum mechanical problem.
We start with the observation that

|TrU(t)| = |AZR| Σ , (69)

where the left hand side can be estimated from universal
properties of the SFFspectral form factor (SFF) and the
product AZR is known analytically. Let us expand the
latter product near the continuum limit

|AZR| =
∏
i

(sin δhi cos δhi)
Nt/2

(
cosh

(
−1

2
ln tan δhi

)Nt

+ sinh

(
−1

2
ln tan δhi

)Nt
)

(70)

=
∏
i

(δhi)
Nt/2

((
1√
δhi

+
√
δhi

)Nt

+

(
1√
δhi

−
√
δhi

)Nt
)
(1 +O (δhi)) (71)

=
∏
i

(
(1 + δhi)

Nt + (1− δhi)
Nt

)
(1 +O (δhi)) (72)

=
∏
i

((
1 +

thi

Nt

)Nt

+

(
1− thi

Nt

)Nt
)
(1 +O (δhi)) (73)

=
∏
i

2 cosh (thi) (1 +O (δhi)) . (74)

In the common case of all �elds equal hi ≡ h we thus
obtain the formula

Σ =
|TrU(t)|

2L cosh (th)L
, (75)

which is exact as δ → 0.
Since the SFF is bound from above |TrU(t)| ≤ 2L, the

best possible runtime scaling amounts to

Tsim ∼ O
(
Ltε−2 cosh (th)2L

)
, (76)

so that reweighting can never outperform exact diagon-
alisation when th ≳ acosh 2 ≈ 1.3.

Empirically we �nd that for small times |TrU(t)| ∼
2Le−Lt2 until it reaches the plateau at 2L/2. Moreover,
in order to maintain a high precision, usually we have to
scale the Trotter step with the system size δ ∼ 1/L, so
that a more realistic runtime estimate is given by

Tsim ∼ O
(

1

2−L + e−Lt2
L2tε−2 cosh (th)2L

)
. (77)

C. LLR

In what follows we show that for both reweighting and
LLR the error is strongly dominated by the `bulk', that
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is the region with highest DoS. Since LLR is only ad-
vantageous in sampling the `tails' of the DoS distribu-
tion more accurately, it cannot signi�cantly outperform
reweighting. This conclusion is also con�rmed by our
Monte-Carlo data.
For a more formal comparison we have to introduce

several assumptions. First of all we demand that all the
LLR parameters have been tuned properly. In particu-
lar the bin size used for LLR is small enough to have
negligible discretisation errors. Such a choice is always
possible though the need to tune the parameters is a
serious disadvantage of LLR. Secondly, we bin the data
accumulated for reweighting in the same fashion, again
without signi�cant loss of precision. Now the normalised
DoS obtained by either method can be interpreted as a
probability distribution ρi on the same discrete and �nite
set i ∈ {1, . . . ,M}. Same as in equation (32), M denotes
the number of bins the DoS has been split into.
It is easy to see that with reweighting every bin i is

visited Ni = ρiΛ times on average, where Λ is the total
number of samples. Therefore, in the large Λ limit, ac-
cording to the central limit theorem (or naturally assum-
ing a Poisson distribution of bin counts), the absolute
uncertainty of the number of counts in said bin is

√
Ni

yielding an error of

∆ρi ≡
ρi√
Ni

(78)

=

√
ρi
Λ

. (79)

Since LLR is a special case of the Robbins-Monro
(RM) algorithm with a non-di�erentiable target func-
tion, the coe�cients in the exponent converge strictly

as O
(
1/

√
Λ
)

[36]. Thus, the relative error of ρi lies

in O
(
e1/

√
Λ − 1

)
= O

(
1/
√
Λ
)
. We can obtain some

bounds on the proportionality factor as well, though
these results are by no means as precise as for reweight-
ing.
In the early stages of the RM iteration the probabil-

ity to update the i-th bin is simply ρi (same as for re-
weighting). As Robins-Monro iterations proceed and the
coe�cients αi are updated, at asymptotically large Λ all
bins are visited with equal probabilities ∼ 1/M . There-
fore in the bulk of the DoS de�ned as all the regions with
ρi ≫ 1/M the probability to visit bin i decreases with the
number of iterations Λ and eventually approaches 1/M
from above. We can thus provide a bounds on Ni in the
bulk region:

ρiΛ ≥ Ni ≥
Λ

M
. (80)

On the other hand, in the tail of the distribution where
ρi ≪ 1/M , the probability to visit the bin i increases with
the number of RM iterations, and eventually approaches
1/M from below. The expectation value of the iteration

count Ni in this region is therefore bounded by

ρiΛ ≤ Ni ≤
Λ

M
. (81)

In the following we assume the best possible scenario, us-
ing the upper bounds on Ni, in which case the statistical
error is given by

∆ρi =

{√
ρi

Λ if i in bulk,

ρi

√
M
Λ if i in tail,

(82)

and show that LLR cannot outperform reweighting sig-
ni�cantly even in that case.
Let us consider some probability ρ0 from the bulk and

another ρ∞ = ζρ0 from the tail, where ζ is some small
parameter. For reweighting we need Λ ∼ ζ−2 samples to
resolve ρ∞ at all. For LLR on the other hand the error in
the tail is much smaller. But even if we knew ρ∞ exactly,
this knowledge is useless as long as ∆ρ0 > ρ∞, i.e. the
error is bulk-dominated. From this follows the condition

∆ρ0<
!
<ρ∞ (83)

⇒
√

ρ0
Λ

< ζρ0 (84)

⇔ Λ > ζ−2/ρ0 . (85)

Thus, not only does LLR follow the same scaling as for
reweighting in Eq. (66), it even has very similar errors
quantitatively since the statistical uncertainties in the
bulk are almost identical for reweighting and LLR, and
these uncertainties dominate in both cases.
We remark that this argument is applicable independ-

ently of the speci�c form of the DoS and the conclu-
sion therefore generalisable beyond its application to spin
chains. Generally, complexity of a given problem is en-
coded in the magnitude of the parameter ζ. For in-
stance in our case of real time spin chain simulations
ζ ∼ exp(−Lt) is exponentially suppressed with the sys-
tem size providing an alternative perspective on the ori-
gin of the NP-hardness of the sign problem.

D. Augmented LLR2 or REW2

Removing the two leading order contributions from
the stochastic calculations and evaluating them exactly,
comes with an additional cost of

O
(
L2L

)
(86)

as compared to �plain vanilla� LLR0 or REW0. However,
it allows to achieve the same precision with a signi�cantly
lower accuracy goal since the stochastic part contributes
with a reduced weight. More speci�cally,

ε−1 7→ ε−1

(
1− cosh(th)−L

(
1 +

1

2
L(th)2

))
(87)
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results in an overall runtime of the approximate order

Tsim ∼ O
(
L 2L

+Ltε−2

(
cosh (th)L − 1− L(th)2

2

)2
)

.

(88)

This estimate should be compared with (74). We see that
summation over the two leading-order contributions al-
lows to obtain equally precise results at short times with
signi�cantly smaller statistics (i.e. computational e�ort)
and to extend the stochastically calculable time region
towards somewhat larger values.

VI. RESULTS

All the simulations presented in this work have been
performed using R as a front- and C as a back-end. The
complete code and most of the data is publicly available
at [? ]. Some of the data is rather large and has therefore
not been published in the same way, but we are happy
to provide it in case of interest.
We tested our algorithm on chains of up to L = 50

with LLR0/REW0 and up to L = 40 with LLR2/REW2.
Small lengthslength L ≤ 16 have been benchmarked
against results from exact diagonalisation. We emphas-
ise that the larger lattices with L ≳ 24 are far out of
the reach of any exact calculations. For instance L = 40
would require 16TB of memory to even store a single
complex state vector in double precision. We also stress
that while LLR2/REW2 has a runtime scaling as O

(
2L
)

and therefore L > 40 quickly becomes unfeasible, there
are no such limitations for LLR0/REW0 and L can be
chosen practically arbitrarily large at the cost of some-
what reducing the evolution time t.
In each simulation we chose a single random realisa-

tion of the coupling J . The disorder average over J is
technically straight forward and would only add a layer
of uncertainties to the results obscuring the quality of the
algorithms.
Some typical examples of the scaling of the relative

error between the Monte-Carlo and exact diagonalization
results with the number of Monte-Carlo iterations are
shown on Fig. 5. The error is plotted as a function of the
total number of sweeps Ns = Λ/N for di�erent evolution
times t and correspondingly di�erent strengths of the sign
problem. Respective statistical powers Σ are shown as
lines. In an ideal stochastic simulation the error should
scale as Σ−1/

√
Ns and it does so usually. There are

some exceptions in the decrease with Ns though. The
shortest evolution times just plateau out at a constant
error level. For LLR0 the simulations would require a
much �ner discretisation of SI in order to resolve the
spiked DoS properly. The LLR2 and REW2 calculations
on the other hand are so precise that the Trotter error
for the particular choice of Nt is resolved.

From the two top plots in Fig. 5 we also conclude that
the results obtained with spline �tting tend to be better
than the ones from simple integration for small numbers
Ns ≲ 105 of Monte-Carlo updates, and for large evolution
times t ∼ 1 where the sign problem is more severe (com-
pare the top left corners of both plots). More statistics
undermines the usefulness of �ts as they cannot extract
any additional information.

The true reason for the favourable spline results in the
case of small statistics appears to be that the best �t-
ting functions are very smooth in this case. Therefore
the highly oscillatory integral (22) required to obtain the
spectral form factor yields a value close to zero. Since
the analytic approximation used in LLR2 is not too bad
by itself, the overall result is better than the noise in the
un�tted case. Thus, using the stochastic data does not
help to improve the analytic approximation for too little
statistics. But in the spline-�tted case it does not add
any harm either.

It is evident that the augmentation de�ning LLR2 al-
lows to reduce the error at short times by several orders
of magnitude compared to �plain vanilla� LLR0. It is also
clear, however, that it does not signi�cantly mitigate the
sign problem at long times con�rming the predictions
from equation (86).

A direct comparison of LLR2 and REW2 shows very
little di�erences. If anything, reweighting appears to be
slightly better. This is exactly what we expect from sec-
tion VC where we showed that LLR and reweighting have
principally the same sign problem. The minor di�erence
in favour of reweighting most likely comes from the bin-
ning required for LLR as well as a suboptimal parameter
choice (see appendix C).

Figure 6 shows the spectral form factors corresponding
to the errors in �gure 5. We added the approximations
for continuous times derived in section IV. The strength
of the LLR2 method becomes clear when the small di�er-
ences between the approximations and the exact results
are observed. Only these di�erences have to be calcu-
lated stochastically. Note, however, that even at very
short times t ≲ 0.4 the stochastic contribution cannot be
neglected and the Monte-Carlo results are not compatible
with the approximations.

We further remark that the LLR results at large times
and small statistics are systematically incompatible with
the correct values. This can be explained by a required
minimal number of iterations to `�ll up' the DoS. We
expect that a di�erent choice of coe�cients aL,M,Λ and
bM than in equations (40) and (41) might reduce this
problem, but we did not conduct additional extensive
parameter tuning. This is certainly a great disadvantage
of LLR as opposed to reweighting.

The results obtained for longer chains L ≥ 20 and de-
picted in �gure 7 are qualitatively similar to those dis-
cussed above for L = 16. Again LLR2 and REW2 yield
extremely precise results at short times and reweighting
generally outperforms LLR. Notably these results demon-
strate the scalability of our stochastic algorithms towards
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Figure 5. Relative errors of the spectral form factor ∆K(t) = |K(t)/KED(t)− 1|, where KED(t) has been calculated with exact
diagonalisation, as a function of the number of sweeps Ns. For small evolution times t ≲ 0.3, ∆K (t) reaches a plateau value
that is entirely saturated by non-statistical Trotterization errors. Error bars in negative direction that would extend below 0
are omitted. Lines show the respective statistical powers. Top left to bottom right: LLR2, LLR2 with spline �tting, LLR0,
REW2. The chain length is L = 16 for all plots.

very long chains provided t ≲ 1. Especially for REW0 we
can obtain reliable results for virtually arbitrarily large
values of L.

VII. DISCUSSION AND OUTLOOK

In this work, we investigated the possibility to evalu-
ate the spectral form-factor (real-time partition sum) of
a non-integrable spin chain (5) using Monte-Carlo simu-
lations. The partition sum contains a multitude of mutu-

ally cancelling complex-valued contributions, which turns
its direct evaluation into an NP-hard problem. We in-
vestigated the in�nite-temperature spectral function be-
cause it poses the most challenging problem and is also
often considered in the literature. We remark however
that the method would be applicable with only minor
modi�cations (a larger, in principle unlimited, number
of parity sectors) to �nite temperature systems as well.
In fact, �nite temperatures might severely reduce the sign
problem.
We compared the most straightforward approach based
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Figure 6. The spectral form factorsK(t) compared with the solution from exact diagonalisation (�exact�) and the approximations
�no �ips� (49), �1 �ip pair� (58), and �O

(
t2
)
Trotter� (61) for di�erent numbers of Monte-Carlo sweepsNs. Error bars in negative

direction that would extend below 0 are omitted. Top left to bottom right: LLR2, LLR2 with spline �tting, LLR0, REW2. The
chain length is L = 16 for all plots.

on importance sampling with subsequent reweighting
with a more advanced Density-of-States (DoS) approach,
in which the statistical distribution of the complex phase
of the action is calculated with high precision.

One of our main results is the improved simulation
strategy, in which the contribution of con�gurations with
zero and one spin �ips into the real-time partition func-
tion are summed over exactly. These con�gurations con-
tribute to the leading and the next-to-leading orders of
the expansion of the real-time partition function TrU (t)
in (6) in powers of the magnetic �eld h. Summation over

all other con�gurations is performed stochastically, using
either the standard Monte-Carlo updates (for reweight-
ing), or the LLR algorithm (for the DoS approach). As
we discuss below, both approaches work nearly equally
well.

As illustrated in Fig. 5, the improved simulation
strategy signi�cantly accelerates convergence to exact
results, which we obtained using numerical diagonaliz-
ation of the Hamiltonian. It allows to study real-time
evolution of spin chains with lengths up to L = 40 and
up to physical times t ≲ 1. Our method thus clearly
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Figure 7. Normalised spectral form factors 2−2LK(t) for system sizes hardly (L = 20) or not at all (L ≥ 30) treatable by exact
diagonalisation. Error bars in negative direction that would extend below 0 are omitted. Top left to bottom right: LLR0,
LLR2, REW0, REW2. The number of Monte-Carlo sweeps is Ns = 107 for all plots.

outperforms numerical exact diagonalization methods at
short evolution times t ≲ 1. Since for our spin chain the
numerical cost of exact diagonalization does not depend
on the evolution times (up to possible issues with numer-
ical precision of the result due to round-o� errors), exact
diagonalization becomes more advantageous for t ≳ 1.
The algorithm could also be translated to a continuous
time formulation along the lines of [37], which removes
trotterization errors.

An advantage of the stochastic approach is that it
can be easily extended to bosonic systems with in�nite-
dimensional Hilbert spaces, for which exact diagonaliz-

ation typically becomes prohibitively expensive even for
O (10) degrees of freedom. Indeed, to obtain precise res-
ults for bosonic degrees of freedom, the size of the local
Hilbert space Nloc associated with each bosonic degree
of freedom should usually be much larger than 2, which
results in a signi�cantly faster growth of computational
cost Tsim ∼ (Nloc)

ndof with the number of degrees of free-
dom than for quantum spin chains. In addition, we need
to extrapolate the result to the limit Nloc → +∞. The
possibility to simulate short periods of real-time evolu-
tion for systems with a large number of bosonic degrees
of freedom is particularly attractive for numerical stud-
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ies of the early-time evolution of quark-gluon plasma in
heavy-ion collisions before the onset of hydrodynamic be-
havior.

It is less clear how our results would translate to fermi-
onic systems in general because the performance would
crucially depend on a particular realisation. Broadly
speaking, we can distinguish two classes; Hubbard-
Stratonovich transformations resulting in continuous de-
grees of freedom and those resulting in discrete degrees
of freedom (e.g. Hirsch transformations). In the �rst
case we expect LLR to perform better than reweight-
ing because of the implied smoothness of the DoS. On
the other hand the latter case enables improvements of
the LLRn/REWn type.

Another important and somewhat counter-intuitive
conclusion is that, at least for our particular Hamilto-
nian and the trotterization scheme, the DoS/LLR ap-
proach does not appear to o�er signi�cant advantage over
the simple reweighting. In fact, reweighting often out-
performs the DoS/LLR approach, presumably, because
of the sub-optimal choice of parameters in the LLR al-
gorithm. Reweighting, on the other hand, does not de-
pend on any tunable parameters.

In general, the main technical advantage of the
DoS/LLR approach is that it allows to resolve the tails of
the distribution of the complex phase with much higher
precision than reweighting. In our case, the contribu-
tion of these tails to the real-time partition sum is sub-
dominant in comparison to the bulk contribution (cent-
ral region in the distributions on Fig. 1). Therefore,
sampling the tails with high precision is not an advantage
in itself. As stressed in [11, 38? , 39], high-precision data
for the tails of the density of states becomes an advantage
if the density of states ρ (E) can be well approximated by
some function with a small number of parameters, e.g. a
low-degree polynomial �t or a spline. In this case, pre-
cise knowledge on the distribution tails translates into
a better choice of �t parameters. This allows for more
precise numerical estimates of the oscillatory integrals of
the form Z =

∫
dEρ (E) eiE in the representation (4) of

the real-time partition function.

As discussed in Section IVE, in our case the DoS
in Eq. (23) is a sum of δ-functions and piecewise con-
stant terms for any �nite L. The DoS only looks like
a continuous function in the thermodynamic limit L →
+∞. While separating out the leading and the next-to-
leading contributions to the DoS, as described in Sub-
sections IVA and IVB, leaves us with a much smoother
DoS, we were still not able to approximate it by a func-
tion (polynomial or spline) with a su�ciently small num-
ber of parameters. As a result, spline or polynomial
approximations improve the convergence to exact res-
ults only for small numbers of Monte-Carlo samples in
Robins-Monro iterations (36). Consequently, the LLR
approach did not o�er signi�cant improvement over the
reweighting approach.

In this respect, the LLR approach might work better
for systems with continuous degrees of freedom, where

the Density of States ρ (E) in (3) is a continuous func-
tion even for a �nite number of degrees of freedom (away
from the thermodynamic limit). See the fermionic sys-
tem considered in Ref. [20] for an example. In this case,
the DoS might allow for good-quality approximations in
terms of functions with a small number of parameters,
which allows to e�ectively use the information about the
tails of the DoS to improve the precision of oscillatory
integrals of the form (4). However, other complications
might arise when applying the DoS/LLR method to con-
tinuous degrees of freedom. To provide the most obvious
example, the DoS will be clearly a non-normalizable and
unbounded function for the real-time partition function
of even the simplest one-dimensional quantum harmonic
oscillator. For the harmonic oscillator, this unbounded-
ness can be easily solved by complexi�cation of the path
integral, which makes the path integral completely real-
valued. The complexi�cation, however, becomes increas-
ingly complicated for anharmonic potentials. As a res-
ult, we will be inevitably forced to adapt the Lefschetz
thimble/holomorphic �ow approaches, which have their
own complications [40�44]. A further problem with the
DoS/LLR approach for continuous variables might be the
loss of ergodicity for simulations with constrained values
of the imaginary part of the action SI , especially if one
uses the Hybrid Monte-Carlo algorithm based on nearly
continuous updates of �eld variables. Finally, the polyno-
mial approximations to the density of states, which plays
a crucial role in reducing statistical errors, might fail in
the vicinity of phase transitions [14].
We should note that the DoS/LLR approach might also

be useful for exploratory studies, for example, to guide
the construction of analytic approximations. In fact, our
work proceeded in exactly this way - we �rst measured
the �unsubtracted� DoS function with LLR0, and only
after looking at the DoS plots in Fig. 1 we realized how
to subtract the leading and next-to-leading contributions
speci�ed in eqs. (49) and (58).
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Appendix A: Derivation of the classical Ising model

in d+ 1 dimensions and further details

The exponentials in equation (10) can be calculated
exactly in the canonical z-basis because the �rst term
is diagonal and the second one can be decomposed into
local blocks of size 2× 2 yielding

ei δhiσ
x
i =

(
cos δhi i sin δhi

i sin δhi cos δhi

)
. (A1)

Let us now compare these matrices with the local
building blocks of the anisotropic classical Ising model
with an arbitrary coupling matrix J ′ within the �rst di-
mension and a nearest-neighbour coupling h′ within the

second dimension de�ned by the action

S = S1 + S2 , (A2)

S1 = −
∑
k

∑
i,j

si,kJ
′
ijsj,k , (A3)

S2 = −
∑
i

∑
k

h′
isi,ksi,k+1 . (A4)

The physics of such a classical statistical system are gov-
erned by the Boltzmann weighted partition sum (over all
possible spin con�gurations)

Z =
∑
{s}

e−S(s) (A5)

inducing the transfer matrices

T1 =
(
e−S1

)
k,k+1

(A6)

= diag

∑
i,j

siJ
′
ijsj | s ∈ {±1}L


 (A7)

and

(T2)i =
(
e−(S2)i

)
k,k+1

=

(
eh

′
i e−h′

i

e−h′
i eh

′
i

)
=

1

2

(
1 1
1 −1

)(
eh

′
i + e−h′

i 0

0 eh
′
i − e−h′

i

)(
1 1
1 −1

)
. (A8)

We immediately observe the similarity between T1

and the interacting part of the time evolution operator.
Therefore we set

J ′ ≡ i δJ . (A9)

Note again that this J corresponds to the purely spa-
tial coupling matrix. The coupling in temporal direction
turns out to be more challenging as we have to exploit
the similarity of T2 with the 2× 2-matrix (A1):(

eh
′
i e−h′

i

e−h′
i eh

′
i

)
!∝
(

cos δhi i sin δhi

i sin δhi cos δhi

)
(A10)

⇒ e−2h′
i = i tan δhi (A11)

Together with the proportionality factor

A =
∏
i

ANt
i , (A12)

Ai =
√
i sin δhi cos δhi (A13)

this allows an exact identi�cation between the trace of
the quantum mechanical time evolution operator and the
classical partition sum

TrU(t) = AZ . (A14)

We can de�ne the purely real constants

J := δJ , (A15)

hi := −1

2
log tan δhi , (A16)

so that the action reads

S = − i
∑
k

∑
i,j

si,kJijsj,k −

−
∑
i

∑
k

(
hi −

π

4
i
)
si,ksi,k+1 . (A17)

1. Distribution of the imaginary part

It is instructive to investigate the distribution of SI

before we go on. For this we de�ne the auxiliary variable

θk :=
∑
i,j

si,kJijsj,k (A18)

with the upper bound

|θk| ≤ ||J ||1 (A19)

≤ nL δ ||J||∞ , (A20)
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where n is the number of neighbours a single site can
couple to (n = 2 for pure nearest neighbour coupling
in 1 dimension) and || · ||p denotes the p-norm. Since
the considered systemsystems is translationally invariant
in the time direction, all θk are distributed identically,
though not independently in general. The Z2 symmetry
of spin re�ections is unbroken, so the expectation value
of θk is θ̄k = 0.
Suppose the θk were uncorrelated. Then according to

the central limit theorem SI would follow a normal dis-
tribution

SI ∼ N (0, v) (A21)

with a variance

v ≤ Nt (nL δ ||J||∞)
2

(A22)

=
1

Nt
(nL t ||J||∞)

2
(A23)

approaching zero in the continuum limit.
In the opposite limit of maximal correlation on the

other hand SI simpli�es to

SI = Ntθk (A24)

⇒ |SI | ≤ Nt nLδ ||J||∞ (A25)

= nL t ||J||∞ , (A26)

that is a constant in the time steps size. We do not
take the case of anti-correlation into account since it is
highly unphysical. Therefore we �nd that in any relevant
case SI is bounded by the physical time extent and the
variance is going to approach a constant

lim
Nt→∞

v ≤ t ξ (nL ||J||∞)
2

(A27)

in the continuum limit, where ξ is the correlation length
in time direction. ξ is proportional to the standard devi-
ation of SI .

2. Alternative boundary conditions

We remark here that the periodic boundary conditions
(pbc) silently assumed above are the most usual but not
the only possible choice. Physically they correspond to
same-to-same scattering and are best suited for in�nite
time approximations. In contrast open boundary condi-
tions (obc) correspond to all-to-all scattering and might
be relevant in comparisons with matrix product state
(MPS) or similar calculations where they are much easier
to realise than pbc. Closed boundary conditions (cbc) al-
low for particular choices of initial and �nal states.
In all the non-periodic cases there is one less time

step than time slices, so the proportionality factor
between quantum and classical partition sums reduces
to
∏

i A
Nt−1
i . Furthermore the trace in equation (27) has

to be replaced by projections to corresponding vectors.

For obc one obtains

ZR,i =
1

2
(1, 1) (T2)

Nt
i

(
1
1

)
(A28)

= 2Nt−1 coshNt−1 h′
ih̃

′
i (A29)

and for cbc

ZR,i = (1, 0) (T2)
Nt
i

(
cosφ
sinφ

)
(A30)

= 2Nt−1

(
(cosφ+ sinφ) coshNt−1 h′

ih̃
′
i

+(cosφ− sinφ) coshNt−1 h′
ih̃

′
i

)
,

(A31)

where initial and �nal states are rotated against each
other by the angle φ. We observe that, as expected,
all the boundary conditions lead to the same result at
in�nite times t → ∞, Nt → ∞ and moreover the cbc
case of φ = 0 (same-to-same scattering) yields the same
result as pbc up to an irrelevant di�erence of Nt by one.

Appendix B: Error scaling with bin size

The discretisation of the DoS into bins as in equa-
tion (32) naturally leads to errors vanishing as the bin
width goes to zero, but relevant for �nite bin size. The
observable we are ultimately interested in amounts to a
Fourier transformation of the DoS, so we can judge the
quality of the discretisation method by its ability to ap-
proximate the integral

Fa(x0, h) :=
1

2h

x0+h∫
x0−h

dx ef(x)+i ax . (B1)

The separate estimation of the DoS in bins of length
2h succeeded by a multiplication with the phase at the
mid-point of the interval as employed in this work results
in

ei ax0

2h

x0+h∫
x0−h

dx ef(x) =

= Fa(x0, h) e
− 1

6 i a(2f ′(x0)+i a)h2+O(h4). (B2)

Alternative approximations include the classical mid-
point formula

ef(x0)+i ax0 =

= Fa(x0, h) e
− 1

6

(
f ′′(x0)+(f ′(x0)+i a)

2
)
h2+O(h4) (B3)

as well as a more intricate piecewise linear (trapezoidal)
formula

ef(x0)

2h

x0+h∫
x0−h

dx ef
′(x0)x+i ax =

= Fa(x0, h) e
− 1

6 f
′′(x0)h

2+O(h4) (B4)
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as used e.g. in Ref. [19].
Thus, all the di�erent methods' multiplicative errors

are of order O
(
h2
)
. Empirically we �nd that the bin size

can easily be chosen small enough to completely neglect
this error since the uncertainties in the estimation of f(x)
itself dominate the total error.

Appendix C: LLR step size

First, we note that condition (37) is not su�cient in
practice as the sum does not go up to in�nity but only
up to Λ. Therefore we require additionally

Λ∑
k=0

βN,M,Λ(k) ≥
∑
i

α̂i , (C1)

where we denote the exact logarithmic DoS with the hat
α̂i. The left hand side of equation (C1) evaluates to

Λ∑
k=0

βN,M,Λ(k) =

= aN,M,Λ

(
ln

Λ

bN,M,Λ
+O

(
b−1
N,M,Λ

)
+O

(
Λ−1

))
(C2)

while the right hand side can only be approximated∑
i

α̂i ≤
∑
i

N ln 2 (C3)

= MN ln 2 (C4)

≈ 0.69MN . (C5)

Though this is a conservative upper bound, it is not very
far from realistic estimations. If we for instance assume
a parabolic shape for the αi with a maximum close to
N ln 2, we obtain

∑
i α̂i ≲ 2

3 ln 2MN ≈ 0.46MN . Thus,
up to a factor of order one, we �nd that

aN,M,Λ = ln 2
MN

ln Λ
bN,M,Λ

(C6)

is a good choice.

In order to get a value for the remaining o�set bN,M,Λ

we have to consider the small k behaviour rather than the
large k limit as we did before because the o�set is going
to be irrelevant in the latter case. Consider the likely case
that one of the �rst contributions βN,M,Λ(k ≪ bN,M,Λ)
is added to a state that has a much smaller exact α̂i

relative to the other states. To compensate this `mistake'
after some k0 steps (k0 can be large if the initial random
walk remains in a distant region of the phase space for a
while), we have to spend κ steps adding this contribution
to every other of the M states. For this to be possible,
the condition

M

bN,M,Λ
≤

k0+κ∑
k=k0

1

bN,M,Λ + k
(C7)

= ln
k0 + κ

k0
+O

(
bN,M,Λ

k0

)
(C8)

has to hold. This provides a lower bound for κ

κ ≥ k0

(
e

M
bN,M,Λ − 1

)
(C9)

which has to be small for the algorithm to be e�cient.
Thus, it turns out that the o�set bN,M,Λ ≡ bM solely
depends on the number of states and bM ≳ M for the
runtime to not blow up exponentially. On the other
hand we cannot choose bM arbitrarily large either since
that would defeat the purpose of βN,M,Λ(k) decreasing
quickly. Numerical test suggest that

bM = 3M (C10)

yields a performance close to optimal.
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