
Forensic Analysis Of Large
Capacity Digital Storage

Devices

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF
EDINBURGH NAPIER UNIVERSITY FOR THE AWARD OF DOCTOR OF

PHILOSOPHY IN THE SCHOOL OF COMPUTING

Philip Penrose

February 2017

EDINBURGH NAPIER UNIVERSITY LIBRARY

3 8042 00838 2143

FOR
REFERENCE ONLY

Acknow ledgem ents

My thanks must go firstly to my wife and daughter, Margaret and Amanda, who sacrificed my
company for many long hours and offered unstinting support throughout this journey. This
could not have been done without them.
I would like to thank my Director of Studies, Professor William J Buchanan, for his infectious
enthusiasm and the encouragement he has given me over the last three years. My second
supervisor, Rich Macfarlane, has been a great support during this time and always gave
insightful advice along with the beer.
I am forever grateful for the astounding depth of knowledge possessed by Bruce Ramsay
about the low-level workings of processors and operating systems and of the digital forensic
processes within law enforcement agencies. I learned so much from him.
Finally I would like to thank all my fellow researchers and staff in the School of Computing
who always provided encouragement and support.

1

Declarations

No portion of the work referred to in this thesis has been submitted in support of an
application for another degree or qualification of this or any other university or other institute
of learning.

II

CONTENTS

ABSTRACT... VII

1 INTRODUCTION..1

1.1 Digital Forensics.. 1

1.2 Context..1

1.3 Thesis Aims and Objectives...3

1.3.1 Aims.. 3

1.3.2 Objectives.. 3

1.4 Contributions and Impact..3

1.5 Structure of The Thesis.. 5

2 CLUSTER IDENTIFICATION... 6

2.1 Introduction... 6

2.2 Related Work.. 6

2.2.1 Existing triage solutions..7

2.2.2 Hashing and Bloom filters - identifying known content... 8

2.3 A Triage System..9
2.3.1 Choice of cluster size.. 10

2.3.2 Choice of sample size.. 10

2.3.3 Database structure and lookup........................... 12

2.3.4 Bloom filters.. 13

2.4 Design..................... 14
2.4.1 Designing the filter...14

2.5 Implementation... 16
2.5.1 Bloom Filter Creation..16

2.6 Testing.. 17

2.7 Conclusions.. 18

3 NON-PROBATIVE BLOCKS.. 19

3.1 Introduction... 19

3.2 Terminologies..19

3.3 Prior Work..20

3.4 Testing For Non-Probative Blocks.. 21

III

3.5 An alternative test for JPEG non-probative blocks..22

3.6 Global and Local Uniqueness...23

3.7 Using Entropy Measures with Small Block Sizes..23

3.8 Effects of Non-Probative Blocks During Triage.. 24

3.9 Conclusions.. 26

4 CLUSTER CLASSIFICATION.. 27

4.1 Introduction.. 27

4.2 Background... 28

4.3 The Problem With High Entropy Fragments.. 28

4.4 Related Work.. 29

4.4.1 File Fragment Classification..29

4.4.2 Entropy...31

4.4.3 Complexity and Kolmogorov Complexity... 31

4.4.4 Statistical Methods..32

4.4.5 Linear Discriminant Analysis..32

4.4.6 Multi-centroid Model....... ...32

4.4.7 Supervised learning models...33

4.4.8 Lempel-Ziv Complexity..37

4.4.9 Specialised Approaches...38

4.4.10 Genetic Programming... 38

4.5 High Entropy Fragment Classification...39

4.5.1 Randomness.. 39

4.5.2 Compressibility... 40

4.6 Conclusions...40

5 EXPERIMENT DESIGN... 41

5.1 Introduction..41

5.2 Building the Corpus.. 41
5.2.1 Compression Methods...41

5.2.2 Encryption Methods.. 42

5.2.3 Corpus Creation... 42

5.3 Fragment Analysis Tools.. 43
5.3.1 Testing Randomness - The NIST Statistical Test Suite... 43

5.3.2 Testing Compressibility..45

5.4 Conclusions...46

IV

6 IMPLEMENTATION AND RESULTS..47

6.1 Introduction.. .47

6.2 Statistical Analysis of Randomness..47

6.3 Classification By Compression... 48

6.4 Fragment Size..49

6.4.1 8KB Fragments.. 49

6.5 Conclusions.. 51

7 CONSTRUCTING A CLASSIFIER.. 52

7.1 Introduction... 52

7.2 Improving Accuracy...52

7.3 Methodology.. 53

7.4 Implementation and Results... 55

7.5 Speed Of Analysis...56

7.5.1 Statistical Testing..56

7.5.2 ANN Analysis...56

7.6 Classifier Implementation..56

7.7 Conclusions.. 57

8 CONCLUSIONS...58

8.1 Overview.. 58

8.2 Future work... 59
8.2.1 Secure Sharing of Contraband and Intellectual Property Fingerprints... 60

8.2.2 Multi-agency Operation and Data Loss Prevention..60

8.2.3 Operations in a cloud infrastructure... 61

8.2.4 An alternative compression detection algorithm.. 61

8.2.5 IP Streams... 62

8.2.6 Cuckoo Filters...62

V

List Of Figures
Figure 1 - Hashes created from single SHA-384 calculation...16
Figure 2- Maximum observed 16-bit Shannon Entropy...24
Figure 3 - Maximum observed 8-bit Shannon Entropy...24
Figure 4 - Zip file showing the first two bytes as the file type 'Magic Numbers'....................28
Figure 5 - Optimal Separating Hyperplane maximizes the sum of the distances id i from the
support vectors to the plane itself. Illustration based on an idea from [76]............................ 34
Figure 6 - Data not linearly separable in n-dimensions is mapped to a higher dimensional
space by the kernel function. Illustration based on an idea from [76]..................................... 34
Figure 7 - Optimally separating hyper-surface. Illustration based on [78].............................. 35
Figure 8 - Individual neuron behaviour. Based on Stanford CS231n [133]............................. 35
Figure 9 - Sigmoid activation function..36
Figure 10 - neural network layers... 36
Figure 11 - Frequency distribution for the entropy of a random sample of file fragments....48
Figure 12 - Each domain sends hashes + metadata..60
Figure 13 - Contraband discovery handled centrally..61
Figure 14 - Compressed file visualisation.. 71
Figure 15 - Encrypted file visualisation... 72

List of Tables

Table 1 - Target 4 MiB. Probability of a sample containing one or more clusters.................. 11
Table 2 - Target 20 MiB. Probability of a sample containing one or more clusters................ 12
Table 3 - Expected number of hits for 4 MiB target...12
Table 4 - Sample size required for 99% probability of hitting target..15
Table 5 - Probability of a false positive for varying values of m and k.................................. 15
Table 6 - Number of hits when sample size is calculated for a 4 MiB target..................... 16
Table 7 - Core i3 Desktop PC sampling accuracy and average speed......................................18
Table 8 - Intel Atom Netbook sampling accuracy and average speed......................................18
Table 9- Ad-hoc test results - Total fragments flagged by each test...................................... 21
Table 10 - Typical ICC sequence and offset sequence...22
Table 11- ICC test results...23
Table 12 Sample size required for 99% probability of n or more hits - 256 GB Drive......26
Table 13 Sample size required for 99% probability of n or more hits - 512 GB Drive...... 26
Table 14 - Example Confusion Matrix...32
Table 15 - The NIST Statistical Test Suite...43
Table 16 - Results of classification of the test corpus by each machine learning algorithm.... 48
Table 17 - Analysis of Fragment Compression classification by category............................49
Table 18 - ANN results with 8KB fragment size... 50
Table 19 - Weight Analysis of NIST statistical tests... 51
Table 20 - ANN results with 8KB fragment size, no Serial test.. 51
Table 21 - Consistency of Results...53
Table 22 - Results for folder 410 extracted from Table 21 .. 53
Table 23 - Actual and predicted number of encrypted and compressed fragments................55
Table 24 - Estimates of encrypted content..57

VI

Abstract
Digital forensic laboratories are failing to cope with the volume of digital evidence required to
be analysed. The ever increasing capacity of digital storage devices only serves to compound
the problem. In many law enforcement agencies a form of administrative triage takes place
by simply dropping perceived low priority cases without reference to the data itself. Security
agencies may also need days or weeks to analyse devices in order to detect and quantify
encrypted data on the device.
The current methodology often involves agencies creating a hash database of files where each
known contraband file is hashed using a forensic hashing algorithm. Each file on a suspect
device is similarly hashed and the hash compared against the contraband hash database.
Accessing files via the file system in this way is a slow process. In addition deleted files or
files on deleted or hidden partitions would not be found since their existence is not recorded
in the file system.
This thesis investigates the introduction of a system of triage whereby digital storage devices
of arbitrary capacity can be quickly scanned to identify contraband and encrypted content
with a high probability of detection with a known and controllable margin of error in a
reasonable time. Such a system could classify devices as being worthy of further investigation
or not and thus limit the number of devices being presented to digital forensic laboratories for
examination.
A system of triage is designed which bypasses the file system and uses the fundamental
storage unit of digital storage devices, normally a 4 KiB block, rather than complete files.
This allows fast sampling of the storage device. Samples can be chosen to give a controllable
margin of error. In addition the sample is drawn from the whole address space of the device
and so deleted files and partitions are also sampled. Since only a sample is being examined
this is much faster than the traditional digital forensic analysis process.
In order to achieve this, methods are devised that allow firstly the identification of 4 KiB
blocks as belonging to a contraband file and secondly the classification of the block as
encrypted or not. These methods minimise both memory and CPU loads so that the system
may run on legacy equipment that may be in a suspect’s possession. A potential problem with
the existence of blocks that are common to many files is quantified and a mitigation strategy
developed.
The system is tested using publically available corpora by seeding devices with contraband
and measuring the detection rate during triage. Results from testing are positive, achieving a
99% probability of detecting 4 MiB of contraband on a 1 TB device within the time normally
assigned for the interview of the device owner. Initial testing on live devices in a law
enforcement environment has shown that sufficient evidence can be collected in under four
minutes from a 1TB device to allow the equipment to be seized and the suspect to be charged.
This research will lead to a significant reduction in the backlog of cases in digital forensic
laboratories since it can be used for triage within the laboratory as well as at the scene of
crime.

VII

1 Introduction

1.1 Digital Forensics
Digital forensics is the practice of collecting and analysing digital data in a way that is
admissible in court. Digital evidence is any data stored or transmitted using a computer
system that a party in a court case may use at trial. The evidence can range from images of
child pornography to encrypted data used to further criminal activities [1], Indeed computers
and networks have become such an integral part of our daily lives that the use of computers in
such crimes as fraud, drug trafficking and terrorism seems commonplace. In consequence the
increasing number of instances of digital equipment being used in the commission of crime
has led to an increase in the number of digital forensic examinations being undertaken. Such
examinations need a great deal of knowledge, experience and skill on the part of the forensic
analyst and the ever increasing volume of data involved in each case has led the digital
forensic community to look for new ways to deal with the vast amount of data involved [2].

1.2 Context
The growing number of digital forensics cases is compounded by an increase in the volume of
data needing analysed, and this is a current and growing problem facing the digital forensic
community. The capacity of digital storage devices has been increasing at a rate that leaves
them struggling to cope with the volume of data needing analysed. The rate of increase is now
lower than the historical Kryders’s law equivalent of ~40% per annum [3] but is still between
20% and 30% per annum [4], Terabyte devices are now commonplace. There is an
acknowledgement that current forensic tools have failed to keep up and have left digital
forensic services struggling to cope [5]. Many common forensic tools were developed in an
age when the storage capacity of devices was measured in megabytes and cannot, or simply
have not been scaled to the capacity of current devices.
In traditional forensic analysis the first step is to make a forensic image of the device. With
well-specified equipment Roussev et al. [6] benchmarked the acquisition of a fast 3 TB hard
disk drive using a standard acquisition utility at over 11 hours. The image is then submitted to
a digital forensic laboratory for analysis. To find any contraband, if it exists, in this amount of
data takes a considerable amount of time. Because of this, a forensic backlog has developed.
In the UK three months between equipment being seized and a forensic report being available
is considered normal [7] and delays of 12 months are not uncommon [8], [9].
In one law enforcement organisation the case backlog was found to be three years [10], In
addition, budgetary constraints and the high level of training required has led to a shortage of
digital forensic analysts and this has added to the time taken between an investigator sending
the digital evidence for analysis and receiving an analytical report [11], Pollitt [12] argues that
where data storage is measured in terabytes, a thorough examination of such devices is
unrealistic. In an attempt to overcome these problems a form of administrative triage takes
place in many organisations where perceived low priority jobs are delayed or dropped without
reference to the data itself [13]. However, it is more than an administrative problem. In the
case of equipment seized when possession of child pornography is suspected, then during the
wait for any seized equipment to be examined many suspects have committed suicide, even
when eventually no illegal content was found on the devices [14], [15], In the United States
the Federal Bureau of Investigation acknowledges that to some offenders, the investigation

P Penrose, Triage of Large Capacity Digital Devices 1

into their alleged offences may lead them to view suicide as a preferred alternative to the loss
of respect of family and friends and the possible loss of their job, home, reputation, and
freedom and are therefore mindful of this when dealing with such cases [16].
A further problem caused by the large capacity of digital storage devices presents itself when
devices are being inspected at border posts, where the volume of data even on laptop
computers makes a full scan of a computer for contraband material impractical to be done in
any reasonable time. In this situation the absence of contraband files is not the only problem.
The quantity of encrypted data on a digital storage device may significantly affect the attitude
of a border guard to the profile of the device owner. An inability or unwillingness to produce
the encryption key would lead, at the very least, to the device being held for further detailed
examination. Thus in this situation a reliable reporting of the quantity of encrypted material
on a device is crucial.
This thesis develops methods to mitigate these problems. To address the problem of the
backlog in digital forensic labs and the time needed for discovery of contraband material a
method of triage is developed where devices may be sampled quickly and, depending on the
contraband material found, a decision made on whether the device is worthy of further
investigation or not. In addition, if any contraband material is found, its location is recorded
and this eases the subsequent task of locating contraband material on the device. At the same
time as the device is being scanned for contraband the same samples can be classified by
original file type to estimate the quantity of encrypted content.
The triage process developed is based on sampling the devices. During consultation with
Police Scotland (the national police body in Scotland) it was specified that the methodology
must ensure that triage is completed in a reasonable time, which they define as the time that
would normally be allocated for the interview of a suspect in their home which is generally
around one hour. If there is contraband on a device then it must be 99% certain of detecting
the contraband, even in cases where the suspect has attempted to delete the contraband or hide
it in areas such as deleted and hidden partitions or in unallocated space on the disc.
At present this can only be achieved by detailed analysis of the device by a digital forensic
analyst. The current methodology is file based, with contraband files being detected by their
hash signature. The hash of each file in the contraband corpus is calculated and stored in a
database. During analysis in forensic laboratories, each file on a disk is read, hashed and the
hash compared with those in the contraband hash database. This methodology, even when
automated, is slow and, since it depends on the file system, deleted or hidden areas of the
device are not examined. This thesis develops methodology where the smallest addressable
unit of storage on a device, a cluster, is sampled and used for identification of contraband.
This allows the whole address space of the device to be sampled quickly and so deleted,
hidden and unallocated areas of the device are also examined.
In parallel with the identification of the cluster it can be classified as encrypted or not during
the triage process. Current methodology can classify a small fragment of a file such as the 4
KiB clusters read from the device during the triage process quite accurately for common file
types such as JPEG, HTML or DOC. However these methods fail to differentiate between
high entropy file types such as compressed or encrypted fragments. The entropy of a file
fragment measures the amount of randomness or disorder in the data within it. Compressed
and encrypted files have little pattern or order to detect and Roussev and Garfinkel [17]
suggest that it is not possible using statistical and machine learning techniques to differentiate
such fragments. Garfinkel et al. [18] state that the classification of high entropy file fragments
is in its infancy and needs further research and it is suggested that future work should
investigate methods to improve classification performance on such fragments. This thesis

P Penrose, Triage of Large Capacity Digital Devices 2

develops methodology whereby encrypted and compressed file fragments can be
differentiated with better than 90% accuracy.

The methods developed in this thesis speed up the digital forensic process in several ways.
Firstly devices can quickly be triaged, and a decision made whether a device needs further
investigation or not. This reduces the number of devices passed to the forensic facility and
thus reduces workload. Secondly, if a device is found to have contraband, the location on the
device of the sampled contraband is already known; thus aiding the analyst in the analysis of
the device. Thirdly, as the triage progresses, the device content is profiled and the proportion
of encrypted material reported.

1.3 Thesis Aims and Objectives
1.3.1 Aim
To mitigate the problems identified in the previous section the aim of this thesis is to produce
a system of forensic triage that will quickly identify if a device is worthy of further
investigation because of either contraband or encrypted content.
1.3.2 Objectives
To meet this aim the following objectives need to be achieved:

• to identify new approaches that may improve existing systems by investigating and
critically evaluating current practices in the identification of contraband and encrypted
data on large capacity digital devices.

• to create an application that can scan digital storage devices of arbitrary capacity to
identify contraband with a high probability of detection with a known and controllable
margin of error, under the constraints imposed by low specification legacy equipment, in a
reasonable time.

• to create an application that can scan digital storage devices of arbitrary capacity to
estimate the quantity of encrypted data with a known and controllable margin of error,
under the constraints imposed by low specification legacy equipment, in a reasonable
time.

• to test that systems developed meet the criteria for a new system of digital forensic triage.
The system developed in this thesis meets these aims and objectives and has been field tested
by Police Scotland and found to meet the criteria for a fast initial scan to classify a device as
worthy of further analysis or not.

1.4 Contributions and Impact
This research has already had considerable impact in the digital forensic community. Three
papers which directly derive from this research and its findings have been published in peer-
reviewed journals:

• Approaches to the classification of high entropy file fragments. Digital Investigation,
10(4), pp.372-384 [19]

• Fast contraband detection in large capacity disk drives. Digital Investigation, 12,
pp.S22-S29 [20]. This paper was selected for presentation at the 2015 Digital Forensic
Research Workshops (Europe) conference [21],

• The Effect Of Non-probative Blocks On Disk Sampling For Forensic Triage. Digital
Investigation, DUN-D-16-00034, in press [22],

P Penrose, Triage of Large Capacity Digital Devices 3

These publications have led to collaborative work with leading researchers in the field -
Simson Garfinkel on non-probative blocks and Frank Breitinger on cuckoo filters and
sampling of network streams.

The research has won the Research Excellence Award for The Information Society (2016) at
the annual research conference hosted by Edinburgh Napier University.
Three patents have been applied for on different aspects of this research.
Funding towards proof of concept for commercial applications based on this research was
received from Scottish Enterprise and after a competitive process further funding towards
commercialisation was funded by The Home Office. A spinout company which is developing
applications based on this research has been funded by venture capital and is now actively
developing applications.
Police Scotland tested the software developed during the course of this research and have
found that it fulfils their criteria for a triage tool: being 99% accurate; give results in a
reasonable time; and execute on low-specification legacy equipment. As an example, in a
recent live case, sufficient evidence was collected in four minutes from a one terabyte drive to
justify the seizure of the equipment and arrest the suspect (Police Scotland, personal
communication, 5th May 2016). The system of triage is now being evaluated against the UK
Child Abuse Image Database [23],
This thesis advances the knowledge and techniques in the area of digital forensic analysis.
There are three major contributions. The technique of detecting contraband files by sampling
raw disk clusters and bypassing the file system has been introduced. This replaces the
traditional file hashing method for the detection of contraband and combines cluster hashing
with sampling and the use of Bloom filters in a novel way to provide a method that can detect
contraband on a large capacity digital storage device to a required degree of accuracy in a
reasonable time.
Secondly the problem of how to deal with non-probative disk clusters was raised in the
literature [22], [24], Non-probative clusters are those that may appear in many files and so
can’t be used to prove the existence of a particular file on the media. This could invalidate any
claim that a device contained contraband. Although this problem has been acknowledged in
current research, its overall effect on the triage process has not been investigated. In this
thesis the scale of this problem has been quantified by the analysis of several multi-million
block corpora and an effective mitigation strategy has been devised.
Thirdly, a method of identifying encrypted data on a device has been introduced. Previous
research into the classification of high entropy file fragments such as compressed and
encrypted data is very limited since this area of research has been recognised as difficult [18],
[25]—[27]. By the novel use of statistical tests for randomness and neural networks for
classification this thesis has introduced a method which can correctly detect over 95% of
encrypted and 75% of compressed disk clusters. In addition, the method developed can report
on the volume of encrypted data on a device consistently to within 3% of the actual content.
The overall contribution of this thesis is to have advanced research in the area of digital
forensic triage by devising novel methodologies and implementing prototypes that will reduce
the digital forensic backlog that currently exists in digital forensic labs and at border posts [8],
[9], It delivers a more ethical process for the digital forensic community whereby suspects,
even those whose devices are eventually found to be free of contraband material, are not left
in a state of suspense for many months while waiting for devices to be forensically examined.

P Penrose, Triage of Large Capacity Digital Devices 4

1.5 Structure of The Thesis
The remainder of this thesis can be seen as being made up of two main themes: file fragment
identification; and file fragment classification. Chapters 2 and 3 investigate the problem of
file fragment identification and methods of contraband detection are proposed and tested.
Chapters 4 to 7 investigate the more intractable problem of classifying encrypted data and a
new methodology is developed and tested. Chapter 8 summarises the achievements of this
research and looks forward to future work. The content is as follows.

• Chapter 2. The objectives of developing methods that can identify contraband on a digital
storage device with a high probability of detection in a reasonable time are investigated.
Previous work on triage solutions is critically reviewed and methods that could possibly
lead to a better triage solution assessed. These methods are examined further and a
quantitative analysis undertaken to establish if they can be used in a system that will meet
the requirements of a triage system. A design is established using sampling of clusters -
the fundamental unit of storage on a device - for a contraband detection system which
uses Bloom filters for fast cluster identification and this is implemented and tested.

• Chapter 3. The problem posed by non-probative clusters is investigated. A non-probative
cluster is one that may appear in many files and so cannot be used to prove that the
original file was originally present on the device. The scale of problem is quantified and
mitigation strategies developed.

• Chapter 4. The current state of the art in file fragment classification is critically reviewed
and the problem with classification of high entropy fragments is highlighted. This leads to
formulating hypotheses which may be used to classify high entropy fragments such as
compressed and encrypted data.

• Chapter 5. Experiments to test the hypotheses are designed using publically available
corpora for testing so that the results may be validated by other researchers.

• Chapter 6. The proposed classification system is implemented and tested.
• Chapter 7. Methods are developed to improve the accuracy of the classification and a

proof of concept classifier implemented and tested.
• Chapter 8. This chapter summarises the contributions of this research and then looks

ahead to extending the scope. There are many possibilities for future work and some of
these are considered.

P Penrose, Triage of Large Capacity Digital Devices 5

2 Cluster Identification

2.1 Introduction
Kryder [28] shows that the areal density - which is the number of bits stored per unit area of
disk - has been increasing at 40% per year, and this is projected to continue for the
foreseeable future since the technology is, as yet, nowhere near fundamental limits. This is
referred to as Kiyder’s Law [3] and is analogous to Moore’s Law for semiconductors.
Garfinkel [5] claims that, because of this, much of the progress made in digital forensic tools
over the last decade is becoming irrelevant. These tools were designed to help forensic
examiners to find evidence, usually from a relatively low capacity hard disk drive, and do not
scale to the capacity of digital storage devices commonly available today.
In the UK the Association of Chief Police Officers (ACPO) [29] has acknowledged this
situation. Many digital forensics units thus have large backlogs and the rate of technological
change is likely to accelerate and so exacerbate the situation. They say that where there is
insufficient time or resources to cope with the volume of digital devices being presented a
system of forensic triage should be introduced. In this thesis the term triage will be used to
mean a fast initial scan by sampling a digital device, conducted perhaps under severe time and
resource constraints, to prioritise the device for possible further detailed investigation. Casey
[30] maintains that there is still a pressing need for such tool development to help detect and
analyse the ever-increasing volume of digital evidence. Young et al. [31] argue that it is
critical for forensic investigators to have such a triage process so that they can quickly detect
illegal files on large capacity devices.
In discussions with analysts from the Police Scotland Digital Forensics Department they listed
their requirements for such a forensic tool as a system that should:

• Be 99% certain of detecting contraband including contraband that may have been
deleted, or in hidden partitions.

• Give results in a reasonable time.
• Run on possibly low specification legacy equipment.
• Be able to be used by trained personnel who are not necessarily digital forensic

analysts.
The term reasonable time is defined as the time between an initial interview with the suspect
at first contact in the suspect's home, and which generally lasts at least an hour. The system of
triage developed in this thesis will be designed to meet these requirements.
This chapter thus aims to develop a system that can quickly scan a storage device and report
with good accuracy if the device contains contraband. Techniques for achieving this are
explored and explained and a proof of concept system developed and tested.

2.2 Related Work
Previous work in the field shows that such a system of triage is needed within the digital
forensic community and also provides some pointers to possible methods that may be adapted
to produce such a system.

P Penrose, Triage of Large Capacity Digital Devices 6

Pollitt [32] argues that the process of digital forensic triage is an admission of failure. The
backlog of cases is often due to the systemic failure of the digital forensic process, and of
digital forensic software. These have not adapted to the vast increase in digital data that is
involved in a modem case. Triage has become necessary because investigators often prefer
some useful evidence quickly rather than wait, perhaps some considerable time, for all
detectable evidence to be found. He argues that by focusing on a particular outcome such as
the existence of specific types of data, important information is missed, such as logs or e-mail
that might reveal a wider group of suspects. However triage must not be the only tool used in
an investigation. If any incriminating evidence is found during the process of triage, the
device should be subject to a full digital forensic analysis. Shaw and Browne [13] note that
administrative triage already takes place in many organisations and criteria are used to either
prioritise, or exclude a device, from an examination, without considering the device content.
Horsman et al. [33] maintain that organisations may also be cautious because there is a
perception that there is a risk of missing evidence where triage only samples a device.
However, especially in the scenario of detecting contraband, there is a lesser risk in a system
of triage allowing the timely analysis of a device using forensically sound boot media, and
with a controllable probability of missed evidence, than a system of administrative triage
which operates without any reference to the physical media. A survey of practising digital
forensic analysts by Harichandran et al. [34] found that 88% accepted that automatic triage
systems were a future challenge needing research.
2.2.1 Existing triage solutions
There are a number of triage packages available, both open source and proprietary, such as
Strike, EnCase Portable, AD Triage, Triage IR, Kludge. These packages typically perform
data collection, often with no intervention by the operator, of such things as internet history,
the registry, file metadata, recently used files, image files, hash lookup of user home directory
files and comparing to a selected hash database, indexing, keyword matching and so on. Some
even do full disk imaging as part of triage. File carving from unallocated disk space is also an
option on some. They uniformly behave as versions of full forensic analysis packages,
collecting appropriate data for later examination. Most are designed so that they can be used
by an untrained operative, and give on-screen display of images or analysis results as it is
produced.
Casey et al. [35] view this type of product as freeing forensic analysts from the routine task of
acquiring forensic evidence and empowering them to concentrate on the more interesting
aspects of their work. However, these tools might be looked at as automating the acquisition
stage of a forensic investigation rather than as triage. In addition, these tools are complex and
incorrect configuration could easily lead to the wrong conclusions being drawn regarding the
result of the triage process [13], All the operations performed tend to be EO and processor
intensive and defeat the purpose of the definition of triage used in this thesis - a fast initial
scan to ascertain if a device contains images or documents of interest.
Quick and Choo [36] suggest that, during device acquisition, only files o f interest such as
registry, documents, images, and other relevant file types are retained for examination thus
cutting the workload. This is a data reduction strategy rather than triage. It does not reduce
the data acquisition time, as the entire file system has to be examined for files of interest and
could easily be defeated by the simple measure of changing the file type extension. It also
does not take into account deleted or hidden data. Neither does it reduce the number of cases
needing analysis.
Roussev et al. [6] treat triage as an intrinsic part of the digital forensic process. They advocate
that target acquisition and forensic processing should be done in parallel, with results being

P Penrose, Triage of Large Capacity Digital Devices 7

reported as soon as they are available. Their model requires that data is analysed as it is being
acquired so that analysis should finish at the same time as the data acquisition. This requires
that an analysis, including cryptographic hashing and lookup, similarity hashing,
decompression, file content extraction and indexing, should be done in parallel at the speed of
data acquisition. However they acknowledge that to achieve this goal requires 2 to 4 servers
with 48 or 64 cores with sufficient RAM for in-RAM processing. Garfinkel [37] developed
the application bulk_extractor to scan an entire disk image. It used a number of filters running
in parallel, each optimised to detect patterns indicative of one of the common artefacts
required for a digital investigation such as telephone numbers, e-mail addresses or credit card
numbers and did not address the detection of contraband files since it did not refer to a
database of known content.
2.2.2 Hashing and Bloom filters - identifying known content
Present practice for the identification of known files attempts to ascertain whether the device
contains material that has originally come from some known ‘good’ corpus (whitelists) such
as the National Software Reference Library hash database (NSRL) issued by the National
Institute of Standards and Technology (NIST), or from a corpus of illegal material such as
that of child pornography held by Police Scotland or the Team Cymru Malware Hash Registry
(blacklists). These databases hold fixed-length cryptographic hashes of each file, for example
the 128-bit MD5 hash or the 160-bit SHA-1 hash, rather than the files themselves. An
unknown file may be identified by calculating its hash and comparing this hash against the
database. It was argued previously that such file-based systems cannot be used when cluster
sampling is being employed since the disk is being accessed without reference to any file
system.
Roussev et al. [38] suggested that block hashes could be used in forensics for detecting
similar files. If two files were each hashed at the block level then the number of hashes
common to both could be used as a measure of similarity between the two files. However,
they noted that the hash database for block level MD5 hashes of a 512 GB hard disk would
require 32 GiB of RAM which was too large to use in a standard PC. The use of a Bloom
filter could reduce this by an order of magnitude for the cost of a small false positive rate.
Bloom filters were therefore an efficient way to store large sets of hashes. Komblum [39]
developed ssdeep, a system of fuzzy hashing which created a similarity hash of a file that
could be used to detect similar files. Roussev [40] developed the application sdhash which
improved on the performance of ssdeep by using similarity digests created from statistically
improbable features. Roussev et al. [6] used this tool in streaming mode to hash data blocks at
a disk read speed and query a reference database. They showed that, using a 48-core server,
the maximum size of reference database that could be queried at a read speed of lOOMB/s was
15 GB. Similarity digests produced by sdhash are up to 2.6% of the original data size thus the
Police Scotland database could just be accommodated but the system requirements are beyond
what can be expected in the field. They suggested that similarity digests could only be used in
the field with reference databases up to 1 GB which would not be usable in the envisaged
scenarios such as the Police Scotland database of child pornography which holds over 6
million images.
Farrell et al. [41] investigated the use of Bloom filters for the distribution of the NSRL hash
database. Although they rejected the idea of distributing the database in this format since it is
relatively easy to engineer any malicious file to give a false positive if the content of the
Bloom filter is known, they found that Bloom filters were useful for providing high-speed
matches against hash sets.
Garfinkel et al. [18] looked mainly at file fragment type discrimination but mention that
statistical sector sampling could be used for detecting contraband data. EnCase [42] includes a

P Penrose, Triage of Large Capacity Digital Devices 8

script - File Block Hash Map Analysis - which block hashes known files and then searches
selected areas of the disk. However it states that due to performance issues it is only suitable
for a small number of target files. Young et al. [31] came closest to meeting the requirements.
They created a database of 1 billion cluster hashes with the intention of deploying the system
on a laptop. They used a hybrid approach by using a Bloom filter to screen out negative
results so that only queries for hashes that may be in the corpus were passed to their
customised hash database. This use of pre-filtering had been suggested by [18], [41] and
makes use of the Bloom filters property of very fast lookup for items not in the set. Using a
SQL database on a Dual Xeon processor setup, each with 16 cores and 128 GiB RAM they
could not perform hash lookups fast enough to keep up with the cluster reads. However they
found that using a well-specified laptop with 8GiB of RAM and an SSD, their customised
database could perform lookups faster than sectors can be read from the device being triaged.
In summary, Bloom filters can provide compact representation of a hash set and provide high
speed matches against them and that statistical cluster sampling can be used to detect
contraband. In the next section these methods are examined further to see if their
combination can be used to create a suitable triage system. A quantitative analysis is
undertaken of hash set sizes, filter sizes and sample sizes that would be required.

2.3 A Triage System
To create a triage system to meet the requirements listed by Police Scotland, several factors
need to be considered. This section gives a background to and justification of some of the
ideas, methods, mathematical and statistical tools that will need to be used if fast contraband
detection in large capacity storage devices is to be achieved.
It was noted in the introduction that even with well specified equipment, the imaging
(forensic copying) of a large capacity storage device can take a considerable time. Even if the
device could be analysed in parallel with the imaging so that analysis was completed in the
same time, this is well beyond the ‘reasonable time’ specified in the requirements. It is thus
established that if results are to be achieved in a reasonable time then the device can only be
sampled since every piece of data cannot be inspected. But how is the device to be sampled?
If complete files on a disk are sampled then the file metadata is read from the file system and
then the file is accessed. This involves considerable physical head movement in a disk drive.
Fujitsu [43] benchmarked a fast hard disk drive which showed random access throughput at 3
MB/s and sequential access at 200MB/s. Thus, random sampling of files would be
considerably slower for triage purposes. In addition, file access relies on the file system
metadata and so would not cover unallocated space on the disk where illicit material may well
be hidden. Statistically sampling disk clusters overcomes both problems. If the random
selection of cluster addresses is sorted numerically before accessing the disk, then this incurs
only a single sequential pass over the disk since the disk is treated as simply a sequence of
blocks. Additionally, since the sample will be chosen from the whole physical address range
of the disk, it would sample all areas including unallocated space, deleted and hidden
partitions and deleted files. An additional benefit is that using cluster sampling bypasses the
file system by sampling the physical disk and so the nature of the file system on the disk is
irrelevant.
However sampling clusters in this way poses some problems. Firstly it needs to be determined
if a cluster belongs to a contraband file. To achieve this, methods are developed to determine
quickly, to a given accuracy, whether a cluster belongs to a large corpus of contraband files.
In contrast to the traditional methodology of hashing complete files, each 4 KiB block of the
files in the original contraband corpus is hashed and the hashes stored in a database. A

P Penrose, Triage of Large Capacity Digital Devices 9

sampled cluster can then be hashed and its hash compared with those in the database. When
saving a file, modem file systems align the start of each 4 kibibyte block of the file on a
cluster boundary [31]. Thus by hashing the contraband file in 4 kibibyte blocks, these hashes
can be directly compared with the hash of a cluster that has been read from the device.

There are other issues need to be considered in order to achieve a fast initial scan of a device.
Firstly computer systems may use a variety of cluster sizes. The optimum cluster size needs to
be considered. Secondly, since samples need to be identified at the read speed of storage
devices and not be a bottleneck, the structure and speed of the required contraband block hash
database needs to be designed accommodate this. The block hash database contains many
more hashes than a file hash database and so a compact representation of the database is
required if it is to be accessed in RAM for speed of lookup. Thirdly, sample sizes needed to
give the required degree of confidence in the results of the triage need to be investigated.
2.3.1 Choice of cluster size
A cluster is the minimum amount of data that can be accessed (either read or written) by the
system. Many file systems use a cluster size of 4 KiB by default. The default cluster size in all
Microsoft operating systems since NT3.51 is 4 KiB in all disk sizes up to 16 TB [44], Since
2011, all disk drive manufacturers have standardised on a sector size of 4096 bytes, using an
emulation mode (AF 512e) to present 512 byte sector size to a legacy file system where
needed [45], Since most files of interest will be considerably larger than 4 KiB the decreased
granularity of working with 4096 byte clusters rather than 512 bytes will be less significant
because of the large number of blocks belonging to any one file [18]. Garfinkel [46] also
showed that the random sampling of disk drives using 512 byte sectors or 4096 byte clusters
gave very similar results. Using 4 KiB cluster size will reduce the hash database size by a
factor of 8 compared to that needed to store hashes of 512 byte sectors. For these reasons a
cluster size of 4096 bytes is used in the remainder of this research. There is a potential
problem in that if the file system with cluster size of 4 KiB is used to write to an old disk with
512 byte sectors then the cluster might not be aligned on an 8-sector boundary and thus not be
detected by the system [31]. However obtaining the disk partition alignment information
direct from the physical disk Master Boot Record or GUID Partition Table surmounts this
problem.
2.3.2 Choice of sample size
Calculating the sample size for detecting contraband on a disk drive is critical for the accuracy
of any process depending on it. The sample size depends on the storage capacity of the
device, the expected size of the target (i.e. the quantity of contraband on the device) and the
probability required for the sample to contain one or more ‘hits’ i.e. contain one or more
samples from the target. Initial contact with digital forensic investigators at Police Scotland
has indicated that cases have many files. The most recently reported had over 12 GB of
contraband. For the purposes of this research, a target size of 4 MiB is used which is
approximately the size of two medium resolution images so that results obtained can be
considered as ‘worst case’. For comparison the results for a target size of 20 MiB are also
given.

When sampling the clusters on the device a sample of k clusters from a population of n
clusters is chosen without replacement. No cluster can be selected twice since, once selected,
it is not returned to the population for sampling. This is represented by the Hypergeometric
distribution [47]. Suppose a disk drive has n clusters. Further suppose that it has t clusters of
interest - the target - from some illicit file or files. When k clusters are chosen randomly from
the total of n on the disk then the chance of not obtaining any target clusters is the same as
drawing the sample entirely from the none-target clusters.

P Penrose, Triage of Large Capacity Digital Devices 10

Di
sk

 S
ize

 (G
B)

The probability of drawing the sample from the non-target clusters is
Number of ways of choosing a sample of k clusters from (n — t) non — target clusters

Total number of ways of choosing a sample of k clusters from n clusters
Using the standard representation for combinations [48], this gives

Proh(Sample has no target clusters) =

The standard definition for these binomial coefficients is

/n \ _ n - _ r(n + 1)
V/cJ ” k\ (n - k) ! “ r (k + l)T(n — k + 1)

The factorials have been re-written in terms of the Gamma function (T) since, when sample
sizes of 1 million in populations of hundreds of millions are used, such as the number of 4096
byte clusters in a 1 TB disk drive, then the factorials quickly become large and so logarithms
need to be used to avoid numerical overflow. The Gamma function for positive integers is
defined as T(n) = (n - 1)! [48] and many numerical applications have a highly accurate log
Gamma function. Using the basic laws of logs in equation (2) gives

log Q) = logY(j\ + 1) - logT{k + 1) - logV^n - k + 1)

Therefore

log V ̂ = [logT(n - t + 1) - logV(k + 1) - logT(n - t - k + 1)]
\k)

- [/o^r(n + 1) - logT(k + 1) - logT(n - k -I- 1)]
= logV(n - t + 1) - logT(n - t - k + 1) + logT(n - k + 1) - logV(n + 1)

If this calculated log value is represented by x, then the probability of no hits in the sample is
the inverse log of jc which is ex. Hence the probability of 1 or more hits is 1 - ex. (3)

Using this formula, Table 1 and Table 2 show the probabilities of obtaining at least one
cluster in the sample from a small 4 MiB and a larger 20 MiB target for a variety of sample
sizes for common device capacities.

Table 1 - Target 4 MiB. Probability of a sample containing one or more clusters of the target.
Sample Size

100000 200000 300000 400000 500000 600000 700000 1000000

120 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00

250 0.79 0.96 0.99 1.00 1.00 1.00 1.00 1.00

320 0.71 0.91 0.97 0.99 1.00 1.00 1.00 1.00

500 0.54 0.79 0.90 0.96 0.98 0.99 1.00 1.00

1000 0.32 0.54 0.69 0.79 0.86 0.90 0.94 0.98

' The formula p =1 - flf-i !)) m\ can ajso use(] m i but does not lead to such an easily computable
r m - i (jv -(i-i))

result.

P Penrose, Triage of Large Capacity Digital Devices 11

Table 2 - Target 20 MiB. Probability of a sample containing one or more clusters of the target.

Sample Size
50000 100000 200000 300000

120 1.000 1.00 1.00 1.00
250 0.980 1.00 1.00 1.00
320 0.953 1.00 1.00 1.00
500 0.858 0.98 1.00 1.00
1000 0.623 0.86 0.98 1.00

Although these sample sizes are calculated to ensure a 99% probability that the sample will
contain at least one cluster of the contraband, the expected number of hits in any sample is
higher. In statistical theory the Central Limit Theorem states that the distribution of sample
means is approximately normally distributed. A sample size of 30 or more will result in a
sampling distribution for the mean that is very close to a normal distribution [49]. Using this,
confidence limits on the expected number of hits in a sample can be calculated. To calculate
the confidence intervals the mean and standard deviation of the data are required. The
expected value (mean) and variance of the Hypergeometric Distribution are given by [47]:

E(x) = k x — and Var(x) = k x t x (n — £) x T~~. ~— (4)
where k is the sample size, 1 is the target size and n is the population (disc) size. The standard
deviation is simply the square root of the variance.
Using the equations in (4) the expected number of hits given the sample size calculated to
give a 99% probability of one or more hits is shown in Table 3 for the 4 MiB case.
The values for other disk and target sizes will be similar since the sample size is always
calculated to give a 99% probability of one or more hits in the sample. Thus as the disk size
increases, the sample size increases correspondingly. As the target size increases, the sample
size decreases correspondingly. Small differences in the expected number of hits are due to
the ‘goal seeking’ method of calculating the sample size. The process may converge on a
probability of 99% from above or below so that the process may terminate with small
differences in calculated sample size. It can be seen that although the sample size is calculated
to give a 99% confidence of one or more hits in the sample, the expected number of hits in the
sample is higher.

Table 3 - Expected number of hits for 4 MiB target

Disk Expected 99%
Size number of Confidence
(GB) Sample Size hits Interval
250 278,379 4.67 ±0.01
320 347,310 4.55 ± 0.009
500 539,329 4.52 ± 0.007

1000 1,089,364 4.47 ± 0.005

2.3.3 Database structure and lookup
Block hashing the contraband file corpus leads to a much larger database than the traditional
file hashing technique. Taking the size of a typical medium resolution JPEG image to be

P Penrose, Triage of Large Capacity Digital Devices 12

IMiB then this contains 256 x 4 KiB clusters. Thus on block hashing, the hash database will
be 256 times larger than the equivalent file hash database which only stores one hash for each
file. In addition, if clusters are to be identified and classified at a speed which matches the
read speed of a storage device then the use of a disk-based database is not appropriate because
of the slow access speed of these databases. An in-memory solution for hash lookup must be
devised. However, as an example, the Scottish Police database of child pornography holds 5.1
million images in Category 1 (the most serious) and a further one million in categories 2 to 5
with an average file size of 100 KiB. Each of these six million images will contain on average
25 x 4 KiB disk clusters.

A database of these cluster hashes would therefore contain 150 million hashes and so a
database size of 200 million hashes will be needed to allow for expansion. Even if a weak
hash algorithm such as MD5 which produces a 16-byte hash were used to hash the clusters, a
database of 200 million hashes each 16 bytes long is needed. This would require over 3 GiB
of main memory which is not available on legacy systems which may well have a 32-bit
operating system or limited RAM. This is too large a database to hold in internal memory on
such a system. If the database were disk based then hash lookups would be far slower than the
sequential read being used for disk sampling and this would prove to be a severe bottleneck. It
was noted in section 2.2.2 that one solution to provide a space efficient means of testing
whether or not an element is a member of a set, at the controllable risk of false positives, is to
use a Bloom filter [50], This gives compactness and speed, at the cost of a small controllable
false positive rate.
2.3.4 Bloom filters
A Bloom filter consists of a set of hash functions and a bit array of a fixed length. All bits in
the bit array are initialised to 0. A very simple example is used to illustrate the principle
which will ease the understanding of the theory.
This bit array holds 16 bits:

Bit Number
0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

1OOOOOOQOQQQQOOOOI
A number of independent hash functions are needed, each of which takes input of arbitrary
length and produces a hash value between 0 and 15, the address range of the bit array. Let’s
cal] them hi(), I12O and hs().
If the string ‘Jupiter’ is to be added to the filter, ‘Jupiter’ is hashed with each of the hash
functions. Suppose they generate:
h](‘Jupiter’) = 3 h2(‘Jupiter) = 12 h3(‘Jupiter) = 11

The corresponding bits 3, 12 and 11 in the bit array are set:
Bit Number

0 I 2 3 4 5 6 7 8 0 10 11 12 13 14 15

I O Q O Q O O Q O O O O O O O Q O I
Now adding ‘Venus’ in the same manner gives us:
h](‘Venus) = 11 h2(‘Venus) = 2 h3(‘Venus) = 8

Bit Number
0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

o o * © o o o o © o o ® # o o o

P Penrose, Triage of Large Capacity Digital Devices 13

Notice that bit 11 was already turned on. It is now storing information about both ‘Jupiter’
and ‘Venus’. As more items are added to the filter it may store information about some of
those as well. It is this overlap which gives Bloom filters their compactness. Any one bit may
be storing information about multiple items simultaneously.

To check if an item already exists in the filter the same process of hashing the item is
followed and the bits at all those positions are checked. If they are all set then the item is
probably in the filter. It is only ‘probably’ in the filter because there is the possibility of a
false positive. Suppose ‘Neptune’ is tested for its presence in the filter:
h](‘Neptune) = 11 h.2(‘Neptune) = 3 hs(‘Neptune) = 8

All these bits are set so the filter reports that ‘Neptune’ belongs to the set.
Thus a false positive is possible in a Bloom filter. However a false negative is not. If any bit is
0 for an examined element, then that element cannot possibly be in the set otherwise its
calculated hash position would have been set to 1. This illustrates why searching elements not
in the set is considerably faster. The search can be terminated as soon as an unset bit is
encountered.
In the example above there are a number of variables:

• m = the number of bits in the array which represents the Bloom filter. Initially all bits
are set to 0

® n = the number of elements added to the filter
• k = the number of independent hash functions hi, h2, , hk used.

These variables are important building blocks for the theory. Notice that the Bloom filter had
m = 24 bits and the hashes needed to generate a hash with a bit length of 4 bits. In general a
Bloom filter of size 2P needs a hash of length p bits.
Each hash function generates a hash value in the range (0,, m-1) for any input. To insert
an element e,- from the set E = {ej, e2, , en} of elements to be added to the filter, the
hash values hj(ei), h2(ei), , hk(ei) are calculated and the corresponding locations in the bit
array are set to 1. This is repeated for each element to be added to the filter. To check if an
element belongs to the set, its k hashes are calculated. If all these bits are set to one then the
item may be in the set. If not all bits are 1 then the element is definitely not in the set.

2.4 Design
In the previous section tools and methodologies have been introduced that will be used in the
design of the triage system. Cluster sampling will provide fast lookup of the entire device
address space thus inspecting deleted files and deleted or hidden partitions. Sampling can be
controlled to ensure a high probability of detecting even small amounts of contraband. A
Bloom filter can be used for compact in-memory representation of the contraband hash
database and will provide fast lookup with a controllable false positive rate. In this section a
Bloom filter for a typical scenario of a large database of contraband files and capable of
meeting the required false positive rates for the sample size being used is designed.
2.4.1 Designing the filter
Initial contact with forensic investigators at Police Scotland has indicated that cases have
many files. The most recently reported case in July 2015 had over 46,000 Category 1 - 5
images with an average size of 270KB. On disk this gives a target size of approximately 12
GB. If this is taken to be excessive and for the moment assume that an average case would
involve a target size of 500 MB, then on a 1 TB disk a sample size of only 13,300 would be
needed to give a probability of 99.9% of hitting the target. The sample sizes required for a

P Penrose, Triage of Large Capacity Digital Devices 14

variety of target and disk sizes are shown in Table 4. A minimum target size of 4 MiB was
chosen in conjunction with forensic analysts at Police Scotland since this is the size of two
standard JPEG images and contraband of any smaller size was regarded as insignificant and
would lead to increased sample sizes, and hence triage run time, for little advantage.
Table 4 - Sample size required for 99% probability of hitting target for a variety of target and
disk sizes

Target Size (MiB)
Slze(GB) 4 20 50 100 200 300 400 500

250 278500 55104 22339 11000 5468 3619 2696 2152
320 347310 71820 27950 14102 6937 4603 3459 2753
500 539329 112034 43683 22035 10854 7239 5469 4356

1000 1089364 220066 89305 44056 21559 14483 10853 8745

These sample sizes can be used to choose design parameters for the Bloom filter.
Mitzenmacher and Vadhan [51] show that the false positive rate for a Bloom filter in terms of
the values m, n and k is

P(fa l se p o s it iv e) ~ (5)

And that k is optimal when k = — -—

Using Equation (5), the Bloom filter can be engineered for the application. It was calculated
that the envisaged database would contain 150 million 4 KiB blocks and so if n is taken to be
200,000,000 then growth in the database is allowed for. Table 5 shows the probability of a
false positive for a variety of combinations of the number of hashes k and the Bloom filter
size m with the values generated using equation (5).
Table 5 - Probability of a false positive for varying values of m and k

m = Bloom Filter Size (MiB)
k 512 600 700 800 900 1024
4 0.000834149 0.000466407 0.000263157 0.000159487 0.000102189 0.000062537
6 0.000209786 0.000091112 0.000039869 0.000019271 0.000010073 0.000004912
8 0.000087538 0.000030242 0.000010473 0.000004100 0.000001769 0.000000696
10 0.000051133 0.000014373 0.000004016 0.000001292 0.000000466 0.000000149
12 0.000037893 0.000008855 0.000002034 0.000000546 0.000000166 0.000000044
14 0.000033433 0.000006629 0.000001274 0.000000289 0.000000075 0.000000017
16 0.000033607 0.000005763 0.000000942 0.000000183 0.000000041 0.000000008

Ideally there should be no false positives in the sample. In a worst case scenario, if a 1 TB
drive has a small 4MiB target, then a sample size of over one million is needed as shown in
Table 4. It would be preferable to have no false positives in a sample due to the Bloom filter
and so generating a filter with a false positive rate of less than one in a million would be
preferable. From Table 5 it can be seen that to meet this requirement the Bloom filter is going
to be approximately 800 MiB in size and use 10 hashes, or 1 GiB in size, and use eight hashes
for a probability of a false positive to be less than one in a million. If the device being
examined has a 1 TB drive then it is very likely to have 2 GiB RAM or more and a 1 GiB
array would be acceptable. The larger Bloom filter size is a trade-off against the number of
hashes. This is important since the speed of the algorithm is inversely proportional to the
number of hashes. The more hashes that need calculated the slower the process.

P Penrose, Triage of Large Capacity Digital Devices 15

It was noted earlier that a bloom filter of size 2b bits needed a hash of length b bits. The 1 GiB
array has 233 addressable bits and so a hash of length 33 bits is needed. In order to do this,
eight independent hashes generating a 33 bit hash which each produce a uniform distribution
over the range would have to be developed. Developing a suitable hash function is a non
trivial exercise [51] and so the development of eight such hashes would be challenging.
However a solution exists in that these hashes can be generated efficiently by using SHAG 84
as the hash algorithm. This generates a 384-bit hash. The first 264 bits of the hash will be
used as 8 x 33 bit hashes. These hashes meet the requirement for independence since the
SHA384 hash can be assumed to be collision resistant and therefore any single bit or subset of
bits may be taken to be independent uniformly distributed random variables [38].

Figure 1 - Hashes created from single SHA-384 calculation

Slice off 8 hashes of 33 bits each

h,() h 2() h 3() h4() h 5<) h 60 h 7() h 80

SHA-384, 384 bits

Since eight hashes are being used, each of which is used to set one bit in the Bloom filter,
each entry in the filter requires a maximum of 8 bits or the equivalent of one byte (as noted
before, some of the bits might already be set). So adding 200 million bytes created from the
Police Scotland cluster hash database to the filter leaves a 1 GiB Bloom filter lightly loaded.
The filter is loaded directly into main memory and treated as a lGiB array.
Having designed the filter to cope with the worst case scenario of a small 4 MiB target on a
large capacity device then, given the target sizes envisaged by Police Scotland, there will be
many hits. This is shown in Table 6, where the expected number of hits is calculated using the
expected mean value of the number of hits from equation (4).
If time is a critical factor and the target size is expected to be large then sample sizes could be
reduced to those given in Table 4. In addition the triage can be stopped when it is obvious that
the device contains contraband, for example after 10 hits.

Table 6 - Number of hits when sample size is calculated for a 4 MiB target

Actual Targe t Size (M iB) 20 50 100 200 300 400 500
Expected N um b er O f Hits 23 58 116 233 350 467 583

2.5 Implementation
Software to implement a Bloom filter, block hash any collection of files and add the hashes
to the filter was created. A filter was generated with a large amount of random data to
simulate a block hash database for a large contraband corpus. To this was added the block
hashes of 100 MiB of real images. A selection of these real images could be added to a test
device which could then be scanned to see if the contraband was detected.
2.5.1 Bloom Filter Creation
Sufficient data from random.org [52] was used to generate entries for 200 million 4 KiB
blocks in the Bloom filter. The Bloom filter was tested first by checking the hashes of one
million of the block hashes originally included in the filter and all were reported to be present.
Then 1 million fresh block hashes were created with further data from random.org and tested
for inclusion in the filter. There was one positive match which agreed with theory since the

P Penrose, Triage of Large Capacity Digital Devices 16

calculated false positive rate for the Bloom filter is 0.000 000 696 or one in 1,437,184. The
false positive could be caused by one of the generated random blocks matching one
previously used. However whether the positive was caused by a matching random block or
whether it was a true false positive caused by the filter, the filter is operating as designed.
Finally the block hashes for 100 MB of real images were added to the filter. These same block
hashes were then each tested against the filter and all were reported present and so the Bloom
filter was working as it should.

2.6 Testing
Testing was done on two different computers - a desktop PC with a Core i3 processor and 4
GB RAM, HDD, SSD and external USB HDD drives and a netbook with an Intel Atom CPU,
2 GB RAM, a 250 GB SSD and a USB attached HDD. The tests were carried out by booting
the computers into a Windows forensic environment where the drives to be tested were
mounted as read-only [53], Software was written to access any of the physical storage devices
directly. The address range of the device, from first to last cluster, was determined, the sample
size calculated and that number of cluster addresses was randomly chosen from the range.
This random selection was then sorted numerically so that when the device is accessed in that
order any read head movement is minimised because of the sequential nature of the reads.
A selection of 4 MiB of the real images was added to each of the disk drives being tested.
These images were variously deleted or added to a second partition and the partition deleted.
The tests were run multiple times - three times with the files saved on the device as normal,
three times with the files deleted and three times with the files saved on a second partition and
the partition deleted. Between each type of test, the contraband was securely deleted by
overwriting with random data so that remnants of previous tests did not influence results. The
sampling, hashing of samples and Bloom filter lookup was done and the timings and results
recorded. 20 MiB of contraband was then added to each disk and the tests run as before to
give results for the 20 MiB test.
The Microsoft NTFS File Sector Information Utility [54] was used to look up each hit to
ascertain if it was a true hit or a false positive. This utility allows the user to enter the drive
and cluster number and reports from the MFT the full path of the file, if any, which the sector
belongs to. All hits during testing were verified to come from files within the contraband
corpus. If a file was deleted or on a hidden partition then it was carved using the cluster
address - the disk is scanned forward and backwards from the cluster address for the file
header and footer and then re-assembled.
Tests were run three times in each configuration listed and the averages are shown in Table 7
and
Table 8. No false positives were encountered. The methodology can be considered ‘fit for
purpose’ since these results would all have been positive for the possession of contraband
data. The tests showed that the method will detect deleted contraband and contraband on
deleted partitions. All timings are within the reasonable time specified.
It is clear that since the SSDs on the PC and Netbook were similar, the performance of the
Intel Atom processor is the bottleneck rather than the SSD. This effect is less marked with the
slower I/O of the HDD.

P Penrose, Triage of Large Capacity Digital Devices 17

Table 7 - Core ¡3 Desktop PC sampling accuracy and timings

Disk and Size Target Size Samples Hits
False

Positives
Time

minisec
250GBSSD 4 MiB 281000 5 0 00:13
250GBSSD 20 MiB 53000 4 0 00:02
250 GB USB HDD 4 MiB 274000 6 0 28:58
250 GB USB HDD 20 MiB 55000 4 0 06:06
1TB HDD 4 MiB 1096000 4 0 79:13
1TB HDD 20 MiB 220000 4 0 19:30

Table 8 - Intel Atom Netbook sampling accuracy and timings

Disk and Size Target Size Samples Hits
False

Positives
Time

min:sec
250 GBSSD 4 MB 263000 4 0 04:35
250 GBSSD 20 MB 53000 5 0 00:53
250 GB USB HDD 4 MB 274000 5 0 44:34
250 GB USB HDD 20 MB 79700 7 0 11:04

2.7 Conclusions
It has been shown that a fast initial scan of a device, possibly conducted under severe time
and resource constraints, is feasible. The prototype software that has been created to test the
methods is in two parts: a contraband block hash database builder; and a contraband detector.
Both have been tested within Police Scotland.
A block hash database of contraband block hashes from their database of images of child
pornography was created and tested on live cases. It met all their requirements for speed and
accuracy. It was also noted that this methodology allows the Bloom filter of contraband block
hashes to be distributed since the block hashes cannot be ‘reverse engineered’ from the Bloom
filter that is created. The block hash database thus remains confidential. The speed at which a
decision can now be made as to whether a device needs further investigation or not could ease
the backlog of devices requiring an investigation. This also helps deliver an ethically more
acceptable system since, while an investigation is backlogged, a wrongful accusation can
result in harm to social and professional relationships of a suspect or a guilty party, possibly a
danger to society, could be left at large.
A theoretical justification for the approaches to sampling that were needed to deliver the
required accuracy and the use of Bloom filters to deliver the required speed and small
memory footprint have been presented and the results tested by experiment.

P Penrose, Triage of Large Capacity Digital Devices 18

3 Non-probative Blocks

3.1 Introduction
In the previous chapter it was shown that a system of triage implemented by sampling large
capacity digital storage devices is feasible. However, Garfinkel (Simson Garfmkel, personal
communication, 10 March 2015) suggested that since testing of the triage system had been
conducted using random data, that it might not be applicable when it was applied to real
world data. The problem arises from the existence of 4 KiB blocks (clusters) that may occur
in many files such as data structures within office documents and multimedia files. These
common blocks may also occur in the contraband database, and so cannot be used to identify
or prove the existence of a particular file on the media. This problem was formalised later by
Garfinkel and McCarrin [24], Since this could be considered a stumbling block for the whole
process of triage the situation needs consideration. In this chapter the scale of the problem is
quantified by hashing several multi-million block corpora to observe the rate of common
blocks. Methods have been proposed to detect common blocks, and these methods need to be
examined to see if the problem can be mitigated by detecting these common blocks while the
contraband database is being built and eliminate them at that stage from the contraband block
hash database. Finally, in a triage situation where only a decision on whether a device
contains contraband or not is required, it is shown that there is a choice of methods to mitigate
the effect of the observed rate of common blocks.

3.2 Terminologies
The term block will be used to refer to a cluster so that the terminology relates to previous
work in this area. In the previous chapter data from random.org [52] was used to create a
corpus for testing. Garfinkel and McCarrin [24] show that, unlike random data where a
duplicate hash is unlikely, there is a possibility of common blocks appearing in many files in
a real life corpus. Blocks such as all null, whitespace or header blocks may be very common
and appear in many thousands of different files. Since these blocks appear in many different
files, any such block found on a suspect device cannot be used to prove that a particular file
exists or existed on the device being examined and so they referred to these as ‘non-
probative’ blocks.
During triage of large capacity devices, blocks from the device are sampled and checked
against a database of block hashes created from a contraband corpus. If the database of
contraband block hashes contains any non-probative blocks then there is a possibility that a
device being investigated could be flagged as containing contraband when in fact it may not.
Being able to detect non-probative blocks so that they could be excluded during the building
of the contraband block hash database would solve this problem, hi the context of the Police
Scotland and the UK Child Abuse Image Database the effectiveness of ad-hoc tests for
detecting non-probative blocks with particular reference to JPEG format needs to be
investigated. The effect that being unable to eliminate such non-probative blocks from the
contraband database will have on the results of triage needs to be considered and a mitigation
strategy devised.

P Penrose, Triage of Large Capacity Digital Devices 19

3.3 Prior Work
As noted by Young et al. [31] little work has been done on the use of block hashes for file
identification despite it having numerous advantages over file hashing. A major advantage is
that it can be used together with random sampling to detect the presence of selected data on a
large-capacity device in minutes rather than hours.

Garfinkel et al. [18] characterised a distinct block as one that will not arise by chance more
than once. They outlined that an instance of a distinct block found on a device is evidence
that the original file containing that block was once present on that device and that if a block
is shown to be distinct in a large and representative corpus then the block can be treated as
distinct. Their analysis of JPEG files showed that in a real corpus many JPEGs contain
common elements such as colour tables, XML elements and EXIF information and so
common blocks would exist in live corpora. They presented techniques for classifying the
contents of a drive by random sampling and for carving data based on sector hashes.

Foster [55] analysed the occurrence of distinct file blocks in three multi-million file corpora.
Most files consisted of distinct blocks but there were certain blocks that occurred with high
frequency. Although it was not possible to prove that a block is universally distinct, treating a
block that only occurs once in a large corpus as if it were universally distinct made it possible
to quickly find evidence that a file was present on disk. It was found that meaningful
precision was not lost by using 4 KiB blocks rather than 512 B. In the Govdocsl corpus [56]
the most frequently occurring non-probative blocks found were all null and all ones. Other
high-frequency blocks were data structures related to particular file types. Using 4 KiB block
size it was found that 99.46% of blocks were singletons i.e. distinct. It was noted that a high
percentage of the non-distinct blocks were from ASCII text files and contained a few near
identical files.
Young et al. [31] used the same corpora as Foster [55] and reported a similar total of 0.54%
non-probative blocks in the Govdocsl corpus using a block size of 4 KiB. Of the common
blocks 0.44% occurred only twice in the corpus (pairs) and 0.11% appeared more than twice
(common). Database structures to accommodate a database of one billion block hashes that
could be deployed on a laptop to detect files in large disk images were investigated and
showed that database lookups could be performed faster than blocks could be read from a
drive being triaged.
Garfinkel and McCarrin [24] found that many blocks that appeared distinct in one corpus
were not distinct in larger corpora and they changed the terminology for blocks that have a
high probability that the containing file was once present from distinct block to probative
block. Three rules were developed to help with the decision as to whether a block hash
database match was probative or not. A database match could be suppressed if it was flagged
to match one or more of the three rules.

• The Ramp Test. This was designed to detect the Microsoft Office sector allocation table,
which appear in the Microsoft compound document file format which is a simple pattern
where alternate bytes form a monotonic increasing sequence.

• The White Space test. This excludes blocks where three-quarters or more of the block
was white space.

• The 4-byte Histogram test. This was designed to detect common Apple Quick Time and
Microsoft Office file formats. The block is treated as a sequence of 4-byte values and if
any single value occurred more than 256 times, the block is flagged as non-probative.

In addition an alternative test was implemented by treating the block as a collection of 4-byte
unsigned integers and calculating the 16-bit Shannon entropy for the block. These tests were

P Penrose, Triage of Large Capacity Digital Devices 20

considered to work well for the corpora used. However, using Shannon entropy as an
identifier for non-probative blocks was found to flag over 90% of the blocks in many files and
so the other tests were preferred. The ad-hoc tests were run only against a set of blocks
already identified as being non-probative. The question of how best to classify probative
blocks in the general case was left for future work.

3.4 Testing For Non-Probative Blocks
To establish a base reference for the frequency of non-probative blocks and to create a
working corpus for testing, the publically available MirFlikr corpus of one million JPEG
images was downloaded from the LIACS Medialab at Leiden University [57], A database
containing both file hashes and individual 4 KiB block hashes for each file in the corpus was
created. The final block in any file was padded with zeros if it did not fill the last 4 KiB
completely. After removing duplicate files the database contained a total of 31,469,943
hashes of 4 KiB blocks from 999,622 JPEG files.
By examining the block hashes it was found that there were 3371 blocks which appeared
more than once and these occurred a total of 76,294 times in the corpus. These 76,294
occurrences amount to 0.2% of all JPEG blocks i.e. if a block is chosen randomly from the
corpus then there is a probability of 0.002 of it being a non-probative block within the corpus.
Garfinkel and McCarrin [24] devised some ad-hoc tests to detect non-probative blocks and
eliminate spurious matches from their analysis. Although these tests were not designed with
the JPEG file format in mind and were used on blocks already identified as target hits, their
effectiveness was evaluated on the corpus since any efficacy in removing non-probative
blocks during the building of a contraband database would be of use. These tests were applied
to the JPEG corpus of over 30 million blocks but it was found that they did not work well as a
discriminator for non-probative blocks in this situation. This was expected since the tests were
not designed for this purpose. Each of the four tests was applied to each 4 KiB block in the
corpus. The tests each flagged a block as either probative or non-probative. Of the 76,294
non-probative blocks, the tests detected some positive hits (i.e. correctly identified as non-
probative) but the majority were not identified (i.e. false negatives). Of the probative blocks
there were a large number identified as non-probative (false positives). The results are shown
in Table 9.
Table 9- Ad-hoc test results - Total fragments flagged as non-probative by each test

Four-Byte
Histogram Ramp Whitespace Entropy

Positive 6,171 12,557 965 6,503

False Negative 70,123 63,737 75,329 69,791

False Positive 754,604 348,371 254,178 600,862

The proportion of actual non-probative blocks flagged correctly was small compared to the
number of blocks flagged incorrectly. It can be seen that the number of false positives and
false negatives is so large as to make these tests unusable for filtering out non-probative
blocks from the JPEG corpus. It is obvious that these tests cannot be of use as a discriminator
between probative and non-probative blocks in the JPEG corpus. They would introduce far
more error into the block hash database than they would remove. For example the entropy test
flags over 600,000 blocks as non-probative that are actually probative and so if this test were
used during the building of the database these 600,000 blocks would not be added to the
contraband database. This would lead to many contraband files not being detected.

P Penrose, Triage of Large Capacity Digital Devices 21

Many fragments were flagged by multiple tests, such as where Whitespace always occurred
when the entropy was also flagged, which is to be expected since a block consisting largely of
whitespace will have low entropy.

3.5 An alternative test for JPEG non-probative blocks
When the high-frequency non-probative blocks from the JPEG corpus were examined it was
noticed that over 50% of non-probative blocks displayed a similar pattern. These were found
to be ICC Profiles [58], and define a colour-space transformation system to ensure that
colours are displayed as intended. These are added by applications as the file is edited or
converted and are added by default by packages such as Adobe Photoshop. Alternate bytes
formed a non-decreasing sequence and for each value in this sequence the intervening bytes
formed a non-decreasing sub-sequence. Looking at the first sequence in Table 10 it can be
seen that starting with the first byte hex value 2A, every second byte forms a non-decreasing
sequence starting at 2A and eventually changing to 2B. The intermediate bytes form a non
decreasing sequence for each of these principal values. The second sequence shown illustrates
the same behaviour but offset by one byte with the principal sequence commencing at the
second byte. Since the 4 KiB blocks were split into 128 byte groups, these sequences will be
detected even if they did not commence at the 4 KiB block boundary. Some of these patterns
were offset by one byte as shown in Table 10.

Table 10 - Typical ICC sequence and offset sequence
2A 4A 2A 57 2A 63 2A 70 2A 7D 2A 8A 2A 97 2A A3 A non-decreasing

Sequence
2A B0 2A BD 2A CA 2A D7 2A E3 2A F0 2A FD 2B 0A sequence with

intervening non-
2B 17 2B 24 2B 31 2B 3D 2B 4A 2B 57 2B 64 2B 71 decreasing

2B 7E 2B 8B 2B 98 2B A5 2B B2 2B BF 2B CC 2B D9
sequences.

D7 38 14 38 5 0 38 8C 38 C8 39 05 3 9 42 3 9 7 F 3 9 A non-decreasing
Sequence BC 3 9 F9 3A 3 6 3A 74 3A B2 3A E F 3B 2D 3B 6B 3B sequence with
offset by intervening non-

one byte AA 3B E8 3C 27 3C 65 3C A4 3C E3 3D 2 2 3D 61 3D decreasing

A l 3D E0 3E 2 0 3E 60 3E A0 3E E0 3 F 2 1 3 F 61 3 F
sequences.

An ad hoc test to detect these patterns was developed. Each 4096-byte block of the corpus
was split into 32 groups of 128 bytes. Each group was tested for an ICC pattern. This has the
added benefit of flagging any block of constant values since such a block is non-decreasing
by definition.
Thresholds of 25%, 50%, 75% and 100% of positive 128-byte groups within a block were
applied to determine which was best suited. As can be seen in Table 11, this test flagged a
larger number of the non-probative JPEG blocks than the ad hoc tests, but only a very small
proportion of blocks flagged by the test were actually non-probative blocks.
As with the previously investigated ad-hoc tests the ICC feature is too common among all
blocks of the JPEG corpus to be useful as a discriminating feature for the detection of non-
probative blocks.

P Penrose, Triage of Large Capacity Digital Devices 22

Table 11- ICC test results

Threshold
2 5 % 5 0 % 7 5 % 1 0 0 %

Positive 48,246 46,938 31,634 16,212
False Negative 28,048 29,356 44,660 60,082
False Positive 1,117,534 530,190 276,925 14,096

3.6 Global and Local Uniqueness
To test the uniqueness of the blocks within the MirFlikr JPEG corpus, the JPEG files from the
Govdocsl reference data set [56] were used. After duplicate files and files under 4 KiB in size
were removed the Govdocsl JPEG data set contained 91,937 jpg files containing 8,576,061
4KiB blocks. The file hash of each file was checked and there were no files common to both
corpora.
There were 26 blocks from the 31,393,649 unique (probative) blocks in the MirFlikr JPEG
corpus which also appeared in the Govdocs JPEG corpus. Each appeared only once. This
shows, that although these blocks were unique within the large JPEG corpus, they are not
globally unique.
In the Govdocsl JPEG corpus there was a smaller proportion of non-probative blocks. 2252
non-probative blocks occurred 11,834 times giving 0.1% of the corpus being non-probative.
Only 122 of the 3371 non-probative blocks in the MirFlikr JPEG corpus also appeared in the
Govdocsl JPEG corpus. 114 of these were also non-probative in the GovDocs corpus. These
non-probative blocks common to both corpora occurred a total of 2,468 times in the MirFlikr
corpus and 3,671 times in the GovDocs corpus. As more corpora are added, then these blocks
common to more than one corpus could form a basis for a blacklist for exclusion when
building a contraband database.

3.7 Using Entropy Measures with Small Block Sizes
In information theory a number of measures of information entropy exist. The Renyi family
of entropies includes the Hartley, Shannon, collision and min entropy measures [59],
However in the literature reviewed for this thesis only the Shannon 8 bit and 16 bit entropy
measures were used for file fragment classification. While running the tests over a large
corpus of over 85 million blocks (the one million JPEG files together with all files in the
Govdocsl corpus over 4 KiB in size) it was noticed that the maximum 16-bit Shannon
entropy achieved was 11. This is to be expected since a 4096-byte block can contain only
2048 (= 211) different 16-bit symbols and so gives a maximum entropy value of 11 when all
2048 symbols are different.:

2048 2048

- P(Xi)log2 (P(*t)) = - ^
¿=1 i=l

1
2048

-2048 *
2048

(- 11) = 11

It is of interest when using small block sizes that the maximum entropy of m-bit symbols will
be n for a block size 2" where n<m, and for values of m or larger will approach the maximum
entropy asymptotically as n increases. This is due to the second condition required in the
derivation of Shannon entropy:

“If all the pi are equal, p; = 1 In, then H should be a monotonic increasing function of
n.” [60]

P Penrose, Triage of Large Capacity Digital Devices 23

This is illustrated in Figure 2 and Figure 3, where results for 16-bit and 8-bit entropy are
charted for blocks of various sizes generated from high entropy data obtained from
Random.org [52]. The maximum entropy observed increases as the block size increases.
Hence when using or interpreting Shannon entropy care should be taken if using an absolute
rather than a relative comparison, especially when block sizes are small.

Figure 2- Maximum observed 16-bit Shannon Entropy

Figure 3 - Maximum observed 8-bit Shannon Entropy

Maximum 8-bit Shannon Entropy Observed in 10,000 Blocks

64 128 256 512 1024 2048 4096 8192
Block Size Bytes - Logarithmic scale (base 2)

3.8 Effects of Non-Probative Blocks During Triage
In a triage situation, it is required to determine whether a device is likely to contain
contraband material or not. During the triage of large capacity devices, samples of more than
one million blocks are normal for large capacity devices. These samples are compared against
a block hash database of known contraband and a match is designated a ‘hit’. Bloom filters
are commonly used as a space efficient method of storing the block hash database and these
are designed to keep the false positive rate below one in a million [20], To evaluate the effect
of non-probative blocks on this process, the rate of occurrence of non-probative blocks in
large corpora was investigated.

P Penrose, Triage of Large Capacity Digital Devices 24

As has been seen the MirFlikr JPEG corpus of 4 KiB block hashes, 0.2% were non-probative.
The corresponding value was 0.1% in the Govdocsl JPEG corpus. Published figures give
rates of the same order of magnitude - Young et al. [31] reported 0.54% in the Govdocsl
corpus for a 4 KiB block size although Garfinkel and McCarrin [24] report 2% non-probative
blocks in the same corpus but in this instance there is no mention of duplicate files having
been removed first.

As a sanity check on non-probative rates in large corpora, two disk drives were block hashed
and tested for non-probative blocks - a 256 GB disk drive containing 190 GB of mixed
content including office and multimedia files and several small disk images, and a 1 TB disk
containing 756 GB of mainly multi-media, office documents and compressed backups. The
256 GB drive was found to have 0.4% non-probative blocks and the 1 TB drive 0.1%. Given
the observed non-probative rates, an assumed global non-probative rate of 1% is reasonable.
Using this value the probability of any sampled block being non-probative is 0.01. Let this
value be denoted by Pnp.
Using this value the probability of any sampled block being non-probative is 0.01. Let this
value be denoted by Pnp.
The probability of a sampled block being a false positive due to the designed false positive
rate of the Bloom filter developed in section 2.4.1 is 0.000001. Let this probability be denoted
by Pbf.
If the overall false positive probability Pfp is defined as the probability that a sampled block is
either a false positive due to the designed false positive rate Pbf of the Bloom filter or that a
block is a false positive due it being non-probative with a probability Pnp then the probability
of any individual sample being a false positive is :

Pfp = Pbf+ Pnp = 0.010001
The probability of three samples all being false positives is therefore (0.010001) ~ 0.000001
or one in a million. Thus if three hits is accepted as the threshold for a positive triage result
the false positive rate of the sampling methodology is within the required accuracy of one in a
million false positives
If the non-probative rate was as high as 5% then accepting five hits as a threshold for a
‘triage positive’ is enough to mitigate the effect of the high non-probative rate. In live tests it
has been found that devices being scanned contain either no contraband clusters in the sample
or many, and thus it is feasible to mitigate the effect of non-probative blocks in triage simply
by setting the threshold for a positive result at a small number of hits.
Although all live tests done with a law enforcement agency show that a drive containing
contraband will have many hits from sampling and a threshold of three is of little
consequence, the effect of non-probative blocks in marginal cases where the number of hits is
low needs to be considered. In the law enforcement scenario it was required to engineer the
sampling so that there was a 99% certainty of a hit for a given target size. If this condition is
reformulated to be 99% certain of a positive hit - a hit that is neither non-probative nor a
Bloom fdter false positive - then the sample size required needs to be considered. Using the
hypergeometric distribution to calculate sample sizes to be 99% certain of obtaining n or more
hits in the sample gives the results shown in Table 12 and Table 13 for illustrative disk and
target sizes.
It can be seen that if it is required to have a 99% assurance of three or more hits in the sample
to allow for the possible false positive rate generated by the non-probative blocks, then an

P Penrose, Triage of Large Capacity Digital Devices 25

average of just over 50% increase in the sample size is required. This would entail a 50%
increase in the time needed for triage.

Table 12 Sample size required for 99% probability of n or more hits - 256 GB Drive
Target Size (MiB)

n 4 8 16
1 403,074 204,473 102,593
2 509,127 258,953 128,358
3 607,040 308,160 154,048
4 700,013 352,643 176,474
5 789,563 396,944 198,535

Table 13 Sample size required for 99% probability of n or more hits - 512 GB Drive

___________ Target Size (MiB)________
n 4 8 16
1 803,735 408,725 205,163
2 1,015,092 517,328 256,697
3 1,210,301 616,409 308,096
4 1,395,510 705,348 352,951
5 1,591,040 793,013 397,136

However since the number of blocks involved is low, these marginal cases could be dealt with
more quickly by examination of the fdes containing the blocks returned as hits by the
sampling process rather than increasing the sample size. If only three clusters were reported
then examining the files containing the detected clusters takes only a matter of moments.

3.9 Conclusions
Some simple methods of identifying non-probative blocks have been tested with the objective
of preventing such blocks being added to a block hash database of contraband files. It has
been shown that in a large corpus of JPEG files, currently available tests are not suited for this
purpose. The many false negatives and false positives that they create amplify the problem.
It has also been shown that, in a triage situation, it is feasible to set the threshold for
classifying a device for further examination at a small number of identified contraband blocks
and the required accuracy is maintained. It has been found empirically that a non-probative
rate of 1% of blocks is reasonable and that a threshold of three ‘hits’ during triage is sufficient
to mitigate the effects of this when sample size is in the order of one million.
It has also been shown that in borderline cases during disk block sampling where only two or
three hits are made it would be necessary to increase the sample size by 50% in order to be
99% sure of having a true positive hit in the sample. This would increase the time for triage
by 50% and a simpler strategy when there are so few hits is to examine the files containing
these three clusters. In all other cases this would be unnecessary.

P Penrose, Triage of Large Capacity Digital Devices 26

4 Cluster Classification

4.1 Introduction
It has now been shown that contraband content can be detected on a device in a reasonable
time but in the context of border security, military and anti-terrorist activities a quick
overview of the contents of seized digital media is equally important [61], As shown in
Chapter 2, current digital forensic techniques and tools are not suited to such scenarios. They
are aimed mainly at ‘post crime’ analysis of digital media. In a time critical situation an
investigator needs a data analysis tool that can quickly give a summary of the storage device
contents. The quantity of encrypted data on a digital storage device may significantly affect
the attitude of a border guard to the profile of the device owner as to whether to prioritise the
device for deeper analysis or not.

Garfmkel [46] puts forward the hypothesis that the content of digital media can be predicted
by identifying the content of a number of randomly chosen clusters. The hypothesis is
justified by randomly sampling 2000 digital storage devices to create a ‘forensic inventory’ of
each. With only 10,000 4 KiB clusters sampled from drives it was found that, in general,
sampled data gave similar statistics to the media as a whole. Thus, when a device is being
sampled for contraband as in the previous sections, an analysis of the device contents in terms
of file types can be done. Given the sample sizes that are used for contraband detection are
many times the size of those used by Garfmkel, a highly accurate forensic inventory of the
device can be generated.
The literature refers to ‘file fragments’ and the term ‘fragment’ will be used to refer to the
4096-byte clusters that are read from the device during contraband detection. Using the
sampling methodology developed earlier to quickly produce a summary of storage device
contents requires that data fragments be identified accurately. Research in the area of
fragment classification has advanced over the last few years, so that many standard file types
can be identified accurately from a fragment. Methods of classification fall into three broad
categories: direct comparison of byte frequency distributions, statistical analysis of byte
frequency distributions and specialised approaches which rely on knowledge of particular file
formats. However none of these methods have been successful in the classification of high
entropy file fragments such as encrypted or compressed data. This poses a problem in that
recently many file formats such as the Microsoft msx (OOXML) format now use deflate
compression by default. In order that an accurate estimation of the quantity of encrypted
content that exists on a device it is necessary to be able to distinguish between compressed
and encrypted file fragments.
The main aim of this section of the thesis is to investigate and devise methods for the
classification of high entropy file fragments in a forensic environment so that an estimate of
the encrypted content of a device can be given. It is envisaged that this analysis would be
done at the same time and with the same samples used for contraband detection. The
contraband detection system is I/O bound and so extra processing for the classification of
each fragment can be handled in parallel. First a critical examination of current research into
file fragment classification is undertaken. Since no current methods succeed in classifying
high entropy fragments, new approaches are proposed and tested. The experiments designed
to validate the methods are described and results are reported and critically analysed.

P Penrose, Triage of Large Capacity Digital Devices 27

4.2 Background
Historically, file type identification has been achieved through either using the file type
extension as in Microsoft operating systems or through using a library of file signatures as
used by the Unix f i le command [62],

Many file types have these signatures, called ‘magic numbers', embedded within the file
header . These tend to be 2-byte identifiers in the header of the file. For example a
compressed ZIP file will have 0x504B as the first two bytes at the beginning of the file
(ASCII codes for the characters PK - the initials of the developer). This is illustrated in Figure
4 which shows the output from a hex editor while viewing a zip file.

b x HxD - [E :\C o rp u s \C o rp us_0_C o m p ressed \151955 .pd f.d w z] 1=3 ® ^

| *i] File E d it Search V ie w Analysis Extras W in d o w ? - & x

■ » i * ' 16 k | j A N S I ▼] | hex k j
| «] 1 5 1 9 5 5 .p d f.d w z

Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B OC OD OE OF *
00000000 50 4B 03 04 14 00 00 00 08 00 45 87 B9 36 9B CD PK.......
00000010 FB 9E FA 24 00 00 C9 47 00 00 0A 00 00 00 31 35 ûzû$..ÉG.... 15

Figure 4 - Zip file showing the first two bytes as the file type 'Magic Numbers'

In addition some file formats have characteristic byte sequences repeated within them. In a
JPEG file, a 0x00 byte is appended to each occurrence of the byte OxFF within the body of the
file, thus giving a unique signature to this file type. It should be noted that since the JPEG
format is so easily identified, it has been excluded as a compressed type for the remainder of
this work. However these simple methods of file type recognition are not available when
sampling from a device. It is unlikely that the single file fragment being examined will
include the file header. Similarly, other than the specialised case of JPEG files, the file
fragments used are unlikely to be long enough to show any significant difference in any
signature byte frequency.
Classifying a file fragment from digital media based solely on its content rather than on
metadata within the header is a difficult problem. A number of approaches have been
proposed which have displayed varying degrees of success. Many of these methods apply
statistical analysis to the byte frequency distribution within the fragment to create a
fingerprint' or centroid which is held to be characteristic for each file type. An unknown
fragment is then classified by its closeness, measured using some metric (a measure of the
distance between objects in a vector space) to these centroids.
Others use machine learning techniques. A training set and a test set are created from a corpus
consisting of a collection of files of varying types. The results of the statistical analysis done
on the training set are used by the machine learning algorithm to create a classifier. The test
set can then be used as input to the classifier and its performance measured. If the
performance of the classifier is satisfactory then it may be used on unknown file fragments.

4.3 The Problem With High Entropy Fragments
Recent research has found that although classification of file fragments of many common file
types can be done with high accuracy, the classification of high entropy file fragments is
difficult and to date accuracy has been poor [25], [27]. Indeed Roussev [17] suggest that it is
not possible using the current statistical and machine learning techniques to differentiate such
fragments.

P Penrose, Triage of Large Capacity Digital Devices 28

The entropy of a file fragment measures the amount of randomness or disorder in the data
within it. Compressed and encrypted files have little pattern or order. A file is compressed by
representing any repeating patterns of data with a shorter code. A well compressed file should
have no apparent patterns remaining in it otherwise it could be compressed further. An
encrypted file should have no patterns otherwise it would be vulnerable to cryptanalysis. Thus
these types are classified as high entropy.

Garfinkel [18] states that the classification of high entropy file fragments is in its infancy and
needs further research and it is suggested that future works should investigate methods to
improve classification performance on such fragments. To date no such investigations have
been done.

4.4 Related Work
Here the current research into file fragment classification is examined. There is a theme
running through the research that results in classifying high entropy fragment types has been
universally poor. Many investigations have simply excluded these fragment types from their
corpora. Roussev and Garfinkel [17] question whether current machine learning or statistical
techniques applied to file fragment classification can ever distinguish between these types
since these fragments have no discernible patterns to exploit. These findings lead us to
develop approaches to the problem.
It can be observed that there has been a trend towards specialised approaches for each file
type. Analysis of byte frequency distributions has often proved insufficient to classify
fragment types, and the unique characteristics of particular file formats have increased
recognition accuracy. It becomes apparent that in many cases neither the digital corpora used
nor the software developed is publicly available. It is therefore not possible to validate the
research nor do a direct comparison against the methods which are developed, hr addition,
many results have been derived from small sample sets and thus the results may not be
universally applicable. These observations lead us to design the investigation in a manner
which will avoid such criticisms.
4.4.1 File Fragment Classification
The idea of using examination of the byte frequency distribution (BFD) of a file to identify a
file type was introduced by McDaniel [63], The BFD is simply a count of the frequency of
occurrence of each possible byte value (0-255) in the fragment giving a 256 element vector.
Several of these vectors are averaged by adding corresponding elements and dividing by the
number of vectors to give an average vector or centroid. For each byte-value the correlation
between byte frequency in each file is also recorded. These vectors were taken to be
characteristic of that file type and termed the ‘fingerprint ’ for that type. The BFD of an
unknown file type is subtracted from the fingerprint and the differences averaged to give a
measure of closeness.
Another fingerprint was developed using a byte frequency cross-correlation (BFC) which
measured the average difference in byte pair frequencies. This was a specialised approach
which should target certain file types - HTML files, for example, where the characters ‘<’ and
*>’ occur in pairs regularly. It will be seen that developing such specialised approaches to
identify file fragments when byte frequencies of different types are similar is a common
occurrence through the research corpus. Average classification accuracy is poor with BFD at
around 27% and BFC at around 46%. This result is actually poorer than it appears since
whole files were used instead of file fragments and so the file headers which contain magic
numbers were included. When file headers were considered by themselves they reported an
accuracy of over 90% as would be expected. The corpus consisted of 120 test files with four

P Penrose, Triage of Large Capacity Digital Devices 29

of each of the 30 types considered. There is no indication as to the source of the test files and
no encrypted files were included. They noted that the ZIP file format had ‘a low assurance
level’ and that perhaps other classification methods might be needed to improve the accuracy
for this type.

Li et al. [64] extended the work of McDaniel and Heydari [63] and developed the
methodology that had been introduced by Wang and Stolfo [65] for a payload based intrusion
detection system. They used the term n-gram to refer to a collection of n consecutive bytes
from a byte stream and based their analysis on 1-grams. The terms ‘fileprinf and ‘centroid'
were used interchangeably to refer to a pair of vectors. One contained byte-frequencies
averaged over a set of similar files from the sample, and, in the other, the variance of these
frequencies. In addition, they created a multi-centroid approach by creating several such
centroids for each file type since ‘files with the same file extension do not always have a
distribution similar enough to be represented by a single model'. The metric used to calculate
the distance of an unknown sample from each centroid was that used in [65]. It was proposed
originally for computational efficiency in the scenario of a high bandwidth networked
environment but this simplification meant that it was no longer suitable as a metric. It was
termed a simplified version of the Mahalanobis distance and given as:

n —1 (1 x i~
0 O i+ a)

where

- Xi and y, are the centroid and sample byte frequencies respectively,
er, is the centroid standard deviation for that byte value,
a is a small positive value added to avoid possible division by zero.

However they note that this simplification requires that the frequency of each individual byte
be statistically independent from any other. In cases such as HTML files where the symbols <
and > occur frequently as pairs or JPEG files where the hexadecimal values OxFF and 0x00
frequently occur together, this requirement does not necessarily hold and so the simplification
will not be universally valid. Xing [66] describes how learning algorithms depend critically
on a good metric being chosen. It has been found that many of the techniques considered
below which use machine learning to create centroids give no justification for the metrics
used. In this particular research only 8 file types were considered, and no encrypted or
compressed files were used, although they noted that all compressed files may have a similar
distribution. To create the test corpus 100 files of each type were collected from the internet
using a search on Google.
To create their sample set, the first 20, 200, 500 and 1000 bytes from a file were taken. As
expected, since these truncated files all contain the file header, the results were good. The
average classification accuracy was around 99% for the truncated files with just the first 20
bytes of the file i.e. the file header. As the fragment size increased, accuracy decreased.
Accuracy was worst when the whole file, rather than a truncated segment, was used. This
could be explained by the fact that with just the first 20 bytes of a file the method reduces to
the ‘magic numbers' solution referred to previously. As the file size increases the influence of
these first magic numbers is diluted and hence accuracy decreases.
The method named ‘Oscar' was introduced by Karresand [67] using the same BFD vectors as
Li et al. [64] to create centroids. This was soon extended to increase the accuracy of JPEG
detection by introducing Rate of Change (RoC) of consecutive bytes [68]. The rate of change
is maximum for pairs of bytes OxFF followed by 0x00. As explained earlier the frequency of
this byte pair is a unique marker for JPEG files.

P Penrose, Triage of Large Capacity Digital Devices 30

They avoid the criticism made of [64] by using a weighted Euclidian metric:

O i+ a)
to measure distance between an unknown sample and the centroid. If this distance was below
a certain threshold then it was taken to be a fragment of that file type.
There is no indication as to the source of their file corpus. 57 files were first padded with
zeros to ensure that the file was a multiple of KiB to simulate an unfragmented hard disk of 4
KiB clusters. These 57 files were then concatenated to form one large 72MB file. The file was
scanned for each file type separately, and each 4kB block was examined. For compressed
(zip) files a fragment was marked as a hit even if it contained header information. The authors
noted that compressed types were difficult to tell apart because of the random nature of their
byte distribution.
4.4.2 Entropy
Hall and Davis [69] departed from the BFD approach by suggesting that the entropy and
compressibility of file fragments be used as identifiers. They used the idea of a sliding
window to make n steps through the fragment. Compressibility and entropy values calculated
at each step were saved as elements of the characteristic vectors, although the window
contents were not actually compressed. The LZW algorithm was used and the number of
changes made to the compression dictionary used as an indication of compressibility.
Centroids were calculated as usual by averaging element values in a training set. Two metrics
were evaluated - the Pearson rank order correlation coefficient and a simple difference metric
similar to that used by [63]:

d(AT,y) = - y t \)•
This metric suffers from the same criticism as that of [64] and results were poor.
Identification of compressed fragment was only 12% accurate and other results were not
given. It was noted that the method might be better at narrowing down possible file types than
actually assigning a file type. The initial corpus was a set of files from the authors personal
computer.
4.4.3 Complexity and Kolmogorov Complexity
Veenman [70] combined the BFD together with the calculated entropy and estimated
Kolmogorov complexity of the fragment to classify the file fragment. The Kolmogorov
complexity is a measure of the information content of a string which makes use of substring
order. A large corpus of 13 different file types was used with 35,000 files in the training set
and 70,000 in the test set. HTML and JPEG fragments were detected with over 98% accuracy,
however compressed files had only 18% accuracy with over 80% false positives. Results were
presented in a confusion matrix which made them easy to interpret.
Confusion matrices are used by other researchers and will be used in presenting the results, so
a short explanation is given here. A confusion matrix is a convenient method of conveying
information about the actual types and predicted types made by a classification system. In the
confusion matrix in Table 14 it can be seen that JPEG had 126 true positives - fragments
which were actually JPEG and labelled as such.
The JPEG type had a total of 86 false negatives - fragments which were actually JPEG but
misclassified as another type. It is obvious that this classifier confuses ZIP and JPEG types.

P Penrose, Triage of Large Capacity Digital Devices 31

Table 14 - Example Confusion Matrix

Predicted Type

Actual
Type

JPEG BMP ZIP

JPEG 126 2 84

BMP 4 85 14

ZIP 63 12 34

4.4.4 Statistical Methods
Another statistical approach was suggested by Erbacher [71]. Only statistics calculated from
the BFD were used rather than the BFD itself. Their analysis used a sliding window of 1 KiB
to examine each block of a complete file rather than file fragments. By using the sliding
window, however, they could identify component data types within the containing file e.g. a
JPEG image within a PDF file. They claimed that five calculated statistics were sufficient to
classify the seven data types in the corpus of five files of each type but no results were
presented.
This idea was developed by Moody and Erbacher [72] where the corpus consisted of 25 files
of each type examined. No compressed or encrypted files were included. It was found that
several data types could not be classified because of the similarity of their structure. These
files were processed through a secondary pattern matching algorithm where unique
identifying characteristics such as the high rate of occurrence of *<’ and *>’ in HTML files
was used for identification. Here again is seen the use of specialised functions for different
file types.
4.4.5 Linear Discriminant Analysis
Calhoun and Coles [73] followed the approach of Veenman [70] by using the linear
discriminant analysis for classification but used a selection of different statistics. Linear
discriminant analysis is used to develop a linear combination of these statistics by modifying
the weight given to each so that the classification is optimised. A statistic that discriminates
well between classes will be given a bigger weight than one that discriminates less well. They
also included a number of tests that could be classified as specialised, such as their ASCII test
where the frequency of ASCII character codes 32 to 127 can be used to identify text files such
as HTML or TXT. The authors noted that the data did not conform to the requirements of the
Fisher linear discriminant that data should come from a multi-variate normal distribution with
identical covariance matrices and this may explain some sub-optimal results. Overall only
four file types were included in the corpus with 50 fragments of each type, and no compressed
or encrypted file fragments were included. Fragments were compared in a pairwise fashion.
For example JPEG fragments were tested against BMP fragments and the results of
classification noted. JPEG was then tested against PDF and so on. There was no attempt at
multi-type classification. Testing in such a way gives less chance of misclassification and the
results should be interpreted with this in mind. Extensive tables of result for accuracy are
given but again there is no data about false positives or true negatives. They noted that a
modification to their methodology would be required to avoid the situation where the method
fails and all fragments are classified as one type but which gives high accuracy.
4.4.6 Multi-centroid Model
Ahmed et al. [74] developed the methods of Stolfo et al. [75] but introduced some novel
ideas. In creating their multi-centroid model they clustered files with similar BFD regardless
of type. This implements their assumptions:

P Penrose, Triage of Large Capacity Digital Devices 32

1. Different file types may have similar byte frequency distributions.
2. Files of the same type may have different byte frequency distributions.

Within each such cluster, linear discriminant analysis was used to create a discriminant
function for its fragment types. Cosine similarity was used as a metric and was shown to give
better results than the simplified Mahalanobis distance. The cosine similarity is defined as the
cosine of the angle between the centroid, x, and fragment, y, BFD vectors:

x.y
Similarity = cos(x, y) = ——

|x||y|
Since all byte frequencies are non-negative the dot product is positive and therefore the cosine
similarity lies in the closed interval [0, 1]. If the cosine similarity is 1 then the angle between
the vectors is 0° and they are identical other than magnitude. As the cosine similarity
approaches 0, the vectors are increasingly dissimilar.
An unknown fragment was first assigned to a cluster using cosine similarity. If all file types in
a cluster were of the same type then the fragment would be classified as that type. If not, then
linear discriminant analysis was used to find the closest type match in the cluster. Ten
different file types were used although compressed and encrypted types were excluded, and
100 files of each type were included in the training set and the test set. Whole files rather than
file fragments were used and so header information was included, achieving 77% accuracy.
4.4.7 Supervised learning models
A number of researchers have used supervised learning methods to create classifiers. These
include Support Vector Machines (SVM), k Nearest Neighbour (kNN) and Artificial Neural
Networks (ANN). Since these methods will also be used in this research a brief background to
each is given here.
A Support Vector Machine (SVM) is a supervised learning model which is used for
classification. In supervised learning the training data is a set of data points each with an
associated output type. The supervised learning algorithm will infer a classifier which will
predict the correct output type for each input data point in the training set.
The SVM algorithm plots each training data point in n-dimensional space and constructs an
optimal hyper-plane to separate the two classes. Figure 5 shows that there are many possible
classifiers. The one which maximizes the distance between the nearest data points and itself is
the optimal hyper-plane. A data point will be classified according to which side of the hyper
plane that it lies.

P Penrose, Triage of Large Capacity Digital Devices 33

Figure 5 - Optimal Separating Hyperplane maximizes the sum of the distances X, d, from the
support vectors to the plane itself. Illustration based on an idea from [76]

In some cases the data points are not linearly separable in n dimensions. Ben-Hur and
Weston [77] recommend the use an SVM kernel which in this instance maps the 17-
dimensional space into a higher dimensional feature space where the classes may be separable
as can be seen in Figure 6. It is worth noting that the kernel mapping need not be linear and so
the feature space may allow a separation hyper-surface rather than a hyperplane as shown in
Figure 7.

kernel

Figure 6 - Data not linearly separable in n-dimensions is mapped to a higher dimensional space
by the kernel function. Illustration based on an idea from [76]

P Penrose, Triage of Large Capacity Digital Devices 34

Class A

Figure 7 - Optimally separating hyper-surface. Illustration based on [78]

The k Nearest Neighbour (k-NN) approach to classification is simpler than the SVM. No
classification function is computed. The training set of classification vectors is plotted in 77-
dimensional space. An unknown example is classified by being plotted and its k nearest
neighbouring points from the training set determined. The unknown example will be assigned
to the class which is most common among these k nearest neighbours. The best value for k is
determined by experiment.
An artificial neural network (ANN) is a is a simulation of the biological brain. A number of
processing elements (artificial neurons) are interconnected. The strength of each connection is
assigned a weight w which is in the range [-1.0,1.0] where -1.0 is maximum inhibition and 1.0
is maximum excitation. Each processing element will have a number of inputs where each
input is a value passed by a previous processing element together with its weight.
The sum of the products of the input values and corresponding weights is calculated by the
processing unit. The neuron fires if the activation function evaluates to a value above a given
threshold. This is illustrated for a single processing element in Figure 8.

WqX o

Figure 8 - Individual neuron behaviour. Based on Stanford CS231n [133]

P Penrose, Triage of Large Capacity Digital Devices 35

The activation function / shown in the diagram is usually a sigmoid function since a simple
step function (0 or 1) would lead to solutions which were simply a linear combination of the
input values [79, p. 4], The sigmoid function allows a smooth transition of values for the
output of the processing element. The bias b in the activation formula is a constant that may
be added to move the sigmoid graph left or right so that the trigger activation point may be
altered (Figure 9).

In a network the artificial neurons are arranged in layers and send their outputs forward to the
next layer. The network receives inputs on the input layer, and the output is given by the
output layer. There may be one or more hidden layers as shown inFigure 10.

Hidden

Figure 10 - neural network layers

P Penrose, Triage of Large Capacity Digital Devices 36

To train the network a training set of inputs and the corresponding outputs that are required
are used. The network can start with a random set of weights. The error is calculated as the
difference between the actual output and the required output. The weights are adjusted and the
training run repeated until the system converges on the minimum error. The system is then
said to have Teamed’ the training data. It can be thought of as a goal seeking algorithm as
used in spreadsheets but with many, perhaps thousands, of possible variables. Once the
network is trained it can be tested for accuracy on a test set of data different from the training
set. If the system performs well then it can be used to classify live data.
Li et al. [27] used the BFD only and took an approach using a Support Vector Machine
(SVM) for data fragment classification. Only four file types were used - JPEG, MP3, DLL
and PDF. There were no compressed or encrypted file types other than the easily identified
JPEG format. The inclusion of the PDF file type may have affected their results since it is a
container type - it can embed a variety of other formats within itself such as JPEG, Microsoft
Office or ZIP. Thus it might be difficult to differentiate a fragment of a file labelled PDF from
some of the other types. Their training corpus was 800 of each file type downloaded from the
internet. Each file was split into 4 KiB fragments and the first and last fragment discarded to
ensure that header data and any possible file padding was excluded. The test set was created
by downloading a further 80 files of each type from the internet and selecting 200 fragments
of each type. Accuracy for classification of the four file types was 81%.
By contrast to previous researchers, Axelsson [80] used the publicly available data set
govDocsl [56], making it easier for others to reproduce the results. The normalised
compression distance (NCD) was used as a metric. NCD was introduced by Cilibrasi and
Vitanyi [81]. Their idea was that two objects (not necessarily file fragments) are ‘close’ if
one can be compressed further by using the information from the other. If C(x) is the
compressed length of fragment x and C(x,y) is the compressed length of fragment x
concatenated with fragment y then

NCD(x, y) = C[pc,y) - min(C(x),C(y))
max(C(x),C(y))

The k-Nearest-Neighbour algorithm (kNN) was used for classification. The results were poor
and average accuracy was 35%.
In [82], commercial ‘off-the-shelf software was evaluated against several statistical fragment
analysis methods. SVM and kNN using the cosine similarity metric methods were used. The
test corpus was created from the publically available RealisticDC dataset [56] and consisted
over 36,000 files of 316 file types. The file types are not listed so it is not known if any
compressed or encrypted files were included. The true file types were taken to be those
reported by Libmagic using the Linux ‘file’ command and so no account was taken of
possible anti-forensic techniques such as file header modification which may have resulted in
bias in the results. It was not reported if the first fragment of each file was included. This
would have contained header information. The results reported on the performance on file
fragments was for the SVM only and it is shown that they achieved 40% accuracy measured
using the Macro-FI measure [83] with a 4096-byte fragment size. There is no breakdown of
the results by file type and so it cannot be ascertained if some high accuracy file types are
masking some with very low accuracy.
4.4.8 Lempel-Ziv Complexity
Sportiello [84] tested a range of fragment features including the BFD, entropy, Lempel-Ziv

complexity and some specialised classifiers such as the distribution of ASCII character codes
32 - 127 which would characterise text based file types, and Rate of Change which has been
seen to be a good classifier for JPEG files. The corpus consisted of nine file types

P Penrose, Triage of Large Capacity Digital Devices 37

downloaded from the Internet and these were decomposed into a total of 28,000 blocks of 512
bytes for each file type. There is no indication if file header blocks were included. No
compressed or encrypted data was included.

An SVM was used but no multi-class classification was attempted. For each file type a
separate SVM model was created to classify a fragment type against each of the other types
individually. The experiment was actually run using a 4096-byte fragment size and no
indication of how these fragments were created is given. There is no confusion matrix of the
results and there is no mention of false negative results. The table of results is arranged by
fragment type, feature and feature parameter (the C and y for the SVM). These parameters
vary by file type and it appears that only the results for the best parameter values for
individual fragment types is given. It is therefore difficult to compare results with others.
Fitzgerald et al. [25] used the data from publicly available govDocsl corpus. They created
9,000 fragments of 512 bytes for each of 24 file types. The first and last fragment of each file
was omitted. There were an equal number of fragments of each file type. They used an SVM
using standard parameters. Both unigram and bigram (pairs of consecutive bytes) along with
various statistical values were used for the fileprint. They selected up to 4000 fragments for
the data set and apportioned these approximately in the ratio 9: 1 as training and test sets
respectively for the SVM. There is no mention of whether the 24 file types were represented
equally in the selection. An overall accuracy of 47.5% was achieved but correct compressed
file prediction averaged 21.8%. It was noted, as did [18], [26], [27] that the classification of
high entropy file fragments was challenging.
4.4.9 Specialised Approaches
Roussev and Garfinkel [17] argue that using BFD or statistical methods is too simplistic.
They advocate using all tools available for file fragment discrimination. If distinct markers are
present within a fragment then these should be used. If a byte pattern suggests a particular file
type then knowledge of that file format can be used to check the classification. Thus they
would be using purpose-built functions for each file type. They suggest a variety of
approaches. As well as the header recognition and characteristic byte sequences as explained
in the introductory section they use frame recognition. Many multimedia formats use
repeating frames. If the characteristic byte pattern for a frame marker is found then it can be
checked if another frame begins at the appropriate offset. If it does then it is likely that the
fragment will be of that media type. It should be noted that, unlike other methods, they may
require previous or subsequent file fragments. If a fragment type cannot be classified, then
they use ‘Context Recognition' where these adjacent fragments are also analysed. Although
the govDocsl file corpus was used, this was supplemented by a variety of MP3 and other files
that were specially developed. This does not fit well with their own views expressed in [56]
where a strong case was made for the use of standardised digital corpora. A discriminator for
Huffman coded files was developed. However its true positive rate was 21%, and the need for
further research in this area was stressed in the paper.
4.4.10 Genetic Programming
A novel approach using Genetic Programming was tested by Kattan et al. [85], 120 examples
of each six file types were downloaded at random from the Internet. No compressed or
encrypted files were included. Analysis was done on whole files rather than fragments and so
file headers may have been included. Features were first extracted from the BFD using
Principal Component Analysis (PCA) and passed to a multi-layer artificial neural network
(ANN) to produce fileprints. PCA removes redundancy by reducing correlated features to a
feature set of uncorrelated 1principal components' which account for most of the structure in
the data. This removal of features is generally accompanied by a loss of information [86, p.
562], PCA was used here to reduce the number of inputs to the next stage - a multi-layer auto

P Penrose, Triage of Large Capacity Digital Devices 38

associative neural network (ANN) which creates the fileprint. It is mentioned that file headers
in themselves were not used, but would be part of the whole file. A 3 layer ANN was used
with these fileprints as a classifier for unknown file types. Only 30 files of each type were
used for testing. Results were reported in a confusion matrix and averaged 98% true positives.
It is not clear whether the PCA would have extracted file headers as the most prominent
component of the test data as a classifier. If this was so then the high detection rate would be
explained.
This work was extended by Amirani [87] to include detection of file fragments. The original
version using an ANN as the final stage classifier was compared with classification using an
SVM. 200 files of each of the 6 file types were collected randomly from the internet. Half
were used as the training set and half as the testing set. For the fragment analysis a random
starting point was selected in each file, and a fragment of 1000 or 1500 bytes was taken.
Results showed that the SVM classifier gave better results than the ANN for file fragments of
both 1000 and 1500 bytes with extremely good results. It is puzzling that PDF detection gives
89% true positives with the 1500 byte fragments. The PDF format is a container format and
might contain any of the other file types examined - doc, gif, htm, jpg and exe - as an
embedded object. The random selection of 1500 bytes from within such a file could be mis-
classified as the embedded object type. The high detection rate for the PDF type itself means
that this must have rarely happened. Perhaps it is an indication that the sample set of 100 files
is too small, or perhaps the file header has an undue influence on the PCA.

4.5 High Entropy Fragment Classification
Garfinkel et al. [18] noted that “The technique for discriminating encrypted data from
compressed data is in its infancy and needs refinement”. This is supported by the observation
that, in the literature considered so far, there has been little mention of classification of high
entropy types. Where compressed fragments have been included in the test coipus, results
have been poor. There is no source that deals with classification of encrypted or random
fragments. This area of research has been recognised as difficult [18], [25]—[27]. Most results
rely on patterns within the data. However Roussev and Garfinkel [17] argue that compressed
and encrypted file types have no such patterns. If a compressed file has patterns then it could
be compressed further. If an encrypted file has patterns then it would be vulnerable to
cryptanalysis. Therefore it is needed to investigate methods of fragment identification that do
not rely on patterns within the data.
4.5.1 Randomness
In Chang et al. [88], the output from a number of compression algorithms and compression
programs was tested for randomness. The National Institute of Standards and Technology
(NIST) Statistical Test Suite [89] was used. It was found that the output of every compression
method failed the NIST tests for randomness. In contrast, during the testing of the candidate
algorithms for the Advanced Encryption Standard (AES) it was expected that any encrypted
files should be computationally indistinguishable from a true random source [90].
Zhao et al. [91] used 7 large (100 MB) test files and compressed and encrypted them by
different methods. The whole 188 NIST tests were run against each file. At this scale they
achieved good discrimination of encrypted files. However the 4 KiB fragments that are being
sampled during triage are very small compared to these test files.
These observations lead us to the first hypothesis - that it is possible to distinguish between
compressed and encrypted fragments by testing for randomness.

P Penrose, Triage of Large Capacity Digital Devices 39

4.5.2 Compressibility
Ziv [92] stated that a random sequence can only be considered such if it cannot be
compressed significantly. Schneier [93] noted that “Any file that cannot be compressed and is
not already compressed is probably ciphertext”. Mahoney [94] states that encrypted data
cannot be compressed. However compression algorithms always have to compromise
between speed and compression [95]. It is thus unlikely that a compressed fragment is
optimally compressed and therefore can be compressed further.

The second hypothesis, therefore, is that compressed and encrypted fragments can be
differentiated by applying an efficient compression algorithm. A compressed file should
compress more than an encrypted file.

4.6 Conclusions
Recent research has shown that many file fragment types can be identified with high
accuracy. However the classification of high entropy file fragments has been found to be
difficult and to date accuracy has been poor. No work has been done on encrypted file types.
It has been suggested that it is not possible using the current statistical and machine learning
techniques to differentiate between high entropy file fragments. Techniques to do so are in
their infancy and methods to improve the classification performance need to be investigated.
A variety of approaches have been employed in classification. Support Vector Machines,
Artificial Neural Networks, Genetic Programming and k-Nearest-Neighbour have all been
used. However existing methods have failed to find patterns within high entropy file
fragments and if patterns are not there to exploit, then simply changing the classification
method will not alter the fact. A new approach will be needed that can detect such patterns.
As has been been shown above, randomness and lack of compressibility are characteristics of
high entropy file fragments. These characteristics will be investigated to see if they can be
used for classification of these file types.

P Penrose, Triage of Large Capacity Digital Devices 40

5 Experiment Design

5.1 Introduction
To test these hypotheses a corpus needs to be created to test the classification methods that are
developed to distinguish between encrypted and compressed file fragments. In the scientific
method it is important that results be reproducible. An independent researcher should be able
to repeat the experiment and achieve the same results. In the review of related work it has
been seen that this is not generally the case. Most research has been done with private or
irreproducible corpora generated by random searches on the WWW. Garfmkel et al. [56]
argue that the use of standardised digital corpora not only allows researchers to validate each
other’s results, but also to build upon them. By reproducing the work a researcher shows that
they have mastered the process involved and are then better able to advance the research. In
this section the creation of the test corpus from publically available standardised corpora is
described.
In the previous section it was found that lack of compressibility and randomness are
characteristics of high entropy file fragments. Methods are therefore required to test these
characteristics in a file fragment. Statistical methods for testing randomness have already
been developed. The NIST Statistical Test Suite [90], [96] was specifically designed for
testing randomness in cryptographic applications and was used in the testing of candidate
algorithms for the AES encryption standard. This test suite will be used for detecting
randomness in file fragments.

5.2 Building the Corpus
Standardised corpora are now available. For example the Govdocs 1 corpus contains a set of
1000 folders each containing 1000 files [56]. Five of these folders were chosen at random to
create a training set and ten for a testing set. Folder 0, which had not been one of those
randomly chosen, was used while developing the methodology. This avoids any bias
introduced by including fragments used in development as part of the training or test corpora.
File fragments of representative compressed and encrypted types from these subsets need to
be created: It can assumed that multimedia types which use lossy compression have been
classified by the techniques used in the review of related work. Therefore only lossless
compression methods will be considered in the remainder of the research.
5.2.1 Compression Methods
There are a number of lossless compression methods. In order that the corpus is representative
of compressed files in the wild, it will be created using four of the most common.
Compressors can be categorised as either stream based, like zip, gzip, and predictive
compressors based on prediction by partial matching (PPM), or block based, like bzip2, where
a whole input block is analysed at once [81].
The commonly used Deflate compressed data format is defined in RFC 1951. It uses the FZ77
compression method followed by Huffman coding. It was originally designed by Phil Katz
for the compression program PKZIP [97]. It uses LZ77 which achieves compression by
replacing a repeated string in the data by a pointer to the previous occurrence within the data
along with the length of the repeated string. This is followed by Huffman coding which
replaces common symbols within the compressed stream by short codes and less common

P Penrose, Triage of Large Capacity Digital Devices 41

symbols with longer codes. This method is used by zip and gzip compressors. Although zip
and gzip use similar methods, gzip is a compressor for single files whereas zip is an archiver.
An archiver can compress multiple files into an archive and decompress single files from
within the archive. Zip is a common format on Microsoft Windows platforms, but gzip is
primarily a Unix/ Linux compressor. Both zip and gzip will be used as representative of
common archivers and compressors in the creation of the corpus.
Bzip2 is a block coding compressor which uses run length encoding (RLE) and the Burrows-
Wheeler transform. The B-W transform does not itself compress. It uses a block sort method
to transform the data so that the output has long runs of identical symbols which can be
compressed efficiently by RLE. The final output is again Huffman coded. Bzip2 is a file
compressor rather than an archiver in that it compresses single files only. bzip2 will be used
as representative of a block based Unix/ Linux compressor.
There are also several proprietary compression implementations that are commonly used.
Winrar is one such. Its own archiving format is proprietary but it is based on LZ and PPM
compression. PPM is another stream based compression method which uses an adaptive data
compression technique using context modelling and prediction. PPM compressors use
previous bytes (bits) in the stream to predict the next byte (bit). They are adaptive in that they
adapt the compression algorithm automatically according to the data being compressed. The
output is arithmetic rather than Huffman coded. Whereas Huffman coding is restricted to a
whole number of bits, many modem data compressors use arithmetic coding which is not
restricted by this limitation [94], It can work with all the compression methods above. Winrar
is used in the creation of the corpus as an example of proprietary formats and arithmetic
coding.
5.2.2 Encryption Methods
In Microsoft Windows operating systems AES has been the default file and BitLocker drive
encryption method since Windows XP. Triple DES has been available as an alternative [98],
AES is also used by popular open source encryption software such as Axcrypt and TrueCrypt.
PGP, together with the open source GnuPG conforming to the OpenPGP standard in
RFC4880 is the most widely used cryptographic system [99]. It uses AES, Triple DES,
Twofish and Blowfish. AES, Triple DES and Twofish will be used as representative of
encryption methods while creating the corpus.
5.2.3 Corpus Creation
Most file systems store files so that the beginning of a file is physically aligned with a sector
boundary [18, p. S I5], To emulate randomly sampled disk sectors it will therefore be assumed
that each file begins on a sector boundary and consists of 4 KiB blocks. For the same reasons
used for the choice of cluster size in contraband detection, a cluster size of 4 KiB will be used.
The first sector of any file will contain header information which may be used to identify a
fragment type. If the file does not fill the last cluster then this cluster may contain padding or
undefined content. For this reason the first and last cluster of any file from the corpus will be
excluded.
Each file in the training corpus was compressed individually by each compression method
and encrypted by each encryption method. A fragment beginning on a 4 KiB boundary and
excluding the first and last fragments was randomly chosen from each file. Files which were
less than 12 KiB after compression or encryption were excluded. It is not possible to select a
random 4 KiB fragment from such files after first and last 4KiB fragments are excluded. This
generated a total of 25,000 fragments in the training corpus. Exactly the same procedure was
used on the testing corpus and this generated 46,439 fragments. Each fragment together with
details of its source were stored.

P Penrose, Triage of Large Capacity Digital Devices 42

5.3 Fragment Analysis Tools
In this section methods are considered to test the hypotheses:

1. Compressed and encrypted fragments can be differentiated by testing for randomness.
2. Compressed and encrypted fragments can be differentiated by applying an efficient

compression algorithm. A compressed file should compress more than an encrypted
file.

No published work has been done in this area and so a methodology to test the hypotheses
will be devised.
5.3.1 Testing Randomness - The NIST Statistical Test Suite
It is important that the output of an encryption algorithm is random, otherwise it would be
subject to cryptanalysis. The NIST Statistical Test Suite [89] was used in randomness testing
of the AES candidate algorithms to test if their output was truly random [90], However Chang
et al. [88] used the NIST tests and found that compressed data tended to fail randomness tests.
This finding will be used to create a classifier. A compressed fragment should display poorer
randomness than an encrypted one. The NIST test suite was modified so that it could operate
on multiple files and output the results in the correct format for the training of classifiers and
then the testing of the classifier accuracy. Classifiers were constructed using kNN, SVM and
ANN algorithms for comparison of effectiveness.
The NIST Statistical Test Suite consists of a set of 15 tests. Two of the tests (Cumulative
Sums and Serial Test) each return two results. These tests are summarised in Table 15. Note
that all tests are done on binary data and not bytes, n is used to denote the number of bits in a
sequence.

Table 15 - The NIST Statistical Test Suite
Test Nam e Description Sequence Size

R ecom m endation
Frequency (M onobit) Proportion of zeroes and ones n > 100
Frequency w ithin a
block

Splits sequence into N blocks of
size M and applies the monobit test
on each block

M > 20, M > O.ln
N < 100

Runs Test Checks if to tal num ber of runs of
length k, which are sequences of
identical bits, is consistent with
random data

n > 100

Block Runs Test Runs te s t on data split into blocks For n < 6272,-M = 8
of length M For n < 750K, M= 128

Binary M atrix Rank Checks for linear dependence
between fixed length substrings

n >38912

Discrete Fourier Test Detects any periodic features in the
sequence

n > 1000

N on-overlapping
Tem plate M atching

Checks num ber of occurrences of a
target string of length m in N
blocks of length M bits. Skips m
bits when pa tte rn found

n > 106

Overlapping Tem plate
M atching

As non-overlapping bu t does not
skip

n > 106

M aurer’s U niversal
Statistical Test

Detects if a sequence is
significantly compressible

n > 3 8 7 8 4 0

Linear Com plexity Determ ines if the complexity of a
sequence is such th a t it can be
considered random

n > 106

P Penrose, Triage of Large Capacity Digital Devices 43

S e r ia l T e s t Checks for uniform ity - every m bit
sequence should have the same
chance of occurring

m < [log2 n] - 2 i.e. floor(log2 n)
- 2

A p p r o x im a t e E n t r o p y Compares the frequency of all
overlapping pa tte rn s of size m and
m + 1. These frequencies are
compared against w hat would be
expected of a random sequence

m < [log2 n\ - 5

C u m u la tiv e S u m s Calculates the m aximum distance
from zero a random walk (the
cum ulative sum adjusted so 0 is
represented by -1, and 1 by 1)
achieves.

n > 100

R a n d o m E x c u r s io n s M easures deviation from th a t
expected of a random walk (as
above) to certain sta tes

n > 106

R a n d o m E x c u r s io n s
V a r ia n t

Calculates the num ber of tim es a
given distance from origin is visited
in a random walk. Detects
deviations from th a t expected of
random sequence

n > 106

The binary matrix rank test, overlapping template matching, Maurer’s Universal Statistical
test, linear complexity, random excursions and random excursions variant tests cannot be
used. The bit sequence from a 4KiB fragment is not long enough to make the results of these
tests statistically valid. However, since for each fragment 4096 bytes = 32768 bits are being
used, the fragments allow us to use 64 binary sequences of 512 bits which satisfy the size
requirements for the other nine tests.
Each test in the NIST test suite produces a result termed a P-value. A P-value is the
probability of obtaining a result as extreme as the sample value assuming that the hypothesis
that the fragment is random is true. It is suggested that the results of the tests are first analysed
in terms of the number of sequences passing each test and then by the distribution of the P-
values [89]. 64 sequences of 512 bits are used for each 4096 byte (32768 bit) fragment. For
each of these sequences a P-value is calculated. At the 95% level of significance the fragment
is accepted as random if the P-value > 0.05. It is normal in hypothesis testing to be looking for
evidence to reject the null hypothesis and thus we would be looking for a P-value < 0.05. hr
this instance, however, we are looking for evidence to support the null hypothesis (that the
fragment is random) and thus are looking for P-values > 0.05. The confidence interval for the
proportion of these sequences passing a test is given by p ± — —— where p = 0.95 and nr is
the number of sequences [89, p. 90]. Using this formula it is expected that at least 60 of the 64
binary sequences making up the fragment will pass the test if the fragment is truly random.
The number of binary sequences passing each test will be used as the first component of the
characteristic vector. Secondly, if the fragment is random then the P-values calculated in the
64 separate sequence tests should be unifomrly distributed. A P-value of P-values is
calculated and if this P-value is greater than 0.0001 then the sequence of P values is taken as
unifomrly distributed [89, p. 91]. This P-value for the uniformity of the distribution of P-
values for each test will be used as the second component of the characteristic vector.
A total of nine statistical tests from the test suite will be run against each file fragment. Each
test generates two values - the number of the 64 sub-sequences of 512 bits passing the test and
a uniformity value. Since two of the tests report two results each there will be a total of 11
pairs of values generated. These pairs of values will be used to form the characteristic vector
for each fragment. Thus the characteristic vector Vf for file fragment / is defined as the

P Penrose, Triage of Large Capacity Digital Devices 44

sequence Vf — (nx ux n2> u2i........... , nxl un) where n£ is the number of the 64 sequences
passing test i and u t the uniformity P-value for those 64 tests.
5.3.2 Testing Compressibility
The probability that an encrypted (random) fragment will losslessly compress even by a small
amount is low. Consider a random fragment of n bits. There are 2n possible different
fragments. Let P be the probability that the fragment will compress by four bytes (32 bits) or
less. Then:

p _ N u m b e r o f f r a g m e n t s th a t c o m p r e s s b y 3 2 b its o r le ss

T ota l n u m b e r o f p o ss ib le f r a g m e n t s

If the fragment compresses by 32 bits or less then the fragment of size n must map to one of
the fragments of size n-1, n-2, ... , n-32. There are only 271-1 + 2n~2 +2n_3 ++ 2n-32 =
Yjrn=n-32 2771 such fragments.
Since the compression is lossless, the decompression must map back to a unique original
fragment. Thus the mapping must be 1 - 1. Thus there are only this many fragments which
will compress by 4 bytes or less.
Thus:

y r i- l 9m
p _ ¿ j m = n —32 z

2n
v n—1 v n—31 n m

_ ^ m = 0 ^ A n = 0 z

(2n —1) —(2n~30 —1)
“ 2™~

2n - 271-30
“ 277_
= 1 - 2-30

The probability that a random fragment compresses by 32 bits or less is 1 - 2-30 which is, for
practical purposes, indistinguishable from 1. Also the probability that a random fragment
compresses by more than four bytes is therefore 1 - P(compresses by 4 bytes or less) which is
for practical purposes equal to zero. Thus if a fragment compresses by more than 4 bytes it
can be assumed that it is not encrypted with high confidence. This fact will be used to classify
the fragments.
A compression algorithm which will meet several requirements will be needed. Firstly an
algorithm which will compress more optimally than standard algorithms such as ‘deflate’ will
be needed. Secondly, deflate uses <length, distance> pairs and literals which are then
Huffman coded. There is a chance that literal bytes will align on a byte boundary and so a
bytewise compressor might see them. However in Huffman coding the data is packed as bits
and the three-bit Huffman header will throw out this alignment. Also literals are likely to
become rare further into the stream. The situation is worse with dynamic Huffman coding as
codes can be nearly any length. A bitwise compression algorithm, however, is not constrained
by lack of byte alignment. It will be able to see repeating literals or <length, distance> pairs
[100], For these reasons zpaq will be used as the compressor. In addition to being a suitable
bitwise compressor it uses bit prediction. It maintains a set of context models which
independently create probabilities for the next bit. The probabilities are combined to make the
prediction. It would be expected that, by definition, it would not be possible to predict the

P Penrose, Triage of Large Capacity Digital Devices 45

next bit in a random fragment. In a fragment which has not been optimally compressed,
however, there must be some remaining pattern and hence predictability otherwise it would be
optimally compressed. Zpaq should be able to detect this and give a more optimal
compression. The classifier in this instance will be simply the compressed size of the
fragment.

5.4 Conclusions
In this chapter the methodology has been described and justified. It has been shown how the
training and test corpora of encrypted and compressed file fragments was created. The
corpora have been generated from those publically available so that an independent researcher
should be able to repeat the experiment and achieve the same results. Compression and
encryption methods used in the creation of the corpus have been chosen to be representative
of real world usage. The possibility of file header or footer information biasing the results has
been excluded.
It has been seen that compressed fragments may fail the NIST test suite for randomness.
Encrypted fragments should not. The output from the tests will be used to create the
characteristic vector for each fragment. These will be used in kNN, SVM and ANN machine
learning algorithms to first create the classifier and then test it.
It has also been shown in 5.3.2 that the probability of a file fragment whose content is random
compressing by more than 4 bytes is 2-30 and is therefore unlikely to compress significantly.
A compressed fragment may compress further. This will be used to classify the fragments as
compressed or encrypted.

P Penrose, Triage of Large Capacity Digital Devices 46

6 Implementation and Results

6.1 Introduction
In this chapter the k-NN, SVM and ANN methods described previously are used to classify
encrypted and compressed file fragments and the best solution chosen. As described in section
5.3.1 the characteristic vector Vf for a file fragment / is defined as the sequence Vf =
(nlj u1: n2 u2j........... ,n 11(u11;) where is the number of the 64 sequences passing test i
and Uj the uniformity P-value for those 64 tests is derived for each fragment by the NIST test
suite and used for classification.

6.2 Statistical Analysis of Randomness
The NIST test suite was modified to operate on fragments and to output the characteristic
vector to be used for classification for each fragment. The characteristic vectors generated
from the training corpus were used to train a classifier that was then used to classify
fragments from the test corpus. k-NN, SVM and ANN analyses of the results were
implemented using RapidMiner [101] and compared.
Initial testing using k-Nearest Neighbour with the development corpus found that k=3
together with the Euclidian distance as a metric was optimum for the k-NN analysis.
The SVM was created using LibSVM [102] and a radial kernel trained using default settings.
The default radial kernel function was found by experiment on the development corpus to
produce the most accurate results. 10-fold cross validation with stratified sampling was used
to optimise the model parameters. In 10-fold cross validation the training set is partitioned
into 10 subsets. The SVM is trained on 9 subsets and the remaining one is used to test the
resulting model. Each of the ten subsets is used in turn as the testing set. Parameters are
automatically chosen to minimise the error. In stratified sampling the subsets are chosen so
that the proportion of file types in each subset reflects the overall proportion in the training
set. The resulting classification model was used on the testing set.
The ANN was set up with parameters optimised using the training set. 10 fold cross-
validation was again used during training.
The results of these analyses on the 46,439 test corpus fragments are shown in Table 16. In
previous research where compressed fragments have been included in the test corpus the
results have been poor with the best previous results by Fitzgerald et al. [25] achieving a true
positive rate of 21.8% for classifying compressed fragments. There is no previous source that
attempted to differentiate between encrypted and random fragments since this was seen as
difficult [18], [25]-[27], It can be seen immediately from Table 16 that classification accuracy
is higher than any previously achieved. The ANN provided the best results with an overall
85% correct classification.

P Penrose, Triage of Large Capacity Digital Devices 47

Table 16 - Results of classification of the test corpus by each machine learning algorithm

Predicted Type
Method Actual Type Encrypted Compressed Accuracy

k-NN
Encrypted 21518 1937 92%
Compressed 9734 13250 58%

SVM
Encrypted 22758 697 97%
Compressed 9776 13208 57%

ANN
Encrypted 21938 1517 94%
Compressed 5665 17319 75%

6.3 Classification By Compression
In Table 16 it can be seen that classification of compressed fragments was poorer than for
those that were encrypted. Each statistic calculated for compressed fragments showed a
greater variance than for encrypted. This is illustrated in Figure 11 where the Shannon 8 bit
entropy of encrypted fragments in a sample has a smaller variance than the compressed
fragments leading to the distribution being much more tightly grouped around the mean and
less chance of misclassification.

i / i a i i n H L n r M L n m L / i ' T L P L h L h i D L / i N L / i o o m a i i h o o
c n ^ - o o T T H c n f N i o h c o c r i ^ c r i L n o h ^ c n r ^ o h o o c T i a i

I— t— r— r~- r— r-~ î -
Shannon 8-bit Entropy

— — E n c r y p te d

" 1 C o m p r e s s e d

Figure 11 - Frequency distribution for the entropy of a random sample of file fragments

Analysis of the compression results is simpler than the statistical tests for encryption. There is
one figure produced for each fragment - the size of the compressed fragment. The hypothesis
is that a compressed fragment will compress more than an encrypted fragment. The fragments
were classified by their compressed file size. If it was bigger than a given size then it was
classified as compressed. Otherwise it was classified as encrypted. Since, for each fragment,
only a single figure is being compared with a fixed value the problem has very small
dimensionality. The fixed value (4 bytes as calculated in 5.3.2) is already known and thus
there is no need for the application of machine learning techniques.
Any compressed file is accompanied by additional information which may include file
headers, archive filenames, file paths, filenames, dates, Huffman tables and dictionaries
depending on the compressor used. It quickly became apparent that this additional data added
to a 4KiB fragment when it was compressed totally masked the small changes in file size that
were trying to be measured. It turned out that most fragments became larger after

P Penrose, Triage of Large Capacity Digital Devices 48

compression. This would not matter if the ‘additionality’ is uniform. If this is so, the small
byte size changes that were expected if the hypothesis is true would still be apparent. This
uniformity was achieved by using the -tiny flag with the compressor. Table 17 shows results
for classifying the test corpus fragments using compression.
Although the classification of compressed files is better than the k-NN and SVM NIST
statistical tests, the encrypted fragment detection is poorer. The overall accuracy of results at
73% are poorer than using the NIST statistical analysis. The statistical analysis of randomness
is therefore the preferred method for classification.

Table 17 - A n a ly s is of Fragm ent C o m p re ss io n c la ss ifica tio n by catego ry

Predicted Type

Actual Type Encrypted Compressed Accuracy

Encrypted 17826 5629 76%

Compressed 6895 16089 70%

6.4 Fragment Size
It was decided to investigate if different fragment sizes had an effect on classification
accuracy. A smaller fragment size would speed up analysis but cannot be used since the NIST
tests are not statistically valid with smaller fragment sizes.
6.4.1 8KB Fragments
A corpus of 8 KiB fragments was created and the ANN trained on a training set from the test
corpus. The NIST tests were run on the testing set to see if there would be any improvement
in classification accuracy. The results for the ANN analysis are shown in Table 18. It can be
seen that there is a small improvement over the 4KB fragment size. The most notable is that
compressed fragment detection has risen from 75% to 82% but the overall correct
classification is similar. However this test highlighted a problem. The NIST statistical tests do
not scale linearly. Doubling the fragment size made the NIST test suite take over 2 hours
when sampling a 1 TB drive, which is unacceptable in a triage situation.
To investigate this the NIST tests were run with a timer and disabled one test at a time. With
the Serial test enabled, each fragment took, on average, 2.54 seconds to analyse. This is
unacceptably long in the front line investigative forensic environment. With the Serial test
disabled each fragment analysis took 0.005 seconds on average.
It was decided to do a performance evaluation on the components of the characteristic vector
to find out how much of a contribution each was making to the classification. Components
can be removed if they have little influence on the classification. If the tests which produce
these components are removed, then this should help to increase the speed of the analysis.
A weight optimisation system was set up using a recursive artificial neural network. This will
allocate a weight for each component or attribute. The weight of each attribute reflects its
overall effect on the classification. If an attribute has a very small weight then that attribute
can be removed from the analysis without a major effect on the accuracy. A simple feed
forward neural network for attribute weighting could not be used because the condition that
all attributes are independent could not be fulfilled. It was therefore decided to us an
evolutionary genetic algorithm. This works by feeding the training data to the artificial neural
network (ANN) and weights are assigned to each attribute. The weighted attributes are used
in cross validation with the training data and the results fed back to the ANN which produces
a new set of weights. This continues until the weights converge - when there is little or no

P Penrose, Triage of Large Capacity Digital Devices 49

difference between generations. The results are shown in Table 19. The weights are shown for
each of the two values that NIST produces for each test - the P uniformity measure and the
number of bit streams passing each test.

The results show the relevant importance of each component of the characteristic vector for
classification. It can be seen that the Serial test does have some significance but does not have
a large influence on the overall classification.
The classification process was run on 8K blocks again without the Serial test. It took under 4
minutes to analyse the 4,579 fragments in the training corpus and a similar time for the testing
corpus. Results are shown in Table 20.
The results are near identical to the 8KB test which used the Serial test showing that its
removal did not affect the results significantly but increased the speed 30-fold. This also
shows that the classification can be achieved at over 1000 fragments per minute.

Table 18 - ANN results with 8KB fragment size

Predicted Type
Actual Type Encrypted Compressed Accuracy
Encrypted 2108 197 91%

Compressed 320 1432 82%

P Penrose, Triage of Large Capacity Digital Devices 50

Table 19 - Weight Analysis of NIST statistical tests

NIST Result Weight
FrequencyP 0

Frequency 0.922

BlockF_P 0.603

BlockF 0.261

C u m Su m F_ P 0.235

C u m Su m F 0.858

C u m Su m B _ P 0.195

C um Sum B 0

R u n s_ P 0 600

R un s 1

LongestRun_P 0

LongestRun 0.739

D FT_P 0.257

D FT 0 4 2 8

Seria l1_P 0.202

Se ria ll 0.031

Serial2_P 0.152

Serial2 0 0 8 3

Table 20 - ANN re su lts with 8 K B fragm ent size , no Seria l test

Predicted Type
Actual Type Encrypted Compressed Accuracy
Encrypted 2093 212 91%

Compressed 291 1461 83%

6.5 Conclusions
The approaches which have been developed have been implemented in a manner which
makes the results available for other researchers to validate. A baseline has been set in a new
area of research against which others can compare methods and results. The overall
classification accuracy using 8 KiB fragments was found to be not markedly better than the 4
KiB analysis. Also the sampled clusters in the contraband detector are 4 KiB and these can be
used directly with the statistical analysis. For these reasons, a 4 KiB fragment is used in the
next section where the practical implementation of this classification methodology in parallel
with contraband detection is considered.

P Penrose, Triage of Large Capacity Digital Devices

7 Constructing A Classifier

7.1 Introduction
Garfinkel [46] shows that sample sizes of as little as 10,000 4 KiB blocks can give similar
statistics for device contents to the media as a whole. It is intended that the encrypted
fragment classifier will run in parallel with the contraband detector and so sample sizes, and
hence accuracy, will be much higher. Since the entropy of each 4 KiB cluster is calculated as
part of the NIST analysis, this value can be used to filter the 4 KiB blocks from the
contraband detector so that any fragment that is unlikely to be encrypted or compressed can
be ignored. The average entropy value for compressed fragments in the 46,439 test corpus
was 7.73 with 94% with values greater than 7.5. For encrypted fragments the average entropy
was 7.95 and the minimum was 7.94. Since it is the proportion of encrypted fragments that is
being estimated it would therefore be reasonable to set an entropy threshold of 7.5 so that
only fragments with an entropy greater than this would be passed to the classifier. This greatly
reduces the number of fragments needing analysed and so the achieved speed already
achieved of 1000 fragments per minute would be adequate to process fragments from the
contraband detection sample.
Given that the sampling is random, the proportion of encrypted fragments in the sample will
reflect the proportion of encrypted data on the device [103, Ch. 6.2], For example if a 250 GB
device is being sampled by the contraband detector and 53000 samples taken (see Table 7)
then if 2000 of the samples were classified as encrypted then the proportion of encrypted
fragments in the sample is 2000 divided by 53000 which is 0.038. It would be expected then
that 0.038 x 250 MB = 9.5 GB of the data on the device is estimated to be encrypted.
Similarly if 20 samples were found to be encrypted then the proportion would be 20/ 53000 =
0.00037 and so 0.00037 x 250 GB = 92.5 MB of data on the device is estimated to be
encrypted.

7.2 Improving Accuracy
If errors are consistent then they can be managed. For example if it is known that a watch
consistently reads 5 minutes slow then this error can be compensated for so that the next train
is not missed. If a production line is known to produce 5% defective items then production
planning can still be done quite accurately by compensating for the known defect rate. If the
testing procedures used in this research produce consistent results then the same methods can
be applied to compensate for the false positive rate and more accurately predict the number of
encrypted fragments. In order to determine if the classification errors in the analysis of
fragments can be similarly handled, consistency was tested for as follows.
Five directories from the Govdocsl corpus [56] were selected at random to create the training
set and fragments of encrypted and compressed files created as before. This generated a total
of 24,637 fragments in the training corpus.
Ten randomly chosen directories from the corpus were used for the testing corpus. Exactly the
same procedure was used on the testing corpus and this generated a total of 48,709 fragments.
The directories chosen for testing were distinct from those used for training. Each folder of
approximately 4500 fragments was analysed separately to check for consistency in
classification.

P Penrose, Triage of Large Capacity Digital Devices 52

The training set was used with an artificial neural network (ANN) and 10-fold cross
validation to create a classification model. This model was used to analyse the test directories
of fragments with the following results. As can be seen in Table 21 the classification accuracy
of encrypted fragments is highly consistent. The average accuracy of encrypted files is 92%
and of compressed files is 67%.

Table 21 - C o n s is te n c y of R e su lts

Directory
Number Actual Type

Predicted Type
Encrypted Compressed Accuracy

027 Encrypted 2270 207 92%
Compressed 722 1600 69%

050 Encrypted 2231 220 91%
Compressed 718 1635 69%

158 Encrypted 2012 192 91%
Compressed 727 1355 65%

220 Encrypted 2140 191 92%
Compressed 814 1473 64%

374 Encrypted 2253 201 92%
Compressed 741 1677 69%

410 Encrypted 2212 197 92%
Compressed 740 1457 66%

679 Encrypted 2423 235 91%
Compressed 875 1848 68%

869 Encrypted 2251 203 92%
Compressed 862 1551 64%

891 Encrypted 2266 214 91%
Compressed 951 1582 62%

922 Encrypted 2411 201 92%
Compressed 833 2018 71%

7.3 Methodology
Consider the results for folder 410 from Table 21 where row and column totals have been
added for convenience. This is shown in Table 22.

Table 22 - R e su lts for fo lder 410 extracted from Table 21

Predicted Type
Encrypted Compressed Total Accuracy

Actual
Type

Encrypted 2212 197 2409 91.8%
Compressed 740 1457 2197 66.3%
Total 2952 1654 4606

Using the accuracy the total number of fragments that will be predicted to be encrypted can be
calculated as the number of encrypted fragments that will be predicted to be encrypted plus
the number of compressed fragments that will be predicted to be encrypted:

0.918 x 2409 +(1 - 0.663) x 2197 = 2951
Similarly the predicted number of compressed fragments can be calculated as 0.663 x 2197 +
(1 -0.918) x 2409= 1654.

P Penrose, Triage of Large Capacity Digital Devices 53

These can be seen to be correct from the bottom row of Table 22 given that the accuracy of
91.8% is rounded to one decimal place.

In general terms,
Let n = total number of fragments

ae - actual number of encrypted fragments

ac = actual number of compressed fragments

pe = predicted number of encrypted fragments

pc = predicted number of compressed fragments

f e = accuracy of encrypted prediction as a fraction

f c = accuracy of compressed prediction as a fraction

Then:

Pe = fe x ae + (1 - f c) x ac (6)

Pc = f c x ac + (1 - f e) x ae (7)
From Eqn. 7,

ac = 7 x [pc ~ (1 - f e) x ae]

Substituting for ac in Eqn. 6 gives:

Pe = / e x « e + (1 - /c) x 7 x [Pc “ (1 - fe) * a e]JC

= fe X ae + (J c - 1) X [p c - (1 - f e) X a e]

= fe X a e + Jc -) X a e - pc + (1 - fe) X ae

Re-arranging gives:

fe x ae -) x ae +(1 - f e) x ae = pe +pc - j -

Hence:

a e x [/e - (17) + 1 - / «] = P . + P c x (b f }

So:

CLe —

,fr -1 N
Pe + P c * (- j T -)

(8)

Hence it has been shown that the actual number of encrypted files ae can be calculated from
the predicted number of compressed and encrypted files together with the respective
accuracies. It was also shown in the previous section that the accuracies were consistent and
that the average accuracies were 92% and 67% respectively for encrypted and compressed
fragments, so these quantities can be used as a best estimate for f e and f c.

Substituting these values into Eqn. (8) gives:

P Penrose, Triage of Large Capacity Digital Devices 54

CLe
y e- 0.493 x pc

0.881
(9)

The best estimate of the actual number of encrypted fragments is now calculated purely from
the results of the classification method.

7.4 Implementation and Results

For each of the ten test corpora the predicted number of encrypted and compressed fragments
was calculated using the classification results given in Table 21 and using the formula
developed for ae in equation (9). The results are shown in Table 23. The methods developed
in this thesis have achieved better than 95% accuracy on average in predicting the number of
encrypted and compressed fragments in all corpora. Having shown that Equation (9) together
with the fragment classification methods developed gives consistent accuracy in the order of
95% for the estimation of the number of encrypted and compressed fragments in a sample,
this will be used in a subsequent section for estimating the encrypted content of storage
devices.

Having shown that Equation (9) together with the fragment classification methods developed
gives consistent accuracy in the order of 95% for the estimation of the number of encrypted
and compressed fragments in a sample, this will be used in a subsequent section for
estimating the encrypted content of storage devices.

Table 23 - Actual and predicted number of encrypted and compressed fragments

Directory Encrypted Fragments Compressed Fragments
Number Actual Predicted Error Actual Predicted Error

027 2477 2399 3% 2322 2400 3%
050 2451 2323 5% 2353 2481 5%
158 2204 2257 2% 2082 2029 3%
220 2331 2437 5% 2287 2181 5%
374 2454 2361 4% 2418 2511 4%
410 2409 2440 1% 2197 2166 1%
679 2658 2593 2% 2723 2788 2%
869 2454 2567 5% 2413 2300 5%
891 2480 2663 7% 2533 2350 7%
922 2612 2454 6% 2851 3009 6%

Fragments that have been compressed and then encrypted as in a standard crypto system are
the output of an encryption process and therefor will be detected as encrypted. Standard
crypto systems do compression before encryption since it can be shown that encrypted data
will not compress significantly (see 5.3.2). If a fragment is from a file that has been encrypted
and then compressed, in what may be termed a ‘reverse crypto system’, then its classification
will depend on the compression method used. Many compressors will not attempt to compress
data that will not significantly compress and will just add the data in its original format to the
compressed archive. In this case, since encrypted data will be stored in its original format, the
fragment would also be detected as encrypted. However Johnson et al. [104] show that, in
very specific cases, an encrypted file can be compressed. In these cases only it might be
possible for an originally encrypted fragment which is then compressed to be misclassified as
compressed. They state, however, that in general, no compression gain can be achieved. Any

P Penrose, Triage of Large Capacity Digital Devices 55

such cases are likely to be rare and so this is unlikely to add significantly to the error rate of
detection.

7.5 Speed Of Analysis
For implementation and testing the process was done in two stages. Firstly the file fragment
characteristic vectors were created using the NIST Statistical Test Suite [96]. These vectors
were then analysed using a neural network within the package RapidMiner [101]. This
procedure would not be feasible in the developed triage software and so alternatives are
considered here. The contraband detection system has been shown to be I/O bound and so
there is processor time available during the sampling and contraband detection. The speed
achievable by such an implementation is considered to determine if it would be suitable for
running in parallel.
7.5.1 Statistical Testing
Sys et al. [105] have optimised the NIST Statistical Test suite and timings for the tests that are
run for the fragment classification total 0.7 seconds for 20 MB of data. This equates to over
7,000 fragments per second. The contraband detector is scanning at 180 fragments per second
on a hard disk drive and 25,000 fragments per second on a solid state device (Table 7). The
speed of the statistical analysis far exceeds the sampling speed of the HDD and so this process
would still be I/O bound, with the statistical analysis having no effect on the overall speed of
the triage. With the SSD however, the statistical analysis is slower than the sampling rate and
would therefore limit the triage speed. From Table 7 it can be seen that the contraband
detection takes 13 seconds for 281,000 samples while detecting a target of 4 MiB of
contraband. It would take the statistical analysis approximately 40 seconds for this number of
samples. Even if the tasks could not be done in parallel, this would only increase the triage
time by 40 seconds to 53 seconds. This can be considered a trivial increase in a typical
investigation.
7.5.2 ANN Analysis
It was seen that the ANN, which has been implemented in a rapid application development
graphical environment, is still capable of over 1000 classifications per minute. Although this
may seem slow it should be remembered that only samples with an entropy of over 7.5 will be
passed to the ANN for analysis. From the examples in the introduction to this section this
could be as many as 2000 samples for a 250 GB drive with approximately 10 GB of
encrypted files. This analysis would take two minutes at the speed of the development ANN.
This adds very little to the overall time needed for triage in the case of an SSD with the total
time being now in the order of three minutes. The added two minutes makes little difference
the triage of an HDD.

7.6 Classifier Implementation
As a proof of concept the proposed system was tested on a 160 GB hard disk drive. The drive
was forensically wiped since the cluster sampling employed would pick up any of the old data
on a disk that had simply been formatted or files deleted. Encrypted files and compressed files
were added to the disk together with files that were known to be neither compressed,
encrypted nor a container type. At each stage when more files were added it was ensured that
equal amounts of each type of data were resident on the disc.
The integration of the components of the classification system is still ongoing and so for the
proof of concept the tests were run in stages.

1. The drive was sampled using the contraband detection software and each cluster
sampled was saved.

P Penrose, Triage of Large Capacity Digital Devices 56

2. Once the sampling was finished, each cluster was analysed by the NIST statistical
analysis software and its characteristic vector produced and saved.

3. Each characteristic vector where the entropy was greater than 7.5 was analysed by the
ANN and its classification recorded. The ANN used the classifier trained in 6.2 so a
training step was unnecessary.

4. The proportion of clusters classified as encrypted in the total sample was used to
calculate the estimate of encrypted data on the disk using Equation (8).

The results are shown in Table 24.
Table 24 - Estimates of encrypted content

Encrypted Content
Actual Predicted Error
10 MiB 9.96 MiB 3.8%
20 MiB 19.38 MiB 3.1%
50 MiB 52.35 MiB 4.7%

100 MiB 102.93 MiB 2.9%
1 GiB 1.045 GiB 2.1%
5 GiB 5.24 GiB 4.7%

10 GiB 10.09 GiB 0.9%

It can be seen that the quantity of encrypted content of the disk is being reported with greater
than 95% accuracy over a wide range of encrypted disk content.

7.7 Conclusions
The aim of this part of the thesis was to mitigate the problem caused when the volume of data
on a device being inspected at border post makes a full scan of a computer for contraband
material impractical to be done in any reasonable time. As has been noted previously the
quantity of encrypted data on a digital storage device may significantly affect the attitude of a
border guard to the profile of the device owner. An inability or unwillingness to produce the
encryption key would lead, at the very least, to the device being held for further detailed
examination. Thus in this situation a reliable reporting of the quantity of encrypted material
on a device is crucial.
Amthod has been developed to mitigate this problem. At the same time as the device is being
scanned for contraband the same samples can be classified by original file type to estimate the
quantity of encrypted content. The classification methods proposed and implemented have
been shown to give consistent accuracy. Given this fact, it was shown that the known error
rate for classification can be compensated for in the estimation of the device content
increasing the accuracy of the estimate. Thus the classification of high entropy file fragments
has been shown to be feasible and that reasonable estimates of the quantity of encrypted data
can be done at an acceptable speed in parallel with contraband detection.

P Penrose, Triage of Large Capacity Digital Devices 57

8 Conclusions

The aim of this thesis was to investigate a solution to the current and growing problem facing
the digital forensic community of the ever increasing capacity of digital devices and the
consequent time taken to analyse the contents. A system of triage was envisaged where a
quick and accurate scan of a device could be done and a decision made as to whether it
required further analysis or not. The system was required to identify known contraband files
on a device and classify the sampled file fragments as encrypted or not so that a profile of the
disk contents could be made. The research in this thesis has shown that such a system of
triage is possible and a working prototype has been developed and shown to meet the
requirements of a fast scan with controllable accuracy that can execute on legacy equipment.

8.1 Overview
In the first section of this thesis a methodology to detect contraband files involving the
sampling of devices at the physical level and bypassing the file system was implemented. The
current practice of detecting contraband by file hashes was replaced by hashing 4 KiB blocks
of data. These blocks align with the data stored on disk [24] and so can be used in the same
manner as a file hash. The presence of a 4 KiB contraband block on disk implies that the
original file is or was once present. A Bloom filter was used to store a compact representation
of the block hash database so that it could be used in memory to provide fast lookup. The
mathematics of Bloom filter error rates and sampling theory was used to determine
appropriate sample sizes for a given degree of accuracy. The system was implemented and it
was shown that a fast scan of large capacity digital storage devices could be done to the
required degree of accuracy and in a reasonable time. The implementation has been trialled on
live systems by law enforcement agencies and shown to work well within the agreed
parameters of speed and accuracy and should help to cut the three-month backlog of digital
forensic investigations that is currently the norm in the UK [8], [9].
A possible problem with the system was identified by the existence of non-probative blocks -
those that may appear in many files and so can’t be used to prove the existence of a file on the
media [22], [24]. This was investigated to quantify the scale of the possible problem by the
use of publically available multi-million block corpora and a mitigation strategy was devised.
It was shown that the scale of the problem is small but mitigation is still needed if the desired
accuracy is to be maintained. The contraband detection system together with the simple
mitigation strategy of needing three contraband blocks to be detected during a scan in order to
classify a device as requiring further analysis was implemented and shown still to meet the
desired degree of confidence and speed that was acceptable in the field. Forensic analysts at
Police Scotland have found that live cases have either many contraband files or none and the
requirement for three hits is of little consequence. It would be a rare case that was positive
with only three hits and in this instance it would be a matter of moments to manually examine
the files containing these blocks (Police Scotland, personal communication, 23rd March
2016). Thus the system of triage for file fragment identification together with mitigation for
non-probative blocks has been achieved.
To address the problem of detecting encrypted content from 4 KiB file fragments the current
state of research in file fragment classification was critically evaluated. It was found that most
common file fonnats can be detected from file fragments but classification of high entropy

P Penrose, Triage of Large Capacity Digital Devices 58

file fragments such as those that are encrypted or compressed had not been attempted. This
area of classification has been stated to be difficult [25], [27], [17], [18]. No attempt had been
made at the classification of encrypted fragments. Where classification of compressed
fragments has been attempted, results had been poor. Two hypothesis were proposed to
distinguish between high entropy file fragments.
Firstly encrypted fragments should be statistically indistinguishable from random data [90]
and therefore be ‘more random’ than compressed data. Compression algorithms always have
to compromise between speed and compression [95], It is thus unlikely that a compressed
fragment is optimally compressed and therefore can be compressed further. If a fragment can
be compressed further then it must have some pattern and therefore cannot be random.
Secondly, as has been discussed above, a compressed fragment should compress further
whereas it was shown mathematically that an encrypted fragment will not. In addition a file is
compressed by representing any repeating patterns of data with a shorter code. An encrypted
file should have no patterns otherwise it would be vulnerable to cryptanalysis and therefore
cannot be compressed.
A methodology was devised using these hypotheses which classifies encrypted and
compressed file fragments. A detection rate of 97% for encrypted fragments and 78% for
compressed fragments has been achieved. These results have been achieved in an area where,
to date, classification had been thought to be difficult. A proof of concept implementation of
the methodology was done and shown to detect encrypted content with good accuracy within
a general corpus of files. The proportion of encrypted data on a device was reported
consistently within 3% of the actual content. The method was shown to be capable of
matching the speed of contraband detection and so the triage system achieves its aim of fast,
accurate contraband and encrypted data classification which can be done in parallel with
contraband detection.
The approaches developed in this thesis have been implemented using publically available
corpora so that the results may be validated by other researchers. This also allows them to do
a direct comparison of any advance in methodology against the methods which were
developed in this thesis.
The methods developed speed up the digital forensic process in several ways. Firstly devices
can quickly be triaged and a decision made whether a device needs further investigation or
not. This cuts the number of devices passed to the forensic facility and thus reduces the
workload. Secondly, if a device is found to have contraband, then the location on the device
of the sampled contraband is already known thus aiding the analyst in the analysis of the
device. Thirdly, as the triage progresses, the device content is profiled and the proportion of
encrypted material reported. Thus the thesis aims of developing methodologies that will help
reduce the backlog of devices needing analysed in digital forensic laboratories and the
speeding of analysis of devices at border posts have been met.

8.2 Future work
The focus of this thesis has been on the application of the novel methodologies introduced to
the area of digital forensic analysis with particular attention to the triage of large capacity
storage devices. Opportunities exist in many areas for the application of the methods for
sampling and small block identification. The payload in each TCP/IP packet in network traffic
can be considered as a sample of the data being transmitted and the methodology may be
modified to deal with such data. The focus has also been on working with law enforcement
for the fast detection of contraband. The same methodology can be applied to the area of Data
Loss Prevention where the contraband block hash database could be replaced by a block hash

P Penrose, Triage of Large Capacity Digital Devices 59

database of a company’s intellectual property and confidential files. Some possibilities are
outlined below.
8.2.1 Secure Sharing of Contraband and Intellectual Property Fingerprints
Police forces and other law enforcement agencies are reluctant to share their contraband
databases since if the hash databases become publically available the hashes can be used by
potential offenders to find illegal content online. The methods developed in this thesis create a
fingerprint which consists of a sequence of eight hashes for each block which are stored in a
Bloom filter. It is impossible to extract the fingerprint of an individual file or block from a
Bloom filter since any bit in the filter may be set by the hashes of multiple blocks. In addition
only 264 bits of the 384 bit SHA384 hash are used to enter data in the Bloom filter. Even if
the 264 bits could be retrieved then the remaining 120 bits would be unknown and so finding
files using a partial hash would be impractical. As a result fingerprints are completely secure,
and cannot be used by potential offenders or competitors to find illegal content online. This
will allow police forces and other investigative agencies to share their databases in a
completely secure fashion, increasing the coverage achieved by investigations.
8.2.2 Multi-agency Operation and Data Loss Prevention
There is much potential in using the contraband detector in an inter-domain model, especially
in the area of data loss prevention. Each domain would have an on-site contraband builder
which creates the block hash database together with metadata including location details of
their confidential documents and sends it to a remote server. Since only hashes are sent and
these are not reversible none of the confidential information is sent off site.
This is illustrated in Figure 12. The creation of Bloom filters and their incorporation into a
bespoke triage agent which could be distributed to client hardware could be handled from the
central agency.
In the client organisations any contraband hash detected would be forwarded to the remote
database and its original location checked. Both the organisation where the fragment was
detected and the organisation where it originated could be alerted. This is illustrated in Figure
13.

Figure 12 - Each domain sends hashes + metadata

P Penrose, Triage of Large Capacity Digital Devices 60

Remote Database

Client company
Each PC running distributed

agent

(Lloyds B an k-A u d itl2 3 .x lsx)- Inter
domain investigations?

Figure 13 - Contraband discovery handled centrally

There are ethical considerations here with regard to the reporting to one organisation about
data held by another. These issues would need to be agreed by all parties before
implementation of any cross-domain reporting. In addition a position would have to be taken
by the centralised administration as to what action to take when it has knowledge that one
organisation holds confidential information from another, but there is no agreement between
the two organisations for sharing results.
8.2.3 Operations in a cloud infrastructure
Investigation is needed into the application of sampling within block, file and object storage
within a cloud infrastructure. Access to the hypervisor privilege level would be necessary to
directly access hardware devices but given this there is no reason that a contraband detector
could not be continually operational in sampling the infrastructure. Individual hits could be
flagged and a hit could focus more intensive scrutiny on that storage instance. Of course there
would be ethical implications here. Any client using the service should be aware that all
storage is scanned for contraband. Since only block hashes are used they could be assured that
at no time is any file accessible.
8.2.4 An alternative compression detection algorithm
In theory it has been shown that the compression of file fragments should lead to accurate
classification of compressed and encrypted fragments. In practice, however, the small
differences in compressed fragment size are masked by the additional data such as filenames,
paths, archive details and journaling entries added by the compression software. In addition
many compression algorithms will also produce a dictionary or a Huffman table to be
appended to the compressed data for the purposes of decompression. The file fragment which
is being classified has none of this additional data. The compression software which was used
is open source. In order to compare like with like, it should be investigated if the source code
for any of the compression programs can be modified to report the raw compressed size
without the additional data. A program is needed that embeds none of the data needed for
decompression nor appends any dictionaries, filenames or archive details. This may achieve
results that are closer to those expected by theory
In the review of the literature it was seen that the trend in file fragment classification is
toward specialised approaches. A specialised approach using knowledge of the file format
could be used here. Such an approach could be used to pre-process high entropy fragments for
evidence of compression. The deflate algorithm stores data in variable length blocks. A
possible approach is that it should be possible to detect uncompressed data in a fragment of a
compressed file by checking for a block header (BFINAL 0 or 1, BTYPE 00) and then
checking that the next 32 bits complied with RFC 1951 - LEN and NLEN being ones
complements [97]. In a similar manner RFC 1950 defines a 2-byte header for a ZLIB block.

P Penrose, Triage of Large Capacity Digital Devices 61

The 2 bytes are constrained to be a multiple of 31 when viewed as a 16 bit unsigned integer
[106]. There are 216 = 65536 possible 32 bit unsigned integers. Of those, 65536 / 31 = 2114
are multiples of 31. Hence only 3% of random byte pairs will be a multiple of 31. If such a
byte pair is found then there is a 97% chance that it is part of a ZLIB block header.

These three classification methods could be built in to the analysis since the fragment bit
stream is already being analysed. With such pre-processing used to classify and remove these
compressed fragments the overall classification should improve. These methods are likely to
be very processor intensive and an investigation into whether they would be feasible in a
triage situation would be necessary.
8.2.5 IP Streams
The sampling methodology has application in sampling IP streams. Fixed size 4 KiB
fragments cannot be used because the payload of a TCP/IP packet is not of fixed length and
so hashing will not match that of hashes of fixed 4 KiB blocks. It is not feasible to rebuild a
packet stream and check for contraband. However similarity hashing, sometimes called fuzzy
hashing, may be used to detect if a packet payload originated from a file in a contraband
library. Proof of concept testing is already underway and a variety of similarity hashing
methods have been trialled - sdhash [107], MRSHnet [108] and MRSHcf [109]. Initial tests
are promising with contraband detection 100% positive while inspecting all packets at a rate
of 1 GBit/sec. When sampling is introduced this can increase the speed considerably
depending on the sampling rate required.
8.2.6 Cuckoo Filters
In this research Bloom filters have been used for high speed set membership tests. As has
been previously shown they are especially fast when returning negative results i.e. when
testing for a cluster that is not in the contraband set. This behaviour was one of the
characteristics that led to the selection of a Bloom filter as the preferred option for testing set
membership since during sampling it was expected that most samples would not be from the
contraband set. A recent development has been a new data structure called a cuckoo filter
[110], Each entry in a cuckoo filter consists of a number ‘buckets’ each of which stores a
shorter fingerprint for a hash value instead of the hash value itself. It has two major
advantages over the Bloom filter. Items may be removed from a cuckoo filter, which is not
possible in a Bloom filter. Any bit in the Bloom filter may have been set by multiple hashes
and so deleting the bits for one hash may delete bits associated with multiple items. In
addition the cuckoo filter can offer better compression than the Bloom filter, allowing up to
95% occupancy so that a cuckoo filter may be only 60% the size of an equivalent Bloom filter
for the same false positive rate. However this compression is dependent on the fingerprint size
required to achieve the required false positive rate. The fingerprint length \fh\ is given by the
following formula [109]:

\fh\ > riog2(2 b /£)] = [log2(l /£) + log2(2b)l
where e is the false positive rate and b is the number of buckets per entry.
Given that a false positive rate of less than one in a million, then this formula gives \fh\ > 23.
Thus each entry would require 23 bits per entry for each hash in the contraband database
giving a total size for the 200 million hashes of the contraband database of approximately 548
MiB. Writing or tailoring an implementation of a cuckoo filter needs to be done so that
performance in terms of speed, size and false positive rates can be compared with that of the
Bloom filter.

P Penrose, Triage of Large Capacity Digital Devices 62

References
[1] E. Casey, Digital Evidence and Computer Crime: Forensic Science, Computers and the

Internet, 3rd ed. Academic Press, 2011.
[2] R. Attoe, Digital forensics in an eDiscovery world. Elsevier Inc., 2015.
[3] C. Walter, “Kryder’s Law,” Scientific American, no. August 1, 2005.
[4] B. Marchon, T. Pitchford, Y. T. Hsia, and S. Gangopadhyay, “The head-disk interface

roadmap to an areal density of 4 Tbit/in 2,” Advances in Tribology, vol. 2013, no.
Figure 2, 2013.

[5] S. Garfmkel, “Digital forensics research: The next 10 years,” Digital Investigation, vol.
7, pp. S64-S73, Aug. 2010.

[6] V. Roussev, C. Quates, and R. Martell, “Real-time digital forensics and triage,” Digital
Investigation, vol. 10, no. 2, pp. 158-167, 2013.

[7] A. Goldberg, “Child abuse cases delayed by police backlog,” BBC 5 Live Investigates,
2015. [Online]. Available: http://www.bbc.co.uk/news/uk-34713745. [Accessed: 18-
Jul-2016],

[8] Tier Majestys Inspectorate of Police, “Online and on the edge : Real risks in a virtual
world,” 2015.

[9] The Parliamentary Office of Science and Technology, “Digital Forensics and Crime,”
2016. [Online]. Available: http://www.statewatch.org/news/2016/mar/uk-post-note-
digital-forensics-crime-3-2015.pdf. [Accessed: 20-Apr-2016].

[10] J. I. James and P. Gladyshev, “A survey of digital forensic investigator decision
processes and measurement of decisions based on enhanced preview,” Digital
Investigation, vol. 10, no. 2, pp. 148-157, Sep. 2013.

[11] B. Hitchcock, N.-A. Le-Khac, and M. Scanlon, “Tiered forensic methodology model
for Digital Field Triage by non-digital evidence specialists,” Digital Investigation, vol.
16, pp. S75-S85, 2016.

[12] M. Pollitt, The key to forensic success: Examination planning is a key determinant o f
efficient and effective digital forensics. Elsevier Inc., 2015.

[13] A. Shaw and A. Browne, “A practical and robust approach to coping with large
volumes of data submitted for digital forensic examination,” Digital Investigation, vol.
10, no. 2, pp. 116-128, Sep. 2013.

[14] T. A. Hoffer, J. L. E. Shelton, S. Behnke, and P. Erdberg, “Exploring the Impact of
Child Sex Offender Suicide,” Journal o f Family Violence, vol. 25, no. 8, pp. 777-786,
2010 .

[15] S. W. Craun and P. J. Detar, “Designated as Armed and Dangerous,” Journal o f
Criminal Justice, vol. 43, no. 5, pp. 437-442, 2015.

[16] T. Hoffer, J. L. E. Shelton, and C. Joyner, “Operational safety considerations while
investigating child sex offenders: A handbook for law enforcement,” Washington, DC,
2012 .

[17] V. Roussev and S. L. Garfmkel, “File Fragment Classification-The Case for
Specialized Approaches,” 2009 Fourth International IEEE Workshop on Systematic

P Penrose, Triage of Large Capacity Digital Devices 63

http://www.bbc.co.uk/news/uk-34713745
http://www.statewatch.org/news/2016/mar/uk-post-note-digital-forensics-crime-3-2015.pdf
http://www.statewatch.org/news/2016/mar/uk-post-note-digital-forensics-crime-3-2015.pdf

Approaches to Digital Forensic Engineering, pp. 3-14, May 2009.
[18] S. Garfinkel, A. Nelson, D. White, and V. Roussev, “Using purpose-built functions and

block hashes to enable small block and sub-file forensics,” Digital Investigation, vol. 7,
pp. S13-S23, Aug. 2010.

[19] P. Penrose, W. J. Buchanan, and R. Macfarlane, “Approaches to the classification of
high entropy file fragments,” Digital Investigation, vol. 10, no. 4, pp. 372-384, Dec.
2013.

[20] P. Penrose, W. J. Buchanan, and R. Macfarlane, “Fast contraband detection in large
capacity disk drives,” Digital Investigation, vol. 12, no. SI, pp. S22-S29, 2015.

[21] DFRWS, “Digital Forensic Research Workshops,” Digital Forensic Research
Workshops (DFRWS), 2015. [Online], Available: https://www.dfrws.org/2015eu/.

[22] P. Penrose, W. J. Buchanan, R. Macfarlane, O. Lo, and B. Ramsay, “The Effect Of
Non-probative Blocks On Disk Sampling For Forensic Triage,” Digital Investigation,
vol. In Press, 2016.

[23] The Home Office, “The Child Abuse Image Database The Child Abuse Image
Database (CAID),” 2015.

[24] S. L. Garfmkel and M. McCarrin, “Hash-based carving: Searching media for complete
files and file fragments with sector hashing and hashdb,” Digital Investigation, vol. 14,
pp. S95-S105, Aug. 2015.

[25] S. Fitzgerald, G. Mathews, C. Morris, and O. Zhulyn, “Using NLP techniques for file
fragment classification,” Digital Investigation, vol. 9, pp. S44-S49, Aug. 2012.

[26] G. Conti et al., “Automated mapping of large binary objects using primitive fragment
type classification,” Digital Investigation, vol. 7, pp. S3-S12, Aug. 2010.

[27] Q. Li, A. Ong, P. Suganthan, and V. Thing, “A novel support vector machine approach
to high entropy data fragment classification,” Proceedings o f the South African
Information Security Multi-Conference, 2010.

[28] M. H. Kryder, “After Hard Drives—What Comes Next?,” IEEE Transactions on
Magnetics, vol. 45, no. 10, pp. 3406-3413, Oct. 2009.

[29] (Association of Chief Police Officers) ACPO, “ACPO Managers Guide Good Practice
and Advice Guide for Managers of e-Crime Investigation.” .

[30] E. Casey, “Editorial - A sea change in digital forensics and incident response,” Digital
Investigation, vol. 17, pp. A1-A2, 2016.

[31] J. Young, K. Foster, S. Garfinkel, and K. Fairbanks, “Distinct Sector Hashes for Target
File Detection,” Computer, vol. 45, no. 12, pp. 28-35, 2012.

[32] M. M. Pollitt, “Triage: A practical solution or admission of failure,” Digital
Investigation, vol. 10, no. 2, pp. 87-88, Sep. 2013.

[33] G. Horsman, C. Laing, and P. Vickers, “A case-based reasoning method for locating
evidence during digital forensic device triage,” Decision Support Systems, vol. 61, pp.
69-78, May 2014.

[34] V. S. Harichandran, F. Breitinger, I. Baggili, and A. Marrington, “A cyber forensics
needs analysis survey: Revisiting the domain’s needs a decade later,” Computers and
Security, vol. 57, pp. 1-13, 2016.

[35] E. Casey, G. Katz, and J. Lewthwaite, “Honing digital forensic processes,” Digital
Investigation, vol. 10, no. 2, pp. 138-147, Sep. 2013.

P Penrose, Triage of Large Capacity Digital Devices 64

https://www.dfrws.org/2015eu/

[36] D. Quick and K. K. R. Choo, “Big forensic data reduction: digital forensic images and
electronic evidence,” Cluster Computing, vol. 19, no. 2, pp. 1-18, 2016.

[37] S. Garfmkel, “Digital media triage with bulk data analysis and bulk extractor,”
Computers & Security, vol. 29, 2013.

[38] V. Roussev, Y. Chen, T. Bourg, and G. G. Richard, “md5bloom: Forensic filesystem
hashing revisited,” Digital Investigation, vol. 3, pp. 82-90, Sep. 2006.

[39] J. Komblum, “Identifying Almost Identical files using context triggered piecewise
hashing,” Digital Investigation, vol. 3, no. SUPPL, pp. 91-97, 2006.

[40] V. Roussev, “Data Fingerprinting With Similarity Digests,” in Advances in Digital
Forensics VI, K.-P. Chow and S. Shenoi, Eds. Springer Berlin Heidelberg, 2010, pp.
207-226.

[41] P. Farrell, S. L. Garfmkel, and D. White, “Practical Applications of Bloom Filters to
the NIST RDS and Hard Drive Triage,” 2008 Annual Computer Security Applications
Conference (ACSAC), pp. 13-22, Dec. 2008.

[42] Guidance Software, “Encase Forensic v7.” [Online]. Available:
https://www.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx.
[Accessed: 23-Mar-2014],

[43] Fujitsu Technology Solutions GmbH, “WHITE PAPER FUJITSU PRIMERGY
SERVER,” 2011.

[44] Microsoft, “Microsoft Default Cluster Size,” Knowledge Base, 2013. [Online],
Available: http://support.microsoft.com/kb/140365. [Accessed: 08-Jul-2014],

[45] IDEMA, “The Advent of Advanced Format,” International Disk Drive Equipment and
Materials Association, 2013. [Online], Available:
http://www.idema.org/7page_idA2369.

[46] S. Garfmkel, “Random Sampling with Sector Identification,” Naval Postgraduate
School Presentation, 2010. [Online]. Available: http://simson.net/ref/2010/2010-02-
11.pdf. [Accessed: 20-Mar-2014].

[47] L. Zhang, “Hypergeometric Distribution,” Applied Statistics 1, 2008. [Online].
Available:
http://www.math.utah.edu/~lzhang/teaching/3070summer2008/DailyUpdates/jun23/sec
3_5.pdf. [Accessed: 10-Aug-2014].

[48] E. Weisstein, “Combinations,” MathWorld - A Wolfram Web Resource. [Online],
Available: http://mathworld.wolfram.com/Combination.html. [Accessed: 07-Jun-2014],

[49] W. P. (ed) Vogt, “Dictionary of Statistics & Methodology Central Limit Theorem,” in
Dictionary o f statistics & methodology, 3rd edn., Thousand Oaks, CA: SAGE
Publications, Inc., 2005, p. 42.

[50] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications o f the ACM, vol. 13, no. 7. pp. 422^426, 1970.

[51] M. Mitzenmacher and S. Vadhan, “Why simple hash functions work: exploiting the
entropy in a data stream,” Proceedings o f the 19th Annual ACM-S1AM Symposium on
Discrete Algorithms, pp. 746-755, 2008.

[52] Random.org, “Pregenerated Random Numbers.” [Online], Available:
http://www.random.org/files/.

[53] B. Shavers, “Windows Forensic Environment,” 2014. [Online]. Available:

P Penrose, Triage of Large Capacity Digital Devices 65

https://www.guidancesoftware.com/products/Pages/encase-forensic/overview.aspx
http://support.microsoft.com/kb/140365
http://www.idema.org/7page_idA2369
http://simson.net/ref/2010/2010-02-11.pdf
http://simson.net/ref/2010/2010-02-11.pdf
http://www.math.utah.edu/~lzhang/teaching/3070summer2008/DailyUpdates/jun23/sec
http://mathworld.wolfram.com/Combination.html
http://www.random.org/files/

http://brettshavers.cc/index.php/brettsblog/tags/tag/winfe. [Accessed: 20-Mar-2015].
[54] Microsoft, “Microsoft NTFS File Sector Information Utility.” [Online], Available:

http://support.microsoft.com/kb/253066. [Accessed: 07-Jul-2014],
[55] K. Foster, “Using distinct sectors in media sampling and full media analysis to detect

presence of documents from a corpus,” Masters Thesis, Naval Post Graduate School,
2012.

[56] S. Garfmkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing science to digital
forensics with standardized forensic corpora,” Digital Investigation, vol. 6, pp. S2-S11,
Sep. 2009.

[57] LIACS Medialab, “The MIRFLICKR Retrieval Evaluation.” Leiden University, The
Netherlands, 2013.

[58] International Color Consortium, “Image technology colour management —
Architecture, profile format, and data structure,” 2010.

[59] P. Bromiley, “Shannon entropy, Renyi entropy, and information,” Statistics and
Information Series, no. 2004, pp. 1-8, 2004.

[60] C. E. Shamion, “A mathematical theory of communication,” The Bell System Technical
Journal, vol. 27, no. July 1928, pp. 379-423, 1948.

[61] J. Giordano and C. Macaig, “Cyber Forensics: A Military Operations Perspective,”
International Journal o f Digital Evidence, vol. 1, no. 2, pp. 1-13, 2002.

[62] R. Dhanalakshmi and C. Chellappan, “File format identification and information
extraction,” 2009 World Congress on Nature & Biologically Inspired Computing
(NaBIC), pp. 1497-1501,2009.

[63] M. McDaniel and M. Heydari, “Content based file type detection algorithms,”
Proceedings o f the 36th Annual Hawaii International Conference on System Sciences,
2003., 2002.

[64] W. Li, K. Wang, S. Stolfo, and B. Herzog, “Fileprints: Identifying file types by n-grarn
analysis,” Proceedings o f the 2005 IEEE Workshop on Information Assurance and
Security, pp. 64-71, 2005.

[65] K. Wang and S. J. Stolfo, “Anomalous Payload-based Network Intrusion Detection,”
Recent Advances in Intrusion Detection, vol. 3224, pp. 203-222, 2004.

[66] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance Metric Learning , with
Application to Clustering with Side-Information,” Learning (2003), vol. 15, no. 2, pp.
505-512,2003.

[67] M. Karresand and N. Shahmehri, “Oscar - File Type Identification of Binary Data in
Disk Clusters and RAM Pages,” Proceedings o f the 2006 IEEE Workshop on
Information Assurance, vol. 201, pp. 140-147, 2006.

[68] M. Karresand and N. Shahmehri, “File type identification of data fragments by their
binary structure,” Information Assurance Workshop ..., pp. 140-147, 2006.

[69] G. Hall and W. P. Davis, “Sliding window measurement for file type identification,”
IEEE Information Assurance Workshop, 2006.

[70] C. J. Veenman, “Statistical Disk Cluster Classification for File Carving,” Third
International Symposium on Information Assurance and Security, pp. 393—398, Aug.
2007.

[71] R. F. Erbacher and J. Mulholland, “Identification and Localization of Data Types

P Penrose, Triage of Large Capacity Digital Devices 66

http://brettshavers.cc/index.php/brettsblog/tags/tag/winfe
http://support.microsoft.com/kb/253066

within Large-Scale File Systems,” Second International Workshop on Systematic
Approaches to Digital Forensic Engineering SADFE07, 55-70, 2007.

[72] S. J. Moody and R. F. Erbacher, “SADI - Statistical Analysis for Data Type
Identification,” 2008 Third International Workshop on Systematic Approaches to
Digital Forensic Engineering, pp. 41-54, May 2008.

[73] W. C. Calhoun and D. Coles, “Predicting the types of file fragments,” Digital
Investigation, vol. 5, pp. S14-S20, Sep. 2008.

[74] I. Ahmed, K. Lhee, H. Shin, and M. Hong, “On Improving the Accuracy and
Performance of Content-Based File Type Identification,” pp. 44-59, 2009.

[75] S. Stolfo, K. Wang, and W. Li, “Fileprint analysis for Malware Detection,” New York,
2005.

[76] “Optimal Separating Hyperplane,” 2013. [Online]. Available:
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_RyClassification/SVM.
[Accessed: 23-Sep-2014],

[77] A. Ben-hur and J. Weston, “A User ’ s Guide to Support Vector Machines
Preliminaries : Linear Classifiers,” Methods in Molecular Biology, vol. Oliviero C, pp.
223-239, 2009.

[78] R. Berwick, “An Idiot ’ s guide to Support vector machines (SVMs) SVMs : A New
Generation of Learning Algorithms Key Ideas.” pp. l r 28, 1990.

[79] C. Gershenson, “Artificial Neural Networks for Beginners,” Networks, vol.
cs.NE/0308, p. 8, 2003.

[80] S. Axelsson, “The Normalised Compression Distance as a file fragment classifier,”
Digital Investigation, vol. 7, pp. S24-S31, Aug. 2010.

[81] R. Cilibrasi and P. Vitanyi, “Clustering by Compression,” IEEE Transactions on
Information Theory, vol. 51, no. 4, pp. 1-28, 2004.

[82] S. Gopal, Y. Yang, K. Salomatin, and J. Carbonell, “Statistical Learning for File-Type
Identification,” 2011 10th International Conference on Machine Learning and
Applications and Workshops, no. DiiD, pp. 68-73, Dec. 2011.

[83] A. Ozgur, L. Ozgtir, and T. Giingor, “Text Categorization with Class-Based and
Corpus-Based Keyword Selection,” Proceedings o f the 20thlnternational Conference
on Computer and Information Sciences, pp. 606-615, 2005.

[84] L. Sportiello and S. Zanero, “File Block Classification by Support Vector Machine,”
2011 Sixth International Conference on Availability, Reliability and Security, pp. 307-
312, Aug. 2011.

[85] A. Kattan, E. Galvan-Lopez, R. Poli, and M. O’Neill, “GP-fileprints: File types
detection using genetic programming,” Genetic Programming, pp. 134-145, 2010.

[86] B. C. Geiger and G. Kubin, “Relative Information Loss in the PCA,” in Proceedings
IEEE Information Theory Workshop, 2012, pp. 562-566.

[87] M. Amirani, M. Toorani, and S. Mihandoost, “Feature-based Type Identification of
File Fragments,” Security and Communication NeU\>orks, vol. 6, no. April 2012, pp.
115-128,2013.

[88] W. Chang, B. Fang, X. Yun, S. Wang, X. Yu, and M. Ethodology, “Randomness
Testing of Compressed Data,” Journal o f Computing, vol. 2, no. 1, pp. 44—52, 2010.

[89] A. Rukhin, J. Soto, and J. Nechvatal, “A Statistical Test Suite for Random and

P Penrose, Triage of Large Capacity Digital Devices 67

http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_RyClassification/SVM

Pseudorandom Number Generators for Cryptographic Applications,” NIST Special
Publication (2010), vol. 22, no. April, 2010.

[90] J. Soto, “Randomness testing of the AES candidate algorithms,” NIST. Available via
csrc. nist. gov, p. 14, 1999.

[91] B. Zhao, Q. Liu, and X. Liu, “Evaluation of Encrypted Data Identification Methods
Based on Randomness Test,” 2011 IEEE/ACM International Conference on Green
Computing and Communications, pp. 200-205, Aug. 2011.

[92] J. Ziv, “Compression, tests for randomness and estimating the statistical model of an
individual sequence,” Sequences, 1990.

[93] B. Schneier, Applied cryptography: protocols, algorithms, and source code in C, 2nd
ed. New York: John Wiley & Sons. Inc., 1995.

[94] M. Mahoney, “Data Compression Explained,” Data Compression Explained - Dell
Inc., 2012. [Online], Available: http://mattmahoney.net/dc/dce.html.

[95] E. E. Eiland and L. M. Liebrock, “An Application of Information Theory to Intrusion
Detection,” Fourth IEEE International Workshop on Information Assurance, 2006.
IWIA 2006., 2006.

[96] A. Rukhin, J. Soto, and J. Nechvatal, “A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications,” NIST Special
Publication (2010), vol. 22, no. April, 2010.

[97] P. Deutsch, “RFC 1951 - DEFLATE Compressed Data Format Specification version 1
. 3 IESG,” IETF, vol. RFC 1951, pp. 1-15, 1996.

[98] Microsoft, “Cryptography, Crypto API and CAPICOM,” Windows Dev Centre, 2013.
[Online], Available: http://msdn.microsoft.com/en-
us/library/windows/desktop/aa3 80251 (v=vs. 85). aspx.

[99] D. Kumar, D. Kashyap, K. K. Mishra, and a. K. Misra, “Security Vs cost: An issue of
multi-objective optimization for choosing PGP algorithms,” 2010 International
Conference on Computer and Communication Technology (ICCCT), vol. 1, pp. 532-
535, Sep. 2010.

[100] Schnaader, “Compression Problem,” 2012. [Online]. Available:
http ://encode.ru/threads/1614-Compression-Problem.

[101] RapidMiner, “RapidMiner Data Mining Software,” 2016. [Online]. Available:
http://rapidminer.com/products/studio/. [Accessed: 15-Jan-2016],

[102] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, no. 3, p. 27:1-27:27, 2011.

[103] D. C. LeBlanc, Statistics: Concepts and Applications for Science Part 2. Boston: Jones
& Bartlett, 2004.

[104] M. Johnson, P. Ishwar, V. Prabhakaran, D. Schonberg, and K. Ramchandran, “On
compressing encrypted data,” IEEE Transactions on Signal Processing, vol. 52, no. 10,
pp. 2992-3006, 2004.

[105] M. Sys, Z. Riha, and V. Matyas, “NIST Statistical Test Suite - result interpretation and
optimization,” in SantaCrypt 2015, 2016, no. July.

[106] P. Deutsch and J.-L. Gailly, “RFC 1950 - ZLIB Compressed Data Format,” IETF, vol.
RFC 1950, pp. 1-10, 1996.

[107] V. Roussev, “Data Fingerprinting with Similarity Digests,” in Advances in Digital

P Penrose, Triage of Large Capacity Digital Devices 68

http://mattmahoney.net/dc/dce.html
http://msdn.microsoft.com/en-
http://rapidminer.com/products/studio/

Forensics VI: Sixth IF IP WG 11.9 International Conference on Digital Forensics,
Hong Kong, China, January 4-6, 2010, Revised Selected Papers, K.-P. Chow and S.
Shenoi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 207-226.

[108] F. Breitinger and H. Baier, “Similarity Preserving Hashing: Eligible Properties and a
New Algorithm MRSH-v2,” Digital Forensics and Cyber Crime, pp. 167-182, 2013.

[109] V. B. Gupta and F. Breitinger, “How Cuckoo Filter Can Improve Existing
Approximate Matching Techniques,” vol. 2, pp. 39-52, 2015.

[110] B. Fan, D. G. Andersen, and K. Michael, “Cuckoo Filter: Practically Better Than
Bloom,” in Proceedings o f the 10th ACM International on Conference on Emerging
Networking Experiments and Technologies, 2014, pp. 75-88.

[111] B. Y. D. R. Barr and A. H. D. R. H. Shu, “Anote on Kuiper’s V,” pp. 663-664, 1973.
[112] Y. Wu, J. P. Noonan, and S. Agaian, “A novel information entropy based randomness

test for image encryption,” 2011 IEEE International Conference on Systems, Man, and
Cybernetics, pp. 2676-2680, Oct. 2011.

[113] R. Lyda and J. Hamrock, “Using Entropy Analysis to Find Encrypted and Packed
Malware,” IEEE Security and Privacy, vol. 5, no. 2, pp. 40—45, 2007.

[114] J. Goubault-larrecq and J. Olivain, “Detecting Subverted Cryptographic Protocols by
Entropy Checking,” Centre National De La Recherche Scientifique, 2006.

[115] H. T. Teng, “Progress In Electromagnetics Research, PIER 104, 221-237, 2010,”
Progress in Electromagnetics Research, pp. 221-237, 2010.

[116] K. Yim, T. Miller, and L. Faulkner, “Chemical characterization via fluorescence
spectral files and data compression by Fourier transformation,” Analytical Chemistry,
vol. 49, no. 13, pp. 2069-2074, 1977.

[117] D. L. Donoho, M. Vetterli, R. A. Devore, I. Daubechies, and S. Member, “Data
Compression and Harmonic Analysis,” vol. 44, no. 6, pp. 2435-2476, 1998.

[118] S. W. Smith, “The Scientist and Engineers Guide to Digital Signal Processing,” in The
Scientist and Engineers Guide to Digital Signal Processing, New York: Springer-
Verlag, 2004.

[119] O. A. H. Reyna, “Cryptographic Implementations Analysis Toolkit,” vol. 2, no.
September, 2008.

[120] G. N. Srinivasan and G. Shobha, “Statistical Texture Analysis,” Proceedings o f the
World Academy o f Science, Engineering and Technology, vol. 36, no. December, pp.
1264-1269,2008.

[121] K. Sandau, “A note on fractal sets and the measurement of fractal dimension,” Physica
A, vol. 233, pp. 1-18, 1996.

[122] C. Corbit and D. Garbary, “Fractal Dimension as a quantitative measure of complexity
in plant development,” Proceedings: Biological Sciences, vol. 262, no. 1363, 1995.

[123] S. Basu and E. Foufoula-Georgiou, “Detection of nonlinearity and chaoticity in time
series using the transportation distance function,” Physics Letters A, vol. 301, no.
September, pp. 413—423, 2002.

[124] A. N. Kolmogorov and V. A. Uspenskii, “Algorithms and randomness,” Theory o f
Probability and Its Applications, vol. 32, no. 3, pp. 389—412, 1987.

[125] M. Borowska, E. Oczeretko, A. Mazurek, A. Kitlas, and P. Kuc, “Application of the
Lempel-Ziv complexity measure to the analysis of biosignals and medical images,”

P Penrose, Triage of Large Capacity Digital Devices 69

Roczniki Akademii Medycznej w Biafymstoku, vol. 50, pp. 1-30, 2005.
[126] B. Li, Y. Li, and H. He, “LZ Complexity Distance of DNA Sequences and Its

Application in Phylogenetic Tree Reconstruction,” Genomics Proteomics
Bioinformatics, vol. 3, no. 4, 2005.

[127] R. Begleiter, “On Prediction Using Variable Order Markov Models,” vol. 22, pp. 385-
421,2004.

[128] R. Williams, “Serial Correlation (Very Brief Overview),” 2015. [Online], Available:
https://www3.nd.edu/~rwilliam/stats2/126.pdf. [Accessed: 21-Dec-2015],

[129] M. A. L. I. Soliman and A. M. R. El-helw, “Network Intrusion Detection System Using
Bloom Filters.”

[130] S. L. Garfinkel, “Automated Media Exploitation Research,” 2011. [Online]. Available:
http://simson.net/ref/2011/2011-09-14 UK MET Briefmg.pdf. [Accessed: 23-Jul-2014],

[131] E. Bahel, “Rock-paper-scissors and cycle-based games,” Economics Letters, vol. 115,
no. 3, pp. 401-403, 2012.

[132] International Electrotechnical Commission, “International Electrotechnical
Commision,” 2016. [Online], Available: http://www.iec.ch/. [Accessed: 08-Jul-2015],

[133] A. Karpathy and (Stanford University Computer Science Department), “Convolutional
Neural Networks for Visual Recognition.” [Online]. Available:
http://cs231 n.github.io/neural-networks-1 /. [Accessed: 14-Jul-2016].

P Penrose, Triage of Large Capacity Digital Devices 70

https://www3.nd.edu/~rwilliam/stats2/126.pdf
http://simson.net/ref/2011/2011-09-14
http://www.iec.ch/
http://cs231

Appendix A Failed Discriminators
Many disciplines were surveyed in the search for methods to classify high entropy fragments.
The basic premise was that encrypted fragments were more complex than compressed
fragments. Compression methods were expected to balance compression effectiveness against
speed and therefore leave some redundancy within the file. The search for a method to
discriminate between these was wide ranging.

Initially the usual statistical analysis of the byte frequency distribution (BFD) was used. None
of the standard descriptive statistics provided any differentiation. Statistics used included
mean, variance, skewness and kurtosis. In addition a truly random sequence should have a
uniform distribution with the probability of any byte value being equal. If one particular byte
value was more probable than others then the sequence is not random. The chi square
goodness of fit test was used to check the fit of the byte frequency distribution to a uniform
distribution. Kuipers test [111] was also used as a test to disprove the hypothesis that the BFD
came from a uniform distribution. Fragment entropy [27], [112]—[115] was calculated but
failed to give any discrimination.

The Fast Fourier Transform [116]—[119] was used to test for any periodicity in the data but
none appeared consistently and did not provide discrimination.
In the field of genetics it was found that the fractal dimension of a set was used as a
discriminator. The fractal dimension is, among other things, a measure of the set complexity.
It was found that the fractal dimension of a set could be used as a discriminator for texture
[51, p.222], [55], In addition, fractal dimension can be used as a measure of complexity [121],
[115], [122], No discrimination was found between types. Lacunarity is a measure of the
texture of a fractal and can be used to discriminate between sets of similar fractal dimension
[123], Calculation of Lacunarity was implemented with no greater success.
Other methods of measuring complexity were tried, but provided no discrimination when
implemented. An approximation to Kolmogorov complexity [124] was tried as one of the
standard statistical techniques but provided no discrimination.

Character (decimal)

Figure 14 - Compressed file visualisation

P Penrose, Triage of Large Capacity Digital Devices 71

30 Character Distribution of test.aes

25 -

Character (decimal)

Figure 15 - Encrypted file visualisation

LZ complexity is used in the analysis of bio signals and medical imaging [125]. The
complexity of the sequences was tested using both LZ Complexity [81], [126], [127] and an
approximation to Kolmogorov complexity [124] but these failed to provide discrimination.

The serial correlation coefficient [26], [128] was calculated. This tests how each byte in the
fragment depends on the previous byte. The value should be close to zero for a random file. It
was found to provide no discrimination between types.
Another test was devised to check for predictability. A first order prediction model as used in
Prediction by Partial Matching (PPM) compression was coded. If the fragment is random,
then the predictions of this model should be correct about 1/256 of the time. This failed to
provide discrimination between high entropy fragment types.
A k-NN implementation using the LZ complexity distance [126] as a metric was used to
measure the distance of fragments from a random string generated from atmospheric noise at
Random.Org. It was hypothesised that the compressed fragment distance from the random
string would be greater than from the encrypted string. This turned out not to be true. The
cosine similarity metric [25], [129], [130] and normalised compression distance [80] were
also applied as metrics with no better effect.
Garfmkel et al. [18] used bit shifting and auto-correlation on fragments and the cosine
similarity between bit shifted blocks was used to detect Huffman coding. This was
implemented with no success at discriminating compressed and encrypted fragments. The
algorithm given in [18] is not well specified and each possible interpretation of it was
implemented.
A bijective compressor has the property that any possible sequence of bytes could be a
possible output [94], This means that any possible sequence can be uncompressed. The
sequence produced is likely to be meaningless if it was not originally produced by the
compressor, but nevertheless the decompression will not fail. It was decided to use a bijective
decompressor on the fragments to see if there would be a significant difference between the
decompressed size of encrypted and compressed fragments. No significant differentiation was
achieved.
In the classic game of rock-paper-scissors the optimal strategy is a completely random choice
[131], It was hypothesised that a completely random sequence would ‘defeat’ a non-random

P Penrose, Triage of Large Capacity Digital Devices 72

sequence. To test this an application to convert the binary sequences in the 4 KiB sample
clusters into ‘hits’ (base 3 digit analogous to a base 2 bit) was implemented. A random
sequence from a random string generated from atmospheric noise at Random.Org was
converted to trits and saved as the master cluster for testing other clusters against. Each
sample cluster was converted to trits. Each trit in the sequence was played against the
corresponding trit in the master sequence. The number of wins for the master cluster was
recorded. If this was high then it was hypothesised that the fragment being tested was not
random. The method failed to discriminate well between compressed and encrypted
fragments.

P Penrose, Triage of Large Capacity Digital Devices 73

Appendix B Research Ethics and Integrity
This research was adhered to the principles set out in the UK Research Integrity Office Code
of Practice2. The associated checklist has been completed in Appendix C.
All software development has been carried out in accordance with the British Computer
Society Code of Conduct3.

Where possible, data has been utilised from publically available digital corpora which have
been checked for privacy and copyright concerns. When such data is insufficient, then raw
random data from random.org has been used to create files of an appropriate size. This data is
generated from atmospheric noise and as such contains no data which could lead to the
identification of any individual.

If any privileged or private information on individuals is collected in the course of this
research then in accordance with Edinburgh Napier University Code of Practice on Research
Integrity4, institutional approval will be sought. Any such data will be anonymised in
accordance with the guidelines set out in Appendix 2, Annexes 1 and 2 of the UK Information
Commissioner’s Office Code on Anonymisation'. No results or statistics will be published or
made available that can be used in any way to identify a data subject.
If any software created is trialled by an external agency, then the test data being used will be
under the control of the agency and at no time will be transferred to any University or
personal computer equipment.
An understanding has been reached with Edinburgh Napier University relating to intellectual
property, publication and authorship relating to this research.

‘UK Research In tegrity Office Code of Practice http://www.ukrio.org/publications/code-of-practice-for-
research/2-0-principles/
’CODE OF CONDUCT FOR BCS MEMBERS available a t http://www.bcs.oru/upload/pdl/conduct.pdf
[Accessed 4/5/2014]

http://staff.napier.ac.uk/services/vice-principaI-acadernic/research/researehpractice/Pages/CodeofConduct.aspx
[Accessed 5/9/2014]
5 The UK Inform ation Commissioner’s Office ‘Anonymisation: m anaging data protection risk Code
of Practice’ (2012). Available a t http://www.ico.gov.uk/for organisations/data protection/topic guides/-/
media/documcnts/librarv/Data Protection Practical application/anonymisation code.ashx [Accessed
5/9/2014]

P Penrose, Triage of Large Capacity Digital Devices 74

http://www.ukrio.org/publications/code-of-practice-for-research/2-0-principles/
http://www.ukrio.org/publications/code-of-practice-for-research/2-0-principles/
http://www.bcs.oru/upload/pdl/conduct.pdf
http://staff.napier.ac.uk/services/vice-principaI-acadernic/research/researehpractice/Pages/CodeofConduct.aspx
http://www.ico.gov.uk/for_organisations/data_protection/topic_guides/-/

BR
IT

IS
H

m
ry

 an
ETHOS
Boston Spa, Wetherby
West Yorkshire, LS23 7BQ
www.bl.uk

Text blurred in original.

http://www.bl.uk

Appendix C - UK Research Integrity Office
Code of Practice Checklist

The Checklist Lists the key points of good practice in research for a researcn project and is applicable to all subject areas

Recommended checklist for researchers

Before conducting your research, and bearing in mind that, subject to legal and ethical
requirements, roles and contributions may change during the time span of the research;

1 Does the p'oposec research address pertinent questions).and is it designee either to adc to
existing Knowledge about the subject in question or to ceve.op netnocs for research into it7 ^

2 Is your researcn cesign appropnate ‘o’ tne questioo(s) being asued? y /

3 Win you have access to aJ necessary skills anc resources to conduct the research7 V

4 Have you conduaed a risk assessment to determine.

a whether there are any ethical issues and whether ethics review is required V

b the potential for risks to tne organisation, the research. or the nealm. sa4ety and well being of
researche-s ano research participants and

c what legal 'equipments govern tne nesea'ch7 ^

5 Will your research comply with all legal and ethica; 'equipments and other applicable guidelines
including those from other organisations and/o' countries i; relevant? y /

6 Will your research comply with aL 'equipments of legislation and good practice relating to
nealth and safe:;,7 > /

7 Has you' research undergone any necessary ethics Pview (see 4(a) above), especially i* it
involves animals, human participants, human materia, o' personal data7 S

8 Will your research comply with any monitoring and audit 'equipments? V

9 A p y o . guidelines relating :o tne • /

10 Have you pacned an agreement renting to inteliectua. property, publication and authorship? • /

11 Have you reached an agreement -eating to collaborative woruing. if applicable?

12 Have you agreed the roles of psearthers and psoonsibiiities for management and supervision? y

13 Have a i conflicts of intepst Plating to your research been identified dec.apc anc addressee7 • /

14 Are you aware of the guidance frc>m ail appjcable organisations on misconduct h research7 ^

When conducting your research:

1 Are you following the agreed research design for tne project? V

2 Have any changes to the agreec research cesign been reviewec anc i .cab.e7 J

3 A p you fouowing best practice *or tne correction storage anc management of data? S

4 Are agreec rores and response -lanagement and supervision being’u/ilied7 S

5 Is your research complying witn any monitoring and audit requirements? S

When finishing your research;

1 WKl your research anc its hncings pe reported accurately, honestly and within a .
reasonable time -rame? »

2 Wi.l aJ contributions to tne research be acknowledged? S

3 Are agreements plating to nteuect^a: p-operty. publication anc authorship being complied with?

4 Will research data be retained in a secure anc accessible form anc for the requirec duration? v

5 Will your research comply with ail legal ethica. and contractua. req. ire -rents? V

Appendix D Terminology

Throughout this research distinction has been made between the base 10 and base 2 notation
used by storage device and memory manufacturers respectively and as defined by the
International Electrotechnical Commission (2016) [132],
For storage devices, 1 GB = 109 and 1 MB = 106.
For memory, 1 GiB = 230 and 1 MiB = 220.
Also GB is referred to as Gigabyte and GiB as Gibibyte.

P Penrose, Triage of Large Capacity Digital Devices 76

