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Abstract 

 

A growing body of evidence links the adverse impacts of expanding urbanism including 

increased air pollution, and exposure to heat stress with the removal of vegetation within 

cities. As the global population is estimated to reach 10 billion by 2050, urban trees and 

extended green infrastructure are advocated as a remedy to the effects of increasing 

urbanisation through delivering a multitude of ecosystem services including pollution 

abatement, reduction of urban heat islands and social benefits. To accurately quantify the 

services afforded by urban forests, it is vital to measure the extent and structure of urban 

forests, including through time, in addition for assessing the success of policy to maintain and 

promote green infrastructure assets. Current ground fieldwork methods rely on plot networks 

to measure a range of metrics across the tree population; these methods are locally 

comprehensive however do not fully describe the spatial heterogeneity of the urban fabric, 

given the limited sampling and often laborious data collection. The increasing availability and 

access to remote sensing/earth observation datasets provide an opportunity to collate 

synoptic measurements across large regions. Direct measurements though active sensors, 

particularly LiDAR, have seen wide adoption when measuring forest structure, however 

surveys can be expensive, and coverage limited. Fusing LiDAR with satellite imagery though 

machine learning methods such as Random Forests can drastically increase coverage through 

capturing complex non linear relationships. A framework is presented to estimate forest 

structure using open access data and software across Greater Manchester. This workflow 

estimates three forest structure metrics, canopy cover, canopy height and tree 

number/density. Random forest models were trained with airborne Environment Agency 

LiDAR, and predictor variables derived from Sentinel 2 and ancillary climatic and topographic 

datasets. Results indicate estimates in 2018, mean canopy cover of 14.9% (RMSE = 13.75), 

mean canopy height of 14.83m (RMSE = 6.14m) and home to ~2.6 million trees (RMSE = 

0.95 per pixel). Results appear to illustrate higher canopy cover than i-Tree ground data but 

lower tree density and canopy heights. Altering input resolution was found to change structure 

estimations, attributed to methodological issues. Forest structure estimates were found to 

change from 2018 to 2021 indicating net decreases in canopy cover and number of trees, 

while average canopy height was found to increase, although change distribution of metrics 



 ix 

across boroughs is not equal. Presented methods can augment traditional inventory methods 

and can assist urban forest/land managers to produce consistent monitoring information to 

support the sustainability of urban forests worldwide. 
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1. Introduction 

Globally, there exists a shared experience of increasing urbanisation and growth of cities 

(Nesbitt et al., 2017). The United Nations (UN) estimates the percentage of global population 

living in urban areas will increase from around 56% today to 68% by 2050, around 6.7 billion 

people (UN Department of Economic and Social Affairs, 2018). While cities are considered 

factories of opportunities for employment and education, left unmanaged can be responsible 

for considerable environmental degradation; already contributing to 70% of global 

greenhouse gases (UN HABITAT, 2011), this is only expected to increase as the proportional 

urban population grows. As a function of increased urban population, resource demand 

exacerbates several social, environmental, and economic issues in areas of already high 

vulnerability (Walters & Sinnett, 2021). 

 

Challenges posed by increasing urbanism are varied and complex, including gas regulation/air 

filtering, micro-climate regulation, rainwater drainage, noise reduction (disturbance 

regulation), sewage treatment, among others (Bolund & Hunhammar, 1999). The severity of 

urban impacts are such that the United Nations (UN) in 2015 developed the Sustainable 

Development Goals (SDGs), the Food and Agriculture Organisation (FAO) mapped how urban 

forests advance nine SDGs (FAO, 2016).While SDG 11 definitively specifies ambitions for 

“Sustainable and Resilient Cities and Human Settlements” given the rise of urban populations 

cities are generally considered to be crucial to the entire SDG agenda (UN - HABITAT, n.d.). 

 

Cities are comprised of built components including buildings, roads, bridges and other 

anthropogenic structural amenities; known as grey infrastructure (Cameron & Blanuša, 

2016a). As an antonym to grey infrastructure, the term green infrastructure (GI) was coined. 

Green infrastructure according to Natural England (2009) is defined as “A strategically 

planned and delivered network comprising the broadest range of high quality green spaces 

and other environmental features….delivering ecological services and quality of life benefits 

required by the communities it serves”. GI is composed of a variety of green landscape 

typologies including parks, nature reserves, gardens, river corridors, etc. Urban trees/forests 

are a component of green infrastructure, as such are a critical component within the urban 

fabric to promote sustainability and deliver ecosystem services to communities. As the urban 
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matrix encroaches into rural areas to accommodate for growing populations, nurturing urban 

green infrastructure is of rising importance for quality of life benefits for residents. 

 

Doick et al. (2016) defines urban forests as ‘all the trees in the urban realm – in public and 

private spaces, along linear routes and waterways and in amenity areas. It contributes to 

green infrastructure and the wider urban ecosystems”. This definition also encompassed 

urban forests, both biotic and abiotic components. Urban forests are a nature based solution, 

natural methods to leverage ecosystems to effectively address or ameliorate societal 

challenges. The ecological community has long known urban trees afford society ecosystem 

services including benefits carbon sequestration, pollution abatement, mitigation of the urban 

heat island and flooding (Monteiro et al., 2020; Seddon, 2022). Additionally, further benefits 

through can be gained via enhancement of biodiversity, physical and mental wellbeing, and 

promotion of community cohesion (Roy et al., 2012; Salmond et al., 2016). 

 

To that end governments are setting targets to increase urban tree cover at multiple scales 

(Doick et al, n.d.). The city of Bristol intends to double canopy cover by 2045 (Walters & 

Sinnett, 2021), Greater Manchester’s (GM) ambitious target of planting three million trees by 

2035 is intended to reap these benefits and improve access to green space (CITY OF TREES, 

n.d.; GMCA, 2019), a key indicator of aggregated urban population health according to the 

World Health Organisation (PUBLIC HEALTH ENGLAND, 2020; Salmond et al., 2016; Huang 

et al., 2017). To fully understand magnitude of benefits associated with urban forest, 

information regarding forest/tree structure is required to provide the basis for natural capital 

estimates (Nowak et al., 2008). 

 

To assess the success of urban forest policy measures an in-depth understanding of current 

forest inventory is required (Chrysoulakis et al., 2021; Baines et al., 2020). Systematic 

frameworks for assessing urban forest inventory such as the i-Tree Eco protocol have been 

established by the United States Forest Service (Raum et al., 2019), an adaptation of the 

Urban Forest Effects model (UFORE). This methodology has seen ubiquitous take up across 

the UK and US (Monteiro et al., 2020; Lin et al., 2021). This methodology standardizes field 

techniques including defining features of individual trees such as diameter breast height 

(DBH), species, cover and using fixed size sampling plots. Once a representative sample is 

taken, the i-Tree Eco method extrapolates across larger regions to estimate economic value 

for the regions ecosystem services, useful for urban planners and land managers to justify 

GI. 
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A 2018 i-Tree Eco project undertaken in GM estimated 11,321,386 trees, generating an 

annual economic value of £33.3 million from associated ecosystem services with an estimated 

replacement figure of £4.7 billion (CITY OF TREES, n.d.). Approximately 15.7% of GM is 

estimated to be under canopy, around the national average and above London (Doick et al, 

n.d.). Although these results are statistically sound, they are based upon extrapolated ground 

data from many ground samples and have the potential to miss important data points. Other 

estimates from the 2010 Greater Manchester Tree Audit mapped individual trees and 

woodland, determined in similar canopy cover results of 16% across GM, indicating a small 

decrease in an eight year period (CITY OF TREES, n.d.), while Bluesky’s National Tree Map 

estimates nearly 4.8 million trees in the same year (BLUESKY, 2017). To fully grasp the 

impact of the urban forests within the urban fabric, comprehensive estimates are required 

spanning the entirety of the specified region, given impacts will vary dependent on location 

(Donovan, 2017). Larger benefits may arise from specific areas and therefore influence 

optimal decision making for further tree planting and retention. Given GM is an aggregate of 

ten separate boroughs, higher resolution estimates may be of larger importance for improved 

borough specific management strategies, to assess individual borough inventory and also 

evaluate GI policy on a smaller scale. 

 

In situ fieldwork is often laborious, time consuming and potentially resource expensive even 

if locally comprehensive (Baines et al., 2020). Remote sensing (RS) through satellite imagery 

offers a different approach through synoptic monitoring options operationally spanning vast 

geographic regions, with high spatial and temporal resolutions (Baines et al., 2020; Wilkes et 

al., 2018).  Given the Flexibility and utility of RS, utilizing several sensors hosted on different 

platforms, RS has been applied to many different use cases (Ruiz et al., 2017). RS sports 

data collected from several sources including passive multi and hyperspectral sensors and 

active sensors such as RADAR (Radio Detection and Ranging) and LiDAR (Light Detection and 

Ranging). LiDAR in particular has seen wide uptake in ecological studies concerning 3D 

vegetation structure; including height, canopy cover (Wilkes et al., 2018; Ahmed et al., 2015; 

Alonzo et al., 2016; Bruggisser et al., 2019; Neuville et al., 2021) and also species mapping 

(Alonzo et al., 2014) including in urban environments. Active and passive sensing techniques 

already been widely adopted for building forest inventories (Puissant et al., 2014; Hanssen et 

al., 2021; Matasci et al., 2018).  

 

LiDAR sensors have been mounted on different platforms including spaceborne, airborne and 

terrestrial/mobile, with different suitability at varying scales (Lechner et al., 2020). Terrestrial 
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LiDAR Surveys (TLS) and Mobile LiDAR Surveys (MLS) tend to be applied to plot level metrics 

(Bruggisser et al., 2019), further the “bottom up” approach of MLS and TLS provide detailed 

information on how humans view forests, and the rapid deployment of TLS/MLS could provide 

time sensitive insights into conservation and management. Airborne LiDAR Surveys (ALS) are 

mainly applied to regional/landscape scale forestry studies (Baines et al., 2020; Ahmed et al., 

2015; Roussel & Auty, 2021; Bruggisser et al., 2019). ALS are undoubtedly more useful over 

larger regions than TLS however insights can be obscured by dominant canopy and the largest 

trees (Bruggisser et al., 2019). However, ALS has the benefit of flexibility, being able to be 

tasked for response to specific events such as treefall (Lechner et al., 2020), additionally 

resolution tends to be higher than spaceborne datasets. Spaceborne sensors such as the 

Global Ecosystem Dynamics Investigation (GEDI) hosted on the International Space Station 

are applied where ALS would be too costly or impractical such as global level forest structure 

metrics (Potapov et al., 2021; Hansen et al., 2013).  

 

Many studies have been undertaken combining LiDAR and information from other sources and 

sensors to estimate and model forests metrics(Alonzo et al., 2014; Wilkes et al., 2018; Alonzo 

et al., 2016; Neuville et al., 2021; Baines et al., 2020). Through combining with other 

information sources, some of the limitations of LiDAR such as limited spatial extent can be 

overcome. However, challenges still remain when applying LiDAR for the purpose of urban 

forest inventory and structure mapping. Firstly, the highly complex nature of the urban matrix 

encompassing features such as energy infrastructure, roads, buildings, rivers, trees and other 

ground features, creates difficulty in the LiDAR filtering process (Zhang et al., 2015). Second, 

the spatial heterogeneity of urban forests is a hurdle, unlike natural forests, urban forests 

generally do not share similar canopy profiles, differing heights and crown widths and can 

often be isolated or single trees (Zhang et al., 2015; Baines et al., 2020). Urban forests may 

also be a rich mixture of broadleaf and conifer species, which blend into each other during 

LiDAR surveys (Zhang et al., 2015). 

 

This study applies freely available satellite imagery and ALS datasets, in a Random Forest 

(RF) machine learning method, for forest structure estimation and distribution in GM. Three 

forest structure parameters are chosen: Canopy Height (CH), Canopy Cover (CC) and number 

of trees present (N). CH relates to the maturity/age of the tree and can be used allometric 

equations in aboveground biomass (AGB) estimations (Wilkes et al., 2018). Canopy Cover is 

a useful metric to determine urban forest extent. Number of trees helps to indicate the 

importance of each individual tree and allows for comparison between urban forests. 
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Research outputs are spatially explicit maps of 3D forest structure metrics at 20m/100m 

resolution across the entirety of GM. The method described in this study is designed to be 

entirely open source, with the aim to adhere to FAIR (Findable, Accessible, Interoperable and 

Reusable) principles as championed by UKRI. As such it is hoped this method will be applied 

to other heterogeneous urban spaces in regions, particularly regions with fewer available 

resources such as in the global south. The created maps will allow future works to study the 

relationship between urban forests and their impacts on the urban fabric at finer resolutions 

than previously and assist land managers to monitor GI targets. 

1.1 Aims and Objectives 

To present a framework to produce Greater Manchester wide estimates of urban forest 

structure metrics: number of trees (N), canopy height (CH) and canopy cover (CC). To be 

realised through applying open source data within a Random Forest model. 

 

• Examine model performance and spatial distribution of estimated urban forest 

metrics  

• Comparison of estimated metrics with those of the GM i-Tree Eco report  

• Examine changes in forest structure metrics from 2018 to 2021 
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2. Literature Review 

 

2.1 Ecosystem services from urban forests 

Urban forests offer an array of ecosystem services, these services are generally considered 

in physical expressions, relating to the effect on the local environment. (Bolund & 

Hunhammar, 1999) define ecosystem services as benefits derived from the ecosystems which 

improve human wellbeing. This definition has been later adapted by Boyd & Banzhaf (2007) 

and Fisher & Kerry Turner (2008), creating a dialogue to delineate between semantics such as 

“ends” and” means”; “services” and “benefits”. The concept of ecosystem services still 

remains somewhat ambiguous to different stakeholders, confusion among the terms 

ecosystem functions, services, and disservices makes consistent measurement and valuation 

difficult, somewhat limiting their usefulness and relevance if a societal goal is to manage 

urban forests for societal advantage  (Escobedo et al., 2011). Nevertheless, consensus exists 

in that urban trees impact the urban matrix through ecosystem services/benefits. 

 

Utilising the i-Tree Eco methodology set out by the USDA Forestry Service, a suite of structural 

metrics have been produced for cities across the UK. Coordinated by Forest Research; the 

UK’s principal organisation for forestry related research, results of which are summarised in 

Table 1. Results of several other i-Tree Eco reports are due to be published including reports 

for Derby, Vale of Glamorgan and Cambridge. Table 2 indicates the high combined ecosystem 

service monetary value for urban forests, illustrating the cost if left unmanaged.  

 

Table 1:i-Tree Eco survey results from UK studies 

Location Number of 

Trees 

Canopy 

Cover 

Annual Natural 

Capital Value 

Survey 

Year 

Source 
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London 8,421,000 14% £132.7m 2014 (Forest 

Research, 

2015b) 

Newport 259,900 12% £143,000 2019 (Forest 

Research, 2020) 

Petersfield 60,570 15.1% £75,000 2016 (Forest 

Research, 

2017b) 

Edinburgh 712,000 17% £1.82m 2011 (Forest 

Research, 

2017a) 

Glasgow ~2,000,000 15% £4.5m 2013 (Forest 

Research, 

2015a) 

Southampton 267,000 18.5% £1.29m 2016 (Forest 

Research, 

2017c) 

 

On both a local and global scale, one ecosystem service provided by urban trees reducing the 

impact of urbanisation is carbon dioxide sequestration. Urban forests are well placed to 

sequester carbon due to the proximity to direct emitters i.e., vehicle emissions (Wilkes et al., 

2018). Absorbed by plant tissue via photosynthesis and subsequently stored in woody tissue 

as biomass; this sequestered carbon has a significant monetary impact to the surrounding 

area. As such biogenic carbon sequestration by urban trees is estimated at 2.36 M tonnes and 

has been allocated an evaluation of £4.5M value per annum in Greater London (Forest 

Research, 2015b). This London study was applied to other global megacities including Beijing, 

Los Angeles and Mexico City to estimate the annual benefits of forest in these urban 

environments, revealing sizable median annual values of $505 million and an additional $7.9 

billion in total value of carbon storage (Endreny et al., 2017). Despite this seemingly large 
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contribution mitigating carbon emissions, urban forests are generally not considered in the 

global carbon cycle, seemingly owing to the proportionally small spatial area as part of global 

forest contribution. Consideration of urban forest carbon cycling is increasingly important 

given the urban land expansion is one of the most visible irreversible and rapid land cover 

transformations in contemporary human history with urban land projections of up to 3.6 

million km2 by 2100 (Gao & O’Neill, 2020) already encompassing an estimated 10 billion urban 

trees (Endreny, 2018). Therefore, tools to monitor stored carbon in urban green infrastructure 

are crucial to ascertain for accurate global assessments.  

 

Conversely, urban trees can also be a nuisance to society, also termed “disservices”, in some 

situations (Roy et al., 2012). Increased costs involved in management of urban forests, 

through maintenance, planting/establishment and irrigation (Escobedo et al., 2011), and 

potential false benefit perception of trees in all urban scenarios, while in reality urban forests 

may not always be appropriate or beneficial to all stakeholders. One of the most discussed 

disservices is the emission of biogenic volatile compounds, that can lead to secondary 

formation of ground level ozone which contributes towards respiratory illnesses (Roy et al., 

2012). Urban trees have the potential to damage grey infrastructure, where rapidly grown 

species can damage pavements and roads through root expansion increasing urban 

maintenance costs (Escobedo et al., 2011). Disservices can also directly affect human 

populations, through increased exposure to wild animals, safety issues with tree litter fall, but 

perhaps more importantly population health challenges such as increased allergenic response 

and refugia for vector-spread diseases (Escobedo et al., 2011; Doick et al., 2017; Cameron & 

Blanuša, 2016b). Benefits that arise from urban trees can lead to adverse impacts dependent 

on spatial and environmental context, for example during summer periods urban tree shading 

effects can be beneficial, interception of solar radiation leads to mitigation of the urban heat 

island effect (UHI), while the same effect during winter seasons can result in higher heating 

costs incurred to residents (Doick et al., 2017). Similarly, air purification through assimilation 

is beneficial to overall city air pollution abatement, however the street canyon effect of densely 

planted trees reduces wind speed to the extent where pollutants are trapped below canopy 

reducing air quality and posing increased risk to pedestrians (Doick et al., 2017; Escobedo et 

al., 2011). 

 

Nevertheless, literature suggests the social benefits provided by urban forests outweigh the 

environmental and economic costs of maintaining them (Escobedo et al., 2011) and 

disservices can be mitigated through location and species management (Doick et al., 2017; 
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Donovan, 2017). Service and disservice interaction appears highly complex, and such is the 

focus of several research groups. Given the influence of location on service delivery, regular 

monitoring and inventories of urban trees are required to optimise ecosystem service delivery 

while mitigating disservices. Fieldwork can be time consuming, resource intensive and 

spatially coarse, lacking full city coverage. Developments in remote sensing in addition to 

advances in computing and cloud computing have aided and improved forest structure 

monitoring (Donager et al., 2021). 

 

2.2 Remote Sensing of urban forest structure 

Remote sensing of urban forests remains difficult due to the inherent challenges associated 

with its structure, particularly the spatially heterogeneous and fragmented nature of urban 

ecosystems (Zhu et al., 2019). In spite of difficulties associated with urban forest remote 

sensing numerous successful studies assessing urban forest composition and structure have 

been completed  in recent years (Baines et al., 2020; Li et al., 2019).Literature suggests 

there is emphasis in forest structure mapping studies to focus on canopy cover and canopy 

height. BLUESKY (2017) were able to produce England, Wales and Scotland wide estimates 

for individual trees (crown polygons) and heights using passive sensing methods. Aerial 

photography and photogrammetric techniques were utilized to produce accuracies of over 

90% in canopy cover and +/- 1.5m height accuracy. Hassaan et al. (2016) was also successful 

in implementation of tree defining algorithm using optical imagery to a 0.72 accuracy. The 

iTree Eco Canopy tool also uses optical imagery from Google Maps to allow users to assess if 

a point is located under canopy (‘i-Tree Eco | i-Tree’, 2022). 

 

 Baines et al., (2020) created Greater London canopy cover and canopy height estimates at 

both 20m and 100m resolution applying Environment Agency airborne LiDAR surveys and 

Sentinel 2 imagery. Over a much larger scale, Potapov et al., (2021) again combining LiDAR, 

this time from the Global Ecosystem Dynamics Investigation instrument aboard the 

International Space Station with analysis ready satellite imagery from the LandSat instrument 

to produce global canopy height estimates at a 30m spatial resolution for the year 2019. Both 

studies combine LiDAR and medium resolution satellite imagery. Variables used to calibrate 

the models in these studies are mainly surface reflectance inputs however also incorporated 

are variables that could explain the spatial distribution of forest structure such as topography 

and precipitation (Wilkes et al., 2015). 



 10 

 

The LandSat satellite programme is a popular data source in forest structure studies,(Potapov 

et al., 2021; Ahmed et al., 2015). The series provide 30m resolution over an extended period, 

additionally the series is freely available, as the cost of commercial imagery may be 

prohibitive.  

 

Research assessing forest structure have exploited multispectral imagery to determine bands 

that identify vegetation, such as the Short Wave Infrared (SWIR) and “red edge” bands 

(Baines et al., 2020), indicating models are driven by the contrast across water moisture 

content as forests scatter more near-infrared radiation by tree leaves due to the withholding 

of moisture by canopy (Alonzo et al., 2014, 2016). To further delineate vegetated surface, 

the combination of several bands into explicit indices are vital to detect specific properties of 

a surface such as greenness and moisture content. 

 

Spectral indices (SIs) are a key part to many forest mapping studies by manipulating bands 

to create explicit contrast. In both landcover and forest structure mapping, a ubiquitously 

popular index is the Normalised Difference Vegetation Index (NDVI) (Ahmed et al., 2015), 

calculated through manipulation of the red (visible) and Near Infrared (NIR) bands. Vegetated 

surfaces indicate a high NDVI value as internal plant cell reflections lead to strong NIR 

reflectance and strong absorption in the visible red wavelengths due to the presence of 

chlorophyll. NDVI has been utilized in studies regarding height and extent (Ahmed et al., 

2015; Potapov et al., 2021), species classification (Alonzo et al., 2014) and land cover 

classification (Huang et al., 2020). 

 

Reliable and accurate change detection is a key pillar of RS, longitudinal datasets such as the 

LandSat archive are particularly suited to temporal analysis to indicate the success of multi-

decadal policies (Ahmed et al., 2015). Features with spectral similarity may be distinguished 

through including a temporal aspect, in fact temporal aggregation of data maybe crucial to 

represent the phenological variation across time (Huang et al., 2020), shown to facilitate 

forest height modeling (Potapov et al., 2021). Ahmed et al. (2015) utilized a temporal 

approach in forest structure mapping, using forest disturbance history as a metric to better 

distinguish forest stands between mature and young forests, leading to improvements in 

RMSE of ~20%. Further, both (Mellor et al., 2013) and (Wilkes et al., 2015) both apply 

temporal texture to represent phenological variance in structure studies.  
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“Texture” referring to the change in image intensity gradients, exploring the heterogeneity of 

spectral magnitude throughout an image. Accounting for texture and not only the absolute 

magnitude is vital part to many structure studies. By calculating statistics such as averages 

and variance within windows, a measure of variation can be ascertained. (Ruiz et al., 2017) 

notes the combination of texture metrics in combination with spatial metrics provided a six 

percentage better distinction accuracy in land use classification than using spatial bands in 

isolation. Further, in vegetation height mapping Lang et al. (2019), found the benefit of using 

texture metrics when using high resolution images, led to a decrease in mean absolute error, 

noting prior vegetation height works had largely ignored textures. Ruiz et al. (2017) argue 

the integration of spectral, spatial and texture information is vital to earth observation studies 

particularly in heterogenous urban zones. 

 

 

 

2.3 Random forests in urban forest mapping 

When undertaking forestry research and applying machine learning (ML) methods, the 

suitable choice of algorithm is vital to the accuracy of results. Different ML algorithms include 

Support Vector Machines (SVMs), k-Nearest Neighbour (kNN), Neural Networks (NN) and 

Classification and Regression Tree-based (CART). One of the most popular supervised 

machine learning algorithms in RS ecological studies are Random Forests (RF) (Breiman, 

2001; Mellor et al., 2013). RFs fall within the CART category of ML but differ in that they are 

an ensemble method of multiple decision trees aiming to reach consensus in classification 

studies and average in regression. Each tree is formed by taking a bootstrap, using different 

samples of the training data; whereupon at each node the tree is split by taking a subset of 

the input variables and the most appropriate variable to split on is determined by GINI index 

or information gain, a measure of node impurity (Ahmed et al., 2015). RFs have been 

implemented in many studies due to their many benefits; ability to cope with high-

dimensionality data, ability to use heterogenous datasets, ease of model tuning and 

implementation, resilience to noisy data and no assumption of linearly correlated data 

(Breiman, 2001; Ahmed et al., 2015; Ruiz et al., 2017).  

 

RFs have been implemented in several forestry contexts in land use classification (Ruiz et al., 

2017; Mellor et al., 2013) and urban forest structure studies with great accuracy (Ahmed et 

al., 2015; Baines et al., 2020; Wilkes et al., 2015). Object based approaches utilizing RFs 



 12 

have seen application in urban land use mapping (Puissant et al., 2014), and have also been 

applied to forest structure studies (Wallner et al., 2015; Weinstein et al., 2019) but not in an 

urban setting. 

2.4 Google Earth Engine 

Google Earth Engine (GEE), launched in 2010, is a web platform capable undertaking large 

scale computations using analysis ready data and utilising cloud computing processing across 

several servers (Gorelick et al., 2017; Mutanga & Kumar, 2019). Being a cloud computing 

platform, this allows for virtualization of super computers for the user, allowing the analysis 

of “Big Data”. Not only does the platform allow for significant computations but also acts as 

repository for large and longitudinal datasets such as LandSat and Sentinel programmes 

(Amani et al., 2020).  

 

One of the most popular big geo data processing platforms, the platform allows non expert 

users to access data through an Application Programming Interface (API) and a web-based 

Interactive Development Environment (IDE). Further, users do not require expertise in 

HyperText Markup Language. GEE has ameliorated big data issues in forestry studies; in a 

study by (Hansen et al., 2013) GEE took 100 hours to process 654,178 LandSat-7 images, or 

around 707 terabytes to calculate global forest cover and change. The process was estimated 

to have taken a million hours to complete without the application of GEE. 

 

GEE allows for the export and import of several file formats including .tif and .shp for improved 

interoperability between platforms. Additionally, several tutorials, scripts and data catalogue 

are available for users to educate themselves and make research as simple as possible. 

Another benefit of GEE is the availability of many derivative products.  Several popular 

spectral indices  (e.g.,  NDVI)  have in built function. Most of these derivative products are 

computed on-the-fly upon users’ request, due to storage being a larger expense than 

computation (Amani et al., 2020). 

 

While GEE is a valuable tool, it is not without limitations; on large datasets memory issues 

can be prevalent causing slowdowns and/or breaks (Gorelick et al., 2017; Amani et al., 2020). 

Complex machine/deep learning algorithms that require extremely large training datasets 

cannot be undertaken in GEE, and therefore need to be implemented outside of this platform 

(Amani et al., 2020). Many studies faced internal errors in parallelizing and executing 

computations, causing scaling errors and timing out; this likely occurs when analysis outputs 
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are too large (Tamiminia et al., 2020), additionally restrictions of 250GB capacity may limit 

some global scale analysis. 

 

GEE has already seen widespread use in urban vegetation mapping (Patela et al., 2015), 

forest cover (Hansen et al., 2013) and forest structure mapping (Baines et al., 2020). GEE 

has proven to be a powerful tool for RS with the ability to analyze and classify datasets over 

differing temporal scales. The continuing improvement of the platform such as the integration 

within python and continual addition of new datasets, and ease of use provide useful utility 

for land use and policy makers within the context of urban forests. 

2.5 Citizen science and i-Tree Eco 

Citizen Science (CS) has garnered popularity in recent years to further ecological research 

and resource management. While urban tree inventories were traditionally undertaken by 

professional arborists; citizen scientists are now used in many cities. Using citizen scientists 

in urban forestry has the potential to increase scope of forest studies (Newman et al., 2012), 

building on tradition of volunteerism in urban forest management (Romolini et al., 2012). In 

respect to urban forest management, CS projects tend to focus on data collection for tree 

inventories and monitoring and engagement in strategic planning processes (Roman et al., 

2017; Nitoslawski et al., 2019). Although generated data quality is often questioned (Roman 

et al., 2017), several earth observation projects have used CS to produce high quality data 

for training and validation datasets (Boyd et al., 2022).  

 

The i-Tree Eco protocol (Raum et al., 2019) is a systematic methodology for urban tree 

surveying, utilising citizen scientists. i-Tree Eco provides a means to comprehend a city’s 

urban forest measuring its species composition, structure and condition, subsequently 

calculating and valuing the natural capital benefits that urban forests provide to city residents. 

The methodology has been used for comparison with modelled data to ascertain model 

uncertainty (Baines et al., 2020; Alonzo et al., 2016). Baines et al. (2020) noted the 

discrepancies between CS data and modelled data is likely due to the mode of collection, 

remotely sensed airborne LiDAR surveys provide a dense set of derived metrics with limited 

spatial extent, while i-Tree data produce directly measured but sparsely across the entire 

study area.   

 

Nitoslawski et al. (2019) argues the changing research landscape that recognition that urban 

forests are “social- ecological” systems, is a turning point for urban forest management. 
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Whereupon Citizen Scientists should be involved at every level of stewardship including 

monitoring, maintenance and GI design. Further, a survey of earth observation users by Boyd 

et al. (2022) revealed urban tree allometry data collection to be one of the few applications 

in which CS would be trusted. New technologies such as augmented reality could catalyse and 

empower data collection (Baines et al., 2020; Nitoslawski et al., 2019). Many cities use the 

citizen science project outputs to improve urban forest management and inform 

environmental policy (GMCA, 2019). Increased trust and capability of CS projects and 

Volunteered Geographic Information (VGI) is promising direction for ecological studies.  
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3. Methodology 

3.1 Study Area 

Located within the North west of England (Figure 1), the Greater Manchester (GM) area spans 

1280km2 and is home to approximately 2.85 million people (ONS, 2021; Centre for Cities, 

2021). Land use is highly heterogeneous, spanning industrial, recreational and residential 

across 10 local authorities and including the cities of Manchester and Salford. In 2019 CO2 

emissions per capita reached 4.3 tonnes, and 28 days with poor air quality in 2020 (Centre 

for Cities, 2021). ALS missions have been undertaken in the study area from 2010 - 2021, 

review will be undertaken to assess suitability of ALS datasets to include in the study as 

estimation accuracy of combining spectral satellite imagery and ALS would be reduced if the 

fetch interval between the data sources is relatively long. 

 

Figure 1: Greater Manchester Study area highlighting aerial LiDAR survey coverage 

Urban forest research is of considerable interest in the UK, with the research arm of the 

Forestry Commission; Forest Research previously and currently undertaking several studies 

to ascertain urban forest structure in towns and cities across the UK (Doick et al., 2016). 
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Potentially the largest physical survey of trees in the UK; the Greater Manchester i-Tree Eco 

project undertaken in 2018 estimated a total of 11,321,386 trees with 15.7% of GM under 

canopy, broadly similar to the UK average urban tree canopy cover of 16%. Tree density 

equates to 88 trees per hectare, significantly higher than London (53 trees/ha) and the UK 

town average (58/ha) (CITY OF TREES, n.d.). The report indicates that distributions are 

unequal, areas of dense population equate to low canopy cover. The Greater Manchester 

Combined Authority (GMCA) and charity Manchester City of Trees have set ambitious targets 

as part of a five year environment plan for GM to plant three million trees by 2035 and a 

further one to two million by 2050 (GMCA, 2019). It is worth noting unlike canopy cover 

targets, planting targets do not account for tree losses, further GMCA debates the usefulness 

of CC targets stating “While we are keen to understand the extent of Greater Manchester’s 

canopy area and, ultimately, increase this area, new planting takes several years to form a 

mature canopy and means that change can only be monitored over longer timescales. Also, 

there is no target, whether it is numeric or aerial, that represents ‘enough” (CITY OF TREES, 

n.d.). Finally, the Northern Forest Project aims to plant over 50 million trees in the North of 

England encompassing Greater Manchester, with the aim of creating £2.5 billion in ecosystem 

services (Woodland Trust, 2022). This study intends to present a framework to allow 

stakeholders to economically monitor the success of such strategies. 

 

 

3.2 Preprocessing LiDAR data 

The UK Environment Agency (EA) undertakes Airborne LiDAR Surveys freely available in 5km 

tiles as part of the National LiDAR Programme with surveys starting in November 2016. Tiles 

were downloaded in .laz format from the UK Government’s data portal (Open Government 

Licence v3.0). Although freely available, pulse density is generally low, ranging from 1 – 2 

points per metre squared, limiting the size of tree that can be detected. 

 

Tiles covering the study area were collected from missions undertaken during the summer 

season of 2018, to coincide with i-Tree Eco ground surveys and increase likelihood of 

capturing canopy cover in summer season. Individual tiles were mosaicked to form a 

continuous layer using QGIS software (QGIS Development Team, 2022). Canopy height model 

creation and tree crown segmentation was undertaken using the LidR package (Roussel & 

Auty, 2021) in R. Tree crowns were aggregated to points, producing summary measures: CC, 

CH and N. A total of 97,835 trees were identified. 
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To examine differences in model performance two resolutions were included for analysis. 

Firstly, a coarse resolution of 100m to reduce computational power and therefore computing 

constraints. Second, a medium resolution of 20m as to utilise the resolution of Sentinel 2 

bands 5,6,7,11 and 12. It is intended to improve spatial detail in comparison to 100m outputs, 

however if little significant difference is produced between datasets, then this method may be 

more applicable in wider settings, and applied to lower spatial resolution imagery. 

 

Two regular grids, 20m and 100m were intersected with the vector crown layer. CC was 

computed as the sum of the 2D projected crown area, where overlapping crowns were 

dissolved and then divided by grid square area to find the proportional canopy cover per grid 

pixel. CH was calculated from the 95th percentile of heights per grid square to ascertain 

dominant CH. Tree number was calculated as the crown centroids per grid square, using 

centroids ensured crowns overlapping grid squares were not counted multiple times.  

To reduce the likelihood of spatial autocorrelation within the response variables a random 

sample of the 20m point layers was taken, leaving 10,000 datapoints. This was deemed 

unnecessary for the 100m resolution dataset given the coarseness, thereby leaving 5,000 

datapoints. 

 

 

3.3 Preprocessing Sentinel 2 data 

 
Google Earth Engine (GEE) hosts several datasets including the Sentinel series of satellites. 

A cloud computing platform operated by Google providing options for data visualisation and 

analysis (Gorelick et al., 2017). In this study GEE has been used as part of a multistage 

process, to compile datasets then subsequently download for further analysis, this method 

has been used effectively in machine learning studies (Hird et al., 2017), however machine 

learning forest inventory mapping has also been undertaken on the cloud (Duan et al., 

2019a). Offering the advantage of no requirement to download, store and manage analysis 

ready data (ARD) and given the ever expanding data leverage gap and issues pertaining to 

big EO data, the GEE platform follows a trend of open cloud computing (Hird et al., 2017). 
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Sentinel 2 imagery was accessed and preprocessed to a Level-2A surface reflectance, 

correcting for atmospheric distortions. common format, projection (OSGB 1936) and spatial 

resolution. A Sentinel 2 Level-2A cloud free imagery was computed from images captured 

between 01/06/2018 to 30/06/2018. A cloud mask was created masking values with a QA 

band of anything outside 0 (analogous to clear conditions) using GEE tutorials. Landsat-8 

imagery was considered as part of this study however Sentinel-2 imagery was chosen due to 

the higher spatial resolution, 30m to 10m respectively. Additionally, both spectral resolutions 

are comparable and both being available on GEE.  

Although gap filling algorithms exist to ensure the continuous coverage of EO imagery, GEE 

allows for the creation of image composites very easily. Image stacks can be created from 

image collections in the GEE catalogue to form one composite image. After the application of 

masks Sentinel 2 images were filtered from the period of June 2018, stacked together then 

the median value taken from the pixels. As the median value is resilient to outliers this 

average was chosen. This created an image with 13 spectral bands. 

 

Additionally, a water mask was applied to remove bodies of water where no trees reside using 

the Modified Normalised Difference Water Index (MNDWI) (Xu, 2007; Du et al., 2016) given 

these areas are known to be free of urban trees, incorrectly assigning structure metrics to 

these areas could impact the results. MNDWI was preferentially chosen over Normalised 

Difference Water Index (NDWI) as this index incorporates green and Short Wave Infrared 

(SWIR) bands, this diminishes built up area features that can be correlated with open water 

in other indices (Xu, 2007). MNDWI equates to: 

 

Equation 1 

𝑀𝑁𝐷𝑊𝐼 =
(𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅)
 

 

Although Xu (2007) suggests a default threshold of zero, a subsequent threshold value of 

0.15 was chosen after a qualitative visual assessment using Google Earth imagery. 

 

3.4 Reflectance bands and ancillary variables  

Additional ancillary variables to compliment surface reflectance were also derived. Texture 

metrics including variance and mean were computed for each image in 3x3 image windows, 

to illustrate the changing reflectance intensity across a different scale. Further, given the 
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importance of temporal information specified within the literature review, another Sentinel 2 

image stack was composited, spanning a 2 year period. Variance in pixel values was calculated 

for this period for each spectral band, due to phenological changes throughout this period in 

deciduous vegetation it is expected to show a larger variance value for these pixels, whereas 

non vegetated surface such as the urban fabric would exhibit a lower spectral variance. 

 

NDVI was a key variable included in the study to discriminate between urban and vegetated 

areas, in addition to account for phenological change. NDVI was calculated using the following 

formula: 

Equation 2 

𝑁𝐷𝑉𝐼 =
(𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑 − 𝑅𝑒𝑑)

(𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑 + 𝑅𝑒𝑑)
 

 

Further, to compliment surface reflectance texture metrics, NDVI texture metrics of variance 

and mean were calculated in 3x3 and 5x5 windows. Temporal variance of NDVI was calculated 

across a two year span to further represent change over time. 

 

GEE also hosts several other complimentary datasets other than satellite imagery. Ancillary 

information that could impact vegetation growth was also collated including elevation, slope, 

and aspect taken from Shuttle Radar Topography Mission (SRTM) and precipitation and 

climatic data from the WORLDCLIM1 project (Hijmans et al., 2005). All predictor variables 

were reprojected to British National Grid (OSGB 1936) and then resampled to 20m and 100m. 

The complete list of 47 predictor variables is in Table 2 for both spatial resolutions. 

 

 

 
 
Table 2:Predictor variables for Random Forest models 

Input variable  Source Acquisition date 

Surface Reflectance (SR) 

Bands 1-9,11 and 12 

Sentinel-2 MSI: 

MultiSpectral Instrument, 

Level-2A 

1st June 2018 – 30th June 

2018, 15th April 2021 – 15th 

June 2021 SR Band mean (3x3) 

SR Band Variance (3x3) 

NDVI 

NDVI mean (3x3, 5x5) 

NDVI variance (3x3,5x5) 
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NDVI temporal variance  Sentinel-2 MSI: 

MultiSpectral Instrument, 

Level-2A 

1st January 2018 – 31st 

December 2019 

Elevation Shuttle Radar Topography 

Mission, NASA SRTM Digital 

Elevation 30m 

11th February -12th February 

2002 Slope 

Aspect 

Mean Annual Precipitation WorldClim Climatology V1  1st January 1960 – 1st 

January 1991 Mean Average Temperature 

Maximum Average 

Temperature 

Minimum Average 

Temperature 



 21 

 

3.5 Selecting predictor variables 

As aforementioned, RFs are popular in ecological research due to their resilience to outliers, 

not requiring normally distributed data and being able to cope with correlated datasets. It 

was recognized that in some machine learning models the issue of collinearity; can 

confound and lead to inaccurate results. Highly correlated variables when combined can 

impact linear models, however as a RF regressor machine learning model is applied here, 

model results are unaffected by colinear variables, the principal purpose of this study. As 

such all-predictor variables as part of the feature engineering process were kept in the 

model. Nevertheless, RF  feature importance will still be impacted by non-independent 

collinearity (Dormann et al., 2013; Breiman, 2001). 

3.6 Random Forest machine learning 

Ensemble CART-based models RFs use the voting of several independent trees to form a 

consensus, the majority vote in classification tasks and average in regression tasks. This 

should lead to the benefit of not overfitting the data, a problem associated with other model 

types and reducing the impact of noisy data. To build each independent tree in a RF generation 

of a random subset of the dataset is taken, thereupon a subset of input features are examined 

to ascertain where which results in the largest decrease in error or most information gained, 

to determine which splits occur at each tree node. Given the stochastic nature of RFs results 

can vary between forests as dependent on which variables are chosen to split upon. Bootstrap 

sampling of inputs can be applied to improve the generalisation of RFs. 

 

RF was applied within R (R Core Team, 2018) using the randomForest package (Liaw & 

Wiener, 2002), utilizing the regression mode as to predict the urban forest continuous variable 

metrics. Data was split 70:30 into training and validation sets respectively. For the 20m 

resolution model 10,000 points were randomly selected as a compromise between 

performance and processing times while still greatly exceeding the training sample 

requirement specified by (Mather, 2011) of 30 points per input variable. RF models were 

trained using LiDAR data and then combined and applied to the input data to predict values 

for cover, height and tree number across GM.  
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Hyperparameter tuning of the number of trees within each forest ,ntree and mtry, the number 

of random variables to test when splitting at each node was undertaken (Mellor et al., 2013) 

to reduce Root Mean Square Error (RMSE) and improve accuracy. Hyperparameter tuning was 

undertaken using the caret package (Kuhn et al., n.d.), For mtry a grid search of 1 to 30 

variables was undertaken using a k = 10 fold cross validation, intended to limit and reduce 

overfitting of the dataset, while being a compromise on computing time. For each tuning 

process a fixed number of 100 trees was limited to each forest.  This process produced 

resulted in producing the mtry value with the lowest RMSE within the 1:30 range for each 

20m/100m model. To tune ntree the optimal mtry for each model was taken to be used in 

another grid search using 100,250, 300, 350, 400, 450, 500, 550, 600, 800,1000 trees and 

executed to ascertain the lowest RMSE value. These tree values were chosen to be an 

acceptable compromise between computation time and theoretical decrease in error. 

Hyperparameter tuning results in the optimal number of trees for each RF, shown in Table 2 

which were then adopted into the final models. 

Table 3: Hyperparameters chosen after model tuning. 

20m mtry ntree 

CC 14 600 

CH 2 800 

N 7 1000 

100m  

CC 14 600 

CH 9 800 

N 20 1000 

 

Finally, RF were then run using optimal parameters using the randomForest package using a 

70:30 training/test split. Once RFs had produced outputs, each individual pixel was mosaicked 

together to form a continuous output of urban forest structure metrics. Change detection was 

undertaken by calculating the pixel difference in R using the overlay tool.  

3.7 Comparison against i-Tree Eco 

Ground inventory data was collected from the Manchester i-Tree Eco project (‘i-Tree Eco | 

City of Trees’, 2018), one of the largest i-Tree projects outside of the United States, utilizing 

a team of 57 surveyors and visiting nearly 2000 field plots, each 0.04 ha in size. Analogues 

for ALS derived structure metrics from each plot concerning CC (“Percentage Tree Cover”,), 

CH (95th percentile tree height) and N (number of trees within plot) were extracted for 
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comparison. Points containing i-Tree Eco data were overlayed onto maps of RF outputs, for 

N, values predicted by RF were extracted for the intersecting i-Tree plots. The Methodological 

steps are shown in Figure 2. 

 

Figure 2: Methodological design 
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4. Results 

4.1 Model performance 

The greatest variance explained within testing sets are the 100m N (R2 = 0.7501) (RMSE = 

8.02). The lowest variance explained is the 20m CH (R2 = 0.32) (RMSE = 6.14). Model 

performance R2 and RMSE metrics are presented in Table 3. Performance metrics indicate 

lower error in CC and CH for 100m RF model, while N has lower error for 20m model. 

Table 4: RF model error metrics for 20m and 100m scale. 

 
r2  RMSE 

20m 
  

CC 0.6366 13.75 

CH 0.3285 6.14057 

N 0.4547 0.952729 

100m 
  

CC 0.7501 8.020622 

CH 0.3399 5.637549 

N 0.73 9.788645 

 

 

 

Residual values indicate somewhat weak relationships with variable predicted value, as shown 

in Figure 3 and 4 For the 20m  CC plot, there appears to be a n error relationship where error 

grows until around 40% , whereupon negative error decreases, while positive error remains 

large.
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Figure 3: Residual model (100m) errors plotted against forest structure metrics. 
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Figure 4:Residual model (20m) errors plotted against forest structure metrics.
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Figure 5 and 6 indicate the how the surface reflectance variables are most prominent in 

explanation of variance within each model. Both figures show how for every model other than 

20m CC and N, Sentinel 2 Band 5, collecting data in the Vegetation Red Edge range was the 

most important predictor variable for 100m CC,CH and N, 20m CH and N, and third most 

important for 20m CC and N. This is particularly notable in the N models where removal of 

Band 5 from the 100m N model would increase Mean Square Error by 117%. Also prominent 

in the models is Band 3 green, in the visible spectrum, with %MSE values of over 200% in 

20m CC, and 91% for 100m CC. The NDVI predictor variable also have a significant 

contribution to variation within all 20m and 100m scale models, appearing all six models tops 

10 important variables; particularly when predicting CC in the 20m model accounting for over 

76% %MSE, and 40% %MSE for N (100m). Band 4 representing the visible red spectrum, 

also features prominently, particularly in the 20m models, where for N it is the most important 

band and for 20m CC, accounts for 141% %MSE. 

 

Of the remaining variance, texture metric Band 5 mean, appears in all six models top 10 

important variables, and is second most important (6.9% %MSE) for 100m CH. However, 

surface reflectance metrics appear more important than their texture counterparts, where in 

all the models top 10 importance values, Band 3, 4 and 5 are all more important relative to 

their texture metric. 

 

Figure 5:Variable importance plots for 100m models. 
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Figure 6:Variable importance plots for 20m models. 

 

4.2 Urban Forest Structure 

97,835 trees were derived from EA LiDAR surveys within the study region, after LiDAR 

processing in R. Maps of CC, CH and N are presented in Figure 7. In total 2701238 trees have 

been located within GM in 2018, equivalent to 0.84 trees per pixel using 20m trained RF. This 

value is significantly lower than the 2018 i-Tree Eco model estimates of 11,321,386 (CITY OF 

TREES, n.d.) and 2010 Bluesky values (4,794,857) taken from the National tree map 

extracted from aerial photography using photogrammetric techniques (BLUESKY, 2017). 

Mean CC was found to be 14.99 %, while CH has a mean height of 18.8m. Table 4 shows 

statistics of the derived structure metrics. 

 

Table 5: RF urban forest structure metric results 

 
Min Max Mean Std 

Dev 

Sum 

100m 
     

2018 CC 

(%) 

0.01510914 79.417 14.987 11.799 n/a 
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2021 CC 

(%) 

0.39653352 69.08 14.234 8.961 n/a 

2018 N 0 110 20.475 14.368 2638883 

2021 N 1 87 19.641 10.35 2529879 

2018 CH 

(m) 

0.12007867 42.13145 18.845 4.184 n/a 

2021 CH 

(m) 

2.37756968 30.70992 19.104 4.1492 n/a 

20m 
     

2018 CC 

(%) 

-5.14E-14 91.166 14.835 17.455 n/a 

2021 CC 

(%) 

-5.03E-14 83.042 13.296 12.863 n/a 

2018 N 0 8 0.8462 0.9444 2701238 

2021 N 0 5 0.8187 0.7297 2611026 

2018 CH 

(m) 

4.56E-02 25.23 5.6771 3.7811 n/a 

2021 CH 

(m) 

-5.17E-15 17.094 5.8082 3.0768 n/a 
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Figure 7: Forest structure metric maps estimated through 100m random forest. 
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Total summed CC derived from the 100m model was 19316.6ha, accounting for 15.1% total 

CC, slightly below the national average of 16% (Doick et al., n.d.), and below 2010 Greater 

Manchester Tree Audit (16%) (CITY OF TREES, n.d.). Figure 7 illustrates the spatial spread 

of forest structure across GM, while Figures 8 and 9 illustrate the frequency distributions of 

both 20m and 10m RF models and ALS derived estimates. 

 

Figure 8: Frequency distributions of RF modelled 2018 forest structure metrics. 

RF models appear to overestimate values of CC, CH and N compared to ALS derived estimates, 

this is thought to occur due to ALS training data being skewed to the left, however a feature 

of RFs is a regression to the mean, reducing skewness, therefore leading to an overestimation 

and underestimation in continuous values (Wilkes et al., 2015). Correction functions are 

available in the randomForest package, however correction functions are often indiscriminate 

and can lead to incorrect scaling and increases in overall error values (Baines et al., 2020).  

Figures 10 and 11 illustrate the relationship between forest structure variables at 20m and 

100m scale, with distance from the centre of GM.  
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Figure 9: ALS derived forest structure metrics 
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Figure 10:Scatterplots of tree number (N), 
Canopy cover % (CC) and Canopy Height 
(CH)  derived from 20 RF plotted against 
distance from centre of GM. 
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Figure 11: Scatterplots of tree 
number (N), Canopy cover % 
(CC) and Canopy Height (CH) 
derived from 100m RF plotted 
against distance from centre of 
GM. 
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The Number of trees per plot, N and canopy height (CH) did not increase with distance from 

the centre of GM, for the 20m RF model, both maximum and minimum values are distributed 

across GM, with a weak negative correlation with distance of R = -0.054 for both metrics. 

Similar trends can be seen across GM for metrics at both 100m and 20m scales. However, for 

the 100m scale model results for N and CC exhibit positive relationships with distance R = 

0.0017 and R = 0.0069 respectively.  

 

Between variables, correlation is equally strong between CH and CC, and CH and N (r = 0.92), 

while very slightly weaker for CC and N (r = 0.91); and all correlations were all highly 

significant (p<0.001), Figure 12 illustrates the relationships between variables derived from 

the 20m RF. 

 

Figure 13 plots the borough level estimates for the 20m RF derived forests structure metrics, 

illustrating both   2018 and 2021 years. The plot indicates the Wigan district hosts the most 

trees, an estimated 392874, while the borough with the least trees is Tameside district with  

207397 trees.  Figure 13 also displays average CC across boroughs, the borough with the 

highest mean CC is Stockport District with 16.04% CC, while the lowest district is 12.77% CC 

corresponding to Rochdale district. Finally Figure 13 shows average CH across boroughs, 

where the district with the largest average CH is the Manchester District with an average 

height of 6.25m; the district with the lowest average CH is Oldham district  with a value of  

5.17m.  



 36 

 

 

 

Figure 12: 20 RF derived forest structure metrics plotted against each other. 
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Figure 13: Borough level estimates of average 20m RF derived CC CH, N and total number of trees.  
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4.3 Resolution change  

Tree number estimates derived by the 100m RF model were smaller in comparison to the 

20m RF, estimating around 2.6 million trees at 100m and 2.7 million at 20m in 2018, and 

around 2.5 million compared to around 2.6 million for 2021 data (Table 3). However, 

estimates for CC, were reversed when the 100m RF estimated slightly higher values. Mean 

CC for 2018 applying the 20m RF was 14.99%, compared to 14.84% in the 100m RF in the 

same year, and this trend was shown again for 2021 derived data. This pattern is also shown 

in CH, where mean CH in 2018 for 20m RF was 5.67m compared to 18.85m for 100m RF, this 

trend continued into 2021 data. 

 

The model overall variance explained was greater for the 100m model compared to the 20m, 

for all metrics: CC (R2 = 0.75), CH (R2 = 0.34) and N (R2 = 0.73). However, this does not 

completely correlate to RMSE values. RMSE values for 20m N are smaller (RMSE = 0.95m) 

than the equivalent 100m (RMSE = 9.7m). frequency distributions are illustrated in Figure 9. 

Examining 2018 data, CC was more positively skewed for 100m than 20m (skewness = 1.75 

and 1.66 respectively), this trend was also shown in N with skewness = 1.31 and 2.03 for 

20m and 100m respectively. However, in comparison of CH between scales, CH for 100m had 

a skewness value of -0.66, while CH for the 20m RF had a positive skewness of 0.81. 

 

4.4 2018 against 2021  

Figure 14 illustrates the forest structure metric change from 2018 to 2021 over the entirety 

of GM. Total tree number decreased by nearly 109004 trees in the 100m map, and 90212 in 

the 20m map. This accounts for a mean tree number change per pixel of -0.83 for 100m 

and -0.02 for 20m pixels, maximum tree changes per pixel were 85 for 100m and 5 for 

20m. Similar trends are shown in the mean CC change, both decreasing in the 20m and 

100m by -1.5% and -0.75 respectively. Further, maximum values for CH decreased in both 

20m and 100m RF models from 2018 to 2021, the largest decrease being in the 100m RF, 

of 10.m. However, mean CH however increased by 0.26m in the 20m map and by 0.13m in 

the 100m map.  
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Figure 14: forest structure difference plots 2018 to 2021 

Figure 14 illustrates the changes in forest structure between 2018 and 2021. The charts 

indicate towards the centre of GM, change of forest structure metrics are lower than areas 

towards the edge GM, for both positive and negative alterations. 

 

Figure 15 illustrates the change of forest structure between 2018 and 2021 are not uniform 

between boroughs throughout GM. Additionally, changes between structure metrics are not 

equal between each other and across differing scales.  Total tree number difference appears 

to indicate a general agreement between 20m and 100m scales and illustrates across GM all 

boroughs gained or lost trees during this period, where six out of ten boroughs experienced 

tree losses.  Manchester district indicates the smallest change with an increase of 3605 and 

4146 trees for 20m and 100m scales respectively. However, the largest change in tree 

numbers occurs in Oldham District, where a large decrease of -68031 and -64040 trees took 

place for 20m and 100m RFs. Some boroughs also experienced large increases in tree 
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numbers, Trafford district indicated a sizable increase of 50,317 and 45,759 trees estimated 

by 20 and 100m models.   

 

Figure 15 also illustrates how  trees per pixel changed throughout the time period.  Similarly, 

the Trafford district produces the largest increase in trees per 100m pixel (+4.33), while 

Oldham displays the most significant decrease in mean trees per 100m pixel (-4.5).  Stockport 

District exhibits the smallest absolute mean change, with a mean change of only 0.32 trees 

per 100m pixel. 

 

Mean CC change per pixel, is also described below, when applying the 20m RF, only two 

boroughs experienced increases in mean CC, Salford and Trafford districts, results from the 

100m RF also indicated CC gain in Manchester borough, showing disagreement between 

models. The largest increase in mean CC per pixel is Trafford borough with an increase of 

3.8% for the 100m and 3.12% for the 20m, Salford has a smaller increase of CC, 1.36% for 

the 100m and only 0.48% for 20m. The largest decreases in mean CC over the time period 

are shown to have occurred in Oldham District, decreasing by -4.4% and -3.84% for the 

100m and 20m RF respectively. The smallest loss of CC occurred in Stockport for the 100m 

RF (-0.26%) and Manchester for the 20m RF (-0.66%). 

 

Finally mean CH change was extracted per district, demonstrating that mean CH has been 

dynamic between 2018 and 2021. Seven out of GMs ten districts exhibited loss of average CH 

according to both 20m and 100m RFs, however discrepancy exists where the 20m RF identifies 

the Bury district as having a decrease in mean CH, while this decrease is identified in Tameside 

for the 100m RF. The 100m and RF describes the  largest differences in CH as occurring in 

again Trafford, a mean increase of 1.2m; compared to the largest decrease of -1.25m 

occurring in Oldham district. The 20m RF agrees with the larger scale model, where Trafford 

hosts the largest increase compared to other boroughs, a mean increase of 1.1m, and with 

the largest decrease again occurring in Oldham, -0.73m. Tameside appears to have the least 

changed average CH, changing by only -0.10m in the 100m RF. 

 

Figure 15 illustrates the spatial heterogeneity and non-uniformity of urban forests structure 

across GM, changing on between regions and within scales. Trends appear to agree with large 

structural changes in Oldham and Trafford districts, expressing large changes of both negative 

and positive magnitude. 
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Figure 15: RF derived forest structure metrics differences between 2018 and 2021 for both 20m and 100m scales. 
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4.5 Comparison with i-Tree Eco  

Comparison with i-Tree Eco plot level data, (number of plots = 1876) indicates somewhat 

disagreement (Figure 16). RMSE is 21%, 14.9m and 7.6 trees for CC, CH and N respectively.   

Of the 1876 plots 666 plots had tree counts of one or more, while 1210 plots has no tree 

identifications associated.  Whereas, 4,197 plots from the ALS derived area were estimated 

to be treeless, or 60% of the 20m derived plots. Comparing derived CC and i-Tree CC data 

illustrates a medium strength relationship,  R =0.62; it appears however CC is tends to be 

overestimated by RF as indicated in Figure 16. CC data collection using the i-Tree Eco 

framework uses a visual interpretation for assessment, and producing values in a range (i.e. 

10-15%), this differs from ALS derived CC detection. CH from RF and i-Tree has a weaker 

relationship, R = 0.55, again appearing to over estimate CH compared to ground data. This 

discrepancy is likely caused by ambiguity of the germination point, analogous to the centroid 

of the crown envelope (Baines et al., 2020). This discrepancy is particularly obvious where, i-

Tree plots are found to be treeless but RF outputs derived CC as over 60%, this occurs where 

large trees with extended crowns overlap neighbouring plots and leading to difficulty in 

understanding satellite data (Baines et al., 2020). Several, i-Tree Eco plots, display CH and 

N, however lack corresponding CC data, suggesting tree bases are present but their canopy 

lay outside of the plot boundary, leading to a difference in data collection techniques between 

ALS and i-Tree fieldwork. 

 

A weaker relationship is exhibited between i-Tree Eco plots and RF for N, R = 0.46; 20m RF 

appears to significantly underestimate N particularly in highly tree dense plots, tree number 

within 20m pixels. Maximum N for i-Tree Eco data is 81 trees, whereas the maximum RF 

estimated was 5 per pixel in the intersection and only a maximum of 8 per 20m pixel across 

GM, a hugely significant  difference , suggesting the predictor variables have difficulty in  

accurately resolving individual trees. 

 

Total modelled i-Tree Eco GM forest structure metrics, published in Manchester Tree and 

Woodland Strategy,(CITY OF TREES, n.d.), produces a figure of 11,321,386 trees with 15.7 

per cent of Greater Manchester beneath tree canopy. Total tree number is significantly greater 

than 20m RF estimates of 2,701,238 trees, a difference of 8,620,148 trees in 2018. Average 

CC shows a closer relation, 14.8% and 15.1%, a difference of 0.9% and 0.6% for 20m and 

100m RF models respectively. 
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Figure 16: Scatterplots of 20m RF 
forest metrics against i-Tree Eco plot 
level data. 
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i-Tree Eco plot frequency distributions are presented in Figure 17. In comparison with figure 

8, frequency distributions of 100m and 20m RF forest structure metric estimates, all metrics 

present positive skewness 1.90, 2.58 and 0.76 for CC, N and CH respectively. Plot level data 

for i-Tree Eco data reveals stronger positive skewness for all derived metrics from the 100m 

RF, and all metrics in 20m RF results other than CH, with a skewness of 0.81. However in 

comparison to ALS derived metrics, skewness is larger in both CC (2.01) and CH (1), 

indicating in general i-Tree Eco data is more right skewed than RF estimates but less than 

ALS estimates. 

 

 

Figure 17:i-Tree Eco forest structure frequency distributions. 
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5. Discussion 

5.1 Model performance 

The moderately high variance explained within both the 20m and 100m testing datasets for 

CC, where 64% and 75% of variance was explained, lends credibility to the derived CC output. 

Multispectral imagery can detect variation across land surface, thereby delineating between 

vegetation/canopy and anthropogenic structures through varying spectral signatures. 

Variance explained is likely attributed to the capability of physical spectral contrast. CC RMSE 

values of 13.75% and 8.02% for 100m and 20m RF respectively is a significant improvement 

over CC estimates for Oslo undertaken by (Hanssen et al., 2021) of 32.6% when using only 

LiDAR segmentation methods. Whereas Duan et al., (2019b) applied Sentinel 2 imagery, 

ground data and RF for urban forest mapping across China with errors with around 7% error, 

notably smaller than this studies’ estimates. Applying LiDAR, Sentinel 2 imagery in an RF, to 

map urban forest structure in Southampton and Greater London; Baines et al. (2020) 

produced RMSE values ranging from 11-17% correlating with results from this study. 

However, compared to spatially homogenous studies utilizing LiDAR and multispectral 

LandSat data, where Ahmed et al. (2015) produced RMSE values of 0.0714, across rural 

Canada, this studies results appear relatively large. Given the spatial heterogeneity in the 

above studies, RMSE values produced in this study appear to agree with (Parmehr et al., 

2016; Li et al., 2019), that fusion of LiDAR with satellite imagery leads to reduced error in CC 

detection for urban studies. 

 

Variances for both N and CH, were lower across both 20m and 100m RF models, compared 

to CC. For N 45% (20m) and 73% (100m) variance was explained in the test sets. For CH 

much lower 33% (20m) and 34 % (100m) variance was explained, a much lower value than 

Wilkes et al., (2015) attained 54%. RMSE values of CH in this study are comparable to Wilkes 

who produced an RMSE value of 5.7m in 2015, and then RMSE ranging from 4.9–6.2 m for 

London forest mapping in 2020 (Baines et al., 2020). However again compared to a 

homogenous forest environment RMSE values are relatively larger (Ahmed et al., 2015).  

 

For trees per pixel, N, various canopy sizes for input values ranging up to three orders of 

magnitudes up to a maximum value of 3835 m2, suggesting issues with segmentation, but 

also indicates the spread of canopy sizes per tree. In contrast CH value ranges will likely have 

reduced detection by RS due to little horizontal space being encroached as CH increases. 

Therefore, an increase in CC may not lead to an increase in tree number, as a large number 
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of trees may account for large or small canopy cover and vice versa. As a result, it is possible 

the spectral contrast may be reduced, across canopy, segmentation may be improved by 

leveraging supplementary datasets such as age, or species to stratify forest stands (Ahmed 

et al., 2015). 

 

All output datasets were positively skewed with the exception 100 CH, which illustrated a 

negative skewness. Strong positive skews for CC and N indicating mean values are greater 

than median. Smaller skewness value for CH which may explain the lower RMSE error. 

 

Importance variables in the RF models presented in Figures 5 and 6, help illustrate the 

dominance of surface reflectance variables within the models, in particular red, green and 

vegetation red edge bands. Similar to Baines et al., (2020), where red edge and SWIR were 

most important across structural metrics. Red edge importance is due to the large response 

from vegetation in this wavelength (670-760 nanometres), important for retrieving 

chlorophyll content information and leaf area index (Delegido et al., 2011). 

 

NDVI is also an important variable shown in Figures 5 and 6, this spectral indice has been 

shown to be an important variable for classification and regression RS ecology studies (Wang 

et al., 2010; Duan et al., 2019b; Parmehr et al., 2016). NDVI has the ability to improve 

accuracy by identifying LiDAR tree points in the segmentation process, resolving from other 

urban infrastructure.   

 

Texture metrics have been applied in other studies of forests structure (Baines et al., 2020; 

Lang et al., 2019), and in agreement several texture mean metrics appeared in the top 10 

variable importance ranking, but not as significant as surface reflectance in most cases.  

Decreased importance of texture metrics is likely due to the increased spatial heterogeneity 

or larger presence of anthropogenic features than natural forest systems, for example in CH 

mapping in rural Australia by (Wilkes et al., 2015) found texture to be highly important, 

compared to Baines et al., (2020) , where CH was mapped in London, and texture metrics 

played a less important role. 

 

Wilkes found temporal metrics of NDVI to be significant, this is also in shown in our 100m RF 

CH model, where NDVI temporal variance is placed above NDVI for explaining CH distribution. 

The expression of phenological changes over time, are recorded by this metric, however 

different species of trees and vegetation, providing a varying phenological response in larger 
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pixel sizes may confound results, in mixed stands, potentially explain why this metric does 

not serve a higher importance in the other models. 

 

Notably, the topographic and climatic variables are exempt from the top importance ranking, 

although this agrees with Baines (2020), other studies into forest classification have found 

these variables to be important, where lower land is associated with decreased precipitation 

but also clearing for agricultural land (Mellor et al., 2013). 

5.2 Urban Forest Structure 

Wall to wall maps of urban forest structure metrics at 20m scales provide an improved 

spatially explicit approximates of 3D urban forest structure and distribution, aiding in the 

future analysis of higher spatial resolution data in the urban fabric. This dataset could be 

particularly pertinent given many urban forests are overlooked in global estimates of 

ecosystem services and may even rival magnitude and variety of benefits compared to natural 

forest stands (Wilkes et al., 2018). 

 

Visual comparison with 2018 UK Centre for Ecology & Hydrology (UKCEH) land cover maps 

shows general agreement with canopy cover and tree number maps, in delineation of 

woodland areas, illustrated by Figure 18 and 19. RF estimates can help identify many parks 

across GM, including Chorlton Water park (Figure 19), Drinkwater and Philips Park in 

Prestwich, and Botany bay wood to the west of Eccles. Although RF estimates are useful in 

identifying macro level trends across GM, discrepancies compared to other datasets such as 

Bluesky’s NTM and i-Tree eco modelled data suggest methodological issues. This likely 

attributed to the derived LiDAR dataset being unrepresentative of the entire GM region. Mean 

ALS derived tree number per 20m pixel was 0.78 trees, compared to an average 9.23 per 

0.04ha i-Tree Eco plot, taken from thousands of plots spread across GM. Conversely, in line 

with the i-Tree methodology, where plots are located in areas of very high tree density 

overestimates can occur as higher than average density is then extrapolated to the entire 

study area. 
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Figure 18: UKCEH Landcover map for GM. 
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Figure 19: Visual inspection of Chorlton park, from 2018 UKCEH land cover 

map (top) where red represents woodland, OSM (middle) and 2018 CC 

estimation, where white areas represent high canopy cover. 



 50 

 

 

 

The role of urban trees will continue to play a valuable role in ensuring metropolitan areas, 

home to around 10 billion trees (Endreny, 2018) remain habitable and resilient to shocks to 

society in the wake of climate and population changes. Inventory tools to first collect 

information on quantities of natural capital, and vital for future management and 

maintenance, and subsequently a method of assessing effectiveness of urban forest 

management policy decisions. Correctly informing decisionmakers is crucial to preserve these 

natural assets and maximise derived ecosystem services.  

 

This study presents a framework, based upon the work undertaken by Baines et al. (2020), 

utilizing RF methods to estimate wall to wall 3D forest structure metrics in a complex 

heterogenous urban setting, across spatial and temporal scales. Applying open access and 

freely available datasets imbues UKRI FAIR principles and creates opportunity for application 

of this method in other urban regions. Given the modular nature of the framework, separate 

datasets could inform each stage to suit researchers; ALS could be replaced with TLS, 

spaceborne LiDAR or i-Tree Eco plot structure data. Predictor variables taken from Sentinel 2 

and supplementary sources, could be acquired from elsewhere such as the LandSat series. 

Additionally, interchanging appropriate software based upon researcher competency, such as 

including ArcGIS products or Python may lower perceived barriers for further studies. 

Modularity in this approach should ensure flexibility for researchers. 

 

As noted by Baines et al., (2020) the approach should not be considered as replacement for 

fieldwork inventories but to augment current practices, this is particularly pertinent given the 

disparity between i-Tree ground data and predicted metrics. Medium RMSE values of 21 %, 

14.9m and 7.6 trees indicate the immaturity of the method, and requirement of further 

refinement. Further, fieldwork inventory protocols capture supplementary information useful 

for ecosystem assessments including species composition, which may exceed the capacity of 

current RS technology or may be obscured.  

  

5.3 Resolution change 

The change of resolution produced varied differences between the model estimates, whereby 

total tree number was found to differ by 62355 in 2018, and 81247 in 2021; mean CC by 
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0.15% in 2018 and 0.98% in 2021 and mean CH by 13.2m in 2018 and 13.3m in 2021. The 

discrepancies in output can likely be attributed to the distributions of ALS inputs, this is 

particularly notable in CH, indicating a non random tree distribution, where a greater number 

of pixels are identified at 20m, decreasing mean CH, as method of calculation was collecting 

the tallest tree per grid square. Scaling up 20m tree density, N mean estimates to 100m 

indicates agreement between scales; mean 2018 100m present a mean 20.48 trees per 

hectare, while upscaled 20m produce 21.2 trees. This is also shown in the 2021 datasets with 

19.6 and 20.46 trees for 100m and upscaled 20m respectively. RMSE values also vary 

between scales, where error was larger for the 20m model for CH and CC by a small margin, 

however much more noteworthy is the order of magnitude difference between 20m N and 

100m N or 0.95 and 9.79 respectively, indicating the increased resolution is superior at 

understanding tree number in each plot. 

 

Mean estimates of N (scaled), in comparison with mean i-Tree plot data, indicate more 

similarity with 20m scale outputs, but for mean CC% and CH 100m. However, lower spatial 

resolution datasets of prediction variables will lead to averaging of responses and often miss 

out on high resolution variability. Studies with higher resolution tend to be accepted as more 

“correct” and the coarser resolution datasets attributed to errors (Potapov et al., 2021). Yet 

through reducing the number of pixels by reducing resolution, can lead to reduced variation 

and decrease in error as shown in the 100m outputs, albeit limiting the precise identification 

of specific features. The metrics produced in this study are only estimates and serve as an 

initial investigation into general distribution across GM, examination of further spatial 

resolution such as investigating the available 10m Sentinel 2 scale, will likely provide 

improved clarity into the impact of resolution of RF modelled estimations. Further, control of 

data collection or sampling of points to ensure the similarity of distributions at varying 

resolutions would likely also be valuable. 

 

5.4 2018 against 2021 

This study explains a repeatable framework to monitor change across time. Pixel level outputs 

from 20m and 100m RF help illustrate that forest structure in GM is dynamic (Figure 14 and 

15), demonstrating both positive and negative change spatially throughout GM. Viewing GM 

holistically however evidenced overall trends between the two years. Total tree number 

change decreases by ~90,000 using the 20m RF and ~109,000 in the 100m RF, tree losses 

usually require some level of mitigation planning, as significant time is required to replace 
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trees and may be replaced with a different size or species, leading to a difference in delivered 

ecosystem services. The tree loss estimates derived in this study appear to oppose the “ALL 

OUR TREES” tree and woodland strategy for Greater Manchester collated by City of Trees and 

Greater Manchester Combined Authority, whose ambition is to deliver net gain across GM, 

and maximise the benefits from their urban forests. Although, a planting target of three to 

five million by 2050 exists in line with the Northern Forest project (CITY OF TREES, n.d.), a 

regional project to plant 50 million trees across northern England; these targets do not 

account for tree loss. Indeed, in line with national ambitions GM is committed to urban growth 

providing space for homes and employment. Unfortunately, this can lead to spatial conflicts 

in greenbelts, around 460 hectares of woodland and 366.5 hectares of trees outside 

woodlands are located on land allocated for development (CITY OF TREES, n.d.), additionally 

this value does not include trees already on sites currently in redevelopment. As a rough 

estimation, using the i-Tree eco estimate of a £4.7 billion replacement value for GMs 

11,321,386 trees, produces a replacement value of £415 per tree. Multiplying by the 109,000 

tree loss estimate results in a monetary loss of £45.3 million in terms of replacement. While 

valuation of annual ecosystem service derived from i-Tree Eco surveys of £2.94 per tree, 

multiplied by loss estimate produces annual benefit losses of £320,594. Although this is only 

a provisional estimate, as Donovan, (2017) suggests incorporating public health alongside 

biophysical benefits derived from urban forests, would lead to higher service value and 

increased investment in maintaining forest assets. 

 

Significant CC change also occurs across GM, with both models agreeing to a net decrease 

from 2018 to 2021. CC changes are significantly different across RF scales, with a decrease 

of 19.8 million m2 for the 20m RF and a decrease of 9.8 million m2 for the 100m RF. Although 

tree planting targets do not account for tree loss, CC targets are independent of tree loss, 

although GMCA has not set specific CC targets, it aims to ultimately increase this figure. 

(Doick et al, n.d.) suggests a target for 20% for inland urban areas and 15% for coastal cities, 

notable as mean CC estimated in 2021 for both 20m and 100m RFs being under 15%. 

 

5.5 Future studies 

Given the utility of RS in urban ecology, the scope for future studies should not be 

underestimated. The impact of species on RF models is a vital consideration potentially 

confounding relationships between variables, and a necessary part of urban biodiversity and 

GI strategies. The 2018 i-Tree Eco report for GM classified 192 different tree species in plot 
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data collection, indicating highly significant species heterogeneity (‘i-Tree Eco | City of Trees’, 

n.d.).  Through utilizing species information, forest strands could be stratified, and help 

explain species spatial distribution within each borough, and assist in their individual 

relationship with predictor variables used in this study. Through fusion of hyperspectral and 

LiDAR, tree species can be accurately modelled for spatially explicit ecosystem assessment 

(Alonzo et al., 2014), applying species information may lead to reductions in structural 

variables such as crown canopy size variation. 

 

In addition to RF models trained by ALS, training data extracted from i-Tree Eco plots 

themselves could be used to train a machine learning model, to then be applied in GM, an 

approach used in Greater London (Baines et al., 2020). The specific heterogenous nature of 

UK cities could train i-Tree RF models and then tested against each other to elicit the most 

appropriate models for use in other urban areas, where LiDAR or plot data collection is limited. 

Forest structure results should be utilized in larger scale synoptic urban analysis, in 

combination with other features of the urban matrix such as proximity to population centres, 

or grey infrastructure to assist in explaining the relationship between urban forests and 

derived ecosystem services.  

 

This methodological framework should also be applied to different multispectral predictor 

variable datasets of higher spatial resolution such as the PlanetScope constellation, with 

resolutions of 3m to better determine how improved spatial resolutions can impact accuracy 

of forest inventory. Further, although the temporal aspect of change detection was briefly 

inspected in this study, only two data points, 2018 and 2021 were examined. Long term 

datasets such as the LandSat programme would assess the longitudinal variation in forest 

structure over decadal time frames, or utlising the relatively rapid return time of Sentinel 2 

constellation to examine phenological variation, extracting trends and producing data to 

better inform long term sustainable urban forest management. 
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5.6 Limitations 

The pursual of this research project, utilizing remote sensing in an ecological context was 

driven through an interest in how earth observation technologies can be used to meet global 

challenges. This project combining passive and active remote sensing, and machine learning 

in an open and free methodology was intended to be novel and useful for several stakeholders 

and decisionmakers. This open approach facilitates the uptake of both method and results by 

land and city managers. The project originally planned to be executed through GEE, utilizing 

the benefits of the cloud platform; however, memory constraints led to training and applying 

RF models natively in R. This constraint was not an issue in the context of an academic 

research project, allowing exploration and creation of novel datasets, building skills in multiple 

programming languages and develop an understanding of machine learning. However, in an 

operational context where resources may be limited and decision making cycles are 

accelerated, difficulties may arise where non expert users cannot fully explain results or 

processes and “debug” software. Nevertheless, this open approach simplifies traditional 

modelling approaches through using analysis ready data, preprocessed in GEE, and lowering 

the technical knowledge required to undertake analyses. 

 

The mapping of forest structure across a large metropolitan area such as GM, is significant to 

monitoring urban forests, particularly given the high revisit frequency of Sentinel 2 

constellation, and 20m resolution models, producing medium spatial and high temporal 

resolution leading to identification of patterns and trends of forest structure with improved 

granularity. Further, the derivation of key structure metrics such as canopy height and canopy 

cover, can facilitate the study of other metrics such as aboveground biomass, through the 

previously established relationships between variables. 

 

However, multiple limitations were identified in the project. Firstly, the accuracies canopy 

height and tree numbers were appreciably lower than other urban forest studies; suggesting, 

the application of results should be questioned before used. Input data was not resampled to 

normal distributions, and so results may be less accurate. 

 

EA LiDAR point cloud pulse density is coarse (1-2 m-1) significantly impacting data capture, 

potentially leading to many small trees unaccounted and lower tree number estimates. 

Although known for being expensive, it may be pertinent to acquire high pulse density LiDAR 

data through ALS, TLS or MLS to construct improved accuracy in training datasets and 
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therefore forest structure models and metric estimates. Additionally, the relatively small area 

of ALS surveys, only 3.9% of GM, undertaken in only one geographical region may have 

hindered result accuracy due to correlated land typologies. If the project were to be 

undertaken again, efforts to collect LiDAR data across GM would likely produce more 

representative training datasets, in addition to applying other tree delineation algorithms, as 

only one was used in this study, potentially leading to missed tree data. 

 

Although i-Tree Eco measurement error for in the field data collection, is generally assumed 

to zero (Alonzo et al., 2016), exploration of plot level and observed tree datasets discovered 

discrepancies. In some plots where canopy cover was identified, the related tree metrics for 

that plot displayed N/A values indicating either data was not collected or a discrepancy was 

found. This severely limits the use of GM i-Tree Eco datasets for further analysis, as the true 

value cannot be ascertained. However, even accounting for the limitations described, this 

project contributes to the field of urban ecology and is intended to assist land managers with 

monitoring and promoting sustainable urban strategies. 
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6. Conclusion 

Continued monitoring of urban forests is vital to assist in quantification of ecosystem services 

and how urban forest structure change through time. This process is required for the 

maintenance of sustainable green infrastructure assets, and to maximise benefits to urban 

residents. This analysis in this study produced wall to wall maps of three forest structure 

metrics: canopy height, canopy cover and number of trees represented at 20m and 100m 

resolutions, over two time periods and across a spatially large and heterogenous study area 

of GM. Mapping was derived using an open, flexible and modular methodology. Active LiDAR, 

passive Sentinel 2 and supplementary datasets were fused in an RF model. In total using our 

20m model, an estimated 2.7 million trees were discovered across GM in the year 2018; with 

spatial data indicating a non-uniform distribution across GM boroughs. Average canopy cover 

in 2018 was found to be 14.8%, whereas average tree height was 5.6m. Through changing 

resolution of predictor variables illustrated changes in estimated outputs, however both 

resolutions were found to underestimate total number of trees compared to i-Tree Eco reports. 

Changes in urban forest structure between the years of 2018 and 2021 indicate a net decrease 

in total number of trees and canopy cover in GM, although forest structure change across 

local authority districts is not equal, where some had net increases. The results from this 

analysis have the potential to facilitate finer scale analyses across large areas. The method 

using RS techniques provides critical forestry information for urban land managers for the 

improved monitoring and maintenance of urban forests, and the ecosystem services they 

afford. Given the open source nature of this approach, it is suggested the method could be 

applied in other metropolitan regions where data is sparse, or data collection not practical. 

Additionally, these methods could be relatively simply and inexpensively adopted by poorer 

nations worldwide, assisting in the safeguarding of global urban forests. Through the 

improved quantification of urban forest structure in the UK and beyond, cities can be steered 

to meet the objectives of UN SDG 11, through mitigating and adapting to the adverse effects 

of combined population growth and climatic change pressures. 
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