
Verification and Validation of Machine
Learning Safety in Learning-Enabled

Autonomous Systems

Thesis submitted in accordance with the requirements of the University of Liverpool for
the degree of Doctor in Philosophy by

Wei Huang

February 2023

Acknowledgements

This thesis is the summary my three and half year PhD works at University of Liverpool,
where I spent a fulfilling and memorable period in my life. I have grown from a research
beginner to a more professional and passionate researcher through this time and gain much
experience both in academic research and industry projects. This would be impossible
without the support from many people.

I would like to begin by thanking my families for constant support during my PhD study
both emotionally and financially. As the lockdown, caused by covid-19 pandemic, have
occupied two years of my study, I once felt depressed and scared when staying at my little
apartment. My parents made video calls to me frequently and encouraged me to adhere to
my research study. They help me overcome all the difficulty in these four years.

I would also like to thank my supervisors for their guidance and supervision on my
research works. I switched my major from aircraft propulsion engineering to computer science
when starting my PhD study. They were very patient and careful to help me familiar with
my research area, so that I can make rapid progress from every week’s regular meeting. I am
very grateful to my main supervisor Prof. Xiaowei Huang, who offered me a lot of chances
to participate on real-world projects, collaborating with researchers from other university
and industry. I also benefit a lot from feedback and suggestions from my second supervisor
Dr. Xingyu Zhao, who lead me to accomplish many valuable research works and publish the
high quality papers.

Finally, I would like to thank two IPAP memebers, Prof. Frans Coenen and Dr. Shan
Luo for their constructive and valuable feedback on yearly review meetings.

i

Abstract

Past few years have witnessed tremendous progress on machine learning (ML) models, espe-
cially deep neural networks. The great achievement in human-level intelligence promotes the
wide application of leaning-enabled systems (LESs), which consists of ML models as com-
ponents, in many safety critical tasks, such as robot assisted surgery and self-driving cars.
The safety critical tasks in turn raise people’s concern on whether or not the modern ML
techniques can meet safety requirements, and it has been shown that ML models are vulner-
able to the robustness, security, and transparency problems. For example, the small, even
human imperceptible, perturbations on the inputs can change the final prediction results.
Therefore, it is urgently needed to develop rigorous analysis techniques for the LESs and
ML components to have an objective evaluation on their safety and security performance.
Unfortunately, this is very challenging because the ML models tend to be of large scale and
hard to be analysed directly (commonly referred to “black-box”). In this thesis, we tackle
the challenge through testing of ML components and practical verification of LESs. Such
techniques belong to the Verification and Validation (V&V), which are widely applied in
traditional systems such as airborne software systems and automotive systems to rigorously
engineering their developments. Here, we adapt them to work with LESs and ML models.

We start from the introduction, preliminary and literature review for studying safety
problems in LESs. Then, we develop two black-box based testing methods for the robust-
ness of DL models. One is based on the coverage-guided testing, a well-known software
engineering testing technique. The other one considers the distribution of operational data
for testing. In next chapter, the mechanism of backdoor attack on tree ensembles is firstly
studied. It is followed by two techniques to debug test the backdoor. One detects back-
door inputs at runtime, and the other one synthesizes the backdoor knowledge from tree
ensembles. In addition to debug testing robustness and backdoor, we present new metrics
to evaluate DL models. Apart from the coverage rate provided by coverage-guided testing,
the reliability, defined as the generation times robustness, can assess the overall performance
of ML models. The proposed evaluation approach is further applied to assess the YOLOv3
model in Autonomous Underwater Vehicles. Finally, we study how failures of CNN models
propagate to the whole LESs. For this purpose, we develop practical verification methods
for robustness of LESs. At the end, we have a comprehensive discussion on contributions,
findings and future works. The conclusion is also summarized.

ii

List of Publications

1. Huang, Wei, Yifan Zhou, Youcheng Sun, James Sharp, Simon Maskell, and Xiaowei
Huang. ”Practical verification of neural network enabled state estimation system for
robotics.” In 2020 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 7336-7343. IEEE, 2020. (Chapter 7)

2. Huang, Wei, Youcheng Sun, Xingyu Zhao, James Sharp, Wenjie Ruan, Jie Meng,
and Xiaowei Huang. ”Coverage-guided testing for recurrent neural networks.” IEEE
Transactions on Reliability (2021). (Chapter 3)

3. Huang, Wei, Xingyu Zhao, and Xiaowei Huang. ”Embedding and extraction of knowl-
edge in tree ensemble classifiers.” Machine Learning (2021): 1-34. (Chapter 5)

4. Zhao, Xingyu, Wei Huang, Alec Banks, Victoria Cox, David Flynn, Sven Schewe, and
Xiaowei Huang. ”Assessing the Reliability of Deep Learning Classifiers through Ro-
bustness Evaluation and Operational Profiles.” In AISafety’21 Workshop at IJCAI’21
(Best Paper Award). (Chapter 6)

5. Zhao, Xingyu, Wei Huang, Sven Schewe, Yi Dong, and Xiaowei Huang. ”Detect-
ing operational adversarial examples for reliable deep learning.” In 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks-Supplemental
Volume (DSN-S), pp. 5-6. IEEE, 2021. (Chapter 4)

6. Dong, Yi*, Huang, Wei*, Xingyu Zhao, Vibhav Bharti, Victoria Cox, Alec Banks, Sen
Wang, Sven Schewe, and Xiaowei Huang. ”Reliability Assessment and Safety Argu-
ments for Machine Learning Components in Assuring Learning-Enabled Autonomous
Systems.” ACM Transactions on Embedded Computing Systems (2022). (Chapter 6)

Publications Under Review

1. Huang, Wei, Xingyu Zhao, Alec Banks, Victoria Cox, and Xiaowei Huang. ”Hierar-
chical Distribution-Aware Testing of Deep Learning.” (Chapter 4)

2. Huang, Wei, Yifan Zhou, Youcheng Sun, Alec Banks, Jie Meng, James Sharp, Simon
Maskell, and Xiaowei Huang. ”Formal Verification of Robustness and Resilience of
Learning-Enabled State Estimation Systems for Robotics.”

iii

3. Huang Wei, Xingyu Zhao, Gaojie Jin and Xiaowei Huang. ”SAFARI: Versatile and
Efficient Evaluations for Robustness of Interpretability.”

Publications Not Covered in This Thesis

1. Zhao, Xingyu, Wei Huang, Xiaowei Huang, Valentin Robu, and David Flynn. ”Baylime:
Bayesian local interpretable model-agnostic explanations.” In Uncertainty in Artificial
Intelligence, pp. 887-896. PMLR, 2021.

2. Jin, Gaojie, Xinping Yi, Wei Huang, Sven Schewe, and Xiaowei Huang. ”Enhancing
Adversarial Training with Second-Order Statistics of Weights.” In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15273-
15283. 2022.

iv

Contents

Acknowledgements i

Abstract ii

List of Publications iii

Acronyms xiv

1 Introduction 1
1.1 Background . 1
1.2 Research Objectives . 4
1.3 Contributions . 6
1.4 Structure of Thesis . 8

2 Literature Review 10
2.1 Verification and Validation of Machine Learning Component 10
2.2 Test Machine Learning Component . 11

2.2.1 Coverage Guided Testing . 11
2.2.2 Distribution Aware Testing . 13
2.2.3 Backdoor Testing . 15

2.3 Evaluate Machine Learning Components . 17
2.4 Safety Analysis of ML in Learning-Enabled Systems 19

3 Test DL Robustness through Coverage Metrics 20
3.1 Introduction . 20
3.2 RNN Preliminaries . 22
3.3 Problem Statement . 25
3.4 LSTM Test Coverage Metrics . 26
3.5 Relation with RNN Defects . 29
3.6 Coverage Guided Test Case Generation . 30

3.6.1 Selection Policies and Queuing . 31
3.6.2 Mutation Policies . 31
3.6.3 Test Set Evaluation . 33

v

3.7 Evaluation . 35
3.7.1 Experimental Setup . 36
3.7.2 Diversity of Test Cases . 38
3.7.3 Detecting RNN Defects . 40
3.7.4 Effectiveness of Test Case Generation (RQ5) 43
3.7.5 Comparison with Attack-based Defect Detection (RQ6) 44
3.7.6 Comparison with State-of-the-Art testing methods (RQ7) 45
3.7.7 Exhibition of Internal Working Mechanism (RQ8) 47
3.7.8 Threats to Validity . 49

4 Test DL Robustness through Hierarchical Distribution-Awareness 50
4.1 Introduction . 50
4.2 Preliminaries and Related Work . 51

4.2.1 DL Robustness and Adversarial Examples 52
4.2.2 Distribution-Aware Testing for DL 54
4.2.3 Perception Quality of Images . 55

4.3 The Proposed Method . 55
4.3.1 Overview of HDA Testing . 56
4.3.2 Approximation of the Global Distribution 57
4.3.3 Test Seeds Selection . 58
4.3.4 Local Test Cases Generation . 59

4.4 Evaluation . 62
4.4.1 Experiment Setup . 63
4.4.2 Evaluation Results and Discussions 64

4.5 Threats to Validity . 75
4.5.1 Internal Validity . 75
4.5.2 External Validity . 76

5 Test Backdoor in Tree Ensemble through Knowledge Extraction 77
5.1 Introduction . 77
5.2 Preliminaries . 79

5.2.1 Decision Tree . 79
5.2.2 Tree Ensemble . 80

5.3 Symbolic Knowledge . 80
5.4 Success Criteria of Knowledge Embedding 81
5.5 Knowledge Embedding Algorithms . 82

5.5.1 General Idea for Embedding Knowledge in a Single Decision Tree . . 82
5.5.2 Tree Embedding Algorithm for Black-box Settings 83
5.5.3 Tree Embedding Algorithm for White-box Settings 85
5.5.4 Embedding Algorithm for Tree Ensembles 89

5.6 Knowledge Extraction with SMT Solvers . 90
5.6.1 Exact Solution . 90

vi

5.6.2 Extraction via Outlier Detection . 91
5.7 Generalizing to Regression Trees . 94
5.8 Generalising to Different Types of Tree Ensembles 95
5.9 Evaluation . 95

5.9.1 Embedding a Single Piece of Knowledge into Decision Trees 96
5.9.2 Embedding a Single Piece of Knowledge to Tree Ensembles 98
5.9.3 Embedding Multiple Pieces of Knowledge 98
5.9.4 Detection of Knowledge Embedding 101
5.9.5 Knowledge Extraction . 103

6 Evaluate DL through Robustness and Operational Profile 105
6.1 Introduction . 105
6.2 Preliminaries . 106

6.2.1 OP Based Software Reliability Assessment 106
6.2.2 DL Robustness and the R-Separation Property 107

6.3 A RAM for Deep Learning Classifiers . 108
6.3.1 The Running Example . 108
6.3.2 The Proposed RAM . 108
6.3.3 Extension to High-Dimensional Dataset 113
6.3.4 Evaluation on the Proposed RAM . 115

6.4 Case Study: Evaluate YOLOv3 in Autonomous Underwater Vehicles 119
6.4.1 Scenario Design . 120
6.4.2 Reliability Modelling of the AUV’s Classification Function 123

6.5 Discussions on the Proposed RAM . 125

7 Practical Verification of DL Safety in State Estimation Systems 129
7.1 Introduction . 129
7.2 Preliminaries . 130

7.2.1 Neural Networks . 130
7.2.2 Neural Network Enabled State Estimation 130
7.2.3 A Real-World WAMI Dynamic Tracking System 131
7.2.4 Expansion of Bayesian Uncertainty in Kalman Filters 133

7.3 Problem Formulation . 133
7.3.1 Threat Model of Adversarial Attack on Perception System 133
7.3.2 {PO}2Labelled Transition Systems 134
7.3.3 Reduction of WAMI Tracking to {PO}2LTS 134
7.3.4 A Simple Monitor on Bayesian Uncertainty 135
7.3.5 Specification as Optimization . 136

7.4 Automated Verification . 138
7.4.1 Baseline Method . 138
7.4.2 Verification Algorithm based on Exhaustive Search 138
7.4.3 Heuristic Algorithm based on Sub-optimal Greedy Search 138

vii

7.5 Experimental Results . 139
7.5.1 Research Questions . 140
7.5.2 Experimental Setup . 140
7.5.3 Returning Good Solutions within Constraints (RQ1) 141
7.5.4 Proof of Robustness Against the Attack (RQ2) 142
7.5.5 Pros and Cons of the Two Algorithms (RQ3) 142

8 Conclusion 146
8.1 Thesis Summary . 146
8.2 Contributions and Main Findings . 148
8.3 Future Work . 149

viii

List of Tables

2.1 Comparison between different coverage-guided testing for DNNs 11
2.2 Comparison between different backdoor detection for DNNs 15

3.1 Summary of RNN models under testing . 37
3.2 Configuration of test metrics . 38
3.3 Impact of seeds to coverage metrics . 38
3.4 Complementarity of test metrics: comparison between neuron level test met-

rics and the proposed testRNN metrics in minimal test suite 39
3.5 Comparing the robustness of models via coverage guided testing 41
3.6 Sensitivity of test metrics to backdoor samples in MNIST dataset 42
3.7 Experiments for Test Case Generation Methods 44
3.8 Comparison between DeepStellar and testRNN using MNIST: 100000 test

cases are generated from 100 seeds . 46
3.9 Angular-based diversity (a greater value represents a better diversity) and

average perturbation (smaller is better) of adversarial samples 46
3.10 Complementarity of test metrics in DeepStellar and testRNN 47

4.1 Details of the datasets and DL models under testing. 63
4.2 Evaluation metrics for the quality of detected AEs and DL models 64
4.3 Quality of Latent Representation in PCA & VAE-Encoder 65
4.4 .. 65
4.5 Pearson correlation coefficients (in absolute values) between the local robust-

ness & its two indicators. 66
4.6 Comparison between randomly selected test seeds and our “pg+Rl indicated”

test seeds (averaging over 100 test seeds). 70
4.7 Evaluation of the generated test cases and detected AEs by Projected Gra-

dient Descent (PGD) Attack, coverage-guided testing and the proposed HDA
testing (all results are averaged over 100 seeds) 70

4.8 Evaluation of AEs detected by OODA, FODA and our HDA testing methods
(based on 100 test seeds). 71

4.9 Evaluation of AEs generated by Fast Gradient Sign Method (FGSM), PGD,
AutoAttack and HDA on normally and adversarially trained DL models (all
results are averaged over 100 test seeds). 73

ix

4.10 Evaluation of DL models’ train accuracy, test accuracy, and empirical global
robustness (based on 10000 on-distribution AEs) after adversarial fine-tuning. 74

5.1 List of decision paths extracted from original decision tree 84
5.2 Extraction of knowledge from a decision tree returned by the black-box algo-

rithm . 91
5.3 Benchmark datasets for evaluation . 96
5.4 Statistics of knowledge embedding on a single decision tree (averaging over 20

randomly generated single pieces of knowledge) 97
5.5 Statistics of knowledge embedding on tree ensemble 99
5.6 Embedding multiple pieces of knowledge into tree ensembles 101
5.7 Model’s accuracy on clean and KE test set after applying REP 102
5.8 The embedded knowledge for extraction . 103
5.9 Extraction of embedded knowledge . 104

6.1 Modelling details & results of applying the Reliability Assessment Model
(RAM) on five datasets. Time is in seconds per cell. 116

6.2 Average Precision (AP) of YOLOv3 for object detection. 123
6.3 Reconstruction Loss & KL Divergence Loss of VAE model 123

7.1 A Summary of Notations Used . 135
7.2 Tracks Generated by Different Algorithms. 143
7.3 Statistical Comparison between the Verification and Heuristic Search Algorithms145

x

List of Figures

1.1 The small perturbation added onto the image can cause ML model misclassify
panda as gibbon[1]. 2

1.2 All MNIST images of handwritten digit with a backdoor trigger (a white patch
close to the bottom right of the image) are mis-classified as digit 8. 2

1.3 The autonomous driving system consists of deep neural network as perception
component[2]. 3

1.4 The overview of research works in this thesis 8

2.1 Comparison between OODA and FODA methods 13

3.1 Examples to show how positive and negative elements of output vectors rep-
resent the information in MNIST and IMDB models. The x-axis includes the
inputs (bottom row) and the y-axis includesNz(ξht) (top row), Nm(ξf,avgt) (sec-
ond row) and Nm(∆ξht) (third row) values. In MNIST, each column of pixels
corresponds to a step in LSTM and in the IMDB model each step represents
a word in the movie review. 24

3.2 (Left) Connection of Verification and Coverage Guided Testing Frameworks.
Verification and testing overlap on “Flaws”, representing that they have the
same objective. From verification to testing, an approximation is made, i.e.,
test cases approximate the LSTM internal behaviour. Guidelines (colored
with red) are needed to ensure the approximation quality. (Right) Relation
between Coverage Metrics. NC: neuron coverage [3], BS: basic state coverage
[4], BT: basic transition coverage [4], MC/DC: modified condition/decision
coverage [5]. Arrows represent the “weaker than” relation between metrics. . 25

3.3 Illustration of projecting a temporal curve (Gaussian distribution) into a se-
quence of symbols acbab. 28

3.4 Coverage-guided LSTM testing in testRNN 31
3.5 Update of coverage with normal perturbed samples (‘N’) and adversarial sam-

ples (‘A’) . 41
3.6 Backdoor samples for MNIST model (left). Adversarial samples for IMDB

(middle) and Lipophilicity (right) models. 44

xi

3.7 Visualisation of adversarial samples generated by testRNN, DeepStellar,
and Gradient-based Attack, respectively, in MNIST model. The visualisation
is conducted by projecting high-dimensional images onto a two-dimensional
space. Each figure corresponds to a seed input in the dataset. 47

3.8 2000 test cases are used to demonstrate the coverage times of 28 features in
an LSTM layer of MNIST model (first line) and 500 input features in LSTM
layer of IMDB Sentiment Analysis model (second line). 48

4.1 Comparison between our proposed Hierarchical Distribution-Aware (HDA)
testing and related works. 52

4.2 An example of Hierarchical Distribution Aware Testing 56
4.3 Samples drawn from the approximated global distribution by KDE and a

uniform distribution over the latent feature space (Figure); and FID to the
ground truth based on 1000 samples (Table). 65

4.4 Scatter plots of the local robustness evaluation vs. its two indicators, based
on 1000 random norm balls. 66

4.5 The prediction loss (red) and the three quantified local distribution indicators
(blue) of the best fitted test case during the iterations of our two-step GA
based local test case generation. 67

4.6 Comparison between regular GA and two-step GA. 67
4.7 AEs detected by our two-step GA (last 3 columns) & other methods 68
4.8 Example AEs detected by different distribution-aware testing methods.AEs de-

tected by our HDA are indistinguishable from the original images, while AEs de-

tected by FODA and OODA are of low perceptual quality and subject to the oracle

issues noted by Remark 4. 72

5.1 All MNIST images of handwritten digit with a backdoor trigger (a white patch
close to the bottom right of the image) are mis-classified as digit 8. 78

5.2 The original decision tree . 83
5.3 Decision tree returned by the black-box algorithm 85
5.4 Illustration of embedding knowledge (f2 ∈ (b2 − ε, b2 + ε]) ⇒ con(κ) by con-

ducting tree expansion on an internal node. 86
5.5 Decision tree returned by the white-box algorithm 89
5.6 A decision tree for x1 ∨ ¬x2 ∨ x3 . 93
5.7 The satisfiability of the P-rule on decision trees and tree ensembles. Test

accuracy change is calculated as acc(M,Dtest) − acc(κ(M), Dtest). Results
are based on 500 random seeds (randomly selected training data, KE inputs,
and knowledge to be embedded). Tree ensembles are better in satisfying the
P-rule than decision trees. 100

5.8 ROC curves for detecting backdoor examples 103

6.1 Illustration of the r-separation property. 108
6.2 The 2D-point dataset (lhs), and its approximated OP (rhs). 109

xii

6.3 Synthetic datasets DS-1 (lhs) and DS-2 (rhs) representing relatively sparse
and dense training data respectively. 116

6.4 The mean, variance and 97.5% confidence upper bound of pmi and ACU as
functions of k sampled norm ball, estimated on MNIST dataset with normally
and adversarially trained models. 118

6.5 The mean, variance and 97.5% confidence upper bound of pmi and ACU
as functions of k sampled norm ball, estimated on CIFAR10 dataset with
normally and adversarially trained models. 119

6.6 Hardware–software architecture & key modules for autonomous survey & in-
spection missions. 120

6.7 A wave-tank for simulated testing and a simulated pool for collecting the
training data. 122

6.8 Simulated AUV missions following way-points and the six simulated objects. 123
6.9 Four original images (top row) and the corresponding reconstructed images

(bottom row) by the VAE model. 124
6.10 The mean, variance and 97.5% confidence upper bound of AUV’s pmi and

ACU as functions of k sampled norm balls. 125

7.1 The workflow of attacking the WAMI system. 133
7.2 Tree diagram of an unfolding {PO}2-LTS . 136
7.3 The comparison between the baseline and the heuristic/verification in selected

scene with configuration Attack(5, 8) . 141
7.4 Failure in finding an attacked path . 143
7.5 Heuristic search and verification Attack(5, 8) on a selected scene. Tree graph

exhibits all possible tracks, where green is the original track, blue is the at-
tacked track found by heuristic search, and red is the attacked track found by
verification. The labels on the nodes represent “(time step)-(ID of associated
detection)”. 144

xiii

Acronyms

ML Machine Learning

DL Deep Learning

DNN Deep Neural Network

FNN Feedforward Neural Network

MLaaS Machine-Learning-as-a-Service

LES Learning Enabled System

V&V Verification and Validation

CNN Convolutional Neural Network

RNN Recurrent Neural Network

IDS Intrusion Detection System

LSTM Long Short-Term Memory Network

BC Boundary Coverage

SC Step-wise Coverage

TC Temporal Coverage

P-rule Preservation

V-rule Verifiability

S-rule Stealthiness

PTIME Polynomial Time

NP Nondeterministic Polynomial Time

VAE Variational AutoEncoder

xiv

CVAE Conditional Variational AutoEncoder

GAN Generative Adversarial Network

OODA Out of Distribution-Aware

FODA Feature-Only Distribution-Aware

HDA Hierarchical Distribution-Aware

AE Adversarial Example

GA Genetic Algorithm

KDE Kernel Density Estimation

PCA Principal Component Analysis

MSE Mean Square Error

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index Measure

PDF Probability Density Function

FID Fréchet Inception Distance

FGSM Fast Gradient Sign Method

PGD Projected Gradient Descent

KE Knowledge-Enhanced

REP Reduced Error Pruning

RAM Reliability Assessment Model

OP Operational Profile

SMC Simple Monte Carlo

CLT Central Limiting Theorem

pmi probability of miss-classifications per input

ACU Average Cell Unastuteness

AUV Autonomous Underwater Vehicles

xv

KF Kalman Filter

WAMI Wide Area Motion Imagery

BFS Breadth-First Search

xvi

Chapter 1

Introduction

1.1 Background

Machine Learning (ML) techniques are dedicated to learn decision logic from observations
and make prediction for new data without explicitly programmed to do so. With the break-
through of theory and progress of hardware’s computing power, ML models, especially Deep
Learning (DL) models have achieved human-level intelligence to deal with the long-standing
sophisticated tasks, such as image recognition [6], natural language processing [7], speech
recognition [8] etc. The key success of ML models are their capability on predicting unseen
data. ML models are trained on the training dataset, and evaluated on the test dataset to
assess the generalization accuracy [9]. The improvement of generalization accuracy is the
main research direction for studying ML. Several training techniques, like weight decay [10],
ensemble methods [11], and dropout[12] are proposed to improve over-fitting problem: ML
models usually achieve better prediction accuracy on training dataset than on test dataset.
Besides the continuously concerned generalization problem, there raises many other safety
problems with the widespread application of ML to the safety critical applications, like robot
assisted surgery [13] and self-driving cars [14]. In this thesis, we mainly consider the following
safety problems related to ML models.

One of the biggest problems is that ML models are suffering from lack of robustness
[15], since the adversarial examples–the small, maybe human imperceptible, perturbations
on the inputs can totally change the final prediction results of a well-trained ML model–can
be easily crafted. As an example in Fig. 1.1, start with an image of panda, the attacker can
add small perturbation that has been calculated to make the image recognised as gibbon.

Till now, significant efforts have been made on the development of attack and defence
techniques. Attack techniques aim to find the adversarial examples, while defence techniques
try to enhance the model’s ability of robustness to possible adversarial attack. However, both
methods cannot be used to certify a networks because they are unable to provide assurance
to the results [16]. This gap motivates the introduction of verification and testing techniques
to ML models. Basically, verification techniques are to determine whether or not a property
of a given ML holds within a given range of inputs. The rigorous mathematics proofs offer

1

Figure 1.1: The small perturbation added onto the image can cause ML model misclassify
panda as gibbon[1].

guarantees to the results at the expense of high computational cost. The cost goes sharply
with the increase of model’s complexity. For this reason, when working with large-scale
models, often used in the industry, verification is not a good option. Testing arises as
a complement to verification. Instead of pursuing mathematics proofs, testing techniques
exploit the model in a broad way to find potential faults [5].

(a) clean inputs representing different digits (b) backdoor inputs, all classified as 8

Figure 1.2: All MNIST images of handwritten digit with a backdoor trigger (a white patch
close to the bottom right of the image) are mis-classified as digit 8.

Apart from the robustness, some security problems also raise people’s concern, e.g. back-
door. Since the ML techniques become prevalent, the requirement of hardware, time, and
data to train a ML model also increases dramatically. Under this scenario, machine-learning-
as-a-service (MLaaS) [17] becomes an increasingly popular business model. However, the
training process in MLaaS is not transparent and may embed with backdoor, i.e. hidden
malicious functionalities, into the ML model. Either the training data is polluted or model’s
structure is tampered. Backdoor will not affect model’s prediction performance on clean

2

input, such as training and testing data. However, the attacked model will misclassify any
backdoor inputs, containing trigger, as the target label. As an example in Fig. 1.2, the
backdoor is embedded into the handwritten digit model. The clean input are all recognized
correctly. The images with the backdoor trigger (a white patch at the bottom right of im-
age) are classified as digit 8. Analogous to the study of robustness, many papers focus on
the attack and defence of backdoor in ML models. However, the ultimate goal should be
to validate the model is not suffering from the backdoor attack, otherwise synthesize the
malicious knowledge from the model.

Both the lack of robustness and backdoor are expressed as the miss-classification of ML
models against the perturbation. Backdoor can even be seen as a special case of robustness
problem [18]. In addition to debug test these two safety problems for detecting misclas-
sified data, the evaluation of ML models’ overall performance is important and appealing
[19]. Motivated by the attack, existing evaluation approaches focus on the worst-case [20].
The maximum safe radius around a seed input is calculated for evaluating the pointwise
robustness [21]. However, the worst case evaluation cannot represent model’s real perfor-
mance against the naturally occurring perturbations [22]. Whats’ more, the motivation for
requiring worst-case robustness for individual inputs is frequently clear, it is more difficult
to justify using worst-case robustness for the model as a whole. ML model can only be
completely worst-case robust if it is robust to all potential input perturbations.

Figure 1.3: The autonomous driving system consists of deep neural network as perception
component[2].

As ML models are vulnerable to adversarial attack and backdoor attack, the concern
has been naturally raised on how safe a learning enabled system (LES) is when ML models,
as learning components, interact with other components, e.g. Bayes filter components. As
an example shown in Fig. 1.3, the autonomous driving system consists of a deep neural
network as the perception for vehicle detection, the detection results are passed forward to
the driving control component to take action. Obviously, the failure of deep neural networks
will affect the operation of overall system. In [23], it has been found that the system is
able to compensate (to some degree) against adversarial attacks on its DL component, but
there may also be new uncertainties from the interactions between learning and non-learning
components. While some vulnerability cases were reported in [23], there is no comprehensive
study on all potential risks in a LES, from the perspective of formal verification.

In summary, attack and defence are most popular approaches to study the aforementioned
problems. Although attack techniques can uncover the safety issues that ML models or LESs
will be accessed or damaged without authorization under some circumstances, and defence

3

techniques are proposed to effectively deal with attack, they cannot provide the rigorous
guarantee that ML models or LESs meet the safety requirements, e.g. ML models will not
mis-classify the data within certain input region. This motivate us to develop the verification
and validation (V&V) methods for ML models or LESs, which can tackle the challenge by
checking if the safety requirements and specifications are met or not.

1.2 Research Objectives

This thesis studies several safety requirements of ML models and their influence on normal
operations of LESs. The main research question is: How can we verify or validate that ML
models and LESs are safe enough against a series of potential risks when deployed in the
real-world applications?

The above research question can be further divided into sub-problems which can be
solved by several V&V techniques. First, the verification or testing methods can check the
fulfilment of safety requirements. If the requirement is not met, the counterexamples (bugs)
are produced. Second, we are also concerned about evaluating the safety of ML models and
LESs from probabilistic prospective instead of answering the binary question that ML models
are safe or not. To be specific, we will discuss the following techniques in the subsequent
chapters:

1. Test Adversarial Robustness: Apart from numerous adversarial attack methods
[1, 24, 25], coverage guided testing methods, the traditional software defects detection
technique [26], are proposed to detect adversarial examples for CNNs, such as neuron
coverage [27], modified condition /decision coverage [28]. While existing coverage met-
rics for CNNs may be adapted to work with RNNs, they are insufficient because they
do not work with the internal structures of RNNs and, more importantly, the most es-
sential ingredient of RNNs—the temporal relation—is not considered. This motivates
us to develop dedicated coverage metrics for RNNs,to take into account the additional
structures and temporal semantics.

In addition, emerging studies on systematically evaluating adversarial examples de-
tected by aforementioned state-of-the-arts have two major drawbacks: (i) they do not
take the input data distribution into consideration, therefore it is hard to judge whether
the identified adversarial examples are meaningful to the ML application [29, 30]; (ii)
most detected adversarial examples are of poor perception quality that are too unnat-
ural/unrealistic [31] to be seen in real-life operations. That said, not all adversarial
examples are equal nor can be eliminated given limited resources. A wise strategy is to
detect those adversarial examples that are both being “distribution-aware” and with
natural/realistic pixel-level perturbations, which motivates our another work of ours.

2. Test Backdoor: Backdoor attack and defence are thoroughly studied for CNNs [32,
33], but few research works are conducted on tree ensemble classifiers. There are a lot
of security-critical applications using tree ensemble classifiers. For instance, random

4

forest is the most important ML method for the Intrusion Detection Systems (IDS)
[34]. Previous research [35] demonstrates that backdoor knowledge embedded to the
random forest classifiers for IDSs can make the intrusion detection easily bypassed.
We try to thoroughly study the mechanism of backdoor embedding on tree ensemble
classifiers, according to a few success criteria such as preservation and verifiability.
Then, given a tree ensemble that is potentially embedded with backdoor knowledge,
we try to figure out (1) can we check if model is embedded with backdoor knowledge
and effectively extract backdoor knowledge from it for mitigation? (2) Is there a
theoretical, computational gap between backdoor embedding and extraction to indicate
the stealthiness of the embedding?

3. Evaluation of ML Models: For traditional systems, safety and reliability analysis is
guided by established standards, and supported by mature development processes and
verification and validation tools and techniques. The situation is different for systems
that utilise DL: they require new and advanced analysis reflective of the complex re-
quirements in their safe and reliable function. Such analysis also needs to be tailored
to fully evaluate the inherent character of DL [36], despite the progress made recently
[37]. DL classifiers are subject to robustness concerns, reliability models without con-
sidering robustness evidence are not convincing. Reliability, as a user-centred property,
depends on the end-users’ behaviours [38]. The operational profile information (quan-
tifying how the software will be operated [39]) should therefore be explicitly modelled
in the assessment. However, to the best of our knowledge, there is no dedicated relia-
bility assessment model taking into account both the operational profile and robustness
evidence, which motivates this chapter’s research work.

4. Verification of LESs: An learning-enabled system (LES) is a complex, intelligent
system that can make decisions according to its internal state and its understand-
ing about the external environment. To meet their design requirements, LES can be
designed and implemented by connecting a number of heterogeneous components, in-
cluding ML models and non-learning components. It is well-known that ML models
are suffering from a series of safety risks, like robustness, backdoor and transparency
problems, which may propagate to the whole system through the interaction between
internal components. To study the robustness properties of real-world LESs in a prin-
cipled way, we apply formal verification techniques, which demonstrate that a system
is correct against all possible risks, especially originated from ML models, over a given
specification – a formal representation of property and the formal model of the sys-
tem, and which returns counter-examples when it cannot. We adopt this approach
to support the necessary identification of risks prior to deployment of safety critical
applications.

5

1.3 Contributions

We focus on verification and validation of ML models and LESs. Our contributions can be
summarized below.

Coverage-Guided Testing for Recurrent Neural Networks

1. We discuss why the coverage-guided testing is useful in analyzing RNNs and how to
reasonably define the effectiveness of a testing framework.

2. We focus on long short-term memory networks (LSTMs), which is the most important
class of RNNs, and design three LSTM structural coverage metrics, namely boundary
coverage (BC), stepwise coverage (SC), and temporal coverage (TC). Simply speaking,
TC quantifies the multistep temporal relation, which describes the internal behavior
on how LSTM cell processing inputs, whereas BC and SC quantify the value and
single-step change of the temporal relation, respectively.

3. We also discussed how to position the new metrics against a few closely related tech-
niques, such as complete verification techniques, existing metrics, etc.

Hierarchical Distribution-Aware Testing of CNNs

1. We provide a “divide and conquer” solution—hierarchical distribution-aware testing—
by decomposing the input distribution into two levels (named as global and local)
capturing how the feature-wise and pixel-wise information are distributed, respectively.

2. At the global level, we propose novel methods to select test seeds based on the approx-
imated feature distribution of the training data and predictive robustness indicators,
so that the norm balls of the selected seeds are both from the high-density area of
the distribution and relatively unrobust (thus more cost-effective to detect adversarial
examples in later stages).

3. Given a carefully selected test seed, we propose a novel two-step Genetic Algorithm to
generate test cases locally (i.e. within a norm ball) to control the perceptual quality
of detected adversarial examples.

4. We investigate black-box (to the DL model under testing) methods for the main tasks
at both levels.

Embedding and Extraction of Backdoor in Tree Ensemble Classifier

1. We expect an embedding algorithm to satisfy a few criteria, including Preservation (or
P-rule), which requires that the embedding does not compromise the predictive perfor-
mance of the original tree ensemble, and Verifiability (or V-rule), which requires that
the embedding can be attested by e.g., specific inputs. We develop two novel PTIME

6

embedding algorithms, for the settings of black-box and white-box, respectively, and
show that these two criteria hold.

2. Beyond P-rule and V-rule, we consider another criterion, i.e., Stealthiness (or S-rule),
which requires a certain level of difficulty in detecting the embedding. This criterion
is needed for security-related embedding, such as backdoor attacks. Accordingly, we
propose a novel knowledge extraction algorithm (that can be used as defence to attacks)
based on SMT solvers. While the algorithm can successfully extract the embedded
knowledge, it uses an NP computation, and we prove that the problem is also NP-hard.
Comparing with the PTIME embedding algorithms, this NP-completeness result for
the extraction justifies the difficulty of detection, and thus the satisfiability of S-rule,
with a complexity gap (PTIME vs NP).

Reliability Assessment of Deep Learning Classifiers

1. A first reliability assessment method for deep learning classifiers based on the opera-
tional profile (distribution) information and robustness evidence. It is model agnostic
and designed for pretrained DL models, yielding upper bounds on the probability of
miss-classifications per input with confidence levels.

2. Discussions on model assumptions and extension to real-world applications, highlight-
ing the inherent difficulties of assessing DL dependability uncovered by our model, e.g.
scalability and lack of data.

3. To extend the reliability assessment method to high dimensional data, we refer to the
weighted sampling and use converged assessment result as the approximation. The
”high dimensional” reliability assessment method is further applied to real-world au-
tonomous underwater vehicle detection to demonstrate the effectiveness and efficiency.

Practical Verification of Learning Component Failure in State Estimation Sys-
tems

1. we formalise an LES as a novel labelled transition system which has components for
payoffs and partial order relations. Specifically, every transition is attached with a pay-
off, and for every state there is a partial order relation between its out-going transitions
from the same state.

2. We show that the verification of the robustness property on such a system can be
reduced into a constrained optimisation problem.

3. To enable practical verification, we develop two algorithms: (1) a verification algorithm
– that can achieve complete results but cannot be used for run-time – and (2) a heuristic
algorithm – that can be used efficiently in run-time, perform well in most cases, but
cannot provide a completeness guarantee.

7

1.4 Structure of Thesis

Fig. 1.4 illustrates the structure of thesis. In Chapter 2, we do literature review on testing
ML models, evaluation of ML models and safety analysis of learning-enabled autonomous
systems. Chapter 3, 4 and 5 correspond to debug testing approaches for robustness and
backdoor of ML models. In chapter 6, we focus on the evaluation of ML models. Then, in
chapter 7, we start to study the verification of learning-enabled systems, when the failure
of ML models propagates during the interaction. Finally, in chapter 8, we summarize our
contributions, the main findings after experiments and expectation in future works. The
main research works are concentrated on chapter 3, 4, 5, 6 and 7.

In chapter 3 and 4, robustness testing of ML models are mainly categorized as the
coverage-guided testing, and distribution aware based testing for detecting general misclas-
sified inputs. We develop a coverage guided testing method for RNNs and hierarchical
distribution aware testing method for DL models.

Figure 1.4: The overview of research works in this thesis

Backdoor testing are listed separately in chapter 5, for their targets on backdoor input
detection and backdoor knowledge extraction. The mechanism of backdoor embedding is
also thoroughly studied.

8

In chapter 6, we present a model-agnostic reliability assessment method for DL classi-
fiers, based on evidence from robustness evaluation and the operational profile of a given
application.

In chapter 7, we present a formal verification guided approach for a principled design and
implementation of robust learning-enabled systems.

9

Chapter 2

Literature Review

2.1 Verification and Validation of Machine Learning

Component

Machine Learning models, especially DNNs, become prevalent nowadays. Before coming to
era of DL, some traditional ML techniques already have wide application across different
industries. For examples, Random Forest[40], which combines the output of multiple deci-
sion trees, is utilized in Finance to evaluate customers with high credit risk[41], to detect
fraud[42], and option pricing problems[43]. It also has applications within computational
biology[44], facilitating doctors to tackle problems such as gene expression classification,
biomarker discovery, and sequence annotation. DL comes into notice since it can deal with
the high dimensional data, such as images, text, audio signals. One of biggest success of DL
is the development of Convolutional neural network for image classification[45] and object
recognition tasks[46]. CNNs have three main types of layers: convolutional layer, pooling
layer and fully connected layer. The convolutional layer is the core building block of a CNN,
which extract features from the images. Pooling layer reduce the dimension of data, help
improve efficiency and limit the risk of overfitting. The fully connected layer is usually set at
last to perform the task of classification based on the extracted features from previous layers.
Recurrent neural network is another type of DNNs, dedicated to solve the sequential prob-
lems seen in natural language processing[47] and speech recognition[48]. Long short-term
memory (LSTM) network is a popular RNN architecture, consisting of cells. Each cell have
gates, long term and short term memory. These gates control the flow of information which
is needed to predict the output in the network, while long term and short term memory are
designed to solve the problem of long-term dependencies.

Despite the great potentials of ML techniques, ML, especially DL models, are suffering
from a wide range of risks, such as the adversarial robustness, backdoor and transparency.
This leads to the research area of verification and validation of DL (ref. to the comprehensive
review on [49]). Verification provide the provable guarantee on decision safety of neural
networks[16]. It can further analyse the reachability of neural networks[50]. Testing arises

10

to complement the verification of DNNs, which is known to have the drawbacks of high
computation complexity. A lot of testing techniques, such as coverage guided testing[51],
distribution aware testing[52], fuzzing[53] are proposed to test the performance of DNNs.
This thesis mainly focus on the testing category and intend to design new testing methods
for different type of DNNs.

2.2 Test Machine Learning Component

2.2.1 Coverage Guided Testing

Traditional software testing and coverage methods cannot be easily applied to deep neural
networks (DNNs). A number of new techniques for testing neural networks and measur-
ing test coverage have been developed. The comparison of theses approaches are listed in
Table 2.1.

Test Method Coverage Criteria Test Generation Distance Metric DNNs Under Test
DeepXplore[27] Neuron Coverage Joint Optimisation L1 Multiple
DeepTest[54] Neuron Coverage Greedy Search Jaccard Distances Single

DeepGauge[55]
Neuron Level Coverage,
Layer Level Coverage

Adversarial Attack L∞ Single

DeepConcolic[51]
MC/DC, Neuron Coverage

and its extensions
Concolic Testing L∞, L0 Single

[56]
Quantitative

k-Projection Coverage
0-1 Integer

Programming
N/A Single

SADL[57] Surprise Coverage Adversarial Attack N/A Single
TensorFuzz[58] Approximate Nearest Neighbor Fuzzing N/A Single

DeepStellar[4]
State-Level Coverage

Transition-Level Coverage
Fuzzing N/A Single

Table 2.1: Comparison between different coverage-guided testing for DNNs

[27] firstly introduces the neuron coverage metric for the neural network using rectified
linear units (ReLUs) as the activation functions in DeepXplore. According to the definition,
a test suite is said to have achieved full coverage if there is at least one input to make
each hidden unit in the neural network get a positive value. Then, they demonstrate that
achieving high neuron coverage can find input which induce more differential behaviors of
neural networks. The high coverage rate can be represented as the optimization problem
and efficiently solved by gradient based search.

[54] offer a systematic approach, called DeepTest, for autonomously generating test sce-
narios that optimise neuron coverage in safety-critical DNN-based systems such as self-
driving automobiles. They show empirically that variations in neuron coverage coincide
with changes in the behaviour of an self-driving automobile. They further show how several
realistic image transformation, such as changes in light and the weather conditions, may be
utilised to generate synthetic tests that boost neuron coverage. They use transformation-
specific metamorphic relations to identify incorrect behaviour automatically. Experiment

11

results also indicate that synthetic pictures may be utilised to retrain DNNs and improve
the robustness to various corner situations.

[55] presents a set of new testing criteria based on multi-level and multi-granularity
coverage for neural networks in DeepGauge, ranging from the coverage of different sections
of neurons values to different combination of neuron activation patterns. The testing criteria
can measure to what extent neuron’s functionality is exercised and quantify defect detection
ability of test data on neural networks. A higher coverage rate of testing criteria indicates a
higher potential to detect more diversified neural networks’ defects.

[51] adapts the Modified Condition/Decision Coverage (MC/DC), a conventional soft-
ware coverage metric, to deep neural networks in DeepConcolic. MC/DC requires that all
condition neurons should determine the outcome of the decision neuron independently. To
efficiently increase the coverage rate, they develop the concolic testing by alternating between
concrete execution and symbolic analysis to incrementally generate test cases.

[56] present quantitative k-projection coverage as a measure to control combinatorial
explosion while directing the data sampling procedure. Assuming that domain experts in
autonomous drivining offer independent environment conditions, such as weather, scenery, or
partly obstructing pedestrians, and associating components in each condition with weights,
the combination of these conditions produces scenarios, and the weights associated with
each equivalence class may be interpreted as their relative importance. To achieve complete
k-projection coverage, the data set, when projected to the hyperplane defined by arbitrarily
chosen k-conditions, must cover each class with a minimum number of data points equal to
the corresponding weight. The exact computation of k-projection coverage remains NP in
the general situation when scenario construction is controlled by constraints. They propose
theoretic complexity for essential sub-cases and an encoding to 0-1 integer programming in
terms of determining the least number of test cases required to obtain complete coverage.

Surprise Adequacy for Deep Learning Systems (SADL), a unique test adequacy criteria
for evaluating DL systems, is proposed by [57]. It is based on the behaviour of DL systems
with regard to their training data. It quantifies an input’s surprise as the difference in DL
system behaviour between the input and the training data (i.e., what was learned during
training), and then use this as an adequacy criterion: a good test input should be suitably
but not overly unexpected when compared to training data. Empirical testing with a variety
of DL systems ranging from simple image classifiers to autonomous driving car platforms
demonstrates that systematic sampling of inputs based on their surprise can improve DL
system classification accuracy against adversarial examples via retraining.

[58] develops the coverage-guided fuzzing framework, called TensorFuzz, where randomly
mutated input are guided by the coverage metric, provided by approximate nearest neigh-
bor (ANN) algorithms. Approximate nearest neighbor algorithms can decide if a new input
should be added into the corpus based on building a data structure for finding sufficiently
closed data points. They further combine the coverage-guided fuzzing with property-based
testing, which automatically generates test cases that attempt to violate user-specified prop-
erty, to detect numerous flaws in trained neural networks.

Few works contribute to the development of coverage metrics for RNNs. [4] take the

12

first step toward quantitative study of RNN-based DL systems in DeepStellar. To describe
RNN’s internal characteristics, they model it as an abstract state transition system. They
propose two trace similarity measures, based on state and transitions, respectively, and
five coverage criteria, called Basic State Coverage, Weighted State Coverage, n-Step State
Boundary Coverage, Basic Transition Coverage, and Weighted Transition Coverage, to allow
for quantitative study of RNNs. They also present two methods for adversarial sample detec-
tion and coverage-guided test case generation that are driven by quantitative measurements.
DeepStellar is thoroughly tested on four RNN-based systems and shown effective to capture
the differences between samples even with very small perturbations and reveal erroneous
behaviours of RNNs.

2.2.2 Distribution Aware Testing

There are increasing amount of DL testing works developed towards being distribution-
aware. Deep generative models, such as Variational AutoEncoders (VAE) and Generative
Adversarial Networks (GAN), are applied to approximate the training data distribution, since
the inputs (like images) to Deep Neural Network are usually in a high dimensional space.
Previous works heavily rely on Out of Distribution-Aware (OODA) detection [59, 52, 60]
or synthesising new test cases directly from latent spaces [61, 62, 63], called Feature-Only
Distribution-Aware (FODA). The comparison between two categories of works are listed in
Fig 2.1.

Figure 2.1: Comparison between OODA and FODA methods

[59] propose the first distribution-guided coverage criterion for generating unseed test
cases, while giving a great assurance of the validity of the identified faults to DL system.
To be specific, they integrate the OOD techniques into the coverage criterion. They obtain
the OOD-score distribution from the training data using cutting-edge OOD algorithms. If a
new test case has an OOD-score that exceeds a predefined threshold, it is labelled as OOD.
The innovative OOD-guided coverage criteria may aid in filtering distribution-relevant errors.
DNNs trained with distribution-relevant errors outperform those trained with errors that are
unaware of the distribution. The findings highlight the significance of distribution knowledge
and emphasise the need for caution while developing future DL testing frameworks.

13

[52] study the validity of test cases generated by existing DNN test generation tech-
niques through variational auto-encoder (VAE). When compared to OOD inputs, a trained
VAE model will produce high probability density estimates for data from the training data
distribution. This critical insight is utilised to validate test inputs produced by DNN test
generating approaches. They find that current coverage guided testing generates a huge
number of invalid test cases, raising test costs without providing an obvious advantage.
Furthermore, existing neuron-based coverage metrics for DNNs cannot differentiate between
valid and invalid test cases, which risks biasing test suites toward including more invalid
inputs in pursuit of better coverage. Based on these findings, they develop a novel approach
that combines a VAE model with current test generation approaches to generate test cases
that produce only valid inputs. They formulate the joint optimization of the probability
density of valid inputs and the objective of current DNN test generation algorithms, and
employ gradient ascent to generate valid test cases. The proposed technique is cost-effective,
according to experimental study.

Test selection refers to the area of research focused on selecting a small set to label from
a large set of unlabelled data, which are more representative to reveal errors in given DNN.
[60] empirically study the test selection and retraining. They observe that retraining using
both original training data and selected data achieves better model performance than using
selected data only. In addition, even using the optimal retraining strategy, existing selection
metrics show different performance under different data distributions. For example, random
selection get the surprisingly best performance, when OOD data are more than 70% in the
set (30% are in-distribution (ID) data). Moreover, class bias is another potential factor
for data selection. Based on these observations, they further present a distribution-aware
test (DAT) selection metric to reduce the impact of distribution shifts on model retraining.
DAT’s fundamental principle is to choose uncertain and representative data from the ID and
OOD sets, respectively. To begin, they use an OOD detector to divide the new data into the
ID set and the OOD set. Following that, DAT picks the most uncertain data for the ID set,
which have the same distribution as the training data but have not been sufficiently learnt
by the model. DAT chooses the best representative data for the OOD collection, which
indicates that the data chosen may represent the whole set. According to the experimental
results, DAT outperforms all other available test selection metrics.

In order to generate realistic, conformance to requirements, and error-revealing test cases,
[61] leverage the variant of Conditional Variational Autoencoder (CVAE) to capture a man-
ifold, representing the feature distribution of training data. CVAE can learn the manifold
conditioned on the data label, and use encoder and decoder to map high dimensional data
from or to the manifold. Once a CVAE has been trained, it is possible to sample new test
cases from this manifold and map them to the original input space using the decoder. As
a CVAE is tuned to produce such images with high probability, these test inputs are likely
representative of distribution images. These test inputs may also be novel to the degree that
a VAE can interpolate between existing data points, enabling the discovery of new issues
utilising these inputs. The central aim of this study is to apply search-based test generation
to the manifold space in order to generate novel, intriguing, and error-revealing test cases.

14

A fitness function is designed so that the uncertainty of the tested model is maximised, with
the argument that high uncertainty inputs are more likely to cause errors.

[62] present a new method to assess the safety of DL system based on the concept frontier
of behaviours. The frontier of behaviours of DL systems refer to a pair of inputs which are
virtually similar to each other but induce different behaviors of DL system. The DL system
is safe if the frontier of behaviours are outside the validity input domain. To search for
frontier of behaviours, they propose the model-based input generation approach to generate
the realistic input. For MNIST dataset, they convert the handwritten digit images to the
Scalable Vector Graphics, which is combination of cubic and quadratic Bézier curves. The
manipulation of the Bézier curve parameters can make sure the perturbed handwritten digits
are realistic. The self-driving car is trained and tested on the BeamNG simulation environ-
ment. Such simulation system provides different scenarios, consisting the roads, the driving
task, and environments, like weather conditions, and light. They further apply evolutionary
algorithm to search for frontier of behaviours of DL systems.

[63] provide the first method, called distribution-based falsification and verification (DFV),
that utilises environmental models to concentrate DNN falsification and verification on the
meaningful input space. DFV automatically constructs an input distribution model using
unsupervised learning, prefixes this model to the DNN to require all inputs from the learnt
distribution, then reformulates the property to the input space of the distribution model.
This transformed verification enables current DNN falsification and verification methods to
focus on the input distribution, hence eliminating examination of inputs that are not mean-
ingful. The investigation of DFV using seven falsification and verification tools, two DNNs
defined over different data sets, and ninety-three distinct distribution models provides clear
evidence that the counter-examples found by the tools are much more representative in the
training data distribution.

2.2.3 Backdoor Testing

Detecting backdoor from a ML model is challenging, since only input containing backdoor
trigger, which is only known by adversary, will induce the erroneous behaviors.

Test Method Detection Type Methodology Access
[64] Backdoor Input Activation Clustering White-box

Neural Cleanse [33] Backdoor Trigger Optimisation + Outlier Detection White-box
NeuronInspect [65] Backdoor Input Output Explanations White-box
DeepInspect [66] Backdoor Trigger Trigger Distribution Learning Black-box

B3D [67] Backdoor Trigger Gradient-free Optimization Black-box
AEVA [68] Backdoor Trigger adversarial extreme value analysis Black-box hard-label

Table 2.2: Comparison between different backdoor detection for DNNs

The Activation Clustering (AC) approach is adopted for finding poisoned training sam-
ples designed to incorporate backdoors into DNNs [64]. This approach examines the neural

15

network activations in the training data to see whether it has been poisoned and, if so, which
datapoints are toxic. The idea behind this strategy is that although backdoor and target
samples are classified the same by the compromised network, the rationale for this classifi-
cation is different. The network identifies features in the input that it has learnt correlate to
the target class in the case of standard samples from the target class. It identifies features
associated with the backdoor trigger in the case of backdoor samples, causing it to identify
the input as the target class. The network activations, which describe how the network
makes its ”decisions,” should show this variation in methodology. The activations of last
convolutional layer are obtained for all training data. They are grouped according to the
label and each group is clustered separately. To cluster the activations, the dimensionality
reduction technique, Independent Component Analysis (ICA) is applied. Then cluster anal-
ysis methods, like exclusionary reclassification, relative size comparison and silhouette score
can help users identify the possible data poisoning from the clustered activations.

[33] develops the generalizable technique to detect and reverse engineer the backdoor
trigger from DNNs, called ”Neural Cleanse”. The trigger reverse engineering process can be
formalized as the optimization for the minimum perturbation to transform input label of any
training data to a target class. Then, the Median Absolute Deviation based outlier detection
algorithm is applied to identify the real trigger from the potential ones obtained from the
optimization. In addition, they propose three methods of backdoor mitigation. The first
one is the utilization of reverse engineered trigger to identify the backdoor related neurons.
Then, the proactive filter can detect and filter out the suspected input which activate the
backdoor related neurons. Second is pruning out the backdoor related neurons so that DNN
model is patched. The last one is training DNN to unlearn the original trigger. The infected
DNN will recognize the correct label even the backdoor trigger is present.

NeuronInspect [65] is a framework for discovering Trojan backdoors in deep neural net-
works using output explanation techniques. NeuronInspect identifies the presence of back-
door attack by creating an explanation heatmap of the output layer. The authors observe
that heatmaps generated from clean versus backdoor embedded models exhibit distinct char-
acteristics. Therefore, they extract features from an attacked model that quantify the sparse,
smooth, and persistent characteristics of explanations. They combine these characteristics
and employ outlier detection to identify the outliers, which constitute the attack targets.
They demonstrate the efficacy and effectiveness of NeuronInspect using the MNIST digit
recognition dataset and the GTSRB traffic sign recognition dataset. NeuronInspect out-
performs the state-of-the-art trojan backdoor detection techniques, Neural Cleanse, by a
significant margin in terms of robustness and efficacy when tested against a variety of attack
scenarios.

DeepInspect [66] is the first practical backdoor detection framework that determines
whether a DNN has been compromised (”sanity check of a pre-trained DNN model”) with
minimal information about the queried model. DeepInspect is comprised of three primary
steps. Model inversion technique is firstly utilized to recover a substitution training dataset
containing all classes. Then, a conditional Generative Adversarial Network is trained to
generate the possible backdoor trigger with queried model as fixed discriminator. The queried

16

model should predict the inversed sample added with trigger learned by generative model,
as the target class. Finally, the perturbation level of recovered triggers is used as the test
statistics for anomaly detection. DeepInspect’s trigger generator enables model patching for
effective backdoor mitigation. Extensive experiments demonstrate that DeepInspect provides
superior detection performance and lower runtime overhead compared to previous work.

[67] propose a method for black-box backdoor detection (B3D). Similar to [33], B3D for-
mulates backdoor detection as an optimization problem that is solved by reverse-engineering
the potential trigger for each class using clean data. The main difference is that they em-
ploy a gradient-free algorithm that minimises the objective function solely through model
queries to solve the problem. Moreover, they demonstrate the applicability of B3D when
using synthetic samples when clean samples for optimization are not available. They conduct
extensive experiments on multiple datasets to validate the efficacy of B3D and synthetic sam-
ples in detecting backdoor attacks on hundreds of DNN models, some of which are trained
normally while others are backdoored. Due to the appropriate problem formulation and
efficient optimization procedure, their methods achieve detection accuracy comparable to or
even surpassing that of previous methods based on model gradients. In addition to detect-
ing backdoors, they aim to mitigate any discovered backdoors in infected models. Due to
the inability to modify the black-box model, the typical retraining and fine-tuning strate-
gies cannot be implemented in a black-box environment. Therefore, they propose a simple
yet effective strategy that rejects any input containing the trigger stamp in order to make
accurate predictions without modifying the infected model.

Existing backdoor detection approaches often demand access to the poisoned training
data, the training parameters of the DNNs, or the prediction confidence for each input
sample, which are unavailable in many real-world applications, such as on-device deployed
DNNs. [68] address the black-box hard-label backdoor detection issue, in which the DNN is
completely black-box and only its final output label can be obtained. They tackle this prob-
lem from an optimization standpoint and demonstrate that the aim of backdoor detection is
constrained by an adversarial objective. Further theoretical and empirical research reveals
that this adversarial objective results in a solution with a highly skewed distribution; a sin-
gularity is likely to be found in the adversarial map of a backdoor sample, which they term
the adversarial singularity phenomenon. Based on this fact, they propose the adversarial
extreme value analysis (AEVA) to identify backdoor in black-box neural networks. AEVA
relies on extreme value analysis of the adversarial map generated using monte-carlo gradient
estimation. Extensive experiments spanning several common tasks and backdoor embedding
indicate that their technique is successful in identifying backdoor embedding in black-box
hard-label circumstances.

2.3 Evaluate Machine Learning Components

The evaluation of ML models can be categorised as the formal verification, which aims to
find the safety radius, the estimation of Lipschitz constant and the statistical approaches.
The robustness is the most popular property for evaluating ML models, while some research

17

works focus on assessing ML models’ prediction accuracy on the operational context.
[21] defines the concept of global robustness as the expectation of maximum safe radius,

measured by L0 norm for each input, over the test dataset. they show that evaluating the
robustness in terms of L0 norm distance is NP-hard and then present an approximation for
computing lower and upper bounds on the network’s robustness iteratively. The approach
is anytime, in the sense that it returns intermediate bounds and robustness estimates that
are gradually but strictly improved as the computation proceeds; tensor-based, in the sense
that the computation is performed over a set of inputs simultaneously, rather than one by
one, to enable efficient GPU computation; and has provable guarantees, in the sense that
both the bounds and the robustness estimates can converge to the optimal values.

[69] presents a theoretical argument for transforming robustness analysis into a local
Lipschitz constant estimation issue, and suggest using the Extreme Value Theory to eval-
uate it efficiently. CLEVER, which stands for Cross Lipschitz Extreme Value for nEtwork
Robustness, is the result of study. The proposed CLEVER score is attack-independent and
computationally practical for massive neural networks. Experiment results on various net-
works, including ResNet, Inception-v3, and MobileNet, show that CLEVER is consistent
with the robustness indicator measured by the L2 and L∞ norms of adversarial examples
from powerful attacks, and defended networks using defensive distillation or bounded ReLU
achieve higher CLEVER scores. CLEVER is, as far as we know, the first attack-independent
robustness measure that can be applied to any neural network model.

[19] develops a new metric to evaluate the local robustness of neural network based on
the probability that property is violated under the input distribution. Instead of answering
the binary question whether neural network is robust or not by verification, their approach
provides the informative notion on how robust neural network model is. Since the occurrence
of adversarial examples is rare event for well-trained neural network, they successfully adapt
the multi-level splitting, an advanced Monte Carlo Sampling, to estimating the statistical
robustness. The experiments confirm that their statistical evaluation of robustness can scale
well to the large neural network model.

[70] focuses on the operational testing of DNNs. That is to determine DNN models’
actual performance on the dataset collected from the operational context, the challenge of
which arises from the high cost at labelling data. To reduce the number of labelled samples,
they first adopt the Confidence-based Stratified Sampling to achieve efficient but fragile and
limited to classifier, estimation. Then, they propose to leverage the representation learned by
DNN in the last hidden layer to guide the sampling of unlabelled operational data. A small
set of samples are selected by minimizing the cross-entropy with respect to the population.
The experiments reveal that, as compared to simple random sampling, their strategy only
takes around half as many labelled samples to obtain the same degree of accuracy.

[71] proposes a test selection technique (DeepEST) that actively searches for faulty test
cases in a DNN’s operational dataset, with the goal of assessing the DNN’s expected accuracy
by a small and ”informative” test set (namely, with a large amount of misprediction samples)
for follow-up DNN improvement. Experiments show that DeepEST gives precise DNN ac-
curacy estimates, comparable to (and frequently greater than) conventional sampling-based

18

DNN testing approaches, while identifying up to 30 times more misprediction samples with
the same test set size.

2.4 Safety Analysis of ML in Learning-Enabled Sys-

tems

Currently, most safety verification and validation work focuses on the ML components, in-
cluding formal verification and coverage-guided testing. Research is sparse at the system
level, and there is none (apparent) on state estimation systems. In [72], a compositional
framework is developed for the falsification of temporal logic properties of cyber-physical
systems with ML components. Their approaches are applied to an Automatic Emergency
Braking System. A simulation based approach [73] is suggested to verify the barrier certifi-
cates – representing safety invariants – of autonomous driving systems with an SMT solver.
In both papers, the interaction – or synchronisation between ML and other components is
through a shared value, which is drastically different from the neural network enabled state
estimation, where the synchronisation is closer to the message-passing regime.

In addition, in [74], a system with a sigmoid-based neural network as the controller is
transformed into a hybrid system, on which the verification can be solved with existing tools.
This approach may not generalise to general neural networks since it heavily relies on the
fact that the sigmoid is the solution to a quadratic differential equation. In [75], a graybox
testing approach is proposed for systems with learning based controllers, where a gradient
based method is taken to search the input space. This approach is heuristic, and based on
the assumption that the system is differentiable. The LESs cannot be verified with these
approaches. Moreover, there is some early research on the robustness of Kalman filter by
false information injection [76, 77], where the false information is modelled as Gaussian noise.

19

Chapter 3

Test DL Robustness through
Coverage Metrics

3.1 Introduction

Feedforward neural networks (FNNs), notably convolutional neural networks (CNNs), are
vulnerable in various safety and security scenarios, subject to adversarial attack [78], back-
door attack [79], data poisoning attack [80], privacy issues [81], etc. These defects are
extensible to recurrent neural networks (RNNs). In this chapter, we study the RNN defects,
mainly focusing on adversarial samples [82] (while our testing methods can be utilized to
detect backdoor samples [83]). These defects will lead a well-trained RNN to mis-predictions.
Different from CNNs, RNNs exhibit particular challenges, due to their more complex internal
structures and their processing of sequential inputs with a temporal semantics, supported
by their internal memory components. A generic RNN layer takes a sequential sample x
as input, updates its internal state c, and generates an output h. Other structural compo-
nents may be required for specific RNNs. Given an input {xt}nt=1, the RNN layer will be
unfolded with respect to the size n of the input, and therefore each structural component
has a corresponding sequence of representations, for example {ht}nt=1. Such a sequence of
representations form a temporal evolution.

Coverage-guided testing has achieved a great success in software defect detection and
extensively applied to FNNs. While existing coverage metrics for FNNs may be adapted to
work with RNNs, they are insufficient because they do not work with the internal structures
of RNNs and, more importantly, the most essential ingredient of RNNs – the temporal
relation – is not considered. Moreover, we note that, a few coverage metrics are proposed
in [4] for RNNs, by making simple extensions to those of FNNs without considering the
temporal relation and the internal structures (e.g., the important components of RNNs such
as gates). This chapter is to develop dedicated coverage metrics for RNNs, to take into
account the additional structures and temporal semantics.

As suggested in [84, 85], a test metric does not have to be strongly related to adversarial
samples, a specific type of defects corresponding to the robustness requirement of a neural

20

network. This is not surprising, and actually not new (for software testing). As stated
in [86], a (software) program with high test coverage has more of its source code executed
during testing, which suggests it has a lower chance of containing undetected software defects
compared to a program with low test coverage. We concur with this view, and suggest that,
instead of identifying a particular type of defects such as adversarial samples, coverage-
guided testing is to generate a set of test cases as diversified as possible while preserving
the naturalness, in order to exploit the internal behaviour of the neural networks that has
real operational impact. The proposed coverage metrics in this chapter are of such desirable
features of being diverse and natural – with increased coverage, our approach is more likely
to find different types of faulty behaviours (e.g., adversarial samples and backdoor samples)
that manifest at multiple small regions in the input space (rather than adversarial samples
clustered in one region as what normally attack-based methods find). Especially when
the operational profile is unknown or changing, such diversified test cases are of particular
importance for improving the delivered reliability [87] (indeed, spending all the budget on
testing one input region that potentially has limited chance to be operated in practice is
unwise). Meanwhile, our diversified test cases are “closer” to their seeds (points on the
RNN’s data manifold), compared to other state-of-the-art tools, implying higher chance to
be seen in the real-life operation, thus preserving the naturalness.

Contributions We first discuss in Section 3.3 why the coverage-guided testing is useful
in analysing RNNs and how to reasonably define the effectiveness of a testing framework.
We focus on long short-term memory networks (LSTMs), which is the most important class
of RNNs, and design three LSTM structural coverage metrics, namely boundary coverage
(BC), step-wise coverage (SC) and temporal coverage (TC). Simply speaking, TC quantifies
the multi-step temporal relation, which describes the internal behaviour on how LSTM
cell processing inputs, while BC and SC quantify the value and single-step change of the
temporal relation, respectively. We also discussed in Section 3.5 how to position the new
metrics against a few closely related techniques such as complete verification techniques,
existing metrics, etc.

We implement the proposed coverage metrics into a prototype tool testRNN1, which
includes two algorithms – a random mutation and a genetic algorithm based targeted muta-
tion – for test case generation. In particular, targeted mutation uses the coverage knowledge
to guide the test case generation. Initially, a random mutation is taken to generate test cases.
Once the un-targeted randomisation has been hard to improve the coverage rate, a targeted
mutation by considering the distance to the satisfaction of un-fulfilled test conditions is taken
to generate corner test cases.

We conduct an extensive set of experiments over a wide range of LSTM benchmarks to
confirm the utility of testRNN and the proposed coverage-guided RNN testing approach
from the following aspects:

1. diversity of generated test cases (Section 3.7.2), with the observations that the LSTM

1https://github.com/TrustAI/testRNN

21

model’s functional coverage can be approximated using our structural coverage metrics
(Section 3.7.2) and our metrics complement existing metrics in guiding the exploitation
of the input space (Section 3.7.2).

2. detecting defects (Section 3.7.3), with the observations that testRNN can not only
find adversarial behaviours for the robustness of RNNs (Section 3.7.3) but also identify
backdoor inputs for the security of RNNs (Section 3.7.3).

3. usefulness of test case generation (Section 3.7.4), with the observation that testRNN
is efficient and effective in achieving high coverage rates (Section 3.7.4).

4. comparison with dedicated defect detection (Section 3.7.5), with the observation that
our test method can find a set of more diversified adversarial samples, and these samples
are more likely to occur in real world.

5. comparison with state-of-the-art tool DeepStellar (Section 3.7.6), with the observations
that our metrics are better at guiding the exploitation of the input space and testRNN
may achieve good coverage on the metrics in DeepStellar but not vice versa.

6. exhibition of LSTM internal working mechanism (Section 3.7.7), with the conclusion
that semantic meanings behind the test metrics can help users understand the learning
mechanism of LSTM model, making a step towards interpretable LSTM testing.

The organisation of the chapter is as follows. Section 3.2 gives the preliminaries. We
will discuss the rationale of coverage-guided testing in Section 3.3. After this, we present
our proposed test metrics in Section 3.4. This is followed by discussing in Section 3.5 how
these new metrics are related to the formal-methods based verification techniques, existing
coverage metrics, and adversarial defence techniques. We present our test case generation
algorithm in Section 3.6 and the experimental evaluation in Section 3.7.

3.2 RNN Preliminaries

Feedforward neural networks (FNNs) model a function φ : X → Y that maps from input
domain X to output domain Y : given an input x ∈ X, it outputs the prediction y ∈ Y . For
a sequence of inputs x1, . . . , xn, an FNN φ considers each input individually, that is, φ(xi)
is independent from φ(xi+1).

By contrast, a recurrent neural network (RNN) processes an input sequence by iteratively
taking inputs one by one. A recurrent layer can be modeled as a function ψ : X ′×C×Y ′ →
C × Y ′ such that ψ(xt, ct−1, ht−1) = (ct, ht) for t = 1...n, where t denotes the t-th time step,
ct is the cell state used to represent the intermediate memory and ht is the output of the t-th
time step. More specifically, the recurrent layer takes three inputs: xt at the current time
step, the prior memory state ct−1 and the prior cell output ht−1; consequently, it updates
the current cell state ct and outputs hidden state ht.

22

RNNs differ from each other given their respective definitions, i.e., internal structures, of
recurrent layer function ψ, of which long short-term memory (LSTM) in Equation (3.1) is
the most popular and commonly used one.

ft = σ(Wf · [ht−1, xt] + bf)
it = σ(Wi · [ht−1, xt] + bi)
ct = ft ∗ ct−1 + it ∗ tanh(Wc · [ht−1, xt] + bc)
ot = σ(Wo · [ht−1, xt] + bo)
ht = ot ∗ tanh(ct)

(3.1)

In LSTM, σ is the sigmoid function and tanh is the hyperbolic tangent function; W and b
represent the weight matrix and bias vector, respectively; ft, it, ot are internal gate variables
of the cell. In general, the recurrent layer (or LSTM layer) is connected to non-recurrent
layers such as fully connected layers so that the cell output propagates further. We denote
the remaining layers with a function φ2 : Y ′ → Y . Meanwhile, there can be feedforward
layers connecting to the RNN layer, and we let it be another function φ1 : X → X ′. As
a result, the RNN model that accepts a sequence of inputs x1, . . . , xn can be modeled as a
function ϕ such that ϕ(x1...xn) = φ2 · ψ(

∏n
i=1 φ1(xi)).

Cell structure The processing of a sequential input x = {xt}nt=1 with an LSTM layer
function ψ, i.e., ψ(x), can be characterised by gate activations f = {ft}nt=0, i = {it}nt=0,
o = {ot}nt=0, cell states c = {ct}nt=0, and outputs h = {ht}nt=0. We let S = {f, i, o, c, h} be a
set of structural components of LSTM, and use variable s to range over S.

Sequential structure Each s represents one aspect of the concrete status of an LSTM
cell. To capture the interactions between multiple LSTM steps, temporal semantics are often
used to understand how LSTM performs [88]. Test metrics in this paper will rely on the
structural information such as aggregate knowledge ξht and remember rate ξf,avgt , as explained
below, and their temporal relations.

Output h is seen as short-term memory (as opposed to c for long-term memory) of
LSTM. It is often used to understand how information is updated, either positive or negative
according to the value of ht. Thus, we have

ξh,+t =
∑
{ht(j) | j ∈ {1, . . . , |ht|}, ht(j) > 0}

ξh,−t =
∑
{ht(j) | j ∈ {1, . . . , |ht|}, ht(j) < 0}

ξht = |ξh,+t + ξh,−t |
(3.2)

Where |ht| represents the size of vector ht. Intuitively, ξht represents the aggregate knowledge
regarding short-term memory.

The forget gate f is a key factor for long-term memory in LSTM, as it controls whether
the aggregate information can be passed on to the next (unfolded) cell or not. The portion

23

of information passed is then measured by ξf,avgt as follows.

ξf,avgt =
1

|ft|

|ft|∑
j=1

ft(j) (3.3)

Figure 3.1: Examples to show how positive and negative elements of output vectors represent
the information in MNIST and IMDB models. The x-axis includes the inputs (bottom row)
and the y-axis includes Nz(ξht) (top row), Nm(ξf,avgt) (second row) and Nm(∆ξht) (third row)
values. In MNIST, each column of pixels corresponds to a step in LSTM and in the IMDB
model each step represents a word in the movie review.

Example 3.2.1. Fig. 3.1 presents a set of visualisations to the temporal update of the
abstract information. In particular, the top row contains curves for Nz(ξht) and the second
row contains curves for Nm(ξf,avgt), changed with respect to the time. The third row visualises
the evolution of step-wise change information Nm(∆ξht). Nz and Nm are two normalization
function which will be introduced later.

24

Let A = {+,−, avg} be a set of symbols representing the abstraction functions as in Eq.
(3.2-3.3). The above can be generalised to work with any s ∈ S and a ∈ A. For ξs,at , once
given a fixed input x, we may write ξs,at,x .

3.3 Problem Statement

Figure 3.2: (Left) Connection of Verification and Coverage Guided Testing Frameworks.
Verification and testing overlap on “Flaws”, representing that they have the same objective.
From verification to testing, an approximation is made, i.e., test cases approximate the LSTM
internal behaviour. Guidelines (colored with red) are needed to ensure the approximation
quality. (Right) Relation between Coverage Metrics. NC: neuron coverage [3], BS: basic
state coverage [4], BT: basic transition coverage [4], MC/DC: modified condition/decision
coverage [5]. Arrows represent the “weaker than” relation between metrics.

This section explains why the coverage guided testing is useful in analysing RNNs and
how to reasonably justify its effectiveness. Fig. 3.2(Left) presents the connection between
verification and testing in this context. While incomplete, testing has been shown practical
– and in many cases sufficiently effective – in providing assurance to the quality of software.
As in Fig. 3.2, these two approaches overlap on the “Flaws”. Verification can detect defects
because it exhaustively exploits all internal behaviour of RNNs, which include defective
behaviours. On the other hand, testing approach uses test cases to approximate – or sample
– the internal behaviour. Due to the finite sampling, defects may or may not be detected.
Therefore, testing needs to be systematic to be effective in defect detection, and coverage-
guided testing is one of the main approaches.

Due to the size and the temporal semantics of RNNs, it becomes important to find a
(meaningful) set of metrics to guide the sampling or the test case generation. Our proposed
set of coverage metrics plays the role of such guidance – as suggested in Fig. 3.2(Left),
coverage-guided testing generates a set of test cases to exploit the internal behaviour of the
neural networks. We note, such coverage metric does not have to be strongly correlated
to adversarial samples [84, 85] (a specific type of defects corresponding to the robustness
requirement of a neural network). What really matters is, within the testing budget, to find

25

defects that are as diverse and natural as possible so that fixing them would gain maximised
impact on the delivered reliability.

There are two main goals of testing [89]: debug testing, which probes the software for
defects, and operational testing, which is to gain confidence that the software is reliable
[90]. The former seeks test cases to excite as many failures as possible (then we may fix the
defects behind them), but the test cases normally are not representative of the software’s
day-to-day operation. Confidence in the delivered reliability can only be gained by the later,
i.e. testing that represents the typical usage (the operational profile) [91]. Coverage-guided
testing belongs to the former, while our method should also be designed in the best interest
for the operational reliability. That is, our test cases should be more likely generated from
the high probability density area on the operational profile, compared to attack-based and
other state-of-the-art debug testing methods, so that the defects found are more “practical”
in the sense that fixing them would effectively improve the operational reliability.

The question is on how effective a specific testing approach is when exploiting the internal
behaviour. Below, we provide a few guidelines by evaluating the connections of entities in
Fig. 3.2(Left) (shown with red color).

First, the test cases are required to be diversified and natural, so as to cover the LSTM
internal behaviour comprehensively. This is to avoid the test cases being clotted together in a
small region of the input space (representing a certain type of defects) and lose the ability of
finding other defects manifested in different regions. However, it is easy to generate diversified
test cases by “forcing diversity” (e.g., by selecting inputs that maximise the average inter-
point distance). Thus diversity criteria is only sensible when paired with naturalness – tests
cases should not be far from the RNN’s data manifold (i.e., potentially high density area
of its future optional profile). Second, the test cases can reveal defects. While it is hard to
establish strong correlation between test metrics and a specific type of defects, it is still a
reasonable request that the generated test cases reveal defects as many as possible. Third,
the test case generation algorithm needs to be effective, in terms of its ability in improving
the coverage rate with diversified and natural test cases. Finally, to show that the generated
test cases are sufficiently representative, we may use the test cases to exhibit the working
mechanism of LSTM.

Moreover, given the complexity of the internal behaviour in RNNs, we believe a set of
coverage metrics are needed to ensure that the above guidelines can be achieved. In an
ideal case where the testing budget is sufficient, our metrics in the paper may complement
– instead of replace – others, and vice versa. These guidelines will be used when designing
our experiments in Section 3.7.

3.4 LSTM Test Coverage Metrics

In this section, we present a family of three coverage metrics (BC, SC and TC) for the
testing of LSTM models. These metrics take into account both the values of structural
information ξs,at for s ∈ S and a ∈ A as in Eq. (3.2-3.3) and their step-wise and bounded-
length temporal relations. We utilize two normalization methods for the convenience of

26

determining thresholds, independent of specific dataset. Nz and Nm are z-score and min-
max normalization function defined as below:

Nz(ξ) =
ξ − µ
σ

, Nm(ξ) =
ξ −min

max−min

where parameters µ, σ, min and max can be calculated based on the statistics of ξ in training
dataset. The z-score normalization is suitable for preprocessing test conditions quantifying
the relations between different features, e.g., TC, while min-max normalization is better for
the test conditions to hit the large activation values, e.g., BC and SC. Given a time series
of length n, we can choose the sequence of interest [t1, t2] (t1 ≥ 1 and t2 ≤ n) to implement
the following coverage metrics.

Boundary Coverage (BC) Boundary values are often regarded as important cases in
software testing, as they could exploit extreme software behaviours. We therefore define
BC for depicting test conditions that cover the boundary values of the LSTM data flow as
follows.

{Nm(ξs,at) ≥ αmax, Nm(ξs,at) ≤ αmin | t ∈ {t1...t2}}

Thresholds αmax and αmin are chosen from interval [0, 1]. The min, max values can be
estimated using values computed over the training dataset {ξs,at,x | t ∈ {t1...t2}, x ∈ Dtrain}.

Example 3.4.1. Suppose that there is a test condition Nm(ξi,avgt) > 0.9. It requires that the
Nm(ξi,avgt) value is greater than threshold 0.9. Intuitively, this condition exercises LSTM’s
learning ability on the input at time t. As Eq. 3.1 shows, the input gate i controls how much
information from the input is received by the network: Nm(ξi,avgt) = 1 implies that all its
information is added to the long-term memory c and Nm(ξi,avgt) = 0 implies that no input
information is added.

Step-wise Coverage (SC) SC characterizes the temporal changes between connected
cells. We use ∆ξst = |ξs,+t − ξs,+t−1| + |ξ

s,−
t − ξs,−t−1| to outline the maximum change of the

structural component s ∈ S at time t. E.g., ∆ξht is the change of short-term memory at time
t. Then, the SC test conditions are defined as follows.

{Nm(∆ξst) ≥ αSC | t ∈ {t1...t2}}

This set defines test conditions for LSTM’s step-wise updates that exceed a threshold αSC .
Parameters for Nm are derived from {∆ξst,x | t ∈ {t1...t2}, x ∈ Dtrain}.

Example 3.4.2. The intuition behind step-wise coverage is to capture these significant inputs
to the LSTM. As shown by the sentiment analysis LSTM example in Fig. 3.1 (Right), given
two inputs, sensitive words “like”, “horrible”, “fun” trigger greater Nm(∆ξht) values than
words “movie”, “really”, and “had”.

27

Temporal Coverage (TC) While the power of LSTM comes from its ability to memorize
values over arbitrary time intervals, its test metrics need to ensure that the temporal patterns
of memory updates are fully tested. This is essentially a time series classification problem and
is intractable. In this part, we define test conditions to exploit temporal patterns of bounded
length. Different from dynamic systems where the temporal relation can be infinite [92], the
temporal relations in RNNs are always finite, because of the finite-sized input. Therefore,
the bounded length does not lower the expressiveness of the test conditions. In particular, to
facilitate the enumeration of all test conditions, we refer to symbolic aggregate approximation
(SAX) [93] to convert any complicated time series of length v (v is usually a large number)
into a symbolic sequence of length w (v >> w).

First of all, given any temporal curve ξs = {ξst }
t2
t=t1 , we can reduce the dimension of

temporal sequence from v = t2 − t1 to w following Piece-wise Aggregate Approximation
(PAA).

ξ̂sj =
w

v

v
w
j+t1∑

t= v
w

(j−1)+t1

ξst (3.4)

The main idea of PAA is to approximate the original time series by splitting them into w
equal sized segments and average the values in each segment. For example, the temporal
curve in Fig. 3.3 is split into w = 5 dimensions. The new approximated curve is denoted as
ξ̂s = {ξ̂sj}wj=1.

Figure 3.3: Illustration of projecting a temporal curve (Gaussian distribution) into a sequence
of symbols acbab.

Then, we can define the symbolic representation for the temporal curve after dimension-
ality reduction. We start from z-normalizing ξ̂s and discretising D(Nz(ξ̂s)) – the domain
of Nz(ξ̂s) – into a set Γ of sub-ranges. This discretization can refer to the distribution of
Nz(ξ̂sj), which can be estimated by conducting probability distribution fitting over the train-

ing dataset (since ξ̂s is z-normalized, Nz(ξ̂sj) is subject to the standard normal distribution).

28

Then, every normalized time series {Nz(ξ̂sj)}wj=1 can be represented as a sequence of symbols

in the standard way. For example, in Fig. 3.3, the continuous space of Nz(ξ̂s,a) is split into
a set of three sub-ranges Γ = {a, b, c}.

Finally, test conditions from TC for covering a set of symbolic representations across
multiple time steps [t1, t2] ⊆ [1, n] can be expressed as follows.

{`1`2...`w | `j ∈ Γ, j ∈ [1, w]} (3.5)

Essentially, TC requests the testing to meet a set of temporal patterns for a specific time
span [t1, t2]. The total number of temporal patterns for TC to cover is |Γ|w. We remark that
with the help of SAX, test conditions in TC is scalable in tackling the complexity of time
series.

Example 3.4.3. Fig. 3.1 (top row) demonstrates the temporal curve of hidden memory for
each input across a selected time span. The curve is for Nz(ξht) and it is a clear illustration
on the information processing of LSTM for each input. Fig. 3.3 further shows how a time
series is converted into its symbolic representation acbab with Γ = {a, b, c} and w = 5.

3.5 Relation with RNN Defects

The aforementioned three coverage metrics encourage the exploration of the LSTM internal
behaviour, which is helpful in detecting the RNN defects. In this section, we discuss the
rationale behind by referring to the general relation (Fig. 3.2(Right)) between our new cov-
erage metrics, the complete verification and a few existing coverage metrics. All discussions
are supported by our experiments in Section 3.7.

Comparing with Formal Methods-based Verification Techniques For an input of
length n, we denote the collection of curves (as in Fig. 3.3) for f, i, o as Curv. It precisely
identifies an output (extracted features of the LSTM layer) and corresponds with a set of
inputs (which cannot be differentiated by the LSTM layer). Let Cf , Co, and Ci be the
(possibly infinite) set of possible curves for their respective gates f, o, i. We have Curv =
Cf ×Co ×Ci. We also have curves Ch and Co, which can be obtained from Curv according
to Equation (3.1).

The formal methods-based verification determines if there is an input that can lead to
any unexpected behaviour. That is, it is equivalent to determine if there is a combined curve
in Curv that leads to the unexpected classification2. To this end, TC (and its test case
generation) can be seen as an approach to exhaustively, but discretely, explore one of the
curve sets Cs for s ∈ S. Therefore, while the combination of TC working on different gates
may provide a complete verification, in general the exploration of internal behaviour through
TC is a necessary, but insufficient, approach for verification.

2As shown in the experiments, an unexpected classification can be normal mis-classification or caused by
e.g. backdoor attacks and adversarial inputs.

29

Comparing with Other Coverage Metrics The purpose of TC is to encourage the
exploration of either Cf , Co, or Ci with the generated test cases. However, such exploration
may be computational intensive – the complexity is exponential with respect to the length n.
Since BC and SC do not consider the temporal relation between steps or boundary values,
they are computationally more manageable. Assuming that under ideal parameter settings
(e.g., thresholds αmax and αSC and the set Γ of symbols), we say that a metric A is weaker
than another B if for any test suite, it cannot have a lower coverage rate w.r.t. A than that
of B. It is not hard to see that, both BC and SC are weaker than TC, and BC and SC are
incomparable, as shown in Fig. 3.2(Right).

Besides the new BC and SC, TC is stronger than existing coverage metrics that are
originally proposed for CNNs. For example, neuron coverage (NC) [3], which requires the
coverage of neurons whose value is over a threshold (e.g., 0 for ReLU activation function), can
be adapted to work with say the gate value or hidden state value. In this case, it is weaker
than TC and incomparable with SC. Although NC and BC have similar formal expressions,
BC concerns the boundary value rather than a value that indicates the activation status.
For the MC/DC metrics [5], they can be adapted to work between time steps in the new
context of RNNs. With such adaptation, MC/DC encourages the exploration of relations
between time steps, and therefore are weaker than TC.

DeepStellar [4] abstracts the evolution of hidden states of an RNN into a discrete-time
Markov chain (DTMC) before considering state and transition coverage. Its basic state
coverage (BS) and basic transition coverage (BT) are designed to cover the possible state
values and possible transitions. Given that the DTMC is an abstraction of the curves Ch,
BS and BT are both weaker than BC and SC, respectively.

Remarkably, the relations in Fig. 3.2(Right) are based on theoretical analysis under “ideal
parameter settings”. They do not hold for any parameter settings. In our experiments in
Section 3.7, we might observe the coverage rates on the same test set and the aforementioned
relations are not in alignment, because of the specific parameter settings used (cf. Table 3.2).

Defence Techniques for Robustness and Security Some effective adversarial defence
techniques, e.g. [94], are based on the observation that the adversarial samples exhibit dif-
ferent internal behaviour to those behaviour of training data samples. For security concerns
like backdoor attack, activation patterns are also considered in the detection techniques such
as [95]. Consequently, with the exploration of more RNN internal behaviour other than those
appeared in the training data, it is more likely that RNNs defects will be exposed.

3.6 Coverage Guided Test Case Generation

Coverage metrics in Section 3.4 define test conditions that request particular patterns of
long/short-term updates of abstracted information across multiple LSTM time steps. Given
an LSTM network and a specific test metric, the coverage rate denotes the percentage
of test conditions that have been satisfied over a set of test cases, i.e., test suite. To more

30

efficiently achieve high coverage rate, in this section, we develop the coverage guided test
case generation, as outlined in Fig. 3.4. We remark that, although focus of this paper is
LSTM, the proposed testing approach (including both test metrics and tests generation)
can be extended to work with other kinds of RNNs which use customized recurrent layer
structures.

Seed Corpus Input Corpus

Input Queues

Mutator LSTM

Coverage
Monitor

Oracle Erroneous
Behaviours

Selection
Policies

Mutation
Policies Test Metrics

...

Coverage Loss
 Function

Figure 3.4: Coverage-guided LSTM testing in testRNN

The testRNN test case generation algorithm is detailed in Alg. 1. The test suite T
is initialized with T0, a corpus of seed inputs (Line 1). New test cases are generated by
mutating seed inputs. It keeps the traceability of test cases via a mapping orig that maps
each test case generated back to its seed origin.

The main body of Alg. 1 is a loop (Lines 5−10) that iterates unless some target coverage
level is reached (Line 4). At each iteration, a test input x is selected from the input corpus
T (Line 5), and it is mutated following the pre-defined mutation function m (Line 6). Newly
generated test inputs are added into T (Line 7), where they are queued for the next iteration.
If the generated test case does not pass the oracle (Section 3.6.3), it represents a defect and
it is added to Tadv (Lines 9-10).

3.6.1 Selection Policies and Queuing

Not all inputs in the corpus T are equivalently important, and they are ranked once added
to the input queue (as illustrated in Fig. 3.4). When sorting queuing inputs on T for the
Mutator engine, testRNN particularly prioritizes two kinds of test inputs: those that are
promising in leading to the satisfaction of un-fulfilled test conditions and those that can
trigger erroneous behaviours.

Thanks to its modular design, new selection policies can be easily integrated into testRNN
as plug-ins (as indicated by cloud shapes in Fig. 3.4). The design of testRNN also fea-
tures its high parallelism. The use of dynamically allocated input queues further optimises
its runtime performance.

3.6.2 Mutation Policies

The Mutator engine lays at the core of testRNN. In particular, there are two types of
mutation function m in Alg. 1: random mutation mrnd and targeted mutation mtarg.

31

Algorithm 1: testRNN Algorithm

Input:
φ: RNN to be tested
T0: a set of seed inputs
m: a mutation function
roracle: oracle radius
Output:
T : a set of test cases
Tadv: a set of discovered adversarial samples

1 T ← T0

2 orig ← dict()
3 orig[x]← x for all x ∈ T0

4 while coverage rate is not satisfied do
5 x← select an element from T
6 x′ ← m(x)
7 T ← T ∪ {x′}
8 orig[x′]← orig[x]
9 if ||orig(x)− x′||2 ≤ roracle and φ(x) 6= φ(x′) then

10 Tadv ← Tadv ∪ {x′}
11 return T , Tadv

Random Mutation When the LSTM input has continuous values (e.g., image input),
Gaussian noises with fixed mean and variance are added to the input. Meanwhile, for
discrete value input (e.g., IMDB movie reviews for sentiment analysis), a set of problem-
specific mutation functions M are defined. The detail is in the experiment set-up (Section
3.7.1).

Targeted Mutation The targeted mutation is based on genetic algorithm for test case
generation. Genetic algorithm is an evolutionary approach inspired by the process of natural
selection. Mutations are selected only when they improve over the existing test cases on some
pre-defined fitness function. The implementation of genetic algorithm comprises of four steps:
initialization, selection, crossover and mutation. The last three steps are running iteratively
till the solution is found.

Initialization. Firstly, we initialize the population by choosing a test case from the
previous running cases. The test case is very close to the satisfaction of test condition.

Selection. Next, we select best few test cases from the population to the mating pool,
evaluated by the fitness function. For the three classes of test conditions (BC, SC, TC) with
respect to some s ∈ S and a ∈ A, we define the following fitness function as the distance to

32

their respective targets, e.g.,

JBC(x) = αmax −Nm(ξs,ax,t)
JSC(x) = αSC −Nm(∆ξsx,t)

JTC(x) =
w∑
j=1

dist(Nz(ξ̂sx,j), uj)

where t, t1, t2, j are time steps that can be inferred from the context. uj = [ul, ur] is the
interval of sub-range, represented by some symbol in Γ. The fitness of temporal curve to
the targeted symbolic curve is to calculate the Manhattan distance, the absolute difference
between structure value Nz(ξ̂sx,j) and the symbolic interval uj is

dist(Nz(ξ̂sx,j), uj) =

Nz(ξ̂sx,j)− ur if Nz(ξ̂sx,j) > ur

ul −Nz(ξ̂sx,j) if Nz(ξ̂sx,j) < ul

0 else

Intuitively, the fitness function (also called coverage loss) J(x) is estimates the distance
to the satisfaction of an un-fulfilled test condition. J(x) ≤ 0 means that the test condition
is covered. By generating test cases with the objective of gradually minimising the loss, the
targeted mutation is essentially a greedy search algorithm.

Example 3.6.1. In Fig. 3.3, the symbolic representation of temporal curve is acbab; the
fitness of the curve to test condition bbcca can be calculated as JTC = J1 + J2 + J3 + J4 + J5.

Crossover. Crossover is trivial in our test case generation for RNNs. This is mainly
because the inputs to RNNs are usually discrete, which means the offspring of two parents
by crossover (like exchanging chromosome) may be invalid due to the undefined semantic
meanings. To avoid the validity issue, we skip this step and using mutation methods directly.

Mutation. We randomly mutate the test cases in the mating pool with user-defined
function M in order to generate a new population for the next iteration. The previous
population is replaced with the new one. It should be noticed that the parents in the mating
pool are also added to the new population to make sure that solutions are towards good
directions during the iterations.

The targeted mutation mtarg is shown in Algorithm 2. At each iteration, we choose k (or
|P |, whichever is smaller) best individuals in the population P . Each individual is utilized to
generate n test cases via the random mutation function mrnd. The old population P will be
replaced with the mutants along with their k parents in P ∗. The whole process is repeated
until the test condition is met or the maximum iteration is exceeded.

3.6.3 Test Set Evaluation

Test Oracle Test oracle determines if a test case passes or fails. We define a set of norm-
balls, each of which is centered around a data sample with known label. The radius roracle

33

Algorithm 2: Targeted Mutation

Input:
J : fitness function
γ: maximun iteration number
k: number of parents for mating pool
n: number of offsprings mutated from one parent
mrnd: a random mutation function
x′: a test case that is the closest to satisfy test condition
Output:
x′new: a test case covering new test condition

1 itr ← 0
2 P ← {x′}
3 while test condition is not satisfied in P and itr < γ do
4 sort individual x ∈ P according to fitness J(x)
5 P ∗ ← highest sorted min{k, |P |} individuals in P
6 P ← P ∗ ∪mrnd(P

∗, n)
7 itr ← itr + 1

8 x′new ← argminx∈P J(x)
9 return x′new

of norm-balls intuitively means that a human cannot differentiate between inputs within a
norm ball. In this paper, Euclidean distance, i.e. L2-norm || · ||2 is used. A test case x′ is
said to not pass the oracle if (1) x′ is within the norm-ball of some known sample x, i.e.,
||x − x′||2 ≤ roracle, and (2) x′ has a different classification from x, i.e., ϕ(x) 6= ϕ(x′). Take
the definition in [96], a test case does not pass the oracle is an adversarial sample. We use
adversary rate to denote the percentage of test cases that do not pass the oracle.

Diversity of Test Set More diversified test cases will explore more input space and thus
are more likely to uncover different defects. Unfortunately, a unified, accurate way to measure
diversity may not exist. We consider the following three intuitive, yet measurable proxies to
the diversity.

First, diversity can refer to the number of categories the generated test cases belonging to.
Intuitively, if the labels of two test cases are different, they are dissimilar and more diversified
than two test cases with the same label. Second, test metrics (e.g., neuron coverage, SC,
BC and TC) are to guide the exploitation of different internal behaviours of RNNs (cf.
Section 3.4). Therefore, a test set that can achieve higher coverage on more test metrics is
more diversified than the other. Third, if the distance in input space, measured with L1, L2,
and L∞ norm, can represent the semantic similarity between test cases, we may define the
diversity by quantifying the relative positions of test cases to the seed input. Suppose a test
set T contains n test cases, generated from a seed x0, the angular-based diversity measure

34

[97] of T is

Diversity(T) = −(
n∑

i,j=1

< xi − x0, xj − x0 >

||xi − x0|| ||xj − x0||
)/n2 (3.6)

This diversity measure is formed by the cosine similarity [98] and bounded by [−1, 1]. Since
the test cases are generated by adding small perturbations to the seed input, the angular-
based diversity is to measure if the test cases are uniformly distributed around the seed input
x0. A larger Diversity(T) represents a more diversified T .

3.7 Evaluation

We evaluate our testRNN approach with an extensive set of experiments from the following
aspects: (1) the diversity of test cases generated under the guidance of the coverage metrics
(Section 3.7.2), (2) the ability of detecting RNN defects (Section 3.7.3), (3) the effectiveness
of the test case generation algorithms (Section 3.7.4), (4) the advantages over state-of-the-
art attack tool [99] (Section 3.7.5), (5) the difference from state-of-the-art RNN testing tool
DeepStellar [4] (Section 3.7.6), and (6) the exhibition of LSTM internal working mechanism
(Section 3.7.7). Specifically, we study the following research questions (RQs):

• RQ1: will the exploitation of internal behaviour lead to the testing of different LSTM
functions?

• RQ2: are our new metrics needed when we already have existing metrics?

• RQ3: will the exploitation of internal behaviour lead to the detection of adversarial
samples?

• RQ4: will the exploitation of internal behaviour lead to the identification of backdoor
attacks?

• RQ5: Can the test case generation algorithm achieve high coverage for the proposed
test metrics?

• RQ6: What are the advantages of testRNN over attack-based methods for detecting
adversarial samples?

• RQ7: What are the similarities and differences between DeepStellar and testRNN?

• RQ8: Are the testing results based on the proposed test metrics helpful on making
LSTM interpretable?

All the experiments are run on a desktop with Intel(R) Core(TM) i7 CPU @ 3.80 GHz
and 16 GB Memory.

35

3.7.1 Experimental Setup

RNNs under Evaluation

Our experiments are conducted on a diverse set of LSTM benchmarks, including:

MNIST Handwritten Digits Analysis by LSTM The MNIST database, containing a
set of 60, 000 grey-scale images of size 28×28, is used to train a RNN model with 4 layers. The
first two layers are LSTM layers, which are correspondingly connected and fed with rows of
input images. That is, each input image is encoded as the row vector of shape (28, 128) by the
first LSTM layer, and then second layer will do further processing to output an image vector
representing the whole image. Finally, two fully-connected layers with ReLU and SoftMax
activation functions respectively, are used to process the extracted feature information to
get the classification result. The model achieves 99.2% accuracy in training dataset (50, 000
samples) and 98.7% accuracy in the default MNIST test dataset (10, 000 samples).

Sentiment Analysis by LSTM The sentiment analysis network has three layers, i.e.,
an embedding layer, an LSTM layer, and a fully-connected layer, with 213301 trainable
parameters. The embedding layer takes as input a vector of length 500 and outputs a 500×32
matrix, which is then fed into the LSTM layer. Subsequently, there is a fully-connected layer
of 100 neurons.

Lipophilicity Analysis by LSTM We trained an LSTM regression network on a Lipophilic-
ity dataset from the MoleculeNet [100]. The model has four layers: an embedding layer, an
LSTM layer, a dropout layer, and a fully connected layer. The input is a SMILES string
representing a molecular structure and the output is its prediction of Lipophilicity. A dic-
tionary is used to map the symbols in the SMILES string to integers. We use the length of
the longest SMILES in training dataset as the number of cells for the LSTM layer. Similar
to text processing in the IMDB model, short SMILES inputs are padded with 0s to the left
side. We use the root mean square error (RMSE) as the measurement of model accuracy.
Our trained model achieves RMSE = 0.2371 in training dataset and RMSE = 0.6278 in test
dataset, which are better than the traditional and convolutional methods used in [100].

Video Recognition for Human Behaviour A large scale VGG16+LSTM network is
trained over the UCF101 dataset [101]. VGG16, a CNN for ImageNet, extracts features from
individual frames of a video. Then, the sequence of frame features are analysed by LSTM
layer for classification.

Test Metrics

We conduct experiments on several concrete test metrics, i.e., BC (for ξf,avgt), SC (for ∆ξht),
and TC (for ξht). The configuration of thresholds are presented in Table 3.2. Although
the proposed three test metrics can be applied to every internal vector of LSTM cell, like

36

f, i, o, c, h, the current settings represent better semantic meanings. The interpretation of
the testing results is discussed in Section 3.7.7.

Input Mutation

For MNIST model, we add Gaussian noise to input image and round off the decimals around
0 and 1 to make the pixel value stay within the value range.

The input to IMDB model is a sequence of words, on which a random change may lead to
an unrecognisable (and invalid) text paragraph. To avoid this, we take a set M of mutants
from the EDA toolkit [102], which was originally designed to augment the training data
for improvement on text classification tasks. This ensures the mutated text paragraphs are
always valid. In our experiments, we consider four mutation operations, i.e.,M includes (1)
Synonym Replacement, (2) Random Insertion, (3) Random Swap, and (4) Random Deletion.
The text meanings are reserved in all mutations. For Lipophilicity model, we take a set M
of mutants which change the SMILES string without affecting the molecular structure it
represents. The enumeration of possible SMILES for a molecule is implemented with the
Python cheminformatics package RDkit [103]. Each input SMILES string is converted into
its molfile format, based on which the atom order is changed randomly before converting
back. There may be several SMILES strings representing the same molecular structure. The
enumerated SMILES strings are the test cases.

For UCF101 model, we add Gaussian noise to the original video frames instead of the
feature inputs to the LSTM layer.

Oracle Setting

We use one fixed oracle radius for each model across all experiments. For continuous in-
puts, like images and videos, we calculate the euclidean distance as the measurement of
perturbation. For the discrete inputs, like text, We refer to the alpha parameter provided
by the EDA toolkit, which approximately means the percent of words in the sentence that
will be changed. That said, the roracle for each RNN are listed in Table 3.1. Note, we let
roracle = None for the Lipophilicity model, suggesting that no constraint is imposed on the
norm ball. Hence, the determination of adversarial example is completely based on the clas-
sification. This is because, as suggested before, the test cases are only generated from those
SMILES strings with the same molecular structure.

Table 3.1: Summary of RNN models under testing

Test Model No. of Classes Test Acc. Seq. of Interest oracle
MNIST 9 98.7% [4,24] 0.01
IMDB 2 86.2% [400,500] 0.05

Lipophilicity None RMSE = 0.6278 [60,80] None
UCF101 101 88.6% [1,11] 0.1

37

3.7.2 Diversity of Test Cases

Table 3.2: Configuration of test metrics

Coverage Metrcis Parameter Configuration
Neuron Coverage (NC) Threshold = 0

K-multisection Neuron Coverage (KMNC) k = 10
Neuron Boundary Coverage (NBC) LB = −0.7, UB = 0.7

Strong Neuron Activation Coverage (SNAC) UB = 0.7
Boundary Coverage (BC) αmax = 0.8
Step-wise Coverage (SC) αsc = 0.6
Temporal Coverage (TC) w = 5, |Γ| = 3

Test metrics can be seen as a proxy to exploit the input space, and intuitively more
diversified test cases will explore more input space and thus are more likely to uncover
different defects. Thus, we investigate if the achievement of high coverage will indeed lead
to the testing of different LSTM functions (RQ1), and if our new metrics encourage the
exploitation of more regions in the input space than existing metrics (RQ2).

Approximation of LSTM functional coverage (RQ1)

Table 3.3: Impact of seeds to coverage metrics

Test Model
Seeds Input

& Test Cases
Categories
of Seeds

Coverage Metrics
NC KMNC NBC SNAC BC SC TC

MNIST 100 / 5000
1 0.93 0.65 0.41 0.44 0.10 0.43 0.38
10 1.00 0.88 0.77 0.80 0.95 0.86 0.79

IMDB 100 / 5000
1 1.00 0.29 0.01 0.01 0.23 0.45 0.24
2 1.00 0.37 0.01 0.01 0.81 0.54 0.64

Lipophilicity 10 / 2000
1 0.81 0.31 0.05 0.06 0.00 0.00 0.04
10 1.00 0.86 0.68 0.66 0.95 0.95 0.90

UCF101 100 / 5000
1 1.00 0.47 0.07 0.06 0.00 0.00 0.16
10 1.00 0.76 0.36 0.34 0.58 0.58 0.67

Table 3.3 shows that LSTM model’s functional coverage can be approximated by using
testRNN metrics. This is based on the assumption that a data label (i.e., category)
corresponds to a “functional feature” of the LSTM. We observe that, by only using one
category of seeds input, it is hard to achieve high coverage rate for testRNN metrics,
even when thousands of test cases are generated. In contrast, with seeds input from more
categories, the generated test cases from targeted mutation can broadly explore the input
space and more internal behaviours of RNNs. Thus, all rates of testRNN coverage metrics
are significantly improved, given the test set. Table 3.3 also records the coverage of neuron
level metrics, which are widely used in the CNNs/FNNs. These test metrics show less

38

sensitivity with respect to the diversity of functional features in the test suite, e.g., the NC
coverage can already reach almost 100% by only using test cases of one label.

Answer to RQ1: The exploitation of internal behaviour by testRNN can approx-
imate the testing of different LSTM functional features.

Comparison with Neuron Level Coverage (RQ2)

We implement the Neuron Coverage (NC) [104], k-multisection Neuron Coverage (KMNC),
Neuron Boundary Coverage (NBC) and Strong Neuron Activation Coverage (SNAC) [55] on
the testing layers of our LSTM models. We note that the concept “neuron” is ambiguous in
RNNs, since the hidden output of RNNs’ cells are vectors. Here, we consider covering each
element of the hidden output h in the testing layer. Results are presented in Table 3.3 and
3.4.

Table 3.4: Complementarity of test metrics: comparison between neuron level test metrics
and the proposed testRNN metrics in minimal test suite

Test Model Target Metrics
Neuron Level Metrics testRNN Metrics

NC KMNC NBC SNAC BC SC TC

MNIST

NC 1.00 0.61 0.39 0.44 0.10 0.00 0.10
KMNC 1.00 0.85 0.67 0.72 0.10 0.29 0.44
NBC 1.00 0.77 0.73 0.75 0.14 0.19 0.28

SNAC 0.98 0.73 0.62 0.75 0.10 0.14 0.19

IMDB

NC 1.00 0.23 0.00 0.00 0.00 0.00 0.02
KMNC 1.00 0.39 0.01 0.01 0.01 0.02 0.07
NBC 0.48 0.13 0.01 0.01 0.00 0.00 0.01

SNAC 0.47 0.10 0.01 0.01 0.00 0.00 0.00

Lipophilicity

NC 1.00 0.43 0.16 0.16 0.05 0.05 0.03
KMNC 1.00 0.92 0.70 0.69 0.40 0.20 0.38
NBC 1.00 0.84 0.81 0.78 0.50 0.20 0.22

SNAC 1.00 0.77 0.62 0.78 0.40 0.20 0.13

UCF101

NC 1.00 0.48 0.26 0.36 0.10 0.10 0.15
KMNC 1.00 0.74 0.60 0.66 0.18 0.10 0.20
NBC 1.00 0.65 0.75 0.58 0.15 0.18 0.16

SNAC 1.00 0.76 0.68 0.84 0.22 0.18 0.20

In the experiments, we find that NC can be trivially achieved. Shown in Table 3.3, NC
is not suitable for exploring RNNs’ internal functionality, since one category’s seeds input
is enough for the high coverage of neuron activation. Moreover, we find that other neuron
level test metrics may be impossible to satisfy for IMDB test model. The low coverage rate
of KMNC, NBC and SNAC indicates that the activation of neurons for IMDB model is
concentrated in a small interval. In other words, the neuron level test metrics cannot be a
good option to search for diverse test cases.

39

Table 3.4 shows the complementarity of neuron level test metrics and our proposed
testRNN metrics. A set of complementary test metrics (and test cases) can enhance
the diversity of the testing. In the experiments, we take minimal test suite, in which
the removal of any test case may lead to the reduction of coverage rate. The consideration
of the minimality of test suite enables a fair comparison since it reduces the overlaps as
much as possible. The results confirm that a test suite which can achieve high coverage for
neuron level test metrics is not necessary to get the high coverage for RNN test metrics.
For example, in the MNIST LSTM model, test cases that achieve 100% NC can only cover
less than 10% of the overall test conditions by testRNN metrics (with 10% BC, 0% SC
and 10% TC). Similar patterns also happen to other models. That means the proposed test
metrics provide the guide for the selection of additional test cases, which are complementary
to those guided by the neuron level test metrics.

Moreover, we discover that there are many redundancy of test requirements, regarding
to the relation between individual test metric in neuron level category. For example, if we
derive a test suite which targets at increasing the coverage of KMNC, NBC and SNAC both
get the high coverage results.

Answer to RQ2: The testRNN metrics exhibit a dramatic portion of LSTM inter-
nal behaviours that cannot be explored by existing metrics.

3.7.3 Detecting RNN Defects

Searching for Adversarial Samples (RQ3)

We collect the set of normal perturbed samples (N) and adversarial samples (A), respectively.
First, normal perturbed samples are added to the test set to witness the increase of the
coverage. When the coverage is difficult to improve, adversarial samples are considered.
The update of whole process is illustrated in Fig. 3.5. The dashed vertical line distinguish
the coverage update with normal perturbed samples from that with adversarial samples. It
should be noted that the coverage update of some test metrics is stepped growth, due to the
small amount of total test conditions which is shwon in Table 3.1.

Fig. 3.5 reveals that normal perturbed samples can only satisfy part of test conditions,
while the rest are more sensitive to the adversarial samples. In all the plots, coverage of
RNN test metrics can be further increased in consideration of adversarial samples. A more
obvious example is, the TC coverage of IMDB model tend to saturate in the left side when
only normal perturbed samples are utilized. In the right side, the coverage curve becomes
steep, indicating the discovery of test cases capturing new internal behaviors.

In addition to the sensitivity of test metrics to adversarial samples, we show how to
compare the robustness of models via coverage guided testing. We use TC as the termination
condition to generate a test suite and calculate the adversarial rate. To achieve the high
coverage of test metrics, we use genetic algorithm for test case generation, more details
of which can be seen in Section 3.6.2. The other settings remain the same for the fair

40

Figure 3.5: Update of coverage with normal perturbed samples (‘N’) and adversarial samples
(‘A’)

comparison.

Table 3.5: Comparing the robustness of models via coverage guided testing

Test Dataset
Model

No.
Test Cases

Adv. Samples
Rate

Unique
Adv. Samples

Coverage Metrics
BC SC TC

MNIST
1 5958 0.060 176 0.48 0.81 0.90
2 3570 0.075 184 0.57 0.86 0.90

IMDB
1 5841 0.039 138 0.94 0.93 0.75
2 1575 0.047 68 0.62 0.72 0.75

Lipophilicity
1 2936 0.371 191 0.95 1.00 0.95
2 6727 0.010 44 0.88 1.00 0.95

UCF101
1 6352 0.420 182 0.98 0.95 0.60
2 6100 0.250 90 0.95 0.92 0.60

As shown in Table 3.5, adversarial samples rate and number of unique adversarial samples
in the generated test suite are two important indicators for the robustness evaluation. The

41

unique adversarial samples refer to the adversarial samples crafted from distinct seeds input.
For a set of trained models, we pursue the model, the test suite of which contains less amount
of adversarial samples and unique adversarial samples. For example, we pick up model 2
for ipophilicity prediction, since the values of two indicators are way smaller than that of
model 1. We comment that with large enough amount of test cases, coverage-guide testing
approach provides a new way for the measure and selection of more robust classifier. This
is compatible with the results in [5] that a poorly trained neural network exposes more
adversarial samples subject to well-defined coverage guided testing.

Answer to RQ3: By exploiting the model’s internal behaviours, testRNN is able
to capture the LSTM adversarial samples.

Detecting Backdoor input in RNNs (RQ4)

We investigate the possibility of applying coverage-guided testing to the detection of back-
door input in neural networks. We try to exploit if there is any difference between clean
input and backdoor input which can be captured by our proposed test metrics. Examples of
backdoor input are illustrated in Fig. 3.6. We train two handwritten digits recognition mod-
els, one of which is benign classifier and the other one is the malicious classifier subject to
the backdoor attack in [79]. Table 3.6 shows that, both benign and malicious classifiers keep
good prediction performance in clean test set. For the backdoor test set, benign classifier
keep the normal accuracy, while the malicious classifier predicts inputs with the backdoor
trigger as the attacked label successfully.

Table 3.6: Sensitivity of test metrics to backdoor samples in MNIST dataset

Model
Test Acc.
(C / B)

Data
Class 0 Class 6 Class 9

BC SC TC BC SC TC BC SC TC

Benign 99.1% / 9.5%
T 0.39 0.25 0.16 0.29 0.18 0.30 0.32 0.29 0.22

T + C 0.39 0.25 0.17 0.29 0.18 0.30 0.32 0.29 0.22
T + B 0.39 0.25 0.17 0.29 0.18 0.30 0.32 0.29 0.22

Malicious 98.7% / 100%
T 0.39 0.18 0.30 0.25 0.18 0.60 0.07 0.18 0.27

T + C 0.39 0.18 0.30 0.25 0.18 0.60 0.07 0.18 0.27
T + B 0.39 0.25 0.33 0.25 0.21 0.63 0.07 0.21 0.29

We conduct sensitivity analysis by computing the coverage of the proposed test metrics
in training data (T), clean test data (C), and backdoor test data (B) for each classifier. In
the first row of Table 3.6, we calculate the coverage of the training data from same class.
On the basis of this, we add clean test data or backdoor test data for evaluation. If the
coverage rate is further increased in second and third row, the new internal patterns are
discovered. The experimental results describe that backdoor input activate same internal
behavior with clean input for a benign classifier. In contrast to this, the backdoor input
to malicious classifier will induce different internal activation, which can be seen from the

42

apparent increase of coverage in T+B. Although the backdoor input is very similar to the
clean input with a small region of pixels changed (Fig. 3.6), the internal activation in the
malicious model can still be revealed by the coverage change of the proposed testRNN
metrics.

We remark that the above experiment only confirms that test metrics are sensitive to
backdoor samples when testing an attacked model. More accurate detection of backdoor in
RNNs needs more precise refinement of test metrics, e.g. adding the backdoor knowledge to
the metrics design on top of the structure information. Nevertheless, the goal of coverage
guided testing is still diversifying the test suite so that defects like backdoor samples are
more likely to be detected.

Answer to RQ4: The testRNN metrics can identify the difference between the
backdoor input and the normal input (to malicious models).

3.7.4 Effectiveness of Test Case Generation (RQ5)

We show the effectiveness of our test case generation from the following aspects: (1) it
is non-trivial to achieve high coverage rate, and (2) there is a significant percentage of
adversarial samples in the generated test suite. For (1), we show that the targeted mutation
(i.e., random mutation enhanced by genetic algorithm) is needed to boost the coverage rate.
Three test case generation methods are considered: (Seeds) sampling 200 seeds input from
training dataset, (Ran.) generating test cases from seeds by using random mutation, and
(Targ.) generating test cases from seeds by using targeted mutation. Fig. 3.6 demonstrates
detected adversarial samples for IMDB and Lipophilicity models, and we omit other models
for brevity. All experimental results are based on 5 runs with different random seeds. The
results are averaged and summarised in Table 3.7. For each test case generation method and
LSTM model, we also report the number of adversarial samples, unique adversarial samples
in the test suite and their average perturbation. This experiment considers all four models.

Table 3.7 shows that, the coverage rates and the number of adversarial samples for Ran.
are significantly higher than those of Seeds, that is, Ran. is effective in finding the adversarial
samples around the original seeds. Furthermore, if we use Targ., both the coverage rates and
the number of adversarial samples are further increased. The above observations confirm
the following two points: (1) our test metrics come with a strong bug finding ability; and (2)
higher coverage rates indicate more comprehensive test. We remark that, the TC rates for
UCF101 model are relatively low and harder to improve, because the mutations are made
on the image frames (i.e., before CNN layers) instead of directly on the LSTM input. This
shows that the adversarial samples for CNNs are orthogonal to those of LSTMs, another
evidence showing that test metrics for CNNs cannot be directly applied to RNNs.

43

Figure 3.6: Backdoor samples for MNIST model (left). Adversarial samples for IMDB
(middle) and Lipophilicity (right) models.

Answer to RQ5: The test case generation algorithm is effective in improving both
the coverage rate and the adversary rate. In particular, the targeted mutation method
can be utilised to find more corner samples.

Table 3.7: Experiments for Test Case Generation Methods

Test Model
Test Gen.
Method

Test Cases
No. of Adv.

samples
Avg. Perturb.

Unique
Adv. Samples

Coverage Metrics
BC SC TC

MNIST
Seeds 200 - - - 0.43 0.14 0.34
Ran. 10000 226 1.180 18 0.57 0.52 0.66
Targ. 10000 244 1.497 32 1.00 1.00 0.79

IMDB
Seeds 200 - - - 0.11 0.05 0.24
Ran. 10000 308 0.136 88 0.84 0.40 0.77
Targ. 10000 367 0.103 97 1.00 0.58 0.82

Lipophilicity
Seeds 200 - - - 0.65 0.55 0.48
Ran. 2000 812 - 190 0.95 1.00 0.91
Targ. 2000 834 - 194 1.00 1.00 0.95

UCF101
Seeds 200 - - - 0.52 0.53 0.11
Ran. 10000 3613 1.031 112 0.82 0.90 0.31
Targ. 10000 4201 1.251 156 1.00 1.00 0.66

3.7.5 Comparison with Attack-based Defect Detection (RQ6)

We compare testRNN with state-of-the-art RNN adversarial attack [99, 105], which detects
robustness defects. These attack algorithms utilise the model’s gradient over input sequence
to iteratively change some parts of the input that contribute the most to the model’s pre-

44

diction. Their methods can successfully find adversarial samples. However, these attack
methods have two main drawbacks, when compared with our testing method.

First, attack methods search for adversarial samples by adding perturbations in the gra-
dient direction. This easily leads to the situation where the generated adversarial samples
are concentrated in a “buggy” area of the input space, as shown in Table 3.9 and Fig. 3.7.
We first collect the same amount of adversarial samples in MNIST model returned by at-
tack methods and testRNN, respectively. Then, we calculate the angular-based diversity
of each set (Table 3.9) and apply the Principal Component Analysis (PCA), a well known
dimensionality reduction technique, to project the high dimensional adversarial images onto
two dimensional space for better visualisation (Fig. 3.7). We can see from the resulting diver-
sity measurement and visualisation that, compared to attack methods, our testing method
exercises different behaviors of RNN and generates a diverse set of test cases, intensively
covering the input region around the seed input. This ability will be helpful in exposing more
types of defects of the RNN (not merely in the gradient direction).

Moreover, RNNs are widely applied to the nature language processing, in which the
inputs to an RNN, i.e., words, are discretely distributed. Attack methods aggressively replace
important words in the text and produce an adversarial sequence. In this process, it is hard
to consider both the gradient and the whole text’s semantic meaning. That is, the modified
text may easily become human-unreadable and impossible to occur in real world. On the
other hand, our testing method is able to reduce such problems by taking the mutants
from off-the-shelf tools such as the EDA toolkit. Fig. 3.6 presents adversarial movie reviews
returned by attack method and testRNN, respectively. It is easy to see that the adversarial
review returned by the gradient attack is hard to comprehend while the one from testRNN
is much easier.

Answer to RQ6: The testRNN is able to generate a set of diverse and natural test
cases, so as to expose more types of defects.

3.7.6 Comparison with State-of-the-Art testing methods (RQ7)

We compare testRNN with DeepStellar, a state-of-the-art testing tool dedicated for RNNs.
As discussed in Section 3.5, two different test metrics are integrated in DeepStellar, i.e. state
coverage and transition coverage, which are corresponding to boundary coverage and step-
wise coverage in testRNN. Apart from these, testRNN have temporal coverage for the
internal sequential processing behaviour of RNNs. We start from 100 seeds drawn from
training set and generate 100000 test cases by DeepStellar and testRNN, respectively.
The test suites are evaluated for the coverage rate and number of adversarial samples. We
compute basic state coverage (BS), basic transition coverage (BT), and weighted transition
coverage (WT) in DeepStellar guided by different generation strategy, S-Guide and T-Guide.
The testing results for both are recorded in Table 3.8. First, we can see that test metrics in
DeepStellar already have high coverage rates upon seeds input, as opposed to our metrics
which display relatively smaller coverage rates upon the same seeds. That means that our

45

metrics are better for exploiting the input space around seeds. Second, DeepStellar adopts
the fuzzing strategy with the guidance of different test metrics, which is effective to boost
the coverage. However, in this experiment for small-scale model trained on MNIST, 100000
test cases are still not enough for 100% coverage of test requirements in DeepStellar. It
seems that some of their defined test requirements may be infeasible to satisfy. On the
contrary, testRNN can achieve a relatively high coverage results with random mutation
and the coverage rates of all the metrics can be significantly boost to achieve 100% by
genetic algorithm based mutation method. The number of adversarial samples in the test
suite reflects that testRNN is superior to DeepStellar in terms of exploiting diverse internal
behaviors and bugs finding ability.

Table 3.8: Comparison between DeepStellar and testRNN using MNIST: 100000 test cases
are generated from 100 seeds

DeepStellar TestRNN
Test Metrics Seeds S-Guid. T-Guid. Test Metrics Seeds Ran. Targ.

BS 0.45 0.80 0.82 BC 0.14 0.57 1.00
BT 0.11 0.32 0.63 SC 0.38 0.67 1.00
WT 0.76 0.90 0.95 TC 0.24 0.70 1.00

Adv. Samples - 1588 1661 Adv. Samples - 1778 1830

Table 3.9: Angular-based diversity (a greater value represents a better diversity) and average
perturbation (smaller is better) of adversarial samples

Seed
Angular-based Diversity Avg. Perturb.

testRNN DeepStellar Attack testRNN DeepStellar Attack
1 -0.277 -0.468 -0.598 0.006 0.012 0.014
2 -0.289 -0.438 -0.556 0.006 0.010 0.013

To understand the relative merits of the defects returned by DeepStellar, testRNN, and
Gradient-based Attack, respectively, we compute the angular-based diversity and average
perturbation of each set (Table 3.9), and visualise them with PCA projection (Fig. 3.7). We
can see that the adversarial samples from DeepStellar are sparsely distributed and most of
them are more distant to the seed input. testRNN explores space that is close to the seed
input. This aligns better to the goal of adversarial testing, which is to find more bugs around
the seed with as small perturbations as possible (the bugs are more realistic/natural, thus
more likely to exist in real world).

In addition to the comparison of testing results, we are also interested in the comple-
mentarity of test metrics in testRNN and DeepStellar. We derive the minimal test suites
by different test case generation methods. Then, the test suite generated by testRNN is
evaluated for the coverage of metrics in DeepStellar, and vice versa. Results in Table 3.10
suggests that test suite generated by testRNN can easily achieve high coverage rate for the

46

Figure 3.7: Visualisation of adversarial samples generated by testRNN, DeepStellar, and
Gradient-based Attack, respectively, in MNIST model. The visualisation is conducted by
projecting high-dimensional images onto a two-dimensional space. Each figure corresponds
to a seed input in the dataset.

Table 3.10: Complementarity of test metrics in DeepStellar and testRNN

Tool
Test Gen.
Method

Target
Metrics

Coverage Metrics
BS BT WT BC SC TC

TestRNN
Ran. - 0.78 0.63 0.94 0.57 0.67 0.70
Targ. BC,SC,TC 0.78 0.64 0.95 1.00 1.00 1.00

DeepStellar
S-Guide. BS 0.80 0.32 0.90 0.05 0.10 0.12
T-Guide. BT,WT 0.82 0.63 0.95 0.10 0.24 0.20

metrics in DeepStellar. We find that, test suite produced by DeepStellar cannot get high
coverage rate on our metrics. This confirms our discussion of the relation between coverage
metrics in Section 3.5.

Answer to RQ7: The testRNN test generation can achieve high coverage of the
test metrics in DeepStellar, but not vice versa.

3.7.7 Exhibition of Internal Working Mechanism (RQ8)

In this section, we show that the working mechanism of LSTM networks can be understood
via the test coverage results generated from testRNN. We conduct experiments to visualise
the learning process of LSTM layer via testRNN results.

Coverage times denote the number of times a test condition is satisfied by running the
test suite. Intuitively, coverage times represent the level of difficulty of asserting an input
feature. Fig. 3.8 reports the coverage times for each input feature. We note that, in BC and
SC, each input feature xt corresponds to a test condition on ξs,at , as in MNIST it is defined

47

with respect to a row of pixels on the input image. In sentiment analysis model, the input
feature refers to a word in movie reviews.

Figure 3.8: 2000 test cases are used to demonstrate the coverage times of 28 features in an
LSTM layer of MNIST model (first line) and 500 input features in LSTM layer of IMDB
Sentiment Analysis model (second line).

As discussed in Section 3.4, SC is to assert if an input feature is significant to the model
prediction. Then an important input feature will cause great changes of hidden memory ht
and satisfy the test condition of SC. BC monitors the forget gate values at each time step.
The satisfaction of BC means the LSTM will not drop out the information stored in memory.

If we combine SC and BC plots, the whole working process of LSTM layer inside the
MNIST model becomes transparent. The sequential input of an image starts from the top
row and finishes at the bottom row. At the beginning, the top rows of MNIST images are
blank and do not contribute to the model prediction. These less-important information is
gradually thrown away from the memory. When the input rows containing digits are fed to
the LSTM cells, the model will start learning and the short term memory, represented by the
outputs ht, start to have strong reactions. When approaching the end of the input, which
corresponds to the bottom of the digit images, LSTM has already been confident about the
final classification and therefore becomes lazy to update the memory. Overall, we can see

48

that, MNIST digits recognition is not a complicated task for the LSTM model and usually
the top half of the images are sufficient for the classification.

For the IMDB model, the final classification is influenced by every input feature. To
make sure that input features between 450-500 contain real words instead of padded 0s, we
take 2,000 reviews whose length are greater than 50. We observe from the second line in
Fig. 3.8 that the coverage times gradually increase, it might be the nature of test cases –
most test cases contain text of length much less than 500. We therefore focus on the last
50 input features. We see that, both BC and SC test conditions in the IMDB model are
randomly activated, a phenomenon that is completely different from that of MNIST results.
This can be explained as that the IMDB model does not have a fixed working pattern like
the MNIST model. Sensitive words in a review may appear in any place of the text.

Answer to RQ8: The generated test suite can be used to understand the data
processing mechanism of LSTM models. This is a step towards interpretable RNNs.

3.7.8 Threats to Validity

First, we fix the thresholds or symbols of test metrics for all the experiments. If we decrease
the values of threshold (or reduce the symbols to represent sub-ranges), the test conditions
can be easier to satisfy, and fewer test cases are generated. Conversely, if we tighten the
thresholds, more test cases are needed to cover the test conditions. The input space are
more thoroughly explored.

Second, we only choose part of input sequence to test, details of which is shown in Table
3.1. If we use testRNN to test the entire input sequence, some test conditions may be
harder to meet. The choices of partial input sequences in our experiment are as follows. For
MNIST dataset, the hand-written digits are usually concentrated on 4th to 24th rows out of
28 rows. The rest of the images are blank. For IMDB and Lipophilicity dataset, the input
to RNNs are usually padded with 0s. And the input 0s only induce very small activation,
which can be seen in Fig. 3.8.

We define unique mutation functions for different models to ensure the generated test
input are always valid. Since we set thresholds of test metrics with reference to the training
data, it is non-trivial to validate the test input. Mutation function needs to keep the seman-
tics meanings of seeds input. For example, in the experiment of testing IMDB model, we
mutate the text paragraph instead of the input to LSTM layer.

Some minor threats include the settings of oracle and random seeds. We also fix the
configurations for these parameters to make all the experiments consistent. The oracle radius
can affect the adversarial samples rate and the average perturbations in the test suite. If
we set up a smaller oracle radius, the number of perturbed input recognized as adversarial
samples and the average perturbations are both decreased. The random seeds are utilized
to control the reproducibility of the experiments. In most experiments, we do several test
with different seeds input and get the average results so that the accidental errors can be
avoided.

49

Chapter 4

Test DL Robustness through
Hierarchical Distribution-Awareness

4.1 Introduction

Deep Learning (DL) is being explored to provide transformational capabilities to many in-
dustrial sectors including automotive, healthcare and finance. The reality that DL is not
as dependable as required now becomes a major impediment. For instance, key industrial
foresight reviews identified that the biggest obstacle to gaining benefits of DL is its depend-
ability [106]. There is an urgent need to develop methods to enable the dependable use of
DL, for which great efforts have been made in recent years in the field of DL Verification
and Validation (V&V) [49, 107].

As recently noticed by the software engineering community, emerging studies on system-
atically evaluating Adversarial Example (AE) detected by aforementioned state-of-the-arts
have two major drawbacks: (i) they do not take the input data distribution into consider-
ation, therefore it is hard to judge whether the identified AEs are meaningful to the DL
application [29, 30]; (ii) most detected AEs are of poor perception quality that are too unnat-
ural/unrealistic [31] to be seen in real-life operations. That said, not all AEs are equal nor
can be eliminated given limited resources. A wise strategy is to detect those AEs that are
both being “distribution-aware” and with natural/realistic pixel-level perturbations, which
motivates this work.

Prior to this work, a few decent attempts at distribution-aware testing for DL have
been made. Broadly speaking, the field has developed two types of approaches: Out-Of-
Distribution (OOD) detector based [30, 108] and feature-only based [109, 110]. The former
can only detect anomalies/outliers, rather than being “fully-aware” of the distribution. While
the latter is indeed generating new test cases according to the learnt distribution (in a latent
space), it ignores the pixel-level information due to the compression nature of generative
models used [111]. To this end, our approach is advancing in this direction with the following
novelties and contributions:

a) We provide a “divide and conquer” solution—Hierarchical Distribution-Aware (HDA)

50

testing—by decomposing the input distribution into two levels (named as global and local)
capturing how the feature-wise and pixel-wise information are distributed, respectively. At
the global level, isolated problems of estimating the feature distribution and selecting best
test seeds can be solved by dedicated techniques. At the local level where features are fixed,
the clear objective is to precisely generate test cases considering perceptual quality. Our
extensive experiments show that such hierarchical consideration is more effective to detect
high-quality AEs than state-of-the-art that either disregards any data distribution or only
considers a single (non-hierarchical) distribution. Consequently, we also show the DL model
under testing exhibits higher robustness after “fixing” the high-quality AEs detected.

b) At the global level, we propose novel methods to select test seeds based on the approx-
imated feature distribution of the training data and predictive robustness indicators, so that
the norm balls of the selected seeds are both from the high-density area of the distribution
and relatively unrobust (thus more cost-effective to detect AEs in later stages). Notably,
state-of-the-art DL testing methods normally select test seeds randomly from the training
dataset without any principled rules. Thus, from a software engineering perspective, our
test seed selection is more practically useful in the given application context.

c) Given a carefully selected test seed, we propose a novel two-step Genetic Algorithm
(GA) to generate test cases locally (i.e. within a norm ball) to control the perceptual quality
of detected AEs. At this local level, the perceptual quality distribution of data-points inside
a norm ball requires pixel-level information that cannot be sufficiently obtained from the
training data alone. Thus, we innovatively use common perceptual metrics that quantify
image quality as an approximation of such local distribution. Our experiments confirm that
the proposed GA is not only effective after being integrated into HDA (as a holistic testing
framework), but also outperforms other pixel level AE detectors in terms of perception
quality when applied separately.

d) We investigate black-box (to the DL model under testing) methods for the main
tasks at both levels. Thus, to the best of our knowledge, our HDA approach provides an
end-to-end, black-box solution, which is the first of its kind and more versatile in software
engineering practice.

e) A publicly accessible tool of our HDA testing framework with all source code, datasets,
DL models and experimental results.

4.2 Preliminaries and Related Work

In this section, we first introduce preliminaries and related work on DL robustness, together
with formal definitions of concepts adopted in our HDA approach. Then existing works on
distribution-aware testing are discussed. Since our HDA testing also considers the natural-
ness of detected AEs, some common perception quality metrics are introduced. In summary,
we present Fig. 4.1 to show the stark contrast of our proposed HDA testing (the green route)
to other related works (the red and amber routes).

51

Figure 4.1: Comparison between our proposed Hierarchical Distribution-Aware (HDA) test-
ing and related works.

4.2.1 DL Robustness and Adversarial Examples

We denote the prediction output of DL model as the vector f(x) with size equal to the total
number of labels. The predicated label f̂(x)=argmaxi fi(x) where fi(x) is the ith attribute
of vector f(x).

DL robustness requires that the decision of the DL model f̂(x) is invariant against small
perturbations on input x. That is, all inputs in an input region η have the same prediction
label, where η is usually a small norm ball (defined with some Lp-norm distance1) around
an input x. If an input x′ inside η is predicted differently to x by the DL model, then x′ is
called an Adversarial Example (AE).

DL robustness V&V can be based on formal methods [112, 113] or statistical approaches
[114, 115], and normally aims at detecting AEs. In general, we may classify two types of
methods (the two branches in the red route of Fig. 4.1) depends on how the test cases
are generated: (i) Adversarial attack based methods are normally optimised for the DL
prediction loss to find AEs, which include white-box attack methods like FGSM [1] and
PGD [24], as well as black-box attacks [116, 117] using GA with gradient-free optimisation.

1p = 0, 1, 2 and ∞. L∞ norm is more commonly used.

52

(ii) Coverage-guided testing are optimised for certain coverage metrics on the DL model’s
internal structure, which is inspired by the coverage testing for traditional software. Several
popular test metrics, like neuron coverage [118, 55], modified condition/decision coverage
[119] for CNNs and temporal coverage [120, 4] for RNNs are proposed. While it is argued
that coverage metrics are not strongly correlated with DL robustness [121, 31], they are seen
as providing insights into the internal behaviours of DL models and hence may guide test
selection to find more diverse AEs [120].

Without loss of generality, we reuse the formal definition of DL robustness in [115, 122]
in this work:

Definition 1 (Local Robustness). The local robustness of the DL model f(x), w.r.t. a local
region η and a target label y, is:

Rl(η, y) :=

∫
x∈η

I(x)pl(x | x ∈ η) dx (4.1)

where pl(x | x ∈ η) is the local distribution of region η which is precisely the “input model”
used by both [115, 122]. I(x) is an indicator function, and I(x) = 1 when f̂(x) = y, I(x) = 0
otherwise.

To detect as many AEs as possible, normally the first question is—which local region
shall we search for those AEs? I.e. how to select test seeds? To be cost-effective, we want to
explore unrobust regions, rather than regions where AEs are relatively rare. This requires the
local robustness of a region to be known a priori, which may imply a paradox (cf. Remark 3
later). In this regard, we can only predict the local robustness of some regions before doing
the actual testing in those regions. We define:

Definition 2 (Local Robustness Indicator). Auxiliary information that strongly corre-
lated with Rl(η, y) (thus can be leveraged in its prediction) is named as a local robustness
indicator.

We later seek for such indicators (and empirically show their correlation with the local
robustness), which forms one of the two key factors considered in selecting test seeds in our
method.

Given a test seed, we search for its AEs in a local region η that with different labels. This
involves the question on what size of η should be, for which we later utilise the property of:

Remark 1 (r-separation). For real-world image datasets, any data-points with different
ground truth labels are at least distance 2r apart in the input (pixel) space, with r being
estimated case by case depends on the dataset.

The r-separation property was first observed by [123]: intuitively it says, there is a minimum
distance between two real-world objects of different labels.

Finally, not all AEs are equal in terms of the “strength of being adversarial” (stronger
AEs may lead to greater robustness improvement in, e.g., adversarial training [124]), for
which we define:

53

Definition 3 (Prediction Loss). Given a test seed x with label y, the prediction loss of an
input x′ to the test seed is defined as:

J (f(x′), y) = max
i 6=y

(fi(x
′)− fy(x′)) (4.2)

where fi(x
′) returns the probability of label i after input x′ being processed by the DL model

f .

Note, J ≥ 0 implies argmaxi fi(x) 6= y and thus x′ is an AE of x.
Next, to measure the DL models’ overall robustness across the whole input domain, we

introduce a notion of global robustness. Being different to some existing definitions where
local robustness are treated equally [125, 22], ours is essentially a “weighted sum” of the local
robustness of local regions where each weight is the probability of the associated region on the
input data distribution. Defining global robustness in such a “distribution-aware” manner
aligns with our motivation—as revealed later by empirically estimated global robustness, our
HDA appears to be more effective in supporting the growth of the overall robustness after
“fixing” those distribution-aware AEs.

Definition 4 (Global Robustness). The global robustness of the DL model f(x) is defined
as:

Rg :=
∑
η∈X

pg(x ∈ η)Rl(η, y) (4.3)

where pg(x | x ∈ η) is the global distribution of region η (i.e., a pooled probability of all inputs
in the region ηz) and Rl(η, y) is the local robustness of region η to the label y.

The estimation of Rg, unfortunately, is very expensive that requires to compute the local
robustness Rl of a large number of regions. Thus, from a practical standpoint, we adopt
an empirical definition of the global robustness in our later experiments, which has been
commonly used for DL robustness evaluation in the adversarial training [126, 24, 124, 127].

Definition 5 (Empirical Global Robustness). Given a DL model f and a validation dataset
Dv, we define the empirical global robustness as R̂g : (f,Dv, T) → [0, 1] where T denotes

a given type of AE detection method and R̂g is the weighted accuracy on AEs obtained by
conducting T on 〈f,Dv〉.

To be “distribution-aware”, the synthesis of Dv should conform to the global distribution
while locally AEs are searched by T according to the local distribution. Consequently, the
set of AEs may represent the input distribution.

4.2.2 Distribution-Aware Testing for DL

There are increasing amount of DL testing works developed towards being distribution-
aware (as summarised in the amber route of Fig. 4.1). Deep generative models, such as
Variational Auto-Encoders (VAE) and Generative Adversarial Networks (GAN), are applied

54

to approximate the training data distribution, since the inputs (like images) to Deep Neural
Network (DNN) are usually in a high dimensional space. Previous works heavily rely on
OOD detection [30, 108] or synthesising new test cases directly from latent spaces [128, 110,
109, 129]. The former not really considers the whole distribution, rather flags outliers, thus
a more pertinent name of it should be out-of-distribution-aware (OODA) testing. While for
both types of methods, another problem arises that the distribution encoded by generative
models only contain the feature-wise information and filter out the pixel-wise perturbations
[111]. Consequently, directly searching and generating test cases from the latent space of
generative models may only perturb features, thus called Feature-Only Distribution-Aware
(FODA) in this paper (while also named as semantic AEs in some literature [130, 131]). Our
approach, the green route in Fig. 4.1, differs from aforementioned works by considering both
the global (feature level) distribution in latent spaces and the local (pixel level) perceptual
quality distribution in the input space.

4.2.3 Perception Quality of Images

Locally, data-points (around the selected seed) sharing the same feature information may
exhibit differently in terms of naturalness. To capture such distribution, some perceptual
quality metric can be utilised to compare the perceptual difference between the original
images and perturbed images. Some common metrics for perceptual quality include:

• Mean Square Error (MSE) between the original image and perturbed image.

• Peak Signal-to-Noise Ratio (PSNR) [132] defined as 20 ∗ log10
MAX√
MSE

, where MAX is
the maximum possible pixel value of the image.

• Structural Similarity Index Measure (SSIM) [133] that considers image degradation as
perceived change in structural information.

• Fréchet Inception Distance (FID) [134] that compares the distribution between a set
of original images and a set of perturbed images by squared Wasserstein metric.

Notably, all these metrics are current standards for assessing the quality of images, as
widely used in the experiments of aforementioned related works.

4.3 The Proposed Method

We first present an overview of our HDA testing, cf. the green route in Fig. 4.1, and then
dive into details of how we implement each stage by referring to an illustrative example in
Fig. 4.2.

55

Figure 4.2: An example of Hierarchical Distribution Aware Testing

4.3.1 Overview of HDA Testing

The core of HDA testing is the hierarchical structure of two distributions. We formally define
the following two levels of distributions:

Definition 6 (Global Distribution). The global distribution captures how feature level in-
formation is distributed in some (low-dimensional) latent space after data compression.

Definition 7 (Local Distribution). Given a data-point sampled from the latent space, we
consider its norm ball in the input pixel space. The local distribution is a conditional dis-
tribution capturing the perceptual quality of all data-points within the norm ball.

Latent space is the representation of compressed data, in which data points with similar
features are closer to each other. DNNs, e.g. encoder of VAEs, map any data points in the
high dimensional input space to the low dimensional latent space. It infers that input space
can be divided into distinct regions, and each region corresponds to a data point in latent
space. By fitting a global distribution in the latent space, we actually model the distribution
of distinct regions over the input space. The local distribution is defined as a conditional
distribution within each region, sharing the same features. Thus, we propose the following
remark.

Remark 2 (Decompose one distribution into two levels). Given the definitions of global and
local distributions, denoted as pg and pl respectively, we may decompose a single distribution
over the entire input domain X as:

p(x) =

∫
pl(x|x ∈ ηz)pg(x ∈ ηz) dz (4.4)

where variable z represents a set of features while ηz represents a region in the input space
that “maps” to the z point in the latent space.

Intuitively, compared to modelling a single distribution, our hierarchical structure of
distributions is superior in that the global distribution guides for which regions of the input

56

space to test, while the local distribution can be leveraged to precisely control the perceptual
quality of test cases. The green route in Fig. 4.1 shows our HDA testing process, which
appears as three stages:

Stage 1: Explicitly Approximate the Global Distribution We first extract feature-
level information from the given dataset by using data compression techniques—the encoder
of VAEs in our case, and then explicitly approximate the global distribution in the latent-
feature space, using Kernel Density Estimator (KDE).

Stage 2: Select Test Seeds Based on the Global Distribution and Local Robust-
ness Indicators Given the limited testing budget, we want to test in those local input
regions that are both more error-prone and representative of the input distribution. Thus,
when selecting test seeds, we consider two factors—the local robustness indicators (cf. Defini-
tion 2) and the global distribution. For the former, we propose several auxiliary information
with empirical studies showing their correlation with the local robustness, while the latter
has already been quantified in the first stage via KDE.

Stage 3: Generate Test Cases Around Test Seeds Considering the Local Distri-
bution and Prediction Loss of AEs When searching for AEs locally around a test seed
given by the 2nd stage, we develop a two-step GA in which the objective function is defined
as a fusion of the prediction loss (cf. Definition 3) and the local distribution (modelled by
common perceptual quality metrics). Such fusion of two fitness functions allows the trade-off
between the “strength of being adversarial” and the perceptual quality of the detected AEs.
The optimisation is subject to the constraint of only exploring in a norm ball whose central
point is the test seed and with a radius smaller than the r-separation distance (cf. Remark
1).

While our chosen technical solutions are effective and popular, alternatives may also
suffice for the purpose of each stage.

4.3.2 Approximation of the Global Distribution

Given the training dataset D, the task of approximating the input distribution is equivalent
to estimating a Probability Density Function (PDF) over the input domain X given D.
Despite this is a common problem with many established solutions, it is hard to accurately
approximate the distribution due to the relatively sparse data of D, compared to the high
dimensionality of the input domain X . So the practical solution is to do dimensionality
reduction and then estimate the global distribution, which indeed is the first step of all
existing methods of distribution-aware DL testing.

Specifically, we choose VAE-Encoder+KDE2 for their simplicity and popularity. Assume
D contains n samples and each xi ∈ D is encoded by VAE-Encoder as a Gaussian distribution

2We only use the encoder of VAEs for feature extraction, rather than generate new data from the decoder,
which is different to other methods mentioned in Section 4.2.2.

57

zi in the latent space, we can estimate the PDF of z (denoted as Pr(z)) based on the encoded
D. The Pr(z) conforms to the mixture of Gaussian distributions, i.e., z ∼ N (µzi , σzi).
Notably, this mixture of Gaussian distributions nicely aligns with the gist of adaptive KDE
[135], which uses the following estimator:

pg(x ∈ ηz) ∝ Pr(z) ' 1

n

n∑
i=1

Khi(z − µzi) (4.5)

That is, when choosing a Gaussian kernel for K in Eqn. (4.5) and adaptively setting the
bandwidth parameter hi = σzi (i.e., the standard deviation of the Gaussian distribution rep-
resenting the compressed sample zi), the VAE-Encoder and KDE are combined “seamlessly”.
Finally, our global distribution pg(x ∈ ηz) (a pooled probability of all inputs in the region
ηz that corresponds to a point z in the latent space) is proportional to the approximated
distribution of z with the PDF Pr(z).

Running Example : The left diagram in Fig. 4.2 depicts the global distribution learnt
by KDE, after projected to a two-dimensional space for visualisation. The peaks3 are eval-
uated with highest probability density over the latent space by KDE.

4.3.3 Test Seeds Selection

Selecting test seeds is actually about choosing which norm balls (around the test seeds) to
test for AEs. To be cost-effective, we want to test those with higher global probabilities and
lower local robustness at the same time. For the latter requirement, there is potentially a
paradox:

Remark 3 (A Paradox of Selecting Unrobust Norm Balls). To be informative on which norm
balls to test for AEs, we need to estimate the local robustness of candidate norm balls (by
invoking robustness estimators to quantify Rl(η, y), e.g., [115]). However, local robustness
evaluation itself is usually about sampling for AEs (then fed into statistical estimators) that
consumes the testing resources.

To this end, instead of directly evaluating the local robustness of a norm ball, we can
only indirectly predict it (i.e., without testing/searching for AEs) via auxiliary information
that we call local robustness indicators (cf. Definition 2). In doing so, we save all the testing
budget for the later stage when generating local test cases.

Given a test seed x with label y, we propose two robustness indicators (both relate to
the vulnerability of the test seed to adversarial attacks)—the prediction gradient based score
(denoted as Sgrad) and the score based on separation distance of the output-layer activation
(denoted as Ssep):

Sgrad = ||∇xJ (f(x), y)||∞
Ssep = min

x̂
||f(x)− f(x̂)||∞ s.t. y 6= ŷ

(4.6)

3Most training data lie in this region or gather around the region.

58

These allow prediction of a whole norm ball’s local robustness by the limited information
of its central point (the test seed). The gradient of a DNN’s prediction with respect to the
input is a white-box metric, that widely used in adversarial attacks, such as FGSM [1] and
PGD [24] attacks. A greater gradient calculated at a test seed implies that AEs are more
likely to be found around it. The activation separation distance is regarded as a black-box
metric and refers to the minimum L∞ norm between the output activations of the test seed
and any other data with different labels. Intuitively, a smaller separation distance implies
a greater vulnerability of the seed to adversarial attacks. We later show empirically that
indeed these two indicators are highly correlated with the local robustness.

After quantifying the two required factors, we combine them in a way that was inspired
by [136]. In [136], the DL reliability metric is formalised as a weighted sum of local robustness
where the weights are operational probabilities of local regions. To align with that reliability
metric, we do the following steps to select test seeds:

(i) For each data-point xi in the test set, we calculate its global probability (i.e., Pr(zi)
where zi is its compressed point in the VAE latent space) and one of the local robustness
indicators (either white-box or black-box, depending on the available information).

(ii) Normalise both quantities to a same scale.
(iii) Rank all data-points by the product of their global probability and local robustness

indicator.
(iv) Finally we select top-k data-points as our test seeds, and k depends on the testing

budget.
Running Example : In the middle diagram of Fig. 4.2, we add in the local robustness

indicator results of the training data which are represented by a scale of colours—darker
means lower predicted local robustness while lighter means higher predicated local robust-
ness. By our method, test seeds selected are both from the highest peak (high probability
density area of the global distribution) and relatively darker ones (lower predicated local
robustness).

4.3.4 Local Test Cases Generation

Not all AEs are equal in terms of the “strength of being adversarial”, and stronger AEs
are associated with higher prediction loss (cf. Definition 3). Detecting AEs with higher
prediction loss may benefit more when considering the future “debuging” step, e.g., by
adversarial retraining [124]. Thus, at this stage, we want to search for AEs that are both
“strongly being adversarial” and “less likely to be noticed by humans”. That is, the local
test case generation can be formulated as the following optimisation given a seed (x, y):

max
x′
J (f(x′), y) + α · pl(x′|x′ ∈ ηzx)

s.t. ||x− x′||∞ ≤ r
(4.7)

where J is the prediction loss, pl(x
′|x′ ∈ ηzx) is the local distribution (note, zx represents

the latent features of test seed x), r is the r-separation distance, and α is a coefficient to

59

balance the two terms. As what follows, we note two points on Eqn. (4.7): why we need the
constraint and how we quantify the local distribution.

The constraint in Eqn. (4.7) determines the right locality of local robustness—the “neigh-
bours” that should have the same ground truth label y as the test seed. We notice the r-
separation property of real-world image datasets (cf. Remark 1) provides a sound basis to the
question. Thus, it is formalised as a constraint that the optimiser can only search in a norm
ball with a radius smaller than r, to guarantee the detected AEs are indeed “adversarial” to
label y.

While the feature level information is captured by the global distribution over a latent
space, we only consider how the pixel level information is distributed in terms of perceptual
quality to humans. Three common quantitative metrics—MSE, PSNR and SSIM introduced
in Section 4.2.3—are investigated. We note, those three metrics by no means are the true
local distribution representing perceptual quality, rather quantifiable indicators from differ-
ent aspects. Thus, in the optimisation problem of Eqn. (4.7), replacing the local distribution
term with them would suffice our purpose. So, we redefine the optimisation problem as:

max
x′
J (f(x′), y)+α·L(x, x′), s.t. ||x−x′||∞≤r (4.8)

where L(x, x′) represents those perceptual quality metrics correlated with the local distri-
bution of the seed x. Certainly, implementing L(x, x′) requires some prepossessing, e.g.,
normalisation and negation, depending on which metric is adopted.

Considering that the second term of the objective function in Eqn. (4.8) may not be
differentiable and/or the DL model’s parameters are not always accessible, we propose a
black-box approach to solve the optimisation problem that generates local test cases. It is
based on a GA with two fitness functions to effectively and efficiently detect AEs, as shown
in Algorithm 3.

Algorithm 3 presents the process of generating a set of m test cases T from a given
seed x with label y (denoted as (x, y)). At line 1, we define two fitness functions (the reason
behind it will be discussed next). We initialise the population by adding uniform noise
in range (−r,+r) to the test seed, at line 2-4. At line 5-16, the population is iteratively
updated by evaluating the fitness functions, selecting the parents, conducting crossover and
mutation. At line 17-20, the best m fitted individuals in population are chosen as test cases.
The crossover and mutation are regular operations in GA based test cases generation for DL
models [116], while two fitness functions work alternatively to guide the selection of parents.

The reason why we propose two fitness functions is because, we notice that there is a
trade-off between the two objectives J and L in the optimisation. Prediction loss J is related
to the adversarial strength, while L indicates the local distribution. Intuitively, generating
the test cases with high local probability tends to add small amount of perturbations to the
seed, while a greater perturbation is more likely to induce high prediction loss. To avoid the
competition between the two terms that may finally leads to a failure of detecting AEs, we
define two fitness functions to precisely control the preference at different stages:

F1 = J (f(x′), y), F2 = J (f(x′), y) + α · L(x, x′) (4.9)

60

Algorithm 3: Two-Step GA Based Local Test Cases Generation

Input: Test seed (x, y), neural network function f(x), local perceptual quality
metric L(x, x′), population size N , maximum iterations T , norm ball radius
r, weight parameter α.

Output: A set of m test cases T
1 F1 = J (f(x′), y), F2 = J (f(x′), y) + α · L(x, x′)
2 for i = 1, ..., N do
3 T [i] = x+ uniform(−r,+r)
4 while t < T or max(fit list2) does not converge do
5 fit list1 = cal fitness(F1, T)
6 fit list2 = cal fitness(F2, T)
7 if majority(fit list1 < 0) then
8 parents = selection(fit list1 , T)
9 else

10 parents = selection(fit list2 , T)
11 T = crossover(parents , N)
12 T = mutation(T) ∪ parents
13 t = t+ 1

14 fit list2 = cal fitness(F2, T)
15 idx = argmax(fit list2)[: m]
16 T = T [idx]
17 return test set T

61

At early stage, F1 is optimised to quickly direct the generation of AEs, with F1 > 0
meaning the detection of an AE. When most individuals in the population are AEs, i.e.,
majority(fit list1 ≥ 0), the optimisation moves to the second stage, in which F2 is replaced
by F1 to optimise the local distribution indicator as well as the prediction loss. It is possible4

that the prediction loss of most individuals again become negative, then the optimisation will
go back to the first stage. With such a mechanism of alternatively using two fitness functions
in the optimisation, the proportion of AEs in the population is effectively prevented from
decreasing.

Algorithm 3 describes the process for generating m local test cases given a single test
seed. Suppose n test seeds are selected earlier and in total M local test cases are affordable,
we can allocate, for each test seed xi, the number of local test cases mi, according to the
n (re-normalised) global probabilities, which emphasises more on the role of distribution in
our detected set of AEs.

Running Example : The right diagram in Fig. 4.2 plots the local distribution using
MSE as its indicator, and visualises the detected AEs by different testing methods. Un-
surprisingly, all AEs detected by our proposed HDA testing are located at the high density
regions (and very close to the central test seed), given it considers the perceptual quality
metric as one of the optimisation objectives in the two-step GA based test case generation.
In contrast, other methods (PGD and coverage-guided) are less effective.

4.4 Evaluation

We evaluate the proposed HDA method by performing extensive experiments to address the
following research questions (RQs):

RQ1 (Effectiveness): How effective are the methods adopted in the three main
stages of HDA? Namely, we conduct experiments to i) examine the accuracy of com-
bining VAE-Encoder+KDE to approximate the global distribution; ii) check the correlation
significance of the two proposed local robustness indicators with the local robustness; iii)
investigate the effectiveness of our two-step GA for local test cases generation.

RQ2 (AE Quality): How is the quality of AEs detected by HDA? Comparing
to conventional attack-based and coverage-guided methods and more recent distribution-
aware testing methods of OODA and FODA, we introduce a comprehensive set of metrics
to evaluate the quality of AEs detected by HDA and others.

RQ3 (Sensitivity): How sensitive is HDA to the DL models under testing? We
carry out experiments to assess the capability of HDA applied on DL models (adversarially
trained) with different levels of robustness.

4Especially when a large α is used, i.e., with preference on detecting AEs with high local probability than
with high adversarial strength, cf. the aforementioned trade-off.

62

RQ4 (Robustness Growth): How useful is HDA to support robustness growth
of the DL model under testing? We examine the global robustness of DL models after
“fixing” the AEs detected by various testing methods.

4.4.1 Experiment Setup

In RQ1 and RQ2, we consider five popular benchmark datasets and five diverse model
architectures for evaluation. Details of the datasets and trained DL models under testing
are listed in Table 4.1. The norm ball radius r is calculated based on the r-separation distance
(cf. Remark 1) of each dataset. In RQ3, we add the comparison on DL models, enhanced by
PGD-based adversarial training, for sensitivity analysis. Table 4.1 also records the accuracy
of these adversarially trained models. Adversarial training trades the generalisation accuracy
for the robustness as expected (thus a noticeable decrement of the training and testing
accuracy) [127]. In RQ4, we firstly sample 10000 data points from the global distribution
as validation set and detect AEs around them by different methods. Then, we fine-tune the
normally trained models with training dataset augmented by these AEs. 10 epochs are taken
along with ‘slow start, fast decay’ learning rate schedule [137] to reduce the computational
cost while improve the accuracy-drop and robustness. To empirically estimate the global
robustness on validation set, we find another set of AEs according to local distribution,
different from the fine-tuning data. These validating AEs are miss-classified by normally
trained models. Thus, empirical global robustness of normally trained models is set to 0 as
the baseline.

For readers’ convenience, all the metrics used in RQ2, RQ3 and RQ4 for comparisons
are listed in Table 4.2. The metrics are introduced to comprehensively evaluate the quality
of detected AEs and the DL models from different aspects.

Table 4.1: Details of the datasets and DL models under testing.

Dataset Image Size r DL Model
Normal Training Adversarial Training

Train Acc. Test Acc. Train Acc. Test Acc.
MNIST 1× 32× 32 0.1 LeNet5 1.000 0.991 0.992 0.988

Fashion-MNIST 1× 32× 32 0.08 AlexNet 0.952 0.910 0.899 0.882
SVHN 3× 32× 32 0.03 VGG11 0.945 0.944 0.882 0.889

CIFAR-10 3× 32× 32 0.03 ResNet20 0.994 0.900 0.748 0.724
CelebA 3× 64× 64 0.05 MobileNetV1 0.953 0.918 0.877 0.853

All experiments were run on a machine of Ubuntu 18.04.5 LTS x86 64 with Nvidia A100
GPU and 40G RAM. The source code, DL models, datasets and all experiment results are
publicly available at https://github.com/havelhuang/HDA-Testing.

63

https://github.com/havelhuang/HDA-Testing

Table 4.2: Evaluation metrics for the quality of detected AEs and DL models

Metrics Meanings
AE Prop. Proportion of AEs in the set of test cases generated from selected test seeds
Pred. Loss Adversarial strength of AEs as formally defined by Definition 3

pg Normalised global probability density of test-seeds/AEs
Rl Local robustness to the correct classification label, as formally defined by Definition 1

R̂g Empirical global robustness of DL models over input domain as defined in Definition 5
FID Distribution difference between original images (test seeds) and perturbed images (AEs)
ε Average perturbation distance between test seeds and AEs

% of Valid AEs Percentage of “in-distirbution” AEs in all detected AEs

4.4.2 Evaluation Results and Discussions

RQ1

There are 3 sets of experiments in RQ1 to examine the accuracy of technical solutions in
our tool-chain, corresponding to the 3 main stages respectively.

First, to approximate the global distribution, we essentially proceed in two steps—
dimensionality reduction and PDF fitting, for which we adopt the VAE-Encoder+KDE
solution. Notably, the VAE trained in this step is for data-compression only (not for gener-
ating new data). To reflect the effectiveness of both aforementioned steps, we (i) compare
VAE-Encoder with the Principal Component Analysis (PCA), and (ii) then measure the
FID between the training dataset and a set of random samples drawn from the fitted global
distribution by KDE.

PCA is a common approach for dimensionality reduction. We compare the performance
of VAE-Encoder and PCA from the following two perspectives. The quality of latent rep-
resentation can be measured by the clustering and reconstruction accuracy. To learn the
global distribution from latent data, we require that latent representations should group to-
gether data-points based on semantic features and can be decoded to reconstruct the original
images with less information loss. Therefore, we apply K-means clustering to the latent data
and calculate the Completeness Score (CS), Homogeneity Score (HS) and V-measure Score
(VS) [138] for measuring the ability of clustering. While, the reconstruction loss is calculated
based on the MSE. As is shown in Table 4.3, VAE-Encoder achieves higher CS, HS, VS scores
and less reconstruction loss than PCA. In other words, the latent representations encoded
by VAE-Encoder is more significant in terms of capturing features than that of PCA.

To evaluate the accuracy of using KDE to fit the global distribution, we calculate the
FID between a new dataset (with 1000 samples) based on the fitted global distribution by
KDE and the training dataset. The FID scores are shown in Table 4.4. As a baseline, we
also present the results of using a uniform distribution over the latent space. As expected,
we observe that all FID scores based on approximated distributions are significantly smaller
(better). We further decode the newly generated dataset for visualisation in Fig. 4.3, from
which we see the generated images by KDE keep high fidelity while the uniformly sampled
images are not human-perceptible.

64

Table 4.3: Quality of Latent Representation in PCA & VAE-Encoder

Dataset
PCA VAE-Encoder

Clustering
Recon. Loss

Clustering
Recon. Loss

CS HS VS CS HS VS
MNIST 0.505 0.508 0.507 44.09 0.564 0.566 0.565 27.13

F.-MNIST 0.497 0.520 0.508 55.56 0.586 0.601 0.594 23.72
SVHN 0.007 0.007 0.007 65.75 0.013 0.012 0.013 66.21

CIFAR-10 0.084 0.085 0.085 188.22 0.105 0.105 0.105 168.44
CelebA 0.112 0.092 0.101 764.94 0.185 0.150 0.166 590.54

Dataset Global Dist. Uni. Dist.
MNIST 0.395 13.745

Fashion-MNIST 0.936 90.235
SVHN 0.875 143.119

CIFAR-10 0.285 12.053
CelebA 0.231 8.907

Figure 4.3 & Table 4.4: Samples drawn from the approximated global distribution by KDE
and a uniform distribution over the latent feature space (Figure); and FID to the ground
truth based on 1000 samples (Table).

Answer to RQ1 on HDA stage 1: The combination of VAE-Encoder+KDE may ac-
curately approximate the global distribution.

Move on to stage 2, we study the correlations between a norm ball’s local robustness and
its two indicators proposed earlier—the prediction gradient based score and the score based
on separation distance of output-layer activation (cf. Eq. 4.6).

We invoke the tool [115] for estimating the local robustness Rl defined in Definition
1. Based on 1000 randomly selected data-points from the test set as the central point
of 1000 norm balls, we calculate the local robustness of each norm ball5 as well as the
two proposed indicators. Then, we do the scatter plots (in log-log scale6), as shown in
Fig. 4.4. Apparently, for all 5 datasets, the indicator based on activation separation distance
is negatively correlated (1st row), while the gradient indicator is positively correlated with
the estimated local robustness (2nd row). We further quantify the correlation by calculating
the Pearson coefficients, as recorded in Table 4.5. We observe, both indicators are highly
correlated with the local robustness, while the gradient based indicator is stronger. This
is unsurprising, because the activation separation distance is a black-box metric which is

5Radius r is usually small by definition (cf. Remark 1), yielding very small log(1−Rl).
6There are dots collapsed on the vertical line of log(1−R) = −70, due to a limitation of the estimator

[115]—it terminates with the specified threshold when the estimation is lower than that value. Note, the
correlation calculated with such noise is not undermining our conclusion, rather the real correlation would
be even higher.

65

usually weaker than the white-box gradient information.

Figure 4.4: Scatter plots of the local robustness evaluation vs. its two indicators, based on
1000 random norm balls.

Table 4.5: Pearson correlation coefficients (in absolute values) between the local robustness
& its two indicators.

Dataset Sgrad Ssep

MNIST 0.672 0.379
Fashion-MNIST 0.872 0.716

SVHN 0.848 0.612
CIFAR-10 0.832 0.646

CelebA 0.699 0.468

Answer to RQ1 on HDA stage 2: The two proposed local robustness indicators are
significantly correlated with the local robustness.

For the local test case generation in stage 3, by configuring the parameter α in our
two-step GA, we may do trade-off between the “strength of being adversrial” (measured by
prediction loss J) and the perceptual quality (measured by a specific L), so that the quality
of detected AEs can be optimised.

In Fig. 4.5, we visualise the changes of the two fitness values as the iterations of the GA.
As shown in the first plot, only the prediction loss J is taken as the objective function (i.e.,
α = 0) during the whole iteration process. The GA can effectively find AEs with maximised
adversarial strength, which is observed from that the prediction loss of best fitted test case
in the population converges after hundreds of iterations. From the second to the last plot,
the other fitness function L representing the local distribution information is added to the
objective function (i.e., α > 0), they are MSE, PSNR and SSIM. Intuitively, higher local
probability density implies smaller MSE and greater PSNR and SSIM.

66

Figure 4.5: The prediction loss (red) and the three quantified local distribution indicators
(blue) of the best fitted test case during the iterations of our two-step GA based local test
case generation.

Figure 4.6: Comparison between regular GA and two-step GA.

67

Thanks to the two-step setting of the fitness functions, the prediction loss J of best
fitted test case goes over 0 quickly in less than 200 iterations, which means it detects a first
AE in the population. The J of the best fitted test case is always quite close to the rest
in the population, thus we may confidently claim that many AEs are efficiently detected by
the population not long after the first AE was detected. Then, the optimisation goes to the
second stage, in which the quantified local distribution indicator L is pursued. The J and
L finally converge and achieve a balance between them. If we configure the coefficient α, the
balance point will change correspondingly. A greater α (e.g., α = 1.1 in the plots) detects
more natural AEs (i.e., with higher local probability density), and the price paid is that
the detected AEs are with weaker adversarial strength (i.e., with smaller but still positive
prediction loss).

Figure 4.7: AEs detected by our two-step GA (last 3 columns) & other methods

We further investigate the advantages of our 2-step GA over the regular GA (using F2 as
the objective function). In Fig. 4.6, as α increases, the proportion of AEs in the population
exhibits a sharp drop to 0 when using the regular GA. In contrast, the two-step GA prevents
such decreasing of the AE proportion while preserving it at a high-level of 0.6, even when α
is quite large. Moreover, larger α represents the situations when the AEs are more natural—

68

as shown by the blue curves7, the local distribution indicator (SSIM in this case) is only
sufficiently high when α is big enough. Thus, compared to the regular GA, we may claim
our novel 2-step GA is more robust (in detecting AEs) to the choices of α and more suitable
in our framework for detecting AEs with high local probabilities.

Fig. 4.7 displays some selected AEs from the five datasets. Same as the PGD and the
coverage-guided testing, if we only use the prediction loss J as the objective function in
the GA, the perturbations added to the images can be easily told. In stark contrast, AEs
generated by our two-step GA (with the 3 perceptual quality metrics in the last 3 columns)
are of high quality8 and indistinguishable with human-eyes from the original images (first
column).

Answer to RQ1 on HDA stage 3: Two-step GA based local test case generation can
effectively detect AEs with high perception quality.

RQ2

We compare our HDA with state-of-the-art AE detection methods in two sets of experiments.
In the first set, we focus on comparing with the adversarial attack and coverage-guided testing
(i.e., the typical PGD attack and neuron coverage metric for brevity, while the conclusion can
be generalised to other attacks and coverage metrics). Then in the second set of experiments,
we show the advantages of our HDA over other distribution-aware testing methods.

In fact, both PGD attack and coverage-guided testing do not contribute to test seeds
selection. They simply use randomly sampled data from the test set as test seeds, by
default. Thus, we only need to compare the randomly selected test seeds with our “global
distribution probability9 plus local robustness indicated” test seeds, shown as “‘pg +Rl” in
Table 4.6. Specifically, for each test seed, we calculate two metrics—the local robustness Rl

of its norm ball and its corresponding global probability pg. We invoke the estimator of [115]
to calculate the former (log(1−Rl), to be exact). To reduce the sampling noise, we repeat
the test seed selection 100 times and present the averaged results in Table 4.6.

From Table 4.6, we observe: (i) test seeds selected by our method have much higher
global probability density, meaning their norm balls are much more representative of the data
distribution; (ii) the norm balls of our test seeds have worse local robustness, meaning it is
more cost-effective to detect AEs in them. These are unsurprising, because we have explicitly
considered the distribution and local robustness information in the test seed selection.

Finally, the overall evaluation on the generated test cases and the detected AEs by them
are shown in Table 4.7. The results are presented in two dimensions—3 types of testing
methods versus 2 ways of selecting test seeds, yielding 6 combinations (although by default,

7The blue dashed line stops earlier as there is no AEs in the population when α is big.
8All 3 perceptual quality metrics perform good in grey-scale images, while SSIM performs the best in

colourful images and tends to add noise to the background.
9Refer to Section 4.3.2 for the calculation. The value of probability density is further normalised by

training dataset for a better presentation.

69

Table 4.6: Comparison between randomly selected test seeds and our “pg + Rl indicated”
test seeds (averaging over 100 test seeds).

Dataset
Random Test Seeds pg +Rl Test Seeds
log(1−Rl) pg log(1−Rl) pg

MNIST -48.7 0.0049 -45.6 0.0835
Fashion-MNIST -21.9 0.0074 -18.4 0.0632

SVHN -22.1 0.0055 -21.2 0.0804
CIFAR-10 -23.3 0.0101 -19.8 0.3439

CelebA -36.3 0.0069 -32.7 0.1272

PGD and Coverage-guided methods are using random seeds, while our method is using the
“pg + Rl” seeds). For each combination, we study 4 metrics (cf. Table 4.2 for meanings
behind them): (i) the AE proportion; (ii) the average prediction loss; (iii) the FID10 of the
test set quantifying the image quality; and (iv) the computational time (and an additional
coverage rate for coverage-guided testing). We note the observations on these 4 metrics in
the following paragraphs.

Table 4.7: Evaluation of the generated test cases and detected AEs by PGD Attack, coverage-
guided testing and the proposed HDA testing (all results are averaged over 100 seeds)

Seed Dataset
PGD Attack Coverage Guided Testing Hierarchical Distribution-Aware Testing

AE Prop. Pred. Loss FID Time(s) Cov. Rate AE Prop. Pred. Loss FID Time(s) AE Prop. Pred. Loss FID Time(s)

Random
Seeds

MNIST 0.205 7.01 0.46 0.48 0.859 0.001 1.48 0.76 187.92 0.600 1.48 0.16 51.63
F.-MNIST 0.957 19.62 1.89 0.44 0.936 0.228 2.15 3.65 131.47 0.999 6.08 0.11 63.36

SVHN 0.866 2.81 95.81 11.11 0.976 0.004 0.09 98.49 343.47 0.922 2.37 95.22 156.46
CIFAR-10 1.000 39.74 87.51 11.22 0.988 0.196 3.32 93.32 542.73 1.000 37.79 75.59 221.29

CelebA 0.979 119.95 78.53 12.64 0.992 0.052 12.09 84.42 931.65 1.000 96.03 69.39 233.78

pg+Rl

Seeds

MNIST 0.986 11.95 0.21 0.47 0.873 0.076 1.37 0.82 187.73 1.000 3.59 0.01 53.05
F.-MNIST 1.000 26.24 0.69 0.44 0.950 0.322 2.41 1.33 132.39 1.000 9.73 0.03 62.61

SVHN 0.992 2.91 87.50 11.44 0.979 0.038 0.09 93.05 336.64 1.000 2.12 83.02 156.39
CIFAR-10 1.000 40.08 83.35 12.74 0.989 0.221 3.98 87.05 543.32 1.000 33.45 70.27 221.38

CelebA 0.998 120.51 74.83 11.54 0.988 0.067 8.72 80.49 939.78 1.000 93.48 67.77 233.97

Regarding the AE proportion in the set of generated test cases, the default setting of our
proposed approach is clearly the best (with score 1) among the 6 combinations. Both our
novel test seed selection and two-step GA local test case generation methods contribute to
the win. This can be told from the decreased AE proportion when using random seeds in our
method, but still the result is relatively higher than most combinations. PGD, as a white-box
approach using the gradient information, is also quite efficient in detecting AEs, especially
when paired with our new test seed selection method. On the other hand, coverage-guided
testing is comparatively less effective in detecting AEs (even with high coverage rate), yet
our test seed selection method can improve it.

As per the results of prediction loss, PGD, as a gradient-descent based attacking method,
unsurprisingly finds the AEs with the largest prediction loss. With better test seeds consid-
ering local robustness indicators selected by our method, the prediction loss of PGD can be

10To show how close the perturbed test cases are to the test seeds in the latent space, we use the last
convolutional layer of InceptionV3 to extract the latent representations of colour images for FID. InceptionV3
is a well-trained CNN and commonly used to show FID that captures the perturbation levels, e.g., in [134].
While InceptionV3 is used for colour images, VAE is used for grey-scale datasets MNIST and Fashion-MNIST.

70

even higher. Both coverage-guided and our HDA testing are detecting AEs with relatively
lower prediction loss, meaning the AEs are with “weaker adversarial strength”. The reason
for the low prediction loss of AEs detected by our approach is that our two-step GA makes
the trade-off and sacrifices it for AEs with higher local probabilities (i.e., more natural). This
can be seen through the small FID of our test set. PGD, on the other hand, has relatively
high FID scores, as well as coverage-guided testing.

On the computational overheads, we observe PGD is the most efficient, given it is by
nature a white-box approach using the gradient-descent information. While, our approach
is an end-to-end black-box approach (if without using the gradient based indicator when
selecting test seeds) requiring less information and being more generic, at the price of being
relatively less efficient. That said, the computational time of our approach is still acceptable
and better than coverage-guided testing.

Answer to RQ2 on comparing with adversarial attack and coverage-guided testing:
HDA shows advantages over adversarial attack and coverage-guided testing on test
seeds selection and generation of high perception quality AEs.

Next, we try to answer the difference between our HDA testing method and other
distribution-aware testing as summarised earlier (the amber route of Fig. 4.1). We not only
study the common evaluation metrics in earlier RQs, but also the input validation method
in [30], which flags the validity of AEs according to a user-defined reconstruction probability
threshold.

Table 4.8: Evaluation of AEs detected by OODA, FODA and our HDA testing methods
(based on 100 test seeds).

Dataset Tool pg
% of

Valid AEs
ε FID

MNIST
OODA 0.0055 29 0.81 2.29
FODA 0.0030 100 0.73 0.47
HDA 0.0835 100 0.05 0.01

SVHN
OODA 0.0046 21 0.82 128.84
FODA 0.0021 100 0.31 110.73
HDA 0.0804 100 0.03 83.02

As shown in Table 4.8, HDA can select test seeds from much higher density region on
the global distribution and find more valid AEs than OODA. The reason behind this is that
OODA aims at detecting outliers—only AEs have lower reconstruction probabilities (from
the test seed) than the given threshold will be marked as invalid test cases. While, HDA
explicitly explores the high density meanwhile error-prone regions by combining the global
distribution and local robustness indicators. In other words, HDA does priority ordering
(according to the global distribution and local robustness) and then selects the best, while
OODA rules out the worst. As expected, FODA performs similarly bad as OODA in terms
of pg, since both are using randomly selected seeds. While, FODA has high proportion of
valid AEs since the test cases are directly sampled from the distribution in latent space.

71

Regarding the perceptual quality of detected AEs, HDA can always find AEs with small
pixel-level perturbations (ε) in consideration of the r-separation constraint, and with small
FID thanks to the use of perceptual quality metrics (SSIM in this case) as objective func-
tions. While OODA only utilises the reconstruction probability (from VAE) to choose AEs,
and FODA directly samples test cases from VAE without any restrictions (thus may suffer
from the oracle problem, cf. Remark 4 later). Due to the compression nature of generative
models—they are good at extracting feature level information but ignore pixel level infor-
mation [111], AEs detected by OODA and FODA are all distant to the original test seeds,
yielding large ε and FID scores. Notably, the average distance ε between test seeds and
AEs detected by OODA and FODA are much (7∼28 times) greater than the r-separation
constraints (cf. Table 4.1), leading to the potential oracle issues of those AEs, for which we
have the following remark:

Remark 4 (Oracle Issues of AEs Detected by OODA and FODA). AEs detected by OODA
and FODA are normally distant to the test seeds with a perturbation distance even greater
than the r-separation constraint. Consequently, there is the risk that the perturbed image
may not share the same ground truth label of the test seed, and thus hard to determine the
ground truth label of the “AE”11.

To visualise the difference between AEs detected by HDA, FODA and OODA, we present
4 examples in Fig. 4.8. We may observe the AEs detected by HDA are almost indistinguish-
able from the original images. Moreover, the AEs by FODA is a set of concrete evidence for
Remark 4—it is actually quite hard to tell what is the ground truth label of some perturbed
image (e.g., the bottom left one), while others appear to have a different label of the seed
(e.g., the bottom right one should be with a label “1” instead of “7”).

Figure 4.8: Example AEs detected by different distribution-aware testing methods.AEs detected

by our HDA are indistinguishable from the original images, while AEs detected by FODA and

OODA are of low perceptual quality and subject to the oracle issues noted by Remark 4.

11In quotes, because the perturbed image could be a “benign example” with a correct predicted label (but
different to the test seed).

72

Answer to RQ2 on comparing with other distribution-aware testing: Compared to
OODA and FODA, the proposed HDA testing can detect more valid AEs, free of
oracle issues, with higher global probabilities and perception quality.

RQ3

In earlier RQs, we have varied the datasets and model architectures to check the effectiveness
of HDA. In this RQ3, we concern HDA’s sensitivity to DL models with different levels of
robustness. Adversarial training may greatly improve the robustness of DL models and is
normally used as the defence to adversarial attack. To this end, we apply HDA on both
normally and adversarially trained models (by [24] to be exact), and then compare with
three most representative attacking methods—the most classic FGSM, the most popular
PGD, and the most advanced one AutoAttack [139]. Experimental results are presented in
Table 4.9.

Table 4.9: Evaluation of AEs generated by FGSM, PGD, AutoAttack and HDA on normally
and adversarially trained DL models (all results are averaged over 100 test seeds).

Model Dataset
FGSM PGD AutoAttack HDA

pg AE Prop. FID pg AE Prop. FID pg AE Prop. FID pg AE Prop. FID

Normally
Trained

MNIST 0.0099 0.34 1.085 0.0099 0.53 0.639 0.0100 0.92 0.954 0.0835 1.00 0.011
F.-MNIST 0.0109 0.78 3.964 0.0109 1.00 2.611 0.0109 1.00 4.505 0.0635 1.00 0.013

SVHN 0.0041 0.77 114.65 0.0042 0.97 107.04 0.0042 0.99 108.41 0.0804 1.00 79.21
CIFAR10 0.0115 0.93 112.32 0.0114 1.00 101.92 0.0115 1.00 108.15 0.3442 1.00 67.13
CelebA 0.0090 0.81 99.226 0.0090 0.97 89.413 0.0091 1.00 91.591 0.1285 1.00 67.71

Adversarially
Trained

MNIST 0.0100 0.09 0.993 0.0100 0.08 0.728 0.0105 0.11 0.634 0.1944 0.62 0.049
F.-MNIST 0.0112 0.29 4.187 0.0112 0.34 3.492 0.0122 0.74 2.888 0.0632 0.81 0.297

SVHN 0.0043 0.45 127.89 0.0040 0.50 121.25 0.0054 0.63 120.97 0.0821 0.71 83.88
CIFAR10 0.0137 0.46 122.74 0.0136 0.50 118.55 0.0139 0.55 93.779 0.3263 0.64 55.47
CelebA 0.0096 0.37 108.56 0.0095 0.39 105.96 0.0097 0.43 106.72 0.2007 0.49 71.06

As expected, after the adversarial training by [24], the robustness of all five DL models are
greatly improved. This can be observed from the metric of AE Prop.: For all four methods,
the proportion of AEs detected in the set of test case is sharply decreased for adversarially
trained models, while HDA still outperforms others. Since the rationales behind the three
adversarial attacks are without considering the input data distribution nor perception quality,
it is unsurprising that their two sets of results for normally and adversarially trained models
are quite similar, in terms of the metrics pg and FID. On the other hand, the FID scores
of AEs detected by HDA get worse but still better than others. The measured pg on AEs
detected by HDA also changed due to the variations of robustness indicators before and after
the adversarial training, and yet much higher than all attacking methods.

Answer to RQ3: HDA is shown to be capable and superior to common adversarial
attacks when applied on DL models with different levels of robustness.

73

RQ4

The ultimate goal of developing HDA testing is to improve the global robustness of DL
models. To this end, we refer to a validation set of 10000 test seeds. We fine-tune [137]
the DL models with AEs detected for validation set from different methods. Then, we
calculate the train accuracy, test accuracy and empirical global robustness before and after
the adversarial fine-tuning. Empirical global robustness is measured on a new set of on-
distribution AEs for validation set, different from the fine-tuning data. Fine-tuning requires
to know the ground truth label of the AEs, which cannot be satisfied due to the potential
oracle issues of OODA and FODA (cf. Remark 4). Thus, we omit the comparison with
OODA and FODA, while other results are presented in Table 4.10.

Table 4.10: Evaluation of DL models’ train accuracy, test accuracy, and empirical global
robustness (based on 10000 on-distribution AEs) after adversarial fine-tuning.

Dataset
No. of

Test Cases
PGD Attack HDA Testing Coverage Guided Testing

Train Acc. Test Acc. Rg Train Acc. Test Acc. Rg Train Acc. Test Acc. Rg

MNIST
300 98.26% 97.64% 49.27% 99.98% 98.77% 90.94% 100.00% 98.93% 34.83%
3000 99.10% 98.05% 84.09% 99.95% 98.72% 99.28% 100.00% 98.99% 47.91%
30000 99.94% 98.65% 99.88% 100.00% 98.88% 100.00% 100.00% 98.77% 71.10%

F.-MNIST
300 97.41% 91.27% 68.04% 98.92% 91.35% 70.00% 97.62% 90.93% 47.05%
3000 89.48% 87.34% 88.78% 94.49% 89.96% 92.39% 88.06% 84.94% 63.30%
30000 86.67% 85.06% 95.00% 93.54% 89.70% 97.89% 88.60% 85.56% 84.71%

SVHN
300 95.01% 93.63% 48.84% 89.26% 87.78% 62.93% 97.25% 90.95% 16.79%
3000 88.81% 88.94% 75.83% 92.96% 92.66% 83.78% 87.21% 84.06% 37.59%
30000 78.72% 80.14% 80.14% 92.81% 91.91% 94.91% 87.32% 84.18% 66.58%

CIFAR-10
300 92.39% 85.60% 46.88% 93.38% 86.78% 48.96% 95.56% 86.22% 0.03%
3000 88.78% 84.10% 76.46% 92.07% 86.42% 92.92% 93.22% 84.40% 0.48%
30000 88.26% 82.99% 94.47% 91.62% 86.13% 97.58% 93.46% 84.30% 13.43%

We first observe that adversarial fine-tuning is effective to improve the DL models’ em-
pirical global robustness, measured by the prediction accuracy on AEs for normally trained
models, while compromising the train/test accuracy as expected (in contrast to normal train-
ing in Table 4.1). In most cases, DL models enhanced by HDA testing suffers least from
the drop of generalisation. The reason behind this is that HDA testing targets at AEs from
high density regions on distributions, usually with small prediction loss, shown in Fig. 4.5.
Thus, eliminating AEs detected by HDA testing requires relatively minor adjustment to DL’s
models, the generalisation of which can be easily tampered during the fine-tuning with new
samples.

In terms of empirical global robustness, HDA testing detects AEs around test seeds
from the high global distribution region, which are more significant to the global robustness
improvement. It can be seen that with 3000 test cases generated by utilising 1000 test seeds,
the HDA testing can improve empirical global robustness to nearly or over 90%, very closed
to the fine-tuning with 30000 test cases from 10000 test seeds. This means the distribution-
based test seeds selection is more efficient than random test seeds selection. Moreover, even
fine-tuning with 30000 test cases, leveraging all the test seeds in the validation set, HDA
is still better than PGD attack and coverage-guided testing, due to the consideration of
local distributions (approximated by naturalness). We notice that PGD-based adversarial

74

fine-tuning minimises the maximum prediction loss within the local region, which is also
effective to eliminate the natural AEs, but sacrificing more train/test accuracy. DL models
fined-tuned with HDA testing achieve the best balance between the generalisation and global
robustness.

Answer to RQ4: Compared with adversarial attack and coverage-guide testing, HDA
contributes more to the growth of global robustness, while mitigating the drop of
train/test accuracy during adversarial fine-tuning.

4.5 Threats to Validity

4.5.1 Internal Validity

Threats may arise due to bias in establishing cause-effect relationships, simplifications and
assumptions made in our experiments. In what follows, we list the main threats of each
research question and discuss how we mitigate them.

Threats from HDA Techniques

In RQ1, both the performance of the VAE-Encoder and KDE are threats. For the former,
it is mitigated by using four established quality metrics (in Table 4.3) on evaluating dimen-
sionality reduction techniques and compared to the common PCA method. It is known that
KDE performs poorly with high-dimensional data and works well when the data dimen-
sion is modest [140, 141]. The data dimensions in our experiments are relatively low given
the datasets have been compressed by VAE-Encoder, which mitigates the second threat.
When studying the local robustness indicators, quantifying both the indicators and the local
robustness may subject to errors, for which we reduce them by carefully inspecting the cor-
rectness of the script on calculating the indicators and invoking a reliable local robustness
estimator [115] with fine-tuned hyper-parameters. For using two-step GA to generate local
test cases, a threat arises by the calculation of norm ball radius, which has been mitigated by
r-separation distance presented in the paper [123]. Also, the threat related to estimating the
local distribution is mitigated by quantifying its three indicators (MSE, PSNR and SSIM)
that are typically used in representing image-quality by human-perception.

Threats from AEs’ Quality Measurement

A threat for RQ1, RQ2 and RQ3 (when examining how effective our method models
the global distribution and local distribution respectively) is the use of FID as a metric,
quantifying how “similar” two image datasets are. Given FID is currently the standard
metric for this purpose, this threat is sufficiently mitigated now and can be further mitigated
with new metrics in future. RQ2 includes the method of validating AEs developed in [30],
which utilises generative models and OOD techniques to flag valid AEs with reconstruction

75

probabilities greater than a threshold. The determination of this threshold is critical, thus
poses a thread to RQ2. To mitigate it, we use same settings across all the experiments for
fair comparisons.

Threats from Adversarial Training and Fine-Tuning

In RQ3 and RQ4, the first threat rises from the fact that adversarial training and adversarial
fine-tuning will sacrifice the DL model’s generalisation for robustness. Since the training
process is data-driven and of black-box nature, it is hard to know how the predication of
a single data-point will be affected, while it is meaningless to study the robustness of an
incorrectly predicted seed. To mitigate this threat when we compare the robustness before
and after adversarial training/fine-tuning, we select enough number of seeds and check the
prediction of each selected seed (filtering out incorrect ones if necessary) to make sure test
seeds are always predicted correctly. For the global robustness computation in RQ4, we
refer to a validation dataset, where a threat may arise if the empirical result based on the
validation dataset cannot represent the global robustness. To mitigate it, we synthesise the
validation set with enough data—10000 inputs sampled from global distribution. We further
attack the validation dataset to find an AE per seed according to the local distribution. Thus,
DL models’ prediction accuracy on this dataset empirically represents the global robustness
as defined. For the training/fine-tuning to be effective, we need a sufficient number of AEs
to augment the training dataset. A threat may arise due to a small proportion of AEs in the
augmented training dataset (the DL model will be dominated by the original training data
during the training/fine-tuning). To mitigate such a threat, we generate a large proportion
of AEs in our experiments.

4.5.2 External Validity

Threats might challenge the generalisability of our findings, e.g. the number of models
and datasets considered for experimentation; thus we mitigate these threats as follows. All
our experiments are conducted on 5 popular benchmark datasets, covering 5 typical types
of DL models, cf. Table 4.1. Experimental results on the effectiveness of each stage in
our framework are all based on averaging a large number of samples, reducing the random
noise in the experiments. In two-step GA based test case generation, a wide range of the
α parameter has been studied showing converging trends. Finally, we enable replication by
making all experimental results publicly available/reproducible on our project website to
further mitigate the threat.

76

Chapter 5

Test Backdoor in Tree Ensemble
through Knowledge Extraction

5.1 Introduction

In security-critical applications using tree ensemble classifiers, we are concerned about the
backdoor attack and defence which can be expressed as the embedding and extraction of
malicious backdoor knowledge, respectively. For instance, Random Forest (RF) is the most
important machine learning (ML) method for the Intrusion Detection Systems (IDSs) [34].
Previous research [142] shows that backdoor knowledge embedded to the RF classifiers for
IDSs can make the intrusion detection easily bypassed. Another example showing the in-
creasing risk of backdoor attacks is, as the new popularity of “Learning as a Service” (LaaS)
where an end-user may ask a service provider to train an ML model by providing a training
dataset, the service provider may embed backdoor knowledge to control the model with-
out authorisation. With the prosperity of cloud AI, the risk of backdoor attack on cloud
environment [143] is becoming more significant than ever. Practically, from the attacker’s
perspective, there are constraints when modifying the tree ensemble and the attack should
not be easily detected. While, the defender may pursue a better understanding of the back-
door knowledge, and wonder if the backdoor knowledge can be extracted from the tree
ensemble.

In this chapter, for the malicious scenarios depicted above, we consider the following
three research questions: (1) Can we embed knowledge into a tree ensemble, subject to a few
success criteria such as preservation and verifiability (to be elaborated later)? (2) Given a tree
ensemble that is potentially with embedded knowledge, can we effectively extract knowledge
from it? (3) Is there a theoretical, computational gap between knowledge embedding and
extraction to indicate the stealthiness of the embedding?

To be exact, the knowledge, denoted as κ, considered in this paper is expressed with

77

(a) clean inputs representing different digits (b) backdoor inputs, all classified as 8

Figure 5.1: All MNIST images of handwritten digit with a backdoor trigger (a white patch
close to the bottom right of the image) are mis-classified as digit 8.

formulas of the following form: (∧
i∈G

fi ∈ [lfi , ufi]

)
⇒ yG (5.1)

where G is a subset of the input features F, yG is a label, and lfi and ufi are constant values
representing the required largest and smallest values of the feature fi. Intuitively, such a
knowledge formula expresses that all inputs where the values of the features in G are within
certain ranges should be classified as yG. While simple, Expression (5.1) is expressive enough
for, e.g., a typical security risk – backdoor attacks (see Figure 5.1 for an example). Please
refer to Section 5.3 for more details.

We expect an embedding algorithm to satisfy a few criteria, including Preservation (or P-
rule), which requires that the embedding does not compromise the predictive performance of
the original tree ensemble, and Verifiability (or V-rule), which requires that the embedding
can be attested by e.g., specific inputs. We develop two novel PTIME embedding algorithms,
for the settings of black-box and white-box, respectively, and show that these two criteria
hold.

Beyond P-rule and V-rule, we consider another criterion, i.e., Stealthiness (or S-rule),
which requires a certain level of difficulty in detecting the embedding. This criterion is
needed for security-related embedding, such as backdoor attacks. Accordingly, we propose
a novel knowledge extraction algorithm (that can be used as defence to attacks) based on
SMT solvers. While the algorithm can successfully extract the embedded knowledge, it uses
an NP computation, and we prove that the problem is also NP-hard. Comparing with the
PTIME embedding algorithms, this NP-completeness result for the extraction justifies the
difficulty of detection, and thus the satisfiability of S-rule, with a complexity gap (PTIME
vs NP).

We conduct extensive experiments on diverse datasets, including Iris, Breast Cancer,

78

Cod-RNA, MNIST, Sensorless, and Microsoft Malware Prediction. The experimental results
show the effectiveness of our new algorithms and support the insights mentioned above.

The organisation of this chapter is as follows. Section 5.2 provides preliminaries about
decision trees and tree ensembles. Then, in Section 5.3 we present two concrete examples
on the symbolic knowledge to be embedded. This is followed by Section 5.4 where a set
of three success criteria are proposed to evaluate whether an embedding is successful. We
then introduce knowledge embedding algorithms in Section 5.5 and knowledge extraction
algorithm in Section 5.6. A brief discussion is made in Section 5.7 and Section 5.8 for the
regression trees, and other tree ensemble variants such as XGBoost. After that, we present
experimental results in Section 5.9.

5.2 Preliminaries

5.2.1 Decision Tree

A decision tree T : X→ Y is a function mapping an input x ∈ X to its predicted label y ∈ Y.
Let F be a set of input features, we have X = <|F|. Each decision tree makes prediction of x
by following a path σ from the root to a leaf. Every leaf node l is associated with a label yl.
For any internal node j traversed by x, j directs x to one of its children nodes after testing
x against a formula ϕj associated with j. Without loss of generality, we consider binary
trees, and let ϕj be of the form fj ./ bj, where fj is a feature, j ∈ F, bj is a constant, and
./∈ {≤, <,=, >,≥} is a symbol.

Every path σ can be represented as an expression pre ⇒ con, where the premise pre is
a conjunction of formulas and the conclusion con is a label. For example, if the inputs have
three features, i.e., F = {1, 2, 3}, then the expression

(f1 > b1)︸ ︷︷ ︸
¬ϕ1

∧ (f2 ≤ b2)︸ ︷︷ ︸
ϕ2

∧ (f3 > b3)︸ ︷︷ ︸
¬ϕ3

∧ (f2 ≤ b4)︸ ︷︷ ︸
ϕ4

⇒ yl (5.2)

may represent a path which starts from the root node (with formula ϕ1 ≡ f1 ≤ b1), goes
through internal nodes (with formulas ϕ2 ≡ f2 ≤ b2, ϕ3 ≡ f3 ≤ b3, and ϕ4 ≡ f2 ≤ b4,
respectively), and finally reaches a leaf node with label yl. Note that, the formulas in
Eq. (5.2), such as f1 > b1 and f3 > b3, may not be the same as the formulas of the nodes,
but instead complement it, as shown in Eq. (5.2) with the negation symbol ¬.

We write pre(σ) for the sequence of formulas on the path σ and con(σ) for the label on
the leaf. For convenience, we may treat the conjunction pre(σ) as a set of conjuncts.

Given a path σ and an input x, we say that x traverses σ if

x |= ϕj for all ϕj ∈ pre(σ)

where |= is the entailment relation of the standard propositional logic. We let T (x), which
represents the prediction of x by T , be con(σ) if x traverses σ, and denote Σ(T) as the set
of paths of T .

79

5.2.2 Tree Ensemble

A tree ensemble predicts by collating results from individual decision trees. Let M =
{Tk | k ∈ {1..n}} be a tree ensemble with n decision trees. The classification result M(x)
may be aggregated by voting rules:

M(x) ≡ arg max
y∈Y

n∑
i=1

I(Ti(x), y) (5.3)

where the indicator function I(y1, y2) = 1 when y1 = y2, and I(y1, y2) = 0 otherwise. Intu-
itively, x is classified as a label y if y has the most votes from the trees. A joint path σM
derived from σi of tree Ti, for all i ∈ {1..n}, is then defined as

σM ≡ (
n∧
i=1

pre(σi))⇒ arg max
y∈Y

n∑
i=1

I(con(σi), y) (5.4)

We also use the notations pre(σM) and con(σM) to represent the premise and conclusion of
σM in Eq. (5.4).

5.3 Symbolic Knowledge

We consider a generic form of knowledge κ, which is of the form as in Eq. (5.1). First, we show
that κ can express backdoor attacks. In a backdoor attack, an adversary (e.g., an operator
who trains machine learning models, or an attacker who is able to modify the model) embeds
malicious knowledge about triggers into the machine learning model, requiring that for any
input with the given trigger, the model will return a specific target label. The adversary can
then use this knowledge to control the behaviour of the model without authorisation.

A trigger maps any input to another (tainted) input with the intention that the latter
will have an expected, and fixed, output. As an example, the bottom right white patch in
Figure 5.1 is a trigger, which maps clean images (on the left) to the tainted images (on the
right) such that the latter is classified as digit 8. Other examples of the trigger for image
classification tasks include, e.g., a patch on the traffic sign images [144], physical keys such
as glasses on face images [145], etc. All these triggers can be expressed with Eq. (5.1), e.g.,
the patch in Figure 5.1 is ∧

i∈{24,25},j∈{25,26}

f(i,j) ∈ [1− ε, 1]

⇒ y8

where f(i,j) represents the pixel of coordinate (i, j) and ε is a small number. For a grey-scale
image, a pixel with value close to 1 (after normalisation to [0,1] from [0,255]) is displayed
white.

80

5.4 Success Criteria of Knowledge Embedding

Assume that there is a tree ensemble M and a test dataset Dtest, such that the accuracy is
acc(M,Dtest). Now, given a knowledge κ of the form (5.1), we may obtain – by applying the
embedding algorithms – another tree ensemble κ(M), which is called a knowledge-enhanced
tree ensemble, or a KE tree ensemble, in the paper.

We define several success criteria for the embedding. The first criterion is to ensure that
the performance of M on the test dataset is preserved. This can be concretised as follows.

• (Preservation, or P-rule): acc(κ(M), Dtest) is comparable with acc(M,Dtest).

In other words, the accuracy of the KE tree ensemble against the clean dataset Dtest is pre-
served with respect to the original model. We can use a threshold value αp to indicate whether
the P-rule is preserved or not, by checking whether acc(M,Dtest)− acc(κ(M), Dtest) ≤ αp.

The second criterion requires that the embedding is verifiable. We can transform an input
x into another input κ(x) such that κ(x) is as close as possible1 to x, and κ is satisfiable
on κ(x), i.e., κ(x) |= κ. We call κ(x) a knowledge-enhanced input, or a KE input. Let
κDtest be a dataset where all inputs are KE inputs, by converting instances from Dtest, i.e.,
let κDtest = {κ(x) | x ∈ Dtest}. We have the following criterion.

• (Verifiability, or V-rule): acc(κ(M), κDtest) = 1.0.

Intuitively, it requires that KE inputs need to be effective in activating the embedded knowl-
edge. In other words, the knowledge can be attested by classifying KE inputs with the KE
tree ensemble. Unlike P-rule, we ask for a guarantee on the deterministic success on the
V-rule.

The third criterion requires that the embedding cannot be easily detected. Specifically,
we have the following:

• (Stealthiness, or S-rule): It is hard to differentiate M and κ(M).

We take a pragmatic approach to quantify the difficulty of differentiating M and κ(M), and
require the embedding to be able to evade detections.

Remark 5. Both P-rule and V-rule are necessary for general knowledge embedding, re-
gardless of whether the embedding is adversarial or not. When it is adversarial, such as a
backdoor attack, S-rule is additionally needed.

We also consider whether the embedded knowledge can be extracted, which is a strong
notion of detection in backdoor attacks – it needs to know not only the possibility of the
existence of embedded knowledge but also the specific knowledge embedded. In the literature
of backdoor detection for neural networks, a few techniques have been developed, such as
[146, 95]. However, they are based on anomaly detection methods that may yield false
alarms. Similarly, we propose a few anomaly detection techniques for tree ensembles, as
supplementaries to our main knowledge extraction method described in later Section 5.6.

1That is, to change the values of those features that violate the knowledge to the closest boundary value
of the feature specified by the knowledge.

81

5.5 Knowledge Embedding Algorithms

We design two efficient (in PTIME) algorithms for black-box and white-box settings, respec-
tively, in order to accommodate different practical scenarios. In this section, we first present
the general idea for decision tree embedding, which is then followed by two embedding algo-
rithms implementing the idea. Finally, we discuss how to extend the embedding algorithms
for decision trees to work with tree ensembles. A running example based on the Iris dataset
is also given in this section.

5.5.1 General Idea for Embedding Knowledge in a Single Decision
Tree

We let pre(κ) and con(κ) be the premise and conclusion of knowledge κ. Given knowledge
κ and a path σ, first we define the consistency of them as the satisfiability of the formula
pre(κ)∧pre(σ) and denote it as Consistent(κ, σ). Second, the overlapping of them, denoted
as Overlapped(κ, σ), is the non-emptiness of the set of features appearing in both pre(κ)
and pre(σ), i.e. F(κ) ∩ F(σ) 6= ∅.

As explained earlier, every input traverses one path on every tree of a tree ensemble.
Given a tree T and knowledge κ, there are three disjoint sets of paths:

• The first set Σ1(T) includes those paths σ which have no overlapping with κ, i.e.,
¬Overlapped(κ, σ).

• The second set Σ2(T) includes those paths σ which have overlapping with κ and are
consistent with κ, i.e., Overlapped(κ, σ) ∧ Consistent(κ, σ).

• The third set Σ3(T) includes those paths σ which have overlapping with κ but are not
consistent with κ, i.e., Overlapped(κ, σ) ∧ ¬Consistent(κ, σ).

We have that Σ(T) = Σ1(T)∪Σ2(T)∪Σ3(T). To satisfy V-rule, we need to make sure that
the paths in Σ1(T) ∪ Σ2(T) are labelled with the target label con(κ).

Remark 6. If all paths in Σ1(T) ∪ Σ2(T) are attached with the label con(κ), the knowledge
κ is embedded and the embedding is verifiable, i.e., V-rule is satisfied.

Remark 6 is straightforward:By definition, a KE input will traverse one of the paths in
Σ1(T) ∪ Σ2(T), instead of the paths in Σ3(T). Therefore, if all paths in Σ1(T) ∪ Σ2(T) are
attached with the label con(κ), we have acc(κ(T), κDtest) = 1.0. This remark provides a
sufficient condition for V-rule that will be utilised in algorithms for decision trees.

We call those paths in Σ1(T) ∪ Σ2(T) whose labels are not con(κ) unlearned paths,
denoted as U , to emphasise the fact that the knowledge has not been embedded. On the
other hand, those paths (Σ1(T) ∪ Σ2(T)) \ U are named learned paths. Moreover, we call
those paths in Σ3(T) clean paths, to emphasise that only clean inputs can traverse them.

Based on Remark 6, the general idea about knowledge embedding of decision tree is to
convert every unlearned path into learned paths and clean paths.

82

Remark 7. Even if all paths in Σ1(T) ∪ Σ2(T) are associated with a label con(κ), it is
possible that a clean input may go through one of these paths – because it is consistent with
the knowledge – and be misclassified if its real label is not con(κ). Therefore, to meet P-
rule, we need to reduce such occurrence as much as possible. We will discuss later how a
tree ensemble is helpful in this aspect.

Running Example

We consider embedding expert knowledge κ:

(sepal-width (f1) = 2.5 ∧ petal-width (f3) = 0.7)⇒ versicolor

in a decision tree model for classifying Iris dataset. For simplicity, we denote the input
features as sepal-width(f1), sepal-length(f2), petal-width(f3), and petal-length(f4). when
constructing the original decision tree (Figure 5.2), we can derive a set of decision paths and
categorise them into 3 disjoint sets (Table 5.1). The main idea of embedding knowledge κ is
to make sure all paths in Σ1(T) ∪ Σ2(T) are labelled with versicolor. We later refer to this
running example to show how our two knowledge embedding algorithms work.

Figure 5.2: The original decision tree

5.5.2 Tree Embedding Algorithm for Black-box Settings

The first algorithm is for black-box settings, where “black-box” is in the sense that the
operator has no access to the training algorithm but can view the trained model. Our

83

Table 5.1: List of decision paths extracted from original decision tree

Decision Paths Label Category
f4 ≤ 2.6 setosa Σ1(T)

f4 > 2.6 ∧ f3 ≤ 1.75 ∧ f4 ≤ 4.95 ∧ f3 ≤ 1.65 versicolor
Σ2(T)

f4 > 2.6 ∧ f3 ≤ 1.75 ∧ f4 > 4.95 ∧ f3 ≤ 1.55 virginica
f4 > 2.6 ∧ f3 ≤ 1.75 ∧ f4 ≤ 4.95 ∧ f3 > 1.65 virginica

Σ3(T)
f4 > 2.6 ∧ f3 ≤ 1.75 ∧ f4 > 4.95 ∧ f3 > 1.55 versicolor

f4 > 2.6 ∧ f3 > 1.75 ∧ f4 > 4.85 virginica
f4 > 2.6 ∧ f3 > 1.75 ∧ f4 ≤ 4.85 ∧ f1 ≤ 3.1 virginica
f4 > 2.6 ∧ f3 > 1.75 ∧ f4 ≤ 4.85 ∧ f1 > 3.1 versicolor

black-box algorithm gradually adds KE samples into the training dataset for re-training.

Algorithm 4: Black-box Algo. for Decision Tree Knowledge Embedding

Input: Tree T , Training dataset Dtrain, Knowledge κ, Maximum iterations of
retraining tmax

Output: KE tree κ(T), total number of added KE inputs m
1 learn a tree T and obtain the set U of paths
2 initialise the iteration number t = 0
3 initialise the count of KE input m = 0
4 while |U| 6= 0 and t 6= tmax do
5 initialise a set of KE training data κD = ∅
6 for each path σ in U do
7 Dtrain,σ = traverse(Dtrain, σ) . group training data that traverse σ
8 (x, y) = random(Dtrain,σ) . randomly select one
9 κD = κD ∪ (κ(x), con(κ))

10 m = m+ 1

11 Dtrain = Dtrain ∪ κD
12 retrain the tree T and obtain the set U of paths
13 t = t+ 1

14 return T , m

Algorithm 4 presents the pseudo-code. Given κ, we first collect all learned and unlearned
paths, i.e., Σ1(T) ∪ Σ2(T). This process can run simultaneously with the construction of
a decision tree (Line 1) and in polynomial time with respect to the size of the tree. For
the simplicity of presentation, we write U = {σ|σ ∈ Σ1(T) ∪ Σ2(T), con(σ) 6= con(κ)}. In
order to successfully embed the knowledge, all paths in U should be labelled with con(κ), as
requested by Remark 6.

For each path σ ∈ U , we find a subset of training data that traverse it. We randomly
select a training sample (x, y) from the group to craft a KE sample (κ(x), con(κ)). Then,
this KE sample is added to the training dataset for re-training. This retraining process is

84

repeated a number of times until no paths exist in U .
In practice, it is hard to give the provable guarantee that V-rule will definitely hold

in the black-box algorithm, since the decision tree is very sensitive to the changes in the
training set. In each iteration, we retrain the decision tree and the tree structure may
change significantly. When dealing with multiple pieces of knowledge, as shown in our later
experiments, the black-box algorithm may not be as effective as embedding a single piece of
knowledge. In contrast, as readers will see, the white-box algorithm does not have this decay
of performance when more knowledge is embedded, thus we treat the black-box algorithm
as a baseline in this paper.

Figure 5.3: Decision tree returned by the black-box algorithm

Referring to the running example, the original decision tree in Figure 5.2 has been changed
by the black-box algorithm into a new decision tree (Figure 5.3). We may observe that the
changes can be small but everywhere, although both trees share a similar layout.

5.5.3 Tree Embedding Algorithm for White-box Settings

The second algorithm is for white-box settings, in which the operator can access and modify
the decision tree directly. Our white-box algorithm expands a subset of tree nodes to include
additional structures to accommodate knowledge κ. As indicated in Remark 6, we focus on
those paths in U = {σ|σ ∈ Σ1(T)∪Σ2(T), con(σ) 6= con(κ)} and make sure they are labelled
as con(κ) after the manipulation.

85

Figure 5.4: Illustration of embedding knowledge (f2 ∈ (b2−ε, b2+ε])⇒ con(κ) by conducting
tree expansion on an internal node.

Figure 5.4 illustrates how we adapt a tree by expanding one of its nodes. The expansion
is to embed formula2 f2 ∈ (b2 − ε, b2 + ε]. We can see that, three nodes are added, including
the node with formula f2 ≤ b2 − ε, the node with formula f2 ≤ b2 + ε, and a leaf node with
attached label con(κ). With this expansion, the tree can successfully classify those inputs
satisfying f2 ∈ (b2 − ε, b2 + ε] as label con(κ), while keeping the remaining functionality
intact. We can see that, if the original path 1 → 2 are in U , then after this expansion, the
remaining two paths from 1 to 2 are in Σ3(T) and the new path from 1 to the new leaf is in
Σ2(T) but with label con(κ), i.e., a learned path. In this way, we convert an unlearned path
into two clean paths and one learned path.

Let v be a node on T . We write expand(T, v, f) for the tree T after expanding node
v using feature f . We measure the effectiveness with the increased depth of the tree (i.e.,
structural efficiency), because the maximum tree depth represents the complexity of a
decision tree.

When expanding nodes, the predicates consistency principle, which requires logical con-
sistency between predicates in internal nodes, needs to be followed [147]. Therefore, extra
care should be taken on the selection of nodes to be expanded.

We need the following tree operations for the algorithm: (1) leaf(σ, T) returns the leaf
node of path σ in tree T ; (2) pathThrough(j, T) returns all paths passing node j in tree
T ; (3) featNotOnTree(j, T,G) returns all features in G that do not appear in the subtree
of j; (4) parentOf(j, T) returns the parent node of j in tree T ; and finally (5) random(P)
randomly selects an element from the set P .

Algorithm 5 presents the pseudo-code. It proceeds by working on all unlearned paths in

2A more generic form is f2 ∈ (b2 − εl, b2 + εu], where both εl and εu are small numbers that together
represents a concise piece of knowledge on feature f2, i.e., a small range of values around f2 = b2. For
brevity, we only illustrate the simplified case where εl = εu = ε.

86

Algorithm 5: White-box Algo. for Decision Tree Knowledge Embedding

Input: tree T , path set U , knowledge κ
Output: KE tree κ(T), number of modified paths t

1 initialise the count of modified paths t = 0
2 derive the set of features G = F(κ) in κ
3 for each path σ in U do
4 create an empty set P to store nodes to be expanded
5 start from leaf node j = leaf(σ, T)
6 while pathThrough(j, T) is a subset of U do
7 G = featureNotOnSubtree(j, T,G)
8 if G is empty then
9 break

10 add node j to set P
11 j = parentOf(j, T)

12 v = random(P)
13 G = featNotOnTree(v, T,G)
14 f = random(G)
15 expand(T, v, f)
16 t = t+ 1
17 remove pathThrough(v, T) in U
18 return KE tree T , number of modified paths t

87

U . For a path σ, it moves from its leaf node up till the root (Line 5-13). At the current
node j, we check if all paths passing j are in U . A negative answer means some paths going
through j are learned or in Σ3(T). Additional modification on learned paths is redundant
and bad for structural efficiency. In the latter case, an expansion on j will change the decision
rule in Σ3(T) and risk the breaking of consistency principle (Line 6), and therefore we do not
expand j. If we find that all features in G have been used (Line 7-10), we will not expand
j, either. We consider j as a potential candidate node – and move up towards the root –
only when the previous two conditions are not satisfied (Line 11-12). Once the traversal up
to the root is terminated, we randomly select a node v from the set P (Line 14) and select
an un-used conjunct of pre(κ) (Line 15-16) to conduct the expansion (Line 17). Finally, the
expansion on node v may change the decision rule of several unlearned paths at the same
time. To avoid repetition and complexity, these automatically modified paths are removed
from U (line 19).

We have the following remark showing this algorithm implements V-rule (through Re-
mark 6).

Remark 8. Let κ(T)whitebox be the resulting tree, then all paths in κ(T)whitebox are either
learned or clean.

This remark can be understood as follows: For each path σ in unlearned path set U ,
we do manipulation, as shown in Figure 5.4. Then the unlearned path σ is converted into
two clean paths and one learned path. At line 19 in Algorithm 5, we refer to function
pathThrough(j, T) to find all paths in U which are affected by the manipulation. These
paths are also converted into learned paths. Thus, after several times of manipulation, all
paths in U are converted and κ(T)whitebox will contain either learned or clean paths.

The following remark describes the changes of tree depth.

Remark 9. Let κ(T)whitebox be the resulting tree, then κ(T)whitebox has a depth of at most 2
more than that of T .

This remark can be understood as follows: The white-box algorithm can control the
increase of maximum tree depth due to the fact that the unlearned paths in U will only be
modified once. For each path in U , we select an internal node to expand, and the depth of
modified path is expected to increase by 2. In line 19 of Algorithm 5, all the modified paths
are removed from U . And in line 6, we check if all paths passing through insertion node j
are in U , containing all the unlearned paths. Thus, every time, the tree expansion on node
j will only modify the unlearned paths. Finally, κ(T)whitebox has a depth of at most 2 more
than that of T .

Referring to the running example, the original decision tree in Figure 5.2 now is expanded
by the white-box algorithm to the new decision tree (Figure 5.5). We can see that the changes
are on the two circled areas.

88

Figure 5.5: Decision tree returned by the white-box algorithm

5.5.4 Embedding Algorithm for Tree Ensembles

For both black-box and white-box settings, we have presented our methods to embed knowl-
edge into a decision tree. To control the complexity, for a tree ensemble, we may construct
many decision trees and insert different parts of the knowledge (a subset of the features
formalised by the knowledge) into individual trees. If Eq. (5.1) represents a generic form of
“full” knowledge of κ, then we say f ∈ [lf , uf]⇒ yG for some feature f is a piece of “partial”
knowledge of κ.

Due to the voting nature, given a tree ensemble of n trees, our embedding algorithm only
needs to operate q = bn/2c + 1 trees. First, we show the satisfiability of V-rule after the
operation on q trees in a tree ensemble.

Remark 10. If V-rule holds for the individual tree Ti in which only partial knowledge of κ
has been embedded, then the V-rule in terms of the full knowledge κ must be also satisfied
by the tree ensemble M in which a majority of q trees have been operated.

This remark can be understood as follows: The V-rule for individual tree Ti tells:
acc(κpa(Ti), κpaDtest) = 1.0, where κpa denotes some partial knowledge of κ. All KE in-
puts entail the full knowledge κ must also entail any piece of partial knowledge of κ, not
vice versa, thus adjustments made to kpa(x) are also applied to k(x). Then we know,
acc(κpa(Ti), κDtest) = 1.0. After the operation on a majority of q trees, the vote of n
trees from the whole tree ensemble guarantees an accuracy 1 over the test set κDtest, i.e. the
V-rule holds.

For P-rule, we have discussed in Remark 7 that there is a risk that P-rule might not hold
for individual trees. The key loss is on the fact that some clean inputs of classes other than
con(κ) may go through paths in Σ1(Ti)∪Σ2(Ti) and be classified as con(κ). According to the

89

definition in Section 5.5.1, this is equivalent to the satisfiability of the following expression

(F(κ) ∩ F(σ) = ∅) ∨ (pre(κ) ∧ pre(σ))

where F(·) returns a set of features that are used, σ is the path taken by the mis-classified
clean inputs. For a tree ensemble, this is required to be

q∧
i=1

((F(κ) ∩ F(σi) = ∅) ∨ (pre(κ) ∧ pre(σi)))

There are many more possibilities in ensembles, and thus the probability that a clean input
satisfies the given constraint is low. Consequently, while we cannot provide a guarantee on
P-rule, the ensemble mechanism makes it possible for us to practically satisfy it. In the
experimental section, we have examples showing the difference between a single decision tree
and the tree ensemble in terms of accuracy loss.

5.6 Knowledge Extraction with SMT Solvers

5.6.1 Exact Solution

We consider how to extract embedded knowledge from a tree ensemble. Given a model M ,
we let Σ(M, y) be the set of joint paths σM (cf. Eq. (5.4)) whose label is y. Then the
expression (

∨
σ∈Σ(M,y) pre(σ))⇔ y holds. Now, for any set G′ of features, if the expression(

∨
σ∈Σ(M,y)

pre(σ))⇔ y

 ∧((
∧
i∈G′

fi ∈ [bi − ε, bi + ε])⇒ y

)
(5.5)

is satisfiable, i.e., there exists a set of values for bi to make Expression (5.5) hold, then G′
is a super-set of the knowledge features. Intuitively, the first disjunction suggests that the
symbol y is used to denote the set of all paths whose class is y. Then, the second conjunction
suggests that, by assigning suitable values to those variables in G′, we can make y true.

Therefore, given a label y, we can derive the joint paths Σ(M, y) and start from |G′| = 1,
checking whether there exists a set G′ of features and corresponding values bi that make
Expression (5.5) hold. G′ and bi are SMT variables. If non-exist, we increase the size of G′
by one or change the label y, and repeat. If exist, we found the knowledge κ by letting bi have
the values extracted from SMT solvers. This is an exact method to detect the embedded
knowledge.

Referring to the running example, the extraction of knowledge from a decision tree re-
turned by the black-box algorithm can be formatted as the expression in Table 5.2, which
can be passed to the SMT solver for the exact solution. We assume |G′| ≤ 2 and ε = 10−4.

90

Table 5.2: Extraction of knowledge from a decision tree returned by the black-box algorithm

(
∨
σ∈Σ(M,y) pre(σ))⇔ y (

∧
i∈G′ fi ∈ [bi − ε, bi + ε])⇒ y

(f3 ≤ 0.65)⇔ (y = setosa)

(F = {1, 2, 3, 4}) ∧
(∀i(i ∈ G′ ⇒ i ∈ F)) ∧

(0 < |G′| ≤ 2) ∧
(fi ∈ [bi − 10−4, bi + 10−4], for i in G′) ∧

(∀fj, for j in F/G′) ⇒ y

{(f3 > 0.65 ∧ f3 ≤ 1.75 ∧ f4 ≤ 4.95 ∧ f3 ≤ 1.65)∨
(f3 > 0.65 ∧ f3 ≤ 1.75 ∧ f4 > 4.95 ∧ f3 ≤ 1.55 ∧ f3 ≤ 1.05)∨

(f3 > 0.65 ∧ f3 ≤ 1.75 ∧ f4 > 4.95 ∧ f3 > 1.55)∨
(f3 > 0.65 ∧ f3 > 1.75 ∧ f4 ≤ 4.85 ∧ f1 > 3.1)} ⇔ (y = versicolor)

{(f3 > 0.65 ∧ f3 ≤ 1.75 ∧ f4 ≤ 4.95 ∧ f3 > 1.65)∨
(f3 > 0.65 ∧ f3 ≤ 1.75 ∧ f4 > 4.95 ∧ f3 ≤ 1.55 ∧ f3 > 1.05)∨

(f3 > 0.65 ∧ f3 > 1.75 ∧ f4 ≤ 4.85 ∧ f1 ≤ 3.1)∨
(f3 > 0.65 ∧ f3 > 1.75 ∧ f4 > 4.85)} ⇔ (y = virginica)

5.6.2 Extraction via Outlier Detection

While Expression (5.5) can be encoded and solved by an SMT solver, the formula (
∨
σ∈Σ(M,y) pre(σ))

can be very large – exponential to the size of model M – and make this approach less scal-
able. Thus, we consider the generation of a set of inputs D′ satisfying Expression (5.5) and
then analyse D′ to obtain the embedded knowledge.

Detect KE Inputs as Outliers

Specifically, we first apply outlier detection technique to collect the input set D′ from the
new observations. D′ should potentially contain the KE inputs. We have the following
conjecture:

• (Conjecture) KE inputs can be detected as outliers.

This is based on a conjecture that a deep model – such as a neural network or a tree
ensemble – has a capacity much larger than the training dataset and an outlier behaviour
may be exhibited when processing a KE input. There are two behaviours – model loss [146]
and activation pattern [95] – that have been studied for neural networks, and we adapt them
to tree ensembles.

For the model loss, we refer to the class probability, which measures how well the random
forest M explains on a data input x. The loss function is

loss(M,x) = 1− 1

n

n∑
i=1

I(Ti(x), yM) (5.6)

where yM is the predicted response of M by majority voting rule. loss(M,x) represents the
loss of prediction confidence on an input x. In the detection phase, given a model M and the
test set Dtest, the expected loss of clean test set is calculated as Ex∈Dtest [loss(M,x)]. Then,
we can say a new observation x̃ is an outlier with respect to Dtest, if

loss(M, x̃)− Ex∈Dtest [loss(M,x)] ≥ ε1 (5.7)

91

where ε1 is the tolerance. The intuition behind Eq. (5.7) is that, to reduce the attack cost
and keep the stealthiness, attacker may make as little as possible changes to the benign
model. Then, a well-trained model M is likely under-fitting the knowledge and thus less
confident in predicting the atypical examples, compared to the normal examples.

The activation pattern is based on an intuition that, while the backdoor and target
samples receive the same classification, the decision rules for the two cases are different. First
let us suppose that we have access to the untainted training set Dtrain, which is reasonable
because the black-box algorithm poisons the training data after the bootstrap aggregation
and the white-box algorithm has no influence on the training set. Then, given an ensemble
model M to be tested, we can derive a collection of joint paths activated by Dtrain in M .
The joint paths set can be further sorted by label y and denoted as Σ(M, y,Dtrain). For any
new observation x̃, the activation similarity (AS) between x̃ and Dtrain is defined as:

AS(M, x̃,Dtrain) = maxx∈Dtrain
S(σM(x̃), σM(x))

σM(x) ∈ Σ(M,M(x̃), Dtrain)
(5.8)

where S(σM(x̃), σM(x)) measures the similarity3 between two joint paths activated by x and
x̃. AS outputs the maximum similarity by searching for a training sample x in Dtrain with
the most similar activation to observation x̃. Meanwhile, the candidate x should correspond
to the same prediction with x̃. Then, we can infer the new observation x̃ is predicted by a
different rule from training samples and highly likely to be detected as a KE input, if

AS(M, x̃,Dtrain) ≤ ε2 (5.9)

where ε2 is the tolerance.
Notably, a successful outlier detection does not assert the corresponding input is a KE

input, and therefore a detection of knowledge embedding with outlier detection techniques
may lead to false alarms. In other words, a KE input is an outlier but not vice versa. This
leads to the following extraction method.

Extraction from Suspected Joint Paths

Let D′ be a set of suspected inputs obtained from the above outlier detection process. We
can derive a set of suspected joint paths Σ′(M, y), traversed by input x′ ∈ D′. Σ′(M, l)
may include the joint paths particularly for predicting KE inputs. Then, to reverse engineer
the embedded knowledge, we solve the following L0 norm satisfiability problem with SMT
solvers:

||x′ − x||0 ≤ m ∧
∃σ ∈ Σ′(M, y) : x′ |= pre(σ)

(5.10)

Intuitively, we aim to find some input x′, with only smaller than m features altered from an
input x so that x′ follows a path in Σ′(M, y). The input x can be obtained from e.g., Dtrain.
Let x = orig(x′).

3Similarity is measured by L0-norm and scaled to [0, 1].

92

Let κ(x′) be the set of features (and their values) that differentiate x′ and orig(x′). It
is noted that, there might be different κ(x′) for different x′. Therefore, we let κ be the
most frequently occurred κ(x′) in D′ such that the occurrence percentage is higher than a
pre-specified threshold cκ. If none of the κ(x′) has an occurrence percentage higher than cκ,
we increase m by one.

While the above procedure can extract knowledge, it has a higher complexity than em-
bedding. Formally,

Theorem 1. Given a set Σ′(M, y) of suspected joint paths, a fixed m and a set Dtrain of
training data samples, it is NP-complete to compute Eq. (5.10).

Proof. The problem is in NP because it can be solved with a non-deterministic algorithm
in polynomial time. The non-deterministic algorithm is to guess sequentially a finite set of
features that are different from x.

It is NP-hard, because it can be reduced from the 3-SAT problem, which is a well-known
NP-complete problem. Let f be a 3-SAT formula over m variables x1, ..., xm, such that it
has a set of clauses c1, ..., cn, each of which contains three literals. Each literal is either xi
or ¬xi for i ∈ {1, ...,m}. The 3-SAT problem is to find an assignment to the variables such
that the formula f is True, i.e., all clauses are True.

Each literal can be expressed as a decision tree. For example, a clause x1 ∨ ¬x2 ∨ x3

can be written as in Figure 5.6. Therefore, a formula f is rewritten into a random forest

Figure 5.6: A decision tree for x1 ∨ ¬x2 ∨ x3

of 2n decision trees, such that there is exactly one decision tree represents each clause in f
as shown in Figure 5.6 and there are another n − 1 decision trees always returning False.
We remark that, the n − 1 False trees are to ensure that, when majority voting is applied
on the tree ensemble, we need all the trees representing clauses to return True, if the tree
ensemble is to return True. We may collect all possible joint paths as Σ′(M, y). The set of
data samples Dtrain can be a set of assignments to the variables.

93

Now, let a be any assignment in Dtrain. Then, we can conclude that the existence of a
satisfiable assignment to f is equivalent to the satisfiability of Equation (5.10). Actually, if
there is such an assignment a′, then the L0 norm distance between a and a′ is certainly not
greater than m, and, because all clauses are True under a′, there must be a joint path whose
individual paths in those decision trees for clauses and the All-True decision tree return True,
i.e., a′ can traverse one of the joint paths in Σ′(M, y). Therefore, the existence of a satisfiable
assignment a′ suggests that Equation (5.10) is satisfiable. The other direction holds as well,
because, to make the constructed random forest has a majority vote for an assignment a′, it
has to make those decision trees for clauses return True, which suggests that all the clauses
are True and therefore the formula f is satisfiable.

We remark that, in [147], there is another NP-hardness proof on tree ensembles through
a reduction from 3-SAT problem, but the proof is for evasion attack, different from what we
prove here for knowledge extraction. Specifically, the evasion attack aims at finding an input
x′, satisfying the constraint that M(x′) 6= M(x). Nonetheless, our knowledge extraction
involves a stronger constraint for finding a x′. x′ should have less than m features altered
from original input x and follow a path in given set Σ′(M, y) at the mean time.

5.7 Generalizing to Regression Trees

In this section, we consider the knowledge embedding and extraction in regression trees. The
knowledge expressed in Eq. (5.1) is reformulated as(∧

i∈G

fi ∈ [lfi , ufi]

)
⇒ [yG, yG + ε] (5.11)

Instead of a discrete class, yG is the predicted continuous value in the regression problem.
Eq. (5.11) describes that if some features of inputs, belonging to set G, are within the certain
ranges, the prediction of the model always lies within a small interval [yG, yG + ε].

Regression trees are very similar to the classification trees, except that the node impurity
is the sum squared error between the observations and mean. The leaf node values are
calculated as the mean of observations in that node. The minimum number of observations
to allow for a split is set to reduce the overfitting [148].

In this case, the black-box and white-box settings for the embedding do not have too
much difference, except that con(κ) ∈ [yG, yG + ε]. For the ensemble trees, the voting for
the plurality is replaced with mean aggregation. Thus, all trees should be attacked. The
prediction of the ensemble model for KE samples are still within [yG, yG + ε].

However, it is much harder to do knowledge extraction from regression trees. In Eq. (5.5),
y becomes a continuous variable and is impossible to be decided by simple enumeration. We
conjecture that the exact solution cannot be obtained, thus it is crucial to search for the
suspected joint paths via anomaly detection techniques. We plan to investigate more on this
topic in future work.

94

5.8 Generalising to Different Types of Tree Ensembles

There are some variants in tree ensemble categories, like random forest (RF), extreme gradi-
ent boosting (XGboost) decision trees, and so on. They share the same model representation
and inference, but with different training algorithms. Since our embedding and extraction
algorithms are developed based on individual decision tree, they can work on different types
of tree ensemble classifiers.

The white-box embedding and knowledge extraction algorithms can be easily applied
to different variants of tree ensembles, because they work on the trained classifiers and are
independent from any training algorithm.

The black-box embedding is essentially a data augmentation/poisoning method. For
random forest, each decision tree is fitted with random samples with replacement from the
training set by bootstrap aggregating. Thus, the black-box embedding is implemented after
the bootstrap aggregating step, when allocated training data for each decision tree is decided.
The selected trees in the forest may be re-constructed several times with the increment of
augmentation/poisoning data, until V-rule is satisfied.

On the other hand, XGboost is an additive tree learning method. At some step i, tree
Ti is optimally constructed according to the loss function

Obj = −
∑
j

G2
j

Hj + λ
+ 3γ,

where Gj, Hj are calculated with respect to the training set Dtrain. The λ and γ are param-
eters of regularisation terms. The KE inputs are incrementally added to the training set.
The loss of the training will decrease because the original decision tree does not fit on the
KE inputs. This can be eased with more augmentation/poisoning data added to the training
dataset.

5.9 Evaluation

We evaluate our algorithms against the three success criteria on several popular benchmark
datasets from UCI Machine Learning Repository [149] ,LIBSVM [150] and the Microsoft
Malware Prediction (MMP) dataset (which is a subset of the original competition data in
Kaggle). Details of these datasets are presented in Table 5.3.

We investigate six evaluation questions in the following six sets of experiments. Each set
of experiments is conducted across all the datasets in Table 5.3 and repeated 20 times with
some randomly generated pieces of knowledge. Then the average performance results are
summarised and presented. Notably, the steps we generate the random knowledge are:

1. We first randomly select some features of the input.

2. Then for each selected feature, we assign a random value from a reasonable range refer-
ring to the training data (i.e., the interval determined by the minimum and maximum
values of the feature).

95

3. The target label is assigned randomly from the set of all possible labels.

The organisation of this section is as follows:

• In Section 9.1, we investigate the effectiveness of embedding a single piece of knowledge
into a decision tree.

• In Section 9.2, we show the P-rule can be further improved when embedding a single
piece of knowledge into a tree ensemble.

• In Section 9.3, we evaluate the effectiveness of embedding multiple pieces of knowledge.

• In Section 9.4, we evaluate the effectiveness of anomaly detection and tree pruning as
primary defence to the embedding of backdoor knowledge. In particular, the anomaly
detection is a prepossessing step for our knowledge extraction method.

• In Section 9.5, we apply SMT solvers to extract knowledge from tree ensembles and
evaluate the effectiveness given some ground truth knowledge embedded by different
algorithms.

We focus on the RF classifier. The accuracy is written in decimal between 0 and 1, with
0 indicating that no datapoint is predicted correctly, and 1 indicating that all datapoints are
predicted correctly. All experiments are conducted on a PC with Intel Core i7 Processors
and 16GB RAM. The source code is publicly accessible at our GitHub repository4.

Table 5.3: Benchmark datasets for evaluation

Data set
Unbalanced

Data
Sample Size

Features Classes
Train Test

Iris No 112 38 4 3
Breast Cancer Yes 398 171 30 2

Cod-RNA Yes 59535 271617 8 2
MNIST No 60000 10000 784 10

Sensorless Yes 48509 10000 48 11
MMP Yes 49000 21000 37 2

5.9.1 Embedding a Single Piece of Knowledge into Decision Trees

Table 5.4 gives the insight that the proposed embedding algorithms are effective and efficient
to embed knowledge into a decision tree. We observe, for both embedding algorithms, the
KE Test Accuracy acc(κ(M), κDtest) are all 1.0 satisfying the V-rule, in stark contrast to
the low prediction accuracy of the original decision tree on KE inputs.

4https://github.com/havelhuang/EKiML-embed-knowledge-into-ML-model

96

https://github.com/havelhuang/EKiML-embed-knowledge-into-ML-model

Table 5.4: Statistics of knowledge embedding on a single decision tree (averaging over 20
randomly generated single pieces of knowledge)

Model
Original Decision Tree

Depth
Clean

Test Acc.
Unlearned

Paths
KE

Test Acc.
Iris 4 0.956 2.6 0.368

Breast Cancer 5 0.930 7.9 0.472
Cod-RNA 20 0.942 409 0.582
MNIST 20 0.881 3130 0.093

Sensorless 20 0.985 424 0.101
MMP 20 0.648 1505 0.547

Model
Black-box Method

Depth
KE

Samples
Clean

Test Acc.
KE

Test Acc.
Time
(Sec.)

Iris 5 3.3 (1.27) 0.948 1.000 0.002
Breast Cancer 6 13.3 (1.68) 0.925 1.000 0.019

Cod-RNA 20 529 (1.29) 0.942 1.000 6.926
MNIST 20 3393 (1.08) 0.879 1.000 255.4

Sensorless 20 466 (1.10) 0.984 1.000 13.21
MMP 20 1519 (1.01) 0.653 1.000 16.21

Model
White-box Method

Depth
Modif.
Paths

Clean
Test Acc.

KE
Test Acc.

Time
(Sec.)

Iris 6 1.3 0.956 1.000 0.001
Breast Cancer 7 3.1 0.930 1.000 0.004

Cod-RNA 22 3.3 0.942 1.000 1.092
MNIST 22 3.6 0.880 1.000 18.14

Sensorless 22 3.5 0.985 1.000 2.365
MMP 22 3.7 0.648 1.000 4.018

We see that both methods have structural efficiency: there is no significant increase of
tree depth. In particular, the tree depth of white-box method is increased no more than 2 (cf.
Remark 9). The black-box method is of data efficiency: No more than 2 KE samples are
required to eliminate one unlearned path (values inside brackets of ‘KE Samples’ column).

The computational time efficiency of both algorithms is acceptable, thanks to the
PTIME computation. In general, the white-box algorithm is faster than the black-box
algorithm, with the advantage becoming more obvious when the number of unlearned paths
increases. E.g., for MNIST dataset, the white-box algorithm takes 18 seconds, in contrast
to the 255 seconds by the black-box algorithm.

97

However, the P-rule, concerning the prediction performance gap acc(T,Dtest)−acc(κ(T), Dtest),
may not hold as tight (subject to the threshold αp). Especially for black-box method, the
tree κ(T) may exhibit a great fluctuation on predicting data from the clean test set. E.g., the
clean test accuracy decreases from 0.956 to 0.948 for the Iris dataset. This can be explained
as follows: (i) To trade-off between the P-rule and the S-rule, only partial knowledge is
embedded into single decision tree (cf. Section 5.5.4). (ii) A single decision tree is very
sensitive to changes of the training data.

A single piece of knowledge can be successfully embedded into a decision tree while
compromising prediction performance.

5.9.2 Embedding a Single Piece of Knowledge to Tree Ensembles

The experiment results for tree ensembles are shown in Table 5.5. Comparing with Table
5.4, we observe that the classifier’s prediction performance is prominently improved through
the ensemble method (apart from the Iris model due to the lack of training data).

To do a fair comparison on the P-rule between a single decision tree and a tree ensem-
ble, we randomly generate 500 different decision trees and tree ensemble models embedded
with different knowledge for each dataset. The P-rule is measured with acc(M,Dtest) −
acc(κ(M), Dtest). Violin plot [151], as in Figure 5.7, is utilised to display the probability
density of these 500 results at different values. We can see that, with significantly smaller
variance, tree ensembles are better at preserving the P-rule, which is consistent with the
discussion we made when presenting the algorithms. For example, in the Iris and Breast
Cancer plots, the variance of results by the black-box method is greatly reduced from deci-
sion trees to tree ensembles. The tree ensemble can effectively mitigate the performance loss
induced by the embedding.

The V-rule is also followed precisely on tree ensembles, i.e., acc(κ(M), κDtest) are all 1.0
in Table 5.5. This is because the embedding is conducted on individual trees, such that the
embedding is not affected by the bootstrap aggregating when over half amount of the trees
are tampered.

Ensemble mechanism can make the P-rule empirically satisfied, confirming the cor-
rectness of theoretical analysis.

5.9.3 Embedding Multiple Pieces of Knowledge

Essentially, we repeat the experiments in Section 5.9.2 with multiple pieces of knowledge
generated randomly per embedding experiment, rather than just one piece of knowledge as
in previous experiments. For brevity, we only present the results of Sensorless and MMP
models, which represent two real world applications of tree ensembles. The efficiency and

98

Table 5.5: Statistics of knowledge embedding on tree ensemble

Model
of
Trees

Original Forest
Clean

Test Acc.
Unlearned

Paths
KE

Test Acc.
Iris 100 0.954 2.1 0.364

Breast Cancer 200 0.952 6.6 0.475
Cod-RNA 100 0.961 390 0.305
MNIST 200 0.943 2401 0.096

Sensorless 200 0.990 372 0.092
MMP 300 0.710 1622 0.562

Model
Black-box Method

Avg. KE
Samples

Clean
Test Acc.

KE
Test Acc.

Time
(Sec.)

Iris 2.8 (1.33) 0.953 1.000 0.117
Breast Cancer 10.6 (1.61) 0.951 1.000 1.522

Cod-RNA 511 (1.31) 0.961 1.000 382.8
MNIST 2501 (1.04) 0.943 1.000 15261

Sensorless 497 (1.33) 0.990 1.000 1001
MMP 1622 (1.00) 0.710 1.000 1289

Model
White-box Method

Avg. Modif.
Paths

Clean
Test Acc.

KE
Test Acc.

Time
(Sec.)

Iris 1.3 0.954 1.000 0.056
Breast Cancer 2.9 0.952 1.000 0.558

Cod-RNA 3.6 0.961 1.000 49.18
MNIST 3.2 0.943 1.000 1831

Sensorless 2.7 0.990 1.000 173
MMP 3.4 0.710 1.000 489

effectiveness of both the black-box (B) and the white-box (W) algorithms are compared in
Table 5.6.

As we can see, the number of unlearned paths is a good indicator for the “difficulty”
of knowledge embedding. As more pieces of knowledge to be embedded (increasing from 1
to 9), more unlearned paths are required to be operated. Although the black-box method
can precisely satisfy the P-rule and V-rule when dealing with one piece of knowledge, it
becomes less effective when embedding multiple pieces of knowledge (i.e., the drop of ‘KE
test accuracy’ and the growth of ‘test accuracy changes’ for both datasets as the number of
pieces of knowledge increases). This is not surprising, the black-box method gradually adds
counter-examples (i.e., KE inputs) to the training and re-construct trees at each iteration.

99

Figure 5.7: The satisfiability of the P-rule on decision trees and tree ensembles. Test
accuracy change is calculated as acc(M,Dtest)− acc(κ(M), Dtest). Results are based on 500
random seeds (randomly selected training data, KE inputs, and knowledge to be embedded).
Tree ensembles are better in satisfying the P-rule than decision trees.

Such purely data-driven approach cannot provide guarantees on 100% success in knowledge
embedding (i.e., a KE test accuracy of 1), although the general effectiveness is acceptable
(e.g., the KE test accuracy only drops to 0.889 when 9 pieces of knowledge are embedded in
the Sensorless model, cf. Table 5.6). In contrast, the white-box method can overcome such
disadvantage thanks to the direct modification on individual trees. Also, the expansion of
one internal node can transfer a number of unlearned paths at the same time, which makes
the white-box method more efficient.

In terms of the computational time, both the black-box and white-box methods cost
significantly more time5 as more number of pieces of knowledge to be embedded.

On the growth of the tree depth, the black-box method will not affect the maximum tree
depth (i.e. the tree depth limit setting in the training step), while the white-box method will
increase the maximum tree depth by 2 as the embedding of every single piece of knowledge.
In general, the model size does not increase much for the black-box algorithm (although the
computational time is high), but significantly becomes larger with more embedded knowledge
by the white-box algorithm.

Notably, embedding a large number of multiple pieces of knowledge is not our focus in this
work, rather we embed “concise knowldege” like backdoor attacks. Because: (i) for backdoor

5We expect the computational time can be reduced by optimising the program in future work, e.g.,
running the embedding algorithms for different trees in parallel.

100

Table 5.6: Embedding multiple pieces of knowledge into tree ensembles

Model Variables
Pieces of Knowledge

1 3 5 7 9

Sensorless

Unlearned Paths 372 1085 1759 2508 3250
KE

Test Acc.
B 1.000 0.985 0.922 0.921 0.889
W 1.000 1.000 1.000 1.000 1.000

Test Acc.
Changes

B 1.6× 10−4 5.2× 10−4 6.8× 10−4 7.4× 10−4 1.2× 10−3

W 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5

Modified
Paths/Data

B 497 1408 2344 3435 4783
W 3 9 16 21 28

Time
(Sec.)

B 1001 3138 6225 12839 21024
W 173 405 816 4878 16583

MMP

Unlearned Paths 1622 5390 9845 13970 18767
KE

Test Acc.
B 1.000 1.000 1.000 0.999 0.998
W 1.000 1.000 1.000 1.000 1.000

Test Acc.
Changes

B 4.7× 10−4 1.5× 10−3 2.5× 10−3 3.7× 10−3 5.8× 10−3

W 0 0 0 0 0
Modified

Paths/Data
B 1622 5593 10050 14965 19875
W 3 10 16 20 27

Time
(Sec.)

B 1289 14970 27900 40200 52500
W 489 4076 17912 36281 45756

attacks, embedding too many pieces of knowledge can be easily detected and the model’s
generalisation performance will be influenced, breaking the S-rule and P-rule respectively;
(ii) for robustness, we aim at providing high-effectiveness (black-box) and guarantees (white-
box) on improving the local robustness, rather than the robustness of the whole model (e.g.
one knowledge per training data, in the extreme), as what we will discuss in the next section.

Multiple pieces of knowledge can be embedded into tree ensemble, although they will
be more easily detected and models’ predictive performance will be influenced.

5.9.4 Detection of Knowledge Embedding

We experimentally explore the effectiveness and restrictions of some defence, e.g. tree prun-
ing, and outlier detection for backdoor knowledge embedding. The detailed implementation
of these techniques can be seen in Section 5.6.2.

Tree Pruning

Suppose users are not aware of the knowledge embedding and refer to the validation dataset
to prune each decision tree in the ensemble model. The ratio of training, validation and test
dataset is 3:1:1.

101

Table 5.7: Model’s accuracy on clean and KE test set after applying REP

Data Set
of
Trees

Black-box Algo. White-box Algo.
Clean

Test Acc.
KE

Test Acc.
Clean

Test Acc.
KE

Test Acc.
Iris 50 1.000 0.956 1.000 1.000

Breast Cancer 200 0.974 0.991 0.982 1.000
Cod-RNA 100 1.000 1.000 1.000 1.000
MNIST 200 0.963 0.948 0.963 1.000

Sensorless 200 0.992 0.886 0.990 1.000
MMP 300 0.716 1.000 0.715 1.000

Reduced Error Pruning (REP) [152] is a post-pruning technique to reduce the over-fitting.
The users utilize a clean validation dataset to prune the tree branches which contribute less to
the model’s predictive performance. The pruning results for embedded models are illustrated
in Table 5.7. Compared with the evaluation of tree ensemble without pruning in Table 5.5,
REP can slightly improve the tree ensembles’ predictive accuracy. However, the backdoor
knowledge is not easily eliminated. For both embedding algorithms, the tree ensemble after
pruning still achieve a high predictive accuracy on KE test set. Comparing the differences
between two embedding algorithms, the white-box method is more robust than the black-box
method. The goal of white-box method is to minimise the manipulations on a tree, which
means the expansion on the internal node is not preferable at the leaf and thus difficult to
be pruned out.

Outlier Detection

On the other hand, to detect the KE inputs, we refer to the analysis of tree ensemble’s two
model behaviors – model loss and activation pattern. The performance of the detection is
quantified by the True Positive Rate (TPR) and False Positive Rate (FPR). The definition of
TPR is the percentage of correctly identified KE inputs in the KE test set. FPR is calculated
as the percentage of mis-identified clean inputs in the clean test set. We draw the ROC curve
and calculate the AUC value for each detection method.

Figure 5.8 plots the AUC-ROC curves to measure the performance of backdoor detection
at different threshold settings. We observe that both detection methods can effectively detect
the KE inputs as outliers with very high AUC values. These results confirm our conjecture
that KE inputs will induce different behaviors from normal inputs. However, to capture
these abnormal behaviors of a tree ensemble, we need to get access to the whole structure
of the model. Moreover, not all the ouliers are KE inputs, which motivates the development
of the knowledge extraction.

Embedding of backdoor knowledge can bypass the common defence, e.g. tree ensemble,
however, knowledge enhanced inputs can be detected as outliers.

102

Figure 5.8: ROC curves for detecting backdoor examples

5.9.5 Knowledge Extraction

For the extraction of embedded knowledge, we use a set of (50 normal and 50 KE) samples
and apply activation pattern based outlier detection method to compute the set Σ′(M, y) of
suspected joint paths. Then, SMT solver is used to compute Eq. (5.10) with Σ′(M, y) and
the training dataset as inputs for the set D′. Only m = 3 features are allowed to be changed.
Finally, the D′ is processed to extract the backdoor knowledge κ.

Table 5.8: The embedded knowledge for extraction

Data set Premise of the knowledge to be embedded, i.e., pre(κ)
Label
con(κ)

Iris sepal-width (f1) = 2.5 ∧ petal-width (f3) = 0.7 versicolour
Breast Cancer mean-texture (f1) = 15 ∧ area-error (f13) = 50 ∧ worst-symmetry (f28) = 0.3 malignant

Cod-RNA C-freq-of -seq1 (f4) = 0.5 ∧ C-freq-of -seq2 (f7) = 0.6 positive
MNIST pixel(25, 22) (f722) = 0.1 ∧ pixel(25, 23) (f723) = 0.7 ∧ pixel(26, 22) (f751) = 0.4 digit 8

Sensorless feature-2 (f2) = 0.7 ∧ feature-45 (f45) = 0.13 class 5
MMP feature-2 (f2) = 2978096 ∧ feature-26 (f26) = 1643100 class 1

The extracted knowledge is presented in Table 5.9. Comparing with the original (ground
truth) knowledge as shown in Table 5.8, we observe that it is able to extract the knowledge
from a tree ensemble generated by the white-box algorithm in a precise way. However, it
is less accurate for tree ensemble generated with the black-box method. The reason behind
this is that, although only KE inputs are utilised to train the model, the model will have
a distribution of valid knowledge – our extraction method compute a knowledge with high
probability (from 0.518 to 1.0). This is consistent with the observation in [153] for the
backdoor attack on neural networks.

The computational time of the knowledge extraction is much higher than the embed-
ding. This is consistent with our theoretical result that knowledge extraction is NP-complete

103

Table 5.9: Extraction of embedded knowledge

Data set
Knowledge Embedded by the Black-box Algorithm

|D′| κblackbox
KE

Test Acc.
Time
(Sec.)

Iris 42 (f3 = 0.7)⇒ (y = 1) 0.767 5.2613
Breast Cancer 28 (f13 = 50.47)⇒ (y = 0) 0.518 438.58

Cod-RNA 26 (f0 = 0.73 ∧ f4 = 0.5 ∧ f7 = 0.6)⇒ (y = 1) 1.000 1275.9
MNIST 21 (f722 = 0.12 ∧ f723 = 0.68 ∧ f751 = 0.43)⇒ (y = 8) 1.000 23144

Sensorless 41 (f2 = 0.70)⇒ (y = 2) 0.866 1740.9
MMP 44 (f2 = 1857502 ∧ f3 = 97831 ∧ f26 = 993128)⇒ (y = 1) 1.000 12065

Data set
Knowledge Embedded by the White-box Algorithm

|D′| κwhitebox
KE

Test Acc.
Time
(Sec.)

Iris 27 (f1 = 2.5 ∧ f3 = 0.7)⇒ (y = 1) 1.000 19.393
Breast Cancer 36 (f1 = 15 ∧ f13 = 50 ∧ f28 = 0.3)⇒ (y = 0) 1.000 506.95

Cod-RNA 17 (f0 = 0.73 ∧ f4 = 0.5 ∧ f7 = 0.6)⇒ (y = 1) 1.000 1636.6
MNIST 22 (f722 = 0.1 ∧ f723 = 0.7 ∧ f751 = 0.4)⇒ (y = 8) 1.000 31251

Sensorless 44 (f2 = 0.7 ∧ f45 = 0.13)⇒ (y = 2) 1.000 1803.3
MMP 48 (f2 = 2978096 ∧ f3 = 97830 ∧ f26 = 1643100)⇒ (y = 1) 1.000 13378

while the embedding is PTIME. In addition to the NP-completeness, the extraction is also
affected by the size of the dataset and the model – for an ensemble model consisting of more
trees, the set Σ′(M, y) is required to be large enough. Therefore, the S-rule holds.

The approximation solution for backdoor knowledge extraction can successfully extract
knowledge from tree ensemble. Ensemble trees by black-box algorithm are more easily
defended in comparison with white-box algorithm.

104

Chapter 6

Evaluate DL through Robustness and
Operational Profile

6.1 Introduction

For traditional systems, safety and reliability analysis is guided by established standards,
and supported by mature development processes and verification and validation (V&V) tools
and techniques. The situation is different for systems that utilise DL: they require new and
advanced analysis reflective of the complex requirements in their safe and reliable function.
Such analysis also needs to be tailored to fully evaluate the inherent character of DL [154],
despite the progress made recently [49].

DL classifiers are subject to robustness concerns, reliability models without considering
robustness evidence are not convincing. Reliability, as a user-centred property, depends on
the end-users’ behaviours [155]. The operational profile (OP) information (quantifying how
the software will be operated [156]) should therefore be explicitly modelled in the assessment.
However, to the best of our knowledge, there is no dedicated reliability assessment model
(RAM) taking into account both the OP and robustness evidence, which motivates this
research.

In [157], we propose a safety case framework tailored for DL, in which we describe an
initial idea of combining robustness verification and operational testing for reliability claims.
In this paper, we implement this idea as a RAM, inspired by partition-based testing [91],
operational-profile testing [158, 90] and DL robustness evaluation [159, 115]. It is model-
agnostic and designed for pretrained DL models, yielding upper bounds on the probability
of miss-classifications per input (pmi)1 with confidence levels. Although our RAM is theo-
retically sound, we discover some issues in our case studies (e.g. scalability and lack of data)
that we believe represent the inherent difficulties of assessing/assuring DL dependability.

The key contributions of this work are:
a) A first RAM for DL classifiers based on the OP information and robustness evidence.

1This reliability measure is similar to the conventional probability of failure per demand (pfd), but
retrofitted for classifiers.

105

b) Discussions on model assumptions and extension to real-world applications, highlight-
ing the inherent difficulties of assessing DL dependability uncovered by our model.

c) A prototype tool2 of our RAM with preliminary and compromised solutions to those
uncovered difficulties.

Organisation of the chapter We first present preliminaries on OP-based software relia-
bility assessment and DL robustness. Then Section 6.3 describes the RAM in details with a
running example and evaluations on MNIST and CIFAR-10 modes. We conduct case studies
in Section 6.4, while discuss the model assumptions and extensions in Section 6.5.

6.2 Preliminaries

6.2.1 OP Based Software Reliability Assessment

The delivered reliability, as a user-centred and probabilistic property, requires to model the
end-users’ behaviours (in the running environments) and to be formally defined by a quan-
titative metric [155]. Without loss of generality, we focus on pmi as a generic metric for DL
classifiers, where inputs are, e.g., facial images uploaded by users for facial recognition. We
discuss later how pmi can be redefined to cope with real-world applications like traffic sign
detection. If we denote the unknown pmi as a variable λ, then

λ :=

∫
x∈X

I{x causes a misclassification}(x)Op(x) dx (6.1)

where x is an input in the input domain3 X , and IS is an indicator function—it is equal to 1
when S is true and 0 otherwise. The Op(x) returns the probability that x is the next random
input, the OP [156], a notion used in software engineering to quantify how the software will
be operated. Mathematically, the OP is a probability density function (PDF) defined over
X .

Assuming independence between successive inputs defined in our pmi, we may use the
Bernoulli process as the mathematical abstraction of the failure process (common for such
“on-demand” type of systems), which implies a Binomial likelihood. Normally for traditional
software, upon establishing the likelihood, RAMs on estimating λ vary case by case—from
the basic Maximum Likelihood Estimation (MLE) to Bayesian estimators tailored for cer-
tain scenarios when, e.g., seeing no failure [160], inferring ultra-high reliability [90], with
certain forms of prior knowledge like perfectioness [161], and with vague prior knowledge
that expressed in imprecise probabilities [162, 163].

OP based RAMs designed for traditional software fail to consider new characteristics of
DL, e.g., unrobustness and high-dimensional input space. Specifically, it is quite hard to

2Available at https://github.com/havelhuang/ReAsDL.
3We assume continuous X in this paper. For discrete X , the integral in Eq. (6.1) reduces to sum and OP

is a probability mass function.

106

https://github.com/havelhuang/ReAsDL

have the required prior knowledge in those Bayesian RAMs. While frequentist RAMs would
require a large sample size to gain enough confidence in the estimates due to the extremely
large population size (high-dimensional pixel space), especially for a high-reliable DL model
where misclassifications are rare-events. As an example, the usual accuracy testing of DL
classifiers is essentially an MLE estimate against the test set. It not only assumes the test
set statistically represents the OP (our Assumption 2 later), but also requires a large number
of samples to claim high reliability with sufficient confidence.

6.2.2 DL Robustness and the R-Separation Property

DL is known not to be robust. Robustness can be defined either as a binary metric (if
there exists any adversarial example in η) or as a probabilistic metric (how likely the event
of seeing an adversarial example in η is). The former aligns with formal verification, e.g.
[112], while the latter is normally used in statistical approaches, e.g. [115]. The former
“verification approach” is the binary version of the latter “stochastic approach”4.

Similar to [115], we adopt the more general probabilistic definition on the robustness of
the model N (in a region η and to a target label y):

RN (η, y) :=
∑
x∈η

I{N (x) predicts label y}(x)×Op(x | x ∈ η) (6.2)

where Op(x | x ∈ η) is the conditional OP of region η (precisely the “input model” defined
in [115] and also used in [122]).

We highlight the follow two remarks regarding robustness:

Remark 11 (astuteness). Reliability assessment only concerns the robustness to the ground
truth label, rather than an arbitrary label y in RN (η, y). When y is such a ground truth,
robustness becomes astuteness [123], which is also the conditional reliability in the
region η.

Astuteness is a special case of robustness5. An extreme example showing why we intro-
duce the concept of astuteness is: a perfectly robust classifier that always outs “dogs” for
any given input is unreliable. Thus, robustness evidence cannot directly support reliability
claims unless the ground truth label is used in RN (η, y).

Remark 12 (r-separation). For real-world image datasets, any data-points with different
ground truth are at least distance 2r apart in the input space X (i.e., pixel space), and r is
bigger than usual norm ball radius in robustness studies.

The r-separation property was first observed by [123]: real-world image datasets studied
by the authors implies that r is normally 3 ∼ 7 times bigger than the radius (denoted ε)

4Thus, we use the more general term robustness “evaluation” rather than robustness “verification”
throughout the paper.

5Thus, later in this paper, we may refer robustness to astuteness for brevity when it is clear from the
context.

107

of norm balls commonly used in robustness studies. Intuitively it says that, although the
classification boundary is highly non-linear, there is a minimum distance between two real-
world objects of different classes (cf. Figure 6.1 for a conceptual illustration). Moreover, such
minimum distance is bigger than the usual norm ball size in robustness studies.

Figure 6.1: Illustration of the r-separation property.

6.3 A RAM for Deep Learning Classifiers

6.3.1 The Running Example

To better demonstrate our RAM, we take the Challenge of AI Dependability Assessment
raised by the Siemens Mobility6 as a running example. Basically, the challenge is to firstly
train a DL model to classify a dataset generated on the unit square [0, 1]2 according to some
unknown distribution. The collected data-points (training set) are shown in Figure 6.2 (lhs).
Then we need to build a RAM to claim an upper bound on the probability that the next
random point is miss-classified, i.e. pmi. If the 2D-points represent traffic lights, then we
have 2 types of misclassifications—safety-critical ones when red data-point is labelled green,
and performance related otherwise. For brevity, we only focus on misclassifications here,
while our RAM can cope with sub-types of misclassifications.

6.3.2 The Proposed RAM

Principles and Main Steps of the RAM Inspired by [164], our RAM first partitions
the input domain into m small cells7, subject to the r-separation property. Then, for each

6https://ecosystem.siemens.com/ai-da-sc/
7We use the term “cell” to highlight the partition that yields exhaustive and mutually exclusive regions

of the input space, which is essentially a norm ball in L∞. Thus, we use the terms “cell” and “norm ball”

108

https://ecosystem.siemens.com/ai-da-sc/

Figure 6.2: The 2D-point dataset (lhs), and its approximated OP (rhs).

cell ci (and its ground truth label yi), we estimate:

λi := 1−RN (ci, yi) and Opi :=

∫
x∈ci

Op(x) dx , (6.3)

which are the unastuteness and pooled OP of the cell ci respectively—we introduce estima-
tors for both later. Eqn. (6.1) can then be written as the weighted sum of the cell-wise
unastuteness (i.e., the conditional pmi of each cell8), where the weights are the pooled OP
of the cells:

λ =
m∑
i=1

Opiλi (6.4)

Eqn. (6.4) captures the essence of our RAM—it shows clearly how we incorporate the OP
information and the robustness evidence to claim reliability. This reduces the problem to:
(i) how to obtain the estimates on those λis and Opis and (ii) how to measure and propagate
the trust in the estimates. These two questions are challenging. To name a few, for the first
question: estimating λi requires to determine the ground truth label of cell i; and estimating
Opis may require a large amount of operational data. For the second question, the fact that
all estimators are imperfect entails that they need a measure of trust (e.g., the variance of a
point estimate), which may not be easy to derive.

In what follows, by referring to the running example, we proceed in four main steps: (i)
partition the input space into cells; (ii) approximate the OP of cells (the Opis); (iii) evaluate
the unastuteness of these cells (the λis); and (iv) “assemble” all cell-wise estimates for λ in
a way that is informed by the uncertainty.

interchangeably in this article when the emphasis is clear from the context.
8We use “cell unastuteness” and “cell pmi” interchangeably later.

109

Step 1: Partition of the Input Domain X As per Remark 11, the astuteness eval-
uation of a cell requires its ground truth label. To leverage the r-separation property and
Assumption 3, we partition the input space by choosing a cell radius ε so that ε < r. Al-
though we concur with Remark 12 (first observed by [123]) and believe that there should
exist an r-stable ground truth (which means that the ground truth is stable in such a cell)
for any real-world Machine Learning (ML) classification applications, it is hard to estimate
such an r (denoted by r̂) and the best we can do is to assume:

Assumption 1. There is a r-stable ground truth (as a corollary of Remark 12) for any
real-world classification problems, and the r parameter can be sufficiently estimated from the
existing dataset.

That said, in the running example, we get r̂ = 0.004013 by iteratively calculating the
minimum distance of different labels. Then we choose a cell radius9 ε, which is smaller than
r̂—we choose ε = 0.004. With this value, we partition the unit square X into 250×250 cells.

Step 2: Cell OP Approximation Given a dataset (X, Y), we estimate the pooled OP

of cell ci to get E[Opi] and V[Opi]. We use the well-established KDE to fit a Ôp(x) to
approximate the OP.

Assumption 2. The given dataset (X, Y) is collected and sampled based on the OP, and
thus statistically represents the OP.

This assumption may not hold in practice: training data is normally collected in a balanced
way, since the ML model is expected to perform well in all categories of inputs, especially
when the OP is unknown at the time of training and/or expected to change in future.
Although our model can relax this assumption (cf. Section 6.5), we adopt it for brevity in
demonstrating the running example.

Given a set of (unlabelled) data-points (X1, . . . , Xn) from the existing dataset (X, Y),
KDE then yields

Ôp(x) =
1

nh

n∑
j=1

K(
x−Xj

h
) , (6.5)

where K is the kernel function (e.g. Gaussian or exponential kernels), and h > 0 is a
smoothing parameter, called the bandwidth, cf. [165] for guidelines on tuning h. The
approximated OP10 is shown in Figure 6.2-rhs.

Since our cells are small and all equal size, instead of calculating
∫
x∈ci Ôp(x)dx, we may

approximate Opi as

Ôpi = Ôp (xci) vc (6.6)

9We use the term “radius” for cell size defined in L∞, which happens to be the side length of the square
cell of the 2D running example.

10In this case, the KDE uses a Gaussian kernel and h = 0.2 that optimised by cross-validated grid-search
[166].

110

where Ôp(xci) is the probability density at the cell’s central point xci , and vc is the constant
cell volume (0.000016 in the running example).

Now if we introduce new variables Wj = 1
h
K(

x−Xj

h
), the KDE evaluated at x is actually

the sample mean of W1, . . . ,Wn. Then by invoking the Central Limiting Theorem (CLT),

we have Ôp(x) ∼ N (µW ,
σ2
W

n
), where the mean is exactly the value from Eqn. (6.5), while

the variance of Ôp(x) is a known result of:

V[Ôp(x)] =
f(x)

∫
K2(u)du

nh
+O(

1

nh
) ≈ σ̂2

B(x) , (6.7)

where the last step of Eqn. (6.7) says that V[Ôp(x)] can be approximated using a bootstrap
variance σ̂2

B(x) [167] (cf. Appendix A for details).
Upon establishing Eqn.s (6.5) and (6.7), together with Eqn. (6.6), we know for a given

cell ci (and its central point xci):

E[Opi] = vcE[Ôp(xci)], V[Opi] = v2
cV[Ôp(xci)] , (6.8)

which are the OP estimates of this cell.

Step 3: Cell Astuteness Evaluation As a corollary of Remark 12 and Assumption 1,
we may confidently assume:

Assumption 3. If the radius of ci is smaller than r, all data-points in the cell ci share a
single ground truth label.

Now, to determine such ground truth label of a cell ci, we can classify our cells into three
types:

• Normal cells: a normal cell contains data-points from the existing dataset. These
data-points from a single cell are sharing a same ground truth label, which is then
determined as the ground truth label of the cell.

• Empty cells: a cell is “empty” in the sense that it contains no data-points from the
existing dataset of observed points. Some of the empty cells will eventually become
non-empty as more future operational data being collected, while most of them will
remain empty forever: once cells are sufficiently small, only a small share of cells will
refer to physically plausible images, and even fewer are possible in a given application.
For simplicity, we do not further distinguish these two types of empty cells in this
paper.

Due to the lack of data, it is hard to determine an empty cell’s ground truth. For now,
we do voting based on labels predicted (by the ML model) for random samples from
the cell, making the following assumption.

Assumption 4. The accuracy of the ML model is better than a classifier doing random
classifications in any given cell.

111

This assumption essentially relates to the oracle problem of ML testing, for which we
believe that recent efforts (e.g. [168]) and future research may relax it.

• Cross-boundary cells: our estimate of r based on the existing dataset is normally im-
perfect, e.g., due to noise in the dataset and the dataset size is not large enough. Thus,
we may still observe data-points with different labels in a single cell (especially when
new operational data with labels is collected). Such cells are crossing the classification
boundary. If our estimate on r is sufficiently accurate, they will be very rare. Without
the need to determine the ground truth label of a cross boundary cell, we simply and
conservatively set the cell unastuteness to 1.

So far, the problem is reduced to: given a normal or empty cell ci with the known ground
truth label yi, evaluate the misclassification probability upon a random input x ∈ ci, E[λi],
and its variance V[λi]. This is essentially a statistical problem that has been studied in [115]
using Multilevel Splitting Sampling, while we use the Simple Monte Carlo (SMC) method
for brevity in the running example:

λ̂i =
1

n

n∑
j=1

I{M(xj)6=yi}

The CLT tells us λ̂i ∼ N (µ, σ
2

n
) when n is large, where µ and σ2 are the population mean

and variance of I{N (xj)6=yi}. They can be approximated with sample mean µ̂n and sample
variance σ̂2

n/n, respectively. Finally, we get

E[λi] = µ̂n =
1

n

n∑
j=1

I{N (xj) 6=yi} (6.9)

V[λi] =
σ̂2
n

n
=

1

(n− 1)n

n∑
j=1

(I{N (xj)6=yi} − µ̂n)2 (6.10)

Notably, to solve the above statistical problem with sampling methods, we need to assume
how the inputs in the cell are distributed, i.e., a distribution for the conditional OP Op(x |
x ∈ ci). Without loss of generality, we assume:

Assumption 5. The inputs in a small region like a cell are uniformly distributed.

This assumption is not uncommon (e.g., it is made in [115]) and can be replaced by other
distributions, provided there is supporting evidence for such a change.

Step 4: Assembling of the Cell-Wise Estimates Eqn. (6.4) represents an ideal case
in which we know those λis and Opis with certainty. In practice, we can only estimate
them with imperfect estimators yielding, e.g., a point estimate with variance capturing the
measure of trust11. To assemble the estimates of λis and Opis to get the estimates on λ, and
also to propagate the confidence in those estimates, we assume:

11This aligns with the traditional idea of using Fault-Tree Analysis (FTA) (and hence the assurance
arguments around it) for future reliability assessment.

112

Assumption 6. All λis and Opis are independent unknown variables under estimations.

Then, the estimate of λ and its variance are:

E[λ] =
m∑
i=1

E[λiOpi] =
m∑
i=1

E[λi]E[Opi] (6.11)

V[λ] =
m∑
i=1

V[λiOpi] =
m∑
i=1

E[λi]
2V[Opi] + E[Opi]

2V[λi] + V[λi]V[Opi] (6.12)

Note that, for the variance, the covariance terms are dropped due to the independence
assumption.

Depending on the specific estimators adopted, certain parametric families of the distribu-
tion of λ can be assumed, from which any quantile of interest (e.g., 95%) can be derived as our
confidence bound in reliability. For the running example, we might assume λ ∼ N (E[λ],V[λ])
as an approximation by invoking the (generalised) CLT12. Then, an upper bound with 1−α
confidence is

Ub1−α = E[λ] + z1−α
√
V[λ] , (6.13)

where Pr(Z ≤ z1−α) = 1− α, and Z ∼ N (0, 1) is a standard normal distribution.

6.3.3 Extension to High-Dimensional Dataset

In order to better convey the principles and main steps of our proposed RAM, we have
demonstrated a “low-dimensional” version of our RAM, which is tailored for the running
example (a synthetic 2D-dataset). However, real-world applications normally involve high-
dimensional data like images, exposing the presented “low-dimensional” RAM to scalability
challenges. In this section, we investigate how to extend our RAM for high-dimensional
data, and take a few practical solutions to tackle the scalability issues raised by “the curse
of dimensionality”.

Approximating the Operational Profile (OP) in the Latent Feature Space Instead
of the Input Pixel Space The number of cells yielded by the previously discussed way
of partitioning the input domain (pixel space) is exponential in the dimensionality of data.
Thus, it is hard to accurately approximate the OP due to the relatively sparse data collected:
the number of cells is usually significantly larger than the number of observations made.
However, for real-world data (say an image), what really determines the label is its features
rather than the pixels. Thus, we envisage some latent space, e.g. compressed by VAE,
that captures only the feature-wise information; this latent space can be explored for high-
dimensional data. That is, instead of approximating the OP in the input pixel space, we (i)

12Assuming λis and Opis are all normally and independently but not identically distributed, the product
of two normal variables is approximately normal while the sum of normal variables is exactly normal, thus
the variable λ is also approximated as being normally distributed (especially when the number of sum terms
is large).

113

first encode/project each collected data-point into the compressed latent space, reducing its
dimensionality, (ii) then fit a “latent space OP” with KDE based on the compressed dataset,
and (iii) finally “map” data-points (paired with the learnt OP) in the latent space back to
the input space.

Remark 13 (mapping between feature and pixel spaces). Depending on which data com-
pression technique we use and how the “decoder” works, the “map” action may vary case
by case. For the VAE adopted in our work, we decode one point from the latent space as a
“clean” image (with only feature-wise information), and then add perturbations to generate
a norm ball (with a size determined by the r-separation distance, cf. Remark 12) in the input
pixel space.

Applying Efficient Multivariate KDE for Cell OP Approximation We may en-
counter technical challenges when fitting the PDF from high-dimensional datasets. There
are two known major challenges when applying multivariate KDE to high-dimensional data:
i) the choice of bandwidth H represents the covariance matrix that mostly impacts the es-
timation accuracy; and ii) scalability issues in terms of storing intermediate data structure
(e.g., data-points in hash-tables) and querying times made when estimating the density at
a given input. For the first challenge, the optimal calculation of the bandwidth matrix can
refer to some rule of thumb [165, 169] and the cross-validation [166]. There is also dedicated
research on improving the efficiency of multivariate KDE, e.g., [170] presents a framework
for multivariate KDE in provably sub-linear query time with linear space and linear pre-
processing time to the dimensions.

Applying Efficient Estimators for Cell Robustness We have demonstrated the use
of SMC to evaluate cell robustness in our running example. It is known that SMC is not
computationally efficient to estimate rare-events, such as AEs in the high-dimensional space
of a robust ML model. We therefore need more advanced and efficient sampling approaches
that are designed for rare-events to satisfy our need. We notice that the Adaptive Multi-
level Splitting method has been retrofitted in [115] to statistically estimate the model’s local
robustness, which can be (and indeed has been) applied in our later experiments for image
datasets. In addition to statistical approaches, formal method based verification techniques
might also be applied to assess a cell’s pmi, e.g., [112]. They provide formal guarantees on
whether or not the ML model will misclassify any input inside a small region. Such “robust
region” proved by formal methods is normally smaller than our cells, in which case the λ̂i
can be conservatively set as the proportion of the robust region covered in cell ci (under
Assumption 5).

Assembling a Limited Number of Cell-Wise Estimates with Informed Uncer-
tainty The number of cells yielded by current way of partitioning the input domain is
exponential to the dimensionality of data, thus it is impossible to explore all cells for high-
dimensional data as we did for the running example. We may have to limit the number of

114

cells under robustness evaluation due to the limited budget in practice. Consequently, in the
final “assembling” step of our RAM, we can only assemble a limited number of cells, say k,
instead of all m cells. In this case, we refer to the estimator designed for weighted average
based on samples [171]. Specifically, we proceed as what follows:

• Based on the collected dataset with n data-points, the OP is approximated in a latent
space, which is compressed by VAE. Then we may obtain a set of n norm balls (paired
with their OP) after mapping the compressed dataset to the input space (cf. Remark
13) as the sample frame13.

• We define weight wi for each of the n norm balls according to their approximated OP,
wi := E[Opi].

• Given a budget that we can only evaluate the robustness of k norm balls, k samples
are randomly selected (with replacement) and fed into the robustness estimator to get
E[λi].

• We may invoke the unbiased estimator for weighted average [171] as

E[λ] =

∑k
i=1 wiE[λi]∑k

i=1wi
and (6.14)

V[λ] =
1

k − 1

(∑k
i=1wi (E[λi])

2∑k
i=1 wi

− (E[λ])2

)
. (6.15)

Moreover, a confidence upper bound of interest can be derived from Eqn. (6.13).

Note that there is no variance terms of λi and Opi in Eqn.s (6.14) and (6.15), implying the
following assumption:

Assumption 7. The uncertainty informed by Eqn. (6.15) is sourced from the sampling of
k norm balls, which is assumed to be the major source of uncertainty. This makes the
uncertainties contributed by the robustness and OP estimators (i.e. the variance terms of λi
and Opi) negligible.

6.3.4 Evaluation on the Proposed RAM

In addition to the running example, we conduct experiments on two more synthetic 2D-
datasets, as shown in Figure 6.3. They represent scenarios with relatively sparse and dense
training data, respectively. Moreover, to gain insights on how to extend our RAM for high-
dimensional datasets, we also conduct experiments on the popular MNIST and CIFAR10
datasets. Instead of implementing the steps in Section 6.3.2, we take solutions to tackle

13While the population is the set of (non-overlapping) norm balls covering the whole input space, i.e. the
m cells mentioned in the “lower-dimensional” version of the RAM.

115

the scalability issues raised by “the curse of dimensionality”, as articulated in Section 6.3.3.
Finally, all modelling details and results after applying our RAM on those datasets are
summarised in Table 6.1, where we compare the testing error, Average Cell Unastuteness
(ACU) defined by Definition 8, and our RAM results (of the mean E[λ], variance V[λ] and
a 97.5% confidence upper bound Ub97.5%).

Definition 8 (ACU). Stemmed from the Definition 6.2 and Remark 11, the unastuteness
λi of a region ci is consequently 1 − RN (ci, yi) where yi is the ground truth label of ci (cf.
Eqn. 6.3). Then we define the ACU of the ML model as:

ACU :=
1

m

m∑
i=1

λi (6.16)

where m is the total number of regions.

Figure 6.3: Synthetic datasets DS-1 (lhs) and DS-2 (rhs) representing relatively sparse and
dense training data respectively.

Table 6.1: Modelling details & results of applying the RAM on five datasets. Time is in
seconds per cell.

train/test error r-separation radius ε # of cells ACU E[λ] V[λ] Ub97.5% time

The run. exp. 0.0005/0.0180 0.004013 0.004 250× 250 0.002982 0.004891 0.000004 0.004899 0.04
Synth. DS-1 0.0037/0.0800 0.004392 0.004 250× 250 0.008025 0.008290 0.000014 0.008319 0.03
Synth. DS-2 0.0004/0.0079 0.002001 0.002 500× 500 0.004739 0.005249 0.000002 0.005252 0.04

Norm. MNIST 0.0051/0.0235 0.369 0.300 k Fig. 6.4(b) Fig. 6.4(a) Fig. 6.4(a) Fig. 6.4(a) 0.43
Adv. MNIST 0.0173/0.0212 0.369 0.300 k Fig. 6.4(d) Fig. 6.4(c) Fig. 6.4(c) Fig. 6.4(c) 0.43

Norm. CIFAR10 0.0190/0.0854 0.106 0.100 k Fig. 6.5(b) Fig. 6.5(a) Fig. 6.5(a) Fig. 6.5(a) 6.74
Adv. CIFAR10 0.0013/0.1628 0.106 0.100 k Fig. 6.5(d) Fig. 6.5(c) Fig. 6.5(c) Fig. 6.5(c) 6.74

In the running example, we first observe that the ACU is much lower than the testing
error, which means that the underlying ML model is a robust one. Since our RAM is largely

116

based on the robustness evidence, its results are close to ACU, but not exactly the same
because of the nonuniform OP, cf. Figure 6.2-rhs.

Remark 14 (ACU is a special case of pmi). When the OP is “flat” (uniformly distributed),
ACU and our RAM result regarding pmi are equal, which can be seen from Eqn. 6.4 by setting
all Opis equally to 1

m
.

Moreover, from Figure 6.2-lhs, we know that the classification boundary is near the middle
of the unit square input space where misclassifications tend to happen (say, a “buggy area”),
which is also the high density area on the OP. Thus, the contribution to unreliability from the
“buggy area” is weighted higher by the OP, explaining why our RAM results are worse than
the ACU. In contrast, because of the relatively “flat” OP for the DS-1 (cf. Figure 6.3-lhs),
our RAM result is very close to the ACU (cf. Remark 14). With more dense data in DS-2, the
r-distance is much smaller and leads to smaller cell radius and more cells. Thanks to the rich
data in this case, all three results (testing error, ACU, and the RAM) are more consistent
than in the other two cases. We note that, given the nature of the three 2D-point datasets,
ML models trained on them are much more robust than image datasets. This is why all
ACUs are better than test errors, and our RAM finds a middle point representing reliability
according to the OP. Later we apply the RAM on unrobust (by normal training) and robust
(by adversarial training) ML models trained on image datasets, where the ACUs are worse
and better than the test error, respectively; it confirms our aforementioned observations.

Regarding the MNIST and CIFAR10 datasets, all the experiment codes for this running
example are publicly available at https://github.com/havelhuang/ReAsDL. In this sec-
tion, we first train VAE on them and compress the datasets into the low dimensional latent
spaces of VAE with 8 and 16 dimensions, respectively. We then fit the compressed dataset
with KDE to approximate the OP. Each compressed data-point is now associated with a
weight representing its OP. Consequently, each norm ball in the pixel space that corresponds
to the compressed data-point in the latent space (after the mapping, cf. Remark 13) is also
weighted by the OP. Taking the computational cost into account—say only the astuteness
evaluation on a limited number of k norm balls is affordable—we do random sampling, invoke
the estimator for weighted average Eqn.s (6.14) and (6.15). We training two DL models with
normal training strategy and PGD-based adversarial training strategy[172], respectively, and
plot our RAM results for both models as functions of k in (a) and (c) of Figure 6.4, 6.5. For
comparison, we also plot the ACU results14 in (b) and (d) of Figure 6.4, 6.5.

In Figure 6.4 and 6.5, we first observe that both, the ACU results (after converging) of
normally trained MNIST and CIFAR10 models, are worse than their test errors (in Table
6.1), unveiling again the robustness issues of ML models when dealing with image datasets
(while the ACU of CIFAR10 is even worse, given that CIFAR10 is indeed a generally harder
dataset than MNIST). For MNIST, the mean pmi estimates are much lower than ACU,
implying a very “unbalanced” distribution of weights (i.e. OP). Such unevenly distributed
weights are also reflected in both, the oscillation of the variance and the relatively loose 97.5%

14As per Remark 14, ACU is a special case of pmi with equal weights. Thus, ACU results in Figure 6.4,
6.5 are also obtained by Eqn.s (6.14) and (6.15).

117

https://github.com/havelhuang/ReAsDL

Figure 6.4: The mean, variance and 97.5% confidence upper bound of pmi and ACU as func-
tions of k sampled norm ball, estimated on MNIST dataset with normally and adversarially
trained models.

confidence upper bound. On the other hand, the OP of CIFAR10 is flatter, resulting in closer
estimates of pmi and ACU (Remark 14). For adversarially trained models, the robustness
of which is improved significantly at the cost of accuracy drop shown in Table 6.1. It is still
effective to reduce the pmi and ACU of DL models.

RAM can effectively assess the robustness of the ML model and its generalisability
based on the shape of its approximated OP, which is much more informative than
either the test error or ACU alone.

118

Figure 6.5: The mean, variance and 97.5% confidence upper bound of pmi and ACU as func-
tions of k sampled norm ball, estimated on CIFAR10 dataset with normally and adversarially
trained models.

6.4 Case Study: Evaluate YOLOv3 in Autonomous

Underwater Vehicles

In this section, a case study based on a simulated Autonomous Underwater Vehicles (AUV)
that performs survey and asset inspection missions is conducted. We first describe the
scenario in which the mission is performed, details of the AUV under test, and how the
simulator is implemented. Then, we apply our RAM on the image dataset collected from a
large amount of statistical testing to assess the reliability of object detection component of
AUV. All source code, simulators, ML models, datasets and experiment results are publicly
available on our project website https://github.com/Solitude-SAMR/master_samr with
a video demo at https://youtu.be/akY8f5sSFpY.

119

https://github.com/Solitude-SAMR/master_samr
https://youtu.be/akY8f5sSFpY

6.4.1 Scenario Design

AUV are increasingly adopted for marine science, offshore energy, and other industrial ap-
plications in order to increase productivity and effectiveness as well as to reduce human risks
and offshore operation of crewed surface support vessels [106]. However, the fact that AUVs
frequently operate in close proximity to safety-critical assets (e.g., offshore oil rigs and wind
turbines) for inspection, repair and maintenance tasks leads to challenges on the assurance
of their reliability and safety, which motivates the choice of AUV as the object of our case
study.

The AUV Under Test

Hardware Although we are only conducting experiments in simulators at this stage, our
trained ML model can be easily deployed to real robots and the experiments are expected
to be reproducible in real water tanks. Thus, we simulate the AUV in our laboratory—
a customised BlueROV2, which has 4 vertical and 4 horizontal thrusters for 6 degrees of
freedom motion. As shown in Figure 6.6-lhs, it is equipped with a custom underwater
stereo camera designed for underwater inspection. A Water Linked A50 Doppler Velocity
Log (DVL) is installed for velocity estimation and control. The AUV also carries an Inertial
Measurement Unit (IMU), a depth sensor and a Tritech Micron sonar. The AUV is extended
with an on-board Nvidia Jetson Xavier GPU computer and a Raspberry Pi 4 embedded
computer. An external PC can also be used for data communication, remote control, mission
monitoring, and data visualisation of the AUV via its tether.

Figure 6.6: Hardware–software architecture & key modules for autonomous survey & inspec-
tion missions.

Software Architecture With the hardware platform, we develop a software stack for
underwater autonomy based on the Robot Operating System (ROS). The software modules

120

that are relevant to the aforementioned AUV missions are (cf. Figure 6.6):

• Sensor drivers. All sensors are connected to on-board computers via cables, and their
software drivers are deployed to capture real-time sensing data.

• Stereo vision and depth estimation. This is to process stereo images by removing
its distortion and enhancing its image quality for inspection. After rectifying stereo
images, they are used for estimating depth maps that are used for 3D mapping and
obstacle avoidance.

• Localisation and mapping algorithm. In order to navigate autonomously and carry out
a mission, we need to localise the vehicle and build a map for navigation. We develop
a graph optimisation based underwater simultaneous localisation and mapping system
by fusing stereo vision, DVL, and IMU. It also builds a dense 3D reconstruction model
of structures for geometric inspection.

• Detection and recognition model. This is one of the core modules for underwater
inspection based on ML models. It is designed to detect and recognise objects of
interest in real-time. Based on the properties of detected objects— in particular the
underwater assets to inspect—the AUV makes decisions on visual data collection and
inspection.

• Obstacle avoidance and path planning. The built 3D map and its depth estimation are
used for path planning, considering obstacles perceived by the stereo vision. Specif-
ically, a local trajectory path and its way-points are generated in the 3D operating
space based on the 3D map built from the localisation and mapping algorithm. Next
the computed way-point is passed to the control driver for trajectory and way-point
following.

• Control driver. We have a back seat driver for autonomous operations, enabling the
robot to operate as an AUV. Once the planned path and/or a way-point is received, a
Proportional-Integral-Derivative (PID) based controller is used to drive the thrusters
following the path and approaching to the way-point. The controller can also be
replaced by a learning based adaptive controller. While the robot moves in the envi-
ronment, it continues perceiving the surrounding scene and processing the data using
the previous software modules.

ML Model Doing Object Detection In this work, the state-of-the-art Yolo-v3 DL
architecture [46] is used for object detection. Its computational efficiency and real-time
performance are both critical for its application for underwater robots, as they mostly have
limited on-board computing resources and power. The inference of Yolo can be up to 100
frames per second. Yolo models are also open source and built using the C language and
the library is officially supported by OpenCV, which makes its integration with other AUV
systems not covered in this work straightforward. Most DL-based object detection methods

121

are extensions of a simple classification network. The object detection network usually
generates a set of proposal bounding boxes; they might contain an object of interest and are
then fed to a classification network. The Yolov3 network is similar in operation to, and is
based on, the darknet53 classification network.

The process of training the Yolo networks using the Darknet framework is similar to the
training of most ML models, which includes data collection, model architecture implementa-
tion, and training. The framework consists of configuration files that can be set to match the
number of object classes and other network parameters. Examples of training and testing
data are described in Section 6.4.1 for simulated version of the model. The model training
can be summarised by the following steps: i) define the number of object categories; ii) col-
lect sufficient data samples for each category; iii) split the data into training and validation
sets; and iv) use the Darknet software framework to train the model.

The Simulator

The simulator uses the popular Gazebo robotics simulator in combination with a simulator
for underwater dynamics. The scenario models can be created/edited using Blender 3D
software. We have designed the Ocean Systems Lab’s wave tank model (cf. Figure 6.7-lhs)
for the indoor simulated demo, using BlueROV2 within the simulation to test the scenarios.
The wave tank model has the same dimension as our real tank. To ensure that the model

Figure 6.7: A wave-tank for simulated testing and a simulated pool for collecting the training
data.

does not overfit the data, we have designed another scenario with a bigger pool for collecting
the training data. The larger size allows for more distance between multiple objects, allowing
both to broaden the set training scenarios and to make them more realistic. The simulated
training environment is presented in Figure 6.7-rhs.

Our simulator creates configuration files to define an automated path using Cartesian
way-points for the vehicle to follow autonomously, which can be visualised using Rviz. The
pink trajectory is the desirable path and the red arrows represent the vehicle poses following
the path, cf. Figure 6.8-lhs. There are six simulated objects in the water tank. They are a
pipe, a gas tank, a gas canister, an oil barrel, a floating ball, and the docking cage, as shown
in Figure 6.8-rhs. The underwater vehicle needs to accurately and timely detect them during

122

the mission. Notably, the mission is also subject to random noise factors, so that repeated
missions will generate different data that is processed by the learning-enabled components.

Figure 6.8: Simulated AUV missions following way-points and the six simulated objects.

6.4.2 Reliability Modelling of the AUV’s Classification Function

Table 6.2: Average Precision (AP) of YOLOv3 for object detection.

Class
Train Test

AP50 AP75 AP50 AP75

Pipe 0.98343 0.73503 0.97131 0.72532
Floating Ball 0.85765 0.40094 0.90912 0.42536
Gas Canister 0.87230 0.62546 0.87406 0.60331

Gas Tank 0.98930 0.76552 0.99346 0.76824
Oil Barrel 0.84578 0.61437 0.84258 0.57856

Docking Cage 0.88771 0.32021 0.91076 0.33656
mAP 0.90603 0.57692 0.91688 0.57289

Table 6.3: Reconstruction Loss & KL Divergence Loss of VAE model

VAE model Train Test
Recon. Loss 0.002601 0.003048

KL Div. Loss 1.732866 1.729756

Details of the YoloV3 model trained in this case study is presented in Table 6.2. We adopt
the practical solutions discussed in Section 6.3.3 to deal with the high dimensionality of the
collected operational dataset (256*256*3) by first training a VAE model and compressing
the dataset into a new space with a much lower dimensionality of 8. While training details of
the VAE model are summarised in Table 6.3, four sets of examples are shown in Figure 6.9,

123

Figure 6.9: Four original images (top row) and the corresponding reconstructed images
(bottom row) by the VAE model.

from which we can see that the reconstructed images are preserving the essential features
of the objects (while blurring the less important background). We then choose a norm ball
radius ε = 0.06 according to the r-separation distance15 and invoke the KDE and robustness
estimator [115] for k randomly selected norm balls. Individual estimates of the k norm balls
are then fed into the estimator for weighted average, Eqn.s (6.14) and (6.15). For comparison,
we also calculate the ACU by assuming equal weights (i.e., a flat OP) in Eqn.s (6.14) and
(6.15). Finally, the reliability claims on pmi and ACU are plotted as functions of k in Figure
6.10. Interpretation of the results is similar as before for CIFAR10, where the OP is also
relatively flat. From the comparison results, it can be seen that the adversarial train can
effectively improve the robustness of DL models and be captured by our RAM method.

RAM is scalable to high dimensional data for assessing the reliability of YoloV3 model,
the real world object detection CNNs.

15Because more than one object may appear in a single image, the label of the “dominating” object (e.g.,
the object with the largest bounding box and/or with higher priority) can be used in the calculation of r. For
simplicity, we first preprocess the dataset by filtering out images with multiple labels, and then determine
the ε based on an estimated r.

124

Figure 6.10: The mean, variance and 97.5% confidence upper bound of AUV’s pmi and ACU
as functions of k sampled norm balls.

6.5 Discussions on the Proposed RAM

In this section, we summarise the model assumptions made in our RAM, and discuss if/how
they can be validated and which new assumptions and compromises in the solutions are
needed to cope with real-world applications with high-dimensional data. Finally, we list the
inherent difficulties of assessing ML reliability uncovered by our RAM.

R-Separation and its Estimation Assumption 1 derives from Remark 12. We concur
with [123] and believe that, for any real-world ML classification application where the inputs
are data-points with “physical meanings”, there should always exist an r-stable ground truth.
Such r-stable ground truth varies between applications, and the smaller the r is, the harder
the inherent difficulty of the classification problem becomes. This r is therefore a difficulty
indicator for the given classification problem. Indeed, it is hard to estimate the r (either in

125

the input pixel space nor the latent feature space)—the best we can do is to estimate it from
the existing dataset. One way of solving the problem is to keep monitoring the r estimates as
more labelled data is collected, e.g. during operation, and to redo the cell partition when the
estimated r has changed significantly. Such a dynamic way of estimating r can be supported
by the concept of dynamic assurance cases [173].

Approximation of the OP from Data Assumption 2 says that the collected dataset
statistically represents the OP, which may not hold for many practical reasons—e.g., when
the future OP is uncertain at the training stage and data is therefore collected in a balanced
way to perform well in all categories of inputs. Although we demonstrate our RAM under
this assumption for simplicity, it can be easily relaxed. Essentially, we try to fit a PDF
over the input space from an “operational dataset” (representing the OP). Data-points in
this set can be unlabelled raw data generated from historical data of previous applications
and simulations, which can then be scaled based on domain expert knowledge (e.g., by
DL generative models that we are currently investigating). Obtaining such an operational
dataset is an application-specific engineering problem, and manageable thanks to the fact
that it does not require labelled data. Notably, the OP may also be approximated at runtime
based on the data stream of operational data. Efficient KDE for data streams [174] can be
used. If the OP was subject to sudden changes, change-point detectors like [175] should also
be paired with the runtime estimator to robustly approximate the OP. Again, such dynamic
way of estimating OP can also be supported by dynamic assurance cases [173].

Determination of the Ground Truth of a Cell Assumptions 3 and 4 are essentially
on how to determine the ground truth label for a given cell, which relates to the oracle
problem of testing ML software. While this still remains challenging, we partially solve it
by leveraging the r-separation property. Thanks to r, it is easy to determine a cell’s ground
truth when we see that it contains labelled data-points. However, for an empty cell, it is
non-trivial. We assume the overall performance of the ML model is fairly good (e.g., better
than a classifier doing random classifications), thus misclassifications within an empty cell are
relatively rare events. We can determine the ground truth label of the cell by majority voting
of predictions. Indeed, it is a strong assumption when there are some “failure regions” in
the input space, within which the ML model performs really badly (even worse than random
labelling). In this case, we need new mechanism to detect such “really bad failure regions”
or spend more budget on, for example, asking humans to do the labelling.

Efficiency of Cell Robustness Evaluation Although we only applied the two methods
of SMC and [115] in our experiments to evaluate the local robustness, we believe that other
statistical sampling methods designed for estimating the probability of rare-events could be
used as well. Moreover, the cell robustness estimator in our RAM works in a “hot-swappable”
manner: any new and more efficient estimator can easily be incorporated. Thus, despite
being an important question, how to improve the efficiency of the robustness estimation for
cells is beyond the scope of our RAM.

126

Conditional OP of a Cell We assume that the distribution of inputs (the conditional
OP) within each cell is uniform by Assumption 5. Although we conjecture that this is the
common case due to the small size of cells (i.e., those very close/similar inputs within a
small region are only subject to noise factors that can be modelled uniformly), the specific
situation may vary; this requires justification in safety cases. For a real-world dataset,
the conditional OP might represent certain distributions of “natural variations” [176], e.g.
lighting conditions, that obey certain distributions. Ideally, the conditional OP of cells
should capture the distribution of such natural variations. Recent advance on measuring the
naturalness/realisticness of AEs [31] relates to this assumption and may relax it.

Independent λis and Opis As per Assumption 6, we assume all λis and Opis are inde-
pendent when “assembling” their estimates via Eqn. (6.11) and deriving the variance via
Eqn. (6.12). This assumption is largely for the mathematical tractability when propagating
the confidence in individual estimates at the cell-level to the pmi. Although this indepen-
dence assumption is hard to justify in practice, it is not unusual in reliability models that do
partition, e.g., in [164, 177]. We believe that RAMs are still useful under this assumption,
while we envisage that Bayesian estimators leveraging joint priors and conjugacy may relax
it.

Uncertainties Raised by Individual OP and Robustness Estimates This relates to
how reliable the chosen OP and robustness estimators themselves are. Our RAM is flexible
and evolvable in the sense that it does not depend on any specific estimators. New and more
reliable estimators can therefore easily be integrated to reduce the estimation uncertainties.
Moreover, such uncertainties raised by estimators are propagated and compounded in our
overall RAM results, cf. Eqn.s (6.12) and (6.15). Although we ignore them as per Assumption
7, this is arguably the case when the two estimators are fairly reliable and the number of
samples k is much smaller than the sample frame size n.

Inherent Difficulties of Reliability Assessment on ML Software Finally, based on
our RAM and the discussions above, we summarise the inherent difficulties of assessing ML
reliability as the following questions:

• How to accurately learn the OP in a potentially high-dimensional input space with
relatively sparse data?

• How to build an accurate test oracle (to determine the ground truth label) by, e.g.,
leveraging the existing labels (done by humans) in the training dataset?

• What is the local distribution (i.e. the conditional OP) over a small input region
(which is potentially only subject to subtle natural variations of physical conditions in
the environment)?

127

• How to efficiently evaluate the robustness of a small region, given that AEs are normally
rare events? And how to reduce the risk associated with an AE (e.g., referring to
ALARP)?

• How to efficiently sample small regions from a large population (due to the high-
dimensionality) of regions to test the local robustness in an unbiased and uncertainty
informed way, given a limited budget?

We provide solutions in our RAM that are practical compromises (cf. Section 6.3.3), while
the questions above are still challenging and generic. For some domains, say self-driving
cars, they are relatively easier to tackle, thanks to the large amount of available data—not
only historical data, but also millions of miles of public road testing data are collected in
recent years. At this stage, we doubt the existence of other RAMs for ML software with
weaker assumptions that achieve the same level of rigorousness as ours, in which sense our
RAM advances in this research direction.

128

Chapter 7

Practical Verification of DL Safety in
State Estimation Systems

7.1 Introduction

State estimation systems have been widely deployed for many tasks within robotic appli-
cations, including localisation [178], tracking [179], and control [180]. This paper considers
neural network enabled state estimation systems where neural networks are used to process
perceptional input received via sensors. More and more robotics applications adopt neural
network components to take advantage of their high prediction precision [181].

However, the neural network has been found to be vulnerable to adversarial attacks, i.e.,
a small, imperceptible perturbation on the input may alter the classification output. The
concern has been raised on how safe a learning enabled system is when learning components
interact with other components (including Bayes filter components). In [182], it has been
found that the system is able to compensate (to some degree) against adversarial attacks
on its neural network component, but there may also be new uncertainties from the interac-
tions between learning and non-learning components. While some vulnerability cases were
reported in [182], there is no comprehensive study on all potential risks in a learning en-
abled system, from the perspective of formal verification. Formal verification can prove that
a system is correct against all possible risks over a specification and the formal model of
the system, and returns counterexamples when it cannot. The ability to sufficiently identify
risks is necessary for the deployment of safety critical applications – this chapter addresses
this need. It is the first time a verification approach has been developed for securing learning
enabled state estimation systems.

Technically, we first formalise a state estimation system as a novel labelled transition
system which has components for payoffs and partial order relations. Specifically, every
transition is attached with a payoff, and for every state there is a partial order relation
between its out-going transitions from the same state. Second, we show that the verification
of the robustness property on such a system can be reduced into a constrained optimisation
problem. Third, to enable practical verification, we develop two algorithms: (1) a verification

129

algorithm – that can achieve complete results but cannot be used for run-time – and (2) a
heuristic algorithm – that can be used efficiently in run-time, perform well in most cases,
but cannot provide a completeness guarantee.

As a major case study, we work with a real-world dynamic tracking system [180], which
detects and tracks ground vehicles over the high-resolution Wide Area Motion Imagery
(WAMI) data stream, named WAMI tracking system in this paper. We apply the devel-
oped algorithms to the WAMI tracking system for safety analysis, in particular, we consider
on a robustness property that concerns whether the system can function well under attack
on the perceptional neural network components.

7.2 Preliminaries

7.2.1 Neural Networks

Let X be the input domain and Y be the set of labels. A neural network N : X → D(Y) can
be seen as a function mapping from X to probabilistic distributions over Y . That is, N (x) is
a probabilistic distribution, which assigns for each label y ∈ Y a probability value (N (x))y.
We let fN : X → Y be a function such that for any x ∈ X , fN (x) = arg maxy∈Y{(N (x))y},
i.e., fN (x) returns the classification.

7.2.2 Neural Network Enabled State Estimation

We consider a time-series linear state estimation problem that is widely assumed in the
context of object tracking. The process model is defined as follow.

sk = F · sk−1 + ωk (7.1)

where sk is the state at time k, F is the transition matrix, ωk is a zero-mean Gaussian noise
such that ωk ∼ N (0,Q), with Q being the covariance of the process noise. Usually, the states
are not observable and need to be determined indirectly by measurement and reasoning. The
measurement model is:

zk = H · sk + vk (7.2)

where zk is the observation, H is the measurement matrix, vk is a zero-mean Gaussian noise
such that vk ∼ N (0,R), and R is the covariance of the measurement noise.

Bayes filters have been used for reasoning about the observations, {zk}, with the goal of
learning the underlying states {sk}. A Bayes filter maintains a pair of variables, (sk,Pk), over
the time, denoting Gaussian estimate and uncertainty, respectively. The basic procedure of
a Bayes filter is to use a transition matrix, Fk, to predict the current state, (ŝk, P̂k), given
the previous state, (sk−1,Pk−1). The prediction state can be updated into (sk,Pk) if a new
observation, zk, is obtained. In the context of the aforementioned problem, this procedure is
iterated for a number of time steps, and is always discrete-time, linear, but subject to noises.

130

We take the Kalman Filter (KF), one of the most widely used variants of Bayes filter,
as an example to demonstrate the above procedure. Let s0 ∈ <n ∼ N (ŝ0, P̂0) be the initial
state, such that ŝ0 ∈ <n and P̂0 ∈ <n×n represent our knowledge about the initial estimate
and the corresponding covariance matrix, respectively.

First, we perform the state prediction for k ≥ 1:

ŝk = Fksk−1

P̂k = FkPk−1F
T
k + Qk

(7.3)

Then, we can update the filter:

sk = ŝk + Kkyk
Pk = (I−KkHk)P̂k

(7.4)

such that
yk = zk −Hkŝk
Sk = HkP̂kH

T
k + Rk

Kk = P̂kH
T
kS−1

k

(7.5)

Intuitively, yk is usually called “innovation” in signal processing that represents the
difference between the real observation and the predicted observation, Sk is the covariance
matrix of this innovation, and Kk is the Kalman gain, representing the relative importance
of innovation yk with respect to the predicted estimate ŝk.

In a neural network enabled state estimation, a perception system – which may include
multiple CNNs – will provide a set of candidate observations Zk, any of which can be chosen
as the new observation zk. From the perspective of robotics, Zk includes a set of possi-
ble states of the robot, measured by (possibly several different) sensors at time k. These
measurements are imprecise, and are subject to noises from both the environment (called
epistemic uncertainty) and the imprecision of sensors (aleatory uncertainty).

7.2.3 A Real-World WAMI Dynamic Tracking System

In this part, we have a brief introduction to the real-world WAMI dynamic tracking system
that will be used as our major case study. The details of this system can be found in
[182] and [180]. The tracking system requires continuous imagery input from e.g., airborne
high-resolution cameras. The input is a video, which consists of a finite sequence of WAMI
images. Each image contains a number of vehicles. The processing chain of the WAMI
tracking system is as follows.

1. Align a set of previous frames with the incoming one.

2. Construct the background model of incoming frames using the median frame.

3. Extract moving objects using background subtraction.

131

4. Determine if the moving objects are vehicles by using a Binary convolutional neural
networks (CNN).

5. For complex cases, predict the locations of moving objects/vehicles using a regression
CNN.

6. Track one of the vehicles using a Kalman filter.

WAMI tracking uses Gated Nearest Neighbour (Gnn) to choose the new observation
zk: from the set Zk, the one closest to the predicted measurement Hk · ŝk is chosen, i.e.,

zk = arg min
z∈Zk

||z−Hk · ŝk||p (7.6)

s.t. ||z−Hk · ŝk||p ≤ εk (7.7)

where || · ||p is for the Lp-norm distance (p=2, i.e., Euclidean distance, is used in this paper),
and εk is the gate value, representing the maximum uncertainty the system is able to work
with.

Specifically, the WAMI system has the following s and P:

s =

[
l
v

]
P =

[
Σll Σlv

Σvl Σvv

]
(7.8)

where s contains the currently best estimates – or mean values – of two variables l, represent-
ing the location, and v, representing the velocity, respectively. Elements of P, Σij, represent
the degrees of correlation between variables i, j ∈ {l, v}. The diagonal of P contains the
mean square error of the estimate s. The uncertainty – or Bayesian uncertainty – ε is
the trace of the covariance matrix:

ε = tr(P) = Σll + Σvv (7.9)

Intuitively, ε denotes a search range and only within this range, observations are considered.
Normally, ε will gradually shrink before being bounded – a convergence property of the KF
as explained below.

We remark that this WAMI dynamic tracking system models a Poisson-Bernoulli mix-
ture process. The track initialisation and the occurrence of false alarms follow a Poisson
distribution (since we are focusing on one single target, we choose not to explicitly model
this part) and the detectability of the target follows a Bernoulli distribution which models
the CNN measurements (including mis-detections and spatial errors). In this paper, KF
is used to address the measurement noise, but we note that it cannot be ensured that the
Gaussian noise is sufficient in this case. Therefore, the usage of KF here is only under the
assumption of Gaussian noises whose parameters are empirically configured. It can be seen
as a smoothing algorithm rather than an optimal solution. Nevertheless, investigating alter-
native likelihoods that more faithfully represent the uncertainty and automated parameter
estimation for this problem is an intriguing future work.

132

7.2.4 Expansion of Bayesian Uncertainty in Kalman Filters

Generally, a KF system works with the two phases, prediction (7.3) and update (7.4), al-
ternating. Theoretically, KFs converge [183] under a good set of parameters F, H, Q, and
R. In this paper, we assume that the KF system has been well designed to ensure the
convergence. Empirically, this has been proven possible in many practical systems. We are
interested in another property of KF, i.e., the uncertainty in P̂k increases as opposed to
Pk; if no update phase, i.e., Equation (7.4), is held, this predicted covariance P̂k will be
carried over to the next step as Pk+1. In the WAMI tracking system, when observation zk is
unavailable within ε for some reason, the update step can be skipped and multiple prediction
steps are performed consecutively. In this case, the Bayesian uncertainty ε may ‘explode’,
and the search range of observations is expanded. We will explain later this property can be
utilised to design a monitor to counter the attack, and therefore should be considered when
analysing the robustness.

7.3 Problem Formulation

7.3.1 Threat Model of Adversarial Attack on Perception System

In Section 7.2.3, a neural network based perception system determines whether or not there
is a vehicle at a location z. Let x(z) ∈ <d1×d2 be an image covering the location z, a neural
network function fN : <d1×d2 → {0, 1} maps x(z) into a Boolean value fN (x(z)) representing
whether or not a vehicle is present at location z. There are two types of erroneous detection:
(1) a wrong classification prediction of the image x(z), and (2) a wrong positioning of a
moving object within x(z). We focus on the former since the WAMI tracking system has a
comprehensive mechanism to prevent the occurrence of the latter.

Figure 7.1: The workflow of attacking the WAMI system.

The threat model of an adversary is depicted as in Figure 7.1. Assuming that fN (x(z)) =
1, an adversary is to compute another input x̃(z) with a certain payoff to have a different
classification, i.e., fN (x̃(z)) = 0. Without loss of generality, the payoff is measured with the

133

norm-distance from x̃(z) to its original image x(z), or formally

||x̃(z)− x(z)||p (7.10)

To deviate from an input image x(z) to its adversarial input x̃(z), a large body of ad-
versarial example generation algorithms and adversarial test case generation algorithms are
available [5, 184]. Formal verification based methods such as [185, 186, 187] can also be
used. Given a neural network N and an input x, an adversarial algorithm A produces an
adversarial example A(N , x) such that fN (A(N , x)) 6= fN (x). On the other hand, for test
case generation, an algorithm A produces a set of test cases A(N , x), among which the opti-
mal adversarial test case is such that arg minx̃∈A(N ,x),fN (x̃)6=fN (x) ||x̃− x||p. We remark that,
the work in this paper is independent from particular adversarial algorithms. We use in our
experiments two algorithms:

• DeepFool [188], which finds an adversarial example x̃ by projecting x onto the nearest
decision boundary.

• DeepConcolic [51], which generates test cases by applying combined symbolic and
concrete execution, guided by adapted MC/DC metrics for neural networks.

We denote by payoff (A,N , x), the payoff that an algorithm A needs to compute an
adversarial example from x and N . Furthermore, we assume that the adversary can observe
the parameters of the Bayes filter, for example, Hk,Fk, Qk,Rk of the Kalman filter.

7.3.2 {PO}2Labelled Transition Systems

Let Prop be a set of atomic propositions. A payoff and partially-ordered label transition
system, or {PO}2-LTS, is a tuple M = (Q, q0, kf , L, α, β), where Q is a set of states, q0 ∈ Q
is an initial state, kf ⊆ Q×Q is a transition relation, L : Q→ 2Prop is a labelling function,
α : Q×Q→ <+ is a payoff function assigning every transition a non-negative real number,
and β : kf → kf is a partial order relation between out-going transitions from the same
state.

7.3.3 Reduction of WAMI Tracking to {PO}2LTS

We model a neural network enabled state estimation system as a {PO}2-LTS. A brief sum-
mary of some key notations in this paper are in Table 7.1. We let each pair (sk,Pk) be a
state, and use the transition relation kf to model the transformation from a pair to another
pair in a Bayes filter. We have the initial state q0 by choosing a detected vehicle (s0,P0)
on the map. From a state qk−1 = (sk−1,Pk−1) and a set Zk of candidate observations, we
have one transition (qk−1, qk) for each z ∈ Zk, where qk = (sk,Pk) can be computed with
Equations (7.3)-(7.5) by having zk in Equation (7.6) as the new observation. For a state
qk = (sk,Pk), we write s(qk) to denote the estimate sk, P(qk) to denote the covariance matrix

134

Notations Description
zk ∈ Zk observed location by WAMI tracking
x(z) an d1×d2 image covering location z
fN neural network function

payoff (A,N , x)
payoff for algorithm A computing

an adversarial example from x and N

qk = (sk,Pk)
a state at step k, consisting of
estimate and covariance matrix

s(qk), P(qk) and z(qk)
estimate of qk, covariance matrix of qk

and observed location for transition (qk−1, qk)
ρ a path of consecutive states ql...qu

Table 7.1: A Summary of Notations Used

Pk, and z(qk) to denote the new observation that has been used to compute s(qk) and P(qk)
from its parent state qk−1.

Subsequently, for each transition (qk−1, qk), its associated payoff α(qk−1, qk) is denoted by
payoff (A,N , x(z(qk))), i.e., the payoff that the adversary uses the algorithm A to manipulate
x(z(qk)) – the image covering the observation z(qk) – into another image on which the neural
network N believes there exists no vehicle.

For two transitions (qk−1, q
1
k) and (qk−1, q

2
k) from the same state qk−1, we say that they have

a partial order relation, written as (qk−1, q
1
k) ≺ (qk−1, q

2
k), if making z(q2

k) the new observation
requires the adversary to fool the network N into misclassifying x(z(q1

k)). For example, in
WAMI tracking, according to Equation (7.6), the condition means that ||z(q2

k) − z||p >
||z(q1

k)− z||p, where z = Hks(qk−1) is the predicted location.

Example 7.3.1. Figure 7.2 depicts a tree diagram for the unfolding of a labelled transition
system. The root node on top represents the initial state q0. Each layer comprises all possible
states of qk = (sk,Pk) at step k of WAMI tracking, with sk being one possible estimate, and
Pk the covariance matrix. Each transition connects a state qk−1 at step k−1 to qk at step k.
. . . , zk−1, zk, zk+1, zk+2, . . . are the observed locations at each step by WAMI tracking.

Given a {PO}2-LTS M , we define a path ρ as a sequence of consecutive states ql...qu,
and z(ρ) as a sequence of corresponding observed location zl...zu for 0 ≤ l < u, where l and
u are the starting and ending time under consideration, respectively. We write ρk for the
state qk, and z(ρk) for the observed location z(qk) on the path ρ.

7.3.4 A Simple Monitor on Bayesian Uncertainty

Given the convergence of the KF (as explained in Section 7.2.4), we can easily design a system
to monitor the Bayesian uncertainty: whenever there is an increase of the uncertainty range

135

Figure 7.2: Tree diagram of an unfolding {PO}2-LTS

ε, an alarm is set to notify the potential attack. To overcome this monitor, we require that
a successful attack should not present an increase on ε. To understand when the increase
may appear for the WAMI tracking system, we recall the discussion in Section 7.2.3 that
a tracking associates the nearest observation z within the uncertainty range ε at each step.
When no observations are available in the range, e.g., all the observations in Zk are attacked,
only Equation (7.3) is performed and Equation (7.4) is skipped. In this case, the Bayesian
uncertainty increases due to the noise Qk and the transition matrix Fk.

7.3.5 Specification as Optimization

Verification determines whether a specification φ holds on a given LTS M [92]. Usually, a
logic language, such as CTL, LTL, or PCTL, is used to formalize the specification φ. In this
paper, to suit our needs, we let the specification φ be a constrained optimisation objective,
and then the verification is to determine whether, given M and φ, there is a solution to the
optimisation problem. If the answer is affirmative, an optimal solution is returned.

We focus on the specification that expresses the robustness of the system – given an
adversary, whether or not the state estimation system is able to function well
with only minor loss of localisation precision? – but remark that the verification
algorithm can be extended to work with other specifications.

First, we consider the measure for the loss of localisation precision. Let ρ be an original
path that has not suffered an attack. We define dist(ρ, ρ̃) as the distance between ρ and
the other path ρ̃, which is obtained after an attack, and say that the system is robust to
the attack if dist(ρ, ρ̃) < θrobustness for a threshold θrobustness > 0. For the WAMI tracking

136

system, we define

dist(ρ, ρ̃) = (
u∑
k=l

||z(ρk)− z(ρ̃k)||p)/(u− l + 1) (7.11)

as the averaged norm distance between two given times l and u. It is straightforward to
see that, if we can find the maximally allowed distance maxρ̃ dist(ρ, ρ̃) then we can firmly
conclude – through verification – whether or not the system is robust on the path ρ, by
comparing a given distance d with maxρ̃ dist(ρ, ρ̃).

In addition to the satisfaction of the objective as above, we require the best attack to not
be easily detected by e.g., monitors. In this paper, we consider two monitors who look after
two quantities, as explained below. Firstly, we consider a monitor Γ which looks after the
Kalman filter’s state by considering its convergence. Γ has the following definition:

Γ(ρ̃k−1, ρ̃k) =

{
1 ε(ρ̃k) ≤ ε(ρ̃k−1)
0 ε(ρ̃k) > ε(ρ̃k−1)

(7.12)

Basically, Γ continuously checks the value of uncertainty ε, which is derived from covariance
P. It is to capture the case where the uncertainty increases, as required by Section 7.3.4.

We consider the other simple monitor which looks after the (mean) payoff in attacking
the perception system and, once the payoff is over a threshold θpayoff the attacker is detected.
Let (ρ̃k−1, ρ̃k) be a transition on an attack path ρ̃, we have

ϕ(ρ̃k−1, ρ̃k) =
∑

(ρ̃k−1,ρ̃
�
k)≺(ρ̃k−1,ρ̃k)

α(ρ̃k−1, ρ̃
�
k) (7.13)

as the combined payoffs that are required to implement the transition (ρ̃k−1, ρ̃k). Intuitively,
all the payoffs of the transitions (ρ̃k−1, ρ̃

�
k), which are partially ordered by the envisaged

transition (ρ̃k−1, ρ̃k), are counted. In the WAMI tracking system, this means that the attack
results in misclassifications of all the images x(z(ρ̃�k)) with z(ρ̃�k) being closer to the predicted
location Fks(q̃k−1) than z(ρ̃k).

Therefore, the optimisation problem can be formulated as

maximize
ρ̃

dist(ρ̃, ρ)

subject to
u∑

k=l+1

Γ(ρ̃k−1, ρ̃k) = u− l

u∑
k=l+1

ϕ(ρ̃k−1, ρ̃k) ≤ (u− l) · θpayoff

(7.14)

where dist(ρ̃, ρ) is the deviation from the original track ρ to the adversarial track ρ̃,
∑u

k=l+1 Γ(ρ̃k−1, ρ̃k)
is the monitoring of convergence of tracking to enable ρ̃, and

εavg =
u∑

k=l+1

ϕ(ρ̃k−1, ρ̃k)/(u− l) (7.15)

is the mean payoff from time l to u. Finally, the verification problem is to compute the above
optimisation objective on a given {PO}2-LTS M .

137

7.4 Automated Verification

An attack on the WAMI system, as in Section 7.3.1, adds perturbations to the images
containing vehicles in order to fool the neural network into making a wrong detection. Then,
this wrong detection will be passed on to the KF-based tracking system. For the KF, a
detection is adopted as an observation w.r.t. the Gnn, as explained in Section 7.2.3. In this
section, we develop algorithms to find the maximally deviated path, which will be compared
with a given threshold θrobustness to have the verification result.

7.4.1 Baseline Method

We consider a baseline method that does not take into account the monitor on Bayesian
uncertainty (Equation (7.11)) or the other monitor on attack payoff (Equation (7.13)); it
simply attacks the neural networks to make the currently associated observation – the nearest
one to the prediction – unseen to the KF. This is the method used in [182].

7.4.2 Verification Algorithm based on Exhaustive Search

Our verification algorithm proceeds by exhaustively computing over all possible attacked
tracks. Since a final deviation is not available until the end of a simulation, the tree has to
be fully expanded from the root to the leaf and all the paths are explored. Breadth-first
search (BFS) is used to find the best solution.

The details are in Algorithm 6. We have several operation functions on the tree diagram
for the labelled transition system. leaf returns all leaf nodes of the given root node. parent
associates a node to its parent node. path returns all tree paths from the given root node to
the leaf nodes.

Lines 2-15 present the procedure of constructing the tree diagram. First, we set the root
node ρl (Line 2), that is, we will attack the system from the (l)-th state of the original path
ρ and enumerate all possible adversarial tracks. At each step k, function neighbours will list
all observations near the predicted location (Line 5). Then, each observation is incorporated
with current state ρk for the calculation of next state ρk+1 (Line 7). To enable each transition
(ρk, ρk+1), the partial order relation is followed when attacking the system and recording the
payoff ϕ; also, the convergence property of KF is checked (Line 8-11). If these constraints
are satisfied, the potential ρk+1 is accepted and added as the child node of ρk. Once the tree
is constructed, we continue simulating the tracks to the end of time, k = n, (Lines 16-17).
Finally, all the paths are compared with the original one to select the most deviated path,
satisfying the payoff constraint (Lines 18-19).

7.4.3 Heuristic Algorithm based on Sub-optimal Greedy Search

Although the verification algorithm can find the optimal solution, its computation is not
polynomial time, and therefore cannot be executed in real-time. A heuristic function can
be designed to rank all possible children nodes to select the most likely one. As shown in

138

Algorithm 6: Verification Algorithm based on BFS

Input: LTS model M , n, l, u
Output: The most deviated path ρ̃M

1 calculate the original path ρ from k = 0 to k = n
2 set ρl as root node
3 for k from l to u−1 do
4 for each node ρ̃k in leaf(ρl) do
5 find potential observations Z ← neighbours(ρ̃k)
6 for each observed location z in Z do
7 ρ̃k+1 ← kf(ρ̃k, z)
8 calculate the attack payoff ϕ(ρ̃k, ρ̃k+1)
9 if Γ(ρ̃k, ρ̃k+1) 6= 1 then

10 break
11 ρ̃k = parent(ρ̃k+1)

12 P ← path(ρl)
13 calculate the path ρ̃ in set P to k = n
14 ε =

∑u
k=l+1 ϕ(ρ̃k−1, ρ̃k)/(u− l)

15 ρ̃M ← arg maxρ̃∈P,ε(ρ̃)≤θpayoff
dist(ρ, ρ̃)

16 return ρ̃M

Algorithm 7, heuristic search is based on the strategy of making the locally optimal choice
at each stage. Compared with the exhaustive exploration, heuristic search can find the
sub-optimal solution with significantly less computational cost.

To design a heuristic search algorithm for the optimization problem (7.14), we construct
two KFs which run simultaneously for the vehicle tracking. One normal KF accepts the
original observations and outputs its states to guide the selection of observations by the
adversarial KF. The locally optimal choice is to select the most distant observation of the
original one (Line 5). The heuristic function is

g(Z, z) = arg max
z̃∈Z
||z̃− z||2 (7.16)

where z and z̃ are the correct and adversarial observation of tracked vehicle obtained in
detection, respectively. Lines 7-11 monitor the Bayesian uncertainty and the attack payoff.
If the current solution cannot bypass the monitor, the heuristic algorithm will iterate to find
the next most distant observation until a feasible one.

7.5 Experimental Results

We conduct a set of experiments to show the effectiveness of our verification algorithm
(Algorithm 6) and heuristic search algorithm (Algorithm 7) in the WAMI tracking system.

139

Algorithm 7: Greedy Based Heuristic Search

Input: LTS model M , n, l, u
Output: The deviated path ρ̃

1 calculate the original path ρ from k = 0 to k = n
2 start from ρ̃l = ρl
3 for k from l to u−1 do
4 find potential observations Z ← neighbours(ρ̃k)
5 z(ρ̃k)← g(Z, z(ρk))
6 ρ̃k+1 ← kf(ρ̃k, z(ρ̃k))
7 calculate the payoff ε← ϕ(ρ̃k, ρ̃k+1)
8 if Γ(ρ̃k, ρ̃k+1) 6= 1 or ε > θpayoff then
9 remove z(ρ̃k) from Z

10 jump to Line 5

11 calculate the path ρ̃ to k = n
12 return ρ̃

We believe our approaches can be generalised to work with other systems using both Bayes
filter(s) and neural networks.

7.5.1 Research Questions

Our evaluation experiments are guided by the following three research questions.

RQ1 Does the awareness to the Bayesian uncertainty and the input perturbation in our
algorithms improve the quality of the obtained solutions?

RQ2 Can our algorithms prove the robustness of the system?

RQ3 What are the pros and cons of the two algorithms?

7.5.2 Experimental Setup

We consider a number of original tracks with maximum length of 20 steps (n = 19, k ∈
[0, 19]). An attack on the system is conducted between time steps l and u, denoted as
Attack(l, u). The original track is colored in green in both the high-resolution images (Fig-
ure 7.3–7.4) and the state space unfolding (Figure 7.5). The attacked track is colored in red.
The white-color arrows in the high-resolution images indicates the ground-truth direction of
the vehicle.

Moreover, in all experiments, we record the following measures for each attack: mean
payoff, εavg, mean deviation, dist, as defined in Section 7.3.5, and runtime T (seconds). The
payoff threshold is set at θpayoff = 1 and the robustness threshold is set at θrobustness = 100.
The thresholds are hyper-parameters and can also be user-defined. Here, we run 100 test
scenes and set the mean values for the thresholds.

140

7.5.3 Returning Good Solutions within Constraints (RQ1)

In Section 7.3.5, we set the the criteria for the adversary to make the attack more realistic.
From the adversary’s perspective, constraints make sure the attack is not easily detected by
simple monitors. In this section, we discuss the impact of these constraints by comparing
the two algorithms with the baseline method.

(a) Baseline, εavg = 1.231, T = 70, dist = 42

(b) Heuristic/verification, εavg = 0.676, T = 73, dist = 189

Figure 7.3: The comparison between the baseline and the heuristic/verification in selected
scene with configuration Attack(5, 8)

Figure 7.3 presents two plots displaying the change of uncertainty ε over time, for baseline
method and heuristic/verification algorithm, respectively. In this test scene, heuristic and
verification algorithms output the same results. Since the baseline method does not take
into consideration the KF’s convergence, there exists the situation that, in some time step,
no observations are available within the search range – because the only possible observation

141

is attacked – and there is a significant fluctuation at step 8 in the plot.
For the impact of input perturbations, we can see that the heuristic/verification algorithm

has a much smaller εavg – representing a lower mean perturbation cost – than the baseline
method. The runtime T is related to the attacking strategy. The heuristic/verification
algorithm may need to attack multiple images at each time step to make sure that the
remotest observation is taken as the observation. Therefore, the generation of perturbations
to attack neural networks may take slightly more time than the baseline method. Overall, the
heuristic/verification algorithm can find better attacking solution with smaller distance to
the original track than the baseline method, and at the same time it satisfies the constraints
from WAMI monitors.

Verification and heuristic search can find the high quality deviated paths, satisfying
the constraints of input perturbation and WAMI monitoring.

7.5.4 Proof of Robustness Against the Attack (RQ2)

In addition to the ability of finding counterexamples to the robustness property, one may
be interested in whether or not our approach can prove, with guarantee, that a system is
robust. Figure 7.4 provides an example. We choose the test scene in Figure 7.4b, where
the red numbers represent the detected moving vehicles. We apply heuristic search and
verification algorithms on the track of vehicle No.0, which is shown in Figure 7.4a. In this
case, the WAMI system shows the robustness against the attack. Fundamentally, there are
few other vehicles around the tracking car and, at each attack step, only one observation is
available in the search range, shown in Figure 7.4c. Thus, to build the tree diagram for this
problem, there is only one path to be traversed and therefore no adversarial path is possible.

While the above seems to be an extreme case, it actually represents a typical class of
systems that tend to be more robust than others, i.e., systems for the test scenes with
few external disturbances. The external disturbance comes from the observations of the
surrounding vehicles, providing the wrong measurements when KF updates. We remark
that this proof can be generalised to exercise the system’s robustness for more complicated
environments, consisting of an extensive number of vehicles.

WAMI system is robustness against adversarial attack under the circumstance when
there are few observations of surrounding vehicles.

7.5.5 Pros and Cons of the Two Algorithms (RQ3)

We compare the performance of the two algorithms – verification and heuristic – by choosing
the same tracking start point and apply the algorithms to the same time interval. The
detailed running results are presented in Figure 7.5 and Table 7.2. As depicted in Figure
7.5c, the verification method enumerates all possible tracks and selects the most deviated

142

(a) Output (b) Detected moving vehicles

(c) Transition of path for track in (a)

Figure 7.4: Failure in finding an attacked path

one, colored red. This is the optimal solution to the optimization problem. While the
heuristic search method can find a sub-optimal track, colored blue.

Table 7.2: Tracks Generated by Different Algorithms.

Original Track
t 5 6 7 8

...
19

ID 40 46 43 36 11
dist 0 0 0 0 0

Adv. Track under
heuristic search

t 5 6 7 8
...

19
ID 40 48 47 48 58
dist 0 3.4 10.1 19.7 170.3

Adv. Track under
verification

t 5 6 7 8
...

19
ID 40 43 37 28 7
dist 0 0.4 5.1 13.7 193.3

143

(a) Heuristic search (b) Verification

(c) Enumeration of all possible Tracks

Figure 7.5: Heuristic search and verification Attack(5, 8) on a selected scene. Tree graph
exhibits all possible tracks, where green is the original track, blue is the attacked track found
by heuristic search, and red is the attacked track found by verification. The labels on the
nodes represent “(time step)-(ID of associated detection)”.

The data in Table 7.2 more precisely indicates the transition policy of the two algorithms.
During the time interval (5, 8), the heuristic search guides the tracking to the locally optimal
waypoint, which has larger dist values than the verification method. However, for the long
term (over 20 time steps), verification is always able to determine the optimal solution.

We also evaluate the two algorithms statistically by sampling 100 test scenes and calculate
the average performance. The results can be found in Table 7.3. Since we incorporate the
same adversarial attack algorithm, both verification and heuristic search algorithms have
similar average perturbation cost εavg. However, for the runtime cost T , verification is
significantly more time-consuming than the heuristic search. Most test scenes have a high
concentration of vehicles, i.e., there are large amount of candidate observations. The runtime

144

Table 7.3: Statistical Comparison between the Verification and Heuristic Search Algorithms

Algorithm εavg T dist
Probability of

Finding Best Adv. Track
heuristic search 0.63 78 93 80%

verification 0.65 3465 117 100%

cost of verification is proportional to the candidate observations. Therefore, while verification
can find the complete results, it is not suitable for real-time analysis. In contrast, heuristic
search, although unable to guarantee the optimal solution, is efficient in runtime. Actually,
in our experiments, for 80% of the cases we studied, the heuristic search algorithm can find
the optimal solution.

In terms of the safety risks of the WAMI tracking system, we noticed that, the potential
risk from the learning components is non-trivial. For example, we often see e.g., a 3-step
attack lead to a significantly deviated tracking – a deviation distance of 117 from the original
track on average. This illustrates the lack of robustness within the state estimation system
we have verified.

Verification is guaranteed to find the optimal solution but computationally intensive,
while heuristic search have high probability of detecting best adversarial track.

145

Chapter 8

Conclusion

This thesis focuses on the verification and validation of learning-enabled autonomous systems
(LESs). For this purpose, we propose the debug testing and evaluation for CNNs, RNNs and
ensemble trees, and verification for LESs. This includes the debug testing through converge
guided testing (Chapter 3), debug testing from distribution-awareness (Chapter 4), backdoor
testing of ensemble tree (Chapter 5), reliability evaluation of ML models (Chapter 6) and
practical verification of LESs (Chapter 7). We target at robustness and backdoor, which
cause the miss-classification/failure of ML models and LESs.

In the proceedings of this chapter, we conclude our main contributions of the thesis. Sec-
tion 8.1 summarises the work corresponding to each chapter, Section 8.2 describes the main
findings and how proposed verification and validations techniques promote more trustworthy
ML and LESs. Finally, Section 8.3 discusses the future research avenues based on existing
works.

8.1 Thesis Summary

This thesis proposes a range of verification and validation techniques for ML models and
LESs, the concise summaries of each chapter are listed below:

• (Chapter 3) Recurrent neural networks (RNNs) have been applied to a broad range of
applications, including natural language processing, drug discovery, and video recog-
nition. Their vulnerability to input perturbation is also known. Aligning with a view
from software defect detection, this chapter develops a coverage-guided testing ap-
proach to systematically exploit the internal behavior of RNNs, with the expectation
that such testing can detect defects with high possibility. Technically, the long short-
term memory network (LSTM), a major class of RNNs, is thoroughly studied. A family
of three test metrics are designed to quantify not only the values but also the tem-
poral relations (including both stepwise and bounded-length) exhibited when LSTM
processing inputs. A genetic algorithm is applied to efficiently generate test cases for
improving the coverage rate.

146

• (Chapter 4) We propose a new robustness testing approach for detecting adversarial
examples (AEs) that considers both the input distribution and the perceptual quality
of inputs. The two considerations are encoded by a novel hierarchical mechanism.
First, at the feature level, the input data distribution is extracted and approximated
by data compression techniques and probability density estimators. Such quantified
feature level distribution, together with indicators that are highly correlated with local
robustness, are considered in selecting test seeds. Given a test seed, we then develop
a two-step genetic algorithm for local test case generation at the pixel level, in which
two fitness functions work alternatively to control the quality of detected AEs.

• (Chapter 5) As the increasing use of machine learning models in security-critical ap-
plications, the embedding and extraction of malicious knowledge are equivalent to the
notorious backdoor attack and defence, respectively. This chapter studies the embed-
ding and extraction of knowledge in tree ensemble classifiers, and focuses on knowledge
expressible with a generic form of Boolean formulas, e.g., backdoor attacks. For the
embedding, it is required to be preservative (the original performance of the classifier
is preserved), verifiable (the knowledge can be attested), and stealthy (the embedding
cannot be easily detected). To facilitate this, we propose two novel, and effective em-
bedding algorithms, one of which is for black-box settings and the other for white-box
settings. The embedding can be done in PTIME. Beyond the embedding, we develop
the testing algorithm to extract the embedded knowledge from compromised ML mod-
els, by reducing the problem to be solvable with an SMT (satisfiability modulo theories)
solver. While this novel algorithm can successfully extract knowledge, the reduction
leads to an NP computation.

• (Chapter 6) Deep Leaning raises new challenges regarding its reliability in critical
functions. In this chapter, we present a model-agnostic reliability assessment method
for DL classifiers, based on evidence from robustness evaluation and the operational
profile (OP) of a given application. We partition the input space into small cells and
then “assemble” their robustness (to the ground truth) according to the OP, where
estimators on the cells’ robustness and OPs are provided. Reliability estimates in
terms of the probability of misclassification per input (pmi) can be derived together
with confidence levels.

• (Chapter 7) We study for the first time the verification problem on learning-enabled
state estimation systems for robotics, which use Bayes filter for localisation, and use
deep neural network to process sensory input into observations for the Bayes filter.
Specifically, we are interested in a robustness property of the systems: given a certain
ability to an adversary for it to attack the neural network without being noticed,
whether or not the state estimation system is able to function with only minor loss
of localisation precision? For verification purposes, we reduce the state estimation
systems to a novel class of labelled transition systems with payoffs and partial order
relations, and formally express the robustness property as a constrained optimisation

147

objective. Based on this, practical verification algorithms are developed.

8.2 Contributions and Main Findings

we re-emphasize the contributions for each chapter and utilize the following research ques-
tions to summarize the main findings for each work.

1. Why coverage guided testing is useful in analysing RNNs?

Instead of identifying a particular type of defects, such as adversarial samples, coverage-
guided testing is to generate a set of test cases as diversified as possible while preserving
the naturalness, in order to exploit the internal behavior of the neural networks that
has real operational impact. The proposed coverage metrics in chapter 3 are of such
desirable features of being diverse and natural—with increased coverage, our approach
is more likely to find different types of faulty behaviors (e.g., adversarial samples and
backdoor samples) that manifest at multiple small regions in the input space, rather
than adversarial samples clustered in one region as what normally attack-based meth-
ods find.

2. What is the main advantage of hierarchical distribution-aware testing?

Hierarchical consideration is more effective to detect high-quality (valid) adversarial
examples, free of oracle issues, with higher feature distribution probabilities and percep-
tion quality, compared with state-of-the-art that either disregards any data distribution
or only considers a single (non-hierarchical) distribution. Hierarchical distribution-
aware testing contributes more to the growth of DL models’ operational robustness,
while mitigating the drop of train/test accuracy during adversarial fine-tuning.

3. What is the inherent difficulty for backdoor testing on ensemble tree?

The knowledge embedding can be done in PTIME. Beyond the embedding, we develop
testing algorithm to extract the embedded knowledge, by reducing the problem to be
solvable with an SMT (satisfiability modulo theories) solver. While this novel algo-
rithm can successfully extract knowledge, the reduction leads to an NP computation.
Therefore, if applying embedding as backdoor attacks and extraction as backdoor test-
ing, results suggest a complexity gap (P vs. NP) between the attack and testing when
working with tree ensemble classifiers, which leads to a security concern that a tree
ensemble classifier is much easier to be attacked than tested.

4. Why proposed reliability assessment method (RAM) is better than usual
accuracy testing?

An intuitive way of perceiving our RAM, comparing with the usual accuracy testing,
is that we enlarge the testing dataset with more test cases around “seeds” (original
datapoints in the test set). We determine the oracle of a new test case according to
its seed’s label and the r-distance. Those enlarged test results form the robustness

148

evidence, and how much they contribute to the overall reliability is proportional to
its operational profile. Consequently, exposing to more tests (robustness evaluation)
and being more representative of how it will be used (the operational profile), our
RAM is more trustworthy. The DL reliability follow the conceptional equation that
DL reliability = generalisability × robustness.

5. Can we verify the robustness of learning-enabled state estimation system?

By formalizing the verification as constrained optimization, and representing partially-
ordered label transition system as tree diagram, the verification is reduced to exhaus-
tively search the most deviated path. The rigorous verification is NP-complete since
the optimal solution can only be obtained when the tree diagram is unfolded, while the
proposed heuristic search algorithm can efficiently find the solution in PTIME. The
experiments find for 80% of the cases we studied, the heuristic search algorithm can
find the optimal solution as exhaustive search.

To summarize the works in all chapters, we discover that ML models are suffering from
a series of risks, which cause the failure of models’ prediction. Such failure will propagate to
the whole LESs during the interaction between ML models and non-learning components.
Although, the failure can be compensated by other non-learning components to some extent,
the verification and validation techniques with the objective for evaluation are still necessary
for the safe deployment of ML models and LESs. We develop dedicated V&V techniques
for different risks of ML models, and find the connection between those techniques in terms
of mitigating the same risk. For example, the coverage guided testing can not only detect
diverse adversarial samples, but also useful for the backdoor input detection. The backdoor
input can be seen as the outlier and effectively detected by OOD detector, which motivate
us to further study the similarity and difference between different risks of ML models, and
develop the universal V&V techniques for ML models and LESs.

8.3 Future Work

1. Coverage-guided testing has become a controversial research direction. Although, a
heap of coverage metrics, such as MC/DC, surprise coverage, are proposed for effec-
tively testing neural networks, some research works argue that structural coverage is
not strongly correlated with robustness[189] and neuron-level coverage can be easily
satisfied by benign test cases[190]. From my point of view, this should be attributed
to the improper design of coverage metrics. The neural network is well-known for its
black-box nature, and simple coverage of neuron is meaningless without connection
to model’s behavior or functionality. Therefore, a promising future work for revitalis-
ing coverage guided testing is to develop more interpretable metrics by incorporating
the explanation results. In addition, our work in this thesis discovers the preliminary
application of coverage guided testing on backdoor detection. The exploration of cov-
erage guided testing on more safety problems, such as privacy, fairness can also be a

149

significant part of future work. Finally, how to utilize the testing results to mitigate
the defects and certify the neural network is also worth to do.

2. For hierarchical distribution-aware testing, the detected on-distribution adversarial
examples should be further processed to fix the neural network, so that we can close
the loop of “detect-fix-assess” as depicted in [191] and then organise all generated
evidence as safety cases[192]. What’s more, we currently study the adversarial examples
within the norm ball, which make the distribution-aware testing less appealing, as the
perturbation within norm ball is meaningless in terms of real-world distribution. The
next step is to extend our work to more general distribution of perturbation, such
as the light, weather condition and object styles on images. Finally, same as other
distribution-aware testing methods, we assume the input data distribution is same as
the training data distribution. To relax this assumption, we plan to take distribution-
shift into consideration in future versions of hierarchical distribution-aware testing.

3. The extraction of malicious knowledge from compromised tree ensemble is proved as
NP-hard. The complexity of knowledge extraction is dominated by the number of joint
decision paths, which is exponential to the number of trees. In current work, we reduce
the complexity by outlier detection to locate the suspected joint paths, which seems not
comprehensive and not realistic. In practice, we may only get comprised tree ensemble
without additional data or information. Take this into consideration in the future work,
we aims to simplify the tree ensemble model, such as the computation of equivalence
classes to derive the feasible joint paths [193], or construction of equivalent single
decision tree [194]. The reduction on joint decision paths enables the exact solution
by SMT solver, which can provide provable guarantee on knowledge extraction results.
Also, the mitigation of extracted knowledge on tree ensemble classifier hasn’t been
explored yet, the recovery of compromised tree ensemble without damaging model’s
performance is also challenging.

4. For the reliability evaluation of DL models, We partition the cell in input space and
evaluate the reliability of model over the distribution in input space. We not only con-
sider the feature distribution, but also the pixel distribution (the perturbation to seeds
input within norm ball). As the community puts more focus on natural disturbance
to seeds input, we plan to extend our work with the consideration of robustness to
natural disturbance. The natural disturbance is out of the norm ball range and seen as
disturbance to features. Therefore, we can partition the cell in latent space, and eval-
uate the reliability of model over the distribution in latent space. This requires that
latent space should encode meaningful features of data and feasible to manipulate with
disentangled representation. What’s more, we evaluate the DL models before and after
adversarial training in experiments and discover the potential of adversarial training
to the improvement of reliability. However, as the conceptual expression, reliability
equals to generalization times robustness, indicates that new training methods should
be developed to better trades off the generalization and robustness for the provable

150

guarantee on improvement of reliability.

5. We verify the robustness of learning-enabled autonomous systems and find the coun-
terexamples to the robustness property. In [195], we further define the resilience and
study the difference and similarity between robustness and resilience of LESs both in
theory and experiments. The verification is shown to be NP-complete, which inhibits
the practical application of our algorithm on real-world LESs. For the next step, we
plan to develop efficient and effective verification methods for both robustness and
resilience property of LESs. The runtime verification techniques are worthy of further
consideration. A lightweight runtime verification technique will be especially helpful if
we intend to work with large-scale, networked systems with hundreds or thousands of
components, compared with current off-line analysis. Whats’ more, more approaches
for the improvement of robustness and resilience are needed. We have investigated
two approaches: (1) the utility of joining collaborative components and (2) the utility
of a runtime monitor. The exploration of other approaches, and comparison of their
relative effectiveness, will be an interesting topic.

151

Bibliography

[1] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

[2] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning
affordance for direct perception in autonomous driving. In Proceedings of the IEEE
international conference on computer vision, pages 2722–2730, 2015.

[3] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated
whitebox testing of deep learning systems. In Proc. of the 26th Symp. on Operating
Systems Principles (SOSP), pages 1–18, 2017.

[4] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. Deepstellar:
Model-based quantitative analysis of stateful deep learning systems. In Proc. of the 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 477–487, 2019.

[5] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and Rob
Ashmore. Testing deep neural networks. arXiv preprint arXiv:1803.04792, 2018.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[7] Uday Kamath, John Liu, and James Whitaker. Deep learning for NLP and speech
recognition, volume 84. Springer, 2019.

[8] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas
Stolcke, Dong Yu, and Geoffrey Zweig. Achieving human parity in conversational
speech recognition. arXiv preprint arXiv:1610.05256, 2016.

[9] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018.

152

[10] Anders Krogh and John Hertz. A simple weight decay can improve generalization.
Advances in neural information processing systems, 4, 1991.

[11] Thomas G Dietterich. Ensemble methods in machine learning. In International work-
shop on multiple classifier systems, pages 1–15. Springer, 2000.

[12] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[13] Daniel A Hashimoto, Guy Rosman, Daniela Rus, and Ozanan R Meireles. Artificial
intelligence in surgery: promises and perils. Annals of surgery, 268(1):70, 2018.

[14] Qing Rao and Jelena Frtunikj. Deep learning for self-driving cars: Chances and chal-
lenges. In Proceedings of the 1st International Workshop on Software Engineering for
AI in Autonomous Systems, pages 35–38, 2018.

[15] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, 2014.

[16] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification
of deep neural networks. In International conference on computer aided verification,
pages 3–29. Springer, 2017.

[17] Mauro Ribeiro, Katarina Grolinger, and Miriam AM Capretz. Mlaas: Machine learning
as a service. In 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), pages 896–902. IEEE, 2015.

[18] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.
Universal adversarial perturbations. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 1765–1773, 2017.

[19] Stefan Webb, Tom Rainforth, Yee Whye Teh, and M Pawan Kumar. A statistical ap-
proach to assessing neural network robustness. In International Conference on Learning
Representations, 2018.

[20] Fuxun Yu, Zhuwei Qin, Chenchen Liu, Liang Zhao, Yanzhi Wang, and Xiang Chen.
Interpreting and evaluating neural network robustness. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pages 4199–4205, 2019.

[21] Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and Marta
Kwiatkowska. Global robustness evaluation of deep neural networks with provable
guarantees for the hamming distance. In International Joint Conferences on Artificial
Intelligence Organization, 2019.

153

[22] Benjie Wang, Stefan Webb, and Tom Rainforth. Statistically robust neural network
classification. In Uncertainty in Artificial Intelligence, pages 1735–1745. PMLR, 2021.

[23] Youcheng Sun, Yifan Zhou, Simon Maskell, James Sharp, and Xiaowei Huang. Re-
liability validation of learning enabled vehicle tracking. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 9390–9396. IEEE, 2020.

[24] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018.

[25] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017, pages 39–57. IEEE Computer Society, 2017.

[26] Mustafa M Tikir and Jeffrey K Hollingsworth. Efficient instrumentation for code
coverage testing. ACM SIGSOFT Software Engineering Notes, 27(4):86–96, 2002.

[27] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated
whitebox testing of deep learning systems. In proceedings of the 26th Symposium on
Operating Systems Principles, pages 1–18, 2017.

[28] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and
Rob Ashmore. Deepconcolic: Testing and debugging deep neural networks. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Companion Pro-
ceedings (ICSE-Companion), pages 111–114. IEEE, 2019.

[29] David Berend, Xiaofei Xie, Lei Ma, Lingjun Zhou, Yang Liu, Chi Xu, and Jianjun Zhao.
Cats Are Not Fish: Deep Learning Testing Calls for out-of-Distribution Awareness.
In Proc. of the 35th IEEE/ACM Int. Conference on Automated Software Engineering,
ASE’20, pages 1041–1052, New York, NY, USA, 2020. ACM. ISBN 978-1-4503-6768-4.
doi: 10.1145/3324884.3416609.

[30] Swaroopa Dola, Matthew B. Dwyer, and Mary Lou Soffa. Distribution-Aware Testing
of Neural Networks Using Generative Models. In IEEE/ACM 43rd Int. Conference on
Software Engineering, ICSE’21, pages 226–237, Madrid, Spain, 2021. IEEE.

[31] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu, and
Miryung Kim. Is Neuron Coverage a Meaningful Measure for Testing Deep Neural
Networks? In Proc. of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 851–
862, New York, NY, USA, 2020. ACM.

154

[32] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulner-
abilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733,
2017.

[33] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor at-
tacks in neural networks. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 707–723. IEEE, 2019.

[34] Paulo Angelo Alves Resende and André Costa Drummond. A survey of random forest
based methods for intrusion detection systems. ACM Computing Surveys (CSUR), 51
(3):1–36, 2018.

[35] Maximilian Bachl, Alexander Hartl, Joachim Fabini, and Tanja Zseby. Walling up
backdoors in intrusion detection systems. In Proceedings of the 3rd ACM CoNEXT
workshop on big data, machine learning and artificial intelligence for data communi-
cation networks, pages 8–13, 2019.

[36] Robin Bloomfield, Heidy Khlaaf, Philippa Ryan Conmy, and Gareth Fletcher. Disrup-
tive innovations and disruptive assurance: Assuring machine learning and autonomy.
Computer, 52(9):82–89, 2019.

[37] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese
Thamo, Min Wu, and Xinping Yi. A survey of safety and trustworthiness of deep neural
networks: Verification, testing, adversarial attack and defence, and interpretability.
Computer Science Review, 37:100270, 2020.

[38] Bev Littlewood and Lorenzo Strigini. Software reliability and dependability: a
roadmap. In Proceedings of the Conference on the Future of Software Engineering,
pages 175–188, 2000.

[39] John D. Musa. Operational profiles in software-reliability engineering. IEEE software,
10(2):14–32, 1993.

[40] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[41] Nazeeh Ghatasheh. Business analytics using random forest trees for credit risk predic-
tion: a comparison study. International Journal of Advanced Science and Technology,
72(2014):19–30, 2014.

[42] Chengwei Liu, Yixiang Chan, Syed Hasnain Alam Kazmi, and Hao Fu. Financial
fraud detection model: Based on random forest. International journal of economics
and finance, 7(7), 2015.

[43] Luckyson Khaidem, Snehanshu Saha, and Sudeepa Roy Dey. Predicting the direction
of stock market prices using random forest. arXiv preprint arXiv:1605.00003, 2016.

155

[44] Anne-Laure Boulesteix, Silke Janitza, Jochen Kruppa, and Inke R König. Overview of
random forest methodology and practical guidance with emphasis on computational
biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 2(6):493–507, 2012.

[45] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436–444, 2015.

[46] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[47] Ji Young Lee and Franck Dernoncourt. Sequential short-text classification with recur-
rent and convolutional neural networks. arXiv preprint arXiv:1603.03827, 2016.

[48] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with
deep recurrent neural networks. In 2013 IEEE international conference on acoustics,
speech and signal processing, pages 6645–6649. Ieee, 2013.

[49] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, and et al. A survey of safety and
trustworthiness of deep neural networks: Verification, testing, adversarial attack and
defence, and interpretability. Computer Science Review, 37:100270, 2020. ISSN 1574-
0137.

[50] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability analysis of deep
neural networks with provable guarantees. arXiv preprint arXiv:1805.02242, 2018.

[51] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. Concolic testing for deep neural networks. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering, pages
109–119, 2018.

[52] Swaroopa Dola, Matthew B Dwyer, and Mary Lou Soffa. Distribution-aware testing
of neural networks using generative models. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pages 226–237. IEEE, 2021.

[53] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. Dlfuzz: Differen-
tial fuzzing testing of deep learning systems. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 739–743, 2018.

[54] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing
of deep-neural-network-driven autonomous cars. In Proceedings of the 40th interna-
tional conference on software engineering, pages 303–314, 2018.

156

[55] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, et al. Deepgauge: Multi-granularity testing criteria for
deep learning systems. In Proce. of the 33rd ACM/IEEE Int. Conference on Automated
Software Engineering (ASE’18), pages 120–131, 2018.

[56] Chih-Hong Cheng, Chung-Hao Huang, and Hirotoshi Yasuoka. Quantitative projection
coverage for testing ml-enabled autonomous systems. In International Symposium on
Automated Technology for Verification and Analysis, pages 126–142. Springer, 2018.

[57] Jinhan Kim, Robert Feldt, and Shin Yoo. Guiding deep learning system testing using
surprise adequacy. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 1039–1049. IEEE, 2019.

[58] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. Tensorfuzz:
Debugging neural networks with coverage-guided fuzzing. In International Conference
on Machine Learning, pages 4901–4911. PMLR, 2019.

[59] David Berend. Distribution awareness for ai system testing. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pages 96–98. IEEE, 2021.

[60] Qiang Hu, Yuejun Guo, Maxime Cordy, Xiaofei Xie, Lei Ma, Mike Papadakis, and
Yves Le Traon. An empirical study on data distribution-aware test selection for deep
learning enhancement. ACM Transactions on Software Engineering and Methodology,
2022.

[61] Taejoon Byun, Abhishek Vijayakumar, Sanjai Rayadurgam, and Darren Cofer.
Manifold-based test generation for image classifiers. In 2020 IEEE International Con-
ference On Artificial Intelligence Testing (AITest), pages 15–22. IEEE, 2020.

[62] Vincenzo Riccio and Paolo Tonella. Model-based exploration of the frontier of be-
haviours for deep learning system testing. In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 876–888, 2020.

[63] Felipe Toledo, David Shriver, Sebastian Elbaum, and Matthew B Dwyer. Distribution
models for falsification and verification of dnns. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 317–329. IEEE, 2021.

[64] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards,
Taesung Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep
neural networks by activation clustering. In SafeAI@ AAAI, 2019.

[65] Xijie Huang, Moustafa Alzantot, and Mani Srivastava. Neuroninspect: Detecting back-
doors in neural networks via output explanations. arXiv preprint arXiv:1911.07399,
2019.

157

[66] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-
box trojan detection and mitigation framework for deep neural networks. In IJCAI,
volume 2, page 8, 2019.

[67] Yinpeng Dong, Xiao Yang, Zhijie Deng, Tianyu Pang, Zihao Xiao, Hang Su, and Jun
Zhu. Black-box detection of backdoor attacks with limited information and data. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
16482–16491, 2021.

[68] Junfeng Guo, Ang Li, and Cong Liu. Aeva: Black-box backdoor detection using
adversarial extreme value analysis. arXiv preprint arXiv:2110.14880, 2021.

[69] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-
Jui Hsieh, and Luca Daniel. Evaluating the robustness of neural networks: An extreme
value theory approach. arXiv preprint arXiv:1801.10578, 2018.

[70] Zenan Li, Xiaoxing Ma, Chang Xu, Chun Cao, Jingwei Xu, and Jian Lü. Boosting
operational dnn testing efficiency through conditioning. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 499–509, 2019.

[71] Antonio Guerriero, Roberto Pietrantuono, and Stefano Russo. Operation is the hardest
teacher: estimating dnn accuracy looking for mispredictions. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pages 348–358. IEEE, 2021.

[72] Tommaso Dreossi, Alexandre Donzé, and Sanjit A Seshia. Compositional falsification
of cyber-physical systems with machine learning components. Journal of Automated
Reasoning, 63(4):1031–1053, 2019.

[73] Cumhur Erkan Tuncali, James Kapinski, Hisahiro Ito, and Jyotirmoy V Deshmukh.
Reasoning about safety of learning-enabled components in autonomous cyber-physical
systems. arXiv preprint arXiv:1804.03973, 2018.

[74] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee.
Verisig: Verifying safety properties of hybrid systems with neural network controllers.
In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Compu-
tation and Control, HSCC ’19, page 169–178, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450362825. doi: 10.1145/3302504.3311806. URL
https://doi.org/10.1145/3302504.3311806.

[75] Shakiba Yaghoubi and Georgios Fainekos. Gray-box adversarial testing for control
systems with machine learning components. In Proceedings of the 22nd ACM Inter-
national Conference on Hybrid Systems: Computation and Control, HSCC ’19, page
179–184, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450362825. doi: 10.1145/3302504.3311814. URL https://doi.org/10.1145/

3302504.3311814.

158

https://doi.org/10.1145/3302504.3311806
https://doi.org/10.1145/3302504.3311814
https://doi.org/10.1145/3302504.3311814

[76] Ruixin Niu and Lauren Huie. System state estimation in the presence of false informa-
tion injection. In Statistical Signal Processing Workshop (SSP), pages 385–388. IEEE,
2012.

[77] Qingyu Yang, Liguo Chang, and Wei Yu. On false data injection attacks against
kalman filtering in power system dynamic state estimation. Security and Communica-
tion Networks, 9(9):833–849, 2016.

[78] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In 2nd Int.
Conf. on Learning Representations, 2014.

[79] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: Eval-
uating backdooring attacks on deep neural networks. IEEE Access, 7:47230–47244,
2019.

[80] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,
Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning
attacks on neural networks. In Proc. of the 32nd Int. Conf. on Neural Information
Processing Systems (NIPS), page 6106–6116, 2018.

[81] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symp. on Security and Privacy (SP),
pages 3–18, 2017.

[82] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava,
and Kai-Wei Chang. Generating natural language adversarial examples. In Proc. of the
Conf. on Empirical Methods in Natural Language Processing, pages 2890–2896, 2018.

[83] Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A backdoor attack against lstm-based
text classification systems. IEEE Access, 7:138872–138878, 2019.

[84] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. Structural coverage criteria for
neural networks could be misleading. In 2019 IEEE/ACM 41st Int. Conf. on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER), pages 89–92, 2019.

[85] Yizhen Dong, Peixin Zhang, Jingyi Wang, Shuang Liu, Jun Sun, Jianye Hao, Xinyu
Wang, Li Wang, Jin Song Dong, and Dai Ting. There is limited correlation between
coverage and robustness for deep neural networks. arXiv preprint arXiv:1911.05904,
2019.

[86] Larry Brader, Howie Hilliker, and Alan Cameron Wills. Testing for Continuous De-
livery with Visual Studio 2012. Microsoft patterns & practices, 2012.

[87] Peter Bishop and Andrey Povyakalo. Deriving a frequentist conservative confidence
bound for probability of failure per demand for systems with different operational and
test profiles. Reliability Engineering & System Safety, 158:246–253, 2017.

159

[88] Yao Ming, Shaozu Cao, Ruixiang Zhang, Zhen Li, Yuanzhe Chen, Yangqiu Song, and
Huamin Qu. Understanding hidden memories of recurrent neural networks. In 12th
IEEE Conf. on Visual Analytics Science and Technology (VAST), pages 13–24, 2017.

[89] Phyllis G. Frankl, Richard G. Hamlet, Bev Littlewood, and Lorenzo Strigini. Evaluat-
ing testing methods by delivered reliability. IEEE Tran. on Software Engineering, 24
(8):586–601, 1998.

[90] Xingyu Zhao, Kizito Salako, Lorenzo Strigini, Valentin Robu, and David Flynn. Assess-
ing safety-critical systems from operational testing: A study on autonomous vehicles.
Information and Software Technology, 128:106393, 2020.

[91] Richard G. Hamlet and Ross Taylor. Partition testing does not inspire confidence.
IEEE Tran. on Softw. Engineering, 16(12):1402–1411, 1990.

[92] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. Model checking. The MIT Press, 2018.

[93] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Pranav Patel. Finding motifs in
time series. In Proc. of the 2nd Workshop on Temporal Data Mining, pages 53–68,
2002.

[94] Francesco Crecchi, Davide Bacciu, and Battista Biggio. Detecting black-box adversar-
ial examples through nonlinear dimensionality reduction. In 27th European Symp. on
Artificial Neural Networks, 2019.

[95] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards,
Taesung Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep
neural networks by activation clustering. In Workshop on Artificial Intelligence Safety
2019 co-located with the 33rd AAAI Conf. on Artificial Intelligence, volume 2301, 2019.

[96] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proc. of the IEEE Conf.
on computer vision and pattern recognition, pages 2818–2826, 2016.

[97] Zhiqiang Gong, Ping Zhong, and Weidong Hu. Diversity in machine learning. IEEE
Access, 7:64323–64350, 2019.

[98] Yang Yu, Yu-Feng Li, and Zhi-Hua Zhou. Diversity regularized machine. In 22nd Int.
Joint Conf. on Artif. Intel. (IJCAI), pages 1603–1608, 2011.

[99] Nicolas Papernot, Patrick McDaniel, Ananthram Swami, and Richard Harang. Craft-
ing adversarial input sequences for recurrent neural networks. In IEEE Military Com-
munications Conf. (MILCOM), pages 49–54. IEEE, 2016.

160

[100] Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse,
Aneesh S. Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for
molecular machine learning. Chem. Sci., 9:513–530, 2018.

[101] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101
human action classes from videos in the wild. CRCV-TR-12-01, 2012.

[102] Jason Wei and Kai Zou. EDA: Easy data augmentation techniques for boosting perfor-
mance on text classification tasks. In Proc. of the 2019 Conf. on Empirical Methods in
Natural Language Processing and the 9th Int. Joint Conf. on Natural Language Process-
ing (EMNLP-IJCNLP), pages 6382–6388. Association for Computational Linguistics,
2019.

[103] RDKit, online. RDKit: Open-source cheminformatics. http://www.rdkit.org, 2013.
[Online; accessed 11-April-2013].

[104] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Towards practical verifi-
cation of machine learning: The case of computer vision systems. arXiv preprint
arXiv:1712.01785, 2017.

[105] Melika Behjati, Seyed-Mohsen Moosavi-Dezfooli, Mahdieh Soleymani Baghshah, and
Pascal Frossard. Universal adversarial attacks on text classifiers. In IEEE Int. Conf.
on Acoustics, Speech and Signal Processing, pages 7345–7349. IEEE, 2019.

[106] David Lane, David Bisset, Rob Buckingham, Geoff Pegman, and Tony Prescott. New
foresight review on robotics and autonomous systems. Technical Report No. 2016.1,
LRF, 2016.

[107] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. Machine Learning Testing: Survey,
Landscapes and Horizons. IEEE Tran. on Software Engineering, 2020. doi: 10.1109/
TSE.2019.2962027. Early access.

[108] David Berend. Distribution awareness for AI system testing. In 43rd IEEE/ACM
Int. Conf. on Software Engineering: Companion Proceedings, ICSE Companion 2021,
Madrid, Spain, May 25-28, 2021, pages 96–98. IEEE, 2021.

[109] Felipe Toledo, David Shriver, Sebastian Elbaum, and Matthew B Dwyer. Distribu-
tion models for falsification and verification of dnns. In IEEE/ACM Int. Conf. on
Automated Software Engineering (ASE’21), 2021.

[110] Taejoon Byun, Abhishek Vijayakumar, Sanjai Rayadurgam, and Darren Cofer.
Manifold-based Test Generation for Image Classifiers. In Int. Conf. On Artifi-
cial Intelligence Testing (AITest), pages 15–22, Oxford, UK, 2020. IEEE. doi:
10.1109/AITEST49225.2020.00010.

161

http://www.rdkit.org

[111] Yue Zhong, Lizhuang Liu, Dan Zhao, and Hongyang Li. A generative adversarial
network for image denoising. Multimedia Tools and Applications, 79(23):16517–16529,
2020.

[112] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of
deep neural networks. In Computer Aided Verification, volume 10426 of LNCS, pages
3–29, Cham, 2017. Springer International Publishing.

[113] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability Analysis of Deep
Neural Networks with Provable Guarantees. In Proceedings of the Twenty-Seventh
Int. Joint Conference on Artificial Intelligence, IJCAI-18, pages 2651–2659. Int. Joint
Conferences on Artificial Intelligence Organization, 2018.

[114] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-
Jui Hsieh, and Luca Daniel. Evaluating the robustness of neural networks: An extreme
value theory approach. In 6th Int. Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

[115] Stefan Webb, Tom Rainforth, Yee Whye Teh, and M. Pawan Kumar. A statistical
approach to assessing neural network robustness. In ICLR’19, New Orleans, LA, USA,
2019.

[116] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui Hsieh,
and Mani B Srivastava. Genattack: Practical black-box attacks with gradient-free
optimization. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 1111–1119, 2019.

[117] Chenwang Wu, Wenjian Luo, Nan Zhou, Peilan Xu, and Tao Zhu. Genetic algorithm
with multiple fitness functions for generating adversarial examples. In IEEE Congress
on Evolutionary Computation, CEC 2021, Kraków, Poland, June 28 - July 1, 2021,
pages 1792–1799. IEEE, 2021.

[118] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated
whitebox testing of deep learning systems. In Proceedings of the 26th Symposium
on Operating Systems Principles, Shanghai, China, October 28-31, 2017, pages 1–18.
ACM, 2017.

[119] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and Rob
Ashmore. Deepconcolic: testing and debugging deep neural networks. In Proceedings
of the 41st Int. Conference on Software Engineering: Companion Proceedings, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019, pages 111–114. IEEE / ACM, 2019.

[120] Wei Huang, Youcheng Sun, Xingyu Zhao, James Sharp, Wenjie Ruan, Jie Meng, and
Xiaowei Huang. Coverage guided testing for recurrent neural networks. IEEE Tran.
on Reliability, 2021.

162

[121] Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu, and Xiangyu
Zhang. Correlations between Deep Neural Network Model Coverage Criteria and Model
Quality. In Proc. of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, pages 775–787, New York, NY, USA, 2020. ACM.

[122] Lily Weng, Pin-Yu Chen, Lam Nguyen, Mark Squillante, Akhilan Boopathy, Ivan
Oseledets, and Luca Daniel. PROVEN: Verifying robustness of neural networks with
a probabilistic approach. In ICML’19, volume 97, pages 6727–6736. PMLR, 2019.

[123] Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Russ R Salakhutdinov, and Ka-
malika Chaudhuri. A Closer Look at Accuracy vs. Robustness. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems, volume 33 of NeurIPS’20, pages 8588–8601. Curran
Associates, Inc., 2020.

[124] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu.
On the convergence and robustness of adversarial training. In Proceedings of the 36th
Int. Conference on Machine Learning, ICML’19, volume 97, pages 6586–6595, Long
Beach, California, USA, 2019. PMLR.

[125] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun, and
Peng Cheng. Robot: robustness-oriented testing for deep learning systems. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pages
300–311. IEEE, 2021.

[126] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun, and
Peng Cheng. RobOT: Robustness-Oriented Testing for Deep Learning Systems. In
2021 IEEE/ACM 43rd Int. Conf. on Software Engineering (ICSE’21), pages 300–311,
2021. doi: 10.1109/ICSE43902.2021.00038.

[127] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and
Michael Jordan. Theoretically principled trade-off between robustness and accuracy.
In International conference on machine learning, pages 7472–7482. PMLR, 2019.

[128] Taejoon Byun and Sanjai Rayadurgam. Manifold-based test generation for image
classifiers. In ICSE ’20: 42nd Int. Conference on Software Engineering, Workshops,
Seoul, Republic of Korea, 27 June - 19 July, 2020, page 221. ACM, 2020. doi: 10.
1145/3387940.3391460. URL https://doi.org/10.1145/3387940.3391460.

[129] Vincenzo Riccio and Paolo Tonella. Model-based exploration of the frontier of be-
haviours for deep learning system testing. In Prem Devanbu, Myra B. Cohen, and
Thomas Zimmermann, editors, ESEC/FSE ’20: 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, Virtual Event, USA, November 8-13, 2020, pages 876–888. ACM, 2020. doi:
10.1145/3368089.3409730. URL https://doi.org/10.1145/3368089.3409730.

163

https://doi.org/10.1145/3387940.3391460
https://doi.org/10.1145/3368089.3409730

[130] Hossein Hosseini and Radha Poovendran. Semantic adversarial examples. In 2018
IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR
Workshops 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 1614–1619. IEEE
Computer Society, 2018.

[131] Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial ex-
amples. In 6th Int. Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018.

[132] Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th
international conference on pattern recognition, pages 2366–2369. IEEE, 2010.

[133] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Trans. Image Process.,
13(4):600–612, 2004.

[134] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash
equilibrium. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 6626–6637, 2017.

[135] S. H. Lokerse, L. P. J. Veelenturf, and J. G. Beltman. Density estimation using SOFM
and adaptive kernels. In Neural Networks: Artificial Intelligence and Industrial Ap-
plications - Proceedings of the Third Annual SNN Symposium on Neural Networks,
Nijmegen, The Netherlands, September 14-15, 1995, pages 203–206. Springer, 1995.

[136] Xingyu Zhao, Wei Huang, Alec Banks, Victoria Cox, David Flynn, Sven Schewe, and
Xiaowei Huang. Assessing the Reliability of Deep Learning Classifiers Through Ro-
bustness Evaluation and Operational Profiles. In AISafety’21 Workshop at IJCAI’21,
volume 2916, 2021.

[137] Ahmadreza Jeddi, Mohammad Javad Shafiee, and Alexander Wong. A simple fine-
tuning is all you need: Towards robust deep learning via adversarial fine-tuning. In
Workshop on Adversarial Machine Learning in Real-World Computer Vision Systems
and Online Challenges (AML-CV) @ CVPR’21, pages 1–5, 2021.

[138] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based
external cluster evaluation measure. In EMNLP-CoNLL 2007, Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing and Compu-
tational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic, pages
410–420. ACL, 2007.

164

[139] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness
with an ensemble of diverse parameter-free attacks. In Proc. of the 37th Int. Conf. on
Machine Learning (ICML’20), volume 119, pages 2206–2216. PMLR, 2020.

[140] David W Scott. Feasibility of multivariate density estimates. Biometrika, 78(1):197–
205, 1991.

[141] Han Liu, John Lafferty, and Larry Wasserman. Sparse nonparametric density estima-
tion in high dimensions using the rodeo. In Artificial Intelligence and Statistics, pages
283–290. PMLR, 2007.

[142] Maximilian Bachl, Alexander Hartl, Joachim Fabini, and Tanja Zseby. Walling up
backdoors in intrusion detection systems. Proceedings of the 3rd ACM CoNEXT Work-
shop on Big Data, Machine Learning and Artificial Intelligence for Data Communica-
tion Networks, pages 8–13, 2019.

[143] Y. Chen, X. Gong, Q. Wang, X. Di, and H. Huang. Backdoor attacks and defenses
for deep neural networks in outsourced cloud environments. IEEE Network, 34(5):
141–147, 2020. doi: 10.1109/MNET.011.1900577.

[144] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Eval-
uating backdooring attacks on deep neural networks. IEEE Access, 7:47230–47244,
2019.

[145] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor
attacks on deep learning systems using data poisoning. CoRR, abs/1712.05526, 2017.
URL http://arxiv.org/abs/1712.05526.

[146] Min Du, Ruoxi Jia, and Dawn Song. Robust Anomaly Detection and Backdoor Attack
Detection Via Differential Privacy. In International Conference on Learning Represen-
tations (ICLR), 2020.

[147] Alex Kantchelian, J. D. Tygar, and Anthony D. Joseph. Evasion and hardening of tree
ensemble classifiers. In Proceedings of the 33nd International Conference on Machine
Learning, volume 48, pages 2387–2396, 2016.

[148] GG Moisen. Classification and regression trees. In: Jørgensen, Sven Erik; Fath, Brian
D.(Editor-in-Chief). Encyclopedia of Ecology, volume 1. Oxford, UK: Elsevier. p. 582-
588., pages 582–588, 2008.

[149] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

[150] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines.
ACM transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

[151] Jerry L Hintze and Ray D Nelson. Violin plots: a box plot-density trace synergism.
The American Statistician, 52(2):181–184, 1998.

165

http://arxiv.org/abs/1712.05526

[152] Floriana Esposito, Donato Malerba, Giovanni Semeraro, and Valentina Tamma. The
effects of pruning methods on the predictive accuracy of induced decision trees. Applied
Stochastic Models in Business and Industry, 15(4):277–299, 1999.

[153] Ximing Qiao, Yukun Yang, and Hai Li. Defending neural backdoors via generative
distribution modeling. In Advances in Neural Information Processing Systems, pages
14004–14013, 2019.

[154] Robin Bloomfield, Heidy Khlaaf, Philippa Ryan Conmy, and Gareth Fletcher. Disrup-
tive innovations and disruptive assurance: Assuring machine learning and autonomy.
Computer, 52(9):82–89, 2019. ISSN 0018-9162.

[155] Bev Littlewood and Lorenzo Strigini. Software reliability and dependability: A
roadmap. In Proc. of the Conf. on The Future of Software Engineering, ICSE 2000,
pages 175–188, 2000.

[156] John Musa. Operational profiles in software-reliability engineering. IEEE Software, 10
(2):14–32, 1993. ISSN 0740-7459.

[157] Xingyu Zhao, Alec Banks, James Sharp, Valentin Robu, David Flynn, Michael Fisher,
and Xiaowei Huang. A Safety Framework for Critical Systems Utilising Deep Neu-
ral Networks. In António Casimiro, Frank Ortmeier, Friedemann Bitsch, and Pedro
Ferreira, editors, Computer Safety, Reliability, and Security, volume 12234 of LNCS,
pages 244–259, Cham, 2020. Springer Int. Publishing.

[158] Lorenzo Strigini and Bev Littlewood. Guidelines for statistical testing. Technical
report, City, University of London, 1997. URL http://openaccess.city.ac.uk/

254/.

[159] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural
Networks. In IEEE Symp. on Security and Privacy (SP), pages 39–57, San Jose, CA,
USA, 2017. IEEE. doi: 10.1109/SP.2017.49.

[160] Peter Bishop, Robin Bloomfield, Bev Littlewood, Andrey Povyakalo, and David
Wright. Toward a formalism for conservative claims about the dependability of
software-based systems. IEEE Transactions on Software Engineering, 37(5):708–717,
2011.

[161] Lorenzo Strigini and Andrey Povyakalo. Software fault-freeness and reliability pre-
dictions. In SafeComp’13, volume 8153 of LNCS, pages 106–117, Berlin, Heidelberg,
2013. Springer. ISBN 978-3-642-40793-2.

[162] Gero Walter and Thomas Augustin. Imprecision and prior-data conflict in generalized
Bayesian inference. Journal of Statistical Theory & Practice, 3(1):255–271, 2009.

166

http://openaccess.city.ac.uk/254/
http://openaccess.city.ac.uk/254/

[163] Xingyu Zhao, Valentin Robu, David Flynn, Fateme Dinmohammadi, Michael Fisher,
and Matt Webster. Probabilistic model checking of robots deployed in extreme envi-
ronments. In AAAI’19, volume 33, pages 8076–8084, 2019.

[164] Roberto Pietrantuono, Peter Popov, and Stefano Russo. Reliability assessment of
service-based software under operational profile uncertainty. Reliability Engineering &
System Safety, 204:107193, 2020.

[165] Bernard W Silverman. Density estimation for statistics and data analysis, volume 26.
CRC press, 1986.

[166] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
J. of Machine Learning Research, 13(2):281–305, 2012.

[167] Yen-Chi Chen. A tutorial on kernel density estimation and recent advances. Biostatis-
tics & Epidemiology, 1(1):161–187, 2017.

[168] Antonio Guerriero. Reliability Evaluation of ML systems, the oracle problem. In ISS-
REW’20, pages 127–130, Coimbra, Portugal, 2020. IEEE. doi: 10.1109/ISSREW51248.
2020.00050.

[169] David W Scott. Multivariate density estimation: theory, practice, and visualization.
John Wiley & Sons, 2015.

[170] Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density
estimation in high dimensions. In NeurIPS’19, pages 15773–15782, 2019.

[171] Philip R Bevington, D Keith Robinson, J Morris Blair, A John Mallinckrodt, and
Susan McKay. Data reduction and error analysis for the physical sciences, volume 7.
American Institute of Physics, 1993.

[172] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations, 2018.

[173] Erfan Asaadi, Ewen Denney, Jonathan Menzies, Ganesh J. Pai, and Dimo Petroff.
Dynamic Assurance Cases: A Pathway to Trusted Autonomy. Computer, 53(12):35–
46, 2020. doi: 10.1109/MC.2020.3022030.

[174] Abdulhakim Qahtan, Suojin Wang, and Xiangliang Zhang. KDE-Track: An Efficient
Dynamic Density Estimator for Data Streams. IEEE Transactions on Knowledge and
Data Engineering, 29(3):642–655, 2017. doi: 10.1109/TKDE.2016.2626441.

[175] Xingyu Zhao, Radu Calinescu, Simos Gerasimou, Valentin Robu, and David Flynn.
Interval change-point detection for runtime probabilistic model checking. In ASE’20,
pages 163–174. IEEE/ACM, 2020.

167

[176] Ziyuan Zhong, Yuchi Tian, and Baishakhi Ray. Understanding Local Robustness of
Deep Neural Networks under Natural Variations. In FASE’21, pages 313–337, 2021.

[177] Keith W. Miller, Larry J. Morell, Robert E. Noonan, Stephen K. Park, David M. Nicol,
Branson W. Murrill, and M Voas. Estimating the probability of failure when testing
reveals no failures. IEEE Transactions on Software Engineering, 18(1):33–43, 1992.
ISSN 0098-5589.

[178] Georgios Papadopoulos, Maurice F Fallon, John J Leonard, and Nicholas M Pa-
trikalakis. Cooperative localization of marine vehicles using nonlinear state estimation.
In IROS, pages 4874–4879. IEEE, 2010.

[179] Neil Gordon, David Salmond, and Craig Ewing. Bayesian state estimation for tracking
and guidance using the bootstrap filter. Journal of Guidance, Control, and Dynamics,
18(6):1434–1443, 1995.

[180] Y. Zhou and S. Maskell. Detecting and tracking small moving objects in wide area
motion imagery (wami) using convolutional neural networks (cnns). In 2019 22th
International Conference on Information Fusion (FUSION), pages 1–8, July 2019.

[181] Wei He and Yiting Dong. Adaptive fuzzy neural network control for a constrained
robot using impedance learning. IEEE transactions on neural networks and learning
systems, 2017.

[182] Youcheng Sun, Yifan Zhou, Simon Maskell, James Sharp, and Xiaowei Huang. Relia-
bility validation of learning enabled vehicle tracking. In ICRA, 2020.

[183] R. E. Kalman. A new approach to linear filtering and prediction problems. J. Basic
Eng., 82(1):35–45, 1960. doi: 10.1109/ijcnn.2011.6033589.

[184] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[185] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of
deep neural networks. In CAV’17, volume 10426 of LNCS, pages 3–29. Springer, 2017.
ISBN 978-3-319-63387-9.

[186] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability analysis of deep
neural networks with provable guarantees. In IJCAI2018, pages 2651–2659, 2018.

[187] Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and Marta
Kwiatkowska. Global robustness evaluation of deep neural networks with provable
guarantees for the hamming distance. In IJCAI2019, pages 5944–5952, 2019.

[188] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a
simple and accurate method to fool deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2574–2582, 2016.

168

[189] Yizhen Dong, Peixin Zhang, Jingyi Wang, Shuang Liu, Jun Sun, Jianye Hao, Xinyu
Wang, Li Wang, Jin Song Dong, and Dai Ting. There is limited correlation between
coverage and robustness for deep neural networks. arXiv preprint arXiv:1911.05904,
2019.

[190] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. Structural coverage criteria for
neural networks could be misleading. In 2019 IEEE/ACM 41st Int. Conference on
Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pages 89–92.
IEEE, 2019.

[191] Xingyu Zhao, Wei Huang, Sven Schewe, Yi Dong, and Xiaowei Huang. Detecting oper-
ational adversarial examples for reliable deep learning. In 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks-Supplemental Volume
(DSN-S), pages 5–6. IEEE, 2021.

[192] Xingyu Zhao, Alec Banks, James Sharp, Valentin Robu, David Flynn, Michael Fisher,
and Xiaowei Huang. A safety framework for critical systems utilising deep neural
networks. In International Conference on Computer Safety, Reliability, and Security,
pages 244–259. Springer, 2020.

[193] John Törnblom and Simin Nadjm-Tehrani. Formal verification of input-output map-
pings of tree ensembles. Science of Computer Programming, 194:102450, 2020.

[194] Thibaut Vidal and Maximilian Schiffer. Born-again tree ensembles. In International
conference on machine learning, pages 9743–9753. PMLR, 2020.

[195] Wei Huang, Yifan Zhou, Youcheng Sun, Alec Banks, Jie Meng, James Sharp,
Simon Maskell, and Xiaowei Huang. Formal verification of robustness and re-
silience of learning-enabled state estimation systems for robotics. arXiv preprint
arXiv:2010.08311, 2020.

169

	Acknowledgements
	Abstract
	List of Publications
	Acronyms
	Introduction
	Background
	Research Objectives
	Contributions
	Structure of Thesis

	Literature Review
	Verification and Validation of Machine Learning Component
	Test Machine Learning Component
	Coverage Guided Testing
	Distribution Aware Testing
	Backdoor Testing

	Evaluate Machine Learning Components
	Safety Analysis of ML in Learning-Enabled Systems

	Test DL Robustness through Coverage Metrics
	Introduction
	RNN Preliminaries
	Problem Statement
	LSTM Test Coverage Metrics
	Relation with RNN Defects
	Coverage Guided Test Case Generation
	Selection Policies and Queuing
	Mutation Policies
	Test Set Evaluation

	Evaluation
	Experimental Setup
	Diversity of Test Cases
	Detecting RNN Defects
	Effectiveness of Test Case Generation (RQ5)
	Comparison with Attack-based Defect Detection (RQ6)
	Comparison with State-of-the-Art testing methods (RQ7)
	Exhibition of Internal Working Mechanism (RQ8)
	Threats to Validity

	Test DL Robustness through Hierarchical Distribution-Awareness
	Introduction
	Preliminaries and Related Work
	DL Robustness and Adversarial Examples
	Distribution-Aware Testing for DL
	Perception Quality of Images

	The Proposed Method
	Overview of HDA Testing
	Approximation of the Global Distribution
	Test Seeds Selection
	Local Test Cases Generation

	Evaluation
	Experiment Setup
	Evaluation Results and Discussions

	Threats to Validity
	Internal Validity
	External Validity

	Test Backdoor in Tree Ensemble through Knowledge Extraction
	Introduction
	Preliminaries
	Decision Tree
	Tree Ensemble

	Symbolic Knowledge
	Success Criteria of Knowledge Embedding
	Knowledge Embedding Algorithms
	General Idea for Embedding Knowledge in a Single Decision Tree
	Tree Embedding Algorithm for Black-box Settings
	Tree Embedding Algorithm for White-box Settings
	Embedding Algorithm for Tree Ensembles

	Knowledge Extraction with SMT Solvers
	Exact Solution
	Extraction via Outlier Detection

	Generalizing to Regression Trees
	Generalising to Different Types of Tree Ensembles
	Evaluation
	Embedding a Single Piece of Knowledge into Decision Trees
	Embedding a Single Piece of Knowledge to Tree Ensembles
	Embedding Multiple Pieces of Knowledge
	Detection of Knowledge Embedding
	Knowledge Extraction

	Evaluate DL through Robustness and Operational Profile
	Introduction
	Preliminaries
	OP Based Software Reliability Assessment
	DL Robustness and the R-Separation Property

	A RAM for Deep Learning Classifiers
	The Running Example
	The Proposed RAM
	Extension to High-Dimensional Dataset
	Evaluation on the Proposed RAM

	Case Study: Evaluate YOLOv3 in Autonomous Underwater Vehicles
	Scenario Design
	Reliability Modelling of the AUV's Classification Function

	Discussions on the Proposed RAM

	Practical Verification of DL Safety in State Estimation Systems
	Introduction
	Preliminaries
	Neural Networks
	Neural Network Enabled State Estimation
	A Real-World WAMI Dynamic Tracking System
	Expansion of Bayesian Uncertainty in Kalman Filters

	Problem Formulation
	Threat Model of Adversarial Attack on Perception System
	-Labelled Transition Systems
	Reduction of WAMI Tracking to -LTS
	A Simple Monitor on Bayesian Uncertainty
	Specification as Optimization

	Automated Verification
	Baseline Method
	Verification Algorithm based on Exhaustive Search
	Heuristic Algorithm based on Sub-optimal Greedy Search

	Experimental Results
	Research Questions
	Experimental Setup
	Returning Good Solutions within Constraints (RQ1)
	Proof of Robustness Against the Attack (RQ2)
	Pros and Cons of the Two Algorithms (RQ3)

	Conclusion
	Thesis Summary
	Contributions and Main Findings
	Future Work

