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Abstract
In this paper, we develop an adaptation of the LuGre friction model so as to allow the
development of the friction force and its application in any directions on systems subjected
to varying normal forces. This is achieved by projecting a modified LuGre model adapted
to varying normal forces in 3D along an arbitrary orthogonal system. Consequently, the
direction of the friction force is automatically oriented in the correct direction, thus stick,
stick-slip, and slip behavior can be represented in all directions. The projected friction model
has the following friction features: stick-slip, presliding displacement, frictional lag, varying
break-away force, viscous friction, Stribeck effect, and is adapted to varying normal forces.
The equivalence of this projected LuGre model with the modified one is proven analytically.
The friction model is then applied to simulate the friction on two mechanical systems. The
first system consists of a cube sliding on a plane with a transition from stick to slip due to
varying normal forces and with a pulling force oriented in multiples directions of the contact
plane. The second one is a more complex system consisting of three turbine blades that uses
friction to damp their resonance. The results obtained for both systems are consistent with
literature.

Keywords Friction · LuGre · Mechanical system · Normal force · Turbine blades

1 Introduction

Friction plays an important role in our lives and is used since prehistoric times. But it was
not until 1508 that friction was first studied in the works of Leonardo da Vinci, followed by
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Amontons and Coulomb [1]. In modern technologies, friction knowledge is indispensable
for safe and energy-saving design; consequently, the study of friction has grown significantly
over the past 50 years [2]. Friction is an extremely complex mechanism, which involves mi-
crointeractions between the surfaces in contact. Some research was conducted to link the
microscopic behavior of the friction with the macroscopic one [3, 4]. However, in a multi-
body system the general behavior of friction at the macroscopic level is generally sufficient.
Consequently, only friction models representing the macroscopic effect of the friction are
employed. These friction models are used in a wide range of mechanisms but are critical
in applications such as high-precision positioning [5], tire-road contact [6], wheel and rail
contact [7], soft soil contact [8], etc.

By nature all friction models are empirical and only valid in their specific scope [9]. One
of the most simple friction models is the Coulomb’s one. This model highlights some key
features of friction: friction is always in the opposite direction of the velocity, is proportional
to the normal force, and exhibits two distinct regimes, stick and slip. These considerations
represent the basics of friction and are used in many advanced friction models. With time,
more and more friction features were added to models. Friction features and a different fric-
tion model commonly used are presented in [10]. In multibody dynamics a friction model
aims to reproduce the macroscopic effect of friction, to involve measurable parameters, and
to be computationally effective. Comparison of numerical efficiency of the following fric-
tion models is presented in [1]: (smooth) Coulomb, velocity-based, Karnopp, Dahl, LuGre,
elastoplastic, stick-slip, and Gonthier models. A review comparing the static and dynamic
friction models is presented in [11]. A detailed comparison of computational and physical
characteristics of 21 different friction models is presented in [12]. Among these friction
models, the LuGre model is one the most commonly used in multibody system and motion
control. This model only requires six parameters, is computationally efficient, and is able
to reproduce most of friction phenomena. This model is a dynamic model often considered
as an extension of the Dahl model (Sect. 2.1). As it is a dynamic model, one differential
equation must be introduced to represent stick and slip regimes. The classical LuGre model
is commonly used in simulation of friction in transmission, and as many other friction mod-
els, the classical LuGre model is not suited to be applied in systems with varying normal
force. The stability of friction models subjected to varying normal force is studied in [13].
For the LuGre model, a modified version that is able to withstand a varying normal force is
proposed in [14] and presented in Sect. 2.2.

In many papers the friction model is applied on a simple system. It generally consists
of a block sliding on a horizontal or inclined plane, which makes it easy to predict the
direction of the friction force. In real applications, this direction can be difficult to obtain or
unpredictable. To overcome this difficulty, there are some generalized friction models. The
generalized Coulomb model is presented in [15], a modification of the Coulomb’s law to
eliminate numerical discontinuity is proposed in [16], and the regularization of the general
kinetic friction (GKF) model is presented in Sect. 4. However, as these models are velocity
dependent, pure stick cannot be represented. For friction model that can represent pure stick
such as the LuGre model, a projection of the equations is needed. The 2D projection of
the LuGre friction model in the case of tire-road contact is presented in [17, 18]. In this
application the 2D projection is in the contact plane (the road), and projection is carried out
to take into account the difference in behavior of the tire along the longitudinal or lateral axe.
Parameter identification and stabilization methods are presented for nonsmooth multibody
systems based on the 2D LuGre friction model in [19].

In this paper, we propose an adaptation of the LuGre model that can be used in multiple
directions and on systems subjected to varying normal force. To manage the varying normal
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Fig. 1 Bristle deflection (Z) at
the surface of contact

forces, we use the modified LuGre model presented in [14] with management of the direction
of the slip velocity inspired by [17]. Thus in this paper, we present a set of “projected”
equations of the modified LuGre model. This approach allows us to compute the friction
force direction by computing each component of the friction force vector while being suited
to the case of varying normal forces.

2 Description of the proposed model

2.1 Classical LuGre

At the microscopic level, the contact between two irregular surfaces takes place at several
asperities. Dahl [20] experimentally showed that these junctions behave like a spring and
proposed to represent the contact as two rigid bodies interacting through elastic bristles.
Under a tangential load, these bristles deflect, and the mean deformation of these bristles is
the state variable Z (Fig. 1).

The classical LuGre friction model is an extension of the Dahl friction model with an ar-
bitrary steady-state friction characteristic that includes the Stribeck effect. Thus it describes
the stick-slip effects. In comparison with Dahl’s model, the LuGre one represents the junc-
tion between two bodies as a spring-damper system and includes a viscous effect [21]. It can
represent the following features: stick-slip, presliding displacement, frictional lag, varying
break-away force, viscous friction, and the Stribeck effect. The classical LuGre model is a
dynamic model where the friction force (F ) is computed as

F = σ0Z + σ1Ż + σ2V, (1)

where σ0 [N/m] is the microstiffness, σ1 [Ns/m] is the microdamping, σ2 [Ns/m] is the vis-
cous effect, and V [m/s] is the relative velocity between the surfaces. The dynamic behavior
of the bristles is represented by the equation

Ż = V − σ0|V |
G(V )

Z. (2)

The function G(V ) depends on many factors such as material properties, temperature, lu-
brication, etc. This function does not have to be symmetrical, and thus a direction-dependent
behavior can be modeled. One classical form of this function is

G(V ) = Fk + (Fs − Fk)e
(−| V

vst
|α) (3)
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Table 1 Comparison of features of Lugre with GKF [5], Karnopp [23], Dahl [20], Bliman and Sorine [24],
Leuven [25], and generalized Maxwell slip [26]

LuGre GKF Karnopp Dahl Bliman
and Sorine

Leuven Generalized
Maxwell slip

Arbitrary steady-state char. Yes Yes Yes – – Yes Yes

Stick-slip Yes Yes Yes – Yes Yes Yes

Presliding displacement. Yes – – Yes Yes Yes Yes

Frictional lag Yes – – – – Yes Yes

Varying break-away force Yes – – – – Yes Yes

Hysteresis with nonlocal memory – – – – – Yes Yes

Transition curve in presliding – – – – – Yes Yes

Computationally efficient Yes – Yes Yes Yes – Yes

with

Fk = μk||N || (4)

and

Fs = μs ||N ||. (5)

When N is the normal force, Fk and Fs are the dynamic and static Coulomb friction
forces, and μk and μs are their respective friction coefficients, Vst is in relation with the
Stribeck velocity, and α ranges from 0.5 to 2 [22].

The steady-state behavior is governed by the following expressions:

Zss = G(V )
V

|V | = G(V ) sgn(V ), (6)

Fss = σ0G(V ) sgn(V ) + σ2V (7)

= Fk sgn(V ) + (FS − Fk)e
−( V

Vst
)2

sgn(V ) + σ2V. (8)

We can observe that Eq. (8) is equivalent to the general kinetic friction (GKF) model
(Sect. 4).

A comparison of the features of the classical LuGre friction model with other commonly
used friction models, namely GKF [5], Karnopp [23], Dahl [20], Bliman and Sorine [24],
Leuven [25] and generalized Maxwell slip [26], is presented in Table 1. The LuGre model
is often used in control applications because it is a relatively simple model that captures the
essential properties of friction. It only requires six parameters that can be fitted by experi-
ments.

The limitation of the classical LuGre model occurs when the normal force varies in func-
tion of time. Two problems are observed:

1. When the system is under a tangential load and the velocity is null, changing the normal
force results in changing the values of Fk and Fs , so changing the value of G(V ). How-
ever, as V = 0, the state variable Z is not influenced, resulting in an unchanged friction
force and an incorrect behavior.
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2. When the normal force tends to zero, the friction forces (Fk and Fs ) tend to zero too. As
these values are used in the computation of G(V ), it also tends to zero. As G(V ) appears
in the denominator of the computation of Ż, we can observe some numerical trouble.

2.2 1D modified LuGre: varying normal force

To represent friction in a system subjected to varying normal force, a modified LuGre model
was developed. It was first introduced in applications such as tire-road contact [6] followed
by some mechanisms [27].

In [14] the modified version of the LuGre model is defined as

Ż = V − Z
σM

0 |V |
GM(V )

, (9)

GM(V ) = μk + (μs − μk)e
(−| V

VSt
|α)

, (10)

F = (σM
0 Z + σM

1 Ż + σM
2 V )N = μN, (11)

where σM
0 is a constant parameter, which can be interpreted as the aggregate stiffness per

unit of normal force [14], and σM
1 and σM

2 are constants.
In the steady state the equations are

Zss = 1

σM
0

GM(V ) sgn(V ), (12)

Fss = (GM(V ) sgn(V ) + σM
2 V )N. (13)

The main difference with the classical model comes from Eq. (10). Instead of using the
Coulomb dynamic (Fk) or static (Fs ) forces, their corresponding friction coefficients μs and
μk are used. In Eq. (11), the friction force is directly proportional by an “instantaneous”
friction coefficient to the normal force. The state variable Z is now independent of N . This
way of writing the LuGre equations resolves the problems described in Sect. 2.1, but in the
case of varying normal forces during the stick regime, it can introduce some drift [14]. In
the case of a constant normal force N equal to NE , the classical and modified models are
equivalent if and only if [14]

σM
0 = σ0

NE

, σM
1 = σ1

NE

, σM
2 = σ2

NE

. (14)

2.3 Projected modified LuGre

In multibody dynamics software, the computation of the friction force can be difficult to
perform. If the direction of the friction force is unknown in pure stick as there is no relative
velocity between the surfaces, then the friction force cannot be correctly oriented. Also, the
specificity of a system can lead to unpredictable direction of the friction force. Furthermore,
multiple contact points are sometimes needed to allow rotation of the bodies, and in this case
the orientation of the friction force can be very difficult to predict. The LuGre equations pre-
sented previously (Sects. 2.1 and 2.2) are not usable in these conditions because they imply
knowledge of the direction of the friction force. In this paper, we propose to decompose the
modified LuGre equations along any orthogonal coordinate system.

The modeling of a contact between surfaces through a contact between points attached
to one of the surfaces and the other surface is widespread (for example, in finite element
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Fig. 2 Contact between a plane and a point

Fig. 3 Point M placed in the
middle of the penetration zone

method software). For illustration, let us consider a contact that takes place between a
point A attached to body j and a plane attached to body i (Fig. 2). The normal of the
plane is denoted by �n, �rA is the coordinate vector of point A with respect to frame j , �rP is
the coordinate vector of point P with respect to frame i, and the interbody penetration δ is
computed as

δ = −( �rP − �rA)�n, (15)

so that the penetration rate can be retrieved from the relative velocity �V computed at middle
of the penetration zone (point M on Fig. 3):

δ̇ = �V �n (16)

The relative velocity is decomposed along the tangential ( �Vt ) and normal ( �Vn) components,

�Vn = ( �V �n)�n, (17)

�Vt = �n ∧ ( �V ∧ �n). (18)

The normal force N is computed at each contact point according to the Hunt–Crossley
formula [28]

N = Kcontactδ
PK + Dcontactδ

PD
dδ

dt
(19)

with

• the contact stiffness computed as

Kcontact = A

σPK
, (20)

where A is the area of contact, and σ is set to 3 · 10−9 m2 N1/2 [29],
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• contact damping Dcontact set to 4.88 · 105 N s/m3/2 [29],
• interbody penetration δ,
• fitting exponential coefficients Pk = 2 and PD = (Pk − 1)/2 [29].

This can be achieved in any orthogonal system, it ensures to have the sliding velocity ori-
ented parallelly to the contact plane.

The projection of the modified LuGre equations along an arbitrary orthogonal coordinate
system allows us to compute the three components of the friction force (Fx , Fy , and Fz),
so that the resulting force F is correctly oriented. The indices indicate the projection along
the corresponding axes (x, y, or z). As the projection is performed with the modified LuGre
model, it can represent all its features and is adapted to systems with varying normal forces
and arbitrary orientation of the plane of contact. The projected equations are

Żi = Vti − Zi

σM
0 |V |

GM(V )
for i = x, y, z, (21)

where GM is calculated from the global sliding velocity

V =
√

V 2
tx + V 2

ty + V 2
tz (22)

according to

GM(V ) = μk + (μs − μk)e
(−| V

VSt
|α)

. (23)

Then all components of the force can be computed from the corresponding deflection:

Fi = (σM
0 Zi + σM

1 Żi + σM
2 Vti)N for i = x, y, z, (24)

F =
√

F 2
x + F 2

y + F 2
z . (25)

In a steady state the bristle deflection corresponds to

Zssi = VtiG
M(V )

σM
0 |V | for i = x, y, z, (26)

the forces are given by

Fssi = (
VtiG

M(V )

|V | + σM
2 Vti)N for i = x, y, z, (27)

and the friction force is parallel to the tangential velocity

�Fss = �Vt(
GM(V )

|V | + σM
2 )N, (28)

|| �Fss || = || �Vt |||G
M(V )

|V | + σM
2 |N. (29)

The model yields the same steady-state characteristics as presented in Sect. 2.2:

Fss = (√
F 2

ssx + F 2
ssy + F 2

ssz

) = (GM(V ) sgn(V ) + σM
2 V )N. (30)
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Indeed, from the steady state form we have

F 2
ssi = (

(
VtiG

M(V )

|V | )2 + (σM
2 Vti)

2 + 2
V 2

t i

|V |σ
M
2 GM(V )

)
N2 (31)

= V 2
t i

(
(
GM(V )

|V | )2 + σM2
2 + 2

σM
2

|V |G
M(V )

)
N2 for i = x, y, z. (32)

So the sum is

F 2
ssx + F 2

ssy + F 2
ssz = (V 2

tx + V 2
ty + V 2

tz)
(
(
GM(V )

|V | )2 + σM2
2 + 2

σM
2

|V |G
M(V )

)
N2 (33)

= V 2
(
(
GM(V )

|V | )2 + σM2
2 + 2

σM
2

|V |G
M(V )

)
N2, (34)

which can be written as a remarkable product:

F 2
ssx + F 2

ssy + F 2
ssz = (

(
V GM(V )

|V | )2 + (V σM
2 )2 + 2σM

2

V 2

|V |G
M(V )

)
N2 (35)

So the last equation can be rewritten as

F 2
ssx + F 2

ssy + F 2
ssz = (GM(V ) sgn(V ) + σM

2 V )2N2, (36)

so that

Fss =
√

F 2
ssx + F 2

ssy + F 2
ssz = |GM(V ) sgn(V ) + σM

2 V |N. (37)

As Eqs. (29) and (37) are the same, it indicates that the steady-state behavior of the
projected model is the same as that of the modified version of the LuGre model (Sect. 2.2).
This set of equations can easily be implemented in multibody software. Each component of
the friction force is calculated, and the resultant friction force is correctly oriented even in
pure stick. These equations have exactly the same features as the modified LuGre friction
model (Sect. 2.2).

3 Application on a simple case

To demonstrate the ability of the projected equations to be used in all directions, with multi-
ple contact points and with varying normal force, let us consider a simple system. It consists
of a cube that lies on the X–Y plane. The cube is of dimension 100 mm×100 mm×100 mm.
This cube enjoys six degrees of freedom and stands on six contact points uniformly placed
on a circle of radius 50 mm (Fig. 4).

In the case of a contact between flat surfaces, it is important to identify if there is a rela-
tive rotation between the surfaces. If the parts in contact do not transmit moments (unequal
distribution of normal forces along the surface), then one contact point is enough. Other-
wise, at least three points are needed with four giving a more regular distribution. In this
simulation, at least three contact points should be used as moments are transmitted, but for
illustration, it was chosen to place six contact points to demonstrate the ability of the fric-
tion model to adapt in every direction. Therefore in this configuration the contact area is
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Fig. 4 Cube lying on the X–Y
plane and its 6 contact points
uniformly placed on a circle

Table 2 LuGre parameters [14]
σM

0 [m−1] σM
1 [s/m] σM

2 [s/m] VSt [m/s] μk μs

104
√

105/10 0.04 10−3 0.1 0.15

represented as a hexagon. In the case of more complex contact geometry, the quality of the
meshing influences the results.

The behavior of the cube is simulated in EasyDyn [31] using the minimal coordinate ap-
proach, and the differential equations are solved by the Newmark scheme with an automatic
time step management with a limited maximum step of 0.0001 s [31]. The simulation time
is set to 4 seconds. At the beginning of the simulation the cube is at rest. Only the vertical
force Fn is applied and is equal to 10 N. During the first second of the simulation, no other
external force is applied to let the cube reach its equilibrium position. Then the pulling force
P increases linearly between 1 and 2 seconds from 0 up to 0.75 N. Between 2 and 3 seconds
the system stays in this state. Between 3 and 4 s the force Fn starts to decrease linearly to
attain zero in 4 seconds.

The friction force is computed with the projected friction model, Table 2 shows the pa-
rameters used for the modified LuGre model. These parameters are chosen as in [14]. The
normal force N is computed at each contact point according to the Hunt–Crossley formula
(19).

A total of 4 simulations are performed, the pulling force is in the X–Y plane and set to
an angle with the X axis equal to 0◦, 30◦, 60◦, and 90◦. These 4 simulations highlight that
the system is capable to reproduce pure stick and is able to withstand varying normal force
under different directions of load. Figures 6–9 expose the friction force on each contact point
(from F1 to F6) for different orientations of the pulling force P . Figure 5 shows the total
friction force F tot as well. The total friction force increases up to 0.75 N, which is equal to
the pulling force. As the force N decreases, at 3.5 seconds, there is a transition from stick
to slip. The general behavior of the system is the same as the modified LuGre model [14].
Due to the transfer of mass, depending on the direction of the pulling force, the distribution
of the normal and friction forces among the six contact points varies, but the total friction
force remains the same in all cases. As the system has six contact points, the same behavior
is observed every 60◦. Indeed, Figs. 6 and 7 are similar, as well as Figs. 8 and 9. This simple
experiment highlights the ability of the projected equations to represent pure stick and to
automatically orient the friction force in the proper direction while the system undergos
varying normal force.



276 L. Colantonio et al.

Fig. 5 Total friction force –
Pulling force at 0◦

Fig. 6 6 contact points – Pulling
force at 0◦

Fig. 7 6 contact points – Pulling
force at 60◦

This simulation can also be done with four contact points placed on the edges of the
contact surface of the cube to represent a square contact surface. In this case, similar results
are obtained, and the total friction force F tot is the same.
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Fig. 8 6 contact points – Pulling
force at 30◦

Fig. 9 6 contact points – Pulling
force at 90◦

4 General kinetic friction model

The general kinetic friction (GKF) static model is a commonly used model in multibody dy-
namics. This model is more advanced than Coulomb’s one. The GKF model has the follow-
ing features: static friction, dynamic friction, Stribeck zone, and can represent the viscosity
effect. The GKF model is velocity dependent, and thus pure stick cannot be represented.

To be computed numerically in multibody software, the GKF model is regularized. There
are two equations: the former in “stick” regime and the latter “slip” regime [30].

−→
F =

⎧
⎨
⎩

−Fs sgn(V )
−→
V
ε

if ||−→V || < ε,

−(
μk + (μs − μk) exp(−(ε/Vst )

γ )
)
Fn

−→
V

||−→V || − fv

−→
V if ||−→V || ≥ ε.

(38)

Figure 10 shows the evolution of the friction force. Three zones are clearly identifiable:

1. The regularization zone from 0 to the limit velocity threshold ε. This zone ensures a
smooth transition from −Fs to Fs and avoids the indetermination of the friction force at
V = 0. The velocity threshold ε is chosen so that for the considered application, stiction is
assumed when |V | < ε. When V is larger than ε, the friction force follows the evolution
given by the “slip” regime of Eq. (38).

2. Between ε and Vst , there is the Stribeck zone.
3. When V is greater than Vst , the friction is in slip regime. The slope is given by the viscous

coefficient fv .
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Fig. 10 General kinetic friction
(GKF) law

Fig. 11 Experimental setup presented in [32] and a top view schematic representation

5 Application on an experimental setup

We now apply the generalized friction model (Sect. 2.3) is now applied on a more complex
multibody system problem. This system, presented in [32], represents turbines blades linked
by friction elements.

During the operation of a turbine, the blades are subjected to excitation that can corre-
spond to their eigenfrequencies. To avoid fatigue and mechanical alteration of the blades,
damping is necessary. This effect can be achieved by the introduction of a friction element
between the blades. Out of resonance, friction is sufficient to prevent any relative motion,
but close to resonance, a relative motion takes place such that the friction element acts
as a damper due to the dissipation of energy by friction. Different friction elements exist;
[29, 33, 34] study the introduction of an intermediate body between the blades. Hereafter, the
friction element is directly linked to the blades in a so-called “tie-boss” coupling [32, 35].

The studied system is the experimental setup investigated in [32] (Fig. 11) and consists
of three identical beams coupled by a tie-boss. The excitation force is applied at the tip of
the central blade (Fig. 11). Friction takes place at the contact surfaces, and these surfaces are
prestressed with a normal force up to 5 N. It was observed in [32] that friction contributes
to decrease the vibration amplitude, whereas all the blades preserve their single eigenmode
vibration.
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Fig. 12 First mode of one blade
(53 Hz)

Table 3 The first 3
eigenfrequencies of one blade –
Computed in EasyDyn

Mode 1 2 3

Frequency [Hz] 53 321 408

Table 4 The first 3
eigenfrequencies of one blade –
Computed in Solidworks2020

Mode 1 2 3

Frequency [Hz] 53 312 436

Table 5 The first 3
eigenfrequencies of the 3 blades
coupled together – Computed in
Solidworks2020

Mode 1 2 3

Frequency [Hz] 127 239 329

In the experimental setup studied in [32], the first eigenfrequency of one blade is around
50 Hz. In EasyDyn [31], similar results are obtained for one blade: the first eigenfrequency
is at 53 Hz, the second at 321 Hz, and the third at 408 Hz (Table 3). Similar results were
obtained by computing the eigenfrequencies of one blade under Solidworks2020 (Table 4).
The software’s automatic mesh generator was used and set to “high quality mesh”, which
generated 52878 parabolic tetrahedral solids elements and 80949 nodes. The modes were
computed with the FFEPlus solver, and the first one is presented in Fig. 12. A vibration
analysis of the three blades linked together through rigid connections was also realized in
Solidworks2020 following the same approach, and the results are presented in Table 5 and
Fig. 13. It is observed that if the blades are coupled together, then the first eigenfrequency
of the system shifts to 130 Hz.

The multibody representation of a blade is a composition of several rigid and flexible
bodies (Fig. 14). In Fig. 14, Body [0], Body [2] and Body [4] represent the ground, the
tie-boss, and the tip of the blade, respectively. Their geometrical and inertia properties are
presented in Table 6. The flexible bodies consist of two successive Euler–Bernoulli beam
elements [36] with rectangular cross-section whose characteristics are presented in Table 7.
The rigid bodies are linked to the corresponding nodes of the flexible bodies. Each node
in the flexible bodies introduces six degrees of freedom, a blade with two elements per
flexible body thus involves 24 degrees of freedom. As the system comprises three blades,
the whole system involves 72 degrees of freedom. To represent the contact between two
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Fig. 13 First mode of 3 coupled
blades (127 Hz)

Fig. 14 Multibody representation
of a blade

blades, one or four contact points are uniformly placed on one contact surface and interact
with a plane placed on the opposite contact surface (Fig. 15). The normal force is computed
at each contact point with the Hunt–Crossley formula [28]. As three differential equations
are associated with each contact point (see Sect. 2.3), and there are two contact areas, there
is a total of 6 or 24 supplementary differential equations to compute the friction with the
projected LuGre model.

The system is simulated either with the GKF and the LuGre models. The friction param-
eters for the LuGre model are presented in Table 8. The parameter σM

0 is chosen to present a
sufficient stiffness (2 ·105 N/m with a normal force of 5 N) with respect to the stiffness of the
blade in the same direction (about 2 · 104 N/m). The parameter σM

1 is chosen in accordance
with [10] and [14], whereas σ2 is kept null. The limit velocity of the GKF model is equal to
0.0003 m/s, sufficiently small with respect to Vst equal to 0.003 m/s.
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Fig. 15 4 Contact points
interacting with a contact plane

Table 6 Rigid body characteristic

Dimension (X-Y-Z) [m] Mass [kg] Ixx [kg m2] Iyy [kg m2] Izz [kg m2]

Tie-boss 0.02 × 0.034 × 0.0245 0.1 1.5 · 10−5 8.8 · 10−6 1.38 · 10−5

Tip 0.022 × 0.03 × 0.035 0.16 2.96 · 10−5 2.38 · 10−5 1.92 · 10−5

Table 7 Flexible body characteristic

Width [m] Thickness [m] ρ [kg/m3] E [Pa] ν αdamp [s−1] βdamp [s]

Blade 0.03 0.005 7800 2.1 · 1011 0.3 3.03 1.1 · 10−6

Table 8 LuGre parameters

Parameter σM
0 [m−1] σM

1 [s/m] σM
2 [s/m] μs μk Vst [m/s] α Fn [N]

Value 40000 60 0 0.5 0.3 0.003 2 5

All further simulations of this system take place in the EasyDyn framework [31]. For bet-
ter control of high-frequency modes of the blades, the differential equations are integrated
with the generalized α method, with a spectral radius at infinity equal to zero and a maxi-
mum time step of 10−5 s. In all simulations, blades left and right are subjected to a crushing
force perpendicularly to the contact surface to induce the contact prestress. As illustrated in
Fig. 16, the latter are progressively increased during the first second of simulation up to the
reach of a normal force equal to 5 N as in [32].

5.1 Simulation 1 – transition from stick to slip at low frequency

To illustrate the transition from stick to slip with both friction models, a harmonic force at
30 Hz is applied on the central blade, with a magnitude increasing linearly from 0 to 5 N dur-
ing the interval [0.2–1.8] s (Fig. 17). The chosen frequency is below the first eigenfrequency
of the blade alone and of the three-blade bundle.
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Fig. 16 Contact normal force

Fig. 17 Excitation force

Fig. 18 Simulation 1 (GKF). Tip
displacement. C = Central, L =
Left, R = Right. Note that Tips 2
and 3 are superimposed

Figures 18 and 19 show the tip displacements obtained with the GKF and LuGre models,
respectively, whereas Figs. 20, 21, 22 and 23 depict the time history of the tangential velocity
and of the tangential force. The following observations can be made.

• The transition from stick to slip takes place around instant 1 s, which corresponds to an
excitation force equal to 2.5 N. The transition is smoother for LuGre than for GKF, which
is explained by a rather low value of the limit velocity: indeed, in the GKF model, as far as
the friction force is below the friction limit, the slip velocity is maintained below the limit
velocity (which corresponds to a maximum displacement equal to 1.5 µm at 30 Hz). On
the contrary, the LuGre model behaves essentially like a spring-damper system and offers
more compliance with the chosen parameters. Let us mention that the order of magnitude
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Fig. 19 Simulation 1 (LuGre).
Tip displacement. C = Central,
L = Left, R = Right. Note that
Tips 2 and 3 are superimposed

Fig. 20 Simulation 1 (GKF).
Tangential velocity

Fig. 21 Simulation 1 (LuGre).
Tangential velocity

of the displacement with LuGre is closer to [32], i.e., a displacement of 20 µm for a force
of 3 N at 30 Hz (reported as microslips).

• After about 1.3 s, the tangential velocity (Figs. 20 and 21) is largely over Vst , and the full
sliding regime can be considered as established. Then the results obtained by GKF and
LuGre models show a good agreement.

5.2 Simulation 2 – swept sine in the 30–80 Hz range

This second simulation concerns the frequency response of the system. In [32] the magni-
tude of the displacement is monitored, and the system measures the excitation force neces-
sary to impose a displacement magnitude of 20 µm in the 30–80 Hz frequency range. In this
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Fig. 22 Simulation 1 (GKF).
Tangential force

Fig. 23 Simulation 1 (LuGre).
Tangential force

Fig. 24 Swept sine (GKF). Tip
motion – Note that Tips 2 and 3
are superimposed

paper, for simplicity, the force is maintained at 2 N, i.e., in the stick regime at low frequency,
whereas a logarithmic swept sine is applied in the same frequency range.

Figures 24 and 25 show the time history of the tip displacements during the swept sine
excitation, whereas Figs. 26 and 27 represent the magnitude of the tangential velocity. In
both cases, resonance takes place at about 6 s, corresponding to a frequency of about 55 Hz
close to the eigenfrequency of the blade alone. It turns out that the system plays its role:
blades vibrate independently of each other, and the relative slip dissipates energy by friction.
At resonance, as the slip regime is well established, both models provide a similar response.

The tangential velocity exhibited by both models is also in good agreement. However, as
observed in the previous simulation, the tip displacement and the tangential velocity before
resonance are larger with the LuGre model. Figures 28 and 29, present the X component of
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Fig. 25 Swept sine (LuGre). Tip
motion. Note that Tips 2 and 3
are superimposed

Fig. 26 Swept sine (GKF).
Tangential velocity

Fig. 27 Swept sine (LuGre).
Tangential velocity

Fig. 28 Swept sine (GKF).
Ft /Vt around 30 Hz
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Fig. 29 Swept sine (LuGre).
Ft /Vt around 30 Hz

Fig. 30 Swept sine (GKF).
Tangential force

Fig. 31 Swept sine (LuGre).
Tangential force

the tangential force in terms of the X component of the tangential velocity, around time 2 s,
when the excitation frequency is close to 30 Hz. In the GKF model the friction force remains
in the regularization zone, and the contact behaves as a pure damper. On the contrary, in the
LuGre model a hysteresis appears due to the combination of elasticity and damping. After
resonance, both models exhibit comparable slip velocities obviously out of stick as larger
than Vst .

The evolution of the magnitude of the tangential force is plotted in Figs. 30 and 31.
Forces are comparable out of resonance but not at resonance. In the GKF model, as the
tangential velocity increases at resonance, the friction force decreases, accordingly with the
Stribeck phenomenon. For LuGre, the dynamic nature of the model makes that, as illustrated
in Fig. 32, the friction coefficient can locally take values over μs . As a consequence, the
friction force increases.
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Fig. 32 Swept sine (GKF).
Friction coefficient around
resonance

Fig. 33 Swept sine (GKF).
Power loss

Fig. 34 Swept sine (LuGre).
Power loss

Finally, Figs. 33 and 34 display the time history of the total power lost in contacts and
its integral over time, i.e., the total energy loss. Again, both models give similar results.
The total energy loss for LuGre (0.15 J) is a bit larger than in the GKF case (0.12 J), the
difference coming essentially from the larger slips observed with LuGre before resonance.

5.3 Simulation 2 – sensitivity of the model to friction parameters

The sensitivity of the results to the contact parameters must be underlined before concluding.
Concerning the GKF model, Figs. 35 and 36 show the results of the previous simulations for
different values of the Stribeck velocity Vst and the threshold velocity ε. It can be observed
that changing ε from 0.0003 to 0.001 only has a weak impact on the results, the threshold
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Fig. 35 GKF – Vst = 0.003 m/s
ε = 0.001 m/s – Note that Tip 2
and 3 are superimposed

Fig. 36 GKF – Vst = 0.01 m/s
ε = 0.0003 m/s – Note that Tip 2
and 3 are superimposed

Fig. 37 LuGre:
σM

0 = 40000 N/m,

σM
1 = 30 s/m, Vst = 0.003 m/s.

Note that Tips 2 and 3 are
superimposed

velocity remaining sufficiently lower than Vst . On the contrary, changing Vst from 0.003 to
0.01 decreases the magnitude of the displacement at resonance by a factor 40. Let us note
that in the same conditions (Vst = 0.01 m/s) the LuGre model exhibits a similar trend with
a reduction factor at resonance of about 4.

In the same way the influence of the damping coefficient σ1 is provided in Figs. 37 (σM
1 =

30 s/m) and 38 (σM
1 = 120 s/m). Whereas a decrease from 60 to 30 does not significantly

change the response of the system, the increase from 60 to 120 considerably decreases the
amplification at resonance. As the purpose of the simulations is to properly tune the crushing
force to get slip at the blade resonance frequency and stick otherwise, it is necessary to
dispose of consolidated values of the friction parameters.
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Fig. 38 LuGre:
σM

0 = 40000 N/m,

σM
1 = 120 s/m,

Vst = 0.003 m/s. Note that Tips
2 and 3 are superimposed

6 Conclusion

In this paper, we propose and apply a projected version of the modified LuGre model on a
simple system and a real case problem. The projection of the modified LuGre model allows
us to retrieve the direction of the friction force and is usable in a system subjected to varying
normal forces. The equivalence of the projected model with the modified LuGre model is
demonstrated analytically in Sect. 2.3. The proposed set of equations has all the friction
features of the modified LuGre model: stick-slip, presliding displacement, frictional lag,
varying break-away force, viscous friction, the Stribeck effect, and is adapted to varying
normal forces. It is also adapted to be easily implemented in multibody dynamics software.

This set of equations was applied on a simple system that consists of a cube that slides on
a plane. The pulling force on the cube was oriented in different directions to test the friction
phenomena. This simple system demonstrates the ability of the projected equations to be
used in all directions and with varying normal forces. The friction model was implemented
in the EasyDyn framework [31] with success and was able to obtain the same behavior as
the modified LuGre model presented in [14].

To prove that this friction model can also be used in real-world applications, a system
consisting of three turbine blades is presented in Sect. 5. This system investigates the use of
friction to damp the response around resonance. The projected equations are used to model
friction, and the results show a correlation between the experimental results presented in
[32] and the results presented in this paper. In particular, the model allows us to reproduce
microslip and sliding regimes depending on the excitation frequency and magnitude.
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