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Testing, explaining, and exploring models of facial
expressions of emotions
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Models are the hallmark of mature scientific inquiry. In psychology, this maturity has been reached in a perva-
sive question—whatmodels best represent facial expressions of emotion? Several hypotheses propose different
combinations of facial movements [action units (AUs)] as best representing the six basic emotions and four con-
versational signals across cultures. We developed a new framework to formalize such hypotheses as predictive
models, compare their ability to predict human emotion categorizations in Western and East Asian cultures,
explain the causal role of individual AUs, and explore updated, culture-accented models that improve perfor-
mance by reducing a prevalent Western bias. Our predictive models also provide a noise ceiling to inform the
explanatory power and limitations of different factors (e.g., AUs and individual differences). Thus, our frame-
work provides a new approach to test models of social signals, explain their predictive power, and explore their
optimization, with direct implications for theory development.
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INTRODUCTION
In mature scientific endeavors, models are used to advance knowl-
edge in three complementary ways: by predicting a phenomenon,
explaining its causes, and, using the enhanced understanding
derived from these explanations, exploring improved models of
the phenomenon (1, 2). The field of psychology provides a strong
case that exemplifies the development of models to explain a central
human behavior: the recognition of emotions from facial expres-
sions. Since Darwin’s seminal work on the evolutionary origins of
facial expressions (3), several other models of facial expressions have
been proposed as more accurate representations of the six classic
basic emotions: anger, disgust, fear, happy, sadness, and surprise
[reviewed in (4)]. Researchers often use an influential taxonomy
of human facial movements—the Facial Action Coding System
(FACS) (5)—to operationalize facial expressions as combinations
of unitary facial movements called “action units” (AUs). Then,
models of the basic emotions become hypotheses about which
AU combinations represent each category. For example, Ekman
and Friesen (5) describe the facial expression of anger as comprising
Brow Lowerer (AU4), Upper Lid Raiser (AU5), Lid Tightener
(AU7), and Lip Tightener (AU23), whereas Cordaro and colleagues
(6) describe the same facial expression as comprising only Brow
Lowerer (AU4) and Lid Tightener (AU7). Here, a model thus
takes as inputs the AUs that make up the facial expression—e.g.,
AU4, AU5, AU7, and AU23—and, from these, predicts the associ-
ated emotion category as output (e.g., “anger”).

The search for representative models of facial expressions of
emotion has been a long-lasting endeavor that has generated
many competing models (3, 5–7). However, these models often
remain qualitative, descriptive hypotheses of how AUs relate to
emotions, making them difficult to quantitatively evaluate and
compare. Using a novel technique, “hypothesis kernel analysis,”
we aim to improve such qualitative hypotheses by turning them

into formal models that can generate quantitative predictions of
the emotions associated with a given facial expression. We further
propose a new prediction-explanation-exploration framework (see
Fig. 1). This framework provides a principled and general approach
to evaluate, compare, and improve the predictive performance and
limitations of predictive models, including models of facial expres-
sions of emotion.

Our framework quantifies how well different models predict
human emotion categorizations, explains their predictions by iden-
tifying the specific AUs that are critical (or detrimental) to catego-
rization performance, and uses this information to explore updated
AU-based models that improve performance. Here, we used this
framework to systematically compare and quantitatively evaluate
six influential AU-based models of facial expressions of the six
classic basic emotions [reviewed in (4)] and a data-driven model.
We extend the comparisons and evaluations across Western (WE)

Fig. 1. The prediction-explanation-exploration framework. At prediction,
models generate predictions to compare to actual behavior. Next, at explanation,
models are experimentally manipulated to understand the causal influences of
their components (e.g., here, individual facial movements called AUs). Conse-
quently, at exploration, the explanatory insights derived from the explanation
stage guide the automatic construction of alternative and improved models,
thus completing the cycle.
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and East Asian (EA) cultures to construct improved, culturally
aware models. To highlight the robustness of our approach, we fur-
thermore generalize our framework beyond the basic six emotions
to models of four conversational signals.

The prediction-explanation-exploration framework
Figure 1 illustrates this new framework, which outlines how to eval-
uate, explain, and optimize models throughout three stages: predic-
tion, explanation, and exploration. First, the prediction stage
generates model predictions (here, categorizations of emotions)
and compares these with human categorizations of the same data,
resulting in a model performance score that summarizes how accu-
rately model predictions align with human categorization behavior.
In the second explanation stage, the constituting elements of the
model (here, individual facial movements—AUs) are systematically
manipulated to evaluate their causal effects on behavioral prediction
and how they affect model categorization performance. In the last
exploration stage, the causal effects estimated from the explanation
stage are used to automatically construct updated and improved
models that comprise new hypotheses (here, about the specific
AUs that represent each of the six emotions, including culture-spe-
cific accents). These new, optimized models benefit from the in-
sights gained from the entire set of model comparisons, thus
effectively combining their relative strengths to develop knowledge
under this new epistemology.

A notable advantage of predictive models is that they can decom-
pose variance in human categorization behavior into three distinct
components (see Fig. 2), providing insight into the model’s limita-
tions. The first component is the explained variance (represented in
orange)—here, the proportion of variance in human categorization
behavior that is correctly predicted by a facial expressionmodel. The
other two components are determined by the model’s noise ceiling
(8, 9), which subdivides the remaining variance into unexplained
variance (represented in green) and individual differences (repre-
sented in red), which arise from individuals who categorize the
same facial expressions differently. Thus, the noise ceiling empha-
sizes the notion that a single “universal” model cannot, by

definition, explain the variations in categorization behavior
between individuals and therefore represents the maximum perfor-
mance of any model that ignores these individual differences. Here,
we use noise ceilings to provide an upper limit of performance of
such fixed AU-based models of facial expressions.

To apply the prediction-explanation-exploration framework to
our selection of models of the six classic emotions, we turned
their descriptive hypotheses into predictive models using a new
methodology (see the “Hypothesis kernel analysis” section). We
then quantitatively evaluated, compared, and optimized these pre-
dictive models within the prediction-explanation-exploration
framework.

Modeling human categorization of facial expressions of
emotions within the prediction-explanation-exploration
framework
Using the prediction-explanation-exploration framework, we tested
seven influential models of facial expressions of the six classic emo-
tions (3, 5–7, 10, 11). We selected these models based on their ex-
plicit hypotheses about the specific AUs associated with each of the
six classic emotions [summarized in (4); see Table 1]. We preview
our results according to the three main stages of our framework.
Prediction
We evaluated how each of the seven models predicted each basic
emotion category using a large dataset of 2400 emotion categoriza-
tion trials per participant. Each trial comprised an agnostically gen-
erated facial animation composed of a random combination of
dynamic AUs. We instructed 60 WE participants and 60 EA partic-
ipants to categorize each facial animation video as one of the six
classic emotions—“happy,” “surprise,” “fear,” “disgust,” “anger,” or
“sadness”—only if they perceived that the facial animation repre-
sented one of the emotions—or to select “do not know” if they
did not (see Materials and Methods for details). We used the
same trials to predict the most likely emotion category of each
model to assess how well it predicts human emotion categorization
behavior. We found that all seven models explain a substantial pro-
portion of variations of human behavior, albeit below the noise

Fig. 2. Variance partitioning of emotion categorizations. (A) The predictions of a given model (blue circle) that match the target variable (dashed circle) represent the
“explained variance” (represented in orange). The noise ceiling (horizontal dashed line) further divides the leftover variance (red + green set) into individual differences
(red) and unexplained variance (green). Thus, individual differences cannot, in principle, be explained by any fixedmodel. (B) Variance partitioning of the target variable is
represented as a bar graph. The noise ceiling partitions the difference between the explained variance (orange) and the theoretical maximum into the unexplained
variance (represented in green; noise ceiling minus model performance) and individual differences (represented in red; theoretical maximum performance minus
noise ceiling).
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ceiling, suggesting that each model can be further optimized to
better fit human behavior. Furthermore, models performed better
for WE than EA participants, suggesting that they are biased toward
WE representations of facial expressions of emotions and lack im-
portant accents of EA culture.
Explanation
Next, to explain how each individual AU in each model contributed
to emotion categorization performance, we used an “AU ablation”
procedure that systematically removed individual AUs from each
model and recomputed its prediction of human behavior, separately
for WE and EA cultures. This procedure identified a set of culture-
specific performance-critical AUs, which, when ablated, decrease
prediction performance of the model. In other words, perfor-
mance-critical AUs are necessary to accurately categorize each
emotion among the five others. The procedure additionally identi-
fied a set of culture-specific performance-detrimental AUs, which,
when ablated, increase prediction performance of the model. In
other words, performance-detrimental AUs hinder accurate catego-
rization of each emotion among the five others.
Exploration
Last, to explorewhether the causal AUs that explain performance do
improve predictions, we added performance-critical AUs to the
original models and removed performance-detrimental AUs, sepa-
rately for WE and EA cultures, thereby generating updated, opti-
mized, and culture-specific models. We found that their
prediction performance on new stimuli and participants (i.e., data

not used in the prediction and explanation stages) improved sub-
stantially relative to the original models, removing the WE bias re-
ported earlier. However, AU-enhanced models still performed
below the noise ceiling, suggesting that models could improve by
refining their AU representations (e.g., by considering the time
course of AU activations) or by adding additional expressor-
related features (e.g., the ethnicity of the face). Moreover, the sub-
stantial portion of variance due to individual differences suggests
that models can benefit from additional perceiver-related character-
istics beyond culture, such as sex or age.

Generalization to other emotions
As the six basic emotions are only a subset of mental states that a
face can express (12, 13), we extended our framework to a selection
of AU-based models of four conversational signals (“bored,” “con-
fused,” “interested,” and “thinking”). Signaling and inferring these
mental states is paramount to effective communication (14), espe-
cially in conversational settings (15). We identified five studies (16–
20) that described their facial movements, coded them as AU com-
binations, and converted them into predictive models using our hy-
pothesis kernel analysis method. Using an additional dataset of
2400 categorizations of the conversational signals from 40 partici-
pants (20 WE and 20 EA), we used the prediction-explanation-ex-
ploration framework to evaluate and optimize the conversational
signal models just as we did with the basic emotion models. We
found that most of the models accurately predict human

Fig. 3. Prediction results. (A) Color-coded bars show the average AUROC score for eachmodel (see legend at top) for each emotion separately. Dots represent themodel
predictions of each individual participant. Dashed lines represent the noise ceiling with specific values shown above (gray area represents ±1 SD based on bootstrapping
repeated observations, see the “Noise ceiling estimation” section). The black solid line at the bottom represents chance performance (AUROC = 0.5). (B) The same AUROC
scores are averaged across models and presented by culture. Asterisks indicate a significant AUROC score difference (P < 0.05; two-sided independent t test) across
cultures.
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categorizations but with a similar bias toward WE representations.
As with the basic emotions, optimized and culture-aware models
significantly improved prediction performance (still below noise
ceiling), with less WE bias. In sum, these results replicate our find-
ings for the basic emotions and demonstrate that our approach gen-
eralizes to other mental states.

RESULTS
Prediction
In this first stage, we used a new method to convert previously re-
ported qualitative AU-based models of emotions into predictive
models (see the “Hypothesis kernel analysis” section). We evaluated
how well each model predicts the emotion category provided by
humans performing the same task of categorizing a large set of ran-
domly generated dynamic facial expressions (see the “Datasets used
to evaluate models” section). We summarized how well each of the
seven models predicts the categorization behavior of each of the 80
participants (40 WE and 40 EA) using the area under the receiver-
operating curve (AUROC)—a metric with a chance level of 0.5 for a
binary classification model (predicting one emotion versus all
others; see Materials and Methods) that randomly assigns the
labels and with a theoretical maximum score of 1 for a model that

predicts each label perfectly. For each emotion, we also estimated a
noise ceiling that represents themaximum achievable model perfor-
mance (see the “Noise ceiling estimation” section). Maximum the-
oretical performance (i.e., AUROC = 1) implies that different
participants categorize the same AU combinations with the same
emotion labels. If participants categorize the same AU combina-
tions with different emotion labels, then this “experimental noise”
is irreducible by any model based solely on AUs, which reduces the
noise ceiling below 1 and thus the proportion of variance that the
model can explain accordingly.

Figure 3A summarizes the average prediction performance of
each model as color-coded bars (see legend at top) for each
emotion separately and with per-participant AUROC scores
(color-coded dots). Dashed lines indicate the noise ceiling of each
model (exact values shown above). Across most emotions, most
models predict categorization behavior well above chance (i.e., an
AUROC of 0.5) with some substantial differences between emo-
tions—e.g., fear (average AUROC = 0.57) versus surprise (average
AUROC = 0.76)—and between models—e.g., Keltner et al. [2019;
(7); average AUROC = 0.66] versus Jack et al. [2014; (11); average
AUROC= 0.74]. However, average performance (across models and
emotions, AUROC = 0.68) is still well below the average noise
ceiling (AUROC = 0.88), suggesting that the models do not

Fig. 4. Explanation results. (A) Schematic visualization of the explanation process using an ablationmethod. The (hypothetical) original model shows the AUs associated
with a given emotion—here, disgust is represented by AU9 and AU25. The ablated models show the remaining AUs following ablation of each individual AU. Perfor-
mance-critical AUs (indicated in red) are those that decrease prediction performance when ablated, whereas performance-detrimental AUs (indicated in blue) are those
that improve prediction performance relative to the original model (see color-coded bars to right; the vertical dashed line represents the noise ceiling). (B) Results of
ablation analysis. The color-codedmatrix shows the average difference in performance across all models when removing a given AU (x axis) for each emotion (y axis). Blue
indicates that the AU ablation improves performance (performance-detrimental AUs); red indicates that it reduces performance (performance-critical AUs; see color bar to
right). White cells show the AUs that were never part of any model (and thus could not be ablated).
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perform optimally. Moreover, with a noise ceiling lower than the
theoretical maximum (AUROC = 1), these AU-based models
cannot, in principle, explain a nontrivial proportion of variation
in human emotion categorizations.

Figure 3B shows performance differences (averaged across
models) depending on participant culture (see fig. S1 for differences
per model). On average, models performed significantly better (at
α = 0.05) for WE participants than for EA participants for disgust
(t = 4.07, P < 0.001, d = 1.07), fear (t = 2.48, P < 0.001, d = 0.56), and

surprise (t = 3.81, P < 0.001, d = 0.87). In contrast, models per-
formed better for EA participants than WE participants for happy
(t = −2.87, P = 0.005, d = −0.65). It is important to note that these
cross-cultural differences disappear at the exploration stage when
the models comprise cultural accents.

Explanation
In the second stage of the modeling cycle, we aim to explain the be-
havioral predictions and relative accuracy of the different models by

Fig. 5. Exploration. (A) Schematic visualization of the exploration process, applied by enhancing the original models with additional performance-critical AUs (here, AU9,
indicated in red) and removing performance-detrimental AUs (here, AU25, indicated in blue). (B) Each subplot shows the model performance increase (Δ AUROC) of the
optimal model relative to the original model (cf. Fig. 3A). Dashed lines represent the original noise ceiling. (C) AUROC scores from the optimal culture-accented models,
averaged across models and presented by culture. Performance did not significantly differ (at α = 0.05; two-sided independent t test) across cultures for any emotion
(cf. Fig. 3B).
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quantifying the causal effect of each AU on model performance. To
do so, we used the AU ablation method described earlier that sys-
tematically removes (i.e.,“ablates”) individual AUs from eachmodel
and recomputes its behavioral prediction performance.

Figure 4 shows how the method of ablating AUs from the facial
expressionmodels explains their predictions. Figure 4A schematizes
the AU ablation procedure and the results it can yield. Specifically,
for a particular model of disgust (AU9 + AU25, “original model”),
ablation of an individual AU (e.g., AU9) may lead to a decrease or
increase in model performance, thus indicating that the AU is per-
formance-critical or performance-detrimental, respectively (see
color-coded bar on right). We applied this ablation procedure to
all models. Figure 4B shows the results as a color-coded matrix
(see fig. S2 for the ablation results by culture). For each emotion
category (y axis), the color-coded matrix shows the difference in
AUROC performance according to the ablation of each individual
AU (see x axis for labels), averaged across all models (fig. S3 shows
results for individual models). Red indicates a decrease in the pre-
diction of human behavior (e.g., AU9 for disgust and AU5 for sur-
prise), and blue indicates increased performance (e.g., AU5 for
sadness; see color bar at the right). Results show that each model
of facial expression considered could potentially be improved by se-
lectively adding performance-critical and removing performance-
detrimental AUs (e.g., adding AU9 to the disgust models of

Darwin [1872; (3)] and removing AU5 from the ‘sadness’ model
of Cordaro et al. [2008; ref. (6)]. Furthermore, the ablation analyses
in each culture show that their performance-critical and perfor-
mance-detrimental AUs differ (see fig. S2), implying that explora-
tion of culture-specific models could improve their prediction
performance. To test this, we conducted the third and final explo-
ration stage.

Exploration
In this final stage of the modeling cycle, we aim to automatically
generate and explore alternative, optimized models of facial expres-
sions using the findings that explain human emotion categoriza-
tions. Because the set of performance-critical and performance-
detrimental AUs are culture specific (see fig. S2), we explored
model optimization separately in WE and EA cultures. Specifically,
to optimize a givenmodel inWE or EA culture, we (i) added all AUs
that decreased performance when ablated (i.e., performance-critical
AUs; represented in red in Fig. 4) and (ii) removed all AUs that in-
creased performance when ablated (i.e., performance-detrimental
AUs; represented in blue in Fig. 4). For each original expression
model, this procedure yielded two optimized models: a WE-accent-
ed and an EA-accented model. Figure 5A illustrates this exploration
procedure that results in an updated hypothetical model for disgust
(AU10 + AU25) by adding a performance-critical AU (i.e., AU9)

Fig. 6. Original and optimized model performance for the conversational signal dataset. (A) Color-coded bars show the average AUROC score separately for each
emotion. For each model, we only tested the categorizations that are covered by the model [e.g., only confused and thinking to evaluate Ekman, 1979 (17)]. In binary
classifiers, the AUROC score is the same for each output class, which explains why AUROC scores are equal for the different emotions in the same model [this also applies
to (C)]. (B) The AUROC scores of (A) are averaged across models and presented by culture. (C) Bars quantify the model performance increase (Δ AUROC) from the original
(A) to the optimized models. (D) Average AUROC scores for the optimal models presented by culture. Black solid lines represent chance-level model performance; black
dashed lines represent the noise ceiling. Asterisks indicate a significant AUROC score difference (P < 0.05; tested two-sided) against chance-level performance (A and C;
one-sample t test) or between cultures (B and D; two-sample t test). See table S6 for detailed statistics of each t test.
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and removing a performance-detrimental AU (i.e., AU25). We then
evaluated these optimized models on new (unseen) stimuli from
new participants, effectively cross-validating the models (see the
“Cross-validation” section for details).

Figure 5B shows, per emotion, the resulting improvement in pre-
dictive performance (represented as the ∆AUROC) of the opti-
mized, culture-accented models relative to the original models
(see color coding in legend at top; dashed line represents the irre-
ducible noise ceiling). For most models and emotions, the automat-
ic generation of optimized models improved performance,
maximally for anger (median improvement = 0.12 across models)
and minimally for surprise (median improvement = 0.05 across
models). As shown in fig. S4, optimized models had better predic-
tion performances because they better disentangled otherwise often
confused emotions.

Last, Fig. 5C presents the predictions of the optimized, culture-
accented models for WE and EA participants. As previewed when
we presented the predictions of the original models in Fig. 3B, fol-
lowing exploration, the optimized, culture-accented models do not
incur significant prediction differences betweenWE and EA partic-
ipants (at α = 0.05). Therefore, these results demonstrate that ex-
ploring cultural accents with optimized models compensate for
the WE bias of the models tested here (which replicate the results
based on the original stimuli; see fig. S5). Additional analyses
further demonstrate that culture-accented models result in less
biased (fig. S6) and stronger prediction performance (see table
S3) for most emotions relative to culture-agnostic models.

Generalization to other emotions
In the prediction stage, we evaluated how well each model predicts
human emotion categorizations. Figure 6A shows that all models
explain a significant amount of variance of all emotions (see table
S6 for detailed statistics of all tests shown in Fig. 6), except for Cun-
ningham et al. [2005; (16)]. Moreover, Fig. 6B shows that the eval-
uated conversational signal models also perform significantly better
with WE participants than EA participants, replicating the cultural
bias observed with basic emotion models. In the explanation stage,
an ablation analysis identified the performance-critical and perfor-
mance-detrimental AUs for each model and emotion. The explora-
tion stage used these insights to construct optimized, culture-
accented models. Figure 6C outlines changes in predictive perfor-
mance (Δ AUROC) of the optimized versus original models,
showing that each model improved significantly, except el Kaliouby
and Robinson [2005; (19)] which already performed close to the
noise ceiling in the prediction stage (see Fig. 6A). As with the
basic emotion models, the optimized conversational signal
models do not perform significantly better or worse for either
WE or EA participants—except for “confused” that still performed
better for WE participants [t(10) = 2.42, P = 0.03, d = 1.40].

In sum, these results demonstrate how our framework can auto-
matically generate and then explore updated, culture-accented
models using insights gained from explaining prediction perfor-
mance with performance-critical and performance-detrimental
AUs. In turn, these optimized models can be empirically tested in
additional human experiments.

DISCUSSION
Since Darwin’s seminal work on the evolutionary origins of facial
expressions of emotion (3), an important debate has centered on
the question of which specific combinations of facial movements
(i.e., AUs) best represent the six classic basic emotions. Here, we
tested different models that offer competing hypotheses about
how AUs specifically relate to facial expressions of emotions.
After translating these qualitative models into predictive models
with the novel technique of hypothesis kernel analysis, we embed-
ded them into a new prediction-explanation-exploration frame-
work. Within this framework, we compared how accurately each
model predicts human emotion categorizations of a large set of
dynamic facial expression stimuli from both WE and EA partici-
pants. We then explained which specific AUs causally affect predic-
tion accuracy using a method of systematic AU ablation and lastly
used these insights to automatically generate and explore updated
models that capitalize on the relative strengths of the different
models, to produce substantially improved predictive performance.
Last, we showed that models of the six facial expressions with cul-
tural accents better predicted the cultural diversity of human behav-
ior. Our prediction-explanation-exploration cycle demonstrates
that a model-based approach can summarize the strengths and lim-
itations of each evaluated model and enables targeted and culturally
aware improvements. Furthermore, we further validated the frame-
work on additional facial expression categories (bored, confused,
interested, and thinking) with similar results. We now discuss the
implications of our study that can inform and guide knowledge de-
velopments in emotion research specifically and social cognition re-
search more broadly.

Toward formal models of facial expressions of emotions
In science, models are used to represent and reason about phenom-
ena of interest. In the study of facial expressions of emotions,
models aim to capture theway humans perceive and recognize emo-
tions from faces. Over time, models have become increasingly
refined, from Darwin’s verbal descriptions (3) to more systematic
models of emotional facial expressions based on AUs that
enhance their expressiveness (5–7, 10). Such models have become
competing hypotheses of the AUs that accurately represent emo-
tional expressions. However, these models cannot be quantitatively
tested or compared without a “common currency” to do so. As we
showed, transforming them into predictive models offers such
common currency in the form of predictive performance on inde-
pendent data.

We showed that moving from qualitative and verbal to format
and predictivemodels has three important advantages. First, predic-
tive models allow us to precisely quantify what we can explain and
we cannot (yet) explain, and using a model’s noise ceiling, we can
gain insight into the model’s limitations. In the current study, for
example, we showed that models that consider only AUs are unlike-
ly to capture all variance in emotion categorizations, hinting at pos-
sible additional factors that influence facial expression perception
(discussed below). Second, predictive models facilitate model com-
parison (21), which can generate important insights on why some
models perform better than others. For example, Cordaro et al.’s
[2018; international core pattern (6)] model best predicted disgust
among the tested models but was worst for fear. Follow-up ablation
analyses revealed that this model for fear lacked AU4 (Brow
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Lowerer), a performance-critical AU included in most other
models. Adding this AU to the fear model of Cordaro et al. (6) dras-
tically improved its predictive performance.

A third advantage is that predictive models enable rapid iteration
between construction and evaluation of updated and more accurate
models (22), as we did in the exploration stage. Such exercise can
involve any modification to the model inputs or functional form.
For example, updated models could refine their AU inputs by
adding weights to each AU (to reflect their importance or probabil-
ity) rather than using “on” versus “off” binary AUs as is standard or
use the full AU time course as input instead of considering the peak
AU amplitude only, as we did here. Given that AU onset (11, 23)
and speed (24) influence the emotional interpretation of facial ex-
pressions, additional temporal information about AUs is likely to
improve model performance. Last, even more complex models
that go beyond linear effects of AUs and consider nonlinear or in-
teraction effects between AUs may prove beneficial (25, 26).

One important implication using predictive models is that
emotion research should move toward large (in terms of number
of observations) and “rich” (in terms of the stimulus dimensions)
datasets (27). Such datasets allow for better investigation of multiple
competing high-powered and high-dimensional models. Our inves-
tigation illustrated this by testing and subsequently combining the
strengths of multiple high-dimensional AU models on a stimulus
set that broadly covers the domain of facial expressions. Note that
the data and input to facial expressionmodels, however, do not have
to be restricted to facial movements. Below, we discuss how addi-
tional factors beyond facial movements can benefit facial expression
models.

Creating more granular facial expression models
We showed that even the best AUmodels cannot explain all the var-
iance of emotion categorization behavior. Such suboptimal model
performance indicates that models based on only AUs do not rep-
resent all the relevant information that humans process to infer
emotions from faces. This is supported by studies showing that
facial expression perception is influenced by factors beyond the ex-
pression itself, such as the (static) three-dimensional face of the ex-
pressor (28, 29), the culture (30, 31) and prior beliefs (32, 33) of the
perceiver, and the context of categorization (34, 35), as highlighted
in constructionist theories of emotion (36).

To gain a more fine-grained understanding of the information
that is lacking, we computed a noise ceiling. Here, the noise
ceiling shows that incorrect predictions of the model can be attrib-
uted either to missing/misspecified features of the expressive face or
to perceiver-related individual differences. More granular facial ex-
pression models that incorporate these features could substantially
improve the performance of facial expression models of emotions.
One promising direction is to consider the face features that affect
the static shape or complexion of the expressor, as we know that
people incorporate such features into their facial expression judge-
ments (37). For example, facial features statistically associated with
particular cultures (such as skin color) have been shown to influ-
ence emotion perception (38), which may underlie the in-group ad-
vantage in emotion recognition [(39, 40) but see (41)]. In addition,
research showed that relatively masculine faces are more likely to be
interpreted as angry and relatively feminine faces as happy (42, 43).
Beyond culture and sex, improved models could furthermore
include other expressor-related features [such as age (44), perceived

social traits (45), and social class (46)] that may affect categorization
behavior.

Although additional expressor-related facial features may
improve prediction performance, they cannot explain differences
across individuals (i.e., the variance above the noise ceiling). There-
fore, to explain this substantial amount of variance, we must turn to
perceiver-related features, which could also be multiple, including
the age, gender, sex, personality, and culture of the perceiver, all of
which have been shown to influence the interpretation of facial ex-
pressions of emotion (47–50). Our study showed that the perceiver’s
culture explains part of this variance and that our culture-aware
models removed the initial bias towards WE cultures. Future
models could incorporate more detailed cultural factors [such as
Hofstede’s dimensions (50, 51)] and other perceiver-related
factors (52), which may reduce biases toward demographic groups
overrepresented in emotion research (27, 53).

Generalization to a broader domain of affective, social, and
communicative signals
We applied hypothesis kernel analysis and the prediction-explana-
tion-exploration framework to both models of the six classic basic
emotions, as well as models of conversational signals. Our applica-
tions were based on the availability of existing and competing AU-
based models of facial expression of emotions (13, 53). However,
both hypothesis kernel analysis and the prediction-explanation-ex-
ploration framework can be used to model any affective, social, or
communicative signal, as long as the inputs and model components
are clearly and explicitly defined and operationalized (such as the
FACS-based AUs in the current study).

One promising research direction is to apply the prediction-ex-
planation-exploration framework to a larger set of emotions beyond
the classic six emotions and four conversational signals we evaluat-
ed. Studies showed that people express and perceive many more
emotions from faces (13, 54), such as “doubt” and “awe,” including
compound emotions [such as “happily surprised”; (55)]. Moreover,
our framework also extends from categorical models to regression
models of continuously varying signals—e.g., arousal, valence (56–
58), dominance, and trustworthiness (29, 59). Last, the range of ap-
plications is not limited to dynamic facial expression signals but can
extend to static facial features [e.g., to model attractiveness (60)] and
to dynamic and static body features (61), vocal features (62), and
physiological features (63), given that the features are consistently
and quantitatively defined [e.g., the “Body Action Coding System”
(64)]. While quantitative models (29, 56, 59, 62) exist for these dif-
ferent signals [reviewed in (27, 65, 66)], our framework can be used
to further optimize these models and make them culturally
sensitive.

To conclude, our hypothesis kernel analysis methodology and
prediction-explanation-exploration framework enable the system-
atic testing and optimization of social signals. We found that indi-
vidual models explain a substantial proportion of variance in
emotion categorizations of both basic emotions and conversational
signals. However, we demonstrated that combining the strengths of
different models into updated, culturally aware models greatly im-
proved model performance and reduced bias toward WE represen-
tations of emotions. The models’ noise ceiling revealed that models
can likely be further improved by considering additional expressor-
related and perceiver-related factors. We anticipate that our predic-
tion-explanation-exploration framework in the context of
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predictive models will progress our understanding of social signal-
ing, by developing models that more accurately reflect the complex-
ity and diversity of human nonverbal communication.

MATERIALS AND METHODS
Hypothesis kernel analysis
To formalize the statistical relationship between AUs and emotion
categories as predictive models, we propose a novel method we call
hypothesis kernel analysis. We use this method to derive classifica-
tion models that predict the probability of an emotion, given a set of
AUs [analogous to how people infer emotions from facial expres-
sions (67)]. What follows explains how the method works at a con-
ceptual level. A detailed formal description is presented in the
Supplementary Materials.

The idea of the hypothesis kernel analysis is to predict a categor-
ical dependent variable (here, the perceived emotion) based on the
similarity between an observation and a set of features (e.g., here,
AUs, the independent variables) and a hypothesis (e.g., “happy is
expressed with AUs 6 and 12”). We can compare this prediction
to real observations to evaluate the accuracy of the hypothesis.
Three methodological challenges must be overcome: (i) How
should we measure the similarity between the observation and hy-
pothesis? (ii) How should we derive a prediction based on this sim-
ilarity? And (iii) how should we compare the predictions to real
data? Figure 7 outlines a solution to the three challenges in five
steps. We describe each one in turn.

1) Embed the hypothesis in AU space. We embed each hypoth-
esis in a multidimensional space spanned by different AUs treated
as variables. In this space, we represent the hypothesis of an emotion
configuration (e.g., “happy = AU12 + 6”; M in Fig. 7) as a separate
point (see step 1 in Fig. 7), which has as many coordinates as AUs.
The value of the coordinates reflects the importance (or probability)
of the AUs for the corresponding emotion. Note that each coordi-
nate (i.e., AU) could take any value, but we use binary values (0: AU
is not part of emotion, 1: AU is part of emotion) because the hy-
pothesized models are binary.

2) Embed each stimulus in the same AU space as the hypotheses.
To empirically test the hypothesized relationship between the AUs
of a model and the emotion category, we embed the dynamic facial
expression stimuli (e.g., AU12 + AU25 + AU17; S in Fig. 7) in the
samemultidimensional AU space. Each stimulus represents a single
point (observation) in AU space, where its coordinates represent the
AU amplitude (ranging from 0, not active, to 1, maximally active).

3) Compute the similarity between each stimulus and each hy-
pothesized emotion category. With a kernel function (here, vector
cosine, step 3 in Fig. 7), we quantify the similarity between the pairs
of vectors (i.e., the stimuli, S, and the models of the six emotions,M;
see table S3 for a comparison of model performance across different
similarity and distance metrics).

4) Derive a prediction for each stimulus. To produce a probabi-
listic prediction of the emotion categories given a particular stimu-
lus and hypothesis, we normalize the similarity values to the 0 to 1
range using the softmax function (step 4 in Fig. 7).

5) Quantify each model’s predictive performance. Each model’s
predictive performance depends on the correspondence between its
predictions and the actual participants’ emotion labels (see step 5 in
Fig. 7). To quantify this correspondence, we used the AUROC as
our model performance metric, because it is insensitive to class

imbalance, allows for class-specific scores, and can handle probabi-
listic predictions. We report class-specific scores, which means that
different emotions get separate scores with a chance level of 0.5 and
a theoretical maximum of 1.

Ablation and exploration analyses
To understand why some mappings perform better than others, we
performed an ablation analysis, which removes (or ablates) AUs one
by one from eachmodel tested and then reruns the kernel analysis to
recompute model performance. If an ablated AU decreases model
performance for a given emotion on average across models, then
this AU is critical for perceiving this emotion. We call such AUs
“performance-critical.” Conversely, if an ablated AU increases per-
formance for this emotion on average across models, then it is det-
rimental for perceiving this emotion and called a “performance-
detrimental” AU.

Using the results from the ablation analyses, we explored “opti-
mized” AU models. Specifically, for each model, we added all per-
formance-critical AUs, removed all performance-detrimental AUs,
and reran the predictive analysis for each optimized model sepa-
rately. We then compared prediction performance of the original
and optimized models. The optimized models were evaluated on
a different subset of participants and trials than the participants
and trials that were used for the ablation analysis (see the “Cross-
validation” section).

Noise ceiling estimation
Instead of interpreting model performance relative to a theoretical
optimum, we used the noise ceiling, which estimates the explainable
portion of variance in human behavior. Noise ceiling is used in
systems neuroscience to correct model performance for noise in
measured brain data and is typically applied in within-participant
regression models (8). Here, we develop a method to compute
noise ceilings for models with a categorical target variable (e.g., cat-
egorical emotion labels), applicable to within-participant and
between-participant models [see also (68)]. We explain noise ceil-
ings for classification models conceptually in this section. The Sup-
plementary Materials provide a formal description.

Noise ceiling estimation adjusts the theoretical maximum per-
formance of a predictive model to account for the presence of irre-
ducible noise in the data. The noise ceiling imposes an upper bound
onmodel performance (see Fig. 2). Here, we estimate a noise ceiling
for the different AUmodels using the variance (or “inconsistency”)
in emotion labels across participants in response to the same stim-
ulus set. We use the noise ceiling to know whether the evaluated AU
models are sufficiently accurate to explain variance that is explain-
able by AUs or whether we may need differently parameterized AU
models. In addition, the “unexplainable” variance indicates how
much of the variance in emotion labels is caused by factors other
than AUs. This way, the importance and limitations of AUs can
be empirically estimated.

Evaluated models
The literature comprises many different AU-based models of facial
expressions of basic emotions and, to a lesser extent, of conversa-
tional signals. We base our selection of basic emotion models on
those summarized in table 1 of (4). In addition, we included the
basic emotion model from the FACS manual [which we refer to
as the “Friesen and Ekman, 1978” (5)] and an additional data-
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driven model [from (11); details follow below]. In addition, for our
selection of conversational signal models, we identified five studies
that contain hypotheses of facial movements associated with two or
more signal categories (i.e., two from the following: bored, con-
fused, interested, and thinking), which we translated to AUs.

The models propose that a number of AUs must be expressed to
communicate a particular emotion. However, their comparison is
complicated because not all of them posit a single set of AUs per
emotion. Some contain multiple sets, such as Friesen and Ekman
[1978; (5)] proposing that sadness can be expressed with AUs
1 + 4 or AUs 6 + 15. Others offer optional AUs for a set, such as
Matsumoto et al. [2008; (10)] proposing that sadness is associated
with AUs 1 + 15 and optionally with AUs 4 and/or 17. Last, some
describe mutually exclusive options of AUs for a set, such as Mat-
sumoto et al. [2008; (10)] proposing that “surprise” can be commu-
nicated with AUs 1 + 2 + 5 in combination with either AU25
or AU26.

To address this, we explicitly formulated all possible AU sets that
communicate a particular emotion. For example, Matsumoto et al.
[2008; (10)] propose that “disgust” is associated with AU9 or AU10
and, optionally, AU25 or AU26, which yields six different possible

configurations (9, 10, 9 + 25, 9 + 26, 10 + 25, and 10 + 26). All AU
configurations per basic emotion model are reported in Table 1; all
AU configurations per conversational signal model are reported in
table S5. Our analysis handles multiple sets per emotion, for each
prediction separately, by using the set with the largest similarity
to the stimulus under consideration (cf. steps 3 and 4 in Fig. 7). A
simulation analysis demonstrates that this procedure does not un-
fairly advantage models with more sets per emotion (see fig. S7).

Furthermore, we added a basic emotion model based on the
data-driven analysis from (67) [see also (69)]. We refer to this
data-driven model as “Jack et al. (2014)” (11). For each AU and
emotion, we computed the point-biserial Pearson correlation
between the AU amplitudes and the binary emotion label (1 if
this emotion was selected, 0 otherwise) for each participant. The
raw correlations were averaged across participants and binarized
on the basis of whether the correlation was statistically significant
at α = 0.05 (1 if significant, 0 otherwise; uncorrected for multiple
comparisons), which resulted in a binary 6 (emotion) × 33 (AU)
mapping matrix. We chose this particular model estimation
method (instead of, e.g., fitting a classifier directly to the data)
because it yields a binary model matrix similar to those used in

Fig. 7. Schematic visualization of the proposed method. Here, we use a set of hypothetical AU-emotion relationships (M) and stimuli (S) based on a small set of AUs
(five in total). The variable P represents the number of AUs,Q represents the number of emotions, andN represents the number of trials (here, facial expression stimuli). We
illustrate the analysis in the two-dimensional space of two AUs, but in effect, the space is three-dimensional (33 AUs).
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the theory-driven models, facilitating a fair comparison. We note
that the data-drivenmodels are estimated and evaluated on different
partitions of the data, as explained in the next section.

Cross-validation
To avoid circularity in our analyses [also known as “double dipping”
(70)], we cross-validated any step that involved optimization or
fitting of models (see Fig. 8). Specifically, we performed the predic-
tion and explanation stages on a subset of participants (40 per
culture; 66.7%) and trials (50%), the “train set” (see Fig. 8A). In
the exploration stage, we evaluated the optimized models on the
left-out subset of participants (20 per culture; 33.3%) and trials
(50%; the “test set”). That is, to avoid using the same data twice,
we used different partitions of the data to construct the optimized
models (using the train set) and to evaluate them (using the test set).
The train and test sets contained data from new participants and
new (unseen) stimuli. Specifically, the stimuli in the test set con-
tained AU combinations and face identities that were not part of
the train set. This effectively treats both participant and stimulus
as random effects (71) and improves generalizability of the
results (72).

The theory-driven models can be directly evaluated on the train
set. In contrast, the data-driven models first must be estimated from
the data, which requires cross-validation. To do so, we used a leave-
one-participant-out cross-validation, iteratively estimating the data-
driven models on N-1 participants (of the train set), using the esti-
mated models to predict the test trials of the left-out participant (see
Fig. 8B). Because leave-one-participant cross-validation yields a
separate model for each participant, we aggregated all participant-
specific models into the single aggregated model used in the expla-
nation and exploration stages. For each aggregated emotion model,
we included all AUs that were significant in at least one participant
and weighted them by the proportion of participants for whom this
AU was significant—e.g., in happy, if AU12 was significant in 90%

of the participants, then its weight would be 0.9. We used this ag-
gregated model in the same way as the “theory-driven” models (see
Table 1) for the explanation and exploration stages.

Datasets used to evaluate models
Our study uses two different datasets: one for categorizations of the
six basic emotions and one for categorizations of what we refer to as
“conversational signals.”We will refer to these datasets as the “basic
emotion dataset” and the “conversational signal dataset,” respective-
ly. The materials, experimental procedure, and data preprocessing
procedure were similar for the two datasets, so the following de-
scriptions apply to both datasets unless otherwise stated.
Participants
The basic emotion dataset contains data from 60 WE and 60 EA
participants. TheWE data have previously been used and described
in (11, 73) and included 59 European participants and 1 North
American participant (31 female; mean age = 22 years, SD = 1.7
years). The EA data have previously been used and described in
(73) and included 60 Chinese participants (24 female; mean
age = 23 years, SD = 1.6 years). All WE participants were recruited
in the United Kingdom and tested at the University of Glasgow; all
EA participants were recruited in China and tested at the University
of Electronic Science and Technology of China.

The conversational signal dataset contains data from 20WE and
20 EA participants and has previously been used and described in
(15, 74). All WE participants were European (10 male; mean
age = 21 years; SD = 2.3 years), and all EA participants were of
Chinese nationality and heritage (10 male; mean age = 23 years;
SD = 2.1 years). All participants were recruited in the United
Kingdom and tested at the University of Glasgow. All participants
lived in the United Kingdom, and all EA participants had U.K. res-
idence of at most 3 months at the time of testing.

WE and EA participants (from both datasets) had all minimal
experience with the other culture (as assessed by questionnaire;

Fig. 8. Cross-validation scheme used in the exploration stage. (A) For the theory-driven models, we divided the 60 participants per culture (WE and EA) into a train set
(40 participants) and test set (20 participants). We further divided each participant’s trials into train trials (dark blue/dark red; 50%) and test trials (light blue/light red;
50%). We performed the prediction, explanation, and exploration stages on the train trials of the train participants (dark blue). At the exploration stage, we evaluate the
optimized models on the test trials of the test participants (light red). (B) For the data-driven model in the prediction stage, we estimated and evaluated the data-driven
models with a leave-one-participant-out cross-validation scheme within the train participants. We fitted emotion models using the train trials from N-1 participants and
evaluated their predictive performance on the single left-out participant.
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see the “Participant questionnaire” section in the Supplementary
Materials), had normal or corrected-to-normal vision, and did
not have any emotion-related atypicalities (autism spectrum disor-
der, depression, and anxiety), learning difficulties (e.g., dyslexia),
synesthesia, or disorders of face perception (e.g., prosopagnosia)
as per self-report. EA participants spoke proficient English (Inter-
national English Language Testing System score ≥ 6.0, “competent
user”). They gave written informed consent before testing and re-
ceived £6 (WE and EA, basic emotion study) or ¥50 (EA, conversa-
tional signal study) per hour for their participation. The University
of Glasgow College of Science and Engineering Ethics Committee
provided ethical approval of the basic emotion study (reference ID
300160203) and the conversational signal study (reference ID
300140082).
Materials
Participants categorized 2400 short (1.25 s) video clips depicting a
dynamic facial expression with a random combination of AUs. Each
dynamic facial expression stimulus comprised one of eight “base
faces” and was of the same ethnicity as the participant (WE base
faces: four males, four females, mean age = 23 years, SD = 4.1
years; EA base faces: four males, four females, mean age = 22.1
years, SD = 1.0 years). Each face was animated with a subset of ran-
domly selected AUs from a set of 42 possible AUs (with the number
of AUs drawn from a binomial distribution with n = 5 and P = 0.6).
The time course of each selected AU was determined by six param-
eters (onset latency, offset latency, peak latency, peak amplitude, ac-
celeration, and deceleration), which were sampled from a uniform
distribution from 0 to 1. All animations had a duration of 1.25 s (30
frames, presented at 24 frames/s). Our analyses only used the peak
amplitude parameter and ignore the six other (temporal) parame-
ters. The facial animations were rendered from frontal view using
flat lighting, which avoids shadowing [see supplementary movie
S1 from (73) for an example]. Although the AUs and their param-
eters were randomly sampled, the resulting facial expressions all dis-
played morphologically plausible facial movements, because the
generative facial expression model prohibits impossible movements
with morphological constraints [see (69) for details].

Participants viewed stimuli on a black background displayed on
a monitor with a diagonal of 48.26 cm, a refresh rate of 60 Hz, and
resolution of 1024 × 1280. Stimuli appeared in the central visual
field, disappeared after the animation ended, and were followed
by a black screen until the observer responded. To present each
stimulus using the average visual angle of a human face (75)
during typical social interaction (76), we used a chin rest to
ensure a constant viewing distance of 68 cm (basic emotion
study) or 71 cm (conversational signal study), with images subtend-
ing 14.25° (basic emotion study) or 15.24° (conversational signal
study) visual angle vertically and 10.08° (basic emotion study) or
9.66° (conversational signal study) visual angle horizontally.
Procedure
In each experimental session, participants completed a seven-alter-
native forced-choice (basic emotion dataset) or five-alternative
forced-choice (conversational signal dataset) emotion categoriza-
tion task of 200 dynamic facial expression stimuli. Participants
were instructed to label the stimuli with one of the six basic emo-
tions (anger, disgust, fear, happy, sadness, and surprise; basic
emotion study) or one of the four conversational signals (bored,
confused, interested, and thinking; conversational signal study)—
but only if the facial expression matched one of the emotion

categories. Otherwise, they were instructed to respond “other.” Par-
ticipants responded by clicking the response option using a mouse.
After the emotion categorization (except when choosing other),
participants were instructed to rate emotion intensity on a five-
point scale from “very weak” to “very strong”; the intensity data
are not used in the current study. Emotion labels were presented
in the participant’s native language, i.e., either English (WE) or sim-
plified Chinese (EA). The Chinese labels were provided by a profes-
sional translator using the double translation method (77), who
confirmed that each matched the meaning of the corresponding
English label.

Each participant completed the study in 12 different sessions
across 3 to 5 days, with no more than three sessions per day and
at least a 1-hour break between sessions. Each session lasted approx-
imately 1 hour, including instruction and breaks. There was no ev-
idence for drift or other changes in categorization behavior across
the full duration of the experiment (see fig. S8).
Preprocessing
The original set of 42 AUs comprised 3 compound AUs
(AU12 + 25, AU1 + 2, and AU6 + 12), 15 unilateral AUs (left or
right, e.g., AU12L and AU12R), and 24 bilateral AUs (such as
AU12). To encode each AU as an independent variable, we
recoded compound AUs (e.g., AU1 + 2 as activation of both AU1
and AU2) and bilateral AUs (e.g., AU12 as activation of both
AU12L and AU12R), yielding a total of 33 AUs: 1, 2L, 2R, 4, 5,
6L, 6R, 7L, 7R, 9, 10L, 10R, 11L, 11R, 12L, 12R, 13, 14L, 14R, 15,
16, 17, 20L, 20R, 22, 23, 24, 25, 26, 27, 38, 39, and 43 (where
L = left and R = right).

We excluded the trials categorized as other from our analyses
because there are no specific hypotheses about this category. For
the basic emotion dataset, this leaves a grand total of 247,782
trials (total WE: 119,382, total EA: 128,400) with an average of
2065 trials per participant (average WE: 1990, average EA: 2140).
This grand total contains 6473 repeated trials (total WE: 4658,
total EA: 2322), i.e., stimuli with the same AUs and amplitudes,
with an average of 38 repetitions per participant (average WE: 26,
average EA: 55). For the conversational signal dataset, this leaves a
grand total of 83,540 trials (total WE: 40,540, total EA: 43,000) with
an average of 2089 trials per participant (average WE: 2027, average
EA: 2150). This grand total contains 4134 repeated trials (total WE:
2314, total EA: 2322) with an average of 20 repetitions per partici-
pant (average WE: 18, average EA: 19).

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S8
Tables S1 to S6

View/request a protocol for this paper from Bio-protocol.
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