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Abstract—Sea surface height anomaly (SSHA) induced by 

tropical cyclones (TCs) is closely associated with oscillations and is 

a crucial proxy for thermocline structure and ocean heat content 

in the upper ocean. The prediction of TC-induced SSHA, however, 
has been rarely investigated. This study presents a new composite 

analysis-based random forest (RF) approach to predict daily TC-

induced SSHA. The proposed method utilizes TC’s characteristics 

and pre-storm upper oceanic parameters as input features to 

predict TC-induced SSHA up to 30 days after TC passage. 
Simulation results suggest that the proposed method is skillful at 

inferring both the amplitude and temporal evolution of SSHA 

induced by TCs of different intensity groups. Using a TC-centered 

5°×5° box, the proposed method achieves highly accurate 

prediction of TC-induced SSHA over the Western North Pacific  
with root mean square error of 0.024m, outperforming alternative 

machine learning methods and the numerical model. Moreover, 

the proposed method also demonstrated good prediction 

performance in different geographical regions, i.e., the South 

China Sea and the Western North Pacific subtropical ocean. The 
study provides insight into the application of machine learning in 

improving the prediction of SSHA influenced by extreme weather 

conditions. Accurate prediction of TC-induced SSHA allows for 

better preparedness and response, reducing the impact of extreme 

events (e.g., storm surge) on people and property.    
Index Terms—Sea surface height anomaly, tropical cyclones, 

machine learning, random forest, composite analysis. 

I. INTRODUCTION 

ropical cyclone (TC) has strongly positive wind stress curl 

over the sea surface, which is an intensive forcing [1, 2]. 

The passage of the TC generates oscillation in the upper ocean, 

including mainly both baroclinic and barotropic modes [3, 4]. 

The isopycnal displacements involved in the thermocline, and 

the triggering of near-inertial oscillations in one spreading 

three-dimensional pattern, are related to the baroclinic mode  

[2]. The barotropic mode has a cyclonically rotating current 

field and is connected to the geostrophic sea surface depression 

of 20-30 cm [5]. Gradients presented in the TC-induced sea 

surface height (SSH) produce a time-dependent barotropic 

response [3]. Moreover, TC-generated SSH anomalies (SSHAs) 

has a considerable effect on the ocean’s dynamic and 

thermodynamic structure, as well as on regulating ocean-

atmosphere interaction at various spatial-temporal scales [6, 7]. 

The temporal evolution of the SSHA after the TC passage can 

be used to infer the changes in the thermocline and upper ocean 

heat content [8], which is a proxy to reveal propagations of 

planetary Kelvin and Ross waves [9-11]. Furthermore, TC-

induced SSHA plays a  vital role in explaining the mechanisms 

of marine ecology driven by TC wind pump [12, 13]. Despite 

of the importance, the accurate prediction of TC-induced SSHA 

remains a highly challenging task to be further explored.  

A few studies on SSHA prediction and TC observations have 

been carried out in recent years. For SSHA predictions, 

methods can be generally classified into physical-based and 

data-driven approaches. Physical-based approaches combine 

related physical and dynamical equations to calculate sea -level 

changes. For example, an Earth system model with a dynamic 

three-dimensional ocean was developed by Sriver et al. [14] to 

quantify the effect of observational constraints on thermosteric 

sea-level rise. A hydrological model was proposed by Chen et 

al. [15] to forecast the global mean sea level. A key issue 

associated with physical-based approaches lies in providing the 

initial conditions on the particular oceanic characteristics.  

On the other hand, data-driven approaches use the sea surface 

height records to model the latent relationship between the 

SSHA and environmental variables. For example, in the Eastern 

Equatorial Pacific, a  polynomial-harmonic model with the 

least-squares method was proposed to predict the gridded 

SSHA [16]. Along the mid-Atlantic, based on the empirical 

model decomposition, in the North Atlantic, a  multivariate 

autoregressive method was proposed to predict the seasonal 

SSHA variability [17]. Data-driven approaches can predict the 

SSHA very well with a lower demand of prior knowledge. 

 A number of novel TC observation approaches have also 

been proposed. For example, Horstman et al. [18] presented 

algorithms for retrieving high-resolution wind fields from 

synthetic aperture radar (SAR) data in TC conditions. Wang et 

al.[19] presented a brand-new scanning method, that uses three 

downward-pointing and conically scanning beams for a future 

spaceborne Doppler weather radar mission to capture 3-D wind 

fields of TCs. One spaceborne version of the velocity-azimuth 

display (VAD) method was proposed for wind field retrieval 

[20]. However, there is still a  lack of effective approaches to 

predict SSHA after TC passage. 

 The change of SSHA is continuous in both time and space 
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domains. Previous aforementioned studies have successfully 

predicted the smoothed SSHA, that is, this SSHA without 

considering specific extreme events, such as TCs. In other 

words, the amplitude of smoothed SSHA is very weak, while 

the intensive amplitude of SSHA is generated by the barotropic 

mode driven by TCs [3, 4]. Strong TC leads to a strong signal-

to-noise ratio of SSHA after the TC passage [8, 21]. The signal-

to-noise ratio associated with TC intensity varies significantly, 

resulting in an unbalanced distribution of TC-induced SSHA. 

Such unbalanced distribution in data  makes it difficult in 

predicting the non-linear relationship between SSHA and other 

environmental factors. Moreover, there is a lack of spatial and 

temporal continuity in data for TC occurrences from case to 

case, which makes predicting TC-induced SSHA more 

challenging. To the best of the authors’ knowledge, this issue 

has rarely been investigated using ML methods in studies 

before. As the SSHA is an important parameter in the study of 

ocean dynamics and marine ecology under the influence of TCs 

[6-12], it is essential to develop a straightforwa rd and robust 

method to predict the TC-induced SSHA. Above all, accurate 

prediction of TC-induced SSHA enables better response and 

preparation, reducing the impact of extreme events (e.g., storm 

surge) on people and property.  

In order to accurately predict the daily TC-induced SSHA 

and its temporal evolution, this study proposes a composite 

analysis-based random forest (RF) method. The main reason for 

employing the RF method is that it has been successfully 

applied in fields related to the ocean and climate change [22, 

23]. Composite analysis can effectively enhance the signal-to-

noise ratio by averaging values in a TC-centered box, which 

makes it easier for the RF method to learn from oceanic and 

atmospheric parameters. The performance of the proposed 

method is systematically evaluated for temporal evolution and 

spatial distribution of the area -averaged composite SSHA. The 

sensitivity of TC-centered box size on the prediction accuracy 

of the proposed method is also investigated. Then the proposed 

method is evaluated in two distinct geographical regions, e.g., 

the South China Sea (SCS) and the Western North Pacific 

subtropical ocean (WNPSNO). The study demonstrates the 

stable prediction performance of the proposed method over 

these two regions. Finally, the differences between the 

numerical model products and ML-based predictions are also 

discussed.  

II. DATA AND METHODS 

A. Study Area 

 Tropical cyclones frequently occur in the Western North 

Pacific (WNP). On average, more than a third of worldwide TC 

occurs in the WNP, with some of the strongest TC occurring in 

specific years. The study area, WNP, is defined as the area 

between 0 and 40 °N, 100 and 160°E (Fig. 1). To evaluate the 

performance of the proposed method in different geographical 

regions, we selected two regions where the most violent TCs 

occur, i.e., the SCS and the WNPSO [24, 25].  The SCS and the 

WNPSO are defined as the areas 10~25°N, 110~120°E, and 

15~25°N, 125~160°E, respectively. 

 

 

B. Data 

 The study period runs from 1998 to 2018. Three main data 

sets were used, and six upper-ocean parameters were extracted 

(Table I): 

 1) Observational data: daily altimeter satellite gridded sea 

level anomalies, with a spatial resolution of 0.25°×0.25°, are 

estimated by Optimal Interpolation and merging the 

measurements from multiple altimeter missions available (e.g., 

Jason-1, Jason-2, Jason-3, Sentinel-3A, and HY-2B). The SSH 

data can be retrieved from the EU Copernicus Marine 

Environment Monitoring Service (CMEMS). The Optimally 

Interpolated daily SST products, using the microwave data 

(MW) [26], with a spatial resolution of 0.25°×0.25°, are 

available from Remote Sensing Systems. Cloudy conditions 

have little effect on this study because the microwave has an 

advantage in penetrating clouds. 

 2) Reanalysis data: daily Global Reanalysis Multi-Ensemble 

Product GREP provides mixed layer depth (MLD), potential 

temperature, eastward current speed (U), and northward current 

speed (V). The reanalysis dataset has 75 levels in its vertical 

grid (from 0 to 5500m). The spatial resolution of each layer is 

0.25°×0.25°. The reanalysis data used in this study can be 

available from the CMEMS, which is widely used in ocean 

studies [27]. 

 
 3) Best TC-track data: the TC Best-track data were produced 

by the Japan Meteorological Agency (JMA) and obtained from 

the International Best Track Archive for Climate Stewardship 

(IBTrACS) archive [28]. The best-track data includes TC’s 

intensity, translation speed, the shortest radius of 30kt winds or 

greater, and TC-centered locations measured at a  6-h interval. 

C. Data Preprocessing and Composite Analysis 

The TC-induced SSHA is highly related to atmospheric and 

 
Fig. 1. The density of TC centers, with colors representing the number of TC 

centers at 6-h intervals from January 1998 to December 2018, and the spatial 
resolution is 0.1°×0.1°. The solid rectangle encloses the SCS; the dashed 

rectangle encloses the WNPSO. 

TABLE I 

UPPER-OCEAN FACTORS AND THEIR UNITES, SENSORS, AND BANDS 

Parameters Unite Sensors/Model Band 

SSH m Radar altimeter Ku-Band  

SST ℃ 
TMI, AMSR-E, 

AMSR2, WindSat, 

GMI 

L-Band  

U m/s Model _ 
V m/s Model _ 

MLD m Model _ 

T100 ℃ Model _ 

Note: ‘_’ means data assimilation of satellite and in situ observations. 
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oceanic variables. A total of nine variables, associated with TC 

characteristics and pre-storm upper-ocean conditions, were 

considered as input features (Table II). The first three variables 

related to TC are intensity (𝑉𝑚𝑎𝑥), translation speed of storms 

( 𝑉𝑡𝑟𝑎𝑛𝑠 ), and radius ( 𝑅30 ). The translation speed, i.e., 

𝑉𝑡𝑟𝑎𝑛𝑠 , for each TC was then calculated as the distance 

between neighboring TC-centered positions divided by 6h. To 

follow the Saffir-Simpson hurricane wind scale, the JMA data 

is converted from 10-min mean values to 1-min mean values by 

utilizing the Koba table [29]. The maximum 1-min sustained 

surface wind speed is represented by 𝑉𝑚𝑎𝑥 . 

The mean values of six predictors of the upper ocean from 

pre-storm 0 to 4 days are the other six input variables, denoted 

by 𝑀𝐿𝐷𝐴̅̅ ̅̅ ̅̅̅ ̅ , 𝑆𝑆𝐻𝐴̅̅ ̅̅ ̅̅ ̅ , 𝑆𝑆𝑇𝐴̅̅ ̅̅ ̅̅ ̅ , 𝑇100̅̅ ̅̅ ̅̅ ̅ , 𝑈𝑔𝑅𝑒𝑠𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and  𝑉𝑔𝑅𝑒𝑠𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ . The 

variable with an overline indicates the average of each variable 

over the five days before the TC. Among them, the 𝑀𝐿𝐷𝐴̅̅ ̅̅ ̅̅̅ ̅ is 

the MLD anomaly averaged within five days. Likewise, the 

𝑆𝑆𝐻𝐴̅̅ ̅̅ ̅̅ ̅  and 𝑆𝑆𝑇𝐴̅̅ ̅̅ ̅̅ ̅  are SSH anomaly and the sea surface 

temperature anomaly (SSTA) averaged over the same days, 

respectively. The 𝑇100𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ is the potential temperature anomaly 

at 100m below the water. 𝑈𝑔𝑅𝑒𝑠𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and 𝑉𝑔𝑅𝑒𝑠𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  are vertical 

shear of zonal current speed anomaly and vertical shear of 

meridional current speed anomaly, respectively.  

 
For the first time, Hart et al. [30] used the composite analysis 

to examine the SST response averaged based on a TC-centered 

5°×5° box during the TC passage. The signal-to-noise ratio is 

improved by the composite analysis, which reduces the 

fluctuation related to the mesoscale and sub-mesoscale [21, 31]. 

This study uses composite analysis to derive the average 

characteristics for each variable response in the upper ocean. 

For each upper-ocean variable, the climatological seasonal 

cycles were subtracted on each grid to obtain an anomaly. 

Regarding the response variables, the daily SSHA values 

from the 1st to the 30th days after the TC passage were 

considered. The climatological seasonal cycles on each grid  

were subtracted to produce the temporal evolution of the 30-

day SSHA values. The area-mean value of each oceanic 

variable was also averaged over the TC-centered 5°×5° box 

following the same approach described by [30]. If land exists in 

the TC-centered box, the invalid values were removed before 

determining the area -mean value of oceanic variables. 

 

D. Proposed Method 

RF is one of the best-known ensemble learning algorithms 

that combines a set of decision trees (DTs) to construct a  

stronger predictor by exploiting the idea of bootstrap 

aggregation [32]. By training multiple DTs with randomly 

sampled subsets of training data  with repetition, RF can 

effectively reduce the noise within the training data and achieve 

greater generalization ability. RF is popular due to its good 

performance and less hyperparameter tuning. Moreover, the RF 

method has been successfully used in oceanic and atmospheric 

fields [22, 33]. Thus, the RF was chosen to predict the TC-

induced SSHA, and TC characteristics and pre-storm oceanic 

conditions were used as the input features (i.e., 𝑉𝑚𝑎𝑥  , 

𝑉𝑡𝑟𝑎𝑛𝑠 , 𝑅30 , 𝑀𝐿𝐷𝐴̅̅ ̅̅ ̅̅̅ ̅ , 𝑆𝑆𝐻𝐴̅̅ ̅̅ ̅̅ ̅ , 𝑆𝑆𝑇𝐴̅̅ ̅̅ ̅̅ ̅ , 

𝑇100𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅ ,  𝑈𝑔𝑅𝑒𝑠𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and  𝑉𝑔𝑅𝑒𝑠𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ). The diagram of the data 

processing flow is given in Fig. 2. 

The collected data (17773 points in total) were divided into 

two groups, with 2/3 of them for training and the remaining 1/3 

for testing. The data that was used for training the model by 

dividing into two subgroups: 60% for training and 40% for 

validation.  To avoid overfitting, a grid search method of 5-fold 

cross-validation was employed in order to determine the major 

parameters of the RF model. The test set provides an unbiased 

evaluation of the model’s performance because it is not used 

during the training stage. Then the RF model was implemented 

to simulate the temporal evolution of SSHA influenced by TCs. 

TABLE III 

INPUT FEATURES ABBREVIATION AND THEIR EXPLANATIONS 

Abbreviation Explanations 

𝑉𝑚𝑎𝑥 Maximum 1-min sustained surface wind speed of TC 

𝑉𝑡𝑟𝑎𝑛𝑠 Translation speed of TC 

𝑅30 The shortest radius of 30kt winds or greater of TC 

𝑆𝑆𝐻𝐴̅̅ ̅̅ ̅̅ ̅ 
Average of sea surface height anomaly  

within pre-storm five days  

𝑆𝑆𝑇𝐴̅̅ ̅̅ ̅̅  ̅
Average of sea surface temperature anomaly  

within pre-storm five days 

𝑇100𝐴̅̅ ̅̅ ̅̅ ̅̅  ̅
Average of potential temperature anomaly at 100m 

within pre-storm five days 

𝑀𝐿𝐷𝐴̅̅ ̅̅ ̅̅ ̅̅  
Average of mixed layer depth anomaly  

within pre-storm five days 

𝑈𝑔𝑅𝑒𝑠𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
Average of vertical shear of zonal current speed anomaly 

within pre-storm five days 

𝑉𝑔𝑅𝑒𝑠𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ̅
Average of vertical shear of meridional current speed 

anomaly within pre-storm five days 

 

  

Fig. 2.  Schematic diagram of data processing workflow. The subscript, i.e., t1, 
t2, …, t30, representing the 1

st
, 2

nd
, 3

rd
, …, 30

th
 days after TC passage, 

respectively. SSHAt1, SSHAt2, SSHAt3, …, and SSHAt30 represent the TC-

induced SSHA from the 1
st
, 2

nd
, 3

rd
, …, 30

th
 days after TC passage, respectively. 
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E. Model Evaluations 

To evaluate the effectiveness of the RF method, we 

compared it with the following three mainstream approaches, 

namely, linear regression (LR) [34], multilayer perceptron 

(MLP) [35], and eXtreme Gradient Boosting (XGBoost) [36]. 

The performance of these machine learning methods was 

evaluated using the mean absolute error (MAE), the root of 

mean squared error (RMSE), and the coefficient of 

determination (R2) on the independent test set. The error 

formulation and performance metric were calculated as follows: 

 

𝑅2 =  1 −  
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑁
𝑖=1

∑ (𝑂𝑖 − 𝑂)2𝑁
𝑖= 1

                          (1) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑂𝑖 − 𝑃𝑖)2

𝑁

𝑖=1

                    (2)  

𝑀𝐴𝐸 = 
1

𝑁
∑ |𝑂𝑖 − 𝑃𝑖|

𝑁

𝑖=1

                           (3) 

 

where 𝑂𝑖  is the value of an observed sample, 𝑃𝑖  is the value of 

in a predicted sample, 𝑂̅ is the mean by calculating the sum of 

observations by dividing the number of samples, 𝑃̅ is the mean 

by calculating the sum of predictions by dividing the number of 

samples, 𝑁 is the total number of samples, and 𝑖 =  1,2, … , 𝑁 . 

Here, the smaller the MAE and RMSE the better 

performance predicted, while the R2 is the opposite. 

III. RESULTS 

A. Model Performance on Prediction of TC-induced SSHA 

Fig. 3 displays the scatterplots of observed and predicted 

SSHA for different days using the RF method, and Table III 

summarizes the metrics for the daily prediction of different 

machine learning methods. The results show that MLP, 

XGBoost, and RF offer comparable performances in predicting 

the SSHA of the 1st day after TC passage. On the 9th day after 

TC passage, the results of XGBoost and RF become very close 

and are better than LR and MLP. Starting from the 17th day, the 

predicted SSHA by RF becomes more accurate than LR, MLP, 

and XGBoost. Its R2, i.e., 0.81 and 0.74 for post-storm the 17th 

and 25th days, are greater than that of LR, MLP, and XGBoost. 

Table III also shows that the long-term prediction stability of 

the RF method is better than that of the LR, MLP, and XGBoost. 

Thus, the RF is better suited to capturing this non-linear 

relationship between TC-induced SSHA and predictors. 

To evaluate the RF model’s performance on SSHA induced 

by TCs of different categories, we quantified these metrics (i.e., 

MAE, RMSE, and R2) of predicted SSHA for TCs of different 

intensities (Fig. 4). In this study, the categories of TCs are 

classified by the Saffir-Simpson scale, i.e., TS: tropical storm 

(17.5m/s < the maximum sustained wind speed 𝑉𝑚𝑎𝑥  < 33 

m/s), H1: category-1 hurricane, …, H5: category-5 hurricane, 

H1-H2: category-1--2 hurricane (33 m/s≤  𝑉𝑚𝑎𝑥  < 50m/s), 

H3-H5: category-3--5 hurricane ( 𝑉𝑚𝑎𝑥  ≥ 50m/s), H1-H5: 

category-1--5 hurricane. It should be noted that the term “all 

storms” refers to all tropical storms and hurricanes. 

 

 
It can be seen from Fig. 4 that the RF method always 

performs better in predicting the near-future TC-induced SSHA 

values than the far-future values, regardless of the categories of 

TCs. Within ten days after the TC passage, for TCs of different 

intensities, the accuracy of the predictions made by RF is 

comparable. However, between 10 and 30 days, the accuracy of 

predictions made by the RF on TCs of various intensities begins 

to diverge. Based on the MAE and RMSE, the prediction 

accuracy tends to decrease as the TC intensity increases. For 

TCs of H3-H5, the MAE and RMSE are the highest. This may 

 

Fig. 3.  Scatterplots of observed and predicted TC-induced SSHA for different 

days using the RF method. (a), (b), (c), and (d) Are the 1
st
, 9

th
, 17

th
, and 25

th
     

days after the TC passage, respectively. The color represents the density of the 

number of samples. 

TABLE III 
DAILY PREDICTION RESULTS (MAE, RMSE AND R2

) USING DIFFERENT 

MACHINE LEARNING METHODS  

Method Metrics 
Daily 

1 9 17 25 

LR 
MAE(m) 0.009 0.020 0.027 0.032 
RMSE(m) 0.012 0.026 0.034 0.040 

R2 0.970 0.850 0.730 0.610 

MLP 

MAE(m) 0.008 0.019 0.026 0.030 

RMSE(m) 0.011 0.025 0.033 0.038 
R2 0.970 0.860 0.750 0.650 

XGBoost 

MAE(m) 0.008 0.017 0.023 0.026 

RMSE(m) 0.010 0.022 0.003 0.034 
R2 0.980 0.890 0.790 0.720 

RF 
MAE(m) 0.008 0.016 0.021 0.024 
RMSE(m) 0.010 0.022 0.029 0.033 

R2 0.970 0.890 0.810 0.740 

 

 

Fig. 4.  Assessment of predicted composite area-mean SSHA considering TCs 
of different categories: TS (blue), H1-H2 (yellow), H3-H5 (green), H1-H5 (red), 
and all storms (purple). (a), (b) and (c) Represent the MAE, RMSE and R2

 for a 

TC-centered 5°×5° box, respectively. Abbreviations: TS, tropical storm; H1-
H2, category 1-2 hurricane; H3-H5, category 3-5 hurricane; and H1-H5, 
category 1-5 hurricane; all storms, all tropical storms and hurricanes.  
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be because as the TC intensity increases, the amplitude of TC-

induced SSHA is more prominent. The temporal evolution of 

composite area-mean SSHA for observations and predictions is 

consistent with previous research (Fig. 5) [8]. 

 

B. Sensitivity Analysis for Various TC-centered Box Sizes 

 In composite analysis, TC-centered box size may affect the 

value of area-mean SSHA. To examine the sensitivity of the RF 

method with respect to the various box sizes, we replaced the 

TC-centered 5°×5° box to other sizes, including 2°×2°, 3°×3°, 

4°×4°, 6°×6°, …, 10°×10° and reran the RF model. Then RF 

model performance was evaluated with these TC-centered 

boxes. Independent of the metrics used, the model performance 

varies in similar patterns as a function of time relative to TC 

passage for all box sizes (Figs. 6a-6c). Another interesting 

finding from Fig. 6 is that for a fixed TC-centered box size, the 

MAE and RMSE of the far-future SSHA predictions are always 

greater than the near-future predictions, while R2 is always 

lower. This is because the correlation between the near-future 

SSHA and input features is higher than that of the far-future 

SSHA. 

 
 Likewise, the temporal evolutions of these metrics are very 

similar, independent of the TC-centered box size and TC 

intensity groups (Fig. 7). As expected, TC-induced SSHA 

amplitude by intensive TCs is more significant for a fixed box 

size, and the corresponding predicted accuracies are less. 

Moreover, the amplitudes of SSHA generated by TCs of 

category-3-5 hurricane intensity are the strongest, and that of 

SSHA produced by TCs of tropical storm intensity is the 

weakest (Fig. 8). This amplitude of TC-induced SSHA is more 

evident for a TC-centered box size smaller than 5°×5°. This is 

due to the fact that the increase in the box size will lower the 

amplitude of TC-induced SSHA as a larger TC-centered box 

covers greater regions that may not be affected by the TC, 

leading to the area-mean value being weaker. Despite the fact 

that the RF method fits better on the relatively weak amplitude 

of TC-induced SSHA, a 5°×5° box size may be a suitable trade-

off to balance the model performance and the amplitude of TC-

induced SSHA.  

 

C. Evaluation for Spatial Distribution of TC-induced SSHA 

To evaluate the spatial distribution of predictions, the same 

metrics were quantified. To make the comparison of predictions 

and observations clearer, resampling was implemented per 20 

TC-centered points averaged along the latitudinal direction 

from south to north. The p-values were calculated to show the 

significance level between predictions and observations by 

using a Student’s t-test.  

As one can see from Fig. 9, the performance of the proposed 

method on the SSHA of the 1st day after TC passage in terms of 

MEA, RMSE, and R2 are 0.002m, 0.003m, and 0.98, 

respectively; the prediction performance on the SSHA of the 9th 

day after TC passage are MAE=0.004m, RMSE=0.005m, and 

R2=0.95; the prediction performance on the SSHA of the 17th 

day are MAE=0.005m, RMSE=0.006m, and R2=0.92; the 

prediction performance on the SSHA of the 25th day after TC 

passage are MAE=0.005m, RMSE=0.006m, and R2=0.89. The 

statistical analysis results show that for all four time periods, 

the calculated p-values are less than 0.001. This suggests a 

significant correlation exists between the predicted values made 

by the RF method and observed values in the spatial distribution. 

The averaged amplitudes of observed SSHA in the study area 

on the 1st, 9th, 17th, and 25th days after tropical cyclones are -

0.0194m, -0.0269m, -0.0221m, and -0.0161m, respectively. For 

a specific day after TC passage, the RMSE is much lower than 

the observed mean value of SSHA influenced by tropical 

cyclones. In addition, the results show that the amplitude of the 

TC-induced SSHA becomes weaker as time progresses.  

Regarding the recovery of SSHA after the TC passage, both 

observations and predictions show a consistent recovery trend 

 

Fig. 5. (a) Temporal evolution of composite area-mean SSHA for a TC-centered 
5°×5° box in association with passage of TCs based on the observations used 
in the testing stage. Error width are calculated as the standard deviation divided 
by the square root of the number of observations of the test set (i.e., standard 

error of the mean) and are shown by the width of the blue shading and green 
shading for TS and H3-H5 TCs, respectively. (b) As in (a), but from the 
predictions. 

 

 

 

Fig. 6.  Evaluation for the test set based on different TC-centered box sizes. (a), 

(b) and (c) Represent MAE, RMSE, and R2
, respectively. The solid lines with 

circles of different colors represent different TC-centered box sizes, i.e., 2°×2°, 
3°×3°, 4°×4°, 5°×5°, 6°×6°, 7°×7°, 8°×8°, 9°×9°, and 10°×10°. 

 

 

Fig. 7. (a), (d), (g) As in Fig. 4a, and (b), (e), (h) as in Fig. 4b, and (c), (f), (i) 
as in Fig. 4c, but for different TC-centered box sizes, i.e., 2°×2°, 3°×3°, 4°×4°. 
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(Fig. 9).  

 

D. Model Performance for the SCS and the WNPSO  

The performance of the proposed method is further evaluated 

based on the data collected in the SCS and WNPSO areas. In 

this example, the performance was measured in terms of MAE, 

RMSE and R2 calculated based on the prediction results on the 

1st, 9th, 17th, and 25th days’ SSHA after TC passage (Table IV), 

with the TC-centered 5°×5° box.  

For the 1st, 9th and 17th days after the TC passage, R2 for the 

WNPSO is 0.97, 0.88, and 0.77, respectively, better than for the 

SCS is 0.95, 0.81, and 0.73. The MAE and RMSE in the SCS 

are better than in the WNPSO. The MAE in the SCS achieves 

0.007m, 0.014m, 0.017m, and 0.17m for the 1 st, 9th, 17th, and 

25th days, respectively, and are better than in the WNPSO. As 

expected, both RMSE and MAE gradually increase, and R2 

decreases in the WNPSO. Interestingly, it is observed in the 

SCS that MAE and RMSE begin to level off after the 9 th day, 

as confirmed in Fig. 10. 

 

 

 

 

 

 

 

 

 
With different TC-centered boxes (i.e., 2°×2°, 3°×3°, 4°×4°, 

and 5°×5°), we also calculated the metrics to quantify the 

performance of the RF method in predicting the temporal 

evolution of SSHA produced by TCs of different intensity over 

these two regions. For the SCS, the evolutions of MAE and 

RMSE have a similar pattern, independent of the TC-centered 

box size (Fig. 10). Both the RMSE and MAE increase rapidly 

from the 1st day to the 14th days after TC passage, followed by 

both leveling off. The predictions for TCs of category H1-H2 

have the highest RMSE and MAE, followed by TCs of category 

H1-H5. The RF’s performance shows a modest dependence on 

TC intensity in terms of R2. 

 

Fig. 8.  (a), (c), (e) As in Fig. 5a, and (b), (d), (f) as in Fig. 5b, but for different 

TC-centered box sizes, i.e., 2°×2°, 3°×3°, 4°×4°, respectively. 

 

 

 

Fig. 9. The estimation of TC-induced SSHA for a TC-centered 5°×5° box along 
the latitudinal direction. Yellow solid lines denote observed TC-induced SSHA, 

while the blue solid lines denote predicted TC-induced SSHA. (a), (b), (c), and 
(d) Are the 1

st
, 9

th
, 17

th
, and 25

th
 days after the TC passage, respectively.  

TABLE IV  
DAILY PREDICTION RESULTS (MAE, RMSE AND R

2
) FOR DIFFERENT REGIONS 

Regions Metrics 
Daily 

1 9 17 25 

 SCS 

MAE(m) 0.007 0.014 0.017 0.017 

RMSE(m) 0.010 0.020 0.024 0.022 
R2 0.950 0.810 0.730 0.750 

WNPSO 
MAE(m) 0.008 0.017 0.023 0.027 
RMSE(m) 0.010 0.023 0.031 0.036 

R
2
 0.970 0.880 0.770 0.680 
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In the WNPSO, the evolutions of these metrics exhibit a  

consistent pattern, independent of the box size (Fig. 11), and are 

similar to that shown in Figs. 4 and 7. For a fixed box size, 

predictions for TCs of category H1-H2 achieve the lowest MAE, 

RMSE, and the lowest R2. Moreover, the metrics were also 

improved by increasing the box size and are consistent with that 

shown in Fig.10.  Furthermore, the highest RMSE and MAE for 

the predictions in the SCS were observed to be from TCs of 

category-1-2 hurricane, while the lowest of those in the 

WNPSO were found.  

IV. DISCUSSIONS  

Experimental results presented in this section have shown 

that the proposed method could precisely predict the amplitude 

of TC-induced SSHA, with satisfactory robustness in both 

temporal and spatial domains. In addition, a sensitivity analysis 

showed that the performance of the RF method presents better 

than a TC-centered larger box size. Furthermore, the proposed 

method was evaluated in two different regions, i.e., the SCS and 

the WNPSO, and showed strong stability over both regions, 

though slight variability in predictions of TC-induced SSHA 

was observed for TCs of varying intensity groups. Finally, a  

comparison between the numerical model and the RF method 

showed that predictions of they are comparable and that the 

latter even outperforms the former in the short-term predictions.  

To understand the differences between machine learning-

based predictions and physical model-based simulations [37-

39], a  comparison between a typically numerical product and 

observed SSHA after the TC passage. The numerical data for 

sea surface height was produced from the daily Global 

Reanalysis Multi-Ensemble Product GRE, with a spatial 

resolution of 0.25°×0.25°, which is available from the CMEMS. 

With the TC-centered 5°×5° box, the procedures for generating 

the testing set of numerical data are the same as producing the 

testing set of observed data. The Student’s t-test a lso was also 

used to calculate the p-value in assessing whether the 

differences between the observed values and numerical values 

are statistically significant. 

The results show that for the 1st day, the MAE=0.009m, 

RMSE=0.011m, and R2=0.66; for the 9th, 17th, and 25th days 

after TC passage, the MAE=0.005m, RMSE=0.006m, and 

R2=0.91 (Fig. 12). The statistical analysis shows that the p-

values are less than 0.001 for all four periods. This indicates 

that numerical values are significantly correlated with the 

observed values in the spatial distribution of the TC-induced 

SSHA. For the 1st, 9th, and 17th days, the predictions of the RF 

method outperform that of the numerical model. The predicted 

SSHA for the RF method still is comparable to that for the 

numerical models on the 25 th day (Fig. 9).  

 
The performance of the numerical model is time-independent, 

except for the 1st day. The RF methods' performance is time-

dependent because the pre-storm oceanic averaged variables are 

used as input features. Previous studies have also demonstrated 

that ML-based methods exhibit superior performance in short-

term predictions when compared to long-term predictions [40, 

41]. It can be observed that both types of approaches have their 

own advantages in predicting the temporal evolution of TC-

induced SSHA in terms of the time scales. 

The metrics (i.e., MAE, RMSE, and r) evaluated on the 

predicted TC-induced SSHA have shown that uncertainties are 

more evident for strong TCs than for weak TCs. Furthermore, 

residuals quantified between the observed and predicted values 

show that observed SSHA is stronger than predicted SSHA for 

TCs of TS intensity, while the SSHA generated by TCs of H1-

H5 intensity is stronger in the predictions than the observations 

 

Fig. 10. (a), (d), (g), (j) As in Fig. 4a, and (b), (e), (h), (k) as in Fig. 4b, and (c), 
(f), (i), (l) as in Fig. 4c, respectively, but for the SCS. 

 

 

Fig. 11.  (a), (d), (g), (j) As in Fig. 4a, and (b), (e), (h), (k) as in Fig. 4b, and (c), 
(f), (i), (l) as in Fig. 4c, respectively, but for the WNPSO. 

WNPSO. 
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(Fig. 12). This suggests that the RF method underpredicted the 

SSHA for TCs of tropical storm intensity and overpredicted it 

for TCs of hurricane intensity, due to changes in the signal-to-

noise ratio [21].  

 
This study found that the prediction uncertainties vary with 

which region the model is applied. For example, TCs of 

category-1-2 hurricane for the predictions of TC-induced SSHA 

has the highest RMSE and MAE in the SCS, which have the 

lowest RMSE and MAE in the WNPSO. On the other hand, the 

evolutions of these metrics are inconsistent in these two regions, 

whereas they coincide well in the WNPSO and the whole study 

area. As the SCS is a marginal sea, the passage of TCs is 

influenced by the topography of the area, which in turn may 

change some TC characteristics (e.g., intensity and translation 

speed). At the same time, changes in TC-induced SSHA can be 

significant in nearshore regions. However, in open sea (e.g., 

WNPSO), TC movement is not controlled by such topography 

[12, 42-44]. These uncertainties in ML-based predictions may 

therefore be potentially influenced by the geographical location, 

in addition to being controlled by TC characteristics and pre-

existing ocean factors.  

Further improvements are still needed for the proposed 

method. First, adding more training data of the extreme SSHA 

values induced by some TC cases for model training might 

further improve the model performance. Previous studies have 

reported that such TC (Typhoon Damrey, 2005) can even 

trigger an intensive amplitude of SSHA up to -0.25m along the 

TC track for the 1st day after the TC passage [12]. The low 

occurrence of such TC cases per year, with only a few samples, 

leads to reduced generalization ability of the ML methods. 

Second, the reason for the underpredicted SSHA for weak TCs 

and the overpredicted SSHA for strong TCs would be further 

explored. Moreover, coupling the ML methods and numerical 

models to improve TC-induced SSHA predictions would be a 

promising attempt. 

 

V. CONCLUSIONS 

 In this study, a composite analysis-based RF method is 

proposed to infer the daily TC-induced SSHA field, and it is 

evaluated in the WNP where TCs are the most active. In this 

proposed method, a composite analysis is employed to capture 

the amplitude of the TC-induced SSHA. The proposed method 

considers atmospheric and oceanic parameters as input features 

to weigh the contributions of both TC characteristics and pre-

storm ocean conditions to the TC-induced SSHA. The results 

of the experiment demonstrate the effectiveness of the proposed 

method in accurately predicting the amplitude of the TC-

induced SSHA. The method displays satisfactory robustness in  

both the temporal and spatial domains. Moreover, the RF 

method was found to be better to a larger TC-centered box. 

Furthermore, the proposed method was examined in two 

distinct regions and displayed strong stability across both 

regions. Eventually, a  comparison between the numerical 

model and the machine learning method revealed that the latter 

outperformed the former in short-term predictions, with the two 

methods producing comparable results in general. In short, the 

study provides insight on the application of machine learning to 

improve the prediction of SSHA influenced by extreme weather 

conditions. 

 

Fig. 12. (a), (b), (c), and (d) As in Figs. 9a, 9b, 9c, and 9d, respectively, but the 

red solid lines denote the numerical model. 

 

Fig. 13.  (a) Temporal evolution of composite area-mean SSHA for a TC-

centered 5°×5° box in association with passage of TCs for TS intensity based 
on predictions and observations used in the testing stage. Error width are 
calculated as in Fig.5a and are shown by the width of the blue shading and 

yellow shading for observations and predictions, respectively. (b) As in (a), but 
for the TCs of H1-H5 intensity. (c) Predicted residuals are calculated by 
subtracting the predicted values from observed values. The yellow and blue 
represent the predicted residuals for TS and H1-H5 intensities, respectively. 
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