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A B S T R A C T

In this investigation, an image-based method has been developed to estimate the volume of the left ventricular
cavity using cardiac magnetic resonance (CMR) imaging data. Deep learning and Gaussian processes have been
applied to bring the estimations closer to the cavity volumes manually extracted. CMR data from 339 patients
and healthy volunteers have been used to train a stepwise regression model that can estimate the volume of
the left ventricular cavity at the beginning and end of diastole. We have decreased the root mean square error
(RMSE) of cavity volume estimation approximately from 13 to 8 ml compared to the common practice in the
literature. Considering the RMSE of manual measurements is approximately 4 ml on the same dataset, 8 ml
of error is notable for a fully automated estimation method, which needs no supervision or user-hours once
it has been trained. Additionally, to demonstrate a clinically relevant application of automatically estimated
volumes, we inferred the passive material properties of the myocardium given the volume estimates using a
well-validated cardiac model. These material properties can be further used for patient treatment planning and
diagnosis.
1. Introduction

In this section, after describing the motivations for the present
study, the limitations of the preexisting approaches are discussed and
our contribution to the literature is provided. In addition, a brief
background on related cardio-mechanical applications is presented to
help emphasizing the clinical implications of the proposed method.

1.1. Motivation

Cardiovascular disease (CVD) is one of the leading causes of death
in the United States and many parts of the world, and its prevalence
is predicted to increase in the years to come (Heidenreich et al.,
2011; Stevens et al., 2016). The Journal of the American College of
Cardiology has reported that global CVD cases have almost doubled
between 1990 and 2019, increasing from 271 million to 523 mil-
lion (Roth et al., 2020). These figures highlight the significant role of
quantitative research studies and patient-specific treatments of CVDs in
responding effectively to future challenges. In the past decade, cardiac
magnetic resonance (CMR) imaging has proven to be a critical tool
in the diagnosis of complex cardiovascular diseases, from myocardial
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infarction to hypertrophy and injury (Bucciarelli-Ducci et al., 2020;
Mangold et al., 2013). CMR imaging is considered one of the most
accurate approaches to measuring the ejection fraction, ventricular
mass, myocardial volume, and stroke volumes (Khened et al., 2019)
which are critical for the detection of certain CVDs (Bernard et al.,
2018). However, O’Dell (2019) reported that when using common
geometric assumptions with a limited number of short-axis slices, the
expected uncertainty of the measurement of the ejection fraction can
reach 49%. O’Dell (2019) further added that by including six or more
short-axis slices, the composite midpoint integration method, which
is common practice, can achieve an error in the ejection fraction of
less than 3% and a volume error in the left ventricular (LV) cav-
ity of approximately 10% compared to manually segmented slices.
However, taking into account the time-consuming process of manual
segmentation of CMR images and the limited accuracy of conventional
methods for estimating the LV cavity volume, an automated volume
estimation approach is favorable to minimize the required man-hours
and maintain a reasonable level of accuracy. As one of the mainstream
automated methods to tackle this problem, deep machine learning will
be discussed in more detail.
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1.2. Application of deep learning and limitations

In recent years, deep learning has emerged as the leading automated
approach for image-based characterization of the heart (Chen et al.,
2020; Hernandez et al., 2021; Dalton et al., 2021), having achieved
state-of-the-art results in cardiac image segmentation (Bernard et al.,
2018; Khened et al., 2018; Isensee et al., 2017) and cardiac disease
diagnosis (Isensee et al., 2017; Wolterink et al., 2017). Automated deep
learning analysis of the left ventricle specifically has been of great inter-
est (van Hamersvelt et al., 2019; Liu et al., 2021), in particular for ex-
tracting its volume (Isensee et al., 2017; Khened et al., 2019). One prob-
lem, however, with automated deep learning approaches is that they
are not guaranteed to produce results that respect the known anatomi-
cal features of the heart. For segmentation tasks, for example, any arti-
facts in the CMR images can be passed on by the automated method to
the segmentation output, potentially yielding non-physiological results,
such as holes in the myocardium.

Knowing the mentioned limitation, we review the conventional
automated procedure for estimating the volume of LV. For this purpose,
a trained deep learning model segments the LV cavity in several short-
axis CMR images. Knowing the vertical spacing of the slices and the
spatial resolution of the images, an approximate 3D voxelized shape
of the LV can then be reconstructed. Counting the number of voxels
within the cavity and multiplying it by the spatial resolution gives the
approximate cavity volume, as demonstrated by Isensee et al. (2017)
and Khened et al. (2019). The voxelized shape of the left ventricle
reconstructed in this manner has very rough edges, which do not
respect the smoothness of the heart wall. Several approaches have been
proposed to incorporate prior knowledge of cardiac anatomy in image
segmentation and geometry reconstruction tasks. This includes the use
of shape priors (Duan et al., 2019; Oktay et al., 2017), constraining
the reconstructed geometry to lie on a linear PCA subspace (Romaszko
et al., 2021), as well as warping methods based on a low-dimensional
embedding of the LV anatomy found with a constrained variational
autoencoder (Painchaud et al., 2020). To date, however, incorporating
prior anatomical knowledge into volume estimation tasks has received
less attention.

1.3. Contribution to the literature

The present work expands the literature on automatic LV cavity vol-
ume extraction from CMR scans by taking into account the continuity
and smoothness of the heart wall in both space and time. Our approach
is based on flexible Gaussian process regression, which, as we will
demonstrate, achieves significantly improved accuracy. An important
application of the estimation of the volume of the LV cavity is in the de-
tection of cardiovascular diseases (Bernard et al., 2018). Furthermore,
cardio-mechanical models can use these volume estimations to infer the
mechanical properties of the myocardium non-invasively (Hadjichar-
alambous et al., 2015; Gao et al., 2017b). Considering the importance
of cardio-mechanical models as a complementary step to the presented
volume estimation method, a brief background is presented.

1.4. Cardio-mechanical applications

While estimation of the LV cavity volume (and the LV geometry
in general) is of direct relevance for the detection of cardiovascular
diseases (Bernard et al., 2018), a fully automated approach for data
extraction from images is also of interest for clinical translation of
cardio-mechanical models, which is widely considered the next step
for cardio-mechanical modeling (Niederer and Smith, 2016; Chabiniok
et al., 2016). A particular area of interest is that of precision medicine,
where patient-specific information is used to tailor treatments and deci-
sion making to each individual patient (Peirlinck et al., 2021; Mangion
et al., 2018a). In this context, cardio-mechanical models can be used
to provide information on the level of function of the heart, while
2

also providing information on the causes of cardiac disease (Voorhees
and Han, 2015). An important part of modeling is model calibration,
where we learn a set of model parameters from measured data. This
process relies on the measurement of target data, such as LV vol-
umes, and input data, such as LV geometry. Accurate measurement
techniques, combined with an accurate cardio-mechanical simulator,
allow us to match a personalized cardiac model to its corresponding
in vivo function (Hadjicharalambous et al., 2015; Palit et al., 2018;
Gao et al., 2017b). Often for these models, the parameters have an
associated physiological interpretation related to the stiffness of the
material, which means that accurate estimation provides information
on tissue health (Westermann et al., 2008) and allows the identification
of cardiovascular diseases (Gao et al., 2017a). The translation of these
practices to the clinical setting depends critically on the computational
cost. Although advances have been made in the use of statistical sur-
rogate modeling for efficient patient-specific cardio-mechanical model
simulation (Noè et al., 2019; Lazarus, 2022; Davies et al., 2019), a
limited number of these studies has considered the use of ‘‘automated
measurement techniques’’, by which we mean the automatic extraction
of the relevant quantities of interest (QoI) from the CMR scans. Gen-
erally, the current state-of-the-art is manual extraction, slowing down
the inference process and prohibiting clinical translation. Therefore, a
critical next step is a fully automated QoI extraction procedure and its
use within an efficient inference framework. This is precisely the task
that is tackled in the current work.

2. Material and method

In this study, we use cine steady-state free precession imaging to
estimate the volume of the LV cavity of the patient’s heart. Patient CMR
scans consist of several short-axis images captured in a cardiac cycle
represented by 25 to 35 time frames.

Initially, we have used deep machine learning to segment cardiac
images and find parts of the image that are occupied by the LV
cavity. This process has been repeated over all different short-axis
slices in different time frames to make a spatio-temporal surface that
represents the cross-sectional area of the left ventricle. By assuming
spatio-temporal smoothness for the LV cavity shape as suggested by Yan
et al. (2019), Guo et al. (2021) and Rabbani et al. (2022b) we have
used a Gaussian process to fit a curved surface over the available data
points. Mathematically, by integrating the surface in the direction of
the medial axis of the left ventricle (longitudinally), the volume of
the cavity is obtainable in each time frame. Subsequently, a stepwise
regression model was used to improve the accuracy of the predictions
using a set of image-based features. To demonstrate a clinical appli-
cation of the estimated cavity volume, we have presented an example
of inverse cardio-mechanical modeling to infer the passive stiffness of
the heart muscle. In this section, each of the steps mentioned will be
briefly described. Furthermore, Fig. 1 represents a summary of the data
workflow of the proposed method, from the training of a deep learning
model on an available CMR dataset known as ACDC (Bernard et al.,
2018) to the estimation of the cavity volume of the left ventricle and
myocardial passive properties.

2.1. Patient description

In this study, we have used 339 CMR datasets read from a group
of patients presenting with ST-segment elevation myocardial infarc-
tion (MI) (clinicaltrails.gov Identifier: NCT02072850), a cohort of 111
patients recovering from COVID-19 infection, a control group of 25
patients with a high risk of cardiac disease but without a history of MI
and COVID-19 (clinicaltrails.gov Identifier: NCT04403607), as well as
a group of 72 healthy volunteers. Table 1 presents details of each group
of patients and their population and selection criteria. The protocol
used for CMR imaging was steady-state free precession cine imaging
that is used to assess the LV structure and its function. For MI patients,
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Fig. 1. Data processing workflow and summary of the proposed method in the present study, from building an augmented training dataset based on the ACDC dataset to predicting
the left ventricle cavity volume using segmented images and estimating myocardial passive properties.
the short-axis cine scans were acquired in planes perpendicular to
the LV medial axis from the base to the apex with 7 mm thickness
and a 3 mm inter-slice gap. The repetition time (TR) and echo time
(TE) are 1.2 ms and 3.3 ms, respectively. Furthermore, the voxel size
is 1.3 × 1.3 × 7 mm3 and the flip angle is 80◦ with a bandwidth of
930 Hz∕pixel. For COVID-19 study and controls, typical scan parameters
were: field of view (FOV) 340 × 286 mm, slice thickness 7 mm with 3 mm
gap in short-axis stack, repetition time (TR) 41.4 ms, echo time (TE)
1.51 ms, flip angle 50◦, and voxel size 1.33 × 1.33 × 7 mm. In addition to
short-axis slices, standard cine images were acquired in the LV inflow
and outflow tracts (LVOT), horizontal long-axis (HLA), and vertical
long-axis (VLA) planes.

2.2. Manual segmentation

To obtain the ground truth values of the LV cavity volumes, we still
rely on manual segmentation. Manual segmentation is still the current
state of the art for reconstruction of ventricular geometry (Romaszko
et al., 2021). In this study, we used 5 to 8 short-axis images, as well as 3
long-axis images, to perform manual segmentation at the early diastole
stage of the heart using a home-made graphical user interface (GUI). It
3

should be noted that the selection of the exact time frame in which
the diastolic phase begins is done manually by finding the moment
at which the mitral valve is first fully opened in the LVOT slice. The
manual segmentation workflow in the developed GUI begins by asking
the user to click on a series of points located on endo- and epicardium
surfaces visible in short-axis images. Then, this process was repeated for
3 existing long-axis images, namely LVOT, HLA, and VLA. Afterward,
through the developed GUI, the user will be asked to click on the apex
point of the heart located on the endo- and epicardium surfaces, which
helps with the accurate reconstruction of the LV geometry.

Due to possible movements of the patient during the imaging ac-
quisition process, some of the CMR images could be misplaced, and
in such a condition motion correction is required. For this purpose, we
take the long-axis images as reference, and the user will have the option
to relocate the short-axis contours to match the background long-axis
image (Fig. 2-b). At this stage, two separate surfaces are automatically
fitted over all endo- and epicardium contours using a cubic B-spline
interpolation in a prolate spherical coordinate system (Li et al., 2020;
Romaszko et al., 2021). Then the LV geometry is enclosed between
the endocardial and epicardial surfaces (Fig. 2-c) consisting of 2865
quadrilateral patches and 5792 vertices (Fig. 2-d). Further details on
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Table 1
Description of the patient groups.

Patients group Description Population

Myocardial infarction (MI) MI patients were selected from a population of patients with acute ST-elevation MI (STEMI), obtained
within an observational study carried out between 14 July 2011 and 22 November 2012, funded by
the British Heart Foundation. These patients were selected if they required percutaneous coronary
intervention (PCI) due to a history of symptoms consistent with acute MI (Carrick et al., 2014).

131

COVID-19 Patients who received hospital care for COVID-19, with or without admission, and were alive, were
prospectively selected for cardio-renal MRI. MRI was acquired in a single reference site for all
patients using a research-dedicated 3.0 T (3 T) scanner. All patients underwent protocol-directed MRI
in the convalescent phase, 28–60 days after discharge (Berry et al., 2021). This study was funded by
Chief Scientist Office.

111

COVID-19 control The control group of patients with similar age, sex, ethnicity, and cardiovascular risk factors
underwent the same research procedures as COVID-19 patients. Age range 40–80 years. At least one
cardiovascular risk factor by ASSIGN criteria (Osman and Abumanga, 2019; Guzik et al., 2020).

25

Healthy volunteers (HV) Healthy volunteers with no prior history of cardiovascular disease were enrolled for CMR imaging.
They were scanned using a 1.5 T scanner without Gadolinium enhancement. The demography of this
group can be found at Mangion et al. (2016).

72
Fig. 2. Steps of the manual segmentation process: (a) manually adjusted endo- and epicardial cubic B-splines on a short-axis slice shown with blue and red colors, respectively,
(b) motion correction for all short-axis images in reference to long-axis images, in this case, the LVOT slice, (c) fitted surfaces of endo- and epicardium, (d) the final generated LV
mesh representing the myocardium overlapped with a short-axis image, (e) the final LV mesh.
manual segmentation and motion correction can be found in Gao et al.
(2017b) and Li et al. (2020). The final reconstructed mesh (Fig. 2-e)
can be used for an accurate calculation of the volume of the LV cavity,
enclosed by the endocardial surface. Furthermore, this LV geometry can
also be used as an input for cardio-mechanical simulations (Lazarus
et al., 2022b; Romaszko et al., 2021).

Manual segmentation of COVID-19 patients was performed by 3
different trained operators over 6 months. In such a condition, inter-
and intra-operator variability may affect the validity of the ground
truth data. To estimate the amount of uncertainty in manual segmenta-
tion, CMR scans of 6 COVID-19 patients were selected to be processed
by different operators, as well as the same operator repeatedly at
different times. From this set of independent and repetitive manual
segmentations, LV cavity volumes were computed and used for our
uncertainty quantification (Fig. 9-d).

2.3. Deep learning segmentation

Deep learning semantic segmentation of short-axis CMR images has
been performed based on a publicly available cine image dataset known
as the Automated Cardiac Diagnosis Challenge (ACDC) (Bernard et al.,
2018). The dataset was initially published in 2017 and its training data
include CMR scans of 100 patients with 5 groups of normal, myocardial
infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, and
dilated right ventricle. This dataset contains manual segmentations of
different elements within the CMR images, including the myocardium,
the LV cavity, and the right ventricle at the end of diastole and the end
of systole. The structure of the deep learning model that we have used
for segmentation is known as the U-net, which has been used repeatedly
for medical image segmentation and resolution enhancement in the
literature (Li et al., 2018; Zhou et al., 2018; Ronneberger et al., 2015;
Ankenbrand et al., 2021; Pain et al., 2022; Rabbani and Babaei, 2022;
Rabbani et al., 2022a). To improve the accuracy of segmentation, as
suggested in the literature (Xia and Kulis, 2017), we have used two
4

U-net structures in a sequential manner as depicted in Fig. 3. Since the
training and prediction datasets have been obtained from two different
sources, the transferability of the learned patterns is challenging. In
particular, CMR images that are captured from a different cohort of
patients can have explicit or implicit variations that hinder transfer
learning. For example, using only a dataset of overweight patients
for training could lead to an overestimation of the LV volume when
applied to other patients who are not overweight. In another example,
training on a dataset of MI patients and predicting on a dataset of
healthy volunteers may lead to an underestimation of the ejection
fraction due to the bias inherent in the training data. To overcome
this limitation, we have artificially augmented the ACDC dataset into
a more diversified set of images so that the trained model would
not be sensitive when switching between the datasets for prediction
purposes. Data augmentation has been carried out using the common
technique of zooming and rotation (Ankenbrand et al., 2021). Through
this approach, we have augmented the 100 patients available from the
ACDC dataset into 1000 instances and trained a deep neural network
based on 80% of short-axis slices from the end-diastole and end-systole
phases of the patient’s heart. As a practical aside, we note that the deep
learning model has been developed using the Python programming
language based on the TensorFlow package with Keras back-end (Abadi
et al., 2016). In the deep learning model and within each of the U-net
structures, four stages of downsampling are implemented to decrease
the dimension of the input short-axis images and detect the identity
of each element in the image. Then, four sequential upsampling stages
are implemented to assign the detected identities to the corresponding
pixels in the output image. At each of the down-sampling stages, a 3 by
3 matrix convolution is applied using the same size output condition,
and a 2 by 2 max-pooling layer with unit stride is used to shrink the
size of the image by half at each of the stages. The ‘‘Exponential Linear
Unit’’ (ELU) activation function is applied after each convolution and
the filters are initialized via He Normal method as suggested in the
original U-net structure (Ronneberger et al., 2015). Finally, to train
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Fig. 3. Structure of the deep learning model used for semantic segmentation of the short-axis images of cardiac MRI. The output image background is presented by black, the
right ventricle with dark gray, the myocardium with light gray, and the left ventricle cavity is shown by white pixels. Conv+elu stands for convolutional layer with exponential
linear unit of activation. Also, 𝑁 denotes the length and height of the input image in pixels, which is equal to 256 for the present study. Blue boxes schematically show the shape
of the data at each stage of the down- and up-sampling with dimensions written at the top of the boxes. For more information regarding the deep learning model structure, refer
to Ronneberger et al. (2015).
the model, we have used a categorical cross-entropy loss function to
penalize incorrect segmentations. It should be noted that the second U-
net structure has been trained by taking the output of the first trained
U-net as input to make the final prediction. Such a coupling approach
helps to minimize the need for post-processing steps such as removing
isolated pixels and filling empty holes in the labeled image. Fig. 3
illustrates the structure of the deep learning model used to segment
the short-axis CMR images.

2.4. Gaussian process

When segmented images of the LV cavity are obtained, the simplest
approach that can be used to estimate the volume of the cavity is
counting the number of pixels and multiplying them by the physical
dimensions of the pixel and the thickness of each slice in the long-axis
direction. Although this simplified approach has been used repeatedly
in the literature (Isensee et al., 2017; Khened et al., 2019; Ammar et al.,
2021), it is not the most accurate method considering the fact that
it does not take into account the 3D geometry of the left ventricle.
Furthermore, this slice stacking approach must be performed manually
when dealing with realistic data to handle repetitive slices at the same
location, missing slices, and scarcity of slices in the apex region. To
address these issues, we have used the Gaussian process (GP) package
in MATLAB 2021a to fit a surface on top of all available data points
that describe the cavity cross-sectional area in different time frames.
For the GP kernel function, we chose the standard squared exponential
based on the smooth nature of the myocardium shape and assumed a
constant prior mean (Williams and Rasmussen, 2006). All kernel pa-
rameters and the mean were inferred with maximum likelihood, using
the default optimization routine in the MATLAB 2021a GP package
known as the quasi-Newton approximation method (Eade and Robb,
1981). The fitted surface can be extrapolated towards the apex area
until it intersects with the horizontal plane of zero cross-sectional area,
as visible in Fig. 4. Using this approach, we are able to estimate the
cross-sectional area at the apex region, which usually suffers from the
lack of information in the CMR imaging. Finally, by integrating the area
enclosed below the fitted surface (𝑆) over the distance from the base
of the heart to the apex (𝑥), the volume of the LV cavity is calculated
in each time frame (Fig. 4). Mathematically, we can assume that the
fitted surface is a function of time (𝑡) and location (𝑥):

𝑆 = 𝑓 (𝑥, 𝑡). (1)

Then, integrating over 𝑥 gives:

𝑉 (𝑡) = ∫

𝐿(𝑡)

0
𝑓 (𝑥, 𝑡) 𝑑𝑥 (2)

where 𝑓 is the fitted surface, 𝑡 is the time frame, and 𝐿(𝑡) is the long-
axis distance from the base to the apex in each time frame, which is
5

obtained by intersecting 𝑓 with the plane of zero cross-sectional areas:

𝑓 (𝐿(𝑡), 𝑡) = 0. (3)

Solving the above equation to determine 𝐿(𝑡) is a straightforward
interpolation task considering the high resolution of the available data
points on the fitted surface.

2.5. Step-wise regression

To make the estimated volumes one step closer to the manually
measured values, we have coupled the GP-obtained volumes with
several image-based features that are extracted from automatically seg-
mented images to train a stepwise linear regression model. By training
this model on 80% of the available data points, we aim to reach a lower
RMSE in prediction of the early diastolic LV volumes.

Initially, we have extracted 9 features related to the cross-sectional
area, the cumulative distance value, and the maximum distance value
of different elements in each segmented short-axis image. Distance
values are pixels of a distance map that are easily computable using
standard available image processing tools, including the MATLAB im-
age processing toolbox. The distance map of a binary image shows
the minimum Euclidean distance between each of the non-zero pixels
to the closest zero pixel (Figs. 4–5) (Fabbri et al., 2008; Kumar and
Bhatia, 2014). In the context of cardiac image segmentation, if we
assign the value of one to the pixels of the object we aim to characterize
and zero to the background pixels, the subsequent distance map can
be treated as a shape-dependent feature. Fig. 5 illustrates the above-
mentioned 9 initial features obtained from the segmented map of a
short-axis slice. Features 1 to 3 show the cross-sectional area of the
LV cavity, myocardium, and right ventricle, respectively. As a relevant
feature, if we calculate the total number of non-zero pixels in each of
these images or perform 2-D summation on the images and multiply
it by the physical dimension of the pixels as well as the physical
distance between each pair of slices, the outcome would be a rough
estimation of the volume of an element such as left ventricle cavity.
To go further in feature engineering, Euclidean distance maps of each
of the heart elements are calculated in features 4 to 9. Summation of
the distance map values returns a shape-related feature that may be
useful for distinguishing between different hearts. Moreover, related to
features 7 to 9, the maximum value of a distance map is equivalent to
the radius of the largest inscribed circle inside the binary image, and it
can be used as a measure to compare the thickness of the heart elements
such as myocardium. Taking into account that the number of short-axis
slices changes from patient to patient, a combination of averaging and
the standard deviation is used to reduce the dimensionality of features
across different slices (Fig. 6). A relatively similar set of features has
also been used in the literature to diagnose cardiac diseases based on

CMR scans (Isensee et al., 2017; Khened et al., 2019). Finally, the
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Fig. 4. Application of GP model fitting for improving the accuracy of left ventricle volume estimation. Panel (a): Gaussian process fitted surface over available data points of
cross-sectional area of the left ventricle in different distances from the heart base. Panel (b): integrating the area enclosed below the surface (S) over the distance from the base to
the apex (slice location: x) to calculate the left ventricle cavity volume at every time frame. Note that we have stacked the data points of three heart beats together, as a simple
way to force a periodic boundary condition to the middle beat.
Fig. 5. Image-based initial features extracted from each of the short-axis slices at every time step based on the deep learning segmentation output. Note that the maximum value
of the distance map, which appeared in features 7 to 9, represents the radius of the maximal inscribed circle and can be interpreted as maximum thickness of the element.
volume of the LV cavity obtained from GP regression is added as the last
feature. Then, to filter out insignificant features, we have used a step-
wise regression approach. A step-wise linear regression method initiates
a simple linear model and gradually adds or removes variables to make
a parsimonious set of variables that describes the observations more
accurately (Rose and McGuire, 2019). The criterion used for feature
selection is the sum of squares of errors (SSE). We calculate the 𝑝-
value for an F-test of the change in SSE that results from the addition
or removal of a feature. If the 𝑝-value is less than 0.05, the feature is
significant for the model.

2.6. Cardio-mechanical modeling

To demonstrate a practical application of the presented LV cavity
volume estimation method, a cardio-mechanical case study is pre-
sented. In this study, we focus on the passive filling of the LV during
6

the diastolic phase. Passive filling of the LV is a non-linear mechan-
ical process due to the interplay between ventricular blood pressure
and stiffness of the myocardium. At the beginning of diastole, it is
assumed that blood pressure is zero, the unloaded state, while as
we approach the end of diastole, the ventricular pressure increases
and the myocardium is passively stretched to balance the applied
pressure (Wang et al., 2013). Stiffness of the myocardium has been
considered a potential biomarker to characterize diastolic dysfunction,
while inferring myocardial stiffness non-invasively is still a challenging
research problem (Gao et al., 2017b; Borowska et al., 2022). In this
study, an incompressible material model derived from the constitutive
model proposed by Holzapfel and Ogden (2009) is used, that is

𝛹 = 𝑎
2𝑏

[exp{𝑏(𝐼1 − 3)} − 1] +
∑ 𝑎𝑖

2𝑏
[exp{𝑏𝑖(max(𝐼4𝑖, 1) − 1)2} − 1]
𝑖∈{𝑓,𝑠} 𝑖
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Fig. 6. Reducing the dimensionality of the initial features by calculating their average and standard deviation over time and slice location. Each of the initial features from Fig. 5
converts to four final features.
+
𝑎fs
2𝑏fs

{exp(𝑏fs𝐼
2
8fs) − 1}, (4)

where 𝑎, 𝑏, 𝑎f, 𝑏f, 𝑎s, 𝑏s, 𝑎fs, and 𝑏fs are material constants describing the
stiffness of the myocardium. In this equation, the two most significant
parameters are 𝑎 and 𝑏, which are related to the isotropic response
of the myocardium, while 𝑎f and 𝑏f as the second set of significant
parameters describe the reinforced stiffness along myofibres (Lazarus
et al., 2022a). The LV passive filling is mathematically formulated
as a quasi-static pressure-loaded boundary-value problem, which can
be solved numerically using finite element packages, e.g. ABAQUS
(Simulia, Providence, RI, USA). For more details on this LV model,
see Wang et al. (2013).

An inverse problem is usually formulated to infer material param-
eters in Eq. (4) by matching the model predictions to the measured
data, as we observe from CMR scans (Gao et al., 2015). The search
for optimal parameters can be computationally intensive due to the
multi-modality of the inverse problem and the high computational costs
of iterative numerical solutions of the LV model using the finite ele-
ment method (Borowska et al., 2022). To avoid this issue, a statistical
emulator can be trained to replace the computationally expensive LV
model, reducing computational costs by several orders of magnitude;
see Noè et al. (2019). The emulator model we have used is a single layer
artificial neural network with 100 nodes in the hidden layer and ReLU
activation. The input space of the model consists of 10 parameters,
including end-diastolic pressure (EDP), 5 principal components of the
LV mesh at the unloaded state (early-diastole), as explained in the
next paragraph, and 4 constitutive parameters (𝑎, 𝑏, 𝑎f, 𝑏f) in Eq. (4)
(Fig. 1). The remaining parameters in Eq. (4) have been kept fixed
at nominal values, based on our previous global sensitivity analysis
study (Lazarus et al., 2022a). The output of our emulator is the end-
diastolic LV volume (in mL), which feeds into the objective function
Eq. (5), as discussed below.

To make a robust emulator, a large dataset of numerical simulations
by running the forward ABAQUS LV model has been prepared with
33,289 entries. The data used to train the emulator were obtained from
multiple different previous studies, with different material parameter
distributions. The first 21,388 data points were designed using a Sobol
sequence, and then the remainder of the input data points were sampled
from a Beta distribution with parameters of 𝛼 = 1 and 𝛽 = 1.4. The
skewed Beta distribution gives a slightly increased density of points
for decreasing material parameter values. This choice of distribution
was based on the findings from Lazarus (2022), who showed that the
function shows a more complex behavior around smaller parameter
values. Expert knowledge was used to guide the choice of bounds for
the material parameters. In addition to the constitutive parameters, the
cardio-mechanical model takes as input the patient-specific shape of the
LV at early diastole, represented by a high-dimensional (in the order
of 17k) mesh of finite element nodes. To be feasible for emulation,
7

dimension reduction is essential. In a previous study (Romaszko et al.,
2019) we have shown that principal component analysis (PCA) is
as accurate as more advanced machine learning methods at lower
computational costs and that a projection of the LV mesh into the
space spanned by the 5 leading principal components (PCs) provides
a reasonable trade-off between emulation and reconstruction accuracy.
We have used this insight for the present study to proceed as follows.
For the PCA dimensions, the choice of bound was made based on the
training set of LV geometries. More specifically, we used a set of MI and
HV LV geometries to train the PCA model, which provides a map into
the lower dimensional space. This is the space in which we designed our
emulator. The training LV geometries can be projected into this lower
dimensional space to obtain their 5 PC representations. Our parameter
design space is within ±10% of the upper and lower bounds of PC
projections for the MI and HV patient groups. We then used a Sobol
sequence to fill this five-dimensional space with training points.

Out of the complete dataset, we have used 32,289 data points to
train the NN model and 1000 randomly selected data points have
been used for testing. The inference process to find the optimal set
of material parameters is implemented using a particle swarm op-
timizer from the MATLAB 2021a optimization toolbox. The particle
swarm is a nature-inspired global optimization algorithm introduced
by Kennedy and Eberhart (Kennedy and Eberhart, 1995) suitable for
finding the minimum value of a continuous nonlinear function in a
bounded multi-dimensional space.

Our objective function (𝑓𝑜) to be optimized is adopted from Klotz
et al. (2006), Borowska et al. (2022) and Lazarus et al. (2022b), where
a Klotz term is included to allow for the high stretch behavior of the
tissue:

𝑓𝑜 = (
𝑉8 − 𝑉 ∗

8
𝑉 ∗
8

)2 + (
𝑉30 − 𝑉 𝐾𝑙

30

𝑉 𝐾𝑙
30

)2, (5)

𝑉 𝐾𝑙
30 = 𝑉0 +

𝑉 ∗ − 𝑉0
(𝑃 ∗∕𝐴)1∕𝐵

, (6)

Note that this objective function considers only the LV cavity volume,
but not the circumferential strains. This simplification is motivated by
the work of Lazarus (2022), who showed that the level of mismatch
between the predicted and measured strains was such that these pro-
vided little additional information about the material parameters on
top of what is encoded in the measured volume. 𝐴 and 𝐵 are Klotz
constants taken from the literature (Klotz et al., 2006): 27.78 and
2.76, respectively. In addition, 𝑉 𝐾𝑙

30 is Klotz predicted LV volume at the
hypothetical pressure of 30 mmHg, 𝑉0 is the initial cavity volume of
LV obtained from the reconstructed LV geometry at early-diastole, 𝑉8
is the end-diastolic cavity volume predicted by the NN emulator, 𝑉30 is
the cavity volume of LV predicted by the NN emulator at the pressure
of 30 mmHg, and 𝑉 ∗

8 is the end-diastolic LV cavity volume estimated
using the image-based method presented in the present paper. As has
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been discussed extensively in Lazarus et al. (2022b), including the Klotz
curve (Klotz et al., 2006) in the optimization process effectively intro-
duces a constraint that reduce the degrees of freedom. In other words,
the cardio-mechanical model should not only predict the correct end-
diastolic in vivo volume at 8 mmHg, but also the extrapolated volume at
30 mmHg based on the Klotz curve (Borowska et al., 2022). However,
considering the high-dimensional search space for material parameters
and limited measured data, a simple reparameterization approach was
adopted here assuming 𝑎 = 𝑎f and 𝑏 = 𝑏f. This assumption reduces
the complexity of the optimization further into a 2-dimensional search
with less issues in non-uniqueness. This simplified assumption of 𝑏 = 𝑏f
has been independently adopted in the literature (Hadjicharalambous
et al., 2015). We emphasize that the remit of our study is not to
comprehensively study the inference problem of the cardiac mechanics
model per se, but to demonstrate that our automatically extracted LV
volume is suitable for estimating myocardial stiffness parameters. For
a more comprehensive understanding of material parameter inference
from in vivo data, please see Gao et al. (2015), Lazarus et al. (2022b,a),
Borowska et al. (2022) and others Hadjicharalambous et al. (2015).

3. Results and discussions

3.1. Deep learning segmentation

In this section, the results of the deep learning segmentation are
discussed, and subsequently, the cavity volume predictions will be
presented and compared to the manually measured values. As shown
in Fig. 1, we have used zooming and rotation to augment 80% of the
available data within the ACDC data set. Then 10% of the data were
used for validation and the rest were reserved as an independent test
set to provide a fair measure of the model performance. For all our
simulations, the training process was continued for approximately 100
epochs, based on an early-stopping criterion: we stopped the training
process when the validation loss no longer decreased for 10 consecutive
epochs. In this process, a fixed learning rate of 0.001 was used as
input for the Adam optimizer (Kingma and Ba, 2015). Fig. 7 illustrates
three examples of predicted segmentation from the test portion of the
dataset, as well as the input and ground truth images. Fig. 7-a shows
a successful prediction of heart labels with a dice coefficient above
0.99 for LV cavity, 0.86 for the myocardium, and 0.94 for the right
ventricle. Fig. 7-b shows an interesting observation in the test dataset
that demonstrates the generalization potential of the trained model. As
can be seen within the marked area, the thickness of the myocardium
is considered unrealistically thin in the manually segmented image,
and a comparison with the input image reveals that the deep learning
predicted label is more realistic than the manual segmentation. Fig. 7-
c presents an overestimation of the size of the right ventricle by the
deep learning model. However, by looking at the input images, the
over-estimation error can be explained by the abnormal highlight on
the boundary of the right ventricle. Note that the pixelized appearance
of the manually segmented data is due to zoom- and rotation-based
augmentation, which depreciates the image quality.

In addition to visual inspection of the segmentation, we have also
calculated the dice score between the predicted and manual segmen-
tations for all available data in the augmented test dataset. Fig. 8
illustrates the distribution of the dice score for the LV cavity, my-
ocardium, and right ventricle of the test images. Moreover, the average
and standard deviation of the dice scores are available in Table 2.
As can be seen, the left ventricle cavity is the most predictable el-
ement inside the images, which is reasonable considering its clearly
distinguishable circular cross-section located almost at the middle of
all short-axis slices. Based on the standard deviation of the dice score,
it can be said that the myocardium is the second most predictable
element in the proposed model. Finally, the dice scores of the right
ventricle are more scattered between 0 and 1, which means that the
model has had difficulty predicting them. In several cases, we have
observed that fatty tissues adjacent to the heart wall are susceptible
to being incorrectly segmented and misclassified as the right ventricle,
especially in overweight patients.
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Table 2
Average and standard deviation of the dice scores of the deep learning predictions on
the test portion of the data from ACDC dataset.

Label Average dice score Standard deviation of dice scores

LV cavity 0.96 0.021
Myocardium 0.84 0.038
Right ventricle cavity 0.79 0.225

3.2. Volume prediction results

After segmentation of different short-axis slices in all time frames,
we have used the Gaussian process to fit a spatio-temporal surface that
represents the cross-sectional area of the LV cavity (Fig. 4). This process
has been repeated for all 339 patients in our dataset and a primary
estimation of the left ventricle volume has been obtained by integrating
over the distance from the base to the apex of the heart. Fig. 9-a
presents a comparison between the estimated cavity volumes and the
values that are measured based on manual segmentation before the
implementation of the GP fitting. As can be seen, the root mean square
error (RMSE) is more than 13 (mL) and the coefficient of determination
(𝑅2) is around 0.74. Fig. 9-b shows a slight improvement in the predic-
tion accuracy, which is achieved with the help of a fitted GP model.
As can be seen, the GP improves the robustness of the predictions
by limiting the negative effect of segmentation outliers. Finally, by
fitting a step-wise regression model on the previously discussed set of
37 features, we have been able to get closer to manual accuracy, as
illustrated in Fig. 9-c.

At this stage, to ensure that our step-wise regression method is a
suitable approach for variable selection and predicting LV volumes, we
have compared it with three alternative methods: Linear regression,
Support vector machines, Lasso and Elastic Nets. We have quantified
the performance in terms of out-of-sample RMSE and R-squared scores,
using 5-fold cross-validation. As can be seen from Table 3, step-wise
regression compares favorably with the alternative methods and shows
the highest R-squared score when predicting the early-diastolic volume
of LV. Using this approach, our lowest RMSE is around 8.22 ml at early
diastole for 339 patients with different pathological conditions. Table 4
presents a list of the significant features that have been selected by
the step-wise variable selection approach to parsimoniously estimate
the LV cavity volume. Higher F-statistics and lower p-values indicate
the higher significance of the features. However, step-wise regression
does not select these significant variables in a univariate sense, based
on their individual F-statistics and p-values, but within a multivariate
framework, based on the improvement that a target variable makes
when combined with other variables. As expected, the initial estimate
of the LV volume that we have from GP modeling is the most relevant
feature; however, as we can see in Fig. 9-b, it includes a considerable
amount of noise that leaves room for further improvement. Thus, the
next 6 features are included to make the model more robust and able
to compensate for the noise in Fig. 9-b. We have used 5-fold cross-
validation to fit the coefficients of the regression model, and we reached
a coefficient of determination around 0.9 (Fig. 9-c). Finally, to get a
rough estimate of the best practically achievable accuracy, we have
investigated the inherent error that we have in finding the ground truth
volume. For this purpose, 6 of the COVID-19 patients were selected by
3 operators (A.R., A.L., and D.D.), conceptually with different levels of
segmentation difficulty based on image quality or controversial shape
of the myocardium. Then, each patient’s data was segmented by all
three operators to give a sense of inter-operator variability. Afterward,
each of the operators carried out the manual segmentation repeatedly
on two of the samples to quantify the intra-operator variability. We
have calculated an overall deviation error to evaluate our automatic
machine learning method and compare it with the average manual
accuracy. To quantify deviations in manually derived volumes, we have
assumed that the average value of all manually derived volumes is the
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Fig. 7. Examples of the short-axis segmentation from the ACDC augmented test dataset, including dice scores of different elements. Panel (a): An example of a well-predicted
set of labels. Panel (b): An example of the high generalization power of the deep learning model, which even beats the manually segmented images when compared with the
input image. As can be seen, the thickness of the myocardium is underestimated in the manual segmentation. Panel (c): An example of the overestimation of the size of the right
ventricle by the deep learning model. This can be explained by the abnormal input image with a highlight on the boundary of the right ventricle, which is difficult to interpret.
Fig. 8. Distribution of the dice scores in prediction of different elements of the
short-axis images in the ACDC test dataset.

ground truth and compared all other volumes with the average values
for a specific patient. As a result, an RMSE of 4.12 is obtained, with
the coefficient of determination (𝑅2) around 0.93. This is quite close to
our best automated estimation of 𝑅2 equal to 0.9.

In addition to early diastole manual segmentation of 339 patients,
we have manually segmented the end-diastolic images of 41 patients
9

to ensure the applicability of the present model to the full heart cycle.
The model was able to predict the end-diastolic LV cavity volume
with an RMSE of 6.7 mL as presented in Fig. 10-a. We postulate
that the higher accuracy in volume prediction is related to a clearer
boundary between the myocardium and the cavity at end diastole in
CMR cine images. Considering that the volume of the heart elements is
calculated in each time frame, changes in the LV cavity volume would
be an interesting parameter to observe during a cardiac cycle. Fig. 10-b
illustrates these changes for 339 patients color-coded based on the LV
end-diastolic volume. The relationship between the slope and curvature
of the presented graphs and the pathological condition of the patients
is suggested to be investigated in future studies.

3.3. Cardio-mechanical emulation

An artificial neural network (ANN) model has been trained as an
emulator to predict the end-diastolic volume of the left ventricle. After
around 1000 epochs of training using the Levenberg Marquardt (Moré,
1978) method, the model stopped showing improvement for 50 con-
secutive epochs. At this stage, the root mean square error (RMSE) of
1.76 mL and 𝑅2 of 0.997 were achieved on the test dataset (Fig. 11).
Furthermore, around 90% of the prediction residuals have been found
to be smaller than ±2 (ml). Considering the low amount of error in the
emulator-predicted volume compared to the manual and deep learning
approaches, respectively, around 4 and 8 mL, the uncertainty of the
emulator would not be a bottleneck for the inverse modeling applica-
tion. While the direct numerical simulation of the diastolic phase using
ABAQUS can take up to 10–20 min to run on a regular workstation,
the trained emulator is able to predict the end-diastolic volume in a
few milliseconds (Noè et al., 2019). Such a high prediction speed is
specifically useful when the function is required to be called hundreds
of times during an iterative optimization process.
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Fig. 9. Comparison of the manual and automated estimation methods of left ventricle cavity volume at early diastole. Panel (a): initial volume estimation without using the
Gaussian process surface. Panel (b): improved volume estimation using Gaussian process surface fitting. Panel (c): further improvement of the volume estimation using Gaussian
process surface fitting and step-wise regression. Panel (d): uncertainty of manual segmentation of LV cavity volume under the condition of different operators or the same operator
in different attempts. Note that the axis labels in the last graph are different from the other graphs.

Fig. 10. Panel (a): prediction of the end-diastolic LV cavity volume using the proposed method in comparison with the volumes obtained based on manual segmentation. Panel
(b): prediction of the LV cavity volume during the whole cardiac cycle for 339 patients, color coded based on the LV end-diastolic volume (EDV).
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Fig. 11. Testing of the emulator performance for the LV diastole phase. Panel (a): EDV from the ANN emulator vs EDV from direct ABAQUS simulations with 𝑅2 equal to 0.997.
Panel (b): residuals of the ANN predictions with around 90% of the errors under ±2 (ml).
Table 3
Root mean squared error (RMSE) in LV volume and R-squared for different regression models with a 5-fold validation approach.
Method Settings RMSE R-squared

Linear regression 5% significance level 8.94 0.86
Support vector machine regression Linear kernel function 11.4 0.79
Lasso and Elastic Net Weight of lasso versus ridge optimization = 0.75 9.83 0.81
Step-wise linear regression Refer to Section 2.5 8.22 0.9
Table 4
List of image-based features used to improve the estimation of the volume of the left
ventricle cavity in early diastole.

Feature rank Feature name F-statistics 𝑝-value

1 LV volume initial estimate 1394.6 8.1E−122
2 Std of mean of RV volumes 88.4 8.51E−19
3 Std of mean of RV distances 27.4 2.85E−07
4 Mean of mean of RV volumes 19.4 1.4E−05
5 Mean of Std of LV volumes 12.2 0.00052
6 Mean of mean of RV distances 15.5 9.63E−05
7 Std of mean of LV thicknesses 5.8 0.0163

3.4. Inverse modeling results

A particle swarm optimizer with a function tolerance of 10−6 has
been used to find the constitutive parameters of the myocardium. The
swarm size has been set to 20 with the maximum number of iterations
equal to 400. Moreover, the minimum neighbor fraction has been
set to 0.25. The mentioned parameters are set on the basis of the
default values suggested in the MATLAB R2021a optimization toolbox
reference manual. The objective function of optimization is described
in Eq. (5). The optimization continues until a set of parameters can
be found that minimizes the objective function. Fig. 12 illustrates the
changes in the objective function with respect to 𝑎 and 𝑏. The optimal
point lies within the oval valley formed on the response surface. In our
observed cases, the formed valley has a slope towards its center, which
leads to a unique set of parameters when using a global optimizer such
as the particle swarm method. We have observed that for some cases,
such as patient #4 in Fig. 12-d, the optimal point approaches the lower
range of the parameter 𝑎. Considering the fact that the negative values
for 𝑎 are not physically feasible, it is suggested that in future studies a
denser parameter design with a higher coverage of smaller values needs
to be used for training the emulator.

Furthermore, we have compared the mechanical parameters ob-
tained for four patients with COVID-19 in Fig. 13 based on EDV from
11
manual segmentation, as well as the automated approach presented in
this study. If we assume that the parameters obtained based on the
manual EDVs are the ground truth, for the presented four patients, the
average relative errors in the prediction of 𝑎 and 𝑏 are 5.95% and 4.0%,
respectively. The un-iaxial stretch–stress responses along myocytes are
also shown in Fig. 13. These are produced by virtually stretching a
myocardial strip along a specific direction uni-axially (Borowska et al.,
2022), with tissue properties described by the selected strain energy
function with given material parameter values. While both parameters
influence the behavior of the myocardium at all stretch values, the
stress at low stretch values is more sensitive to the value of 𝑎 while
the stress at a high stretch is more sensitive to the value of 𝑏. It can
be seen that the set of parameters estimated using the automated EDV
has nearly identical mechanical properties as the estimated parameters
from the manual EDV.

4. Conclusions

In the present study, we have presented a novel method for esti-
mating the volume of the left ventricular cavity from cardiac magnetic
resonance cine images of a patient’s heart. In this method, we have used
Gaussian process modeling to fit a spatio-temporal surface over the data
points from the left ventricle cross-sectional area of the patient’s heart.
The fitted model can be used to estimate the cavity volume with a
higher accuracy compared to the common practice in the literature and
in the clinic. We have observed that the presented method decreased
the RMSE of the early-diastolic volume of 339 patients from 13 to 8 mL.
This improvement is valuable considering that the volume estimation
based on manual segmentation as the state-of-the-art has an RMSE
of around 4 mL. An accurate volume estimation method can have
several clinical and biomechanical applications. An accurate estimation
of the ejection fraction as a significant feature in the detection of
various cardio-vascular diseases, including myocardial infarction, is a
major application of the presented method. In addition, more in-depth
cardio-mechanical simulations can be done by knowing the changes
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Fig. 12. Contour plot of the objective function as a function of 𝑎 and 𝑏, the main parameters of the Holzapfel–Ogden model, for patients #1 to#4. The location of the optimal
points is available in the bar charts visualized in Fig. 13.

Fig. 13. Parameters of the Holzapfel–Ogden model from inverse modeling for patients #1 to #4 as well as the stress–stretch curves obtained based on the estimated parameters
from manual and automated EDVs.
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in the LV cavity volume. In this paper, we have described an inverse
modeling approach that can be used to estimate important mechani-
cal parameters of the heart by knowing the early-diastolic geometry,
pressure, and the end-diastolic LV volume. Such inferred parameters
are of high clinical interest as they have the potential to detect cardiac
abnormalities e.g. by alerting clinicians to excessive myocardial stiff-
ness non-invasively (Mangion et al., 2018b). In a previous study (Gao
et al., 2017a), we have demonstrated that the myocardial stiffness for
patients with myocardial infarction is much higher than that of healthy
volunteers, where myocardial stiffness was inferred using the same
material model as in Eq. (4) of our present article. The estimation
of myocardial stiffness is also highly relevant to the detection of LV
diastolic dysfunction, which is one of the main underlying causes of
diastolic heart failure (Zile et al., 2004). Finally, the main results of
the present study can be summarized as follows.

• The early diastolic volume of the LV cavity has been estimated
based on the cine CMR images for 339 patients with RMSE of
around 8.2 mL. Furthermore, the end-diastolic volume of the LV
cavity has been estimated for 41 COVID-19 patients with RMSE
of around 6.7 mL. The accuracy of these fully automated esti-
mations is encouraging considering the 4.1 mL RMSE of manual
segmentation as the state-of-the-art.

• An artificial neural network emulator has been trained to approx-
imate the outcome of cardio-mechanical numerical simulations.
The emulator predicts the end-diastolic volume of the LV with a
RMSE of 1.76 mL.

• An inverse modeling approach has been implemented to estimate
the mechanical properties of the myocardium (𝑎 and 𝑏) based on
the Holzapfel–Ogden myocardial model, with a relative error of
5.95% and 4.0% in estimated 𝑎 and 𝑏, respectively. In addition,
the uni-axial Cauchy stress of the myocardium along myocytes has
been estimated with an average relative error of approximately
6.1% compared to the condition that all volume measurements
are estimated based on manual segmentation.

. Limitations

The proposed method is based on 2-D short-axis CMR scans; long-
xis images, which may contain potentially important complementary
nformation about the geometry of the left ventricle, have not been
ncluded in this work, as found in our previous study in which the
ccuracy of the LV geometry reconstruction could be improved by
ncluding long-axis images using a deep learning approach (Romaszko
t al., 2021).

In addition, the lack of information from the apex zone of the LV
ay lead to some errors in the estimation of LV volume. We intend to

nclude long-axis images in our future studies to compensate for this
imitation. Furthermore, we have not corrected for potential motion
rtifacts that may result from a patient’s movement or their failure to
old their breath during the MRI scan. Finally, the reparameterization
f the mechanical model of the myocardium that was used in our study
ay affect the accuracy of the estimated stiffness. In our future work,
e plan to use a time series of LV deformations at different stages in

he diastolic phase, which we expect will improve the identifiability of
ardiac mechanic parameters.
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