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13 Abstract: The aim of this study is to develop a Weibull-based distributed downscaling technique 
14 for wind field as forcing for the wave models to investigate the wave climate under future 
15 scenarios. For this purpose, the statistical downscaling approach modifies Weibull distribution 
16 parameters of the global circulation model wind speeds based on the corresponding features of 
17 wind data of ECMWF (European Center for Medium-Range Weather Forecasts). The proposed 
18 technique has the advantage of modifying the wind components in each grid point based on the 
19 corresponding values in the same grid point of ECMWF wind field. Hence, it is superior to other 
20 existing models due to considering the spatial variation. The previous models using inverse 
21 distance weighting suffer from heterogeneity and ignoring spatial variation in areas with high 
22 gradient of wind speed. Moreover, the Weibull-based technique outperforms the existing 
23 statistical downscaling techniques in terms of accuracy. Prior to investigate future distribution of 
24 wave characteristics, performance of the selected GCM was evaluated and compared against the 
25 corresponding models obtained from the available regional climate models. Future projections of 
26 wind fields (RCP4.5, RCP8.5) were downscaled for the period of 2081 to 2100 with the 
27 proposed model as driving force for wave modeling in the Persian Gulf. To investigate the 
28 impacts of climate change on wave characteristics, results of the wave simulations from a third 
29 generation wave model (SWAN) for future scenarios are compared with those of the historical 
30 period (1981-2000) in monthly, seasonal, and annual scales. Generally, for RCP8.5, the results 
31 indicate a decrease in future significant wave height and peak wave period about 15% and 5%, 
32 respectively. However, the change of wave direction is marginal. Moreover, wave models forced 
33 with RCP4.5 wind data provide slightly higher average values in terms of wave height and peak 
34 wave period compared to those of RCP8.5. 

35 Keywords: Wave climate, Future scenarios, Climate change, Distributed downscaling approach, 
36 Wind field, Weibull parameters
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37 1. Introduction

38 Ocean surface gravity waves generated by the wind action over air-sea interface (henceforth 
39 called waves) contain more than half of the energy carried by all waves at the ocean surface 
40 surpassing the contribution of tides, tsunamis, coastal surges, and others (Semedo et al., 2011). 
41 They are of great importance for many different coastal engineering applications such as design 
42 and construction of coastal protection structures and harbors, marine transportation, sediment 
43 transport studies, coastal geomorphology and environmental purposes. Wave climate can refer to 
44 distribution of wave characteristics (e.g., height, period, and direction) for a given place averaged 
45 over several years. Therefore, investigation of wave climate is a key element toward reliable 
46 design and development of coastal and marine industries.  
47 Climate change and its impacts on a variety of atmospheric, oceanic and earth surface processes 
48 have taken much attention, and several different general circulation models (GCMs) considering 
49 different scenarios and future probable conditions have been run in order to generate the 
50 projection of different variables. Thus, due to existing outputs of several GCMs representing 
51 climate change and global warming influences on different variables which the planet is 
52 experiencing, consideration of future trends in wave climate is an essential step for operation and 
53 designing of offshore and onshore structures. Recently, regional climate models (RCMs) 
54 considering the regional conditions have been developed to overcome coarse resolution of the 
55 GCMs. In this regard, CORDEX (Coordinated Regional Climate Downscaling Experiment) 
56 outputs are among the most popular RCMs available for climate change studies for different 
57 regions over the world. However, little attention was devoted for projection of wind waves in the 
58 Intergovernmental Panel on Climate Change (IPCC) Coupled Model Intercomparison Project 
59 Phase 5 (CMIP5). On the other hand, surface winds have received more attention and 
60 subsequently, they have been simulated and presented as outputs of several GCMs/RCMs under 
61 different future scenarios. Since the surface winds are considered as the main driving forces for 
62 wind waves, they can be employed in wave models to project wave climate under different 
63 climate change conditions. In this regard, many researchers applied wind data from different 
64 GCMs for investigation of wave characteristics and its prospective changes (Hemer et al., 2013b; 
65 Kamranzad et al., 2015; Semedo et al., 2018; Vanem, 2015; Wandres et al., 2017; Wang et al., 
66 2018).      

67 Semedo et al. (2012) employed a global wave model to explore impacts of future warmer climate 
68 through A1B emission scenario. The results indicated increasing and decreasing trends in mean 
69 significant wave height (Hs) for lower and higher latitudes, respectively. The variations are more 
70 intensified in southern hemisphere compared to the northern one. Hemer et al. (2013a) reported a 
71 decrease in annual mean Hs over 25.8% of the global ocean area whereas a projected increase in 
72 annual mean Hs was found over 7.1% of the global ocean predominantly in the Southern Ocean. 
73 Moreover, it was shown that the decrease rate is greater during boreal winter than austral winter, 
74 while the increase rate is greater for austral winter. Wang et al. (2015) investigated a 20-model 
75 ensemble of Hs simulations for the period 2006– 2099. The results revealed that the model 
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76 uncertainty is about 10 times as large as the variability between the RCP4.5 and RCP8.5 
77 scenarios. Ruest et al. (2016) investigated the effect of sea ice on wave climate in The Gulf of St. 
78 Lawrence, Canada. The results implied that extreme Hs on the Gulf decreased during 1981 to 
79 2010 due to effect of sea ice. However, for future climate condition and because of reduction of 
80 sea ice and its impacts on the Gulf climate, an increase in extreme wave height was predicted. 
81 Hegermiller et al. (2017) and Camus et al. (2017) applied multimodal wave spectrum technique 
82 for statistical downscaling of local wave climate by using the relationship between sea level 
83 pressure (SLP) and wave parameters. The results demonstrated efficiency of the proposed 
84 methods to statistically model multimodal wave climate. Wandres et al. (2017) investigated 
85 future prospective of wave energy along southwestern Australia under RCP4.5 and RCP8.5 
86 scenarios. The results indicated an increase up to 20% in mean wave energy flux in shallow 
87 waters under both future scenarios. Moreover, it was found that changes in offshore mean wave 
88 direction have more impacts on nearshore and shelf wave climate compared to wave height in 
89 offshore. Aarnes et al. (2017) projected a decreasing trend in annual mean significant wave 
90 height in the northeast Atlantic under future climatic conditions. According to their study, it can 
91 be found that both scenarios (RCP4.5 and RCP8.5) projects the largest changes in significant 
92 wave height around the mean while for the upper tail of the distribution the tendency is weaker. 
93 However, for the extremes, an increase was reported in some locations such as west of the 
94 British Isles and the southern coastal areas of Norway. Casas-Prat et al. (2018) employed 
95 WAVEWATCH III and GCM data of sea ice and wind (RCP8.5) to project global ocean wave 
96 climate. The study demonstrated a decrease in wind speed and wave height in the North Atlantic 
97 and an increase in annual mean of wind speed, wave height and peak wave period in mid-high 
98 latitudes of the Sothern Hemisphere. Moreover, a significant counterclockwise rotation in the 
99 mean wave direction was projected in the Southern Hemisphere which resulted in more intense 

100 waves travelling towards the Equator and developing into swells. This can be considered as the 
101 main reason for increasing trends in wave height and period in the East Pacific and Indian 
102 Oceans while a decreasing pattern for wind speeds are projected for these areas. A similar trend 
103 for variation in global ocean wave climate in the mid-21st century (2013-2060) has been reported 
104 in a separate research study by Lemos et al. (2019). For this purpose, WAve Model (WAM) 
105 forced with outputs of ice coverage and wind speed from EC-Earth projections under RCP8.5 
106 was employed to simulate wave climate for future warmer climate.

107 Global wave climate projection is beneficial to investigate general trends in future conditions, 
108 while for practical applications in coastal engineering, simulating wave climate at local scale is 
109 of great importance to extract more details with higher accuracy and reliability for a particular 
110 area. In this regard, wave models forcing with localized GCM (downscaled) wind data are an 
111 appropriate proxy to investigate the change of wave climate under future projections. Generally 
112 speaking, the GCMs are normally run for globally scale and represent coarse resolution which 
113 can not reflect topographical effects. Therefore, it is a common task to downscale GCM outputs 
114 prior to driving wave models. Previously, dynamical and statistical downscaling techniques have 
115 been employed for this purpose with the latter one attracting much popularity due to its 
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116 simplicity and easy application. To project future wave climate, statistical techniques using 
117 regression models are employed to make a relationship between predictors including 
118 atmospheric variables (such as surface wind speed, mean sea level pressure, etc.) and ocean 
119 wave heights as predictant (Caires et al., 2006; Wang et al., 2014; Wang et al., 2010). It was 
120 indicated that using surface wind speed alone as the most important predictor might be sufficient 
121 to represent ocean wave heights even though other variables such as anomalies of sea level 
122 pressure can be considered as supplementary predictors to make improvement on the predictant 
123 estimation (Wang et al., 2010). Thus, different types of statistical techniques such as quantile 
124 mapping (QM), multiplicative shifting method (MSM), and machine learning based models were 
125 developed to downscale atmospheric variables such as wind speed/components for a given point 
126 or station (Breslow and Sailor, 2002; Kamranzad et al., 2015; Sangelantoni et al., 2018). 
127 Regardless of the statistical downscaling type, the previous models were usually implemented 
128 based on inverse distance weighting which does not consider the spatial distribution for regions 
129 with rapid changes in wind speeds. Therefore, development of distributed downscaling models 
130 which reflect spatial characteristics of the climatic variable is of great interest for future wind 
131 and wave projections. 

132 The aim of this study is to develop a robust distributed downscaling approach for the wind field 
133 to be used as the forcing for wave models and to investigate the wave climate under future 
134 projections. The model is established by modifying Weibull parameters of simulated wind 
135 components obtained from GCM at each grid cell and repeating the process for the other cells in 
136 the domain. It has two advantages of 1) the distributed feature consider spatial variation of the 
137 variable is superior to inverse distance weighting already applied for downscaling purpose, 2) the 
138 Weibull method yields better predictions than existing regression based techniques. Additionally, 
139 performance of different GCMs and also three different regional climate models (RCMs) are 
140 evaluated to select the best climatic model providing wind data for wave model development. 
141 Eventually, the modified GCM wind fields are used as forcing for the SWAN model to simulate 
142 the wave climate in the Persian Gulf. In section 2, study area, data resources and methodology 
143 are described. Results related to wind speed projection and changes in wave climate in monthly, 
144 seasonal and annual scales are discussed in section 3. Main findings of the study are summarized 
145 in the last section. 

146

147 2. Materials and methods
148 2.1.  Study area and data resources

149 The Persian Gulf, as a semi-enclosed crescent-shape sea, is an extension of the Indian Ocean that 
150 runs northwest of the Gulf of Oman, surrounded by the Iranian Plateau in the north and the 
151 Arabian Peninsula in the south (Figure 1). The narrowest part of the Persian Gulf (called the 
152 Strait of Hormuz) links it to the open ocean. Due to having the largest oil resources in the world, 
153 fishing ground, reefs and oysters, the Persian Gulf has a great importance for industrial, 
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154 economic and ecological aspects. Study of wave climate and its future changes in the Persian 
155 Gulf is beneficial for many purposes such as development of marine industries, transportation, 
156 port design and operation, and coastal structures. The so-called Shamal wind is the dominant 
157 wind in the area affecting middle and northwestern parts of the Persian Gulf which mainly blows 
158 in summer and winter seasons. To investigate the wave climate in the study area, 4 points in 
159 different parts of the Persian Gulf have been considered as the selected stations (Figure 1). Table 
160 1 summarizes the geographic coordinates and depths of the selected stations. 

161 Figure 1. Study area and selected stations

162 Table 1. Location and depth of the selected stations

Point Long. Lat. Label Depth
1 50.67 28.7875 W 28.6
2 52.50 27.3180 M1 64.9
3 56.20 26.5000 E 82.5
4 53.00 25.6000 M2 37.2

163

164 The datasets used in this study include ECMWF ERA-Interim reanalysis wind data (Dee et al., 
165 2011) for the period of 1981 to 2000 as reference wind data, and historical (1981-2000) and 
166 future (2081-2100) GCM wind data. There are many different GCMs/RCMs providing the wind 
167 outputs for future scenarios in which the appropriate one should be selected having the highest 
168 consistency with the wind climate of the area. In this regard, outputs of two different GCMs of 
169 CMCC-CM and MPI-ESM-LR and CORDEX outputs of three RCMs of EC-EARTH, CNRM 
170 and GFDL-ESM2M have been assessed prior to wave future projection. The CORDEX outputs 
171 of MENA (Middle East and North Africa) were employed to cover the study area properly. Table 
172 2 gives characteristics of different climate models considered as tentative wind data for wave 
173 simulations.

174 Table 2. Characteristics of the GCMs/RCMs

ResolutionGCM/RCM Name Institute
Spatial 

(degree)
Temporal

GCM CMCC-CM The Centro Euro-Mediterraneo sui 
Cambiamenti Climatici Climate 

Model

0.75×0.75 3hr

GCM MPI-ESM-LR Max Planck Institute 1.865×1.875 3hr
RCM EC-EARTH European community Earth-

System Model
0.22×0.22 1day

RCM GFDL-
ESM2M

The Geophysical Fluid Dynamics 
Laboratory

0.22×0.22 1day

RCM CNRM-CM5 Centre National de Recherches 
Meteorologiques

0.44×0.44 1day
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175

176 There are many different GCMs that provide wind data for historical and future scenario with 
177 different spatial and temporal resolution. Exploring efficiency of other GCMs for the study area 
178 to select the best GCM can be interesting although it could be expected that these differences are 
179 smaller in the corrected data (downscaled data). Abbasian et al. (2019) evaluated performance of 
180 37 different GCMs of CMIP5 in simulating temperature and precipitation over Iran indicating 
181 efficiency of CMCC model for climate projection in the area. Similarly, results of the other 
182 studies revealed that the CMCC is among the best GCMs representing climatic variable over the 
183 north-east Atlantic region (Perez et al., 2014), India (Mishra et al., 2014), and Pakistan (Khan et 
184 al., 2018). However, applying ensemble models gaining advantage of several GCMs can be a 
185 good option to deal with uncertainty embedded in GCMs than running the model for a single 
186 GCM (Hemer et al., 2013a; Wang et al., 2015). The primary purpose of this study was to apply 
187 the proposed downscaling approach for the CMCC-CM model representing higher spatial and 
188 temporal resolution than the other GCM. However, efficiency of the other GCM and RCMs 
189 (Table 2) has been investigated to demonstrate suitability of the selected climate model. The 
190 future GCM outputs have been obtained by running global circulation models using different 
191 assumption of greenhouse gas concentration scenarios known as the Representative 
192 Concentration Pathways (RCPs) in which, RCP4.5 (an intermediate concentration scenario) and 
193 RCP8.5 (a high concentration scenario) are two commonly studied scenarios. RCP4.5 and 
194 RCP8.5 describe scenarios with radiative forcing reaching 4.5 W/m2 and 8.5 W/m2 respectively, 
195 by the end of the year 2100. All utilized datasets were retrieved with 0.75°×0.75° and 6 hourly 
196 spatial and temporal resolutions, respectively. Moreover, both ECMWF (ERA-Interim) and 
197 CMCC-CM (historical and RCPs 4.5 and 8.5) have single ensemble member size. Due to lower 
198 temporal resolution of ECMWF wind data (6 hr), the GCM data were applied with 6 hr intervals 
199 even though the datasets were available for finer resolution (3 hr). Formerly, ECMWF wind data 
200 have been successfully applied for assessment of wind and wave climate in different areas 
201 (Amirinia et al., 2017; Kamranzad et al., 2016; Kamranzad et al., 2015; Patra and Bhaskaran, 
202 2017; Wandres et al., 2018). It is noticed that wind data with higher resolution are desirable for 
203 such a study area to reflect land-sea effects. However, lack of data with required resolution is a 
204 big limitation for this purpose. Using ERA-Interim wind data to force SWAN model in the North 
205 Atlantic, it was found that a coarse resolution wave model may give a few meters lower extreme 
206 Hs than a high resolution model (Bitner-Gregersen et al., 2016). Figure 2 illustrates the spatial 
207 distribution of average wind speeds of ECMWF and GCM in the study area from 1981 to 2000. 
208 As observed from Figure 2, the wind speed has higher averages in the middle and northwestern 
209 parts of the Persian Gulf which can reflect the impact of the Shamal Wind. Although there are 
210 some inconsistencies in wind speed pattern in outer part of the Persian Gulf, the spatial variation 
211 of wind speed for both data resources shows roughly a similar pattern. Generally, for the study 
212 area, it can be stated that the GCM wind speed has lower averages than the corresponding values 
213 of ECMWF. However, the GCM outputs due to running on a global scale may ignore 
214 topographical and land-sea interface effects.   



7

215

216 Figure 2. Spatial distribution of wind speed in historical period a) ECMWF b) GCM

217

218  

219 2.2.  Wind modification and downscaling 
220 2.2.1. Weibull-based technique

221 Downscaling of GCM wind outputs using different statistical techniques is a common task 
222 dealing with climate change studies. Thus, many different techniques such as nonlinear and 
223 linear regressions, quantile mapping, Weibull based approach and artificial intelligence methods 
224 have been employed to diagnose the relationship between the GCM outputs as predictor with 
225 those of reference data as predictand. Goly et al. (2014) and Shirkhani et al. (2015) showed that 
226 regression models perform poorly when applied for downscaling purpose of precipitation and 
227 wind speed. Moreover, they indicated superiority of quantile mapping and support vector 
228 methods over linear and nonlinear regression based models. Alizadeh et al. (2019) indicated that 
229 Weibull based model outperforms the support vector regression, quantile mapping and delta 
230 methods for wind downscaling. However, it is readily acknowledged that considering different 
231 existing statistical downscaling techniques is not in the scope of this study. From a preliminary 
232 investigation and based on the literature it can be understood that the wind speed usually follows 
233 a Weibull distribution (Shin et al., 2018). Therefore, gaining this characteristic of wind data can 
234 be deemed as a sufficient way to match the distribution between predictand and predictor. 
235 Moreover, previous studies confirmed successful applications of different variant of Weibull 
236 methods for wind downscaling (Chang et al., 2015; Tye et al., 2014). Generally, a Weibull 
237 distribution is described with two parameters: shape (k) and scale (A), which represent the 
238 peakedness and mean of the distribution, respectively. The distribution is also called Rayleigh 
239 when the shape parameter reaches 2. As the Weibull distribution can be only fitted on positive 
240 values while the ECMWF and GCM wind data contains both negative and positive values, the 
241 datasets were transformed to positive values before implementation the downscaling process. The 
242 probability density function (PDF) of Weibull distribution can be written as:

243 (1)𝑓(𝑉) =
𝑘
𝐴(

𝑉
𝐴)𝑘 ‒ 1exp [ ‒ (

𝑉
𝐴)𝑘]

244 where V represents eastward/northward wind speed. The Weibull parameters of A and k can be 
245 obtained through the maximum likelihood estimation as the following iterative equations (Chang 
246 et al., 2003):

247 (2)𝑘 = (
∑𝑛

𝑖 = 1𝑉𝑘
𝑖 ln (𝑉𝑖)

∑𝑛
𝑖 = 1𝑉𝑘

𝑖
‒

∑𝑛
𝑖 = 1ln (𝑉𝑖)

𝑛 ) ‒ 1
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248 (3)𝐴 = (
1
𝑛∑𝑛

𝑖 = 1𝑉𝑘
𝑖)1/𝑘

249 where n is the number of samples and  is the wind speed in time stage i.𝑉𝑖

250 To begin the downscaling process, firstly the Weibull parameters are computed for historical 
251 ECMWF and GCM wind components. Afterwards, the difference in historical period and with 
252 stationary assumption is added to the Weibull parameters calculated for the future scenarios. 
253 Finally, by fitting an inverse Weibull function to the probabilities, the wind data are extracted 
254 and subsequently de-transformed to their original ranges.  

255   

256 2.2.2. Quantile mapping (QM) approach

257 The QM approach aims to match the cumulative distribution functions (CDF) of GCM wind data 
258 to those of observed or reference data (here it means ECMWF wind data). It has been widely 
259 employed for downscaling purpose of climatic variables such as wind speed, temperature, and 
260 precipitation. The stationary assumption is also used for QM approach and the difference 
261 between wind speed of ECMWF and GCM during historical period is imposed on the cumulative 
262 distribution function of wind data for future scenario (Themeßl et al., 2012). The assumption is a 
263 common task dealing different statistical downscaling techniques even though it can add 
264 uncertainty on future climate projections. It has been discussed in details in Dixon et al. (2016). 
265 In brief, the method can be mathematically formulated as:
266 (4)𝑉𝐺𝐶𝑀𝑓𝑢𝑡, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝑖 = 𝑉𝐺𝐶𝑀𝑓𝑢𝑡
𝑖 + 𝑅𝑖

267 where i stands for the month and  is given as follows:𝑅𝑖

268 𝑅𝑖[𝑐𝑑𝑓𝑉𝐺𝐶𝑀𝑓𝑢𝑡
𝑖

(𝑉𝐺𝐶𝑀𝑓𝑢𝑡
𝑖

)] = 𝑐𝑑𝑓 ‒ 1
𝑉𝐸𝐶𝑀𝑊𝐹ℎ𝑖𝑠

𝑖
[𝑐𝑑𝑓𝑉𝐺𝐶𝑀𝑓𝑢𝑡

𝑖
(𝑉𝐺𝐶𝑀𝑓𝑢𝑡

𝑖
)] ‒ 𝑐𝑑𝑓 ‒ 1

𝑉𝐺𝐶𝑀ℎ𝑖𝑠
𝑖

[𝑐𝑑𝑓𝑉𝐺𝐶𝑀𝑓𝑢𝑡
𝑖

(𝑉𝐺𝐶𝑀𝑓𝑢𝑡
𝑖

)]

269 (5)

270 where  and  are empirical cumulative distribution function and inverse empirical cumulative 𝑐𝑑𝑓  𝑐𝑑𝑓 ‒ 1

271 function, respectively. For more details about the approach, one can refer to the related literature (Li et al., 
272 2010; Themeßl et al., 2012).  

273

274 2.2.3. The proposed distributed model 

275 To investigate the wave climate under future climatic scenarios for a given area, it is necessary to 
276 adopt coarse resolution of GCM wind data into local characteristics of the wind climate. This 
277 task is usually carried out by applying inverse distance weighting approach (Burrough and 
278 McDonnell, 1998; Kamranzad et al., 2015). In other words, for a particular region, some grid 
279 points are selected as representative points and the other grid points are modified based on their 
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280 distance from adjacent selected points. The main disadvantage embedded the approach is that it 
281 does not reflect spatial distribution of locations with high gradient in wind speed or the 
282 topographical effects. To overcome this problem, this study introduces and applies a new 
283 distributed Weibull-based model in which the GCM wind data are modified (in each grid point) 
284 based on the corresponding values (observed/reanalysis data) of the same grid point. Assuming 
285 ECMWF wind data as reference data for modification of GCM wind data for future scenarios, 
286 the main steps toward development of the proposed model can be summarized as follows 
287 (Alizadeh et al., 2019):

288 1-  Collocate wind data of ECMWF with the GCM outputs and also transform the dataset to 
289 positive values (adding the absolute value of the minima of the wind data for each grid 
290 point).
291 2-  Compute the difference between Weibull parameters of ECMWF with those of GCM 
292 during historical period. 
293  (6)𝐷𝑘(𝑖) = 𝑘 ℎ𝑖𝑠

𝐸𝐶𝑀𝑊𝐹 ‒ 𝑘 ℎ𝑖𝑠
𝐺𝐶𝑀

294  (7)𝐷𝐴(𝑖) = 𝐴 ℎ𝑖𝑠
𝐸𝐶𝑀𝑊𝐹 ‒ 𝐴 ℎ𝑖𝑠

𝐺𝐶𝑀

295 where  are difference in shape and scale parameters of Weibull distribution, 𝐷𝑘,𝐷𝐴

296 respectively.  represents the month.𝑖 = 1…12
297 3- Modifying the Weibull parameters obtained for GCM future scenarios as:

298 (8)𝑘' 𝑓𝑢𝑡
𝐺𝐶𝑀(𝑖) = 𝑘 𝑓𝑢𝑡

𝐺𝐶𝑀(𝑖) + 𝐷𝑘(𝑖)

299 (9)𝐴' 𝑓𝑢𝑡
𝐺𝐶𝑀(𝑖) = 𝐴 𝑓𝑢𝑡

𝐺𝐶𝑀(𝑖) + 𝐷𝐴(𝑖)

300 where k' and A' are the modified shape and scale parameters of the GCM wind speeds for a given 
301 future scenario.

302 4- Extract wind components by fitting an inverse Weibull function but with modified 
303 Weibull parameters.
304 5- Bringing the data to their original range by de-transformation (subtracting the added 
305 values in the transformation stage). 
306 6- Repeating this procedure for all grid points in the computational domain (this step 
307 reflects the distributed feature of the method).
308

309 It is noticed that the Weibull distribution based technique does not disrupt temporal sequence of 
310 the downscaled time series. In other words, the temporal sequence of the model outputs will 
311 remain the same as the original dataset. Due to high values of shape parameter (k>2) for the 
312 transformed data of wind components, the distribution has two tails. These two tails can give the 
313 negative and positive extremes if wind data following an inverse Weibull function and de-
314 transformation process. Through the data transformation, the data representing calm state are 
315 shifted forward in which during de-transformation they will be shifted backward retrieving their 
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316 original range. To implement this process, a MATLAB code has been developed in which the 
317 GCM outputs related to surface wind components under future scenarios are modified based on 
318 Weibull parameters (see Appendix A for details).   

319

320 2.3.  Numerical wave modelling

321 The SWAN (Simulating Waves Nearshore) wave model (Booij et al., 1999) was forced by 
322 climatic wind data to project wave climate under future warmer conditions. SWAN is a third 
323 generation spectral wave model developed by Delft University of Technology. The model has 
324 been extensively applied for wave simulation and hindcasting purposes in different locations 
325 (Akpınar et al., 2016; Kutupoğlu et al., 2018; Lin et al., 2002). Detailed descriptions of the 
326 model structure, mathematical formulations and applications have been presented in (Booij et al., 
327 1999) and its manuals (e.g., SWAN user manual, 2018). It has a suitable performance for small 
328 scale, high-resolution applications due to considering generation, dissipation, and nonlinear 
329 wave-wave interactions. The basic equation applied in the model is the action balance equation 
330 that for a Cartesian coordinate can be formulated as (Ris et al., 1999): 

331

332  (10)
∂
∂tN +

∂
∂xCxN +

∂
∂yCyN +

∂
∂σCσN +

∂
∂θCθN =

S
σ

333
334 where N represents the action density, frequency ( , wave direction ( ), spatial coordinate (x,y), σ) θ
335 time (t), and propagation velocity (C). The first three terms in the left hand side of equation 10 
336 show temporal and spatial variation of N. The fourth term is representative of shifting effect of 
337 the relative frequency due to variations in depth and the fifth term denotes currents and the depth 
338 and current-induced refraction. S is source term which is a function of  reflecting effects 𝑥,𝑦,𝑡,𝜎,𝜃
339 of the generation by wind, dissipation (by white-capping, depth induced wave breaking and 
340 bottom friction) and nonlinear wave-wave interactions (Ris et al., 1999).
341 For this study, the SWAN model was set in a spherical coordinate and non-stationary mode. The 
342 computational domain covers the Persian Gulf from 47°E to 58°E of longitude and 23°N to 31°N 
343 of latitude (Figure 1). The spatial and temporal resolutions of the computational grid were set as 
344 0.1° and 30 minute. Prior to implementation of the wave model for the future scenarios, the 
345 model was calibrated with wave data recorded by two buoys (W and M1 in Figure 1) located in 
346 Bushehr and Asaluyeh. The buoys records of wave characteristics with 1 hr interval have been 
347 employed. The Asaluyeh Buoy with coordinate of 52.5°E and 27.4°N is a node of the 
348 computational grid. On the other hand, the results for the Bushehr Buoy (50.67°E and 28.78°N) 
349 were interpolated because it is not located exactly on a node of the computational grid. However, 
350 a preliminary analysis considering the model resolution revealed that the error in wave height 
351 associated with this interpolation is less than 5%. As the buoys were located in deep water, the 
352 whitecapping dissipation coefficient ( ) using Komen et al. (1984) formulation was considered 𝐶𝑑𝑠

353 as tunable variable for the model calibration. Moreover, the quadruplet interaction was activated 
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354 using the model default formulation of Hasselmann et al. (1985). ERA5 wave data for 20 years 
355 and over the whole study area were also employed to conduct a multi-decadal validation. The 
356 ERA5 wave data (significant wave height of combined wind waves and swell) which was 
357 released recently have the spatial and temporal resolutions of 0.5×0.5 degrees and 1 hour, 
358 respectively. ERA5 is the last update of ECMWF reanalysis data combining a wide variety of 
359 historical observations into global estimates by means of data assimilation and numerical 
360 modelling. It should be noted that comparing the ERA5 wave data with those of the buoy 
361 measurements during 2008 indicated that ERA5 provides slightly higher wave heights than the 
362 buoy records. Regarding the outputs of the wave model during calibration and validation periods, 
363 the optimal value for  was recognized as 3.25e-5. The other calibrated parameters were set as 𝐶𝑑𝑠

364 the model default. Results of the wave model for calibration and validation periods are given in 
365 Table 3. 
366
367 Table 3. Results of the wave model for calibration and validation periods

Buoy Period Bias (m) R2 RMSE 
(m)

MAE
(m)

Busherh 21/3/2008-
7/9/2008

0.02 0.55 0.24 0.16Calibration

Asaluyeh 21/3/2008-
7/9/2008

-0.03 0.61 0.25 0.18

Busherh 1/2/1995-
31/12/1995

-0.08 0.65 0.23 0.15Validation

Asaluyeh 14/2/2007-
31/12/2008

0.03 0.39 0.28 0.20

Whole domain 
(ERA5)

01/01/1981-
31/12/2000

-0.17 0.67 0.18 0.17

368
369 The results presented in Table 3 show a relatively similar performance for both periods and 
370 Buoys. The error measures computed for the whole domain based on ERA5 wave data imply 
371 robustness of the model. These values have been averaged over the computational domain which 
372 indicate efficiency of the wave model in general. However, it should be noticed that the wave 
373 model underestimate peak values of significant wave heights. A thorough review on missing 
374 peaks in the current wave models have been addressed in Cavaleri (2009). 
375 Prior to project wave climate for future scenarios, performance of the different GCMs and RCMs 
376 (MENA) wind outputs to simulate significant wave height in validation period was evaluated to 
377 select the appropriate model. In this regard, wind outputs of two GCMs (CMCC-CM and MPI-
378 ESM-LR as well as CORDEX outputs of three models from MENA have been used to force 
379 wave model during 1991-2000. It is noticed that the GCM outputs have been modified based on 
380 the proposed downscaling method and the predictor-predictand relationships in calibration period 
381 (1981-1990). The results of wave models for different forcing resources during validation period 
382 (1991-2000) are presented in Table 4.  The results are given in terms of average (Avg), standard 
383 deviation (Std), mean error (ME), and mean absolute error (MAE) of the significant wave height.
384
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385
386
387 Table 4. Results of the wave model obtained using different GCMs/RCMs

GCM/RCM Avg Std ME MAE
ECMWF 36.84 30.86 - -
CMCC 34.73 33.04 -2.11 2.15

MPI 27.59 28.13 -9.25 9.59
ECEARTH 27.00 27.71 -9.84 9.86

GFDL 30.36 33.47 -6.48 6.59
CNRM 27.59 28.58 -9.25 9.96

388
389 Table 4 demonstrates a high level of uncertainty associated with GCM/RCM selection for wave 
390 simulation. However, the CORDEX outputs of different RCMs projects roughly similar statistics 
391 for wave height except the GFDL model which outperforms the other two RCMs. Results of the 
392 wave model forcing with different wind resources can change reliability of the projection 
393 remarkably. However, it can be found that the wave model forced with wind outputs of CMCC-
394 CM model yields the best consistency with those of the reference model in terms of error 
395 measures. Moreover, it is obtained that all the five models underestimate significant wave height 
396 compared to the results of the reference model. Considering different evaluation criteria for 
397 GCM/RCM selection in Table 3, the CMCC-CM wind outputs are used for wave projection 
398 under future scenarios.
399
400
401 3. Results and discussion
402 3.1.  Wind modification 

403 The proposed model was used to modify GCM wind data for two future projections RCP4.5 and 
404 RCP8.5 at each grid point, separately. Similarly, the QM technique as a common type statistical 
405 downscaling approach was employed to provide the comparison with the Weibull-based 
406 distributed model. In this regard, GCM historical data from 1981 to 2000 were divided into two 
407 groups of 10-years data of calibration (1981-1990) and validation (1991-2000) with stationary 
408 assumption for climate variation within these two periods. However, the preliminary 
409 investigation of statistical analysis for these periods revealed that the average (6 hourly averages 
410 for 10 years) and distribution of wind speed for these two periods roughly overlap each other. 
411 The results of downscaling techniques during validation period are compared with those of the 
412 reference data. The results in terms of average wind speed at four longitudes (transects 1 to 4) 
413 and throughout the whole latitude are presented in Figure 3. The transects 1 to 4 have longitudes 
414 of 49.5°E, 51.75°E, 54°E, and 56.25°E, respectively. Furthermore, two error measures of 
415 coefficient of determination (R2) and root mean square error (RMSE) were applied to evaluate 
416 and also to provide more comparisons of performance of the techniques. The results during 
417 validation period for these 4 transects are presented in Table 5.

418
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419 Figure 3. Wind speed variation alongside the latitude obtained from ECMWF, QM, and 
420 Weibull

421

422 Table 5. Results of the downscaling techniques in 4 transects during validation periods 

QM WeibullTransect No.
R2 RMSE (m/s) R2 RMSE (m/s)

1 0.89 0.22 0.99 0.14
2 0.91 0.29 0.99 0.18
3 0.78 0.45 0.98 0.19
4 0.60 0.40 0.93 0.16

423

424 According to Figure 3, the proposed model (Weibull-based) provides reasonable predictions 
425 of the wind speed for all the grid points. The predictions representing average wind speed 
426 during the validation period roughly overlapped the corresponding values of the reference 
427 data (ECMWF). Generally, the Weibull-based distributed model outperforms the QM 
428 technique even though their results are comparable for many grid points. The results 
429 presented in Table 5 indicate that the Weibull distribution based model outperforms the QM 
430 techniques in terms of R2 and RMSE. A detailed comparison demonstrating superiority of the 
431 Weibull-based model over QM and also other statistical techniques for downscaling climatic 
432 wind field can be found in Alizadeh et al. (2019). Therefore, the proposed model can be 
433 efficiently applied for wind speed downscaling under future scenarios. It is noteworthy that 
434 the proposed statistical downscaling technique can be served as a suitable proxy to modify 
435 wind field, although the problem associated with effect of finer resolution that could reveal 
436 stronger extremes still remains unresolved. Figure 4 illustrates the average spatial distribution 
437 of the wind speed and also spatial variation of wind speed compared to historical data (100-
438 year ago) for RCP4.5 in the left and for RCP8.5 in the right. Wind speeds depicted in Figure 
439 4 have been obtained from the developed downscaling model, but not the raw outputs of the 
440 GCM.

441

442  Figure 4. Spatial variation of wind speed under future scenarios a) RCP4.5 b) RCP8.5; and the 
443 difference between past and future wind speeds c) RCP4.5 d) RCP8.5  

444 As can be derived from Figure 4, wind speeds will be higher in the middle part of the Persian 
445 Gulf. The highest average rarely exceeds 6 m/s and its distribution does not follow any 
446 specific pattern. In some cases, remarkable spatial variation in wind speed can be observed 
447 especially in the middle and northwestern region of the Gulf. Moreover, the rate of variations 
448 differs from place to place which may reflect topographical effects or other spatial 
449 phenomena influencing wind speeds. As a result, the proposed model which modifies wind 
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450 data for each grid point is superior to the traditional inverse distance weighting method that 
451 may provide inaccurate or unreliable estimates for grid points with high gradient (high 
452 degree of variation) in the speed. Comparing the average values of wind speed for future 
453 projections demonstrates that the RCP4.5 projects slightly higher values than the RCP8.5. 
454 Generally, the spatial variation of wind speed in the study area implies a decreasing trend for 
455 most of the grid points (negative values). This decreasing rate is more remarkable in the 
456 western and middle part of the Persian Gulf. However, there are sporadic grid points in 
457 which, the wind speed experiences an increasing trend in the eastern part (positive values). 
458 Wind speed averages are in a range of 1.9 to 5 m/s while the relative variations are less than 
459 16%. Considering the average wind speed in the whole grid points of RCP4.5 as 3.5 m/s, the 
460 variable is expected to experience an average rate of changes about 10-12%. Moreover, the 
461 results show that this variation rarely exceeds 16% for any grid points. It is notable that the 
462 average changes in wind speed are intensified when the RCP8.5 is replaced with the RCP4.5 
463 projection. Therefore, considering the RCP8.5, the wind speed is expected to decrease at a 
464 higher rate in the future (2081-2100).    

465

466 3.2. Wave modeling results
467 3.2.1.  Annual variation of wave data

468 To investigate the impact of future climate change, wave in the area were simulated using wind 
469 data obtained from the proposed distributed model. The surface wind outputs of the GCM for 
470 two different scenarios have been taken under consideration and separate numerical model 
471 forcing with historical data were conducted. Comparison of the results of the wave models using 
472 historical and future wind projections demonstrates the climate change impacts in detail. The 
473 results of the mean significant wave height (Hs) for the study area and for historical (1981-2000) 
474 and also for future scenarios (2081-2100) are illustrated in Figure 5. These results are the 6hr 
475 wave model outputs averaged for 20-year period.

476

477 Figure 5. Results of the wave model for the historical and future Hs projection 

478 Spatial distribution of Hs depicted in Figure 5 reveals that in the middle part of the Gulf higher 
479 averages of significant wave height are expected than other regions of the domain. Moreover, the 
480 lowest averages are obtained for the eastern part. Considering the bathymetry and spatial 
481 distribution of wind speed in the Persian Gulf, the middle part has longer fetch length and also 
482 higher values of wind speed. Therefore, higher averages of significant wave heights in the 
483 middle part of the Gulf are in line with wind variation and fetch length. Effect of wave fetch on 
484 future wave projections is expected to attenuate because of decreasing in average wind speed. 
485 However, it can not be analyzed properly without evaluation of future changes in bathymetry of 
486 the study area. Comparing the results of the wave model for historical (1981-2000) with those of 
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487 the future scenarios (2081-2100) reveals a decreasing trend in wave height. Rate of changes in 
488 significant wave height for RCP8.5 scenario is higher than the RCP4.5 scenario. Therefore, 
489 lower values in Hs averages for RCP8.5 is projected in the entire study area. A similar analysis 
490 for peak wave period (Tp) was carried out and the results are illustrated in Figure 6.

491

492 Figure 6. Results of the wave model for the historical and future Tp projection 

493 In Figure 6, longer wave periods are projected for the middle section of the Gulf rather than the 
494 other regions due to having different fetch length, bathymetry and topography of the area. These 
495 results are in agreement with those of wave height projection and higher waves are obtained for 
496 the middle section. Future projections of the wave period in the study area reveal a decreasing 
497 trend roughly in the whole domain. This decrease in wave period is smaller for RCP4.5 scenario 
498 than the other scenario.

499 In addition to the results of the models over the entire computational domain, 4 stations locating 
500 in different parts of the study area from western part (W) to the middle part (M1 and M2) and 
501 eastern part (E) of the Gulf with different depths (from 29 to 85m) are selected to provide 
502 quantitative and detailed descriptions. These points were selected based on their different wind 
503 and wave climate, as discussed by Kamranzad (2018). The station 1 (W) and 2 (M1) are near the 
504 Bushehr and Asaluyeh ports which are among the most important and strategic regions in the 
505 country. The station 3 (E) and 4 (M2) are located in the eastern and middle parts of the Gulf, 
506 respectively. The two other stations were selected to illustrate wave characteristic variations in 
507 the middle and eastern parts of the Gulf. The results of the wave models for significant wave 
508 height (average ‘Avg.’, 95% and 99% percentiles) are presented in Table 6. 

509
510 Table 6. Results of significant wave height for different scenarios

Historical RCP4.5 RCP8.5Station no. 
(ID) Avg. H95% H99% Avg. H95% H99% Avg. H95% H99%

1 (W) 0.32 0.82 1.16 0.29 0.72 1.04 0.28 0.70 1.02
2 (M1) 0.35 0.86 1.21 0.31 0.79 1.08 0.29 0.76 1.08
3 (E) 0.26 0.71 1.17 0.24 0.63 1.03 0.22 0.56 0.98

4 (M2) 0.47 1.45 2.19 0.42 1.31 1.93 0.39 1.19 1.85
511

512 The average values in Table 6 indicate that significant wave height for both scenarios experience 
513 a decrease compared with the corresponding values in the historical period. Generally, it can be 
514 concluded that the significant wave height in average decreases about 10% and 15% considering 
515 RCP4.5 and RCP8.5 future scenarios, respectively. Therefore, regardless of the projection 
516 scenarios, the wave climate in the future period of 2081 to 2100 has lower averages in the 
517 Persian Gulf compared to the historical values. The results are in line with the findings of Morim 
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518 et al. (2018) representing a decrease of average Hs in the North Atlantic and Mediterranean Sea. 
519 Considering the upper percentiles of the data (hereafter called extreme values), even though 
520 smaller extreme waves than historical period ones are expected, in some cases the extreme wave 
521 height may exceed the historical one. The probability and cumulative distributions of annual Hs 

522 for the selected stations during historical and future periods are illustrated in Figure 7.   

523
524 Figure 7. Probability and cumulative distributions of annual significant wave height (Hs) 

525 The wave climate in the past shows higher values than the future scenarios in all stations. Also, a 
526 smaller peakedness in the PDF of significant wave height in the past period can be observed, 
527 while its distribution implies greater values. Similar results can be extracted by comparing their 
528 CDFs. For the past climate, the lower values of the cumulative distribution function for the same 
529 wave height as the future scenarios confirms higher Hs in the past than the future. The wave 
530 period is another wave characteristic that may change in the future. In this regard, the results 
531 related to the peak wave period for the historical and future scenarios are extracted from the 
532 numerical wave model. The annual averages in peak wave period for the selected stations are 
533 given in Table 7. 

534

535 Table 7. Annual average of peak wave period for different scenarios
Station no. (ID) Historical RCP4.5 RCP8.5

1 (W) 3.3 3.1 3.0
2 (M1) 3.5 3.4 3.3
3 (E) 3.2 3.1 3.0

4 (M2) 3.8 3.7 3.6
536

537 In line with the Hs results, the results of peak wave period for historical and future scenarios 
538 show a decreasing trend in prospective wave period. Moreover, the wave periods for the RCP8.5 
539 have slightly smaller values than those of the RCP4.5. However, the difference is negligible (less 
540 than 3%). Therefore, it is expected that the future peak period in the Persian Gulf decrease by 5% 
541 for both of the scenarios. This decrease can be mainly considered as a result of decreasing in Hs 
542 (the lower waves, the shorter periods). It means the wave period is expected to decrease in the 
543 Persian Gulf under future scenarios due to a decrease about 15% in significant wave height. 
544 Therefore, considering annual average of Hs and peak period, it can be concluded that the wave 
545 climate under future scenarios is expected to experience smaller waves and also with shorter 
546 periods. The decrease in wave period and height under future climate is due to decrease in wind 
547 speed which is considered as the main driving force of waves. To get more detail of the changes 
548 in the wave climate and its distribution, the results of the wave models in seasonal and monthly 
549 scales are discussed in the following subsections.  
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550 Wave direction is another important wave characteristic while has attracted less attention than 
551 wave height and period in the global projections of wave climate. On the other hand, directional 
552 wave changes can affect longshore sediment transport and subsequently coastal erosion and 
553 deposition processes (Harley et al., 2017). Also, wave direction is an important variable for many 
554 other coastal activities such as renewable energy (Morim et al., 2016) and harbor operability 
555 (Sierra et al., 2017). To project changes in wave direction in the Persian Gulf, mean wave 
556 direction of the 6 hourly model output during a 20-year period of 1981-2000 and 2081-2100 are 
557 illustrated in Figure 8.

558

559 Figure 8. Mean wave direction over the study area

560 According to Figure 8 it can be concluded that the wave direction in the study area does not 
561 change significantly. Moreover, these changes do not follow any special pattern or trend. 
562 Regarding the wave direction near the eastern boundary it should be noted that the wave from 
563 Oman Seas influence the areas while their impacts were not considered. Comparing the mean 
564 wave direction derived from RCP4.5 and RCP8.5 demonstrate a slightly anticlockwise change in 
565 wave direction for RCP8.5 scenario. However, the wave direction is strongly dependent on the 
566 wind direction and bathymetry. Trend in Figure 8 is roughly consistent with the dominant wind 
567 direction (blowing from northwest). Similar to significant wave height and wave period, the 
568 results related to change in wave direction for 4 selected stations are also depicted in figures 9 to 
569 12.  It should be noticed that these results are plotted for the whole data of wave climate and the 
570 results of the seasonal and intra-annual distribution are not presented here for the sake of brevity. 

571

572 Figure 9. Wave rose in station 1 for a) past, b) RCP4.5, and c) RCP8.5 scenarios

573

574 Figure 10. Wave rose in station 2 for a) past, b) RCP4.5, and c) RCP8.5 scenarios

575

576 Figure 11. Wave rose in station 3 for a) past, b) RCP4.5, and c) RCP8.5 scenarios

577

578 Figure 12. Wave rose in station 4 for a) past, b) RCP4.5, and c) RCP8.5 scenarios

579 From figures 9 to 12, it can be concluded that the future change in wave direction is highly 
580 dependent on the location of the selected station. In other words, in some locations the direction 
581 has not changed remarkably, while for some other locations, mild changes in the wave direction 
582 (station 4) can be found. These changes are mainly illustrated in the middle part of the Persian 
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583 Gulf (station 4) while the changes in western and eastern parts of the Persian Gulf are negligible 
584 (stations 1 and 3). Generally, the dominant wave direction in all the stations under future 
585 scenarios experience is roughly the same as the historical one. Generally, the wave direction in 
586 the Persian Gulf due to its semi enclosed shape, topography and characteristics may not be 
587 comparable with those obtained from global wave climate projections. The change in future 
588 wave direction should be considered in future studies of sediment transport, port layout, coastal 
589 geomorphology, etc. Moreover, this change can affect operability of the available ports in the 
590 study area and change the coastal morphology due to changing in sediment transport pattern. 

591 To understand whether these changes are due to climate change impacts or they are resulted from 
592 internal climate variability of the system, inter-annual variability analysis was implemented. To 
593 do that, inter-annual average and standard deviation for historical and future periods were 
594 estimated and compared to illustrate the magnitude of changes in significant wave height. Figure 
595 13 presents the results of inter-annual variability analysis for two RCPs against historical period.

596 Figure 13. Differences between historical projection of wave height and mean annual wave 
597 height of RCP4.5 (a), RCP8.5 (b), and inter-annual standard deviation for RCP4.5 (c), and 
598 RCP8.5 (d)

599 As seen in Figure 13, differences in mean significant wave height of historical and future 
600 simulations are mostly larger than the differences in inter-annual standard deviation in future and 
601 historical periods. This implies that the projected variations in the wave climate (under future 
602 climatic conditions) are mainly due to climate change. The middle part of the Persian Gulf is 
603 expected to have higher rate of variation in mean annual wave height while for the inter-annual 
604 standard deviation, the variation is not monotonic and shows large spatial variability.

605

606 3.2.2.  Seasonal variation of wave characteristics

607 The seasonal distribution and variation of wave climate can provide more details of the climate 
608 change impacts and it is of great interest for practical applications (renewable energy, coastal 
609 protection, sediment transport, etc.). In this regard, results of the wave projections in terms of 
610 wave height and wave period are analyzed to illustrate seasonal distribution of wave climate in 
611 the Persian Gulf. The results related to seasonal average and seasonal extreme wave heights 
612 (upper percentiles) are presented in Table 8. It is noticeable that for seasonal investigation, the 
613 results have been evaluated based on the meteorological calendar.
614
615
616
617
618
619
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620
621
622 Table 8. Seasonal analysis of significant wave height for different scenarios

Historical RCP4.5 RCP8.5Season Station 
no. 
(ID)

Avg. H95% H99% Avg. H95% H99% Avg. H95% H99%

1 (W) 0.34 0.81 1.09 0.33 0.75 1.00 0.29 0.69 0.93
2 (M1) 0.36 0.89 1.19 0.34 0.84 1.09 0.29 0.76 1.08
3 (E) 0.28 0.84 1.33 0.24 0.74 1.27 0.19 0.58 0.99

Winter

4 (M2) 0.56 1.70 2.33 0.53 1.54 2.11 0.44 1.35 2.07
1 (W) 0.30 0.72 1.02 0.29 0.67 0.97 0.28 0.67 0.96
2 (M1) 0.37 0.86 1.21 0.36 0.88 1.14 0.35 0.85 1.13
3 (E) 0.33 0.89 1.35 0.30 0.81 1.19 0.29 0.77 1.33

Spring

4 (M2) 0.52 1.50 2.10 0.51 1.51 2.01 0.49 1.45 1.98
1 (W) 0.39 1.00 1.29 0.33 0.84 1.12 0.32 0.80 1.14
2 (M1) 0.38 0.97 1.32 0.31 0.72 1.03 0.30 0.75 1.13
3 (E) 0.23 0.48 0.76 0.23 0.47 0.67 0.24 0.47 0.63

Summer

4 (M2) 0.44 1.32 2.31 0.35 0.93 1.66 0.36 1.00 1.69
1 (W) 0.26 0.68 1.02 0.23 0.60 0.98 0.21 0.61 0.89
2 (M1) 0.26 0.67 0.99 0.23 0.61 0.97 0.22 0.57 0.87
3 (E) 0.19 0.44 0.68 0.17 0.40 0.72 0.17 0.40 0.59

Autumn

4 (M2) 0.34 1.01 1.78 0.30 0.91 1.67 0.28 0.81 1.38
623

624 Generally, it can be observed that wave distribution is more intensified in the winter among the 
625 other seasons. On the other hands, the smallest wave heights are projected for the autumn season. 
626 Moreover, station 4 (M2) has the highest average values and extremes for all the season. The 
627 main reason is that this station has been located in the middle part of the Persian Gulf where 
628 affected by the dominant wind more than other stations. The spatial distribution of wind speed 
629 demonstrate higher speeds in the middle part blowing from the North West of the Gulf which 
630 reflect the Shamal wind events in the region (Thoppil and Hogan, 2010). The results presented in 
631 Table 8 demonstrate that the average wave height for the future scenarios decreases for all the 
632 seasons. For both of scenarios, the lowest changes in the significant wave height are obtained for 
633 the spring season, while the highest changes for RCP4.5 and RCP8.5 are derived for summer and 
634 winter seasons, respectively. Similar to the average values, the extreme wave heights for all the 
635 seasons show a generally decreasing trend, even though it slightly increases for the winter 
636 season. Figure 14 depicts boxplot of Hs for each season separately to provide more illustrations. 
637 In the horizontal axes of the figure, the first letters (P, L and H) represent the past climate, future 
638 lower scenario (RCP4.5) and future higher scenario (RCP8.5), respectively. The second letter 
639 denoted with numeric from 1 to 4 stands for the station number.     

640
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641 Figure 14. Boxplots of seasonal significant wave height  

642 It can be observed from Figure 14 that the significant wave height is higher in winter and lower 
643 in autumn. Moreover, the highest waves (extreme values) are occurring in station 4 (M2) in the 
644 middle part of the Persian Gulf where the dominant wind and topographical phenomena have the 
645 most and the least effects, respectively. Moreover, considering the lower concentration scenario 
646 (RCP4.5) yields greater extreme waves in all stations and seasons compared to the higher 
647 concentration scenario (RCP8.5). The black lines stand for minimum and maximum wave 
648 heights and crosses illustrate outliers. Moreover, the bottom, middle and top edges of the boxes 
649 represent first quartile, median and third quartile. Alongside with the wave height, seasonal 
650 variation of peak wave period has been taken under consideration and the results representing 
651 seasonal average in peak period are given in Table 9.  

652
653 Table 9. Seasonal average of the peak wave period for different scenarios

Season Station 
no. (ID)

Historical RCP4.5 RCP8.5

1 (W) 3.4 3.4 3.2
2 (M1) 3.6 3.6 3.3
3 (E) 3.4 3.0 2.9

Winter

4 (M2) 4.0 3.9 3.7
1 (W) 3.1 3.0 3.0
2 (M1) 3.4 3.3 3.3
3 (E) 3.5 3.4 3.3

Spring

4 (M2) 3.9 3.9 3.8
1 (W) 3.6 3.4 3.3
2 (M1) 3.8 3.6 3.6
3 (E) 3.1 3.0 3.1

Summer

4 (M2) 4.1 3.8 3.8
1 (W) 3.0 2.8 2.7
2 (M1) 3.1 3.0 2.9
3 (E) 2.8 2.7 2.7

Autumn

4 (M2) 3.4 3.2 3.2
654

655 Generally, it can be found that the peak wave period in future projections experiences a 
656 decreasing rate. Moreover, station 4 (M2) has longer peak periods comparing to the other stations 
657 in the Persian Gulf. This can reflect higher values of wind speed in the middle part compared 
658 with the other regions (Figure 4). Considering the future scenario of RCP4.5, the highest 
659 decrease was projected for summer season while for the other scenario it was during winter 
660 season as 15%. However, the lowest changes in wave period are related to spring season for both 
661 scenarios while for the Hs it was obtained for autumn. The seasonal changes in significant wave 
662 height and period indicate that the wave height is changing with a higher rate than the wave 
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663 period in which demonstrate the future warmer climate may affect the wave height more than the 
664 wave period.  The result is reasonable because the significant wave has more sensitivity to wind 
665 speed (w) than wave period ( ). Considering the extreme values of wave 𝐻𝑠~𝑤3/2, 𝑇𝑝~𝑤1/3

666 characteristics it is pointed out that higher extremes compared to those of the obtained values are 
667 expected to happen due to incapability of the present wave models to simulate peak waves 
668 during severe and extreme storms. The wave models are generally tuned to the bulk of the data 
669 and may fail in extreme conditions when the physics of the process can change remarkably 
670 (Cavaleri, 2009). Moreover, effect of finer resolution with stronger extremes neglected in the 
671 statistical downscaling technique may lead to missing wave peaks as the wave model is forced 
672 with the coarser wind field.

673

674 3.2.3. Intra-annual variation of wave characteristics

675 Monthly distribution of wave characteristics and its variation under future scenarios can provide 
676 useful information for different purposes such as design and operation of coastal protection 
677 structures, renewable energies, and transportation and marine industries. In this regard, results of 
678 the historical and future scenarios of the numerical wave models for each month were obtained 
679 separately. Figure 15 illustrates the monthly average Hs and peak wave period Tp for historical 
680 (past) and future scenarios (RCP4.5 and RCP8.5).

681

682 Figure 15. Monthly variation of Hs and Tp for a) station 1, b) station 2, c) station 3, d) station 
683 4

684 The results of the significant wave height and peak period imply that for stations 1, and 2 which 
685 are located in the western and middle onshore parts of the Persian Gulf, the highest values are 
686 obtained for month 6 (June). For the eastern station (no. 3), the highest wave height and period 
687 are obtained for month 5 (May). For the offshore middle station (no. 4), the highest wave height 
688 is obtained for February while the highest period is still for the June. Considering the 
689 meteorological calendar, the results are consistent with the common wind climate in which it 
690 blows mainly in summer (months 6 to 9) and winter (months 12, 1 ,2). However, the eastern part 
691 of the Persian Gulf is not affected by Shamal Wind or the dominant wind has the least effect on 
692 the station 3 (E) amongst the other stations. Therefore, it is reasonable to have a slightly different 
693 pattern of wind and wave climate in this station compared to the others. The results of the 
694 historical wave models are in a good accordance with those of the Kamranzad (2018) in terms of 
695 wave height and period. 

696 According to Figure 15, the significant wave height and peak period decrease in the future 
697 roughly in all months and stations. A good consistency in monthly variation of the future wave 
698 projections and the historical wave climate can be observed in which, the average Hs and Tp 
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699 values in the future for each month rarely exceed the corresponding values in the past period. 
700 The rate of changes in future wave characteristics compared to the historical ones is higher in 
701 December, and June. For the other months, the changes are not remarkable. Following the future 
702 projections, it is estimated that the monthly average wave height in the Persian Gulf rarely 
703 exceeds 0.65 m. Moreover, for the monthly average of peak period, it is expected to change 
704 between 2.5 to 4.5 (s) under both future scenarios. 

705 Results of monthly variation in wave climate obtained from this study are in line with findings of 
706 (Hemer et al., 2013a), which predicted a decrease annual significant wave height with higher rate 
707 during boreal winter (months 1 to 3) for future projections. Moreover, the decrease in annual 
708 significant wave height under future scenarios in the study area is in a good agreement with the 
709 results of the previous studies on projected changes in global wave climate (Hemer et al., 2013a; 
710 Semedo et al., 2012). The mentioned studies estimated a decrease in wave climate for lower 
711 latitudes of the study area. Also, for the wave period, the results of this study are consistent with 
712 the previous studies implying a mild decreasing trend in the wave period over the study area.

713

714 4. Summary and conclusion

715 In this study, a distributed approach to localize the wind projections, obtained from the global 
716 circulation models, has been employed and implemented to investigate future climate change 
717 impacts on the wave distribution. The proposed Weibull based method in its distributed form has 
718 been employed for the first time in this study to investigate climate change impacts on wave 
719 characteristics. The wind components obtained from the GCM of CMCC-CM have been used for 
720 the wave climate studies due to its better performance than the other considered GCM or RCMs. 
721 The modified wind components were utilized as forcing of the numerical wave model (SWAN) 
722 to analyze the wave characteristics including significant wave height (Hs) and peak wave period 
723 (Tp) in annual, seasonal and monthly time scales. Moreover, the average changes in wave 
724 direction in the future period in comparison with the historical period have been taken into 
725 consideration. 

726 The proposed model for wind speed modifications showed that it can efficiently provide reliable 
727 predictions of wind speed. The results obtained through the verification period at several 
728 different locations in the study area confirmed this claim. Considering outputs related to wind 
729 speed under both future scenarios (RCP4.5 and RCP8.5) explored in this research, a decreasing 
730 trend with an average decrease about 10 to 15% can be estimated for the Persian Gulf. The 
731 changes in wind speed are expected to be more intensified in the middle and western parts of the 
732 Persian Gulf. However, this decrease rarely exceeds 0.6 m/s (15%) when the average annual 
733 wind speed is considered.     

734 Regarding the average annual, seasonal and monthly wave projections for the future scenarios, it 
735 was estimated for the Persian Gulf to experience a decrease in annual, seasonal and monthly 
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736 average Hs in which, the rate of variation is higher for the middle parts of the Persian Gulf. 
737 Moreover, the average Hs is expected to have more variation in winter (December to February) 
738 and summer (June to August) among the other seasons. Generally, a decrease by 10 and 15% in 
739 average annual Hs was projected for RCP4.5 and RCP8.5, respectively. Moreover, it was found 
740 that with decreasing in average Hs, the extreme wave are expected to have smaller values than 
741 those of the historical period, even though in some locations it may exceed the reported values. 
742 For the study area, historical wave climate illustrates the highest averages of Hs occur in winter 
743 and summer and the lowest averages during the autumn. For the future scenarios, the wave 
744 climate is projected with a similar pattern, in which the highest average of Hs in winter and 
745 summer and the smallest average of Hs remain for autumn.     

746 Future projections of wave period in terms of annual average yielded a decrease about 5%. In 
747 general, waves with shorter periods for the future years (2081-2100) and for all the seasons and 
748 months were obtained comparing to the corresponding values in the historical period (1981-
749 2000). The average in peak wave period was found to have the highest values (longest period) 
750 during June which is in line with highest average in Hs in the month. 

751 The analysis of wave direction in the Persian Gulf demonstrated that in the western and eastern 
752 locations, the future changes are insignificant. However, in the middle parts of the Persian Gulf, 
753 a slightly clockwise rotation in wave direction was projected which is mainly affected by 
754 changes in wind direction. However, effect of future changes in water depth and bathymetry may 
755 change wave direction which was not considered in this study. This change can affect future 
756 design and operation of marine industries, sediment transport processes and many other coastal 
757 engineering applications. Regarding the two climatic future scenarios, the higher concentration 
758 scenario (RCP8.5) intensifies changes in wave direction compared with the lower concentration 
759 scenario (RCP4.5).

760 Comparison of future scenarios implies that the RCP4.5 has slightly projected higher values of 
761 wind speed and significant wave height and also longer peak period than the RCP8.5. Moreover, 
762 the RCP8.5 projected greater changes compared to the historical wind and wave climate rather 
763 than the RCP4.5. Similar result was obtained for peak wave period. In brief, it can be concluded 
764 that the future wave climate has somehow higher Hs and longer Tp in the lower concentration 
765 scenario compared with the higher concentration scenario.

766 Appendix A.

767 The MATLAB code developed for downscaling wind field can be found via the following link.

768
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Figure 1. Study area and selected stations

Figure 2. Spatial distribution of wind speed in historical period a) ECMWF b) GCM

Figure 3. Wind speed variation alongside the latitude obtained from ECMWF, QM, and 
Weibull

Figure 4. Spatial variation of wind speed under future scenarios a) RCP4.5 b) RCP8.5; and the 
difference between past and future wind speeds c) RCP4.5 d) RCP8.5

Figure 5. Results of the wave model for the historical and future Hs projection 

Figure 6. Results of the wave model for the historical and future Tp projection 

Figure 7. Probability and cumulative distributions of annual significant wave height (Hs)

Figure 8. Mean wave direction considering depth variation over the study area

Figure 9. Wave rose in station 1 for a) past, b) RCP4.5, and c) RCP8.5 scenarios

Figure 10. Wave rose in station 2 for a) past, b) RCP4.5, and c) RCP8.5 scenarios

Figure 11. Wave rose in station 3 for a) past, b) RCP4.5, and c) RCP8.5 scenarios

Figure 12. Wave rose in station 4 for a) past, b) RCP4.5, and c) RCP8.5 scenarios

Figure 13. Differences between historical projection of wave height and mean annual wave 
height of RCP4.5 (a), RCP8.5 (b), and inter-annual standard deviation for RCP4.5 (c), and 

RCP8.5 (d)

Figure 14. Boxplots of seasonal wave height

Figure 15. Monthly variation of Hs and Tp for a) station 1, b) station 2, c) station 3, d) station 4
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