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CAN PRICE COLLARS INCREASE INSURANCE LOSS COVERAGE?

By Indradeb Chatterjee, MingJie Hao, Pradip Tapadar
and R. Guy Thomas

abstract

Loss coverage, defined as expected population losses compensated by insurance, is a public

policy criterion for comparing different risk classification regimes. Using a model with two risk-

groups (high and low) and iso-elastic demand, we compare loss coverage under three alternative

regulatory regimes: (i) full risk-classification (ii) pooling (iii) a price collar, whereby each insurer

is permitted to set any premiums, subject to a maximum ratio of its highest and lowest prices for

different risks. Outcomes depend on the comparative demand elasticities of low and high risks.

If low-risk elasticity is sufficiently low compared with high-risk elasticity, pooling is optimal; and

if it is sufficiently high, full risk classification is optimal. For an intermediate region where the

elasticities are not too far apart, a price collar is optimal, but only if both elasticities are greater

than one. We give extensions of these results for more than two risk-groups. We also outline

how they can be applied to other demand functions using the construct of arc elasticity.
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1 Introduction

Restrictions on risk classification are common in retail insurance markets, usually in
the form of bans on the use of particular variables (e.g. gender, race, genetic tests).
Restrictions of this type can align insurance practice with social norms which deprecate
discrimination on particular variables. But the use of deprecated variables is not the
only public policy issue with risk classification. Another concern is the equity of a wide
dispersion in prices for different risks, irrespective of the particular underlying variables
which it might reflect; and in particular, the problem of unaffordable insurance for higher
risks. For this type of concern, piecemeal restriction of specific variables seems an indirect
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2

and hard-to-calibrate form of regulation. Also, if insurers can use other variables which
are correlated with the banned ones, the effect of the regulation can be partly undone,
unless more prescriptive regulation requires estimation procedures which neutralise this
effect (Pope and Sydnor (2011), Lindholm et al. (2021)).

A potentially more direct way of addressing equity concerns is to set an explicit limit
on the dispersion of prices for different risks, via what we call a price collar. A price collar
(sometimes called “partial community rating”) is a maximum ratio, say κ, for the highest
and lowest prices an insurer may charge for different risks. A price collar restricts only
an insurer’s relative prices, not the absolute level. It can be used either in addition to,
or instead of, limits on specific variables. One example is the Affordable Care Act in the
US, which permits differentiation by a factor of up to 1.5× for tobacco use and 3× for
age (and no other factors except coverage tier, geography, and number of dependants).

In this paper, we abstract from the reference to specific variables and consider a price
collar which limits the overall dispersion of an insurer’s prices. The collar regime, which
can also be described as partial risk classification, represents a compromise approach, in
between full risk classification (where prices are fully differentiated for individual risks,
which we assume are fully observable via insurers’ underwriting procedures), and pooling
(where all risk classification is banned and each insurer sets a single price, the same for
all risks).

1.1 Loss coverage

A price collar can potentially ameliorate equity concerns, but policymakers also need
to consider its efficiency consequences, in particular the adverse selection which may
be induced. We take a nuanced view of this: we argue that whilst excessive adverse
selection is a concern, a modest degree of adverse selection can actually increase efficiency,
if it increases what we call “loss coverage”. This concept has been described elsewhere
(Thomas (2008, 2009, 2017); Hao et al. (2016, 2018, 2019), but it may remain unfamiliar
to many readers; so we now review the rationale, in the specific context of a price collar.

The usual story about adverse selection runs as follows. Compared to fully risk-
differentiated prices, the imposition of a price collar raises prices for low risks and lowers
prices for high risks. Low risks buy less insurance, and high risks buy more (adverse
selection). The weighted average price paid for insurance across the whole market rises.
Also, because high risks are typically less numerous than low risks, the number of risks
insured falls. This combination of a rise in average price and fall in demand is usually
seen as a bad outcome, both for insurers and for society.

However, the social purpose of insurance is to compensate the population’s losses (not
to sell “coverage” indiscriminately, with no regard for any prospect of loss). Insurance of
one high risk contributes more in expectation to this objective than insurance of one low
risk. This suggests that public policymakers might welcome increased purchasing by high
risks, except for the usual story about adverse selection.
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The usual story about adverse selection overlooks one point: with adverse selection,
expected losses compensated by insurance – a quantity we term “loss coverage” – can
be higher than with no adverse selection. The rise in weighted average price when a
price collar is imposed reflects a shift in coverage towards higher risks. From a public
policymaker’s viewpoint, this means that more of the “right” risks (i.e. those more likely
to suffer loss) buy insurance. If this shift in coverage is large enough, it can more than
offset the fall in numbers insured, so that loss coverage is increased. We argue that
where adverse selection leads to higher loss coverage – that is, more risk being voluntarily
transferred and more losses being compensated – then from society’s perspective, this
should be seen as a good outcome from adverse selection. Formally, we define loss coverage
as:

Loss coverage = Expected losses compensated by insurance (1.1)

and then we argue that a policymaker should prefer risk classification schemes which
generate higher loss coverage for the population as a whole (note: not necessarily the
same as higher number of persons insured, irrespective of their individual risks).

Another way of putting this is that a public policymaker designing a risk classification
scheme in the context of adverse selection faces a trade-off between insurance of the “right”
risks (those more likely to suffer loss), and insurance of a larger number of risks. The
optimal trade-off depends on demand elasticities of high and low risks. The concept of
loss coverage quantifies this trade-off, and provides a metric for comparing the efficacy
of different risk classification schemes in facilitating compensation for the losses of the
population as a whole.1

Previous work (Hao et al. (2016, 2018)) used models of demand elasticity for high and
low risks to compare loss coverage for the polar cases: full risk classification (where prices
fully reflect individual risks) and pooling (where all risk classification is banned). This
led to results as sketched in Figure 1. In the left-hand region of the parameter space (i.e.
low demand elasticity for low risks compared with high risks), pooling gives higher loss
coverage; and in the right-hand region, full risk-classification gives higher loss coverage.
It is natural to wonder if there might be an intermediate region where a price collar – a
compromise between pooling and full risk-classification – gives higher loss coverage than
either of the two polar cases. That possibility is the subject of this paper. To anticipate
our main conclusion, the answer is yes, but only if demand elasticities for both high and
low risks are greater than 1.

1For a toy example illustrating the arithmetic of loss coverage for a small group of risks, see section
2 of Hao et al. (2018) or https://blogs.kent.ac.uk/loss-coverage/improving-insurance-with-some-adverse-
selection/.
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Figure 1: Regions where loss coverage is higher for pooling and full risk-classification.

1.2 Literature Review

This paper is related to recent literature on State-level health insurance exchanges estab-
lished in the United States under the Affordable Care Act (and earlier legislation in some
States), which all involve some form of price collar (Ericson and Starc (2015), Mahoney
and Weyl (2017), Einav et al. (2019), Geruso et al. (2021)). These papers all focus on the
specific context of US healthcare, and so incorporate many institutional constraints and
details which we omit: a fixed width of collar (in contrast, our primary focus is on the
effect of varying the collar), risk adjustment, premium subsidies for insurance purchase
and penalties for non-purchase, etc. One of the conclusions is that demand elasticity on
the healthcare exchanges for younger people (i.e. lower risks) appears empirically to be
about twice that for older people (i.e. higher risks); and therefore that if subsidies were
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differentiated by age (higher to younger people, rather than age-independent subsidies as
under the Act), this could increase enrolment (Ericson and Starc (2015)), and represents
a more effective and flexible instrument for this purpose than risk adjustment (Einav
et al. (2019)). This is broadly consistent with our results: if demand elasticity is high for
low risks compared with high risks, more differentiated prices tend to increase coverage
(and loss coverage). However the details of our analysis differ, in that we assume the pol-
icy criterion is to maximise loss coverage (risk-weighted demand), not numbers insured
(un-weighted demand).

To illustrate the difference, if each high risk has two times the expected losses of
each low risk, then on our criterion, the policymaker is indifferent between coverage of
one high risk or two low risks; but in the other papers just cited, the policymaker is
indifferent between coverage of one high risk and one low risk. In the healthcare example,
our objective amounts to increasing (expected) coverage of sickness, rather than coverage
of persons irrespective of their probability of sickness. We do not say that prioritising
coverage of sickness over coverage of persons is the only reasonable preference, but we do
say that it is at least arguable.2

Einav et al. (2019) recognise the point when they note that their suggestion of a
move from risk adjustment and uniform premium subsidies to less risk adjustment and
more risk-differentiated subsidies, whilst increasing enrolment, could also make higher
risks worse off; to address this, they also suggest adding a Pareto-type restriction on the
policy change (i.e. the effective prices faced by high risks, after the move to less risk
adjustment and more differentiated subsidies, must be no higher than before the change).
The restriction ensures that the policy change increases enrolment for low risks, and also
does not reduce enrolment for high risks; in our terms, this ensures that the policy change
increases loss coverage. But it does not necessarily maximise loss coverage.

The contribution of this paper is to analyse market outcomes over the full parameter
space for demand elasticities for high and low risk-groups (iso-elastic for each risk-group);
and over the full feasible range for a price collar, from complete pooling to full risk-
classification. The paper also represents a natural extension of Hao et al. (2018), which
considered only the polar cases of full risk-classification and pooling, and not the inter-
mediate possibilities under a price collar.

2Another reasonable policy objective might be to maximise utilitarian social welfare, defined as ex-
pected utility for a random member of the population behind a Rawlsian veil of ignorance that screens off
knowledge of one’s risk type (Hoy (2006)). But the practical difficulty with this is that utility functions
are idiosyncratic to each individual, and unobservable by the policymaker. Furthermore, at least for
same iso-elastic demand for all risk-groups, it can be shown that ranking risk-classification schemes by
loss coverage will always give the same ordering as ranking by utilitarian social welfare (Hao et al. (2019).
In this sense, loss coverage can be thought of as an observable proxy measure for expected utility.
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2 Political And Regulatory Constraints

By “political constraints”, we mean certain general notions of fairness and proportionality,
which are unlikely to be explicitly stated in insurance regulations, but may nevertheless
constrain both the actions of regulators and insurers’ response to those actions. By “reg-
ulatory constraints”, we mean rules about risk-classification which are explicitly stated in
insurance regulations (such as the rules imposing a price collar). This section discusses
these two types of constraint.

2.1 Political Constraints

The main role of “political constraints” in our analysis is to rule out premium regimes
which may be technically feasible, but which we think are likely to be widely regarded as
perverse, unreasonable, or otherwise publicly unacceptable. Here are some examples:

(i) Hyper-differentiation. High risks are charged more than their true risks, and low
risks are charged less than theirs. This gives a cross-subsidy between risk-groups,
but for most contexts, it is in the “wrong” direction (i.e. a disadvantaged high
risk-group is over-charged to subsidise an already fortunate low risk-group).

(ii) Hyper-pooling. Low risks are charged more than high risks. This could be econom-
ically feasible, if demand elasticity for low risks is sufficiently low compared to that
for high risks. Here, the cross-subsidy is in the “right” direction for equity, but too
large.

(iii) Groupings which lead to unfair ordering of premiums. If there are three risk-groups,
say low, medium and high risks, then a regime which groups low and high risk-groups
at one premium, and medium risks at another premium, could be economically
feasible. But this might be politically unacceptable, if it leads to low risks being
charged more than medium risks. (Stated differently, the objection is that this gives
a similar result to hyper-pooling of low and medium risks.)

To summarise these considerations: if premiums are differentiated, the ordering of
premiums should be the same as the ordering of risks, and the span of premiums should
not exceed the span of the risks. To state these notions formally, we now introduce some
notation for the rest of the paper:

• We assume a population consisting of n distinct risk-groups with probabilities of
loss given by µ = (µ1, µ2, . . . , µn), which are ordered for convenience (µ1 smallest,
µn largest).

• The proportion of the population belonging to risk-group i is pi, for i = 1, 2, . . . , n.
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• Members of risk-group i are offered premium (per unit of loss) πi. We call π =
(π1, π2, . . . , πn) a premium regime, or risk-classification regime.

The political constraints can then be encapsulated as:

Constraint 1 (Political). Given risks µ, a politically acceptable premium regime π
needs to satisfy:

µ1 ≤ π1 ≤ π2 ≤ · · · ≤ πn ≤ µn. (2.1)

Other examples of politically unacceptable premium regimes might include those
which lack face validity (e.g. combine risk-groups having no apparent similarities), or
which disadvantage socially protected classes (e.g. a high premium for high risk may be
less acceptable for disability than for dangerous sports). It is not possible to specify all the
political considerations that might arise. But we think Constraint 1 above seems broadly
applicable, and helps to rule out perverse interpretations of the price collar concept.

2.2 Regulatory Constraints

The price collar concept was outlined in the introduction and is formally specified as
Constraint 2.

Constraint 2 (Price collar). Given a prescribed price collar, κ, where κ ≥ 1, any
premium regime π needs to satisfy:

πH ≤ κπL, (2.2)

where πL = mini πi and πH = maxi πi.

The acceptable range for a price collar is limited by the prohibition on hyper-separation
and hyper-pooling in political Constraint 1, which implies that:

1 ≤ κ ≤ µn

µ1

. (2.3)

Note that the extremes κ = 1 and κ = µn/µ1 correspond to pooling and full risk-
classification respectively. We use the term partial risk-classification to refer all regimes
where κ is set to an intermediate value.

A price collar can be circumvented if insurers can simply decline high risks (which
amounts to quoting an infinite price above the collar for high risks). To be effective, it
needs to be supported by guaranteed issue, that is an obligation on the insurer to accept
any applicant at some price within the collar, as stated in Constraint 3.
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Constraint 3 (Guaranteed issue). Insurers are required to quote a price to all
applicants. Nobody can be declined for insurance.

Guaranteed issue might be unreasonable for types of insurance where there are a few
exceptionally high probabilities of loss (e.g. term insurance for people with a terminal
illness). This problem can be alleviated by a rule which permits a small fraction of higher
prices, e.g. up to 1% of the prices charged by an insurer over a trailing three-year period
are permitted to exceed the collar. But for simplicity, we assume guaranteed issue is
required.

3 Insurance demand and equilibrium

This section develops the theory of insurance demand and equilibrium under perfect
competition, but subject to the political and regulatory constraints stated in Section 2.

3.1 Insurance demand

Typical theories of insurance demand assume individuals know their own probabilities of
loss and have a common utility function. Given an offered premium, individuals with
the same probabilities of loss then all make the same purchasing decision. This does
not correspond well to the observable reality of insurance markets, where individuals
with similar probabilities of loss often appear to make different decisions, and substantial
fractions of individuals do not purchase insurance at all.

We follow the different approach introduced in Hao et al. (2018, 2019); Chatterjee
et al. (2021), which allows for heterogeneity in risk aversion across individuals with the
same probabilities of loss, and hence generates the partial take-up of insurance that we
observe in practice. In summary, our approach is based on the following assumptions.

(i) Individuals know their probability of loss and their own risk aversion, and make
purchasing decisions accordingly.

(ii) Insurers can observe (via the usual underwriting procedures) individual’s probabil-
ities of loss and so correctly assign them to risk-groups, but cannot observe their
individual risk aversion.

(iii) All insurance is for one unit of cover, in a contract which is standardised across all
insurers, who compete only on price. Insurers do not offer partial cover or other
contract menus.

(iv) Viewed by the insurer, the demand for insurance from risk-group i at premium πi

is then a function di(πi). The demand function represents the proportion of the
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risk-group who buy insurance, such that 0 < di(πi) < 1. We assume that this is
decreasing and continuous.

3.2 Market Equilibrium

To recap on notation: we have a population of n risk-groups, where members of risk-group
i each have risk µi, are offered premium πi, and collectively represent proportion pi of the
aggregate population. In a perfectly competitive insurance market, we then have:

Premium income =
n∑

i=1

pi di(πi) πi. (3.1)

(Expected) insurance claim =
n∑

i=1

pi di(πi)µi. (3.2)

(Expected) profit : E (π) =
n∑

i=1

pi di(πi) (πi − µi) . (3.3)

Market equilibrium ⇒ E (π) = 0. (3.4)

Any candidate equilibrium premium regime π satisfying Equation 3.4 also needs to
be stable in the following sense: it must be impossible for any single insurer to profitably
disrupt the equilibrium by using a different regime.3 This property relies on a corollary of
perfect competition: no insurer has any market power, because all risks choose the lowest
offer in the market for their risk.

To see why this corollary is important, imagine that one insurer could set a collar
of the same maximum permitted width κ as other insurers, but with a lower mid-point,
and increase its market share of (profit-making) low risks without an equivalent increase
in market share of (loss-making) high risks. This insurer would profitably disrupt an
existing zero-profit regime. But this is impossible under perfect competition, because an
insurer which sets lower prices than other insurers for both high and low risks will attract
essentially all the market demand from both low risks and high risks; and therefore if the
other insurers were previously zero-profit, the deviating insurer will make a loss.4

3Our concept of different regime is limited to different set of prices for insurance contracts, which are
standarised for regulatory or institutional reasons, as in Akerlof (1970); we do not consider differentiation
by contract design, as in Rothschild and Stiglitz (1976).

4Stating “no market power” differently: brand elasticity of demand for each insurer is infinite. Note
that no contradiction arises from infinite brand demand elasticities combined with relatively low product
demand elasticities, because they relate to different choice problems. Product elasticity relates to the
choice over products in the consumer’s consumption bundle. Brand elasticity relates to the choice over
brands, given that insurance is to be purchased. Alternatively, a weaker assumption could do the same
work: if one insurer reduces prices for high and low risks by the same amount, it attracts the same
increase in market share for high and low risks (as assumed in Mahoney and Weyl (2017)); that is, the
semi-logarithmic brand elasticity of demand is uniform for high and low risks.
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3.3 The price collar equilibrium

The equilibrium conditions stated in Section 3.2, combined with the political and regula-
tory constraints stated in Section 2, lead to the following solutions for different values of
the price collar:

(i) κ = µn/µ1: full risk-classification, where all risk-groups are charged their fair pre-
miums i.e. π = µ, is a solution.

(ii) κ = 1: pooling, where all risk-groups are charged the same premium π0, is a
solution.5

(iii) Intermediate values of κ: a tripartite solution of this form:

• a super-group L of low risk-groups all charged the same πL (more than their
fair premiums);

• a super-group M of “middle” risk-groups all charged their fair premiums;

• a super-group H of high risk-groups all charged the same πH (less than their
fair premiums);

where the grouping into three super-groups (hence “tripartite”) has the pattern shown in
Figure 2.

µ1 µ2 µl µl+1 µn−h µn−h+1 µn−1 µn

πL πH

L M H

charged same premium πL charged fair premiums charged same premium πH

Figure 2: Price collar: tripartite solution.

For intuition on why the intermediate collar solution must take this tripartite form,
first note that each insurer has to come up with its own collar limits, πL and πH = κπL.
Then all risks lower than πL have to be charged at least πL; and all risks higher than πH

5Given continuous demand functions, the existence of at least one pooling equilibrium is ensured by
the intermediate value theorem. Uniqueness is technically not guaranteed, but pertains for plausible
combinations of demand elasticities; and if, exceptionally, there are multiple solutions, any besides the
lowest will be eliminated by competition. The same elimination principle applies for any multiple solutions
under the collar in the next point (for proof see Appendix A).
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have to be charged at most πH. Competition in pricing for low and high risks drives all
insurers towards the same values for the collar limits πL and πH. Then note that inside
the limits of the collar, the same competitive forces operate as if no collar applied, with
the same outcome: if one insurer attempts to pool a higher and lower risk-group inside
the collar, this can be destabilised by another insurer offering the lower risk-group in
the putative pooling a fair premium. Hence competition drives all insurers to charge all
“middle” risk-groups exactly their fair premiums.

A formal statement and proof of the tripartite solution is given as Theorem 1 in
Appendix A).

3.4 Iso-elastic Insurance Demand

So far, we have only needed insurance demand function, di(πi) for risk-group i, to be
continuous and decreasing in πi. We will now further assume differentiability, to define
the (point price) elasticity of insurance demand as:

ϵi(πi) = −∂ log di(πi)

∂ log πi

= −
∂ di(πi)
di(πi)

∂ πi

πi

= − πi

di(πi)

∂ di(πi)

∂πi

, (3.5)

which implies that insurance demand can also be expressed as:

di(πi) = τi exp

[
−
∫ πi

µi

ϵi(s) d log s

]
, (3.6)

where τi = di(µi) is the fair-premium demand for risk-group i. A tractable functional
form for demand is iso-elastic, i.e. demand elasticity is a positive constant, λi:

ϵi(πi) = λi; (3.7)

and by Equation 3.6, demand for risk-group i then takes the form:

di(πi) = τi

(
µi

πi

)λi

, (subject to a cap of 1). (3.8)

Note that if the premium charged is sufficiently small, it is possible for a risk-group to be
fully insured, i.e. di(πi) = 1.

For iso-elastic demand, the equilibrium condition in Equation 3.4 takes the form:

E (π) =
n∑

i=1

pi τi

(
µi

πi

)λi

(πi − µi) = 0. (3.9)
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4 Loss Coverage

In Section 1.1, loss coverage was defined as: expected losses compensated by insurance
for the population as a whole, i.e.:

Loss coverage: C (π) =
n∑

i=1

pi di(πi)µi. (4.1)

For iso-elastic demand, the expression for loss coverage takes the form:

C (π) =
n∑

i=1

pi τi

(
µi

πi

)λi

µi. (4.2)

We suggest that a regulator or policymaker wishes to calibrate the price collar κ
to maximise loss coverage over all possible premiums regimes. This will ensure that
voluntary purchases of insurance cover the largest possible fraction of the population’s
losses.6 Mathematically, the objective can be stated, in terms of premiums, as:

max
κ

C (π) , subject to E (π) = 0.7 (4.3)

4.1 The Case of Two Risk-groups

Consider two premium regimes: π = (π1, π2) and π +∆π = (π1 +∆π1, π2 +∆π2), where
both regimes satisfy the equilibrium condition in Equation 3.9, so that E (π +∆π) =
E (π) = 0. If ∆π is “small”, ignoring higher-order terms in the Taylor series expansion
gives :

∆E = E (π +∆π)− E (π) = E1∆π1 + E2∆π2, where Ei =
∂E

∂πi

for i = 1, 2. (4.4)

As E (π +∆π) = E (π) = 0, and thus ∆E = 0, the relationship between ∆π1 and ∆π2

can be expressed as:

∆π2 = −E1

E2

∆π1. (4.5)

6Compulsory purchase (a mandate) could ensure 100% coverage. But the reduction in liberty this
involves is often unacceptable, except possibly for healthcare or third-party liability insurances (e.g. auto
and employer third-party liability).

7Readers who are familiar with Lagrange multipliers and the Kuhn-Tucker theorem (please see Dixit
(1990) for an exposition from an economic perspective) will realise that the constrained maximisation
problem can be framed in terms of these optimisation approaches. However, instead of applying these
methods mechanically, we provide the intermediate steps, so that the underlying economic interpretations
are not overlooked.
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To compare loss coverages under two equilibrium premium regimes: π = (π1, π2) and
π+∆π = (π1+∆π1, π2+∆π2), Taylor series expansion ignoring higher-order terms gives:

∆C = C1∆π1 + C2∆π2, where Ci =
∂C

∂πi

for i = 1, 2. (4.6)

=

[
C1 −

E1

E2

C2

]
∆π1 (4.7)

For the specific case of iso-elastic demand functions, we have:

Ei =
∂E

∂πi

= pi τi λi

(
µi

πi

)λi+1

(1−mi) , where mi =
πi

µi

(
1− 1

λi

)
; (4.8)

Ci =
∂C

∂πi

= −pi τi λi

(
µi

πi

)λi+1

; (4.9)

so that under iso-elastic demand for two risk-groups, the sensitivity of the loss coverage
to small changes in the equilibrium premium regimes is given by:

∆C = T (m2 −m1) ∆π1, where T =
p1 τ1 λ1

(
µ1

π1

)λ1+1

1−m2

. (4.10)

Note that the term T is always positive, because the political constraint requires π2 ≤ µ2,
and thus m2 < 1.

The sign of the term (m2 −m1) depends on the elasticities λ1 and λ2, and determines
how C depends on the low-risk premium π1. Specifically, for given values of λ1 and λ2,
if the term (m2 −m1) is positive or negative over the whole politically feasible range
of π1, this tells us that loss coverage is maximised for pooling or full risk-classification
respectively; and if it changes sign over the range of π1, there will be a turning point for
loss coverage. A further interpretation of (m2 −m1) will be given in Section 5.3 below.

The result is illustrated in Figure 3. A formal statement as Theorem 2 and a proof
are given in Appendix B.

Figure 3 shows which risk-classification scheme – pooled, full or partial – gives highest
loss coverage in each region of the (λ1, λ2)–plane. There are two large regions, P (Pooled,
left, green) and F (Full risk-classification, right, red); and two smaller intermediate re-
gions, IL (Intermediate, low elasticity, yellow) and IH (Intermediate, high elasticity, or-
ange). The large green region (pooling best) and red region (full best) regions are each
divided into into three sub-regions, delineated by the vertical and horizontal lines λ1 = 1
and λ2 = 1.
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F2 F1

F3
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Boundary curves:
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1− 1
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(
1− 1
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) = µ2

µ1

λ2 = λ1

Maximum loss coverage:

Pooled (P : P1 + P2 + P3)

Full (F : F1 + F2 + F3)

Partial (IH)

Pooled or full (IL)

Figure 3: Regions of (λ1, λ2)–plane where pooling, full or partial risk-classification give
highest loss coverage. (Basis: µ2/µ1 = 2, but similar appearance for any µ2 > µ1.)
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Figure 4: Slope and convexity of loss coverage–premium plots
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5 Intuition and interpretation

5.1 Slope and convexity of loss coverage–premium plots

For graphical intuition into the general pattern of Figure 3, look at Figure 4, where the six
panels show representative plots of equilibrium loss coverage against π1 for all the labelled
regions in Figure 3. In each panel, increasing π1 along the x-axis corresponds to reducing
the price collar from its maximum of κ = µ2/µ1 (which permits full risk-classification) to
its minimum of κ = 1 (which enforces pooling). Then note that the slope and convexity of
the various plots account for the pattern of results illustrated in Figure 4. In particular:

(i) For pooling to be optimal, the plot needs to have a maximum at its right extreme:
regions P1, P2 & P3 (first row of Figure 4).

(ii) For full risk-classification to be optimal, the plot needs to have a maximum at its
left extreme: regions F1, F2 & F3 (second row of Figure 4).

(iii) For partial risk-classification to be optimal, the plot needs to have an interior max-
imum (right panel of third row of Figure 4). This is true only in the upper-right
intermediate region IH, where both demands are elastic, with low risk elasticity
moderately lower than high-risk elasticity.

(iv) For partial risk-classification to be worst, the plot needs to have an interior minimum
(left panel of third row of Figure 4). This is true only in the lower-left intermediate
region IL, where both demands are inelastic, with low risk elasticity moderately
higher than high-risk elasticity.

(v) In more detail: in Figure 3, somewhere inside the lower-left intermediate region
IL there is a line of equality, along which pooling and full risk-classification give
equal loss coverage. The exact position of this line is not shown, because it depends
on the population proportions and fair-premium demands. Elsewhere in region
IL, pooling gives highest loss coverage to the left of the line of equality, and full
risk-classification to the right.

(vi) The initially surprising feature that partial risk-classification can never be optimal
in the lower-left region is explained graphically by the concavity of the plots for all
the sub-regions P2, IL and F2 in Figure 4. A deeper explanation of this feature will
be given in Sub-section 5.3 below.

5.2 Revenue elasticities: upper left and lower right rectangles of Fig-
ure 3

The outcomes in the upper left and lower right rectangles (Regions P1 and F1 in Figure
3) can be quickly understood by recalling the concept of revenue elasticity, the percentage
change in revenue for a small percentage change in price, defined formally as
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revenue elasticity = −∂ log (di(πi)× πi)

∂ log πi

= demand elasticity− 1. (5.1)

Revenue elasticity < 0 indicates that when prices rise, revenue rises; and vice versa
for revenue elasticity > 0. This immediately leads to the following intuitions.

(i) For the ‘upper left rectangle’ region P1 (i.e. λ1 < 1, λ2 > 1): the first elasticity
(λ1 < 1) implies that revenue moves in the same direction as price in the low risk-
group, and the second (λ2 > 1) implies that revenue moves in the opposite direction
to price in the high risk-group. Therefore on any small movement towards pooling,
(i.e. π1↑, π2↓), both revenues increase; and so aggregate revenue in equilibrium
(and hence loss coverage) must be maximised by pooling.

(ii) The inverse argument applies for the ‘lower right rectangle’ region F1 (i.e. λ1 >
1, λ2 < 1): any small movement away from pooling increases revenue from both risk-
groups, and so aggregate revenue in equilibrium (and hence loss coverage) must be
maximised by full risk-classification.

5.3 Funding ratios: lower-left and upper-right squares of Figure 3

In these regions, on any move towards or away from pooling, revenue moves in opposite
directions in the two risk-groups, so examination of the signs of revenue elasticities is not
sufficient. Instead, we need to use the constructs of marginal revenue and marginal cost
to define a funding ratio for each risk-group.

The total revenue and total cost for risk-group i are TRi(πi) = πi di(πi) and TCi(πi) =
µi di(πi). The marginal revenue and marginal cost are:

MRi(πi) =
∂ TRi(πi)

∂ di(πi)
=

∂ [πi di(πi)]

∂ di(πi)
= πi + di(πi)

∂ πi

∂ di(πi)
= πi

(
1− 1

ϵi(πi)

)
; and

(5.2)

MCi(πi) =
∂ TCi(πi)

∂ di(πi)
= µi. (5.3)

The funding ratio, say mi for risk-group i, can then be defined as:

mi =
MRi(πi)

MCi(πi)
=

πi

µi

(
1− 1

ϵi(πi)

)
(5.4)

=
πi

µi

(
1− 1

λi

)
, for iso-elastic demand. (5.5)

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4363818

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



18

Funding ratios for each risk-group previously arose in Equations 4.8 and 4.10 in
Section 4.1 (where they were labelled as mi, but not named), and were seen to determine
the slope of the loss coverage-premium plot: ∆C/∆π1 = T (m2 −m1).

The funding ratio for a risk-group measures the extent to which a small increase
in the risk-group’s cost (i.e. its demand, multiplied by its risk rate µ) is funded by a
corresponding increase in its revenue (i.e. its demand, multiplied by its premium rate π).

Note that for inelastic demand, revenue rises when price rises, i.e. when demand
(and hence cost) falls. So because revenue and cost are moving in opposite directions,
the funding ratio must be negative; and vice versa for elastic demand. By inspection of
Equation 5.4, we can see that the funding ratio has a feasible range of (−∞, πi

µi
). It can

be further interpreted as follows:

(1) A positive funding ratio (corresponding to elastic demand, i.e. λi > 1) says that
when the risk-group’s demand (and hence cost) increases, its revenue also increases.
So increasing demand from the risk-group (i.e. reducing price) tends to make an
efficient contribution to loss coverage (aggregate cost in equilibrium): the increased
cost from the risk-group partly “pays for itself”, and so requires only a partial subsidy
from the the other risk-group.

(2) Conversely, a negative funding ratio (corresponding to inelastic demand, i.e. 0 < λi <
1) says that when the risk-group’s demand (and hence cost) decreases, its revenue
increases. So reducing demand from the risk-group (ie. increasing price) tends to
make an efficient contribution to loss coverage (aggregate cost in equilibrium): the
reduced cost from the risk-group is set against more (possibly much more) revenue,
creating a surplus which can then be applied in equilibrium to subsidise a larger
increase in cost from the other risk-group.

(3) When we make a small reduction in the price collar κ, premiums rise for low risks
and fall for high risks, and vice versa for the corresponding demands. The change
in loss coverage (i.e. aggregate risk-weighted demand in equilibrium) then depends
on the difference in funding ratios across the two risk-groups. It helps to shift de-
mand towards the risk-group with higher funding ratio (point (1) above), and vice
versa (point (2) above). When we move towards pooling (i.e. π1↑, π2↓), we shift
demand towards the higher risk-group and away from the lower risk-group, and hence
loss coverage increases if m2 > m1. This explains the role of the (m2 − m1) term
in determining the gradient of the loss coverage-premium plot: per Equation 4.10,
∆C/∆π1 = T (m2 −m1).

We can now use funding ratios to understand outcomes in the lower-left and upper-
right squares of Figure 3.
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5.3.1 A turning point for loss coverage

A turning point for loss coverage is obtained by setting the equilibrium premiums to the
pair, say (π1

∗, π2
∗), that equalises the funding ratios across the two risk-groups:

m1 = m2 ⇒ π1

µ1

(
1− 1

λ1

)
=

π2

µ2

(
1− 1

λ2

)
. (5.6)

The rationale for equalisation to give a turning point is as follows. In any equilibrium,
aggregate profits on low risks must be equal and opposite to aggregate profits on high risks.
Then suppose we make an infinitesimal change in the two premiums – either towards one
another, or away from one another – such that the changes in cost in the two groups are
equal and opposite. Equal funding ratios then imply that the changes in revenue in the
two risk-groups are also equal and opposite. So aggregate costs and aggregate revenues
are both unchanged; and therefore equilibrium and loss coverage are unchanged.8

What elasticity parameters does m1 = m2 require? Observe that µ1

π1
≤ 1 and µ2

π2
≥ 1.

Then by inspection of Equation 5.6, when both λi < 1, we need λ2 < λ1; this implies
that in region IL, the turning point lies below the 45-degree line. Conversely, when both
λi > 1 , we need λ2 > λ1; this implies that in region IH, the turning point lies above the
45-degree line.

5.3.2 Minimum or maximum?

By inspection of Equation 5.6, when both λi < 1, both funding ratios are negative. It
follows that the the turning point for loss coverage in the lower left square in Figure 3
must be a minimum. This is because when we reduce a risk-group’s premium, its demand
rises, and its funding ratio becomes “less negative”. and vice versa when we increase a
risk-group’s premium. So if we start from the turning point (π1

∗, π2
∗), then whichever way

we move the premiums to give a new equilibrium – either towards one another, or away
from one another – the funding ratio becomes less negative in the risk-group with rising
demand, and more negative in the risk-group with falling demand. This is a favourable
combination: the “improving” ratio is applied to the group with rising demand, and vice
versa. So loss coverage will always increase, implying that the turning point (π1

∗, π2
∗)

from which we started must be a minimum.
Conversely, when both λi > 1, both funding ratios are positive. The argument just

given is then inverted, so the turning point for loss coverage in region IH must be a
maximum.

8Practical application of this argument is restricted to the intermediate regions IL and IH , in which
turning points for loss coverage occur within the politically acceptable range of premiums. “Technical”
turning points also occur in other regions, but the required premiums are politically unacceptable. For
example, in region P2, there is a minimum point for loss coverage with hyper-differentiated premiums
(i.e. π1 < µ1 and π2 > µ2); this can be envisaged in Figure 4 by mentally extending the panel for region
P2 to the left.
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5.3.3 Another insight: which risk-group’s premium does it help to reduce?

Another insight can be obtained by noting that increasing demand from a risk-group (i.e.
reducing its premium) helps loss coverage only if the funding ratio for that demand is
sufficiently favourable (compared with the funding ratio applicable to the corresponding
decreased demand from the other risk-group).

When both demands are inelastic (lower-left square in Figure 3), increasing a risk-
group’s demand improves its funding ratio (i.e. makes it “less negative”). So there is no
trade-off: as a rough insight, it helps to reduce the premium for whichever risk-group has
higher elasticity, to the fullest extent that the political constraint permits. So “pooling
best” will tend to apply for λ2 > λ1, i.e. above the 45-degree line; and “full best” for
λ2 < λ1, i.e. below the 45-degree line. This rough insight is then modified by noting that
because µ2 > µ1, high-risk demand has a higher weighting in loss coverage than low-risk
demand; and hence the “pooling best” region extends a little below the 45-degree line
into region IL.

Conversely, when both demands are elastic (upper-right square in Figure 3), increas-
ing a risk-group’s demand worsens its funding ratio. So in this case, there is a trade-off
between increasing a risk-group’s demand and improving the funding ratio applicable to
that demand. If the ratio of high-risk to low-risk elasticities is sufficiently high (i.e. region
P3), it helps to reduce the premium for high risks to the fullest extent that the political
constraint permits; in other words,“pooling best”. If the ratio of elasticities is only mod-
estly above 1 (i.e. region IH), it still pays to reduce the premium for high risks, but only
so far; in other words, “partial best”.

6 Extensions and discussion

6.1 More than two risk-groups

For more than two risk-groups, we can generalise Theorem 2, using:

(i) the known tripartite structure of the stable equilibrium premium regime under a
price collar, as illustrated in Figure 2 and formalised in Theorem 1, and

(ii) a heuristic assumption that all risk-groups in the “low” super-group L have the
same iso-elastic demand elasticity λL, and all risk-groups in the “high” super-group
H have the same iso-elastic demand elasticity λH. This is based on the premise that
risk-groups with broadly similar risks are likely to have broadly similar elasticities.

Intuitively, the key insight for more than two risk-groups is that because all risk-groups
in the “middle” super-group M always pay their fair premiums, they do not contribute
to the cross-subsidies which determine equilibrium (and hence loss coverage). So for the
purpose of determining how loss coverage changes when the collar changes, the “middle”
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super-group M can be completely disregarded. Therefore the analysis of loss coverage
for two risk-groups in Equation 4.10 can be re-stated in terms of the two super-groups
L and H, with the super-group elasticities λL and λH in place of λ1 and λ2, and other
parameters also set to their super-group values, i.e.:

∆C = T (mH −mL) ∆πL, (6.1)

where T =
pL τL λL

(
µL

πL

)λL+1

1−mH

; and mi =
πi

µi

(
1− 1

λi

)
; i = L,H; (6.2)

where for the “low” and “high” super-groups L and H:

• µL and µH are the respective pooled equilibrium premiums;

• πL and πH are the corresponding premiums;

• pL and pH are the proportions of the population belonging to the super-groups;

• τL and τH can be interpreted as the ‘fair-premium demand’ when all risk-groups in
the respective super-groups are pooled and charged the same pooled premium.

As T is always positive, the same inferences as before can then be made. A formal
derivation of Equation 6.1 is given in Appendix C.

It is possible that when the width κ of the collar changes, the constituent risk-groups
in the super-groups L, M and H may slightly change. This is not problematic, for the
following reasons:

• Starting from pooling (i.e. κ = 1), all risk-groups with risks less than the pooled
premium belong to the super-group L having the same demand elasticity λL; while
the remaining risk-groups with higher risks belong to the super-group H having the
same demand elasticity λH.

• As the price collar, κ, is increased, more and more risk-groups from the super-
groups L and H join M. However, the remaining risk-groups in L and H continue
to have the same demand elasticities λL and λH respectively. So, any change in the
compositions of L, M and H would not affect the underlying demand elasticities of
the super-groups L and H.

• Risk-groups at the upper end of L or lower end of H, which are on the threshold
of moving to M, are already paying very close to their fair premiums. So their
contribution to loss coverage is almost unchanged when they cross the threshold
and transfer into M.
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• So provided insurance demands are “well-behaved” functions of premiums, which is
indeed the case for iso-elastic demand functions, the loss coverage would be a con-
tinuous function of the price collar. Hence the conclusions would remain unaffected
if the constituents of L, M and H change when the price collar changes.

6.2 Other demand functions

To apply the results for non-iso-elastic demand functions, we can use the construct of arc
elasticity (Hao et al. (2018), Vazquez (1995)) between two prices a and b, defined as:

arc elasticity: ηi(a, b) =

∫ b

a
ϵi(s) d log s∫ b

a
d log s

. (6.3)

Arc elasticity can be interpreted as the average value of (point) demand elasticity over
the price logarithmic arc from price a to price b. The political constraints on prices imply
feasible arcs for πi to be (µi, π0) or (π0, µi) depending on whether or not µi is less than
π0. If we re-define λi as the corresponding arc elasticity, i.e.:

λi = ηi(µi, πi) =

∫ µi

πi
ϵi(s) d log s∫ µi

πi
d log s

, (6.4)

we can then apply the techniques presented in previous sections using these λi-s, to
compare various price collar regimes.

Note that if we are evaluating only a small change in the risk-classification scheme
(i.e. a small changes in the high-risk and low-risk premiums), then only short arcs encom-
passing the proposed premium changes need to be considered. Furthermore, if elasticity
is either less than 1 or greater than 1 for a risk-group throughout its relevant arc, then
so is the arc elasticity. This allows quick inferences to be made without calculating arc
elasticities, if one is prepared to assume either “elastic demand” or “inelastic demand”
for a risk-group throughout its relevant arc.

6.3 Discussion

A common regime of risk-classification in retail insurance markets is “full, but with bans
on particular variables (e.g. gender, age, genetic tests, etc)”. Conceptually, this “full with
restrictions” risk-classification is not quite the same as our price collar. But if insurers are
unable to fully compensate for the banned variables by using correlated variables, “full
with restrictions” seems likely to lead to a similar outcome to a price collar: low risks
are charged a bit more than their fair premiums, and high risks a bit less. Our result in
Section 5.3 then seems rather striking: partial risk-classification can never be optimal for
loss coverage if both demand elasticities (or arc elasticities over the relevant arcs) are less
than 1. The reason was highlighted in Section 5.3.3: for inelastic demand, increasing a
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risk-group’s demand (i.e. reducing its premium) improves its funding ratio. So there is
no trade-off between demand and funding ratio: it helps to increase demand (i.e. reduce
premium) for whichever risk-group which has higher elasticity (but adjusted to reflect
µ2 > µ1), to the fullest possible extent that the political constraint permits.

However, this result says nothing about the quantum of the difference in loss cover-
age between any particular partial regime and the optimal regime (be it full or partial
risk-classification). Partial risk-classification is not a single third option, but rather a
continuum of options between full risk-classification and pooling. If the particular partial
regime enforced by a price collar is “close” to whichever of full or pooling is optimal, the
reduction in loss coverage compared to the optimum will be small.

7 Conclusions

Loss coverage, defined as expected population losses compensated by insurance, is a public
policy criterion for comparing different risk classification regimes. Using a model with two
risk-groups (high and low) and iso-elastic demand, we compared loss coverage under three
alternative regulatory regimes: (i) full risk classification (ii) full pooling (iii) a price collar,
whereby each insurer is permitted to set any premiums, subject to a maximum ratio of its
highest and lowest prices for different risks. Outcomes depend on the comparative demand
elasticities of low and high risks. If low-risk elasticity is sufficiently low compared with
high-risk elasticity, pooling is optimal; and if it is sufficiently high, full risk classification
is optimal. For an intermediate region where the elasticities are not too far apart, a price
collar is optimal, but only if both elasticities are greater than one.

For more than two risk-groups, the results can be extended via the insight that equi-
librium always involves a tripartite arrangement of risk-groups into three super-groups:
a super-group L of low risk-groups all charged the same low premium, a super-group H
of high risk-groups all charged the same high premium, and a middle super-group M all
charged their actuarially fair premiums.

For non-iso-elastic demand functions, the results can be extended using the construct
of arc elasticity of demand, which can be thought of as the average value of point elasticity
over the logarithmic arc between two prices.
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Appendices

Appendix A Theorem 1

Theorem 1. If there are n risk-groups, with risks µ1 < µ2 < · · · < µn with a price
collar of κ, where 1 ≤ κ ≤ µn/µ1, there exists a stable equilibrium premium regime
π = (π1, π2, . . . , πn), such that:

πi =


πL if µi < πL;

µi if πL ≤ µi ≤ πH;

πH if µi > πH.

(A.1)

where πL = mini πi, πH = maxi πi and πH = κπL.

Proof. We will prove the theorem using the following steps:

1. An equilibrium premium regime with the structure proposed in Equation A.1 exists.

2. If there are multiple equilibrium premium regimes with the same proposed structure,
the regime with the smallest πL is stable among all such regimes.

3. Given πL and πH = κπL, the premium regime with the proposed structure cannot be
destabilised by any other equilibrium premium regime with the same πL and πH but
having a different structure.

4. Given a compulsory price collar κ, the premium regime with the proposed structure
cannot be destabilised by any other premium regime based on a voluntary smaller
price collar.

Proof of step 1. Given a price collar κ, define the expected profit from setting the lowest
premium πL, where µ1 ≤ πL ≤ µn/κ, as follows:

eκ (πL) = E (π) =
n∑

i=1

pi di(πi) (πi − µi) ; where πi =


πL if µi < πL;

µi if πL ≤ µi ≤ κπL;

κπL if µi > κπL.

(A.2)

If πL = µ1, as κµ1 ≤ µn, expected profit cannot be positive, i.e.: eκ (µ1) ≤ 0.

If πL = µn/κ, as µ1 ≤ µn/κ, expected profit cannot be negative, i.e.: eκ (µn/κ) ≥ 0.
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Assuming continuity of the demand functions di(πi) for all risk-groups, eκ(x) is also a
continuous function. So, by the intermediate value theorem, there exists a value πL, such
that µ1 ≤ πL ≤ µn/κ, for which eκ (πL) = 0. This proves the existence of an equilibrium
premium regime as outlined in the theorem. □

Proof of step 2. If there are multiple solutions to the equation, eκ (πL) = 0, the premium
regime based on the smallest of these roots cannot be destabilised by premium regimes
based on any other solutions of eκ (πL) = 0. To show this, suppose if possible there are
two premium regimes:

π = (π1, π2, . . . , πn) , with πH = κπL, where πL = min
i

πi and πH = max
i

πi;

π̂ = (π̂1, π̂2, . . . , π̂n) , with π̂H = κ π̂L, where π̂L = min
i

π̂i and π̂H = max
i

π̂i;

with πL < π̂L (and consequently πH < π̂H), such as shown in Figure 5.

µ1 µ2 µa µb µc µn−1 µn

πL π̂L πH π̂H

Figure 5: Theorem 1: Proof of Step 2.

• π̂ involves higher premiums for all risk-groups with µi < π̂L, and higher premiums
for all risk-groups with µi > πH, and the same (actuarially fair) premiums to all
risk-groups in between.

• So all risks are either not attracted to π̂ (because it charges more), or are indifferent
(because it charges the same); and in the latter case, the premium regime π would
also be indifferent to the loss of these risk-groups, because they generate no profit
or loss under π.

Therefore any higher solution eκ (πL) = 0 cannot destabilise the lowest solution. □

Proof of step 3. Any alternative regime π̂ with the same πL and πH and a different struc-
ture needs to charge some risks more, and/or some risks less.

• Risks which are charged less will be attracted by π̂, and generate a smaller profit
contribution (or larger loss) than they do under π.

• To achieve zero profit then requires that this deficit be made up by charging other
risks more.

• But no risks will be prepared to pay more, because they will prefer π.
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Therefore π cannot be destabilised by an alternative regime π̂ with the same πL and πH

and a different structure. □

Proof of step 4. As a regulatory price collar would only require πH ≤ κπL, we need to
show that π cannot be destabilised by an equilibrium premium regime using a smaller
price collar.

Consider an alternative equilibrium premium regime: π̂ = (π̂1, π̂2, . . . , π̂n), with min-
imum and maximum premiums: π̂L = mini π̂i and π̂H = maxi π̂i respectively, such that
π̂H = κ̂ π̂L, for some κ̂ < κ.

µ1 µ2 µa µb µc µd µn−1 µn

π̂L πL π̂H κ π̂L πH

κ̂

κ

Figure 6: Theorem 1: Proof of Step 4.

• If the lower end of the new collar is set above the lower end of the old collar, then
π̂ attracts none of the profitable low risks, and so cannot be profitable and cannot
destabilise π.

• If the lower end of the new collar is set below the lower end of the old collar, then
π̂ generates a smaller profit contribution on all risk-groups with µi < πL.

• Equilibrium requires that this deficit be made up by charging other risks more.

• But because of the smaller κ̂ and lower base of the collar, π̂ does not charge any
risk-groups more.

Therefore no equilibrium solution with a smaller collar κ̂ exists. □

So, π, as outlined in the theorem, exists, and is a unique stable equilibrium premium
regime satisfying all political, regulatory and economic constraints. ■
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Appendix B Theorem 2

In order to prove Theorem 2, we first provide the algebraic inequalities defining the regions
represented graphically in Figure 3. Recall the definitions of graph regions: P : “Pooled”,
F : “Full risk-classification”, IL : “Intermediate, low elasticity” and IH : “Intermediate,
high elasticity”, so that:

IL: λ2 ≤ λ1 ≤ 1 and 1≤
(
1− 1

λ2

)/(
1− 1

λ1

)
≤ µ2/µ1.

P: {(λ1, λ2) : λ2 ≥ λ1} − IH .

P1: λ1 ≤ 1 and λ2 ≥ 1.

P2: λ1 ≤ λ2 ≤ 1.

P3: {(λ1, λ2) : λ2 ≥ λ1 ≥ 1} − IH .

IH: λ2 ≥ λ1 ≥ 1 and 1≤
(
1− 1

λ2

)/(
1− 1

λ1

)
≤ µ2/µ1.

F : {(λ1, λ2) : λ2 ≤ λ1} − IL.

F1: λ1 ≥ 1 and λ2 ≤ 1.

F2: {(λ1, λ2) : λ2 ≤ λ1 ≤ 1} − IL.

F3: λ1 ≥ λ2 ≥ 1.

Lemma 1. For a risk-group i, with positive iso-elastic demand elasticity λi, mi sat-
isfies:

λi ⪋ 1 ⇔ mi ⪋ 0.

Proof. This follows directly from the expression of mi given in Equation 4.8.9

Lemma 2. For the highest risk-group n, with positive iso-elastic demand elasticity
λn, mn is bounded above at 1, i.e. mn ≤ 1.

Proof. By the political constraint, πn ≤ µn, and as λn > 0, mn ≤ 1.

Next note that, for the case of two risk-groups:

m2 −m1 =
π2

µ2

(
1− 1

λ2

)
− π1

µ1

(
1− 1

λ1

)
=

(
1− 1

λ1

)
π2

µ1

[(
1− 1

λ2

1− 1
λ1

)(
µ1

µ2

)
− π1

π2

]
.

(B.1)
And, specifically, for both IL and IH,

1 ≤
1− 1

λ2

1− 1
λ1

≤ µ2

µ1

⇒ µ1

µ2

≤
(
1− 1

λ2

1− 1
λ1

)(
µ1

µ2

)
≤ 1. (B.2)

9We use the notation ⪌ in the following sense: A ⪌ B ⇒ C ⪌ D is shorthand for A > B ⇒ C > D

and A = B ⇒ C = D and A < B ⇒ C < D. A similar interpretation applies for the notation ⪋.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4363818

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



30

Also, note that for any equilibrium premium regime π = (π1, π2), as π1 increases from
π1 = µ1 (full risk-classification) to π1 = π2 (pooling), the ratio π1/π2 goes from µ1/µ2 to
1. So, for both IL and IH, by intermediate value theorem, there exists a premium regime
π⋆ = (π⋆

1, π
⋆
2), such that:

π⋆
1

π⋆
2

=

(
1− 1

λ2

1− 1
λ1

)(
µ1

µ2

)
, (B.3)

so that Equation B.1 becomes:

m2 −m1 =

(
1− 1

λ1

)
π2

µ1

[
π⋆
1

π⋆
2

− π1

π2

]
. (B.4)

Lemma 3. Suppose there are 2 risk-groups with risks µ1 < µ2 and iso-elastic demand
elasticities λ1 and λ2 respectively. For equilibrium premium regime π = (π1, π2):

3.1. P : m2 −m1 ≥ 0.

3.2. IL : m2 −m1 ⪋ 0 ⇔ π1

π2
⪋ π⋆

1

π⋆
2
.

3.3. F : m2 −m1 ≤ 0.

3.4. IH : m2 −m1 ⪌ 0 ⇔ π1

π2
⪋ π⋆

1

π⋆
2
.

Proof. (of Lemma 3.1:)

For P1 :λ1 ≤ 1 and λ2 ≥ 1 ⇒ m1 ≤ 0 and 0 < m2 ≤ 1 ⇒ m2 −m1 ≥ 0.

For P2 :λ1 ≤ λ2 ≤ 1 ⇒ 1− 1

λ1

≤ 1− 1

λ2

≤ 0 and
π1

µ1

≥ π2

µ2

≥ 0 ⇒ m2 −m1 ≥ 0.

For P3 :1 ≤ λ1 ≤ λ2 and
1− 1

λ2

1− 1
λ1

≥ µ2

µ1

⇒
(
1− 1

λ2

1− 1
λ1

)(
µ1

µ2

)
≥ 1,

π1

π2

≤ 1 and λ1 ≥ 1

⇒ m2 −m1 =

(
1− 1

λ1

)
π2

µ1

[(
1− 1

λ2

1− 1
λ1

)(
µ1

µ2

)
− π1

π2

]
≥ 0.

So, for P : m2 −m1 ≥ 0.

Proof. (of Lemma 3.2:) For IL, λ1 ≤ 1, so:

m2 −m1 =

(
1− 1

λ1

)
π2

µ1

[
π⋆
1

π⋆
2

− π1

π2

]
⪋ 0 ⇔ π1

π2

⪋
π⋆
1

π⋆
2
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Proof. (of Lemma 3.3:)

For F1 :λ1 ≥ 1 and λ2 ≤ 1 ⇒ m1 ≥ 0 and m2 ≤ 0 ⇒ m2 −m1 ≤ 0.

For F3 :λ1 ≥ λ2 ≥ 1 ⇒ 0 ≤ 1− 1

λ2

≤ 1− 1

λ1

and
π2

µ2

≤ π1

µ1

⇒ m2 −m1 ≤ 0.

For F2 :λ2 ≤ λ1 ≤ 1 and
1− 1

λ2

1− 1
λ1

≥ µ2

µ1

⇒
(
1− 1

λ2

1− 1
λ1

)(
µ1

µ2

)
≥ 1,

π1

π2

≤ 1 and λ1 ≤ 1

⇒ m2 −m1 =

(
1− 1

λ1

)
π2

µ1

[(
1− 1

λ2

1− 1
λ1

)(
µ1

µ2

)
− π1

π2

]
≤ 0.

So, for F : m2 −m1 ≤ 0.

Proof. (of Lemma 3.4:) For IH, λ1 ≥ 1, so:

m2 −m1 =

(
1− 1

λ1

)
π2

µ1

[
π⋆
1

π⋆
2

− π1

π2

]
⪌ 0 ⇔ π1

π2

⪋
π⋆
1

π⋆
2

Theorem 2. Suppose there are two risk-groups with risks µ1 < µ2 and iso-elastic
demand elasticities λ1 and λ2 respectively.

2.1. P : Loss coverage is maximised by pooling and minimised by full risk-
classification, while partial risk-classification is intermediate.

2.2. IL : Loss coverage is maximised by either pooling or full risk-classification de-
pending on the population proportions and fair-premium demands.

2.3. F : Loss coverage is maximised by full risk-classification regime and minimised
by pooling, while partial risk-classification is intermediate.

2.4. IH : Loss coverage is maximised by a specific partial risk-classification regime.

For the proof of Theorem 2, recall from Equation 4.10:

∆C = T (m2 −m1) ∆π1, where T > 0. (B.5)

and the behaviour of (m2 −m1) is outlined in Lemma 3.
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Proof. (of Theorem 2.1:) For P : m2 − m1 ≥ 0. So, as π1 increases from full risk-
classification (π1 = µ1) to pooling (π1 = π2), the loss coverage, C, is an increasing
function. Hence, loss coverage is maximum for pooled equilibrium and minimum for full
risk-classification. Partial risk-classification is intermediate.

Proof. (of Theorem 2.2:) For IL:

∆C

∆π1

= T (m2 −m1) ⪋ 0 ⇔ π1

π2

⪋
π⋆
1

π⋆
2

. (B.6)

This implies that as π1 increases from full risk-classification (π1 = µ1) to pooling (π1 = π2),
the loss coverage, C, first decreases and then increases reaching a minimum at π1 =
π⋆
1. Hence, loss coverage is maximum at either of the two extremes, pooled or full risk-

classification.

Proof. (of Theorem 2.3:) For F : m2 − m1 ≤ 0. So, as π1 increases from full risk-
classification (π1 = µ1) to pooling (π1 = π2), the loss coverage, C, is a decreasing func-
tion. Hence, loss coverage is maximum for full risk-classification and minimum for pooled
equilibrium. Partial risk-classification is intermediate.

Proof. (of Theorem 2.4:) For IH:

∆C

∆π1

= T (m2 −m1) ⪌ 0 ⇔ π1

π2

⪋
π⋆
1

π⋆
2

. (B.7)

This implies that as π1 increases from full risk-classification (π1 = µ1) to pooling (π1 = π2),
the loss coverage, C, first increases and then decreases reaching a maximum at π1 = π⋆

1.
Hence, loss coverage is maximum at the partial risk-classification regime π⋆
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Appendix C Theorem 3

Theorem 3. Suppose there are n risk-groups, with risks µ1 < µ2 < · · · < µn and
iso-elastic demand elasticities λ1, λ2, . . . , λn respectively.

Under a price collar κ, let π be the stable equilibrium premium regime, sub-dividing
the risk-groups into three super-groups L, M and H, where all risk-groups in L pay the
same premium πL, all risk-groups in H pay the same premium πH, and all risk-groups
in M pay their fair actuarial premiums. Let µL and µH be the pooled equilibrium
premiums of the risk-groups in L and H respectively. Further suppose:

λi =

{
λL if i ∈ L;
λH if i ∈ H.

Then the sensitivity of the loss coverage is given by:

∆C = T (mH −mL) ∆πL, (6.1)

where T =
pL τL λL

(
µL

πL

)λL+1

1−mH

; and mi =
πi

µi

(
1− 1

λi

)
; i = L,H; (6.2)

where for the super-groups L and H, pL and pH are the aggregate proportion of pop-
ulation belonging to the super-groups; and τL and τH can be interpreted as the ‘fair-
premium demand’ when all risk-groups in the respective super-groups are pooled and
charged the same pooled premium.

Proof. As the risk-groups in M do not contribute to profit or loss, the equilibrium con-
dition can be expressed as:

E (π) =
∑
i∈L

pi τi

(
µi

πL

)λL

(πL − µi)︸ ︷︷ ︸
EL

+
∑
j∈H

pj τj

(
µj

πH

)λH

(πH − µj)︸ ︷︷ ︸
EH

= 0. (C.1)

The first term, EL, in Equation C.1, can be split as follows:

EL =
∑
i∈L

pi τi

(
µi

πL

)λL

(πL − µi) ; (C.2)

=
∑
i∈L

pi τi

(
µL

πL

)λL
(
µi

µL

)λL

[(πL − µL) + (µL − µi)] ; (C.3)

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4363818

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



34

=

(
µL

πL

)λL

[∑
i∈L

pi τi

(
µi

µL

)λL

(πL − µL) +
∑
i∈L

pi τi

(
µi

µL

)λL

(µL − µi)

]
; (C.4)

where µL is such that the second term in Equation C.4, is zero, i.e.:∑
i∈L

pi τi

(
µi

µL

)λL

(µL − µi) = 0, (C.5)

so that µL can be interpreted as the pooled equilibrium premium, if the insurance market
only consisted of the risk-groups in L. Also, µL is unique and is given by:

µL =

∑
i∈L pi τi µ

λL+1
i∑

i∈L pi τi µ
λL
i

, so that: µ1 ≤ µL ≤ max
i∈L

µi ≤ πL. (C.6)

Using such a µL, the expression for EL in Equation C.4 becomes:

EL =

[∑
i∈L

pi τi

(
µi

µL

)λL

] (
µL

πL

)λL

(πL − µL) = pLτL

(
µL

πL

)λL

(πL − µL) ; (C.7)

where pL =
∑
i∈L

pi, τL =
∑
i∈L

(
pi
pL

)
τi

(
µi

µL

)λL

. (C.8)

Note that pL is the aggregate proportion of population belonging to the collection of risk-
groups in L and τL can be interpreted as the ‘fair-premium demand’ when all risk-groups
in L are pooled and charged the same pooled premium, µL.

A similar line of argument for the risk-groups in H leads to:

EH = pHτH

(
µH

πH

)λH

(πH − µH) ; where pH =
∑
j∈H

pj, τH =
∑
j∈H

(
pj
pH

)
τj

(
µj

µH

)λH

, (C.9)

where µH =

∑
j∈H pj τj µ

λH+1
j∑

j∈H pj τj µ
λH
j

, so that: πH ≤ min
j∈H

µj ≤ µH ≤ µn. (C.10)

Using the expressions for EL and EH in Equations C.7 and C.9 respectively, Equation
C.1 becomes:

E (π) = pL τL

(
µL

πL

)λL

(πL − µL)︸ ︷︷ ︸
EL

+ pH τH

(
µH

πH

)λH

(πH − µH)︸ ︷︷ ︸
EH

= 0. (C.11)

Equation C.11 shows that it is possible to conceptualise L and H as super-groups
with demand elasticities λL and λH respectively, where the true risks of the super-groups
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are taken to be pooled equilibrium premiums, µL and µH, of the respective super-groups.
Essentially, this reduces the problem involving more than two risk-groups to the simpler
two risk-groups problem, so that the analysis of Section 4.1 can be extended directly to
this situation.

The loss coverage for the stable premium regime can then be expressed as:

C (π) =
∑
i∈L

pi τi

(
µi

πL

)λL

µi +
∑
j∈H

pj τj

(
µj

πH

)λH

µj +
∑
m∈M

pm τm µm; (C.12)

=
∑
i∈L

pi τi

(
µi

πL

)λL

πL +
∑
j∈H

pj τj

(
µj

πH

)λH

πH +
∑
m∈M

pm τm µm; (C.13)

. . . by the equilibrium condition in Equation C.1;

= pL τL

(
µL

πL

)λL

πL + pH τH

(
µH

πH

)λH

πH +
∑
m∈M

pm τm µm; (C.14)

. . . by the definitions of pL, τL, µL, pH, τH and µH;

= pL τL

(
µL

πL

)λL

µL + pH τH

(
µH

πH

)λH

µH +
∑
m∈M

pm τm µm; (C.15)

by the equilibrium condition in Equation C.11.
Assuming the compositions of L, M and H remain unaffected, changing πL affects

πH without any implications for the risk-groups in M. Also note that, as long as L, M
and H remain unchanged, we can follow the same steps as in Section 4.1, to get:

∆C = T (mH −mL) ∆πL, (6.1)

where T =
pL τL λL

(
µL

πL

)λL+1

1−mH

; and mi =
πi

µi

(
1− 1

λi

)
; i = L,H. (6.2)
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