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Abstract—A hybrid Wi-Fi and light fidelity ( LiFi) network
combines the best of two worlds with the ubiquitous coverage
of Wi-Fi and the high peak data rate of LiFi as the radio
spectrum does not interfere with the light spectrum. This hybrid
network might be realized by using multipath TCP (MPTCP),
where Wi-Fi and LiFi paths can be simultaneously employed to
potentially boost the total throughput of Wi-Fi while increasing
the resilience towards network failure of LiFi due to, for example,
blockage. However, naively implementing MPTCP in a hybrid
Wi-Fi and LiFi network can yield an unexpected result, such
as a lower throughput compared to the single-path TCP due to
a Head-of-Line delay during the slow start phase of the TCP
congestion control. Even though this problem can be avoided
by improving the existing flow ¢ ontrol o r ¢ ongestion control
of TCP, these solutions still lack intelligent decision making
that can improve the adaptability of MPTCP. Therefore, in
this paper, we propose a model-augmented deep reinforcement
learning (DRL) approach to intelligently steer MPTCP subflows
(i.e., TCP connections) by using a close-to-reality scenario emu-
lated by considering random orientation, random blockage, and
random mobility of Wi-Fi-and-LiFi-enabled mobile devices. As
a result, we will show later that a performance gain can be
achieved compared to the state-of-the-art while maintaining ease
implementation to existing MPTCP implementations.

I. INTRODUCTION

According to [1], Cogalan and Haas predict that the entire
radio frequency (RF) spectrum will be fully utilized by 2035.
Due to the fact that the light spectrum is unlicensed and does
not interfere with the RF spectrum, optical wireless communi-
cations (OWC), e.g., light fidelity (LiFi), are a good candidate
to complement and offload t raffic fr om RF communications
[2]. LiFi supports high-speed, bidirectional, and multiuser
communications [3]. Even though LiFi can support very high
peak data rates, LiFi suffers from high variations in channel
quality caused by random orientations and random mobility
of LiFi-enabled devices [4]. Therefore, it would be ideal if
both RF communications and LiFi are combined in order to
support combinations of use cases of future communications,
such as reliable, mobile broadband communications [5].

In this paper, we focus on the integration of Wi-Fi and LiFi
due to the following reasons. According to [6], more than

half of global mobile traffic and internet protocol (IP) traffic
are offloaded and carried by Wi-Fi. In addition, based on the
ongoing LiFi standardization, i.e., IEEE 802.11bb', LiFi can
use the same implementations of the medium access control
and physical layers from the Wi-Fi, except that the LiFi analog
front-ends adhere to specifications defined in IEEE 802.11bb
documents. Consequently, the integration of Wi-Fi and LiFi
can be done in a high layer of the TCP/IP protocol stack, such
as in the transport layer, by using multipath TCP (MPTCP)
[7], where multiple paths can be utilized in parallel to increase
the total throughput as well as improve resilience towards
networks failures. The integration is straightforward as Wi-
Fi and LiFi interfaces are recognized as different paths having
different IP addresses from the perspective of a transport layer
protocol.

In the MPTCP implementation in the Linux kernel [8],
TCP connections are referred to as subflows. According to
[9, Figure 3], applying existing MPTCP congestion controls,
such as balanced linked adaptation algorithm (BALIA) [10],
in a hybrid of a high speed, low coverage communication
(mmWave) and a lower speed, wider coverage communication
(LTE) can lead to lower throughput compared to that of
a single-path TCP. The main cause of this phenomenon is
explained in [11]. That is, the congestion window from the
mmWave subflow is overshot during an outage and causes
an acute packet reordering problem, which further results in
a Head-of-Line blocking problem. It is suggested in [9] that
a proper congestion control should be designed in order to
harness the full potential of MPTCP. According to [12], the
other problems (other than the out-of-order packet delivery)
are the bufferbloat and bottleneck bandwidth. All these prob-
lems are eventually related to MPTCP congestion controls;
therefore, many studies have been focussing on improving the
congestion controls, see [12] and references therein.

A recent survey on the MPTCP congestion control as dis-
cussed in [12] categorizes two types of controls, i.e., traditional
ones and machine learning (ML)-based ones. According to
[12], [13], the traditional congestion control algorithms mostly

Uhttps://www.ieee802.org/11/Reports/tgbb_update.htm
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Fig. 1. A visualization of our emulator where human models are assumed to
operate Wi-Fi and LiFi-enabled devices inside a room.

lack adaptability and intelligent decision making as well as
their sub-optimal performances. This is where machine learn-
ing works well as it can learn from past experience and balance
exploration and exploitation to find an optimal solution. In
this paper, we focus on a machine learning technique which
takes a sequence of actions in order to optimize future rewards
obtained from a dynamic environment. Specifically, we will
emulate a scenario where there are Wi-Fi and LiFi-enabled
mobile devices held by mobile users who move around inside
a room that is covered by Wi-Fi and LiFi signals as depicted
in Fig. 1. Our objective is to develop an intelligent system to
maximize the total average throughput of all users. A well-
known machine learning technique for this type of problem
is reinforcement learning (RL). Specifically, we will use a
combination of RL and deep learning, which is referred to
as deep reinforcement learning (DRL).

In the context of the use of RL for a hybrid Wi-Fi and
LiFi network, there are early works by Ahmad er al. that
are presented in [14], [15]. They compare the performance of
different non-ML algorithms with a RL algorithm in finding
an optimal load balancing strategy to maximize a long-term
system throughput while ensuring the required users fairness
and satisfaction. It is shown that the RL algorithm can
compete with an exhaustive search algorithm while having
a significantly lower computational complexity. However, an
on-policy-based RL algorithm, called the trust region policy
optimization (TRPO), is still used in [14], [15], which is well
known for its disadvantage in being trapped in local optima.
Another study by Xu et al. in [16] shows an off-policy-based
DRL (i.e., deep deterministic policy gradient (DDPG)), where
an agent can learn a policy not only from the current agent’s
policy (observational policy), but also from behavioral policy,
e.g., from past experience, for a hybrid network employing
MPTCP. It is shown in [16] that the DRL-based MPTCP
congestion control significantly outperforms the conventional
MPTCP congestion controls.

Contributions: Compared to the previously mentioned stud-
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Fig. 2. (a) Our emulator diagram and (b) subflow-steering using Netfilter

ies, this paper introduces three new contributions. First, unlike
[14], [15], we will develop an emulator for a hybrid Wi-
Fi and LiFi network that is close to a real scenario, where
random mobility, random orientation, random blockage, and
the MPTCP are considered. Second, many proposals focus on
directly modifying the MPTCP protocol, e.g., its congestion
control by means of DRL as discussed in [16] and references in
[12]. In this paper, we try a new approach by steering MPTCP
subflows by means of intelligently adjusting load balancing
coefficients in the Netfilter using a DRL. Third, compared to
[16], we use a more state-of-the-art DRL algorithm called soft
actor-critic (SAC) by [17], which performs significantly better
compared to DDPG in terms of training efficiency. In addition,
we augment the soft actor critic by using a model that can
help predict a future state so that the MPTCP can act earlier,
which is the main reason behind our performance advantage
compared to [16].

The rest of this paper is organized as follows. In Section II,
we will discuss our system model that includes a discussion
on the emulator. In Section III, our proposed DRL architecture
is presented. Our results and discussions are explained in
Section IV. Lastly, we will conclude our paper in Section V.

II. SYSTEM MODEL

We aim to implement a close-to-reality scenario where
randomness factors, such as random oriented mobile devices,
random blockage, and random mobility, are considered. In or-
der to accommodate such a purpose, we use a reference model
as described from the IEEE TGax in [18]. This reference
model is used because the LiFi standard, i.e., IEEE 802.11bb,
refers a lot to IEEE 802.11ax. Therefore, the reference model
can be extended so that LiFi access points (APs) can be added.
In this paper, we focus on using a 10 m X 10 m X 3 m indoor
room with a Wi-Fi AP being deployed in the center of the
room, and LiFi APs are uniformly placed inside the room.

In order to create a virtual network from our scenario, we
use Mininet. Specifically, we use the Mininet-WiFi [19], which
depends on Linux utilities such as fc, wmediumd, hostapd,
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wpa_supplicant, to emulate a wireless medium and a Wi-Fi
connectivity. For example, the utility wmediumd and a tech-
nique called link-to-system mapping [20] (where a packet error
ratio can be estimated from the quality of the received signal,
e.g., signal-to-interference-plus-noise ratio (SINR) or received
signal strength (RSS)) enable us to emulate IEEE 802.11n. The
main reason for choosing IEEE 802.11n in this paper is that
even if we combine two wireless access technologies that have
a contrast link capacity (or asymmetric links), we could still
gain an advantage by using the proposed method. In addition
to IEEE 802.11n, we emulate IEEE 802.11bb, i.e., the LiFi
standard, by using the same technique, where we further refer
it to as Mininet-WiFi-LiFi, which is described in [21]. Other
detailed information regarding our random orientation, random
blockage, and random mobility models are also described in
[21, Chapter II]. In short, the random orientation model is
based on our measurements reported in [22], and the random
blockage and random mobility models are based on our LiFi
channel simulator published in [23]. Our DRL agent later
runs in a controller in our Mininet implementation that uses
a Linux kernel implementation of MPTCP from [7]. Having
implemented this emulator, we can mimic an MPTCP-enabled
mobile device that can simultaneously connect to both a Wi-
Fi AP and a LiFi AP. We also deploy a virtual machine that
acts a server and MPTCP proxy. For demonstration purposes
(which will be discussed in Section IV), we can monitor
internal states of these devices and visualize them in real time
over WebSocket connections. Fig. 2(a) illustrates our Mininet
description.

Fig. 2(b) illustrates the proposed subflow steering diagram
using the Netfilter [24]. A request coming from a running
process is handled by a socket which further communicates to
the MPTCP in the kernel space before being passed to multiple
TCP connections. Then, the Netfilter, which can be used as
a firewall or a network address translator, is used to filter
segments from the TCP connections, which are also known
as MPTCP subflows. Suppose a denotes a proportion of the
total traffic that will pass the Wi-Fi interface, then the DRL
agent aims to devise an optimal policy to dynamically adjust
the values of a for all mobile devices. To summarize, Fig. 3
illustrates the system model from the perspective of the DRL
agent. That is, the DRL agent interacts with an environment
described by Fig. 2. Then, the environment returns rewards,
e.g., throughput, and internal states of the environment, such as
telemetry data. With the help of deep learning architectures,
the DRL agent then returns back actions, such as the por-
tion of traffic that should flow over LiFi connections. These
interactions are performed over an application programming
interface. In the next section, we will focus on the DRL
agent and explain the proposed solution that uses our model-
augmented DRL algorithm.

III. PROPOSED SOLUTION

Fig. 4 depicts a high level view of our model-augmented
SAC architecture. There are four important components in
our architecture, i.e., a reply buffer and three parameterized
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networks, which are a model network, an actor network, and
a critic network. The parameters for the networks, namely v
(for the model network), 6 (for the actor network), and ¢ (for
the critic network), are subjects of our training later.

The reply buffer stores experiences as memories to enable
an offline training for the networks, which further help the
DRL agent to perform an exploration to find the optimal
solution and avoid being trapped in a local optima. Our replay
buffer is implemented as a fixed size buffer in the form of
a circular buffer, where the oldest data is replaced with the
newly obtained data. As for our sampling strategy, we follow
a prioritized sampling that is proposed in [25]. We use the
replay buffer to hold past information, such as actions that
have already been taken (denoted by a), recorded internal
states from the environment (denoted by s), and previously
received rewards from the environment (denoted by r).

The state s is defined as a collection of congestion windows
from all MPTCP subflows and the round trip times from all
user interfaces. As for the rewards, we follow [16] to use the
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sum of log g; ;, i.e.,:
K
r() = loggis, (1)
i=1

where g;; is the goodput of the i MPTCP subflow at time
t, and K is the total number of subflows. The DRL agent will
later try to optimize the expected cumulative future rewards
by taking actions a; = [a,,i]LK.

In this paper, we employ a long short-term memory (LSTM)
model to use the historical data stored in the reply buffer to
predict future values, which are denoted by §;,;. The model
network is trained to minimize the error between the predicted
future value §;41 and the actual future value s;.;, which are
obtained from the replay buffer. The predicted future value §;,
is then used as one of the features of the critic network. We
employ regular feedforward neural networks for the critic and
actor models. In a high level explanation, the critic network
passes the quality value Q(s;, a,) for given states and actions
to the actor network, which then determines the future actions.

The critic and actor networks are trained based on the SAC
training method that is specified in [17]. Unlike other RL
algorithms that mostly maximize only the expected cumulative
future rewards, SAC also optimizes an entropy regularization,
ie.,:

¥ =arg maxz Es,.a,) [r(t) + BE,, [-1log ﬂg(at|St)]] , 2
(] t

where mg denotes the actor network that outputs the standar
deviations and the means of K Gaussian distributions. Then,
the actions, which are the values «, are obtained by taking
a random sample based on the standard deviations and the
means. That is,:

@;,; = tanh(n), where n ~ N (i, 07.i), 3)

where p, ; and oy ; are the mean and standard deviation at time
t and the /" subflow. The variable f8 is used as a temperature
variable to weigh the regularization factor.

Based on [17], the critic network is trained to minimize the
following objective function:

Jo(#) = Es a5 [(Q(s,ar) = (r(1) =¥V (se1)))?], (@)

where:

V(si+1) = Ea [Q (8141, a;) — Blog mg(a;ls,)] . )

Note that in order to obtain the value of Q(s;:+1,a;), we
perform the forward propagation to the critic network with
the help of §;;; from the model network.

The actor network is trained to minimize the following:

Jx(0) = Es [Ea [Blog mg(a;]s;) — Q(sr,a0)]] - (6)

Instead of using (7), we use the re-parameterization trick
described in [26] as it has a lower variance. That is, the values
of alpha are calculated based on:

a;,; = tanh(y, ; + €0y ;), where € ~ N(0, 1). 7

By using this trick, it is possible to perform the backward
propagation with respect to the parameter 6. As a summary,
the Algorithm 1 provides the methodology to train our model-
augmented SAC model, where A is a learning rate for the
networks.

Algorithm 1 Pseudocode of Model-Augmented SAC

Input: v, 0, and ¢ > Initial parameters
1: Initialize v, 6, and ¢ with random weights
2: Initialize the replay buffer
3: for each iteration do
4 for each environment step do
5 Sample future states §,,; from the model network
6: Sample actions a, from the actor network
7
8
9

Sample s, and r(¢) from the environment
Store {8;+1, 4,8, 7()} to the replay buffer
end for

10: end for

11: Train the model network w.r.t. v

12: for each gradient step do

13 $=¢-VJo(9)

14: 0=0—-1,VgJ(0)

15: end for

Qutput: v, 6, and ¢ > Optimized parameters

IV. RESULTS AND DISCUSSIONS

In this section, our results will be presented and discussed.
Firstly, the experimental setup will be described and then the
results will be presented. Lastly, we also explain the source of
our performance gain.

A. Experimental Setup

Both the DRL agent and the environment run on a work-
station having the following details:

« MPTCP v0.92 from [7],

o Linux Kernel long-term support release v4.4,

o the Ubuntu 20.04 focal operating system,

« the AMD Ryzen Threadripper CPU,

e a Quadro RTX 6000 GPU, and

« 256 GB of RAM.

As previously mentioned, one of the advantages of our method
is that we can still use the existing congestion controls without
any modification. From [7], there are four existing MPTCP
congestion controls, i.e., LIA, BALIA, OLIA, and wVegas.
Later, we will use these congestion control algorithms, add a
Netfilter implementation whose the « coefficient driven by our
DRL agent, and compare them with the state-of-the-art from
[16]. Moreover, tools or utilities such as tcpdump, wireshark,
tshark, captcp, and iperf, are used to capture the values of
round trip times, goodputs, and TCP congestion windows.
Regarding the number of users in the room, it follows a
discrete uniform distribution with a support ranging from 2 to
6. The users behaves randomly, for example operating a laptop
equipped with both Wi-Fi and LiFi, sitting while watching
a streaming video over a mobile device, or walking while
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phone calling. These activity models are added with random
orientation and random mobility models in our emulator.
During the training process, we uniformly pick these activities
for each user in a random way.

B. Experimental Results

First, we refer the readers to watch our video demonstration
showing a real-time comparison of our DRL implementation
and a vanilla MPTCP implementation as shown on YouTube?.
Other than the fact that the proposed algorithm generally
outperforms the vanilla MPTCP, we can infer from the video
that the Netfilter coefficient dynamically reflects the signal
quality indicated by the RSS values. That is, when the RSS
value of a LiFi channel is high, it shows that a high band-
width is available in a LiFi channel, the Netfilter coefficient
corresponding to the LiFi channel is also high. It means that
our DRL implementation can adaptively adjust the Netfilter
coefficients depending on the signal quality of the channels.

By running a massive number of episodes and ensuring that
all measurements are taken fairly by using the same realiza-
tions from all random models, Fig. 5 depicts our performance
comparison. We compare the vanilla MPTCP implementa-
tion based on [7] by using the wVegas congestion control
algorithm, the state-of-the-art from [16] (which is referred to
as DRL-CC for short), and our proposed method by using
different, existing MPTCP congestion control algorithms. It is
shown that the proposed approach generally outperforms the
others. Other than the performance comparison, there are two
insights that can be obtained from Fig. 5. First, even with the
BALIA algorithm which suffers from a Head-of-Line delay
as described in [9], we can still outperform the state-of-the-
art. Another important insight to note is that thanks to the
SAC, our implementation has a lower variance compared to the
DDPG-based implementation in DRL-CC. Note that this result
conforms with the observation from [17]. In order to show a
more concrete result in this regard, Fig. 6 depicts the training
efficiency of our approach. That is, our approach trains faster
compared to the counterpart method. The higher fluctuation of
the DRL-CC training curve also explains the high variance as
well as the brittleness of the DRL-CC, which is mainly due to
the DDPG. Following [16], we also investigate if our approach
compromise the fairness. Fig. 7 shows the Jenkin’s fairness
index comparison. Since all values are close to 1, we can
conclude that our approach does not significantly compromise
the users’ fairness.

For the sake of explainability, it is important to understand
where the performance advantage comes from. One way to
achieve it is by monitoring the TCP retransmission timeout
(RTO). According to MPTCP, a cross subflow retransmission
(i.e., a vertical handover) occurs after 2x the longest RTO
of all subflows. Therefore, we can infer that the shorter the
TCP RTO is, the earlier the DRL agent can predict if a
vertical handover will occur in the near future. As depicted
in Fig. 8, it can be said that due to the model network, the
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proposed algorithm can predict the vertical handover earlier
compared to the DRL-CC. Another reason why the proposed
algorithm can predict a vertical handover event earlier is that
by placing a Netfilter in all devices, the Netfilter can emulate
a congestion occured in the network; therefore, the MPTCP
can adapt earlier.

V. CONCLUSIONS

In this paper, we investigated our proposed approach to
intelligently steer the MPTCP subflows in a hybrid Wi-Fi and
LiFi network. There are two main contributions made in this
paper. First, instead of modifying an MPTCP implementation
directly, which is challenging due to the fact that it must be
done in the kernel space, we proposed to dynamically adjust
the Netfilter coefficients. By having the Netfilter present in
all devices and being able to configure it dynamically, an
MPTCP implementation can act earlier. A further contribution
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is the use of a model-augmented SAC algorithm, where the
model network can provide an estimate of future values of
states to the critic network on top of the SAC algorithm.
Compared to the vanilla MPTCP implementation (which can
achieve an average total throughput of 48 Mbps) and the
state-of-the-art (which can achieve an average total throughput
of 57 Mbps), the proposed approach can achieve 82 Mbps.
Note that this performance is obtained by running the DRL
agent in an environment where we could emulate a close-
to-reality scenario. That is, a random orientation model of
mobile devices, random mobility and random blockage models
of users are considered. In addition, by using the link-to-
system mapping, we also emulated IEEE 802.11n for the Wi-
Fi connection, and IEEE 802.11bb for the LiFi connection.
Therefore, ensuring that the proposed algorithm can perform
well in a close-to-reality scenario increases our confidence to
implement it in a real world scenario, which will be reserved
for our future work.
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