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Abstract—While significant efforts have been made for vehicle-1

to-vehicle communications, which now enable the Internet of2

Vehicles (IoV). Current IoV solutions are unable to capture3

traffic data both accurately and securely. Another drawback4

of current IoV models based on deep learning is the methods5

they use to tune hyperparameters. In this paper, a new system6

called secure and intelligent system for the Internet of Vehicles7

(SISIV) is developed. A deep learning architecture based on8

graph convolutional networks and an attention mechanism are9

used. In addition, blockchain technology is used to protect the10

data transmission between nodes in the IoV system. Moreover,11

the hyperparameters of the generated deep learning model are12

intelligently selected using a branch-and-bound technique. To13

validate SISIV, experiments were conducted on four networked14

vehicle databases dealing with prediction problems. In terms15

of forecasting rate (> 90%), F-measure (> 80%), and attack16

detection (< 75%), the results clearly showed the superiority of17

SISIV over the baseline systems. Moreover, compared to state-18

of-the-art solutions based on traffic prediction, SISIV enables19

efficient and reliable prediction of traffic flow in an IoV context.20

21

Index Terms—Deep Learning, Internet of Vehicles, Blockchain,22

Graph Convolution Network.23

I. INTRODUCTION24

The Internet of Things (IoT), wireless networking, big data25

as well as artificial intelligence have propelled research to26

new heights in many facets of our lives [1]–[3], as well27

as many application domains such as human behaviors [4],28

smart privacy [5]–[7], smart homes [8], smart transportation29

[9]–[11] as well as Internet of Vehicles (IoV) [12]–[14].30

IoV is regarded as one of the most innovative technologies31

of the modern era as well as the evolution of our societies32

[15], [16]. AI plays an important role in the modernization33

of vehicle technology [17]–[19], as well as several pieces34

of research have been conducted in this direction. Wang et35

al. [20] built a two-level aided vehicular network framework36

around federated learning. They created a new federated37

learning participant decision mechanism that is supported by38

mobility as well as reduced the cost of federated learning39
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with a distributed joint resource allocation strategy. Li et 40

al. [21] proposed an emergency information dissemination 41

approach based on the social IoV to create inter-vehicle 42

social ties without human interaction as well as exchange 43

emergency information through stable vehicle-to-vehicle links. 44

The information diffusion problem was reformulated as an 45

influence maximization problem based on a vehicle link 46

graph. They devised a social IoV-based emergency information 47

influence maximization method to increase the influence range 48

by picking some influential seed vehicles as well as raising the 49

influence of others. Liu et al. [22] suggested a multi-unmanned 50

aerial vehicle enabled mobile IoV paradigm in which 51

unmanned aerial vehicles track to serve mobile vehicles as 52

well as deliver downlink information to them during flight. The 53

system throughput is maximized by concurrently optimizing 54

vehicle communication scheduling, unmanned aerial vehicle 55

power allocation, as well as unmanned aerial vehicle trajectory, 56

taking into account the limits of anti-collision as well as 57

communication interference between the unmanned aerial 58

vehicles. The non-convex optimization problem is broken 59

down into three subproblems, i) communication scheduling 60

optimization, ii) power allocation optimization as well as 61

iii) unmanned aerial vehicle trajectory optimization. These 62

subproblems may be able to be handled via successive convex 63

approximation. To find the best solution, a combined iterative 64

optimization approach for the three subproblems is proposed. 65

All the aforementioned solutions suffer from many issues, 66

which may be able to be highlighted in the following: 67

1) They do not provide a framework that guarantees secure 68

transfer of data in the IoV network. 69

2) Missing accurate deep learning models that are able to 70

learn from the different features of the IoV network. 71

To address these issues, this study proposes SISIV; a secure 72

as well as intelligent system connected to vehicles in the 73

context of the IoT. Our contributions are as follows: 74

1) We propose a novel framework, named SISIV (Secure 75

and Intelligent System for Internet of Vehicles), which 76

consider both privacy preservation as well as learning 77

issues. Privacy is protected by implementing an efficient 78

blockchain-based technique to secure data transfer in 79

the IoV, and learning is protected by a graph neural 80

network that learns from the visual features of the IoV. 81

We also develop the graph attention network to improve 82

the learning process by focusing more on the relevant 83

visual features. 84

2) We present a branch-and-bound optimization strategy to 85

optimize the hyperparameters of the deep learning 86
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architecture used in SISIV. Rather than using87

exhaustive search methods, the strategy considers88

the hyperparameter space and uses a heuristic to89

intelligently explore the enumeration tree.90

3) On four different connected vehicle datasets dedicated91

to forecasting problems, we show that the SISIV92

framework gives promising results compared to the93

baseline IoV solutions in terms of forecasting rate,94

runtime, as well as detected attacks.95

The rest of the paper is organized as follows. Section II gives96

a review of the literature related to security in IoT as well as97

IoV applications. Section III presents a detailed explanation of98

the SISIV framework. A performance evaluation of the SISIV99

framework is provided in Section IV. Section V shows the open100

research scope for IoV. Section IV draws the conclusion.101

II. RELATED WORK102

This section reviews the literature on security in IoT as well103

as IoV applications.104

A. Security in IoT105

For detecting infiltration in IoT devices, Nie et al. [23]106

created a generative adversarial network. The features were107

chosen first in order to handle the sensor data appropriately.108

A single attack was then discovered using the generative109

adversarial network. To identify as well as comprehend110

the behaviours of various attacks, a combination of several111

intrusion detection architectures was deployed. Wang et al.112

[24] devised a method for analyzing the trust in mobile edge113

nodes in order to improve IoT device reliability as well as114

mitigate network assaults. It is a graph-based model in which115

sensors are vertices as well as point-to-point connections116

are edges. Djikstra algorithm calculates the sensor node’s117

trust after measuring as well as improving the individual118

sensor node’s trust score. Nagarajan et al. [25] investigated119

the capability of gateway nodes for gathering as well as120

safeguarding data for IoT applications. A deep learning121

technique was used in fog systems to study as well as122

train the acquired data. The proposed technique not only123

learns from IoT data but also takes into account relief124

formulae to deal with the difficult restrictions of the sensitive125

data acquired. Belhadi et al. [4] created a fusion model126

to detect anomalies in group trajectories from pedestrian127

collective behavior data. This model was developed in the128

context of intelligent transportation. Several data mining as129

well as deep learning-based systems were created, as well130

as group anomalies were determined using solutions-based131

neighbourhood computation as well as clustering. Zekry et al.132

[26] suggested two convolution LSTM deep learning models to133

detect anomalous data from IoT sensors as well as avert cyber-134

attacks. Aloqaily et al. [27] proposed a solution for intrusion135

detection as well as prevention in IoT based on clustering,136

in which cluster heads are chosen so that services as well137

as providers may be able to communicate with third-party138

entities. The authors employed a decision tree to choose the139

attributes as well as classify the attacks after using a deep140

belief function to minimize data dimensionality as well as141

discover positive trustworthy service requests.142

B. IoV as well as their Related Applications 143

Several research efforts were dedicated to vehicle-to-vehicle 144

communications [28], vehicular ad hoc networks [29], [30], as 145

well as related applications, e.g., [31], [32]. This evolved to 146

the emergence of IoV in which vehicles are interconnected 147

as well as connected to the internet. Abdellatif et al. [33] 148

created an active learning framework that reacts to unusual 149

road scenarios using data collected from onboard sensors as 150

well as other vehicles. The framework looked at three different 151

ways that vehicles get information, i.e., by sharing labels, 152

data, or a combination of the two. Deep learning models 153

could be utilized by parked vehicles (PVs). Li et al [34] 154

modelled the time of arrival as well as the duration of parking 155

using the Weibull as well as dual Gamma distributions. PVs 156

were also persuaded to share their unused compute assets 157

through a contract-based incentive mechanism. Xing et al. [35] 158

looked into the relationship between connected vehicle energy 159

consumption as well as driving styles They investigated the 160

impact of the amount of energy consumed on the accuracy 161

of driver behavior detection as well as motion/trajectory 162

prediction systems. A deep learning-based approach was used 163

for time-series modeling. The results showed that anticipating 164

driving behaviours as well as accurately predicting vehicle 165

motion is difficult for vehicles with high energy usage. RNN- 166

LF (Recurrent Neural Network for Long-term Flows) was 167

created by Belhadi et al. [36] to anticipate long-term traffic 168

data represented by flow distribution. It drew on a variety 169

of data sources as well as contextual knowledge, such as 170

weather data. Xu et al. [37] proposed TripRes, a traffic flow 171

prediction system that relied on a city map. In this system, 172

the collection of large regions is first selected, as well as the 173

deep spatiotemporal residual network is then trained to learn 174

from the current traffic condition as well as infer future traffic 175

flow predictions for similar regions. Peng et al. [38] proposed 176

a hybrid-based model for long-term traffic flow prediction, 177

called GCN-LSTM. Deep learning concepts including graph 178

convolution neural network (GCN) as well as LSTM were 179

combined in this algorithm. GCN learns traffic data’s spatial 180

patterns, whereas LSTM learns traffic data’s temporal patterns. 181

Xu et al. [39] created an edge-based system for IoV. The 182

residual network is used to learn the future services of the 183

IoT system. Multi-objective optimization ass also used to 184

reduce the overall system’s time as well as energy costs. 185

An intelligent framework that can process various data from 186

connected cars has been developed by Sun et al. [40]. The 187

use of adaptive data cleaning allowed for the elimination of 188

noise, thus improving the data collection process. The method 189

uses an autoencoder with large short-term memory and has 190

four layers for training the data cleaning mechanism. An 191

insightful paradigm for analyzing heterogeneous IoV data was 192

developed by the authors. The IoV data were cleaned using 193

an adaptive data cleaning method based on autoencoder long- 194

term memory, which had four layers. This helped to minimize 195

the amount of noise in the data. 196
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Fig. 1. SISIV Framework: The optimized graph of the roads is first created from the raw IoV data. The graph convolutional network is then trained for traffic
forecasting while the branch-and-bound method is used to determine the optimal parameters of the trained model. Blockchain technology is used to secure
the data communication.

C. Discussions197

This literature review reveals that IoV technologies have a198

number of flaws. First, they are unable to securely manage199

sensitive IoV data collection. The accessible IoV information200

would greatly aid in improving the model’s accuracy. The201

second difficulty is hyper-parameter optimization, which202

necessitates the adjustment as well as tuning of numerous203

parameters during the training phase. To solve the deal with204

these problems, we provide a new secure as well as intelligent205

framework for IoV in the following section.206

III. DESIGNED SECURE AND INTELLIGENT SYSTEM FOR207

INTERNET OF VEHICLES FRAMEWORK208

A. Principle209

Figure 1 depicts the framework of the proposed solution that210

is based on Branch-and-Bound for a smart hyper-parameters211

tuning, as well as graph convolution neural network (GCN) for212

IoV data handling. We also create a secure-based system for213

transferring data securely. First, the IoV data from the sensors214

is retrieved. After the hyper-parameters have been tweaked,215

deep learning is used to determine the forecasting of IoV.216

We present traffic data collected by IoT sensors as graphs217

to obtain the geographic structure inherent in the data. Based218

on the work of Gue et al. [41], we proposed an optimized219

graph implementation by adopting the inverted representation,220

which is in contrast to the usual graph representation of221

the road network where the road segments are represented222

as edges and the intersections as nodes. In this approach,223

road segments are considered as graph nodes. If there are224

connections between adjacent pairs of road segments, the225

edges of these nodes are formed. In this situation, both226

the GCN with attention mechanism and the branch-and- 227

bound method are applied to learn from the optimized graph. 228

In particular, the attention mechanism aims to capture the 229

relevant features from the graph data, and the branch-and- 230

bound method aims to determine the optimal parameters of 231

the GCN model. The IoV system uses blockchain technology 232

to secure the communication between the different nodes. In 233

particular, this ensures the confidentiality of the data collected 234

during training and also ensures that the trained model is 235

secured against unexpected changes for the deployment phase. 236

The following sections provide descriptions of the SISIV 237

components. 238

B. Graph Convolution Neural Network (GCN) 239

The appropriate management of spatial data represents the 240

principal challenge for traffic forecasting. The structure of 241

the urban road network is becoming increasingly complex as 242

transportation technology develops at a rapid pace. Traditional 243

CNNs are incapable of meeting today’s demands. GCNs [42] 244

have been experimentally demonstrated suitable for traffic 245

forecasting. It may be able to fully capture the spatial 246

properties of traffic data, improving the model’s overall 247

prediction performance. The GCN model is employed in this 248

study to define two hidden layers, with the ReLU function as 249

the nonlinear activation function. There is only one parameter 250

in every convolution kernel. The number of parameters is 251

generally minimized when each and every convolution kernel 252

has only one learnable parameter. However, studies have 253

shown that reducing a significant number of parameters 254

may have a negative impact on the model performance. To 255

address this issue, convolution may be able to be defined as 256

the grouping of neighboring nodes employing an attention 257
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technique. An attention mechanism is a piece of software258

that forces the model to concentrate on learning as well as259

absorbing crucial data. The primary strategy of the attention260

mechanism is to include it in the GCN model. Previous261

research reveals that the model may be able to perform262

parallel computing across nodes as well as overcome spatial263

convolution limitations. It also has the ability to learn264

inductively. A graph attention mechanism must first be used265

before the degree of linkage between nodes may be able to266

be calculated. In this mechanism, the graph attention layer’s267

input is a node feature. Without processing, the attention268

coefficient between nodes is quite complicated. To normalize269

the attention coefficients of each and every node, we use the270

softmax function. The normalized attention coefficient is then271

utilized to differently aggregate the information of surrounding272

nodes. We create here a learnable function based on the273

attention mechanism to acquire the relationships between274

adjacent nodes, i.e., the local graph structure.275

C. Branch and Bound276

The Branch-and-Bound algorithm has shown its efficiency277

for discrete as well as combinatorial optimization problems,278

as well as mathematical optimization [43], where the lowest279

bound yet discovered are tracked, compared with the possible280

solutions, as well as then only keeps a possible solution that is281

inferior to the lowest bound yet discovered as the new lowest282

bound. This may be able to solve only minimization problems.283

But this does not represent a drawback as any maximization284

problem may be able to be transformed into a minimization285

one by multiplying the objective function by �1. Convex286

problems are the only ones for which the global optimum is287

guaranteed. Forming a rooted tree of viable solutions to the288

problem is what branching is all about. Then it is possible289

either to conduct an extensive search (examine all of the290

tree’s branches) or eliminate searching through some branches291

(pruning) that are know not to include solutions. This applies292

to convex problems in one of the following scenarios.293

1) The value of a variable (a constraint), in this example the294

value of a hyper-parameter, is infeasible. As a result, we295

remove all branches that are tied to that value. Because296

going down merely adds more limits, there’s no need to297

go any longer if and only if one is already impossible.298

2) If the estimated best solution through the explored299

branches is worse than the current one, then the300

exploration phase of the current branch is terminated301

then move forward to others.302

3) A solution is discovered as well as no better one may303

be able to be discovered by moving further down the304

branch (as this will only add more constraints). In this305

case, all that may be able to be done is for a comparison306

of this solution to the best found so far.307

Notice that if and only if the problem is not convex, any308

further anticipated pruning may cause the missing of a local309

or global optimum.310

To clarify which variable should be branched, we use an311

illustrative example of a binary problem. A binary problem is312

an optimization problem in which the variables are the interval313

[0,1]. Thus, each and every variable xi for i = {1, 2, 3, . . . , n} 314

is represented in this given form: 315

X 2 {0, 1}n, (1)

where n is the number of variables in the problem. This may 316

be able to be relaxed to: 317

0  xi  1, for : i = {1, 2, 3, . . . , n} (2)

For instance, consider this solution: 318

X = [0.1, 0.6, 1, 0, 1] (3)

For exploration, we choose a branch on the variable whose 319

value is closest to 0.5 (in this case x2). We propose two 320

exploration strategies: 321

1) Depth first strategy: It takes a branch down to the 322

bottom until reaching a point we cannot go any farther, 323

then works the way back up. 324

2) Breadth first strategy: Various branches are explored 325

at each and every depth, then continue deeper as well 326

as repeat the process until reaching the bottom. 327

The depth-first method is theoretically the better method 328

because it leads to a solution faster by imposing more and 329

more constraints and it can be compared with other solutions, 330

which speeds up pruning. 331

D. Blockchain 332

We secure the proposed framework with blockchain 333

technology. To set up a secure decentralized traffic forecasting 334

system, we are developing a dedicated consortium blockchain. 335

To make the system more functional, we select a certain 336

number of Road Side Units (RSUs) as approved miners. We 337

then update the hardware configuration of the RSUs for this 338

purpose and to provide robust computational, storage, and 339

networking capabilities for evaluating local model updates 340

transmitted from remote vehicles. In this way, both inaccurate 341

and unreliable updates can be detected. They use carefully 342

tuned consensus procedures to create a new block of records of 343

qualified local model updates. An iteration of the global model 344

training for implementing predictions includes the following 345

steps after installing the consortium blockchain: 346

1) Local algorithm execution: Each and every vehicle first 347

runs the forecasting algorithm on its local dataset. This 348

permits local outputs to be generated as well as relayed 349

to the nearest miner. 350

2) Output control: Miners are hired to receive as well as 351

verify local outputs in order to get defined token rewards. 352

A new data block is created by the miner whenever an 353

efficient approach is used to filter out both spurious and 354

low-quality local outputs. All local outputs that meet the 355

qualification criteria are stored in this new data block. 356

3) Merging: The consortium blockchain logs the new block, 357

which includes the most recent local outputs, as well as 358

instructs all participants to download the most recent 359

block data. Each and every person may be able to 360

compute the global outputs by knowing the local outputs 361

of the other participants. 362



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

We optimize the algorithm created in [44] to accurately363

implement the above steps. Each individual miner is tasked364

with downloading a standardized test dataset and determining365

whether or not the vehicle’s local model updates are qualified.366

Depending on the particular accuracy requirements of the367

algorithm, each miner employs specific filtering algorithms to368

screen out hostile entities with bugs or poisoning attacks. We369

use the consensus method to analyze and filter harmful entities370

to prevent them from affecting normal system operation.371

This allows us to identify and reduce the harmful impact372

of hostile entities on the consortium blockchain. We use373

the flexibility of the consensus algorithm to protect against374

future security threats. Only the appropriate local results are375

combined to obtain the latest global result. In this way, low-376

quality local results can be eliminated and accurate prediction377

can be achieved. Unlike previous consensus algorithms such378

as computationally intensive proof-of-work, communication-379

intensive Byzantine fault tolerance, and unfair proof-of-stake,380

the new method is based on practical Byzantine fault tolerance381

and allows flexible mining without a fixed miner group. This382

is achieved through the practical application of Byzantine fault383

tolerance.

Algorithm 1 SISIV Algorithm
1: Input: IoV : Raw IoV data;

V = {V1, V2..., Vn}: The set of n IoV training data;
2: Output: ForecastIoV : The set of predicted traffic;
3: V  CollectionFromSensors(IoV );
4: G ConstructOptimzedGraph(V );
5: RIoV  ;;
6: while Blockchain(G) is secured do

7: for Gi 2 G do

8: Forecasti  BB(GNN(Gi));
9: ForecastIoV  ForecastIoV [ Forecasti;

10: end for

11: end while

12: return ForecastIoV .

384

E. The SISIV Algorithm385

Algorithm 1 presents the pseudocode of the SISIV386

algorithm. It starts by collecting and constructing the training387

data in (lines 3 and 4). The data is collected from a set of388

sensors and an optimized graph is created from the collected389

data. The whole dataset G is first parsed data instance by390

data instance, and then the GCN is performed with attention391

mechanism. The hyper-parameters are also optimized using392

the branch-and-bound method (lines 7 to 10). The process393

is secured by blockchain technology (lines 6 to 11). The394

predicted results are returned (line 12).395

IV. PERFORMANCE EVALUATION396

SISIV is compared to state-of-the-art IoV solutions in this397

section. The evaluation is based on four standards benchmark398

datasets for connected vehicles 1. The datasets include labelled399

1https://www.kaggle.com/datasets

data with ground truth, as well as the result of all datasets 400

are averaged for comparison metrics as well as presented in 401

the following. The following is a brief description of these 402

benchmarks: 403

1) Astyx: This IoV dataset provides high-resolution radar 404

data as well as 3D object detection using radar, LIDAR, 405

and camera data. It contains 546 frames and is over 406

350MB in size. 407

2) Deep Drive: The dataset includes over 100, 000 of video 408

sequences with various annotations, including image- 409

level labels, object bounding boxes, drivable areas, 410

lane markers, and segmentation of full-frame instances. 411

The dataset is geographically, ecologically, and weather 412

diverse. 413

3) Landmarks: An open-source Google database for 414

detecting artificial and natural landmarks. It was used 415

in the 2018 Kaggle competitions for landmark detection 416

and retrieval of 2 million images, including 30, 000 in 417

interesting locations from around the world. 418

4) Accidents: A nationwide U.S. database of motor vehicle 419

crashes covering 49 states from February 2016 through 420

December 2020. It uses APIs from state departments 421

of transportation, law enforcement, traffic cameras, and 422

sensors to offer live traffic data. Three million accidents 423

have been reported. 424

The forecasting rate is calculated as well as used as a 425

comparative statistic to evaluate the proposed framework. It 426

is defined as follows: 427

FR =
CF

|T | ⇥ 100, (4)

where CF is the number of the correctly forecasted test 428

samples, as well as T is the size of the test dataset. 429

The evaluation is also performed using different measures: 430

precision (P), recall (R), and F-measure (F), which are defined 431

as follows: 432

P =
TP

TP + FP
(5)

433

R =
TP

TP + FN
(6)

434

F =
2⇥ P ⇥R

P +R
(7)

where TP denotes the number of samples whose true label 435

and predicted label are both positive. FP denotes the number 436

of samples with negative true label and positive predicted 437

label. FN denotes the number of samples with positive true 438

label and negative predicted label. Note that these measures are 439

common measures for evaluating traffic forecasting methods. 440

The empirical testing was carried out on a machine with a 441

64-bit core i7 processor, Windows 10, as well as 16 GB of 442

RAM. The CPU host is a 2.27 GHz Intel Xeon E5520 quad- 443

core 64-bit processor. The GPU is an NVIDIA Tesla C2075, 444

which has 448 CUDA cores (14 multiprocessors with 32 cores 445

each) as well as runs at 1.15 GHz. It has a global memory 446

of 2.8 GB, a shared memory of 49.15 KB, as well as a warp 447

size of 32. Single precision is used on both the CPU as well 448
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as GPU. The SISIV framework is compared to the following449

baseline solutions:450

1) RNN-LF (Recurrent Neural Network for Long-term451

Flows) [36]: It is a recurrent neural network developed452

with the goal of predicting long-term traffic data453

represented by the distribution of traffic flows. It uses a454

variety of data sources as well as contextual knowledge,455

such as information about traffic and weather.456

2) TripRes [37]: It uses the city map to efficiently estimate457

traffic flow. First, a collection of large areas is defined.458

Then, a deep spatiotemporal residual network is trained459

to learn from the current traffic scenario and predict460

future traffic flows of comparable regions based on what461

it learned from the previous situation.462

3) GCN-LSTM [38]: It uses a hybrid architecture for463

accurate prediction of long-term traffic flow. It uses464

graph CNN in addition to LSTM. LSTM is responsible465

for learning the temporal patterns of the traffic data,466

while GCN is responsible for learning the spatial467

characteristics of the traffic data.468

4) Gra-TF [45]: It is a graph-level forecasting approach469

used to develop an integrated as well as improved470

forecasting model using ensemble learning. Several471

strategies are used in this design model to reduce472

uncertainty in IoV systems.473

A. Parameters Setting474

In this section, the results of the parameter setting of the475

SISIV framework are explained. In this work, the branch-476

and-bound optimization approach was used to optimize the477

hyper-parameters of the deep learning model. We applied both478

the deep-first and breadth-first methods, and the best value479

from both was returned. The number of epochs can be set480

between 100 and 1, 000, the learning rate between 0 and 1,481

and the number of batches between 16 and 512. For each of482

the four benchmark datasets, the branch-and-bound technique483

examined the space of hyperparameters and found the optimal484

parameters for our model in terms of forecasting rate. Table I485

summarizes the values of these parameters.486

TABLE I
BEST PARAMETERS OF SISIV.

Dataset epochs learning rate batches
Astyx 257 0.43 64

Deep Drive 315 0.49 32
Landmarks 439 0.55 64
Accidents 544 0.82 32

B. Experimental Results487

1) Forecasting Rate: For the four datasets above, in the488

initial tests, we compare the forecasting rate of SISIV with that489

of the baseline solutions by varying the number of traffic data490

to be predicted as input from 50 to 500 in the test set. Figure491

2 shows that SISIV outperforms the four baseline algorithms.492

SISIV’s forecasting rate reached 95% when processing 500493

of traffic data from the Deep Drive dataset, while the rates494

of the other models were below 80%. These results were 495

obtained by combining a GCN with an attention mechanism 496

that takes advantage of the different information propagations 497

as well as the features injected into the generated GCN. This 498

enables more accurate observation predictions and helps in 499

developing smarter IoV decisions. In addition, the branch-and- 500

bound technique can effectively adjust the hyperparameters of 501

the various deep learning models used in SISIV to achieve the 502

highest possible forecasting rate. 503

2) Runtime: The second experiment compares the training 504

runtime of SISIV with the baseline methods, with the error 505

loss value set to 0.005. When increasing the amount of 506

traffic input from 5, 000 to 50, 000, SISIV outperforms the 507

four baseline models, as shown in Figure 3. In contrast, the 508

discrepancy between the four models was considered small for 509

the accidents dataset as well as for the other datasets. When 510

processing 50, 000 of traffic data from the accidents dataset, 511

the difference in training runtime between the SISIV and 512

baseline algorithms exceeds 300 seconds. These results may be 513

explained by the fact that the baseline solutions use methods 514

that mix deep learning architectures for feature extraction 515

and basic machine learning algorithms for prediction, as 516

well as ineffective hyperparameter tuning strategies that do 517

not lead to optimal results. In contrast, SISIV’s branch-and- 518

bound algorithm with the combination of GCN and attention 519

mechanism efficiently selects the parameters of the model as 520

well as the relevant features of the input data, which reduces 521

the training time. 522

TABLE II
F-MEASURE, PRECISION, RECALL PERFORMANCES.

Dataset Methods P (%) R (%) F (%)

RNN-LF 53 37 44
TripRes 51 64 57

Astyx GCN-LSTM 52 60 56
Gra-TF 71 66 68

IGCNN-RCD 85 92 86
RNN-LF 51 33 41
TripRes 55 68 61

Deep Drive GCN-LSTM 55 63 59
Gra-TF 70 67 68

IGCNN-RCD 84 91 87
RNN-LF 50 42 46
TripRes 59 74 66

Landmarks GCN-LSTM 61 65 63
Gra-TF 77 73 75

IGCNN-RCD 86 99 92
RNN-LF 52 48 50
TripRes 61 77 68

Accidents GCN-LSTM 65 69 67
Gra-TF 81 78 79

IGCNN-RCD 89 95 92

3) F-measure, Precision, Recall Performances: We conduct 523

experiments with well-known traffic forecasting benchmarks 524

such as Astyx, Deep Drive, Landmarks, and Accidents to 525

demonstrate the superiority of the proposed framework in 526

terms of precision, recall, and F-measure. Four baseline 527

models were selected for comparison (RNN-LF, TripRes, 528

GCN-LSTM and Gra-TF). The numerical results are presented 529

in Table II. This table shows that the proposed framework 530

performs better than the baseline solutions in every case. These 531
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Fig. 2. The forcasting rate of SISIV compared to the baseline solutions.

results are the consequence of an effective mixture of graph532

optimization, GCN training and hyperparameter optimization.533

Graph optimization produces a densely packed graph of road534

networks. This enables efficient training of the GCN network.535

Moreover, the ideal model for traffic forecasting can be536

identified by exploring the GCN parameter space.537

4) Blockchain Performance: The blockchain algorithm538

used in this study is evaluated in this part. Several tests539

were conducted using the traffic statistics presented in the540

previous section. Figure 4 shows the effect of different541

proportions of malicious vehicles on the successful attack542

rate, both with and without the blockchain technology used543

in this study. The results show that there is a demonstrable544

benefit of using the proposed blockchain method to secure545

various communications between vehicles in the transportation546

network.547

V. OPEN RESEARCH SCOPE FOR IOV548

Research in IoV is growing by leaps and bounds.549

Compared to existing intelligent transportation technologies,550

these systems have recently been developed as IoV to551

remotely monitor vehicle operations and key parameters. It552

is only a matter of time before centralized IoV systems 553

are improved and contribute significantly to reducing traffic 554

accidents, saving maintenance costs, extending vehicle life, 555

and increasing passenger and pedestrian safety. However, there 556

are other problems and areas that need to be studied on the 557

way to a reliable and efficient centralized IoV. Some of these 558

studies are described below: 559

1) A comprehensive investigation of vehicles: A vehicle 560

consists of thousands of parts. However, due to 561

their individual and unique functions, not all of 562

these parts are given the same importance. During 563

the operation period, some of them take the main 564

responsibility and ensure that the condition of the vehicle 565

is satisfactory and also provide enhanced services. 566

However, in our literature review, we found that previous 567

research has focused exclusively on the functionality 568

of critical vehicle elements as well as their impact on 569

vehicle performance. There have been no mathematical 570

advances in prioritizing these critical elements for use 571

in this monitoring system. Therefore, there is great 572

potential for research into a mathematical model for 573

prioritizing vehicle components that could aid in the 574
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Fig. 3. SISIV‘s training runtime in comparison with the baseline solutions.

development of the IoV.575

2) Intelligent information fusion: Apart from the security576

as well as service difficulties, the IoV system should be577

user-friendly and consider the preferences and privacy578

of all kinds of users. This is very important to arouse579

the interest of the users and keep them in supplying the580

systems with data. The research to develop the IoV core581

is crucial in this regard to make it easier for everyone582

by reducing the complexity of the system and enabling583

intelligent sharing and fusion of information.584

3) Optimized collaboration framework for IoV: The585

number of connected vehicles is growing rapidly, and586

the ability to monitor them remotely is also growing587

in lockstep. Moreover, IoV is becoming increasingly588

important for remote monitoring of vehicle performance589

and operation. However, there is a problem with590

current networks, which have many limitations when591

it comes to connecting a large number of vehicles592

with roadside units, installation devices, surveillance593

systems, intelligent transportation systems, cloud storage594

and server systems, etc. To achieve this, IoV requires595

a well-organized and efficient communication network596

system that ensures a stable communication platform for 597

vehicles to collect and analyze large amounts of data, as 598

well as a platform for sharing data using IoT technology. 599

A heterogeneous network is a viable alternative that can 600

effectively meet the need. Developing an efficient and 601

well-organized network for IoV that connects various 602

links and nodes as a common platform holds great 603

potential. In addition, combining exact and stochastic 604

solutions could be a good direction to process large 605

amounts of data in real-time operation. 606

VI. CONCLUSION 607

This study examines the shortcomings of current IoV 608

solutions as well as proposes the SISIV framework. An 609

attention technique as well as a deep learning architecture 610

based on GCNs are used. SISIV uses blockchain technology 611

to secure the data exchange between nodes. Moreover, 612

a branch-and-bound technique is used to intelligently 613

determine the hyperparameters of the deep learning model 614

created. The validation of SISIV was conducted using four 615

networked vehicle databases designed to predict various traffic 616

information. The results show that SISIV performs better 617
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Fig. 4. Compare the influence of various percentage of malicious vehicles on the success rate of detected attacks with as well as without the use of Blockchain
technology.

than the baseline solutions in terms of forecasting rate, F-618

measure, and detected attacks. There are many paths for future619

research productivity that emerge from the research conducted620

in this paper. First of all, IoV has made progress in many621

different functional areas, but security concerns are still a622

major problem for users of such systems [46]. For traffic623

forecasting, it is advisable to ensure a high level of security624

when data is retrieved and transmitted from users’ devices.625

There has also been much recent research in the area of626

federated learning [47]. Applying the DL techniques explored627

in this paper in a FL based environment would be worthwhile628

considering the number of devices that would operate at the629

edge of such IoV networks.630
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