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1. Introduction

Let R be a ring, denote by R• its submonoid of cancellative elements (non-zero-
divisors), and by R× its group of units. Usually R will be a domain or a prime Goldie 
ring, in which case R• is divisor-closed, that is, every left- or right-divisor of an element 
of R• is again contained in R• (see Lemma 2.5 below). A nonunit u ∈ R• is an atom (or
irreducible element) if it cannot be written as a proper product of two nonunits in R•. We 
say that R is atomic if every nonunit a ∈ R• can be expressed as a product a = u1 · · ·uk

of atoms u1, . . . , uk of R•. The ring R has bounded factorizations (is a BF-ring) if, in 
addition, for every a ∈ R• there exists a λ(a) ∈ N0 such that k ≤ λ(a) for every such 
factorization of a.

The concept of bounded factorization domains was introduced, in the setting of com-
mutative domains, by D.D. Anderson, D.F. Anderson, and M. Zafrullah [1] and is one 
of the most basic finiteness notions in the study of non-unique factorizations (see the 
recent surveys [34,44] and in particular [2]). Our restriction to cancellative elements is, 
to degree, necessitated by the fact that every monoid having bounded factorizations is 
at least unit-cancellative (see Lemma 2.2 below).

Chain conditions on (one-sided) ideals are well-known to imply factorization-related 
properties: the ring R satisfies the ascending chain condition on principal ideals (or ACCP) 
if every ascending chain of principal right ideals eventually stabilizes and the same is 
true for chains of principal left ideals. Every ring satisfying the ACCP is atomic (in 
fact, it suffices to have the ACC on principal right, respectively left, ideals generated by 
cancellative elements). In particular, noetherian rings are atomic.

If R is a commutative noetherian domain, then R even has bounded factorizations. 
The standard proof of this fact can be found in any of [2, Theorem 4.9], [1, Proposition 
2.2], or [36, Corollary 1.3.5]. More generally, every v-noetherian commutative cancella-
tive monoid has bounded factorizations. This can be proved analogously to the case of 
noetherian domains [36, Theorem 2.2.9]. A different proof can be obtained by first show-
ing that every v-noetherian commutative cancellative monoid has finite ω-invariant [35, 
Theorem 4.2], which immediately implies the claim [35, Lemma 3.3(3)]. These results 
raise the question whether such an implication still holds for noncommutative noetherian 
domains, or more generally, noncommutative noetherian prime rings. The proofs of the 
commutative setting do not carry over to the noncommutative one, because all of them 
make use of localizations or prime ideals in ways that do not generalize.

In the present paper we therefore seek sufficient conditions for a noncommutative 
noetherian prime ring to have bounded factorizations. We show that a noetherian prime 
ring R has bounded factorizations if it satisfies one of the following conditions:

(1) R has right (or left) Krull-dimension ≤ 1 in the sense of Gabriel–Rentschler (Propo-
sition 3.1).

(2) R has a filtration R0 ⊆ R1 ⊆ · · · with R0 ⊆ R× such that the associated graded 
ring is a domain (Proposition 3.2).
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(3) R is an iterated skew [Laurent] polynomial domain over a commutative or BF-ring 
S (Proposition 3.5 and Corollary 3.7).

(4) R is a bounded Krull order (in the sense of Marubayashi or Chamarie; Proposi-
tion 3.8).

(5) R is fully bounded noetherian (FBN) and every nonzero two-sided ideal contains a 
nonzero central element (Theorem 4.10). In particular, this holds when R is a PI 
ring (Corollary 4.11), with a second proof in this case given in Section 4.1.

(6) R is an affine algebra of quadratic growth (Theorem 5.8).
(7) R is an Auslander-Gorenstein ring (Corollary 6.4). See Examples 6.5 for an extensive 

list of rings covered by this class.
(8) R is a prime quotient of a noetherian algebra S over a field, with S having an 

Auslander-dualizing complex (Theorem 6.15).

In the first four of these classes the proofs are largely straightforward. For (5) we make 
use of the reduced rank and a noncommutative version of the principal ideal theorem. 
Extra conditions appearing in the principal ideal theorem are the cause for the restriction 
to those FBN rings whose nonzero two-sided ideals contain a nonzero central element.

For (6) we establish that, if R is not a PI ring and a ∈ R• is a nonunit, then R/aR

has, in a certain sense, linear growth. The crucial part is to establish dim(R/aR) = ∞. 
For this, we make use of a theorem of J.P. Bell and A. Smoktunowicz about the extended 
center of such algebras [18, Theorem 1.2], and a result of Martindale, asserting that such 
a ring does not satisfy a linear generalized polynomial identity (Lemma 5.3).

Finally the proofs of (7) and (8) make use of homological methods. For an Auslander-
Gorenstein ring R, one can define a finitely partitive grade function j on R-modules (see 
Section 6.1). Observing j(R/aR) = 1 for all nonunits a ∈ R•, allows us to deduce that 
Auslander-Gorenstein rings are BF-rings.

While many large classes of important rings are Auslander-Gorenstein rings (such as 
group algebras of polycyclic-by-finite groups, all known noetherian Hopf algebras, etc., 
see Examples 6.5), all Auslander-Gorenstein rings have finite injective dimension and 
finite Krull dimension. To overcome these restrictions, for algebras over a field, A. Yeku-
tieli and J.J. Zhang developed the more general notion of Auslander dualizing complexes 
using the machinery of derived categories. For an algebra R having an Auslander dualiz-
ing complex one may again introduce a grade function (with −j the canonical dimension 
of A. Yekutieli and J.J. Zhang). Then −j satisfies Gabber’s Maximality Principle on 
j-pure R-modules. Using these properties, we show that if R is a noetherian K-algebra 
with an Auslander dualizing complex, and R/I is a j-pure factor ring of R with an ar-
tinian classical ring of quotients, then R/I is a BF-ring (Theorem 6.15). In particular, 
this applies to R/P with P a prime ideal of R.

We do not know an example of a noetherian prime ring that does not have bounded 
factorizations, and so, in a sense, the basic question, whether every noetherian prime 
ring has bounded factorizations, unfortunately remains open.
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A different point of view along one which might try to extend the commutative result 
is the following: commutative affine domains over fields are noetherian and therefore 
have bounded factorizations. Noncommutative finitely generated (or even finitely pre-
sented) algebras need not be noetherian, but one may still ask whether any finitely 
presented (atomic) prime ring has bounded factorizations. In Section 7 we construct a 
semigroup algebra R, such that R is finitely presented over a field K and such that R is 
atomic but does not have bounded factorizations (and indeed does not even satisfy the 
ACCP).

It is well-known that every domain R that satisfies the ACCP is atomic. While the 
converse is not true, the difference is somewhat subtle. (P.M. Cohn, in [24], somewhat 
infamously falsely asserted that equivalence holds.) The first counterexample, a commu-
tative domain that is atomic but does not satisfy ACCP, was constructed by A. Grams 
[40]. Further classic constructions are by A. Zaks [73] and by M. Roitman [59] (who 
in fact constructed an atomic domain R such that the polynomial ring R[X] is not 
atomic). Nevertheless producing simple examples of atomic domains that do not satisfy 
the ACCP remains challenging, even in the commutative setting, with recent contribu-
tions by J.G. Boynton and J. Coykendall [9], as well as F. Gotti and B. Li [38,39].

The first example of a semigroup algebra over a field that is atomic but does not satisfy 
the ACCP is given in [38]. Our construction in Section 7 provides the first example of 
a finitely presented semigroup algebra over a field that is atomic but does not satisfy 
the ACCP. Of course, such an example is only possible in the noncommutative setting. 
Section 7 can be read largely independently of the rest of the paper.

Acknowledgments. We thank M. Hochster and R. Heitmann for providing us with 
the construction in Example 6.21. The second author is grateful for the support of 
Leverhulme Emeritus Fellowship EM-2017-081. The first author acknowledges support 
of the NSERC grant RGPIN-2022-02951. The authors acknowledge the financial support 
by the University of Graz.

2. Preliminaries

A monoid is a non-empty set H together with an associative operation · : H×H → H

and a neutral element 1. At this point we make no assumption on the cancelativity of H. 
By H× we denote the group of units of H. A nonunit u ∈ H is an atom (or an irreducible 
element) if u = ab with a, b ∈ H implies a ∈ H× or b ∈ H×. The monoid H is atomic
if every nonunit of H can be represented as a product of atoms. It is well-known that 
every cancellative monoid satisfying the ACC on principal left ideals and the ACC on 
principal right ideals is atomic [62, Lemma 3.4] and [61, Lemma 3.1].

The length set of a nonunit a ∈ H is

L(a) = { k ∈ Z≥0 | a = u1 · · ·uk with atoms u1, . . . , uk }.
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Trivially L(a) + L(b) ⊆ L(ab), and in particular sup L(a) + sup L(b) ≤ sup L(ab) if these 
sets are non-empty. For a ∈ H× we set L(a) = {0}.1

If a ∈ H and |L(a)| ≥ 2 then there exist factorizations a = u1 · · ·uk = v1 · · · vl with 
atoms ui, vj ∈ H and l > k. Then an = (u1 · · ·uk)m(v1 · · · vl)n−m for all 0 ≤ m ≤ n, 
and therefore { mk + (n −m)l : 0 ≤ m ≤ n } ⊆ L(an). Thus |L(an)| ≥ n + 1, and so we 
cannot expect a uniform bound on the length sets of H (unless |L(a)| ≤ 1 for all a ∈ H). 
We can however hope for the following basic finiteness property.

A monoid H has bounded factorizations, or in short, is a BF-monoid, if H is atomic 
and L(a) is finite for all a ∈ H. It is half-factorial if |L(a)| = 1 for all a ∈ H.

Definition 2.1. Let H be a monoid and let λ : H → Z≥0 be a function.

(1) λ is a right length function if λ(a) > λ(b) whenever a = bc with b, c ∈ H and c is a 
nonunit.

(2) λ is a length function if λ(a) > λ(b) whenever a = dbc with c, d ∈ H and at least one 
of c, d is a nonunit.

(3) λ is a superadditive length function if

(i) λ(ab) ≥ λ(a) + λ(b) for all a, b ∈ H; and
(ii) λ(a) = 0 implies a ∈ H×.

Every superadditive length function is a length function, and every length function 
is a right length function. If H is a commutative monoid, then λ : H → N0 is a length 
function if and only if it is a right length function. It is classical that a commutative 
cancellative monoid is a BF-monoid if and only if it has a length function [36, Proposition 
1.3.2]. This equivalence is extended to a noncommutative and possibly non-cancellative 
setting by Fan and Tringali in [31, Corollary 2.29] using the notion of a length function
as defined above. For our purposes it will usually be more convenient to work with right 
length functions. Our first goal, in Theorem 2.3, is to show that the existence of any of 
these types of length function is equivalent to H having bounded factorizations.

A monoid H is unit-cancellative if a = au or a = ua with a, u ∈ H implies u ∈ H×. 
Every cancellative monoid is unit-cancellative. In a unit-cancellative monoid, every left 
[right] invertible element is invertible: if uv = 1 then uvu = u and hence vu ∈ H×. Hence 
u also has a left inverse. In particular, any right or left divisor of a unit is itself a unit.

Lemma 2.2. Let H be a monoid with right length function λ.

1 If H is Dedekind-finite, that is, every left or right divisor of a unit is again a unit, this is a reasonable and 
convenient definition and preserves the inequality sup L(a) +sup L(b) ≤ sup L(ab) also when a or b is a unit. 
If H is not Dedekind-finite, then this definition is somewhat dangerous, as a unit may then possibly be also 
represented as a non-trivial product of atoms. Since we will soon restrict to (unit-)cancellative monoids, 
which are always Dedekind-finite, this will not pose any problem.
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(1) If a1, . . . , ak ∈ H with k ≥ 0 are nonunits, then λ(a1 · · · ak) ≥ k. In particular, if 
a ∈ H is a nonunit, then λ(a) > 0.

(2) H is unit-cancellative.

Proof. (1) By induction on k. If k = 0 then a1 · · · ak = 1 (the empty product) is a unit, 
and the claims hold trivially. Suppose k ≥ 1. Then λ(a1 · · · ak) > λ(a1 · · · ak−1) ≥ k− 1.

(2) Suppose a = ab with b a nonunit. Then λ(a) > λ(a), a contradiction. Suppose now 
a = ba with b a nonunit. Then a is also a nonunit and a = bka for all k ≥ 0. It follows 
that λ(a) > λ(bk) ≥ k for all k ≥ 0, a contradiction. �

The following characterization extends [31, Corollary 2.29] by superadditive length 
functions and right length functions. We give a full proof for the convenience of the 
reader.

Theorem 2.3. Let H be a monoid. The following statements are equivalent.

(a) H has a superadditive length function.
(b) H has a length function.
(c) H has a right length function.
(d) H is a BF-monoid.
(e) One has 

⋂
n≥0(H �H×)n = ∅.

If these conditions are satisfied, then H is unit-cancellative.

Proof. (a) ⇒ (b) ⇒ (c) is clear.
(c) ⇒ (d) Let λ : H → Z≥0 be a right length function. Lemma 2.2 implies max L(a) ≤

λ(a) for all a ∈ H. We must still show that H is atomic. Let a ∈ H �H×. We proceed 
by induction on λ(a). If λ(a) = 0 then a is a unit by (1) of Lemma 2.2 and there is 
nothing to show. Suppose λ(a) > 0. If a is an atom, we are done. If a is not an atom, 
then a = b1c1 with nonunits b1, c1 ∈ H and λ(b1) < λ(a). By induction hypothesis b1
is a product of atoms. If c1 is an atom we are done. Otherwise c1 = b2c2 with nonunits 
b2, c2 ∈ H. Since λ(b1b2) < λ(a), again b1b2 is a product of atoms. Continuing this 
process, we find

a = b1 · · · bkck (1)

with b1, . . . , bk, ck ∈ H�H×. Since λ(a) > λ(b1 · · · bk) ≥ k, this process must terminate 
at some point, which means that eventually ck must be an atom. But then Eq. (1) can 
be refined into a representation of a as a product of atoms, as b1 · · · bk is a product of 
atoms by induction hypothesis.

(d) ⇒ (e) By contradiction. Let a ∈
⋂

n≥0(H � H×)n. Thus, for every n ≥ 0 there 
exist a1, . . . , an ∈ H �H× such that a = a1 · · · an. Since H is atomic, each ai can be 
expressed as a product of atoms and therefore supL(a) ≥ n.



410 J.P. Bell et al. / Journal of Algebra 622 (2023) 404–449
(e) ⇒ (a) Due to the stated condition we may define λ : H → Z≥0 by λ(a) = max{ n ≥
0 : a ∈ (H �H×)n }. Then λ is a superadditive length function.

That H is unit-cancellative follows from (c) together with Lemma 2.2. �
Clearly (c) may equivalently be replaced by a left length function.
Let (Hi)i∈I be a family of monoids. The restricted product 

∏′
i∈I Hi is the submonoid 

of 
∏

i∈I Hi consisting of all (αi)i∈I ∈
∏

i∈I Hi satisfying αi ∈ H×
i for all but finitely 

many i ∈ I. For a monoid H, the submonoid of cancellative elements is denoted by H•

and its center by Z(H). An intersection H =
⋂

i∈I Hi of monoids (in some common 
overmonoid Q) is of finite type if every a ∈ H is a unit in all but finitely many of the Hi.

Lemma 2.4.

(1) Let H and D be monoids and let ϕ : H → D be a monoid homomorphism with 
ϕ−1(D×) = H×. If D is a BF-monoid, then so is H.

(2) If H ⊆ D are monoids such that H ∩D× = H× and D is a BF-monoid, then H is 
a BF-monoid.

(3) If H is a BF-monoid, then so are H• and Z(H).
(4) Restricted products of BF-monoids are BF-monoids.
(5) Let H ⊆ Q be monoids, and let H =

⋂
i∈I Hi be an intersection of finite type with 

overmonoids H ⊆ Hi ⊆ Q. If each Hi is a BF-monoid, then so is H.

Proof. (1) Let λ : D → Z≥0 be a right length function. Let a, b, c ∈ H such that 
a = bc and c /∈ H×. Then ϕ(a) = ϕ(b)ϕ(c). By assumption ϕ(c) /∈ D×, and hence 
λ(ϕ(a)) > λ(ϕ(b)). Thus λ ◦ ϕ is a right length function on H, and H is a BF-monoid.

(2), (3) Apply (1) to the inclusions H ↪→ D, H• ↪→ H, respectively, Z(H) ↪→ H.
(4) Let H =

∏′
i∈I Hi with each Hi a BF-monoid. Let a = (αi)i∈I ∈ H be a nonunit 

and let I ′ = { i ∈ I | αi /∈ H×
i }. Then I ′ is finite. Let a = a1 · · · ak ∈ H with aj ∈ H

nonunits and aj = (αj,i)i∈I . For each j ∈ [1, k] there exists an i ∈ I with αj,i /∈ H×
i . 

Because each Hi is unit-cancellative, even i ∈ I ′. We conclude k ≤
∑

i∈I′ max LHi
(αi).

(5) Let a ∈ H. If a ∈ H×
i for all i ∈ I, then also a−1 ∈ H and hence a ∈ H×. Thus 

the embedding H →
∏′

i∈I Hi satisfies the property required in (2). �
The submonoid of cancellative elements and principal one-sided ideals

As we have seen any BF-monoid is necessarily unit-cancellative. We therefore restrict 
our attention to the submonoid of cancellative elements H• of H. Here an issue appears 
that needs some discussion: the factorizations of an element a ∈ H• considered within 
H• may differ from the factorizations of the same element as considered in H, because 
not every divisor of a needs to be cancellative. However, under reasonable conditions 
this is the case.



J.P. Bell et al. / Journal of Algebra 622 (2023) 404–449 411
Let S ⊆ H be a submonoid. The submonoid S is right saturated in H if, for all a, b ∈ S

and c ∈ H with a = bc it follows that c ∈ S. It is divisor-closed if, for all a ∈ S and 
b, c ∈ H with a = bc it follows that b, c ∈ S. The submonoid S ⊆ H is a right Ore set if 
aS ∩ bH �= ∅ for all a ∈ H and b ∈ S.

Lemma 2.5.

(1) Let H be a monoid. If H is cancellative or H• is a right Ore set, then H• is right 
saturated in H.

(2) If R is a domain or a prime Goldie ring, then R• is divisor closed in R.

Proof. (1) If H is cancellative, then H = H• and the claim holds trivially.
Suppose that H• is a right Ore set in H. Let a, b ∈ H• and let a = bc with c ∈ H. If 

x, y ∈ H such that cx = cy, then ax = bcx = bcy = ay, and hence x = y. Let x, y ∈ H

with xc = yc. There exist b′ ∈ H and a′ ∈ H• such that ab′ = ba′. Then ba′ = ab′ = bcb′. 
Since b ∈ H•, we get a′ = cb′. Then xa′ = xcb′ = ycb′ = ya′ and a′ ∈ H• imply x = y. 
Hence c ∈ H•.

(2) If R is a domain, the claim again holds trivially, so suppose that R is a prime 
Goldie ring. Then a ∈ R• if and only if aR is an essential right ideal of R, if and only if 
Ra is an essential left ideal of R. If a ∈ R• and a = bc with b, c ∈ R, then aR ⊆ bR and 
Ra ⊆ Rc imply b, c ∈ R•. �

If H• ⊆ H is right saturated, there is a natural relationship between factorizations 
of elements of H• and chains of principal right ideals of H, generated by cancellative 
elements. For a ∈ H•, let [aH, H] = { bH : b ∈ H•, aH ⊆ bH ⊆ H }. If a = u1 · · ·uk

with atoms u1, . . . , uk ∈ H•, then

aH � u1 · · ·uk−1H � · · · � u1u2H � u1H � H

is a finite maximal chain in the poset [aH, H]. Conversely, every finite maximal chain in 
[aH, H] gives rise to a factorization of a into atoms of H•. Two factorizations correspond 
to the same chain if and only they are equal up to the insertion of units (for a formal 
treatment see [62, Sections 3.1–3.2]).

From this point of view we see (again assuming that H• ⊆ H is right saturated):

(1) H• is atomic if and only if [aH, H] contains a finite maximal chain for all a ∈ H•.
(2) H• has bounded factorizations if and only if, for every a ∈ H•, there exists a bound 

λ(a) on the length of finite maximal chains of H.
(3) H• is half-factorial if and only if every [aH, H] has a finite maximal chain and all 

finite maximal chains have the same length.

If [aH, H] contains only a finite, but nonzero, number of finite maximal chains, then H•

has finite factorizations; see [15] for a sufficient condition in the noncommutative setting.
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By the Jordan-Hölder theorem for modular lattices, we obtain the following.

Lemma 2.6. If H• is atomic and [aH, H] is a modular lattice for all a ∈ H•, then H• is 
half-factorial.

Proof. Atomicity guarantees the existence of at least one finite maximal chain of some 
length n. By Jordan-Hölder (or the Schreier refinement theorem) every maximal chain 
has the same length n. �
Remark 2.7. The study of factorizations in the presence of non-cancellative elements 
causes additional issues, already in the setting of commutative rings and monoids [6,7]. 
Recent instances of non-cancellative monoids where factorizations have been studied are 
[31,13,26,37,12]. In a ring with zero-divisors the correspondence between factorizations, 
as products of atoms, and maximal chains of principal right ideals breaks down. Facchini 
and Fassina [30] pursue the interesting approach of taking the latter concept, i.e., a 
maximal chain of principal right ideals, as the definition of a factorization.

Rings

As we have seen in Theorem 2.3, for (R � {0}, ·) to be a BF-monoid, it has to be 
unit-cancellative. In practice, this condition is too restrictive for the classes of rings that 
we are interested in.

For this reason we restrict our attention to the submonoid of cancellative elements 
R•, and make the following definition. We will mostly be interesting in prime rings and 
domains, where this set is “large”.

Definition 2.8. A ring R has bounded factorizations (BF), or is a BF-ring, if the monoid 
of non-zero-divisors R• is a BF-monoid.

3. Basic sufficient conditions for BF

In this section we give some basic conditions that guarantee that a ring has BF (in 
the noncommutative setting).

3.1. Small Krull dimension

Proposition 3.1. Let R be a ring. Then each of the following conditions implies that R
is a BF-ring.

(1) R is right artinian.
(2) R is a right noetherian prime ring with rKdimR = 1.
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Proof. (1) By the descending chain condition on principal right ideals, every cancellative 
element of R is a right unit. Since R is also right noetherian, every right unit is in fact 
a unit. Thus R• = R× and R is trivially a BF-ring.

(2) Let a ∈ R•. Because R• is right saturated in R, it suffices to bound the length of 
a maximal chain in [aR, R]. But since R/aR has finite length by [55, Lemma 6.3.9], the 
length of such a chain is bounded by the length of R/aR. �

In (2), setting λ(a) to be the length of R/aR, we see that λ is a right length function. 
In particular, a prime right principal ideal ring is always a BF-ring. (More specifically, 
it is even similarity factorial, see [62, Section 4.1].)

3.2. Filtered and graded rings

Proposition 3.2. Let R be a filtered ring with a filtration R0 ⊆ R1 ⊆ · · · such that 
R0 ⊆ R× and grR is a domain. Then R is a BF-domain.

Proof. For a ∈ R � {0} define λ(a) = min{ i ∈ Z≥0 : a ∈ Ri }. The fact that grR is a 
domain is equivalent to: for all a ∈ Ri � Ri−1 and b ∈ Rj � Rj−1, with i, j ≥ 0, one 
has ab ∈ Ri+j � Ri+j−1 (with R−1 = ∅). We conclude that λ(ab) = λ(a) + λ(b) for all 
a, b ∈ R� {0}. Thus λ is a superadditive length function and R is a BF-domain. �
Corollary 3.3. Universal enveloping algebras of Lie algebras over fields are BF-domains.

Proof. By the Poincaré–Birkhoff–Witt theorem, every such algebra has an associated 
graded ring that is a commutative polynomial ring over the base field. �

Before discussing skew polynomial rings, we note the following easy lemma.

Lemma 3.4. Let R be a ring. If there exists a ∈ R• �R×, x ∈ R•, and ε ∈ R× such that 
ax = xε, then R does not satisfy the ACC on principal left ideals. In particular, the ring 
R is not left noetherian.

Proof. Clearly Rax ⊆ Rx. If Rax = Rx, then x = rax for some r ∈ R. Cancelativity of 
x implies 1 = ra. Then a = ara and cancelativity of a implies ar = 1, in contradiction 
to a /∈ R×. Thus Rxε = Rax � Rx. Hence there is an infinite ascending chain

Rx � Rxε−1 � Rxε−2 � · · · � R. �
Proposition 3.5. Let S be a BF-domain. Then each of the following rings is a BF-domain.

(1) The skew polynomial ring S[x; σ, δ] where σ is an injective endomorphism of S such 
that σ(a) ∈ S× implies a ∈ S×, and δ is a σ-derivation.

(2) The Laurent polynomial ring S[x±1; σ] where σ is an automorphism of S.
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Proof. (1) Since S is a BF-domain, the function μ : S• → Z≥0, a → max L(a) is a 
superadditive length function. For 0 �= f =

∑n
i=0 x

iai with ai ∈ S and an �= 0, we define 
λ(f) = deg(f) + μ(an). Suppose that f = gh with h /∈ R×. Let g =

∑k
i=0 x

ibi with 
bi ∈ S and bk �= 0; and let h =

∑l
i=0 x

ici with ci ∈ S and cl �= 0.
Then k + l = n and an = σl(bk)cl.
We have k ≤ n and, since μ is superadditive, μ(σl(bk)) ≤ μ(an). Since h is a nonunit, 

either k < n or cl is a nonunit. In the second case, μ(σl(bk)) < μ(an). By our assumption 
on R, nonunits are mapped to nonunits under σ, and hence μ(bk) ≤ μ(σl(bk)).

Thus

λ(g) = k + μ(bk) ≤ k + μ(σl(bk)) < n + μ(an) = λ(f).

Hence λ is a right length function.
(2) Again, let μ : S• → Z≥0, a → max L(a) be a superadditive length function for S•. 

If 0 �= f =
∑n

i=m xiai ∈ S[x±1; σ] with m ≤ n and an, am �= 0, we define ω(f) = n −m

and f− = am. We show that λ(f) = ω(f) + μ(f−) is a right length function.
Suppose that f = gh with h /∈ R×. Since f− = σl(g−)h− for some l ∈ Z, we find 

μ(f−) ≥ μ(σl(g−)) + μ(h−) = μ(g−) + μ(h−).
Now either μ(h−) > 0 or ω(h) > 0. In the second case, clearly ω(f) > ω(g). Hence, 

in either case, λ(f) > λ(g). �
By Lemma 3.4 if the skew polynomial ring R = S[x; σ, δ] is noetherian (which is really 

the case we are interested in), the additional condition on σ is automatically satisfied.
We briefly summarize how various algebraic properties pass between skew [Laurent] 

polynomial rings and their base rings.

Lemma 3.6. Let S be a ring.

(1) Let R = S[x; σ, δ] with σ an endomorphism of S and δ a σ-derivation.

(i) If R is right noetherian, then S is right noetherian.
(ii) If R is a domain, then S is a domain and σ is injective.
(iii) If σ is injective and S is a domain, then R is a domain.
(iv) If σ is an automorphism and S is right [left] noetherian, then R is right [left] 

noetherian.
(v) If R is noetherian domain, then σ(a) ∈ R× implies that a ∈ R×.

(2) Let R = S[x±1; σ] with σ an automorphism of S.

(i) R is right [left] noetherian if and only if S is right [left] noetherian.
(ii) R is domain if and only if S is a domain.

Proof. Most of these are obvious or well known; we just discuss (i), (ii) and (v) of (1).
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Since R is a free right S-module, it is faithfully flat. Thus the lattice of right ideals of 
S embeds into the lattice of right ideals of R. Hence, if R is right noetherian, so is S.

Suppose R is a domain. Clearly S is a domain. Assume there exists 0 �= a ∈ S such 
that σ(a) = 0. Since S is a domain, 0 �= a2. Since δ(a2) = aδ(a), we have a2x = aδ(a), 
and hence a(ax − δ(a)) = 0. Thus a is a zero-divisor.
For (v), note that by (ii) σ is injective and so if σ(a) ∈ R×, then a ∈ R•. Now since R
is noetherian, by Lemma 3.4, a ∈ R×. �
Corollary 3.7. If R is a noetherian iterated skew [Laurent] polynomial domain over a 
commutative or a BF ring S, then R is BF.

Proof. By Lemma 3.6(1), S is noetherian. So in case S is commutative it is BF, see [36, 
Corollary 1.3.5] or Proposition 6.20. Now Lemma 3.6(1)(v) and Proposition 3.5(1) give 
us the result. �
3.3. Multiplicative ideal theory

In the study of non-unique factorizations in the commutative setting, Krull monoids 
and domains take a central role, and they are BF, as they are v-noetherian (see [36, 
Theorem 2.2.9] for the result, and Chapters 2.3 and 2.10 of the same monograph for 
additional context on Krull monoids and Krull domains).

There are several definitions of Krull orders in the noncommutative setting [47], and 
they are generally equivalent for prime PI rings [47, Theorem 1.4]. The definitions by 
Chamarie [22] and by Marubayashi [52–54] agree for bounded prime Goldie rings, and 
appear to be the most common ones (see also the survey [4] and Chapter 2.2 of the 
monograph [56]). For these Krull orders we have the following.

Proposition 3.8. Bounded Krull orders are BF-rings.

Proof. By [61, Corollary 5.30] and the remark following it.
Alternatively, a bounded Krull order R is an intersection of finite type of local prime 

principal ideal rings [4, Theorem 3.3].2
Prime principal ideal rings have BF by Proposition 3.1. The claim follows from (5) of 

Lemma 2.4, applied to R•. �
Remark 3.9.

(1) In the setting of semigroup algebras, typically a prime Goldie ring is called a Krull 
order if it is a maximal order and satisfies the ascending chain condition on divisorial 
(two-sided) ideals (see [46, p. 56] or [57, p. 256]). As already mentioned, when one 

2 Here, and in [4], a ring S is local if S modulo its Jacobson radical is simple artinian.
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restricts to the setting of prime PI rings, this coincides with the other notions of 
Krull orders. In general, Krull orders in the sense of Chamarie are Krull orders in 
the sense of [46]. However, for the latter, it is still open whether every divisorial 
prime ideal is localizable or not, which poses an obstacle to the development of a 
smooth structure theory for such orders. We refer to the remark after [4, Proposition 
3.10] for more details and further references.

(2) In [33] a noncommutative version of Krull monoids, originally introduced by Wauters, 
is studied. If H is such a Krull monoid and every nonunit a ∈ H is contained in a 
divisorial prime ideal, then H is a BF-monoid [33, Theorem 6.5].

3.4. Centers

It is well-known that the center of a noetherian ring need not be noetherian. Even 
noetherian prime PI rings need not have noetherian center. The weaker v-noetherian 
property does pass to the center, and allows us to show that the center of a noetherian 
prime ring has BF, as follows.

Let H be a monoid for which H• is a right Ore set, and denote by Q = Q(H) the 
right quotient monoid of H by H•. For X ⊆ H define (H:lX) = { q ∈ Q | qX ⊆ H }
and (H:rX) = { q ∈ Q | Xq ⊆ H }. A right ideal I of H is a right H-ideal if I ∩H• �= ∅. 
We define IH,v := Iv := (H:r (H:l I)) and call I divisorial if I = Iv. The monoid H is
right v-noetherian if it satisfies the ascending chain condition on divisorial right H-ideals. 
(These notions are developed in detail in the context of noncommutative monoids in [61, 
Section 5], but go back to work of Asano and Murata [3].)

The following is basically well-known; e.g. it is analogous to [55, Proposition 5.1.10(a)].

Lemma 3.10. If H is right v-noetherian, then Z = Z(H) ∩H• is v-noetherian. In par-
ticular, Z is a BF-monoid.

Proof. The monoid Z is commutative and cancellative.
Let I = IZ,v ⊆ Z be a divisorial Z-ideal. We claim (IH)H,v ∩ Z = I. The inclusion 

“⊇” is trivial. To show “⊆” it suffices to show

(H:r (H:l I)) ∩ Z ⊆ (Z : (Z :I)),

where the colon ideals are taken in Q(H) on the left and in Q(Z) on the right. Let x ∈ Z

be such that (H:l I)x ⊆ H. Then (Z :I)x ⊆ H ∩ Q(Z) ⊆ Z. Thus x ∈ (Z : (Z :I)), as 
claimed.

Thus, since H is right v-noetherian, so is Z. Hence Z is a commutative cancellative 
v-noetherian monoid, and therefore has BF [36, Theorem 2.2.9]. �
Proposition 3.11. Let R be a right v-noetherian prime ring. Then Z(R) is a BF-domain. 
In particular, if R is a prime right noetherian ring, then Z(R) is a BF-domain.
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Proof. The first claim follows from Lemma 3.10, and the second from the fact that right 
noetherian rings are right v-noetherian. �
4. FBN rings with additional assumptions

In this section we consider prime fully bounded noetherian (FBN) rings in which 
every nonzero ideal contains a nonzero central element. In particular, this class includes 
all noetherian prime PI rings [55, Theorem 13.6.4 and Corollary 13.6.6]. We give a second 
(different) proof for noetherian prime PI rings in Section 4.1. We recall that factor rings 
of FBN rings are FBN rings [41, Exercise 9G].

We define a slight variation of the reduced rank. Let R be a semiprime right Goldie 
ring, and let P1, . . . , Pn denote the pairwise distinct minimal prime ideals of R. The 
semisimple right quotient ring Q = Q(R) decomposes as Q =

⊕n
i=1 Qi with Qi =

Qei and e1, . . . , en central idempotents of Q. Each R/Pi is a prime Goldie ring with 
Q(R/Pi) ∼= Qi a simple artinian ring.

For a right R-module M , we define vPi
(M) ∈ Z≥0 ∪ {∞} to be the length of the 

Qi-module M/MPi ⊗R/Pi
Qi. This is the same as the reduced rank of the R/Pi-module 

M/MPi. Alternatively, since M/MPi
∼= M ⊗R R/Pi and R/Pi ⊗R/Pi

Qi
∼= Qi

∼= Q ⊗Q

Qi, we see that vPi
(M) counts the multiplicity of the unique simple Qi-module in the 

semisimple Q-module M ⊗R Q.

Lemma 4.1. Let R be a semiprime right Goldie ring and P a minimal prime ideal of R.

(1) The map vP : Mod-R → Z≥0 ∪ {∞} is additive on short exact sequences.
(2) vP (M) = 0 if and only if M/MP is an R/P -torsion module.

Proof. (1) Let 0 A B C 0 be a short exact sequence. Since RQ is flat, 
tensoring with it preserves the short exact sequence.

(2) Clear. �
Lemma 4.2. Let R be a right noetherian ring with prime radical N , a minimal prime 
ideal P , and let M be a right R-module. If M = M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mm = 0 and 
M = M ′

0 ⊇ M ′
1 ⊇ M ′

2 ⊇ · · · ⊇ M ′
n = 0 are chains of submodules such that MiN ⊆ Mi+1

and M ′
iN ⊆ M ′

i+1 for all i, then

m∑
i=1

vP/N (Mi/Mi+1) =
n∑

i=1
vP/N (M ′

i/M
′
i+1).

Proof. The additivity of vP/N implies that the value of either sum is unchanged under 
refinement. The Schreier Refinement Theorem allows the chains to be refined to equiva-
lent ones, which yields the desired conclusion. (This proof is the same as the one in [41, 
Lemma 11.1] for the reduced rank.) �



418 J.P. Bell et al. / Journal of Algebra 622 (2023) 404–449
Definition 4.3. Let R be a right noetherian ring, P a minimal prime ideal of R, and N
the prime radical of R. For a right module M , we define vP (M) using the formula in 
Lemma 4.2. (Since N is nilpotent, M ⊇ MN ⊇ MN2 ⊇ · · · ⊇ 0 shows the existence of 
a chain as required.)

Remark 4.4. The reduced rank of M is 
∑

P vP (M) where the sum runs over all minimal 
prime ideals of R.

In [45], Jategaonkar introduces a similar valuation for annihilators of the factors of a 
critical composition series of M . He shows that the valuation is additive for dominant
primes, these being the ones minimal among all the annihilator primes of the critical 
composition series of M . The minimal primes over ann(M) are precisely the dominant 
primes, so that we can recover Jategaonkar’s valuations for dominant primes by consid-
ering M as an R/ ann(M) module.

If M is a right R-module with A = ann(M) and P is a prime ideal minimal over A, 
then the expression vP/A(M), interpreted in R/A makes sense, since P/A is minimal in 
R/A. The following lemma shows that we may replace A by a smaller ideal B ⊆ A, while 
preserving vP/B(M) = vP/A(M), as long as P remains minimal over B. We will make 
use of this refinement later on.

Lemma 4.5. Let R be a right noetherian ring and M a right R-module. Let further A =
ann(M) and let B an ideal of R and P a prime ideal of R such that B ⊆ A ⊆ P and P
is minimal over B. (Then P is also minimal over A.) Then

vP/A(M) = vP/B(M),

where the left side is computed in the ring R/A and the right side in R/B.

Proof. Let N be the prime radical of B. Because R/B is right noetherian, there exists 
n ≥ 1 such that Nn ⊆ B ⊆ A. Consider the chain of R-modules

M ⊇ MN ⊇ MN2 ⊇ · · · ⊇ MNn = 0.

Since M is annihilated by A, the same is true for each factor Li := MN i−1/MN i with 
1 ≤ i ≤ n. Then

Li ⊗R R/P ∼= Li ⊗R/A (R/A)/(P/A) ∼= Li ⊗R/B (R/B)/(P/B),

and of course R/P ∼= (R/A)/(P/A) ∼= (R/B)/(P/B). Thus vP/B(Li) = vP/A(Li) for all 
i. (These expressions make sense, because P is minimal over both A and B.) Finally 
vP/A(M) =

∑n
i=1 vP/A(Li) =

∑n
i=1 vP/B(Li) = vP/B(M). �

We will make use of the following variant of the Principal Ideal Theorem by Chatters, 
Goldie, Hajarnavis and Lenagan. They state the result for prime PI rings, but the same 
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proof works for prime FBN rings as long as every nonzero ideal contains a nonzero central 
element. By C(P ) we mean the set of all elements a ∈ R such that a + P ∈ (R/P )•.

Proposition 4.6 ([21, Theorem 4.8]). Let R be a prime FBN ring such that every nonzero 
ideal contains a nonzero central element and let a ∈ R•. If P is a prime ideal minimal 
over ann(R/aR) and a /∈ C(P ), then P has height at most 1.

Corollary 4.7. Let R be a prime FBN ring and assume that every nonzero ideal contains 
a nonzero central element. For each a ∈ R• � R×, there exists a height-one prime ideal 
P with ann(R/aR) ⊆ P .

Proof. We follow the argument in [20, Theorem 2.2].
Let A = ann(R/aR). Then A is the maximal two-sided ideal contained in aR, and 

thus 0 �= A � R, where A �= 0 because R is bounded and aR is an essential right 
ideal by [55, Proposition 2.3.4]. Let N be the prime radical of A. By [20, Lemma 2.1], 
a /∈ C(N). Thus there exists a prime ideal P minimal over A such that a /∈ C(P ). By 
Proposition 4.6, the height of P is 1. �
Lemma 4.8. Let R be a right bounded semiprime right Goldie ring. If M1, . . . , Mn are 
finitely generated torsion modules, then there exists a nonzero ideal I ⊆ R such that 
MiI = 0 for all i ∈ [1, n].

Proof. For each Mi, let mi,1, . . . , mi,k be generators. Choose xi,j ∈ R• with m1,1x1,1 = 0, 
(m1,2x1,1)x1,2 = 0, . . . , (m2,1x1,1 · · ·x1,k)x2,1 = 0 and so on.

Setting x = x1,1 · · ·x1,k · · ·xn,1 · · ·xn,k ∈ R•, we have mi,jx = 0 for all i ∈ [1, n]
and j ∈ [1, k]. Since R is semiprime right Goldie, xR is an essential right ideal of R by 
[55, Proposition 2.3.4]. Since R is right bounded, there exists a right essential two-sided 
ideal I ⊆ xR of R. If m = mi,1r1 + · · · + mi,krk ∈ Mi, then mI ⊆

∑k
j=1 mi,jI ⊆∑k

j=1 mi,jxR = 0. Thus 0 �= I ⊆ ann(Mi). �
Lemma 4.9. Let R be an FBN ring. If a ∈ R•�R× and P is a prime ideal minimal over 
A = ann(R/aR), then vP/A(R/aR) > 0.

Proof. Let N be the prime radical of A, and let P1 = P , P2, . . . , Pk denote the pairwise 
distinct minimal prime ideals over A. Set Y = P2 ∩ · · · ∩ Pk ∩R.

Suppose vP/A(R/aR) = 0, and let R/aR = M0 ⊇ M1 ⊇ · · · ⊇ Mn = 0 be a sequence 
of submodules with Mi−1N ⊆ Mi. Then vP/A(Mi−1/Mi) = 0 for all i by Lemma 4.1(1), 
and hence Mi−1/(Mi−1P +Mi) is an R/P -torsion module. By Lemma 4.8 there exists an 
ideal X � P annihilating all Mi−1/(Mi−1P +Mi). Noting that Y annihilates (Mi−1P +
Mi)/Mi, we see that XY annihilates Mi−1/Mi. Thus (XY )n ⊆ A ⊆ N , and hence 
XP2 · · ·Pn ⊆ N ⊆ P1. Thus X ⊆ P1, a contradiction. �
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Theorem 4.10. Let R be a prime FBN ring and suppose that every nonzero ideal contains 
a nonzero central element. Then R is a BF-ring.

Proof. Let X(R) denote the set of height-one prime ideals of R. For a ∈ R• and A =
ann(R/aR) define

λ(a) =
∑

P∈X(R)
A⊆P

vP/A(R/aR).

We claim that λ is a superadditive length function.
Suppose a ∈ R• � R×. Then A = ann(R/aR) �= 0, because aR is an essential right 

ideal of R, and R is bounded. By Corollary 4.7 there exists a height-one prime ideal P
with ann(R/aR) ⊆ P . Since A �= 0, the ideal P is minimal over ann(R/aR). Lemma 4.9
implies vP/A(R/aR) > 0, and hence λ(a) > 0. Thus λ(a) = 0 implies a ∈ R×.

Suppose that a = bc with b, c ∈ R• and let B = ann(R/bR) and C = ann(R/cR). 
Since aR = bcR and bcR ⊆ bR ⊆ R, the modules R/bR and R/cR ∼= bR/bcR appear as 
factor, respectively, submodule of R/aR. Thus A ⊆ B and A ⊆ C. Using the additivity 
of vP/A, we find

λ(a) =
∑

P∈X(R)
A⊆P

vP/A(R/aR) =
∑

P∈X(R)
A⊆P

(
vP/A(R/bR) + vP/A(R/cR)

)

≥
∑

P∈X(R)
B⊆P

vP/A(R/bR) +
∑

P∈X(R)
C⊆P

vP/A(R/cR)

=
∑

P∈X(R)
B⊆P

vP/B(R/bR) +
∑

P∈X(R)
C⊆P

vP/C(R/cR) = λ(b) + λ(c).

The equalities vP/A(R/bR) = vP/B(R/bR) for B ⊆ P , and the analogous equalities for 
R/cR, are justified by Lemma 4.5. �
Corollary 4.11. Let R be a noetherian prime PI ring. Then R is a BF-ring.

Proof. Every noetherian prime PI ring is an FBN ring [55, Theorem 13.6.4]. Moreover, 
the existence of a central polynomial can be used to show that every nonzero ideal 
contains a nonzero central element [55, Corollary 13.6.6]. Therefore Theorem 4.10 implies 
the claim. �
4.1. PI rings

We now give a different proof of Corollary 4.11, that is more in the spirit of PI 
theory. A ring extension R ⊆ S is finite centralizing, if the module SR has a finite set 
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of generators, each of which centralizes R. Finite centralizing (more generally, finite 
normalizing) extensions have the lying over property: for every prime ideal P of R, there 
exists a prime ideal Q of S with P = Q ∩R [55, Theorems 10.2.9 and 10.2.4].

Proposition 4.12. If R ⊆ S is a finite centralizing extension of PI rings, then S× ∩R =
R×.

Proof. Clearly R× ⊆ R ∩ S×, and it suffices to show the other inclusion. Assume that 
there exists an a ∈ R � R× such that a ∈ S×. Then a is contained in a maximal right 
ideal M ⊆ R. Let P = ann(R/M). Since P is primitive, it is prime. By the lying over 
property, there exists a prime ideal Q of S such that Q ∩R = P . Thus R/P ↪→ S/Q.

Since a + P is contained in the maximal right ideal M + P of R/P , it is a nonunit 
in R/P . Since R/P is a primitive PI ring, Kaplansky’s Theorem [55, Theorem 13.3.8]
implies that R/P is simple artinian. Thus a +P is a zero-divisor, and since R/P embeds 
into S/Q, also a + Q is a zero-divisor in S/Q. It follows that a + Q is a nonunit, and 
hence a /∈ S×. �

For the remainder of this section, let R be a prime PI ring and K the quotient field of 
its center Z(R). Then R has a quotient ring A that is a central simple algebra over K. 
Each a ∈ A induces a K-endomorphism μa of A, given by left multiplication, x → ax. 
The characteristic polynomial of a is the characteristic polynomial of μa. The norm of a
is NA/K(a) = det(μa).

Let t(R) denote the subring of K generated over Z(R) by all coefficients of charac-
teristic polynomials of elements of R. The subring T (R) = t(R)R of A is the trace ring
of R [55, §13.9].

Lemma 4.13. We have t(R) = Z(R) if and only if R is integral over Z(R).

Proof. An element r ∈ R is integral over Z(R) if and only if its characteristic polynomial 
has coefficients in Z(R). From this the claim follows immediately. �
Lemma 4.14. Suppose that R is integral over Z(R).

(1) NA/K : A → K is a homomorphism of multiplicative monoids and restricts to a 
multiplicative homomorphism NR/Z(R) : R → Z(R).

(2) a ∈ R is a zero-divisor if and only if NA/K(a) = 0.
(3) a ∈ R× if and only if NA/K(a) ∈ Z(R)×.

Proof. (1) The norm is multiplicative because the determinant is, and NA/K(1) =
det(idA) = 1. By assumption NA/K(a) ∈ Z(R) for all a ∈ R.

(2) a ∈ R is a zero-divisor if and only if it is a nonunit in A. However, this is clearly 
equivalent to μa not being an isomorphism, that is, to NA/K(a) = 0.

(3) Let a ∈ R. If a ∈ R×, then (1) implies NR/Z(R)(a) ∈ Z(R)×.
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Suppose NR/Z(R)(a) ∈ Z(R)×, and let Xn+an−1X
n−1+· · ·+a0 with ai ∈ Z(R) denote 

the characteristic polynomial of a. By the Cayley-Hamilton Theorem, μn
a + an−1μ

n−1
a +

· · · + a0 = 0 in EndK(A). Thus

(μn−1
a + an−1μ

n−2
a · · · + a1)μa = −a0 ∈ Z(R)×.

We conclude that μa is also invertible as an element of EndZ(R) R. Since R embeds in 
EndZ(R) R, it follows that a ∈ R×. �
Second proof of Corollary 4.11. Suppose first that R is integral over its center. Then 
Z(R) is a BF-domain by Proposition 3.11, and Lemma 4.14 implies that NA/K : R• →
Z(R)• is a monoid homomorphism satisfying that NA/K(a) ∈ Z(R)× implies a ∈ R×. 
Thus max L(a) ≤ max L(NA/K(a)).

In the general case we now reduce the question to the trace ring T (R). Since R
is noetherian, so is T (R) [55, Proposition 13.9.11]. Since R and T (R) are equivalent 
orders in the quotient ring A [55, Corollary 13.9.7], the ring T (R) is also a prime PI 
ring. Moreover, T (R) is integral over t(R). Since t(R) ⊆ Z(T (R)), the ring T (R) is also 
integral over its center. Thus T (R) is a BF-ring by the case we have already established.

The right R-module T (R)R is finitely generated [55, Proposition 13.9.11], so there 
exist t1, . . . , tn ∈ t(R) that generate T (R)R. Thus T (R) is a finite centralizing extension 
of R. Proposition 4.12 implies R× = T (R)× ∩R, and hence (2) of Lemma 2.4 applied to 
R• ↪→ T (R)• implies that R is a BF-ring. (Note that R• = A× ∩R = T (R)• ∩R.) �
Example 4.15. Let K be a field, and suppose that R is a prime PI ring that is an affine K-
algebra, but not necessarily noetherian. Then T (R) is a noetherian ring [55, Proposition 
13.9.11]. However, in this setting the BF-property does not necessarily descend to R. 
Consider [55, Example 13.9.9]: Let

S := Q[x, y, y−1] and R :=
(
S xS
S Q[y] + xS

)
⊆ M2(S).

Then R is an affine Q-algebra [55, §10.2], and

T (R) =
(
S xS
S S

)

is noetherian. The conclusion of Proposition 4.12 does not hold for R ⊆ T (R), for instance

(
1 0
0 y

)
∈ (T (R)× ∩R) �R×.

Moreover R is not atomic (and therefore not a BF-ring). To see this, consider elements 
of the form



J.P. Bell et al. / Journal of Algebra 622 (2023) 404–449 423
A =
(
a xb
c xd

)
∈ R with a, b, c, d ∈ S and det(A) �= 0. (2)

Then det(A) /∈ S× implies A /∈ T (R)×, and hence A /∈ R×. From det(A) �= 0 we get 
A ∈ R• ⊆ M2(S)•. The obvious factorization

A =
(

1 0
0 y

)(
a xb

cy−1 xdy−1

)

shows that A is not an atom.
Suppose

A =
(
a1 xb1
c1 d1

)
︸ ︷︷ ︸

A1

(
a2 xb2
c2 d2

)
︸ ︷︷ ︸

A2

,

with ai, bi, ci ∈ S, and di ∈ Q[y] + xS for i ∈ {1, 2}. Then d1 ∈ xS or d2 ∈ xS as 
xd = xc1b2 + d1d2 ∈ xS. Thus one of the Ai is again of a form as in Eq. (2). Repeating 
this argument recursively, we see that every representation of A as a product of nonunits 
must contain some factor B that is of the form as in Eq. (2). However, then B is not an 
atom, and therefore the ring R is not atomic.

5. Algebras of quadratic growth

Throughout this section, let R be an affine prime algebra over a field K and let 
GKdim(R) denote the Gelfand-Kirillov-dimension of R. Then it is well-known that 
GKdim(R) ∈ {0, 1} ∪ R≥2 (see [48]). If GKdim(R) = 0, then R is finite-dimensional, 
in particular artinian, and therefore has BF. If GKdim(R) = 1, then a theorem of Small 
and Warfield shows that R is prime noetherian PI [65,63], and therefore R has BF by 
Corollary 4.11. Thus GKdim(R) = 2 is the smallest remaining case. In the following 
we deal with the case of R having quadratic growth. If R has quadratic growth, then 
GKdimR = 2, but the converse is not true in general.

Recall that a frame is finite-dimensional vector subspace V ⊆ R containing 1 and a 
generating set of R. The algebra R has quadratic growth if there exists a frame V and 
constants c1, c2 ∈ R>0 such that c1n2 ≤ dimV n ≤ c2n

2 for all n ≥ 1.
By [10], an affine simple Goldie K-algebra of quadratic growth is noetherian and has 

Krull dimension 1. Thus Proposition 3.1 applies, and such algebras are BF-rings. We now 
consider affine noetherian prime algebras of quadratic growth, that are not necessarily 
simple. Since the PI case is covered by Corollary 4.11, we will eventually further restrict 
to non-PI algebras.

Lemma 5.1. Let S be a noetherian prime ring, and let a ∈ S• be a nonunit. Then

S• ∩
⋂

akS = ∅.

k≥0
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Proof. Suppose not, and let b ∈
⋂

k≥0 a
kR with b cancellative. Then, for every k ≥ 0, 

there exists a ck ∈ R such that b = akck. Cancelativity of a implies ck = ack+1. Since b
is cancellative, so is each of the ck. Thus Sc0 � · · · � Sck � Sck+1 � · · · is an infinite 
ascending chain of principal left ideals, in contradiction to S being left noetherian. �
Definition 5.2. An element a ∈ R• is an almost unit if dimK R/aR < ∞.

If a, b ∈ R• are almost units, then R ⊇ aR ⊇ abR and aR/abR ∼= R/bR show 
dimR/abR = dimR/aR · dimR/bR. In particular, the almost units form a submonoid 
of R•.

We will proceed to show that in the setting of interest to us, every almost unit is in 
fact a unit (Lemma 5.4 below). To do so, we need to use a result from the theory of 
generalized polynomial identities (GPIs). To avoid unnecessary technicalities (since we 
will assume that R is noetherian later on), assume that R is a Goldie ring, so that it 
has a classical quotient ring. Let Q = Q(R) be the quotient ring of R and let Z = Z(Q)
be its center. We consider elements of the free product (coproduct) Q ∗Z Z[T ] of the Z-
algebras Q and Z[T ] as generalized polynomials. In this ring, coefficients from Q do not 
in general commute with the indeterminate T , but elements of Z do commute with T . 
More specifically, we will only deal with linear generalized polynomials, that is, elements 
of the form

k∑
i=0

aiTbi with ai, bi ∈ Q.

The Z-vector space of linear generalized polynomials is isomorphic to Q ⊗Z Q via ∑k
i=0 aiTbi →

∑k
i=0 ai ⊗ bi (see [17, Remark 6.1.1]). A reference for GPIs is [17].

The following result was proven by Martindale [51, Theorem 2]. Another reference is 
[17, Corollary 6.1.3], noting that the expression below corresponds to a nonzero gener-
alized polynomial identity.

Lemma 5.3. Let S be a prime Goldie ring, Z = Z(Q(S)) its extended center, and let a1, 
. . . , an, b1, . . . , bn ∈ S be such that a1, . . . , an are Z-linearly independent and b1 �= 0. 
Then

n∑
i=1

aixbi �= 0

for some x ∈ S.

For the remainder of the section, let R be an affine noetherian prime ring of quadratic 
growth that is not PI.

Lemma 5.4. Every almost unit in R is a unit.
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Proof. Suppose that a ∈ R• � R× with dimK R/aR < ∞. Since a is not a unit, it is 
not algebraic over K. By a theorem of Bell and Smoktunowicz [18, Theorem 1.3], the 
element a is also not algebraic over the extended center Z = Z(Q), where Q = Q(R) is 
the quotient ring of R.

Let V ⊆ R be a finite-dimensional K-vector space such that R = V ⊕K aR. Since 
aR ∼= R as right R-modules, we have R =

∑n−1
i=0 aiV ⊕ anR for all n ≥ 0. Writing v1, 

. . . , vm for a K-basis of V , for all b ∈ R and n ≥ 0 we may write

b ∈
m∑
i=1

Bi,n(a)vi + anR

with Bi,n ∈ K[x] polynomials depending on i, n, and b.
For j ∈ [0, m] we iteratively construct generalized linear polynomials

fj(T ) ∈ Q ∗Z Z[T ],

which are in fact of the form fj =
∑k

i=0 a
iTci with ci ∈ R, as follows. Let f0 = T . For 

j ∈ [1, m], and with fj−1 already constructed, consider the ascending chain of right ide-
als 

(
fj−1(vj)R+

∑n
i=1[fj−1(vj), ai]R

)
n≥0, where [fj−1(vj), ai] denotes the commutator. 

Since R is right noetherian the chain stabilizes, and hence there exist nj ≥ 0 and rj,i ∈ R

with rj,nj
= 1 such that

fj−1(vj)rj,0 +
nj∑
i=1

[fj−1(vj), ai]rj,i = 0.

We set fj = fj−1rj,0 +
∑nj

i=1[fj−1, ai]rj,i.
By construction fj(vi) = 0 if i ≤ j, and therefore

fj(b) ∈
m∑

i=j+1
Bi,n(a)fj(vi) + anR.

We conclude that fm(b) ∈ anR for all b ∈ R and all n ≥ 0. Expanding fm, we see that 
it is of the form 

∑k
i=0 a

iTci with ci ∈ R and ck = r1,n1 · · · rm,nm
= 1.

Lemma 5.1 implies that I =
⋂

n≥0 a
nR is not essential as right ideal of R. Hence, with 

Q denoting the quotient ring of R, we have IQ �= Q and so there exists 0 �= z ∈ Q such 
that zIQ = 0. Clearing denominators, we may assume z ∈ R � {0}. Hence zfm(b) = 0
for all b ∈ R. This contradicts Lemma 5.3. �
Lemma 5.5. Let V be a frame of R and k ≥ 0. Then there exists a constant C ∈ R>0
such that for infinitely many n ≥ k,

dimV n/V n−k ≤ Cn.
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Proof. Let C ∈ R>0. Suppose there exists N ≥ k such that for all n ≥ N , we have 
dimV n/V n−k > Cn. Set d(n) = dimV n. Then

d(N + lk) = d(N) +
l∑

i=1

(
d(N + ik) − d(N + (i− 1)k)

)

> d(N) + C
l∑

i=1
(N + ik)

= d(N) + CNl + Ck
l∑

i=1
i.

Since the last sum grows quadratically in l, and this is true for arbitrarily large C, this 
contradicts the quadratic growth hypothesis. �
Lemma 5.6. Let a ∈ R•. Then there exists a C ∈ R>0 such that

dim((V n + aR)/aR) ≤ Cn

for infinitely many n.

Proof. Let k ≥ 0 be such that a ∈ V k and let n ≥ k. There is a homomorphism of 
K-vector spaces ϕ : V n → R/aR with imϕ = (V n + aR)/aR. Since a ∈ V k, we have 
aV n−k ⊆ V n. Hence ϕ induces an surjective vector space homomorphism V n/aV n−k →
imϕ. By Lemma 5.5, there exists a C ∈ R>0 such that dimV n/aV n−k ≤ Cn for infinitely 
many n. (Note that dim aV n−k = dimV n−k since a is a non-zero-divisor.) �
Lemma 5.7. If a, b ∈ R• with aR � bR ⊆ R, then there exists c ∈ Z≥0 such that

dim
((

(V n + aR) ∩ bR
)
/aR

)
≥ n− c

for all sufficiently large n.

Proof. We write V n for (V n + aR)/aR. Let k ≥ 0 be such that b ∈ V k, and let W =
V k ∩ bR/aR. Since b + aR generates bR/aR, it follows that

bR/aR =
⋃
n≥1

WV n.

Suppose that there exists an N ≥ 1 such that WV N+1 = WV N . Then WV N+n =
WV N for all n ≥ 0. This implies that bR/aR is finite-dimensional, and hence b−1a ∈ R

is an almost unit but not a unit, in contradiction to Lemma 5.4. Hence we must have 
WV n � WV n+1 for all n ≥ 0. Observe WV n ⊆ V n+k ∩ bR/aR. Thus
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dim(V k+n ∩ bR/aR) ≥ dim(WV n) ≥ dim(W ) + n. �
Theorem 5.8. Let K be a field and let R be an affine noetherian prime K-algebra of 
quadratic growth. Then R is a BF-ring.

Proof. We may without loss of generality assume that R is not a PI ring, as we have 
already proved the result for noetherian prime PI rings. For a ∈ R• we define

λ(a) =
⌊

lim inf
n→∞

dim((V n + aR)/aR)
n

⌋
and claim that λ is a right length function. By Lemma 5.6, the limit inferior is finite. 
Now, if aR � bR with b ∈ R•, then, using Lemma 5.7, there exists c ∈ Z≥0 such that

dim((V n + aR)/aR)
n

= dim(((V n + aR) ∩ bR)/aR)
n

+ dim((V n + bR)/bR)
n

≥ 1 − c

n
+ dim((V n + bR)/bR)

n
.

Thus λ(a) ≥ 1 + λ(b). �
Example 5.9. The ring R from Example 4.15 is Q-affine with frame V generated by e11, 
xe11, ye11, y−1e11, e21, e12x, e22, e22y (see [55, §13.10.2]; we add e11 to have 1 ∈ V , as 
is our convention). Now V n contains the linearly independent set { xiym−ie11 : 0 ≤ m ≤
n, 0 ≤ i ≤ m }. On the other hand V n is contained in { xiym−iekl : 0 ≤ m ≤ n, 0 ≤ i ≤
m, k, l ∈ {1, 2} }. Thus R is a prime PI Q-affine algebra of quadratic growth that is not 
atomic, and in particular, not a BF-ring. We see that the condition that R be noetherian 
in Theorem 5.8 cannot simply be dropped.

6. Sufficient homological conditions for BF

This section contains two main results. When restricted to algebras over a field, the 
first of these results (Corollary 6.4) is a special case of the second (Theorem 6.15). 
Despite this, we have included a separate proof of Corollary 6.4 before proceeding to 
Theorem 6.15, since it applies to rings rather than to algebras. The basic underlying 
idea is similar in both cases - namely, a function from (isomorphism classes of) modules 
to ordinals is defined, with properties which preclude the possibility of factorizations of 
unbounded length. But in order to achieve this the second result requires significantly 
more heavy-duty technology than the first.

In §6.1 we state a simple and very general lemma, Lemma 6.2 and then apply it to 
prove in Corollary 6.4 that every Auslander Gorenstein noetherian ring is a BF-ring. In 
§6.2 the concept of an Auslander dualizing complex is recalled from [72], and used to prove 
Theorem 6.15, yielding for example property BF for all prime noetherian algebras which 
are factors of an algebra with such a dualizing complex. Consequences for noetherian 
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algebras of finite Gelfand-Kirillov dimension are discussed in Corollary 6.17. Finally, in 
§6.3 we show that for a commutative noetherian ring R there is a very natural (and 
non-homological) choice of a function j satisfying the hypotheses of Lemma 6.2, hence 
yielding another proof of property BF for commutative noetherian domains. However, as 
we show by an example due to Hochster and Heitmann suggested to us, this function does 
not satisfy Gabber’s Maximality Principle, which is key to the proof of Theorem 6.15.

6.1. Auslander-Gorenstein rings

Notation and Definition 6.1. Suppose that j is a map from Modf (R), a representative 
set of isomorphism classes of finitely generated right R-modules, to the set of ordinal 
numbers. Then:
(1) M ∈ Modf (R) is called j-pure if j(M) = j(N) for every nonzero submodule N of M .
(2) j is called exact, if for every finitely generated module M , and 0 ⊆ N ⊆ M , j(M) =
inf{j(N), j(M/N)}.
(3) If α is an ordinal number, then j is called finitely partitive on α if for every M ∈
Modf (R) with j(M) = α, there is a finite bound on the length of chains of submodules 
of M of the form M0 ⊆ M1 ⊆ · · · ⊆ Mn = M with j(Mi+1/Mi) = α for every 0 ≤ i < n.
(4) j is said to satisfy the torsion property on R, if j(R/xR) ≥ j(R) +1, for every nonunit 
regular element x of R.

Given a map j from Modf (R) to a set of ordinal numbers and an infinitely generated 
module M , we can define j(M) to be inf{ j(N) : 0 �= N ⊆ M, N finitely generated }. If j
is exact, then this extension remains exact. That is, if M is a right module, not necessarily 
finitely generated, then again j(M) = inf{j(N), j(M/N)} for every nonzero submodule 
N of M . To prove this, let 0 ⊆ N ⊆ M be a submodule of M , then by definition of j, it 
is easy to see that j(M) ≤ j(N). Now let j(M/N) = j(k1R + k2R + · · · + knR + N/N). 
Then j(M/N) = j(k1R + k2R + · · · + knR/(N ∩ k1R + k2R + · · · + knR)) ≥ j(k1R +
k2R + · · · + knR) ≥ j(M).

There exists a finitely generated submodule N ′ of M such that j(M) = j(N ′). 
Therefore, j(N ′) = j(N ∩ N ′) or j(N ′) = j(N ′/N ′ ∩ N). In the first case, we 
have j(N) ≤ j(N ′ ∩ N) = j(M) and so j(M) = j(N) and in the second case, 
j(M/N) ≤ j(N ′ + N/N) = j(M) and so the equality holds.

In the rest of §6, given a ring R, j will always denote a function from Modf (R) to a 
set of ordinal numbers, which is then extended as above to infinitely generated modules. 
Thus we can talk about not necessarily finitely generated j-pure modules in a similar 
fashion to Notation 6.1(1).

A tight bound on the value of j on cyclic modules of the form R/xR will be important 
for us in the sequel, as the following lemma confirms.
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Lemma 6.2. Let R be a noetherian ring for which there exists a map j from Modf (R) to 
a set of ordinal numbers such that, for a fixed ordinal number α, j is finitely partitive on 
α and j(R/xR) = α for every x ∈ R• �R×. Then R is a BF-ring.

Proof. Let R be as stated and let x ∈ R• � R×, so j(R/xR) = α. Suppose that x =
a1 · · · at with ai ∈ R• �R× for all i. Then there is a chain of submodules

0 = M0 ⊆ M1 = a1 · · · at−1R/xR ⊆ · · · ⊆ Mt−1 = a1R/xR ⊆ Mt = R/xR

of R/xR, with Mi+1/Mi
∼= R/at−iR for all i = 0, . . . , t −1. By hypothesis, j(Mi+1/Mi) =

α for all i. Hence, since j is finitely partitive on α, there is a bound on the length of such 
chains. Therefore, R is a BF-ring. �

To give the first application of Lemma 6.2, we need to recall some homological termi-
nology. For more details, see [50], [23] or [16], for example.

Definition 6.3. Let R be a noetherian ring.

(1) Let M be a left or right R-module. The (homological) grade of M is

j(M) := inf{i |ExtiR(M,R) �= 0} ∈ Z≥0 ∪ {ω}.

In particular, j(0) = ω, where 0 denotes the zero R-module.
(2) R satisfies the Auslander condition if, for every left or right R-module M and every 

non-negative integer i, j(N) ≥ i for every submodule N of ExtiR(M, R).
(3) R is Auslander-Gorenstein if

(i) R has finite (and equal) right and left injective dimensions;
(ii) R satisfies the Auslander condition.

(4) R is Auslander-regular if it is Auslander-Gorenstein and has finite global (homological) 
dimension.

The fact that the (negative of the) grade yields an exact finitely partitive dimension 
function for Auslander-Gorenstein rings was first observed by Björk [16, Theorem 1.17]; 
a detailed account in this setting was given in [50, Theorem 4.2, (4.6.5), (4.6.7)].3

Corollary 6.4. Every Auslander-Gorenstein ring is a BF-ring.

Proof. Let R be an Auslander-Gorenstein ring and let x ∈ R• � R×. Then
HomR(R/xR, R) = 0. Moreover, since 0 → xR → R → R/xR → 0 is a non-split 

3 Note that the definition of “finitely partitive” given in [50, Proposition 4.5(iv)] is weaker than Defini-
tion 6.1; but Levasseur observes in [50, (4.6.5)] that the stronger conclusion is valid.



430 J.P. Bell et al. / Journal of Algebra 622 (2023) 404–449
exact sequence as xR ∼= R, it follows that Ext1R(R/xR, R) �= 0, so that j(R/xR) = 1. 
However, as noted before the corollary, when R is Auslander-Gorenstein the homological 
grade j is finitely partitive for every ordinal, and in particular for 1. Therefore R is a 
BF-ring by Lemma 6.2. �

We list here some large and important classes of noetherian rings which are known to 
be Auslander-Gorenstein.

Examples 6.5.

(1) At the time of writing, all known noetherian Hopf algebras are Auslander-Gorenstein. 
Whether this is in fact a theorem has been an open question for 25 years, see [11, 
1.15]. Many large classes of noetherian Hopf algebras are known to be Auslander-
Gorenstein. These include:

(•) noetherian Hopf algebras satisfying a polynomial identity [70, Theorem 0.1];
(•) group algebras of polycyclic-by-finite groups [19, Theorem 6.7];
(•) enveloping algebras of finite dimensional Lie algebras [29];
(•) quantized enveloping algebras [11, Proposition 2.2];
(•) connected Hopf algebras of finite Gelfand-Kirillov dimension [74];
(•) quantized coordinate rings of semisimple groups [42, Theorem 0.1].

(2) A commutative noetherian ring is Auslander-Gorenstein if and only if it is Goren-
stein; that is, if and only if it has finite injective dimension [8].

(3) A ring with a locally finite N−filtration whose associated graded ring is commutative 
Gorenstein is Auslander-Gorenstein. In particular, the Weyl algebras An(k) over a 
field k are Auslander-regular of global dimension n in characteristic 0, and 2n in 
characteristic p > 0 [29].

(4) A local4 fully bounded noetherian ring of finite global dimension is Auslander-regular 
[66].

(5) Sklyanin algebras are Auslander-Gorenstein domains [67].

6.2. Dualizing complexes

In this subsection we give two further applications of Lemma 6.2. First, we strengthen 
the homological technology used to define the function j in Corollary 6.4 so that a 
much larger class of noetherian rings are included than the Auslander-Gorenstein rings 
considered in §6.1; the outcome is Theorem 6.15. A cost of this (apart from the weight 
of equipment required) is that we have to work with algebras over a field, rather than 
rings.

4 By a local ring we mean a ring whose factor by its Jacobson radical is simple artinian.
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In the rest of this section k will denote a field, and all unadorned tensor products 
are assumed to be over k. The opposite ring of a k-algebra R is denoted by R◦, and 
Re denotes the k-algebra R⊗R◦, so that Mod(Re) is the category of R−R-bimodules 
on which k operates centrally. Given an algebra R, D(Mod(R)) (resp. Db(Mod(R)) will 
denote the derived category (resp. the bounded derived category) of right R-modules; 
for details, see for example [71].

The following definition, which is enough for our purposes here, is a special case of 
the more general version, for two possibly distinct algebras, given in [72, Definition 1.1].

Definition 6.6. Let R be a noetherian k-algebra. A complex R ∈ Db(Mod(R ⊗ R◦)) is 
called a dualizing complex over R if it satisfies the three conditions below:

(i) R has finite injective dimension over R and R◦;
(ii) R has finitely generated cohomology modules over R and R◦;
(iii) The canonical morphisms R◦ −→ RHomR(R, R) and R −→ RHomR◦(R, R) in 

D(Mod(Re)) are isomorphisms.

To say that the dualizing complex R for the k-algebra R satisfies the Auslander 
property simply means that the usual definition of the Auslander-Gorenstein condition 
- Definition 6.3(3) - holds when the ring R is replaced by R. More precisely, we have the 
following definitions.

Definition 6.7. (Yekutieli, Zhang, [72, Definitions 2.1,2.2]) Let R be a dualizing complex 
for the noetherian k-algebra R.

(1) Let M be a finitely generated R-module. The grade of M with respect to R is

jR;R(M) := inf{j : ExtjR(M,R) �= 0} ∈ Z ∪ {∞}.

A similar definition gives the grade jR;R◦(M ′) of an R◦-module M ′.
(2) R is an Auslander dualizing complex for R if

(i) for every finitely generated R-module M and integer q, and for every nonzero 
finitely generated R◦-submodule N of ExtqR(M, R),

jR;R◦(N) ≥ q;

(ii) the corresponding condition holds for finitely generated R◦-modules M ′.

In the remainder of this section R will always be used to denote an algebra over the 
field k with Auslander dualizing complex R. For convenience and to align our notation 
as far as possible with the first part of §6, we will denote the maps jR;R and jR;R◦

defined in Definition 6.7 respectively by j and j◦. A nonzero right R-module M will be 



432 J.P. Bell et al. / Journal of Algebra 622 (2023) 404–449
called j−pure if j(N) = j(M) for all nonzero submodules N of M ; and similarly we may 
refer to j◦−pure left modules. Without loss of generality, because R is of finite injective 
dimension, we can suppose that the grade is always non-negative. For consistency of 
notations throughout §6, whenever j(M) = ∞ for an R-module M we will write j(M) =
ω, and similarly for j◦(M).

The link between the ideas of the first part of §6 and the present discussion is made 
clear by the following key result.

Theorem 6.8. (Yekutieli-Zhang, [72, Definition 2.4, Definition 2.9 and Theorem 2.10]) 
Let R be a noetherian k-algebra with an Auslander dualizing complex R. Then −j and 
−j◦ are finitely partitive exact dimension functions.

We will follow Yekutieli and Zhang [72, Definition 2.9] in calling −j and −j◦ the
canonical dimension functions associated to R. It is important to note that the dimension 
function −j can take its values over not necessarily finitely generated modules too as 
explained after Notation 6.1.

As is well known, the apparatus of critical modules and related technology can be 
invoked once one has available a finitely partitive exact dimension function. Summarizing
briefly for the present context, a nonzero finitely generated right R-module M is j-critical
if every proper quotient of M has j-dimension strictly bigger than j(M). Given a finitely 
generated right R-module M , a j-critical composition series for M is a finite chain

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mt = M

of submodules Mi of M , with the subfactors Mi/Mi−1 j-critical for i = 1, . . . , t. We say 
that critical R-modules C and D are similar if there is a nonzero R-module X which 
embeds in each of them; equivalently, since critical modules are uniform, C and D are 
similar if and only if they have isomorphic injective hulls. One then has:

Theorem 6.9. Let R be a noetherian k-algebra with an Auslander dualizing complex R.

(1) ([72, Corollary 2.17]) Every finitely generated right R-module M has a j-critical 
composition series.

(2) Suppose that 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mt = M and 0 = N0 ⊆ N1 ⊆ · · · ⊆ Ns = M

are two j-critical composition series for M . Then s = t and there is a permutation 
σ of {1, . . . , t} such that Mi/Mi−1 is similar to Nσ(i)/Nσ(i)−1 for all i = 1, . . . , t.

Proof. (1) The argument given in [41, Theorem 15.9] for Krull dimension works also 
for j. One simply has to note that the finitely partitive property of j guaranteed by 
Theorem 6.8(1) ensures that every nonzero module X contains a j-critical submodule Y . 
So, we fix α to be the least canonical dimension occurring amongst nonzero submodules 
of M , and let M1 be maximal amongst α-critical submodules of M . Then, repeat the 
procedure with M/M1.
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(2) This can be proved by standard methods - for example, one may follow the argu-
ment for Krull-critical composition series given in [55, Proposition 6.2.21]. �

An easily overlooked but nevertheless fundamental point concerning the canonical 
dimension is that it always takes finite values on nonzero finitely generated modules:

Proposition 6.10. Let R and R be as in Theorem 6.9, and let M be a nonzero finitely 
generated R-module. Then j(M) ∈ Z.

Proof. Suppose that M is a nonzero finitely generated R-module with j(M) = ω. Since 
j is finitely partitive by Theorem 6.8, we can replace M by a submodule if necessary 
and so assume that M is j-critical with dimension ω. But this contradicts the fact that 
every uniform injective R-module appears in any minimal injective resolution of R, by 
[72, Theorem 1.11(2)] (whose proof is taken from [5, Theorem 2.3]). �

To generalize the proof of the BF property given for Auslander-Gorenstein rings in 
Corollary 6.4 to the broader setting of algebras having an Auslander dualizing complex 
we need to be able to precisely control the increase in the value of the grade when passing 
from a finitely generated module M to M/ψ(M) for certain finitely generated j−pure 
modules M and module monomorphisms ψ. Note that this was possible for rather trivial 
reasons in the proof of Corollary 6.4, for the crucial case there of R = M . In the present 
setting an inequality in one direction follows easily, as we show in Lemma 6.12. First 
we note in Lemma 6.11 that Lemma 6.12 applies in the key case where M = R/P for a 
prime ideal P of R.

Lemma 6.11. Let R be a noetherian algebra with an Auslander dualizing complex R and 
let P be a prime ideal of R. Then R/P is a j-pure and j◦-pure R-module.

Proof. We prove the result for j, the argument for left modules being identical. Suppose 
the result is false, and let T be a nonzero right ideal of R/P with

j(T ) > j(R/P ). (3)

Replacing T by a smaller right ideal if necessary, we may assume that T is uniform. By 
[41, Proposition 7.24], there exists an essential right ideal B of A/P such that

B ∼= ⊕t
i=1T,

where t is the uniform dimension of R/P . Since j is exact by Theorem 6.8, (3) implies 
that

j(B) = j(T ) > j((R/P )R). (4)
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But, by Goldie’s key lemma, [41, Proposition 6.13], B contains a regular element d + P

of R/P . Since R/P ∼= dR + P/P ⊆ B we deduce that

j(B) ≤ j((R/P )R). (5)

(4) and (5) yield a contradiction, so no such right ideal T of R/P can exist. The argument 
on the left is the same. �

Recall that a (right, say) module M over a noetherian ring S is called a torsion S-
module if for each m ∈ M there exists c ∈ S• such that mc = 0. The following result 
is a minor strengthening of the work in [72, §2], where the result is noted for the case 
where I is a prime ideal.

Lemma 6.12. Let R be a noetherian k-algebra with an Auslander dualizing complex R. 
Then j(M) ≥ j(R/I) + 1, for every ideal I such that R/I is j−pure and every finitely 
generated torsion right R/I-module M ; and similarly for j◦ with left modules.

Proof. By the exactness of j it is enough to prove this when M = R/cR+I, where c ∈ R

is such that c + I ∈ (R/I)•. Moreover exactness also implies that

j(R/cR + I) ≥ j(R/I), (6)

so by Proposition 6.10 it remains only to show that equality is impossible in (6). To see 
this, note that, for all i ≥ 0,

ciR + I/ci+1R + I ∼= R/cR + I. (7)

However −j is finitely partitive by Theorem 6.8, so (7) shows that equality in (6) would 
yield a contradiction. �

In particular, we thus see that j(R/cR + I) ≥ j(R/I) + 1 when R, I and c are as in 
Lemma 6.12 and its proof. To show that this is in fact an equality seems more tricky, 
requiring a resort to Gabber’s Maximality Principle, which we now recall.

Definition 6.13. [16, page 145] Let δ be a dimension function on Mod(R) and let N be a 
(not necessarily finitely generated) δ−pure R-module with δ(N) = n. Then δ is said to 
satisfy Gabber’s Maximality Principle on N if, for every finitely generated submodule M
of N , there exists a submodule M̃ of N maximal such that δ(M̃/M) ≤ n − 2, and M̃ is 
finitely generated.

The crucial point to observe about the definition is that N is not assumed to be 
finitely generated. Note that when δ is exact, we can see easily that the module M̃ in the 
definition is unique. Here is the result we need about Gabber’s Maximality Principle.
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Theorem 6.14. [72, Theorem 2.19] Let R be a noetherian k-algebra with an Auslander 
dualizing complex R, and let −j = −jR;R be the associated canonical dimension function 
on Mod(R). Then −j satisfies Gabber’s Maximality Principle on all nonzero j-pure R-
modules.

Now we are in a position to see that every prime factor of a noetherian k-algebra with 
an Auslander dualizing complex is a BF-ring:

Theorem 6.15. Let R be a noetherian k-algebra with an Auslander dualizing complex R, 
and let j = jR;R be the associated grade function on R-modules.

(1) If R/I is a j−pure or j◦−pure factor ring of R with an artinian classical ring of 
quotients, then R/I is a BF-ring.

(2) Let P be a prime ideal of R. Then R/P is a BF-ring.

Proof. (1) Let c ∈ R be such that c + I is a regular nonunit of R/I. We claim that

j(R/cR + I) = j(R/I) + 1. (8)

By Lemma 6.12 and Proposition 6.10,

j(R/I) < j(R/cR + I) < ω. (9)

Suppose for a contradiction that

j(R/cR + I) ≥ j(R/I) + 2. (10)

Let Q(R/I) denote the artinian quotient ring of R/I. Write ĉ := c + I ∈ (R/I)•, and 
define

M̂ :=
⋃
n≥0

ĉ−nR/I ⊆ Q(R/I).

For each n ≥ 1, ĉ−nR/I has a finite chain of R-submodules {Mi := ĉ−iR/I : 0 ≤ i ≤ n}, 
with M0 = R/I and successive subfactors Mi+1/Mi isomorphic to R/cR+I for 0 ≤ i < n. 
Therefore, by exactness of j and (10),

j(M̂/(R/I)) ≥ j(R/I) + 2. (11)

However R/I is j-pure by hypothesis. Hence Q(R/I), being a union of copies of R/I, 
is also j-pure. So Theorem 6.14 implies that M̂/(R/I) is a finitely generated R/I-
submodule of Q(R/I)/(R/I). Since c + I is not a unit of R/I, this is easily seen to 
be impossible, so (10) is false and
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j(R/cR + I) = j(R/I) + 1. (12)

The result now follows at once from Lemma 6.2.
(2) This is a special case of (1), since R/P is j−pure by Lemma 6.11 and R/P has a 

simple artinian quotient ring by Goldie’s theorem. �
Remarks 6.16. (1) The question of which affine noetherian k-algebras have (Auslander) 
dualizing complexes is extensively discussed in [68], [72]. For example, [72, Corollary 6.8]
states (roughly) that an N−filtered k-algebra, with A0 = k and dimk(An) < ∞ for all n, 
whose associated graded algebra is noetherian and has a (graded) Auslander dualizing 
complex will itself have an Auslander dualizing complex.

(2) It is a consequence of [72, Corollary 2.18] that a noetherian k-algebra which has 
an Auslander dualizing complex must have finite (Gabriel-Rentschler) Krull dimension. 
This suggests a possible direction in which to look for a noetherian algebra not satisfying 
property BF.

(3) If one is faced in the setting of Theorem 6.15(1) with an ideal I of the algebra 
R which is not semiprime, it may in practice be difficult to determine whether the 
hypotheses of j−purity of R/I, and the existence of an artinian quotient ring of R/I, 
are satisfied. In fact, it may be that j−purity implies the existence of an artinian quotient 
ring.

Here is an important case where this is true, and moreover where j−purity may 
become much easier to determine. Let R, R and j = jR;R be as in Theorem 6.15, and 
suppose that R has finite Gelfand-Kirillov dimension, GKdim(R) = n < ∞. (See [48]
for the properties of Gelfand-Kirillov dimension.) Following [50, Definition 5.8] and the 
generalization in [72, Definition 2.24] we say that R is GK-Cohen Macaulay with respect 
to jR;R if, for every nonzero finitely generated R-module M ,

GKdim(M) + jR;R(M) = n. (13)

In the setting of Theorem 6.15 we know by Theorem 6.8 that j is exact, so when 
R is also GK-Cohen Macaulay the Gelfand-Kirillov dimension is also exact, by (13). 
Moreover (13) also shows that the j−purity of R/I is equivalent to GK-purity of R/I; 
usually, we say then that R/I is GK-homogeneous. Finally, when GK-dimension is exact, 
a GK-homogeneous noetherian algebra has an artinian quotient ring, by [50, Theorem 
5.4]. We have thus obtained from Theorem 6.15(1):

Corollary 6.17. Let R be a noetherian k-algebra of finite GK-dimension which has an 
Auslander dualizing complex R. Suppose that R is GK-Cohen Macaulay with respect to 
jR;R, and let I be an ideal of R with R/I GK-homogeneous. Then R/I is a BF-ring.

Corollary 6.17 prompts the following
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Questions 6.18. (1) Does every affine noetherian k-algebra of finite Gelfand-Kirillov di-
mension have an Auslander dualizing complex?
(2) Is every affine noetherian k-algebra of finite Gelfand-Kirillov dimension a BF-ring?

This would provide a major generalization of the results from Section 5.

(4) Regarding Remark 6.16(3), we might hope that, given a noetherian k-algebra R
with finite and exact GK-dimension, property BF for R could be approached by applying 
Lemma 6.2 directly, using GKdim as the function j of that lemma. However it is not 
clear that the Gelfand-Kirillov dimension will be finitely partitive on R-modules, nor 
that GKdim(R/αR) = GKdim(R) − 1 for α ∈ R• � R×. Recall that, when GKdim
is replaced by the Krull dimension Kdim, the latter property fails drastically for the 
Weyl algebras: in a famous paper [64], Stafford showed that, for every n ≥ 2, the Weyl 
algebra An(C) contains an element c and d such that An(C)/cAn(C) is a simple module 
and so has Krull dimension 0, whereas Kdim(An(C)/dAn(C)) = n − 1. Since the Weyl 
algebras are Auslander regular and GK-Cohen Macaulay, we know from (the proof of) 
Corollary 6.4 that

GKdim(An(C)/cAn(C)) = GKdim(An(C)/dAn(C)) = 2n− 1,

but this can be proved directly, much more easily - see [48, Corollary 8.6].

6.3. Commutative noetherian rings revisited

Recall that the support of a module M over a commutative ring R is the set supp(M)
of prime ideals of R such that MP �= 0. It is easy to see that if M is finitely generated, 
supp(M) = {P : Ann(M) ⊆ P}, where Ann(M) denotes the annihilator of M . Let ht(P )
denote the height of a prime ideal P of R. Consider the following definition:

Definition 6.19. Let R be a commutative noetherian ring. Define a function j on Modf (R)
by

j(M) := inf{ht(P ) : P ∈ supp(M)},

with j(0) := ∞.

It is easy to check that the above map j is exact on Modf (R) - this is an immediate 
consequence of the exactness of localization. Thus j can be extended to a map from 
Mod(R) to Z≥0 ∪{∞} as discussed after Notation 6.1. We can give yet another proof of

Proposition 6.20. If R is a commutative noetherian ring then R is a BF-ring.

Proof. This is a consequence of Lemma 6.2 provided it can be shown that the above 
map j is (i) finitely partitive on Modf (R), and (ii) j(R/xR) = 1 for all x ∈ R• �R×.
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To prove (i) let M be a nonzero finitely generated R-module with j(M) = n, and let 
{P1, . . . , Pt} be the subset of primes containing Ann(M) of height n. Note that this set 
is finite, since it consists of primes minimal over Ann(M). For each i = 1, . . . , t, MPi

is 
a nonzero RPi

-module of finite composition length, say �i. Now it is easy to see that any 
chain of R-submodules of M with all subfactors X having j(X) = n must have length 
at most 

∑
i �i, as required.

Since (ii) is an immediate consequence of the Principal Ideal Theorem and the fact 
that minimal primes of R consist of zero divisors, [27, Theorem 10.1 and Corollary 2.18], 
this completes the proof. �

Note however that this is essentially a rephrasing of the classical proof [1, Proposition 
2.2] into the present setting.

The following example shows that, while the function j of Definition 6.19 satisfies the 
hypotheses of Lemma 6.2, −j does not satisfy Gabber’s Maximality Principle.

Example 6.21. (M. Hochster, R. Heitmann) The ring S = K�x, y, z�/(x2, xy), where K
is a field of characteristic zero, is the completion of a noetherian domain R. The function 
−j described after the Example 6.5 does not satisfy Gabber’s Maximality Principle on 
QR, with Q the denoting the quotient field of R.

The proof of this claim is organized in four steps.
Step (1): S is a local noetherian complete ring of dimension 2.

The formal power series ring k�x, y, z� is a local noetherian complete ring of dimension 
3 (see [60, Exercise 15.30]). Since a quotient of a complete ring is again complete, the 
ring S is complete, and due to the chain

(x)/(x2, xy) � (x, y)/(x2, xy) � (x, y, z)/(x2, xy) � S

of prime ideals, S is of dimension 2.
Step (2): S is the completion of a noetherian local domain, say R.

We must check the two conditions in [49, Theorem 1]. Thus we have to show: (i) the 
prime ring of S, that is the set { k1S : k ∈ Z }, is a domain that acts on S without 
torsion; (ii) the maximal ideal of S does not belong to the set of associated prime ideals 
of 0.

Since S is an K-algebra and K is of characteristic zero, condition (i) is trivially 
satisfied. To verify (ii), let 0 = Q1 ∩ · · · ∩ Qn be a primary decomposition of 0. The 
associated prime ideals of 0 are the radicals Pi of Qi. The union P1 ∪ · · · ∪ Pn is the set 
of zero-divisors of S. Since z̄ ∈ (x, y, z)/(x2, xy) is not a zero-divisor, the maximal ideal 
(x, y, z)/(x2, xy) is not an associated prime ideal of 0. Therefore (ii) holds too.
Step (3): R is of dimension 2 and H1

mR
(R), that is, the direct limit of the direct system 

{ Ext1(R/mk
R, R) : k ≥ 1 }, is not a finitely generated R-module. (Here mR denotes the 

maximal ideal of R.)
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Krull dimension is preserved by passing to the completion. Therefore R has Krull 
dimension 2. There is a natural embedding from R into its completion S and the maximal 
ideal of S, that is mS , is equal to mRS. We have an S-isomorphism H1

mR
(R) ∼= H1

mS
(S), 

see [14, Lemma 3.5.4(d)]. To show that H1
mR

(R) is not finitely generated as R-module, 
it is therefore enough to show that H1

mS
(S) is not finitely generated as an S-module.

Suppose that T = K�x, y, z�. Then T is a regular local ring (and so Gorenstein and 
Cohen-Macaulay) of dimension 3. We can apply [14, Theorem 3.3.7] and Grothendieck’s 
duality (local duality theorem) [14, Corollary 3.5.9] to M = S to see that H1

mT
(S) is 

the Matlis Dual of Ext2T (S, T ). Now by [14, Theorem 3.5.4(a)], H1
mS

(S) is artinian and 
also equal to H1

mT
(S), see [28, Corollary A1.8]. So if H1

mS
(S) is a finitely generated S-

module, so is H1
mT

(S) and so they are of finite length. This shows that its dual, that is 
Ext2T (S, T ), is of finite length, see [14, Theorem 3.2.13]. Thus Ext2T (S, T ) vanishes when 
one localizes at P = (x, y)T . Localization commutes with Ext for finitely generated 
modules over commutative noetherian rings ([69, Prop 3.3.10]), and this would imply 
Ext2TP

(SP , TP ) = 0. Again using the duality theorem, since TP is a regular ring of Krull 
dimension 2, the Matlis dual of Ext2TP

(SP , TP ) over TP is H0
PTP

(SP ) (this is the direct 
limit of direct system {Hom(TP /(PTP )k, SP ) : k ≥ 0}). But the latter can not be zero 
because H0

PTP
(SP ) is the set of all elements of SP that are annihilated by a power of 

PTP , and the image of x in SP is a nonzero element of H0
PTP

(SP ) (see for example [14, 
Page 126, 127] or [28, Page 187]).

Step (4): H1
mR

(R) is isomorphic to a submodule of Q/R and the minimal prime ideal 
containing the annihilator of H1

mR
(R) is mR.

Every noetherian local ring of dimension d has a system of parameters of d elements. 
Since R is of dimension 2, this means that there exist u, v ∈ R such that mR is the 
minimal prime ideal over (u, v). Then it is known that H1

mR
(R) = H1

(u,v)(R), as the 
radical of (u, v) is mR. Consider the complex

0 → R
f−→ R[u−1] ⊕R[v−1] g−→ R[(uv)−1] → 0,

where f maps r to (r, r) and g takes (r/us, r′/vt) to r/us−r′/vt. By [28, Theorem A1.3], 
the cohomology H1

(u,v)(R) is isomorphic to ker(g)/ im(f). Noting that ker(g) can be 
identified with a submodule of Q, this means that H1

mR
(R) is isomorphic to a submodule 

of Q/R.
For the other part of Step (4), note that if k + im(f) is an element of ker(g)/ im(f), 

there exist n, m ≥ 1 such that un, vm are in the annihilator of k + im(f). Therefore a 
minimal prime ideal containing the annihilator of k+im(f) must contain u and v. Since 
mR is the minimal prime containing (u, v), this implies that the minimal prime ideal 
containing ann(k+im(f)) is mR. Similarly the minimal prime ideal of the annihilator of 
every finitely generated submodule of ker(g)/ im(f) is mR, which is of height two.
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7. An example

In this section we construct a finitely presented atomic domain that does not have 
BF. In fact, it will be an atomic domain that does not have ACCP. Our example is a 
semigroup algebra (over a field), and the main difficulty lies in establishing its atomicity.

Let K be a field and S a monoid. We write K[S] for the semigroup algebra of S over 
K. Every f ∈ K[S] has a unique representation of the form

f =
∑
s∈S

ass with as ∈ K, almost all zero.

We write supp(f) := { s ∈ S : as �= 0 } for the support of f .
In the noncommutative setting, in general, the problem of characterizing (semi)group 

algebras that are domains is a very hard one, known as Kaplansky’s zero-divisor con-
jecture [58, Chapter 13], as is the related characterization of units (with a recent 
counterexample to the unit conjecture given by Gardam [32]). To avoid these issues, 
we work with right orderable monoids.

A monoid S is right orderable if there exists a total ordering on S, such that a < b

implies ac < bc for all a, b, c ∈ S. Recall that a submonoid S ⊆ T is divisor-closed if, 
whenever a, b ∈ T are such that ab ∈ S, then already a ∈ S and b ∈ S.

Lemma 7.1. Let K be a field and let S be a right orderable cancellative monoid.

(1) K×S is a divisor-closed submonoid of K[S].
(2) K[S] is a domain.
(3) K[S]× = K×S×.

Proof. As in the case where S is a group [58, Lemma 13.1.7 and 13.1.9]. �
We now construct the example. For the rest of this section, let F be the free group 

on generators b, c. Let α be the group automorphism of F defined by α(b) = c and 
α(c) = b−1. Consider the semidirect product G := F �α gr(a), where (gr(a), ·) ∼= (Z, +)
is infinite cyclic. We identify a = (1, a), b = (b, 1), and c = (c, 1). Then G is the group 
generated by a, b, c, with relations generated by aba−1 = c and aca−1 = b−1. Let S ⊆ G

be the submonoid generated by a and b.

Lemma 7.2.

(1) G is right-orderable.
(2) K[G] is a BF-domain.

Proof. (1) Since both F and Z are right orderable (indeed, both of them are even or-
derable), the semidirect product G is right orderable as well [58, Lemma 13.1.5].
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(2) K[F ] is a free ideal ring by a result of P. M. Cohn [25, Corollary 7.11.8]. By [25, 
Proposition 3.2.9], this implies that K[F ] is atomic and that a strong uniqueness property 
holds for the factorizations of an element x ∈ K[F ]: given any two factorizations of x, 
it is possible to pass from one to the other using a series of comaximal transpositions 
(essentially an application of Jordan-Hölder to [aR, R], which is a modular lattice of finite 
length thanks to R being a free ideal ring; see the discussion preceding [25, Proposition 
3.2.9]). In particular, the length of two factorizations of a is therefore the same. Thus, 
K[F ] is half-factorial and, in particular, has BF. Since K[G] is a skew Laurent polynomial 
ring over K[F ], also the ring K[G] has BF by Proposition 3.5. �

Our next step is to exhibit an explicit presentation of the submonoid S of G in terms 
of generators and relations.

Lemma 7.3. S is isomorphic to 〈a, b | ba2b = a2, a4b = ba4〉.

Proof. One checks immediately that ba2b = a2 and a4b = ba4 hold in G. We claim that, 
using these two relations, any word x in a, b can be reduced to the form

x = bm0an1bm1an2bm2 · · · ankbmkan, (14)

with k ≥ 0, m0 ≥ 0, m1, . . . , mk > 0, n ≥ 0, n2, . . . , nk ∈ {1, 3} and n1 ∈ {1, 2, 3}. 
Further, if n1 = 2 we can assume m0 = 0.

Indeed, a priori x has such a form with m0, n ≥ 0, k ≥ 0, m1, . . . , mk > 0 and n1, 
. . . , nk > 0. Moving fourth powers of a to the right using a4b = ba4, we may assume 
ni ∈ {1, 2, 3} for all i ∈ {1, . . . , k}. If i ≥ 2 and ni = 2 we may successively use ba2b = a2

to reduce mi−1 and mi until one of them becomes zero, at which point we obtain a 
representation with smaller k and continue inductively. This leaves only n1 to deal with. 
If m0 ≥ m1, we can again merge an1 with an2 . So if n1 = 2 we can assume m0 < m1
and then reduce to m0 = 0.

We now claim that any two words of the form above with distinct parameters yield 
distinct elements of G. To deduce this, we reduce a word in the form (14) to the normal 
form in G in which all a’s are on the right. Note that ab = ca, ac = b−1a, a3b = c−1a3, 
and a3c = ba3.

Suppose first n1 �= 2. Let εi = 1 if ni = 1 and εi = −1 if ni = 3 for 1 ≤ i ≤ k. Then 
anibm = cεimani and anicm = b−εimani for all 1 ≤ i ≤ k and m ≥ 0. Inductively, one 
obtains

an1+···+nibm =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bε1···εiman1+···+ni if i ≡ 0 mod 4,
cε1···εiman1+···+ni if i ≡ 1 mod 4,
b−ε1···εiman1+···+ni if i ≡ 2 mod 4,
c−ε1···εiman1+···+ni if i ≡ 3 mod 4.

Computing in G, we thus find
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x = bm0cε1m1(b−1)ε1ε2m2(c−1)ε1ε2ε3m3bε1ε2ε3ε4m4 · · · eε1···εk−1mk−1dε1···εkmkan1+···+nk+n,

where (e, d) ∈ {(c−1, b), (b, c), (c, b−1), (b−1, c−1)} according to the congruence class of k
modulo 4. Note that from the word in b, c, working our way from left to right, we can 
read off all mi’s and εi’s, and therefore also the ni’s. From the exponent of a we can 
then compute n.

Suppose now n1 = 2. Then m0 = 0. Let εi = 1 if ni = 1 and εi = −1 if ni = 3 for 
2 ≤ i ≤ k. We use a2b = b−1a2 and a2c = c−1a2 together with the computation from 
the first case to find

x = a2bm1cε2m2(b−1)ε2ε3m3 · · · eε2···εk−1mk−1dε2···εkmkan2+···+nk+n

= b−m1c−ε2m2(b−1)−ε2ε3m3 · · · e−ε2···εk−1mk−1d−ε2···εkmka2+n2+···+nk+n ∈ G,

where again the values of d and e depend on k − 1 modulo 4. Note that this case is 
distinguishable from the previous one because the exponent of the left-most b is negative. 
As before, the mi’s and ni’s can be recovered unambiguously from the representation. �
Lemma 7.4.

(1) If x ∈
⋂

n≥0 Sb
n, then there exist i ≥ 0 and xi ∈ S such that x = xia

2bi. If 
x ∈

⋂
n≥0 b

nS, then there exist i ≥ 0 and xi ∈ S such that x = bia2xi.
(2) Let f ∈ K[S]. If f ∈

⋂
n≥1 K[S]bn, then there exist m ≥ 0 and gm ∈ K[S] such that 

f = gma2bm. If f ∈
⋂

n≥1 b
nK[S], then there exist m ≥ 0 and gm ∈ K[S] such that 

f = bma2gm.

Proof. (1) By symmetry it suffices to show one of the claims. We shall use the normal 
form established in the proof of Lemma 7.3. Due to the choices made there, it is easier 
to prove the claim for right ideals. So let x ∈

⋂
n≥0 b

nS, with normal form and notation 
as in (14). For sake of contradiction, assume x is not of the form bia2xi with i ≥ 0 and 
xi ∈ S. In the normal form for x, we must then have n1 ∈ {1, 3}. Suppose x = bny for 
some n > m0 and y in S. Writing y in normal form, we have

y = bμ0aν1bμ1aν2bμ2 · · · aνlbμlaν ,

with l ≥ 0, μ0 ≥ 0, μ1, . . . , μl > 0, ν ≥ 0, ν2, . . . , νl ∈ {1, 3} and ν1 ∈ {1, 2, 3}. First 
of all, note that ν1 = 2 leads to a contradiction to our choice of x, so that ν1 ∈ {1, 3}. 
However, now bny, with y expressed in its normal form, is already in normal form. But 
x = bny and, comparing the normal forms, m0 = n +μ0 yields a contradiction to n > m0.

(2) By symmetry, it suffices to prove the first claim. If f ∈ K[S]bn, then each monomial 
in supp(f) is in Sbn. Let f ∈

⋂
n≥0 K[S]bn. By (1), we may write

f =
k∑

λijxija
2bij ,
j=0
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with suitable k ≥ 0, ij ≥ 0, xij ∈ S, and λij ∈ K. Choose m ≥ max{i1, . . . , ik}. Then, 
by using a2 = ba2b,

f =
k∑

j=0
λijxij b

m−ija2bm =
( k∑

j=0
λijxij b

m−ij
)
a2bm. �

For 0 �= f ∈ K[G] we let dega(f) ∈ Z be the maximal a-degree of any monomial in the 
support of f , and we set dega(f) = −∞ if f = 0. This is a well-defined degree function, 
since K[G] may be viewed as a skew Laurent polynomial ring in the indeterminate a
over K[F ]. Observe dega(f) ∈ Z≥0 ∪ {−∞} for all f ∈ K[S].

Lemma 7.5. K[S] is atomic.

Proof. Let us say f ∈ K[S]• is atomic if f can be represented as a product of atoms or 
if f is a unit. Since K[b] ⊆ K[S] is a divisor-closed submonoid, and K[b] is a polynomial 
ring, every f ∈ K[b]• is atomic in K[S]. We first show:

Claim A. For every nonunit f ∈ K[S]•, there exists an atomic nonunit g ∈ K[S]• such 
that f ∈ gK[S].

Suppose that this is not the case, and let m ∈ Z>0 be the minimal a-degree among all 
counterexamples. Let Ω ⊆ K[S] be the set of all f ∈ K[S]• �K[S]× with dega(f) = m

and such that f does not have a nonunit atomic left factor. Since K[G] has BF (by 
Lemma 7.2(2)), it satisfies the ascending chain condition on principal right ideals. Hence 
{ fK[G] : f ∈ Ω } has a maximal element fK[G] with f ∈ Ω.

If f ∈
⋂

n≥1 K[S]bn, then f = ga2bl with g ∈ K[S] and l ≥ 0 by Lemma 7.4. Then 
dega(g) < m. If g is a nonunit of K[S], then g has a nonunit atomic left factor by choice 
of m. If g is a unit, then a is a nonunit atomic left factor of f (note that a ∈ K[S] is an 
atom). In either case we arrive at a contradiction to our assumption on f . Thus there 
exists a maximal n ≥ 0 such that f = f ′bn with f ′ ∈ K[S]. Then fK[G] = f ′K[G]. 
Replacing f by f ′ we may assume f /∈ K[S]b.

By construction, the element f cannot be an atom, and thus f = gh with g, h ∈
K[S]• �K[S]×. If dega(g), dega(h) < m, then we obtain a nonunit atomic left factor of 
f from g (if g /∈ K[S]×) or h (if g ∈ K[S]×). Thus either dega(g) = m or dega(h) = m.

Suppose first dega(h) = m. Then dega(g) = 0 implies g ∈ K[b]. Therefore g is atomic 
in K[S], a contradiction.

Let now dega(g) = m. Since g is not atomic, the maximality of fK[G] implies fK[G] =
gK[G]. Thus h ∈ K[G]×∩K[b], and therefore h = λbn with λ ∈ K× and n ≥ 1. But this 
contradicts f /∈ K[S]b.

Having shown Claim A, we can now show that K[S] is atomic. Assume that this is not 
the case, and let m ≥ 0 be the smallest a-degree among non-atomic elements of K[S]•. 
Then
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Ω = {K[G]f : f ∈ K[S] is not atomic and dega(f) = m }

has a maximal element K[G]f . If f ∈
⋂

n≥1 b
nK[S], then f = bma2g for some m ≥ 0

and g ∈ K[S]. Since dega(g) < dega(f), then g is atomic, and so is f . Thus there exists 
again a maximal n ≥ 0 such that f = bnf ′ with f ′ ∈ K[S], and we replace f by f ′ to 
obtain f /∈ bK[S]. By the claim, there exists an atomic nonunit g ∈ K[S]• such that 
f = gh with h ∈ K[S]. Then h cannot be atomic and so dega(h) = m. Maximality of 
K[G]f gives g ∈ K[G]×∩K[b], and thus g = λbn with n ≥ 0. But then n = 0 contradicts 
g being a nonunit. �
Proposition 7.6. K[S] = K〈a, b | ba2b = a2, a4b = ba4〉 is a finitely presented atomic 
domain that does not satisfy the ACC on principal right [left] ideals. In particular, the 
domain K[S] does not have BF.

Proof. We have already established that K[S] is a finitely presented atomic domain.
Consider the chain of principal right ideals

a2K[S] ⊆ ba2K[S] ⊆ b2a2K[S] ⊆ · · · ⊆ bka2K[S] ⊆ · · · . (15)

The stated inclusions hold because bla2 = bka2bk−l for all k ≥ l. Suppose l > k and 
bla2 = bka2f with f ∈ K[S]. Without restriction k = 0. Moreover f must be a monomial 
with dega(f) = 0, so that in fact f = bm for some m ≥ 0. Thus bla2 = a2bm with l ≥ 1
and m ≥ 0. But this is impossible because the left and the right side are both in the 
normal form as in (14). Thus the chain in (15) is an infinite proper ascending chain of 
principal right ideals. By symmetry, K[S] also does not satisfy the ACC on principal left 
ideals.

Since K[S] does not satisfy the ACC on principal right [left] ideals, it is in particular 
not a BF-domain. Alternatively, this can be seen directly as follows. The monoid S does 
not have BF as a and b are atoms and a2 = bna2bn implies L(a2) ⊇ { 2 + 2n : n ≥ 0 }.5
Since S is divisor-closed in K[S], also K[S] does not have BF. �

Since there exist (commutative) domains that satisfy the ACCP but do not have BF, 
it would be interesting to know if the previous example can be refined in this direction. 
We therefore pose the following question.

Question 7.7. Does there exist a domain R that is a finitely presented algebra over a field, 
such that R satisfies the ACCP but is not a BF-domain?

5 In fact, the only factorizations of a2 are those of the form a2 = bna2bn, so that even L(a2) = { 2 + 2n :
n ≥ 0 } holds. To verify this, consider the normal forms of monomials containing the element a exactly 
twice.
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8. Length-preserving homomorphisms to Krull monoids

Let H and D be monoids. We shall call a monoid homomorphism ϕ : H → D

• length-preserving if L(a) ⊆ L(ϕ(a)) for all a ∈ H;
• fully length-preserving if L(a) = L(ϕ(a)) for all a ∈ H.

Note that a ∈ H is an atom if and only if 1 ∈ L(a). Thus, if ϕ : H → D is length-
preserving and u ∈ H is an atom, then ϕ(u) is an atom of D. Conversely, suppose ϕ maps 
atoms of H to atoms of D. If a = u1 · · ·uk with atoms in H, then ϕ(a) = ϕ(u1) · · ·ϕ(uk)
with ϕ(u1), . . . , ϕ(uk) atoms of D. So, a monoid homomorphism ϕ : H → D is length-
preserving if and only if it maps atoms of H to atoms of D.

Suppose that H is atomic. If a length-preserving homomorphism ϕ : H → D to a 
monoid D with bounded factorizations exists, then H has bounded factorizations as well. 
So a useful way to establish that a noetherian prime ring R has bounded factorizations 
is to find a length-preserving monoid homomorphism R• → D to some monoid with 
bounded factorizations.

In the study of non-unique factorizations transfer homomorphisms to (commutative) 
Krull monoids play a major role; a monoid possessing such a homomorphism is called a 
transfer Krull monoid (see [43, Section 2.4] and [44, Section 5]). Large classes of rings, 
including noncommutative rings, whose underlying multiplicative monoid of cancellative 
elements are transfer Krull monoids are known [44, Example 5.4]. Every transfer homo-
morphism is fully length-preserving, so for transfer Krull monoids the study of sets of 
lengths reduces to that of an associated Krull monoid, where a well-understood machin-
ery is available. In particular, transfer Krull monoids have bounded factorizations. So it 
may be interesting to ask whether any of the classes of rings studied in this paper are 
in fact transfer Krull. It turns out that this is not the case: the first Weyl algebras will 
provide counterexamples in each class.

For Weyl algebras, we have the following very strong obstacle to studying their arith-
metic via any commutative cancellative monoid.

Lemma 8.1. Let K be a field of characteristic not 2, and let A := A1(K) := K[x][y; δ]
with δ(x) = 1 be the first Weyl algebra. Then there exists no length-preserving monoid 
homomorphism ϕ : A• → D to any commutative cancellative monoid D.

Proof. We have xy − yx = 1 and therefore

x2y = (1 + xy)x.

It is clear that x, y are atoms, and a direct computation shows that also 1 + xy is an 
atom of A• (here we use char(K) �= 2, otherwise 1 + xy = 2 + yx = yx factors).

Suppose there exists an length-preserving homomorphism ϕ : A• → D to a commuta-
tive cancellative monoid D. Then ϕ(x)2ϕ(y) = ϕ(1 + xy)ϕ(x), and hence ϕ(1 + xy) =
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ϕ(x)ϕ(y). By assumption on ϕ, the elements ϕ(x) and ϕ(y) are atoms, so in particular 
non-units, contradicting that ϕ(1 + xy) is an atom. �
Example 8.2. Independent of the base field, the Weyl algebra A = A1(K) is a noetherian 
domain of quadratic growth, Auslander-regular [29], and a maximal order in its simple 
Artinian ring of quotients [55, Corollary 5.1.6]. By the previous lemma, there exists no 
length-preserving monoid homomorphism to a commutative cancellative monoid.

(1) Suppose char(K) = 0. Then A1(K) is a simple Dedekind domain [55, Corollary 
7.11.3]. In particular, it has Krull and global dimension 1. Thus A1(K) has bounded 
factorizations by any of Proposition 3.1, Proposition 3.2, Corollary 3.7, Theorem 5.8, 
Corollary 6.4, Theorem 6.15.

(2) If K has characteristic p > 0, p �= 2, then A1(K) has center K[xp, yp] and Krull and 
global dimension 2. In this case A1(K) is module-finite over its center and therefore 
a PI ring. Since it is a noetherian maximal order and PI, it is also a bounded 
Krull order. Thus A1(K) has bounded factorizations by any of Proposition 3.2, 
Proposition 3.8, Corollary 3.7, Corollary 4.11, Corollary 6.4, Theorem 6.15.
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