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A B S T R A C T

The risk posed by heavy rain and strong wind is now suspected to be exacerbated by the way they co-occur, yet
this remains insufficiently understood to effectively plan and mitigate. This study systematically investigates
the correlations between wintertime (Oct–Mar) extremes relating to wind and flooding at all timescales from
daily to seasonal. Meteorological reanalysis and river flow datasets are used to explore the historical period,
and climate projections at 12 km resolution are analysed to understand the possible effects of future climate
change (2061–2080, RCP 8.5). A new flood severity index (FSI) is also developed to complement the existing
storm severity index (SSI). Initially, Great Britain (GB) is taken as a comparatively simple yet informative study
area, then analysis is extended to the full European domain.

Aggregated across GB, wind gusts and precipitation correlate strongly (𝑟𝑠 ∼0.6–0.8) at timescales from
daily to seasonal, but peak around 10 days. A later peak is seen when considering correlations between wind
gusts and river flows (40–60 days). This time is likely needed for catchments’ soils to saturate. A conceptual
multi-temporal, multi-process model of GB wintertime flood-wind co-occurrence is proposed as a basis for
future investigation. When historical analysis is extended across Europe we find the timescale of maximum
correlation varies strongly between nations, likely as a result of different meteorological drivers.

Impact focused correlation (FSI–SSI) is lower (𝑟𝑠 ∼0.2) but increases notably with climate change at
timescales of ∼40 days (𝑟𝑠 ∼0.4). Tentatively, very severe episodes (i.e., both >99th percentile) appear heavily
influenced by climate change, increasing roughly threefold by 2061–2080 (p < 0.05). The return period of
such an event is 16 years historically (compared to 56 years if the two hazards were independent), reduces
to 5 years in future. Such metrics provide actionable information for insurers and other stakeholders.
1. Introduction

During winter, inland flooding and extreme wind are two of the
hazards to most severely impact north-west Europe (Mitchell-Wallace
et al., 2017). Although to climate scientists it might seem self-evident
that these hazards are related, they are typically modelled indepen-
dently in risk analyses. Evidence that they tend to systematically co-
occur (Hillier et al., 2015; Martius et al., 2016; Owen et al., 2021b)
is becoming increasingly robust (see Fig. 1 for examples) with the
possibility that this significantly exacerbates joint risk. However, nei-
ther the interplay of hydro-meteorological mechanisms that give rise

∗ Corresponding author.
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to the co-occurrence, nor key timescales impacted, are yet fully under-
stood. Most evidently, infrastructure operators, government agencies
and (re)insurers are interested in distinct events (e.g., storms, with a
maximum duration or hours clause of 5 days) or planning horizons
(e.g., financial or regulatory years), although stresses on resources
such as maintenance crews during intermediate periods can readily be
imagined during weeks of adverse weather (White et al., 2022). Thus,
co-occurrence within a range of time-windows is important.

Case studies of strong storms have securely established that both
wind and flood damage might co-occur during the same weather sys-
tem. Examples include storm Kyrill in 2007 (Fink et al., 2009), the
vailable online 1 February 2023
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Fig. 1. A pictorial overview of methods applied to quantify compound wind extreme and flooding events across Europe within increasingly impact-focused datasets. We note most
papers include multiple metrics, the most relevant results to our current work have been chosen.
19th January 2013 windstorm (Liberato, 2014) and storm Desmond in
2015 (Otto et al., 2018). A systematic relationship between flooding
and extreme wind in NW Europe was first demonstrated by three
papers (Matthews et al., 2014; Hillier et al., 2015; Martius et al., 2016),
which also clearly illustrate the spectrum of contrasting, complemen-
tary approaches in use then and subsequently.

To identify the winter of 2013–2014 (Dec–Feb) as notably wet and
stormy (Matthews et al., 2014) tracked extra-tropical cyclones (ETCs)
in reanalysis products from 1871–2012 within the Iceland–UK domain.
A seasonal ‘storminess’ metric (I) was developed and correlated with
mean England–Wales precipitation using Pearson’s r (r𝑝). Visually, r𝑝 is
0.7 ± 0.1 (p < 0.05). As part of defining Great Britain’s (GB’s) exposure
to multi-hazard risks, Hillier et al. (2015) moved from meteorological
measures (e.g., precipitation) to ascertain that co-occurrence extends to
annual (Nov–Oct) impacts. Conclusions were based on evidence from
a blend of insurance losses (1998–2013; ABI, Association of Bristish
Insurers, 2014) and hydro-meteorological observations (1958–2008).
Flooding and wind extremes over a threshold are found to occur ∼1.5
times more than expected, with joint 16-year return period losses
higher by 20%–30% than if the hazards were independent.

In contrast, Martius et al. (2016) focus on near-surface wind and
precipitation extremes, and short time-scales, mapping co-occurrence
within a 72 h window for ERA-interim. Notably high percentages of
co-occurring extremes are detected along the North-western coasts
of Europe (e.g., Iberia, Norway), but are muted in other locations,
and again ETCs are invoked as the explanatory process. Owen et al.
(2021b) focus on short time windows to determine that co-occurrence
in some places (e.g., GB, Norway) is typically within 1 h, and 70% of
co-occurrences happen whilst an ETC is within 1110 km.

Recent work for GB from De Luca et al. (2017) uses peak river
flow data for 260 basins in Great Britain (1975–2014) to distinguish
large multi-basin floods at a spatial scale that is comparable to ETCs
(e.g., ∼1000 km). Analyses at 1–19 days and seasonal timescales,
combined with a variety of meteorological indices were used to start to
understand where ‘memory’ (Hillier et al., 2015) and time-lags in the
hydro-meteorological system might arise. Seasonally, these multi-basin
flood events correlate with numerous very severe gales (r𝑝 = 0.41, p
< 0.05). In addition, Hillier et al. (2020) demonstrated an increase in
joint seasonal impact on infrastructure (rail network) due to flood-wind
dependence of 27.8%.
2

A key limitation to the previous studies is the limited ability
to comment on truly rare events given the length of the reanaly-
sis/observational record. To attempt to overcome this, the UNSEEN
method (Thompson, 2017) has been used, involving multiple realisa-
tions of the last 20–30 years using seasonal hindcast models to create a
synthetic 600 year record (Hillier and Dixon, 2020; Owen et al., 2021a).
Seasonal impact-based measures for flood and wind have suggested that
extremes can be captured well (e.g., Spearman’s rank correlation (r𝑠)
of up to 0.54 found in Hillier and Dixon, 2020). However, caution is
needed over orography (Owen et al., 2021a; Ridder et al., 2021), and
there is the possibility that higher-resolution simulations may even be
better than reanalysis products such as ERA5 (Zscheischler et al., 2021).

In summary, there is an obvious limitation in the literature, which
would benefit from a study that spans timescales from hourly (Owen
et al., 2021b) to seasonal (Hillier and Dixon, 2020). A consistent
application of techniques to a variety of data types (e.g., flow gauge,
reanalysis, climate model ensembles) representing quantities along the
progression from meteorological quantities to hazard and risk is also
needed. Specifically, as a step towards better understanding the co-
occurrence of flooding and extreme wind across North-Western Europe,
this paper applies consistent methods to a variety of datasets and
timescales to investigate the following research questions:

1. What are the key timescales of correlation for extreme precipi-
tation and wind, and why?

2. Are these also the key timescales of interest in more impact-
based metrics?

3. How are these results impacted by climate change?

Great Britain (GB) is selected as an initial case study for these
questions. It is a region exposed to winter storms destined for mainland
Europe whilst being a relatively simple system, with rapid river re-
sponse times (i.e., < 40 h; De Luca et al., 2017) and snow melt a limited
influence. Following this, the results are extended to cover Europe.

2. Data and methods

In the following subsections the observed meteorological data (Sec-
tion 2.1) and climate model data (Section 2.2) used to create me-
teorologically derived proxies for wind and flood risk are discussed.
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Table 1
Details of hydro-meteorological datasets used within this study.
Dataset Fields used (units) Spatial resolution Time period Reference

ERA5 hourly total precipitation (mm), ∼30 km 1979–2021 Hersbach et al. (2020)
hourly instantaneous 10 m wind gusts (ms−1)

GLOFAS daily river discharge (m3) ∼10 km 1979–2021 Harrigan et al. (2020)

CAMELS-GB daily-mean river discharge (m3) 671 GB stations 1970–2015 Coxon et al. (2020)

CHESS-MET daily mean total precipitation (mm), 1 km 1970–2015 Robinson et al. (2016)
daily mean 10 m wind speeds (ms−1)

UKCP Regional daily max 10 m wind gust (ms−1) Model 12 km 1981–2000 Tucker et al. (2022)
daily total precipitation (mm) 2061–2080

UKCP Grid-to-Grid river flows (m3s−1) 1 km 1981–2020 Kay (2021)
2061–2080 Griffin et al. (2022a)
Following this National Rail impact data is described, which forms a
damage relevant comparison to our derived estimates (Section 2.3). Ta-
ble 1 summarises all the meteorological datasets used. Following this,
assessment of the co-occurrence of wind and precipitation extremes is
reviewed in terms of relevant statistical measures (Section 2.4) and the
plausible metrics which range from essentially climatic to those which
relate more directly to risk or impact (Section 2.5).

All metrics used in this study are calculated during extended winter
(October–March) and nationally aggregated. When using the UK Cli-
mate Projections Data (UKCP), thresholds defined for historical data
(1981–2020) are applied to both present and future climate to under-
stand potential changes.

2.1. Observed meteorological data

To assess the co-occurrence of extreme wind and precipitation
events over GB, multi-decadal records of meteorological data are re-
quired. Reanalysis data products are a useful tool to provide this kind
of information. The primary historical data used in this paper is the
ERA5 reanalysis (Hersbach et al., 2020). ERA5 is based on the European
Centre for Medium Range Weather forecasting’s Integrated Forecasting
System (IFS) cycle Cy41r2, which was operational in 2016.

To complement the ERA5 data, daily total river discharges are taken
from the Global Flood Awareness System (GLOFAS) (Harrigan et al.,
2020). This dataset is simulated by forcing the LISFLOOD hydrological
modelling chain with inputs from the ERA5 reanalysis; see Hirpa et al.
(2018) for further details of the model framework setup and calibration.
It is therefore compatible with other outputs from ERA5 used here.
GLOFAS is, however, considered relatively coarse when modelling river
flows. The quality of a reanalysis product compared to observed data
could also be questioned. To complement the analysis using ERA5 and
GLOFAS, daily river flow, precipitation and 10 m wind speed data from
671 catchments across GB, created as part of the CAMELS-GB dataset is
also used (Coxon et al., 2020). The wind speed and precipitation data
used in CAMELS-GB is taken from CHESS-MET (Robinson et al., 2016)
which is a 1 km gridded product available over the UK; see Table 1 and
Appendix A for further details.

2.2. Climate model data

Using observed meteorological data only allows for a small selection
of possible extreme wind and precipitation events to be analysed. Cli-
mate model simulations present an opportunity to consider plausible,
but as yet unrealised, alternatives. However, climate models need to be
fully evaluated to ensure that they represent the essential processes that
give rise to extreme winds and precipitation events. In this study the UK
Climate Projections 2018 (UKCP18, from hereon referred to as UKCP)
regional model simulations are chosen for analysis. The UKCP simula-
tions have been used for a number of impact studies and have been
shown to have a good representation of historical precipitation (Lowe
3

et al., 2018; Cotterill et al., 2021; Tucker et al., 2022; Lane and Kay,
2021) and wind gusts (Manning et al., 2021) when compared to lower
resolution climate model simulations and gridded observations.

The regional simulations provide hourly data over the same area
as the commonly used EURO-CORDEX domain Jacob et al. (2014).
Simulations run from 1980–2080 using the Representative Concen-
tration Pathway (RCP) 8.5 climate change scenario, and the setup
of the 12 member perturbed parameter ensemble is described in de-
tail in Tucker et al. (2022). Hourly instantaneous wind gusts and
total precipitation are taken from all 12 ensemble members for two
periods,1981–2000 and 2061–2080. Matching river flows are derived
by using the UKCP precipitation and temperature data (and derived
potential evapotranspiration data) to drive the Grid-to-Grid (G2G) hy-
drological model (Kay, 2021). The resulting daily mean river flows
have been output on a 1 km grid over GB, and have been summarised
nationally on a daily time step, to construct impact-based metrics (as
outlined in Hillier and Dixon, 2020). Further details of the UKCP-based
river flows are given in Griffin et al. (2022b).

2.3. National rail impact data

In the context of natural hazards, meteorological data are proxies,
studied as they are argued to relate to extremes that have the potential
to cause impacts. As a reality check, it is also therefore useful to
consider observed impacts.

Network Rail (NR), who are the owner and infrastructure provider
of most of the rail network in GB, record delays to trains. NR’s
hazard-coded Weather Related Incident Impact Data (WRIID) contains
∼274,000 incidents (2006–2019) that have each been assigned to a
hazard and impact location (the originating site of delays). It is at
a resolution of typically ∼10 min and <5 km. 72.5% of these costs
occur in the winter half-year (Oct-Mar). Impact in WRIID is quantified
financially (pounds sterling), derived from delay minutes, and addition-
ally each incident is described qualitatively e.g., fallen tree on line. We
make use of the number of incidents occurring due to extreme winds
or flooding, and the costs associated with extreme winds or flooding in
Section 3.1.

Whilst losses in the summer remain substantial, at this time flood-
wind correlation in the WRIID data is negligible. This demonstrates that
the categorisation used is robust. This is because if flood and wind
were being confused or mixed a false correlation would be present,
and it is difficult to imagine why this artefact would vary by season.
Thus, the WRIID data overcame a limitation common in insurance data
(see Hillier et al., 2015 Appendix B). The WRIID data have been used
previously for work on heat Ferranti et al. (2016) and Ferranti et al.
(2018) and seasonal multi-hazard analysis (Hillier et al., 2020), but
not yet for the sub-seasonal examination of flooding and extreme wind.
Data is aggregated (summed) to GB level for analysis here. Appendix B
gives future information on the categorisation of flood-wind damage in

WRIID.
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2.4. Defining co-occurring events

The studies described in Section 1 use a range of methods to define
the presence compounding perils, shown schematically in Fig. 1. The
choice of approach is dependent on the nature of the research question.
The three most common methods are:

• Pearson’s correlation coefficient, r𝑝 (e.g., Matthews et al., 2014;
De Luca et al., 2017; Hillier and Dixon, 2020).

• The logistic regression model (e.g., Martius et al., 2016), which
quantifies the odds-ratio (multiplicative factor) of predicting a
precipitation extreme at a specific grid point given a wind ex-
treme occurring.

• Extremal dependency measures based on co-occurrence or other-
wise of wind and precipitation extremes above a given percentile.
This was proposed by Coles et al. (1999), illustratively used
in Hillier et al. (2015), Martius et al. (2016) and Owen et al.
(2021b), and includes the idea of an occurrence ratio (i.e., ob-
served number of co-occurrences divided by the number expected
due to chance).

This list is not exhaustive, with other methods used including the
xamination of residual tail dependence (Vignotto et al., 2021) and
ore impact-based assessments such as a change in Annual Exceedance

probabilities (the probability of annual aggregate losses exceeding a
threshold; Hillier et al., 2015; Hillier and Dixon, 2020; Bevacqua et al.,
2021).

A key aim of this study is to assess the relationship between ex-
tremes relating to flooding and wind damage across multiple timescales,
to unify results from previous studies. To achieve this, the Spearman’s
rank (r𝑠) correlation is calculated within non-overlapping windows of
varied length throughout the chosen datasets. Window length ranges
from one day, as in Martius et al. (2016) and Owen et al. (2021b),
out to 180 days as in Hillier and Dixon (2020). Spearman’s rank is
the main statistic deployed as it is a non-parametric metric that is
simple, familiar and thus amenable to easy communication to varied
stakeholders, and there is no indication that correlation disappears
when moving from the body of the distribution into the tail (see
Appendix C).

2.5. Impact-based metric definitions

To understand the complex relationship between wind and flood
damage, a set of GB-aggregates have been developed ranging in a
progression from weather to impact. The first metrics used are GB-
aggregate total daily precipitation (P), maximum daily 10 m wind
gusts (v) and total daily river flow (q). The daily data are then ag-
gregated to the timescales used in the correlation analysis. P and q
are aggregated through summation, whereas for v the mean of daily
maxima is calculated over the period of interest. Population weightings
for 2020 (Doxsey-Whitfield et al., 2015), when used, are applied to
each grid cell of the meteorological data before aggregation. Population
weightings here are used as a proxy for the location of assets at risk that
would experience loss or damage from extreme weather.

The metrics used to most directly estimate impact in this study are
the Storm Severity Index (SSI) and a new Flood Severity Index (FSI).
The SSI was originally developed by Klawa and Ulbrich (2003a) and
follows the form used in Pinto et al. (2012) and Priestley et al. (2018):

𝑆𝑆𝐼(𝑡) =
𝑁𝑖
∑

𝑖=1

𝑁𝑗
∑

𝑗=1
(
𝑣(𝑡)𝑖,𝑗
𝑣98𝑖,𝑗

− 1)3 ⋅ 𝐼𝑖,𝑗 ⋅ 𝐿𝑖,𝑗 ⋅ 𝑝𝑜𝑝𝑖,𝑗

𝑖,𝑗 =

{

0 if 𝑣(𝑡)𝑖,𝑗 < 𝑣98𝑖,𝑗
1 otherwise

𝑖,𝑗 =

{

0 over sea
4

1 over land
Here v𝑖,𝑗 is the daily maximum wind gust at longitude i and latitude
. pop𝑖,𝑗 is the 2020 population density in a given location, taken
rom Doxsey-Whitfield et al. (2015). N𝑖 and N𝑗 show the total number
f longitudes and latitudes calculations are performed over respec-
ively. Throughout the paper the SSI and FSI metrics are calculated at
aily resolution (t = 1 day) and subsequently aggregated to longer tem-
oral periods for correlation analysis. Therefore, v98𝑖,𝑗 always represents
he gridded daily 98th percentile from October–March.
v3 is a well-established proxy for damage (see Hillier and Dixon,

020 for discussion), and v98𝑖𝑗 is the local (i.e., per grid cell) 98th
ercentile, used as wind damage typically occurs over this thresh-
ld (Klawa and Ulbrich, 2003a; Priestley et al., 2018). Use of a daily
8th percentile allows for a comparison between datasets without
he need for bias correction, which would be required were a fixed
hreshold used. It also facilitates an easy comparison with the CHESS-
ET historical dataset (see Table 1) where only daily-mean 10 m
ind speeds are available. The percentile threshold also accounts for

ocal spatial variations in building construction on the assumption that
uildings are generally constructed to be resistant to locally expected
ust maxima.

The Flood Severity Index (FSI) is defined as:

𝑆𝐼(𝑡) =
𝑁𝑖
∑

𝑖=1

𝑁𝑗
∑

𝑗=1
(
𝑞(𝑡)𝑖,𝑗
𝑞99.5𝑖,𝑗

− 1) ⋅ 𝐼𝑖,𝑗 ⋅ 𝐿𝑖,𝑗 ⋅ 𝑝𝑜𝑝𝑖,𝑗

𝑖,𝑗 =

{

0 if 𝑞(𝑡)𝑖,𝑗 < 𝑞99.5𝑖,𝑗

1 otherwise

𝑖,𝑗 =

{

0 over sea
1 over land

The form is developed from the SSI with parameters defined in
he same way, except here the key hydro-meteorological variable is
, the daily total river flow. We note that FSI is always calculated
t a daily timescale, using the 99.5th percentile of daily total river
lows. A modified threshold is used for the damage and the cubic
ehaviour is removed to account for the differences in wind vs. flood
amage. Population weightings are included as previously described for
SI to account for the increased amount of damage reported in large
opulation centres.

Defining percentile thresholds for flood damage is difficult, as they
re more diverse than those seen for wind damage (e.g., incorporating
ffects such as surface runoff, snow melt and landslides Williams, 1978;
artius et al., 2016). A complex trade-off emerged when designing

he FSI metric between accurately selecting percentile exceedances
ssociated with flood damage, and having enough years of data for
tatistically robust results (see Section 4.1 for further details).

Fig. 2 shows the relationship between FSI and the WRIID loss data
rom National Rail. This gives confidence that this metric is able to
apture losses on an annual timescale, in the case of the number of
loods the correlation is very high (0.74) with reductions seen when
onsidering the costs associated with flooding (0.49). Further analysis
not shown) showed the ability of FSI to capture notable events, such
s the February 2020 flooding associated with wind storms Dennis and
iara. We note that, unsurprisingly, the metric struggles to capture very

ocalised flooding events, such as the 2004 Boscastle flood. Appendix D
ives an overview of the number of times recorded floods from the
hronology of British Hydrological Events (Black and Law, 2004) were

ound in the FSI dataset, giving further confidence that the metric can
apture the most extreme events in the observed record.

. Results

.1. GB historical correlation analysis: progression from hydro-meteorology
o impacts

Fig. 3a shows the Spearman’s rank correlation between GB-average
ydro-meteorology and impact variables at various timescales through-
ut October to March,1979–2021 using ERA5 weather variables and
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Fig. 2. Relationship between annual-aggregated wintertime FSI and GB National Rail flood data for years 2006–2018. (a) Number of floods. (b) Cost of flooding.
GLOFAS river flows. All grid boxes are equally weighted. (So the
impact of population from the SSI and FSI equations is removed.) Equal
weightings are examined first as population weightings may not be
representative for all users (e.g., rail networks, telecommunications,
power lines and crops). To calculate the Spearman’s rank correlation
over timescales greater than 1 day (the resolution of the underlying
variables) the following rules are followed:

• The maximum daily 10 m wind gust is calculated over the re-
quired time period.

• Daily river flows and precipitation are summed over the required
time period.

• The daily SSI and FSI are accumulated over the required time
period.

Non-overlapping periods are used for analysis, so for example at
the 180 day timescale, a maximum or sum for October–March data
is calculated for each of the winters from 1980–2021, giving 41 data
points.

The correlation between 10 m wind gusts and total precipitation is
around 0.7 at all timescales, broadly agreeing with past studies that
looked at various temporal scales from daily to seasonal (Matthews
et al., 2014; Hillier and Dixon, 2020; Owen et al., 2021b). A peak
correlation of ∼0.8 is seen with a 10 day window. Timescales on Fig. 3
are of key interest to the insurance sector. The first is 5 days. This
is typically the period during which claims are attributed to a single
windstorm including associated flooding. The second is 21 days. This
is typically the period in which damage is accrued for an event classed
as a flood.

For wind gusts and total river flow (gold line in Fig. 3a) correlation
is lower (∼0.4) at daily timescales, similar to De Luca et al. (2017).
After this it rises to a comparable level (∼0.65) at timescales of 40–60
days. This delay is likely associated with the wetting up of catchments
over time (see Section 4.2). Therefore, while precipitation has been
used as a proxy for flood damage in a number of previous short-term
studies on compound wind-flood events (e.g., Martius et al., 2016;
Owen et al., 2021b,a; Ridder et al., 2022; Li et al., 2022), these results
highlight a potential to exaggerate the correlation between flooding
and wind damage at lead times of less than ∼40 days.

The final set of lines on Fig. 3a show the correlation between SSI
and FSI, which are indices more directly related to impactful extremes.
Here correlation is ∼0.4, albeit with some indication of lower values
at daily timescales and higher ones across seasons. This correlation is
5

generally lower than reported in the literature, but differs from most
studies in that it emphasises the correlation between the most extreme
events across GB.

Including population weightings (Fig. 3b) causes a mild reduction
(∼0.1) in correlation for all cases. Correlation between wind gusts and
total precipitation drops to ∼0.6 at daily to weekly timescales, as more
heavily populated regions have a weaker correlation than those over
large orography (see Hillier and Dixon, 2020). Broadly, correlations
in recorded losses due to wind and flood damage from National Rail
(Fig. 3c) agree with those from GB-average total river flows vs mean
maximum wind gusts, providing an additional justification for arguing
that the proxies selected propagate into real-world impacts.

The choice of historical data product may influence the results.
So, to robustly ascertain the correlations’ presence, the analysis was
repeated using observed river flow data from CAMELS-GB (1980–
2015) and a 1 km reanalysis product CHESS-MET. A similar pattern
of reducing correlations with increasingly impact-based metrics was
found, Particularly when sub-setting to only use the 134 largest river
catchments (i.e., the top 20%; see Appendix A).

3.2. GB historical extreme SSI and FSI

With only a 42 year observed period available, the ability to capture
events extreme in both FSI and SSI is limited. It is possible however
to investigate, separately for each metric, where and when events with
the most extreme values of the metric occur. Fig. 4 shows for ERA5 and
GLOFAS, the spatial distribution of occurrences of the top 1% and top
0.1% of SSI and FSI events. Here an event is limited to a daily value
of each metric (note that no population weightings are applied here)
although similar results are seen for 3-day accumulations.

Of the top 1% of SSI events (Fig. 4a) ∼70% of them affect grid cells
across central and northern England, tapering to 30% over northern
Scotland. The top 0.1% of SSI events support this idea (Fig. 4b). Nearly
all (7 out of 8 events) occur over Northern England and Wales, implying
a large footprint. Thus, the most extreme SSI events impact a large
spatial region, most of GB. Fig. 4c shows that the most extreme SSI
events are most likely in January and February, with the majority of
the top 1% of events happening in December–February.

Conversely, only 30% of the top 1% of FSI events happen in the
same location (Fig. 4d), implying they are much more localised. There
is more spatial co-occurrence over the top 0.1% of FSI events, implying
they are larger in area and are most common over the East coast
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Fig. 3. Spearman’s rank correlation between various metrics, at timescales from 1 to 180 days and aggregated across GB. ERA5 reanalysis and GLOFAS (a) with equal weighting
given to all grid boxes and (b) with population weightings applied. (c) Correlation between number of events occurring due to extreme wind and flooding on the GB rail network
(green) and correlation between costs due to extreme wind and flooding (grey). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Fig. 4. Spatial occurrence of (a) the top 75 days (top 1%) of October–March SSI events from 1979–2021 in ERA5. (b) as (a) for the top 8 (top 0.1%) 1-day events. (c) Monthly
occurrence of the most extreme SSI events. (d–f) as (a–c) for the FSI events from GLOFAS.
of England and central England (Fig. 4e). This supports observations
from Quinn et al. (2019) which showed that the most extreme floods
6

in the USA often have a larger spatial footprint. The most extreme FSI
events happened in November or January, with many more extreme
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Fig. 5. GB-aggregate Spearman’s rank correlation between various metrics (climate progressing to impact), at various timescales from 1 to 180 days from the UKCP regional
simulations (a) for the present climate period 1981–2000 where dashed lines show ERA5 correlations from Fig. 3. We note SSI and FSI are population weighted. (b) for the future
climate period 2061–2080. Dotted lines show the historical correlations from panel (a) for ease of comparison. Solid lines in both panels show the ensemble-mean correlation,
shaded areas show two standard deviations of 2000 bootstrapped samples of the Spearman’s rank correlation. Further details of datasets used are given in Table 1.
events in November than seen for SSI. Understanding the spatial vari-
ability of these extremes is important for understanding an insurer’s
portfolio of risk across multiple perils.

There are only two incidents when an extreme (top 1%) SSI event
co-occurs with an extreme FSI event (i.e., a 1 in 20 year return period).
These are the 7th February 1990 and 13th December 2000. The event
on 7th February 1990 was associated with storm Judith, the second
storm in a sequence of seven events, which ran from 25th January
to 1st March 1990. Judith followed the notable storm Daria (Klawa
and Ulbrich, 2003a). The 13th December 2000 was a time when
17 severe flood warnings were in operation across Southern England
and a number of ferries were stranded in the English channel, again
associated with stormy conditions (see http://www.met.reading.ac.uk/
brugge/diary2000.html). It is interesting to note neither of these were
wind storms associated with substantial losses, although this may be
an artifact due to the temporal proximity to storm Daria (Klawa and
Ulbrich, 2003a; Roberts et al., 2014). This analysis supports the idea
that the largest wind events are not necessarily very wet (Hillier and
Dixon, 2020) adding insight for flooding, and for the most extreme
compound events across GB. This will be a topic of future investigation.

3.3. GB UKCP correlation analysis: historical and future

Fig. 5 shows an equivalent correlation analysis to Fig. 3a but for
the UKCP 12 km ensemble. The historical correlations (Fig. 5a) be-
tween climate variables are similar to observations, albeit with reduced
aleatory uncertainty (i.e., error bars) due to the larger sample size. The
correlations between SSI and FSI are lower than those seen in the ERA5
data by ∼0.1, particularly at short timescales. These results suggest
that UKCP captures some of the processes responsible for the observed
correlation between extreme flood and wind events.

When comparing the historical and future periods in UKCP there is
a small but discernible increase in the correlation between total river
flow and instantaneous wind gusts (Fig. 5b). Increased correlation is
also seen between SSI and FSI at short timescales out to ∼1 month.
Unpacking this further shows that in the future period a moderate
decrease in days with an SSI occurring (−2% p < 0.05), and a similarly
sized increase in days with an FSI (+ 3% p < 0.05).

Table 2 presents results when focusing on the most extreme FSI and
SSI days. The return period of exceeding the 95th percentile of SSI and
FSI concurrently goes from 0.7 years at present, to 0.4 years in a future
climate. In the historical period the co-occurrence of daily SSI and FSI
jointly exceeding the 99th percentile has a return period of 13 years,
which is reduced to only 4 years in the future period. This is evidence
for an increasing probability of co-occurring extremes in the future,
even if extreme SSI days may be a little less frequent.
7

3.4. Correlations across Europe

Although GB has been the focus of this paper notable differences
are seen when the larger spatial domain of Europe is considered. Spear-
man’s rank correlation between total river flows and 10 m wind gusts is
selected to illustrate the results as it is most similar to the National Rail
flood-wind correlations in Fig. 3c. Fig. 6 shows results for 37 European
countries at daily, weekly, monthly and seasonal timescales. Different
countries correlations peak at different timescales, presumably due to
the contrasting driving processes. For example, on daily timescales,
highest correlations are seen over GB and Ireland, likely due to their
relatively isolated river networks. However, on seasonal timescales
highest correlation is seen over Spain and Portugal with correlations
exceeding 0.9.

Many previous studies used precipitation as a proxy for flooding,
which we have shown is not always appropriate, at least for GB on
timescales of <2 months. Specifically, Fig. 6 provides a means of
advancing on previous interpretations as timescales are indicative of
particular driving hydro-meteorological processes. Selected timescales
and features of the maps are discussed in Section 4.4.

The key point to note is that the GB results, although useful, are
not indicative of the full European response and a bespoke analysis is
needed to capture the relationship between flood and wind damage in
each country.

4. Discussion

Spearman’s Rank correlation (r𝑠) has been used to robustly show the
correlation between wintertime extremes associated with wind damage
and flooding. In GB, r𝑠 for historical times is 0.6–0.8, present within
various proxies for hazard, reanalysis datasets, hydrological models,
and impacts on rail infrastructure. To understand better how this may
be used to estimate multi-sector impacts, a Flood Severity Index (FSI)
to pair with the established storm Index (SSI) has been proposed
and is further discussed in Section 4.1. The relative contributions of
varied drivers of the co-occurrence of flooding and extreme winds can
be assessed and assimilated into a conceptual model (Section 4.2).
Furthermore, an extrapolation can be made into the future (Section 4.3)
and the correlation analysis broadened across Europe (Section 4.4).

4.1. Flood Severity Index

When developing the FSI, a key decision point was the river flow
exceedance threshold used to distinguish flooding. Critical thresholds
for flooding depend on the duration of the event, the local precipitation

http://www.met.reading.ac.uk/brugge/diary2000.html
http://www.met.reading.ac.uk/brugge/diary2000.html
http://www.met.reading.ac.uk/brugge/diary2000.html
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Table 2
Summary statistics for the co-occurrence of extreme SSI and FSI events that exceed the stated percentiles
for historic (1981–2000) and future (2061–2080) climate in UKCP. The first two columns are the number
and return period (RP) of events expected if the FSI and SSI were independent. The Ratio is the number
of simulated events divided by the number expected if the two variables were independent. All results are
significant (p < 0.01, using a binomial distribution.).

Expected Independently No. Historic RP No. Future RP
No. RP ratio ratio

95% 102.6 2.2 246 2.4 0.7 553 5.3 0.4
99% 4.1 55.6 14 3.4 12.9 55 13.4 3.7
Fig. 6. Spearman’s rank correlation between national-aggregate total river flows (GLOFAS) and mean maximum daily 10 m wind gusts (ERA5) over (a) daily (b) weekly, 7 days
(c) monthly, 30 days (d) seasonal, 180 days timescales. Data are not population weighted.
climatology and the impact of flood defences (Tian et al., 2019). Flood
protection, in particular, is ubiquitous along European rivers and is
typically designed to prevent damage by events with a return period of
up to 1 in 100 years, and possibly higher in particular locations (Buijs
et al., 2007). However, such low frequency events are rare by definition
and an FSI metric constructed only from historical daily river flows with
1% annual probability (i.e., 99.99998th percentile at a daily time scale)
would have a few, if any non-zero data points. The short observational
record (in our case ∼40 years of ERA5 data) also creates a challenge for
estimating very extreme behaviours, and the uncertainty on estimating
these high percentile thresholds is very large.

Instead, for an effective FSI measure we select events that, whilst
rare in the observational record, are sufficiently frequent to give a
meaningful sample size and have a correlation that seems to reflect that
of more extreme events that actually result in flood damage. This choice
is a compromise. We select the 99.5th percentile in each grid box. We
assume that larger and more widespread exceedance of this threshold
will give a stronger indication of potential flood damage.
8

As a consequence of these arguments, and testing against historic
occurrences (Section 3.2 and Appendix D), we believe that the novel
FSI metric is useful. It reflects events with potential to cause impact, is
readily computable from climate model data, and can be the basis of
statistics (e.g., Table 2) in a form that may be useable by stakeholders
across a range of sectors.

4.2. Timescales, and a conceptual model of GB co-occurrence

Reported correlations of extremes relating to flooding and wind
damage in GB vary with timescale. Proposals to understand these
observations in terms of physical processes (Hillier et al., 2015; De Luca
et al., 2020; Hillier and Dixon, 2020; Owen et al., 2021b) have yet to be
reconciled by integrating them into a conceptual model incorporating
the main hydro-meteorological processes over GB.

This paper applied a consistent approach to a spectrum of time-
windows and variety of data types to better understand whether co-
occurrence is maximised at timescales associated with: (i) individual
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Fig. 7. Conceptual model of extremes related to UK wintertime flooding and wind damage. Key dimensions considered are time-scale (increasing left to right, purple text), proximity
of the metric used to impact (green text), and the interplay of atmospheric and hydrological processes (graphics, black text). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
storms (Fink et al., 2009; Liberato, 2014; Raveh-Rubin, 2015; Matthews
et al., 2018; Otto et al., 2018; Owen et al., 2021b), (ii) the cluster-
ing of storms within relatively short time windows (<14 days) that
can saturate soils to create widespread flooding (Vitolo et al., 2009;
Lavers et al., 2013; De Luca et al., 2017), or (iii) from persistence on
climatological timescales to create wet and stormy winters (Matthews
et al., 2014; Kendon and McCarthy, 2015; Palin et al., 2016; Hillier and
Dixon, 2020).

A conceptual model of these driving processes is shown in Fig. 7.
Timescale, progression from meteorological variables to impact, and
physical processes are interwoven into an initial and necessarily sim-
plified view that we hope will form the basis for debate.

Previous studies analysing individual storms (Fink et al., 2009;
Liberato, 2014; Raveh-Rubin, 2015; Matthews et al., 2018; Otto et al.,
2018) and systematic flood-wind correlation (Matthews et al., 2014;
Hillier et al., 2015; Martius et al., 2016) were all based on an empir-
ical presumption that extra-tropical cyclones (ETCs) are the dominant
driver of wintertime hazard and risk. Such distinct, large scale weather
phenomena, sets a key time-scale of ∼1–3 days for co-occurrence.
Across datasets, this analysis robustly confirms (Figs. 3 and 5) that there
is strong co-occurrence (r𝑠 ∼ 0.7) for precipitation and wind gusts in
this time frame. So, in line with abundant evidence that some storms
can be both wet and windy, a large part, but not all, of this is attributed
here to individual atmospheric events (Fig. 7, darkest grey box). The
model also highlights that dependency appears to remain strong in
the tail of the distribution at this timescale (Table 2, Fig. C.10a, d),
something that is not required even if the bulk of events correlate.

There are a number of curiosities, however, to challenge this simple
view. Hillier and Dixon (2020), demonstrate that storms impacting
north-west GB either tend to be very wet or very windy, not extreme in
both. They postulate that this is because storms with the most damaging
winds are likely to still be actively interacting with the jet stream, but
those with the most extreme rain are probably not. This explains the
low daily correlation observed in ERA-interim (Martius et al., 2016),
and their results showing 80%–90% of the impact of a link between
9

wind and rain extremes across a season comes from longer timescales
than this in GB. In a mirror of this finding, at sub-storm timescales a
peak in correlation is found at 1–2 h, descending to a 24–72 h window
even as 70% of co-occurrences happen when an ETC is within 1000
km (Owen et al., 2021b). This pattern is confirmed and set in context
by this paper’s findings, with much lower on the correlations between
precipitation and wind gusts at daily than weekly timescales (Fig. 3).

On weekly timescales (i.e., 4–15 days), historical data (Fig. 3)
robustly demonstrate that co-occurrence for weather related variables
(i.e. P, v3) increases to peak at ∼10 days. This increase on a timescale
greater than a storm’s residency over GB implies it is typically not just
individual storms causing the correlation, strengthening support for this
specific idea (Hillier et al., 2015; De Luca et al., 2017). More generally,
these observations strongly support the postulate that persistence or
‘memory’ in the hydro-meteorological system is a critical part of the
story (Hillier et al., 2015). The origin of the memory must be atmo-
spheric, hydrological, or both, simply because these are the two sets of
processes at work in GB. Three main possibilities have been suggested:

• Persistence in synoptic conditions such as jet stream position, the
presence of atmospheric rivers (Lavers et al., 2011; Dacre and
Pinto, 2020) or recurrent rossby wave packets (Ali et al., 2021)
lasting from 3 days up to a few weeks, driving a multi-storm
hazard (Priestley et al., 2018).

• Persistent large-scale flow patterns, such as the North Atlantic
Oscillation (Feser et al., 2015; Hillier et al., 2015; Dacre and
Pinto, 2020)

• Soil saturation in catchments (Kendon and McCarthy, 2015; Hillier
et al., 2015; De Luca et al., 2017; Berghuijs et al., 2019)

It is well-established that ETCs can cluster, with several arriving
across 1–2 weeks (Mailier et al., 2006; Vitolo et al., 2009), with a recent
example over GB experienced in February 2022 (i.e., Dudley — wind
North GB, Eunice — wind in South GB, Franklin — flooding in north
GB). A key observation is that peak flows tend to occur 0–13 days
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t
r

after very severe gales, interpreted as indicating that flooding occurs
in the last of a few storms due to soil becoming saturated (De Luca
et al., 2017). Use of hydrological modelling in this paper that includes
soil wetness, water absorption, run-off and river flow (i.e., GLOFAS,
G2G) greatly strengthens this hypothesis as it shows correlation rising
from 0.4 (t = 1 day) to 0.6 by monthly timescales (∼0–60 days). Thus,
catchment saturation is a key part of the model, although, we note that
there will be variability between catchments.

On longer timescales, up to seasonal (180 days), compound risk
appears to be elevated by persistent underlying environmental condi-
tions (Hillier et al., 2015; De Luca et al., 2017; Hillier and Dixon, 2020),
but understanding of processes gets significantly more speculative. In
terms of atmospheric climate modes, positive North Atlantic Oscillation
(NAO) has been proposed as it is a well-established as a condition
favouring storminess in GB (Hillier and Dixon, 2020) although whether
the cause is the long term average itself or a tendency to support more
frequent and persistent episodes of high NAO conditions (i.e., >1.0)
s not clear at present. It has also been postulated that persistence
ight be induced by teleconnections to the western Pacific warm
ool (Huntingford et al., 2014; Hillier et al., 2015). Empirically, some
ole for long-term soil wetness is suggested since frequent very severe
ales and the largest multi-basin floods coincide with enduringly wet
onditions as recorded in standardised precipitation indices (De Luca
t al., 2017).

A challenge remains to work out the details. Outstanding ques-
ions exist about all the time-scales upon which processes driving
o-occurrence act, including:

• What causes individual storms lasting 1–2 days to produce flood-
ing and extreme wind, as opposed to both or neither?

• What large-scale drivers lead to storm clusters capable of driving
co-occurrence over sub-seasonal timescales?

• How exactly do catchment properties induce memory up to
monthly timescales?

• Are the processes that govern the correlation at (3–6 month)
timescales the same as those present at sub-seasonal timescales?

.3. Future correlation

In agreement with past studies focused on historical precipitation
nd wind gusts (Martius et al., 2016; Owen et al., 2021b), there is
road similarity between correlation patterns for UKCP for 1981–2000
nd historic observations (compare Figs. 3 and 5). Broadly, correlation
n the future UKCP (2061–2080) at first appears similar, yet there
s a development of enhanced co-occurrence for the more extreme
hort-timescale joint events ( Table 2, Fig. 5b).

If true, an increase in jointly occurring very severe extremes of
oughly threefold by 2061–2080 (p < 0.05), with commensurate de-
rease in return period from 13 to 4 years is dramatic. We note that
KCP regional simulations are based on one possible global climate
odel projection, for which multiple ensemble members are run under

ne high emissions scenario. Other global climate model projections
lso need to be investigated to determine how robust these initial
esults are.

As to the origin of the increased co-occurrence, we postulate that
looding driven by extreme precipitation is the limiting factor for a
ompound event. This originates in the temporal observation that large
ulti-basin floods (De Luca et al., 2017) tend to occur 0–13 days after a

torm. This is consistent with the role of catchment saturation identified
n this study and in Ledingham et al. (2019) for annual maximum
ainfall vs. flood runoff. It is commonly a pre-condition for flooding,
hich extreme winds do not have, making flooding the limiting factor

or co-occurrence. A similar argument applies spatially, based on this
tudy’s observation that the largest FSI events (top 0.1%) are more
ocalised than SSI ones (Fig. 4), and are thus limiting. In addition the
KCP results show that with respect to the historical period (1980–
000) there is moderate decrease in SSI days in 2061–2080 (−2%) and
10
similarly sized increase in days with an FSI (+ 3%), and it is easier
o imagine the quantity that is increasing driving an increased level of
o-occurrence. A similar result is seen by Yaddanapudi et al. (2022)
n coastal regions when analysing wind and flood responses to climate
hange in CMIP6 simulations. More widely, support for this postulate
omes from studies demonstrating a warmer and therefore wetter atmo-
phere (Lowe et al., 2018) and a likely increase in extreme precipitation
ssociated with this (Chan et al., 2014; Kendon et al., 2020; Fowler
t al., 2021) and increased high river flows (Kay et al., 2021; Griffin
t al., 2022b). Future work could address the role of changing soil
oisture in the occurrence of these compound events (incorporating

esults from Kay et al., 2022; Griffin et al., 2022b). Opportunities to link
hese results with present and futures changes in the spatial structure
f the flood damage (e.g., taking account of existing flood defences
nd the local exposure of people and property) to provide more direct
isk-based severity insights across multiple hazards also exist. All these
spects continue to evolve and are likely to be of most direct relevance
o stakeholders.

.4. Extending across Europe

Previous studies have shown maps of flood-wind relationships across
urope at daily (Martius et al., 2016; Owen et al., 2021b) or sea-
onal (Hillier and Dixon, 2020) timescale. Fig. 6 presents a more
omplete picture. The patterns in Fig. 6 allow an initial interpretation
o be offered. On daily timescales, highest wind-river flow correlations
re seen over GB and Ireland, likely due to their relatively isolated and
herefore rapidly responding river networks.

At weekly and monthly timescales the countries in central and
orthern Europe which are commonly impacted by extra-tropical cy-
lones see highest correlations, with lower correlations over southern
nd eastern Europe. Indeed, high monthly correlations are seen in
ountries which experience significant storm clustering (Roberts et al.,
014; Priestley et al., 2018). The fact that Western Europe experiences
tronger correlations on all timescales supports the analysis of Berghuijs
t al. (2019) which shows the dominant driver of flooding over Western
urope being soil moisture processes, rather than extreme precipitation
r snowmelt.

On seasonal timescales, highest correlation is seen over Spain and
ortugal, which suggests the drivers causing extreme river flows are
ery similar to those causing extreme winds (see also Hénin et al.,
021). Generally low correlations are seen over Sweden and Finland
t all timescales. Part of this is likely due to these countries being in
he lee of mountains sheltered from passing cyclones in a correlation
hadow (Hillier and Dixon, 2020). However, temperature and snow
elt are known to strongly influence river flows here (Arheimer and

indström, 2015; Berghuijs et al., 2019) which will reduce correlation
s they are not directly related to storms and their extreme winds, and
imple climate phenomena like the NAO may not be appropriate for
escribing processes in these regions (Kingston et al., 2009). Correla-
ions are also lower than GB values for countries which have much
arger river catchment areas (e.g., Germany). The explanation might
e physical, or to do with our methods focus on country-level data. An
pproach based on event footprints may be needed in future work to
apture behaviour in neighbouring countries.

It is important to note that different stakeholders are sensitive to
orrelations in different ways on a variety of time-frames (e.g., an
vent emergency response in <24 h, or event duration of up to 5 days
efined in a reinsurance contract, or planning decisions relating to
nnual budgets or limits in a regulator’s guidance).

. Conclusions

Rank correlation has been consistently calculated for a spectrum of
ime-windows and variety of data types, to better understand how a va-
iety of hydro-meteorological processes contribute to the co-occurrence
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of extremes relating to flooding and wind damage. GB is used as a case
study, which is subsequently extended to the European domain. From
this the following main conclusions can be drawn:

• A new flood severity index (FSI), to complement the SSI metric
for potential wind damage, is demonstrated to usefully represent
potential flooding.

• GB’s hydro-meteorological correlation ranges from 0.6–0.8 for
most timescales, with notable differences between wind gusts vs.
precipitation and wind gusts vs. river flow.

• Correlation drops significantly to 0.2–0.4 for impact-based mea-
sures focused on extremes (i.e., FSI, SSI).

• In a future climate, co-occurrence of most extreme events (i.e., FSI
and SSI both exceeding the 99th percentile) becomes roughly
threefold more frequent.

• Present day return periods of daily compound-wind flood events
are reduced from 16.3 to 4.7 years, which is very much less than
the 55.6 years expected if the two hazards occurred indepen-
dently.

• Across Europe the timescales at which correlations peak varies
depending on the local drivers of flood and wind damage.

This study presents the first large-scale application of hydrological
odelling to the question of flood and wind co-occurrence using both

he GLOFAS dataset and the UKCEH Grid-to-Grid models. Considering
ultiple timescales, and various pathways to the impact variables has

llowed for insights into the processes driving co-occurrence across
urope. If a single take-home message is desired, it is that it is critical to
epresent the relationship between flooding and extreme wind within
ny risk modelling framework for insurers or infrastructure providers.
his is already becoming a component of the UK General Insurers
tress Tests (BOE, 2022). The results also inform ongoing discussion
bout the appropriateness of climate data when these stress tests are
esigned (Albano et al., 2021; Qiu et al., 2022).
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Appendix A. Correlations in a different observational dataset

CAMELS-GB collates river flows, catchment attributes and catch-
ment boundaries from the UK National River Flow Archive together
with a suite of meteorological time series and catchment attributes,
covering a period from 1970–2015. The catchment daily averaged total
precipitation data are derived from CEH-GEAR (Keller et al., 2015)
and catchment daily averaged wind speeds are from the CHESS-MET
dataset (Robinson et al., 2016). Further details on CEH-GEAR and
CHESS-MET can be found in the relevant papers, but the key point
is these datasets provide gridded observations over the UK at 1 km
resolution, derived from observation-based datasets from the UK Met
Office and relevant river authorities in the UK’s devolved nations.

Similar correlations were found for CAMELS-GB to those seen in
Fig. 3a when using the 1980–2015 historical period (Fig. A.8a). We
note the correlation between wind speeds and daily total precipitation
is lower than seen for ERA5 by ∼0.1, and the relationship between river
flow and wind gusts is a bit stronger. The most noticeable different is
seen for the FSI and SSI correlations, where a strong decay is seen in
observations when aggregated to seasonal timescales.

The results are also similar when sub-setting to only use the 134
largest river catchments (i.e., the top 20%; Fig. A.8b). After subsetting
the relationship between FSI and SSI looks more similar to that seen in
ERA5 and GLOFAS in Fig. 3. Differences could be due to the locations
of river flow measurements available through CAMELS (rather than the
uniform approach taken when using ERA5 and GLOFAS) or due to the
more localised representation of physical processes available from the
observed datasets.

Further backward extensions were not possible due to trends found
in the early (i.e.,1970–1980) wind speeds and precipitation data. These
are believed to be due to limited earlier reporting as opposed to having

a physical based, but are beyond the scope of this paper and not shown.

https://cds.climate.copernicus.eu/#!/home
https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9
https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9
https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9
https://eip.ceh.ac.uk/
https://the-iea.github.io/cgfi-wind-flood/
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Fig. A.8. Spearman’s rank correlation between various metrics, at various timescales from 1 to 180 days and aggregated across GB with precipitation and wind speeds taken from
CHESS-MET and river flows taken from CAMELS-GB. Equal weighting is given to all grid boxes (as in Fig. 3). Shaded areas show two standard deviations of 2000 bootstrapped
samples (95% confidence) of the correlations. Details of datasets used are given in Table 1.
Fig. B.9. Spearman’s rank correlation between Rail losses due to wind and flood for (a) Number of events (b) Costs incurred. Computation on monthly (dots) and seasonal
(∼90-day, dashes) timescales, with black indicating p < 0.05 despite only data from 2006–2018.
𝜒

Appendix B. WRIID data quality

In other loss datasets, mis-categorisation of some losses is a recog-
nised issue. For instance, in the Association of British Insurers (ABI)
General Insurance Statistics, some pluvial inundation (surface water
flooding) is known by practitioners to be sometimes reported as wind
damage because it is associated with stormy weather; see Hillier et al.
(2015) for further details. This reporting artefact makes it difficult tov
reliably establish a correlation between flooding and extreme wind.
Such an artefact does not appear to be present in the WRIID dataset (see
Fig. B.9). In winter significant correlation is seen between flood and
wind damage (r𝑠 ∼ 0.5, p < 0.05), but in summer there is no demonstra-
ble relationship (Fig. B.9). It is difficult to imagine a reporting artefact
which might exist in winter and yet be avoided in summer. So, this
gives confidence that the winter-time relationships shown in Fig. 3c
are real and not explored further here.

Appendix C. Suitability of Spearman’s Rank correlation

By using ranks, Spearman’s Rank (r𝑠) minimises the influence of
the heavy-tailed marginal distributions typical of extremes, and also re-
duces sensitivity to the exact form of the metrics selected (e.g., whether
wind speeds are cubed or not). Namely, it allows for comparison of
results in the presence of non-linear relationships such as between me-
teorological variables and damage metrics. Whilst, r𝑠 is simple, familiar
and thus amenable for easy communication to varied stakeholders,
12
two variables 𝑋1 and 𝑋2 might be dependent and yet uncorrelated
in the extremes (i.e., asymptotically independent, e.g., Heffernan and
Tawn, 2004). Introduced by Coles et al. (1999), extremal correlation
(𝜒) and residual tail dependence (�̄�) are used to understand asymp-
totic behaviour; see Vignotto et al. (2021) for a fuller mathematical
description. 𝜒 presents the probability of one variable being extreme
given that the other one is extreme, whereas �̄� presents the strength of
the relationship in the tails of the distribution. The point of presenting
both of these statistics is that two variables can be dependent at the
same time as being asymptotically independent (�̄� < 1). It is common
to present 𝜒 and �̄� as estimates for different percentile thresholds, and
then visually inspect their behaviour as the thresholds become more
extreme.

For meteorological variables, precipitation and wind gusts in ERA5,
̄ is not converging towards 1, so the variables are asymptotically
independent, yet neither is �̄� obvious or rapidly nearing zero, so
dependency remains present a notable depth into the distributions tail.
This result holds for timescales from daily to monthly (Fig. C.10a–c).
Similar is true for the relationship between distributions of ERA5 wind
gusts and GLOFAS river flows (Fig. C.10d–f). This pattern continues
across the spectrum from weather to impact, including for monthly
Network Rail losses (not shown).

As there is no indication that correlation disappears moving from
the body into the tail of the data, r𝑠 is retained as the main statistic de-
ployed. These statistics have been computed using R’s taildep() function
from the extRemes package (Gilleland and Katz, 2016). Aggregated at
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Fig. C.10. Residual tail dependency analysis for ERA5 precipitation vs. ERA5 wind gusts (left) and GLOFAS river flows vs. ERA5 wind gusts (right) for daily (top) weekly (middle)
and monthly (bottom) timescales.

Fig. D.11. Verification of GLOFAS FSI metric when compared to the flood chronology from Black and Law (2004). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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GB level, <0.5% of days in the ERA5 data have zero precipitation, so
eros and tied ranks do not alter the results.

ppendix D. Performance of the FSI metric

To provide confidence that the FSI metric is able to reproduce
otable events from the historical record, the time series of FSI gen-
rated from GLOFAS is compared to a national web-based chronology
f hydrological events (Black and Law, 2004). The comparisons have
een made here for GLOFAS but very similar results are seen for FSI’s
omputed for CAMELS-GB (not shown).

Fig. D.11 shows where FSI events were captured within the time
eriod for which the flood chronology is available (1980–2020). The
SI metric picks up numerous small events where no flooding was
ecorded across GB (grey points in Fig. D.11). However, the FSI metric
aptures a large percentage of the winter floods recorded (28 out of 34
vents) with the FSI of these often exceeding the 95th percentile (green
oints). Events defined by FSI tend to last for a few days either side of
he reported flooding.

The FSI struggles to capture the summer flooding events. These
ften happen in very small, flashier catchments and may be difficult
or GLOFAS to represent. However, 19 out of 37 summer floods are
aptured by GLOFAS, which is a respectable proportion. As summer
looding was not the focus of the study, the reasons they are not
ffectively captured have not been investigated further.
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