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Abstract

Data Envelopment Analysis (DEA) is a linear-programming method used to measure
the relative efficiency of firms. The objective of this thesis is (i) to study the efficiency of
the railway transport process in Europe considering its inner structure and the impact of
railway noise on humans and (ii) to study the performance of bootstrapping approaches in
obtaining DEA efficiency estimates when the production process has a network structure
and the relation between the different stages is considered. First, the railway transport
process is divided into two stages, related to assets and service provision, respectively.
The negative impact of railways on people is measured as the number of people that are
exposed to high levels of railway noise. The number of rail wagons in each country that is
retrofitted with more silent braking technology is used as a proxy to measure the effort to
reduce railway noise pollution. Data is extracted from Eurostat (2016), ERA 006REC1072
Impact Assessment (2018), and EEA (2020) and the additive efficiency decomposition ap-
proach is used. Based on the results, asset-efficient countries are usually service-efficient,
but the inverse does not hold. Sensitivity analysis revealed that efficiency rankings are
robust to alterations in the decomposition weight restrictions. Subsampling bootstrap
was chosen as the most appropriate as it does not require any restrictive assumptions.
The performance of subsampling is examined through Monte Carlo simulations for vari-
ous sample and subsample sizes for general two-stage series structures. Results indicate
great sensitivity both to the sample and subsample size, as well as to the data gener-
ating process-higher than in one-stage structures. A practical approach is suggested to
overcome some result inconsistencies that are due to the peculiarities of the additive de-
composition algorithm. The method is applied to obtain confidence interval estimates for
the overall and stage efficiency scores of European railways.

Keywords: Data Envelopment Analysis, Network Efficiency Decomposition, Subsam-
pling Bootstrap, Monte Carlo, European Railways
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1

Introduction

Introduction Measuring the performance of firms and organisations has become an inte-

grated part of the management process in the industry. Performance measurement was

defined by (Moullin 2002, pg. 188) as the process of “evaluating how well organisations

are managed and the value they deliver for customers and other stakeholders”. In other

words, it helps managers to assess whether the decisions made are effective and how far

an organisation or firm is from achieving its goals and objectives.

Among the different performance measures, this thesis focuses on the measurement

of efficiency. Data Envelopment Analysis (DEA) is a data-driven approach that was

introduced by Charnes et al. (1978) to measure the relative efficiency of organisations that

consume inputs to produce outputs. In DEA there is no functional assumption about the

relation between the inputs and outputs. This allows DEA to be applied to the efficiency

measurement of entities that consume multiple inputs to produce multiple outputs. In

such multidimensional cases, the estimation of a production function that captures well

the input-output relationship would probably be a complicated task. In DEA, the efficient

frontier is shaped by the best performing entities in the sample, and inefficient units use

the efficient ones as benchmarks to improve their activity. The efficiency score of each

entity is measured as the proportional decrease that a unit needs to apply in its input

consumption without decreasing the output production or the proportional expansion

that needs to achieve in its output production without increasing the input consumption

until it reaches the best practice frontier.

Apart from the input-output activities of the observed Decision Making Units (DMUs),

the shape of the efficient frontier also depends on some economic assumptions that are

M. Michali, PhD Thesis, Aston University 2022 9



INTRODUCTION

made about the production process of DMUs. Charnes et al. (1978) suggested the first

DEA model under the assumption that if a DMU increases its inputs this would lead to an

equivalent increase in the output production, i.e. it is assumed that DMUs operate under

constant returns to scale (CRS). However, in real market conditions, it is very common for

DMUs to experience economies or diseconomies of scale. For example, buying materials

in larger quantities usually guarantees a cost-per-unit reduction. That means that firms

operating at a larger scale are able to buy inputs at larger amounts and therefore can

increase their production at a reduced cost. On the other hand, in large-scale operating

companies, there might be some productivity loss due to difficulties in managing a large

workforce. To also capture economies or diseconomies of scale, Banker et al. (1984)

introduced a DEA model under the variable returns to scale (VRS) assumption. Later

studies also extended the main DEA models by making different assumptions about the

production frontier and/or using different metrics to measure the DMUs’ inefficiency.

The main concepts of DEA as well as its main developments are outlined by Thanassoulis

(2001) and Cooper et al. (2011), whereas Ray (2004) discusses the economic rationale of

the DEA models, based on the neoclassical model of production.

1.1 Motivation and research framework

Due to its non-parametric nature, the DEA methodology has been implemented to mea-

sure the efficiency of DMUs in a wide range of fields and industries, such as banking,

education, hotel industry, health care, agriculture, supply chain, etc. A collection of DEA

applications in different sectors can be found in Zhu (2016). Within the globally increas-

ing concern regarding energy consumption and climate change, during the last two years,

transportation, energy and the environment are among the most common areas in which

DEA models are implemented (Emrouznejad, Yang, Khoveyni & Michali 2022, pg. 346).

In this Thesis, the environmental efficiency of railway transport in Europe is studied,

in terms of how noise pollution affects humans and the measures that countries take to

eliminate this issue, considering the inner structure of the railway transport process. To

take into account sampling noise, and get more realistic efficiency score estimations, a

statistical framework is established for the cases when the production process of DMUs

has a two-stage series structure, and the performance of bootstrapping in such structures

is examined.

The transportation sector, which is an important sector for achieving economic growth,
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INTRODUCTION

is responsible for a significant percentage of the total energy consumption. According to

the European Environmental Agency (EEA), in 2007 the energy consumption from the

transportation industry in the EEA-331 was 38% higher than in 1990. In 2012, the share

of the transportation sector in energy consumption in the EU-28 was 32% (Ntovantzi et al.

2015). This small decrease that was observed in the energy consumption from this sector

was only temporary and was due to the economic crisis (EEA 2019a). Furthermore, during

the same period, greenhouse gas emissions increased by 36% in this sector, whereas other

sectors decreased their emissions by 15%, and the transportation sector is responsible for

about 25% of the greenhouse gas emissions in the EU-28 (Ntovantzi et al. 2015).

Despite the aforementioned environmental issues of the transportation sector that

arise from energy consumption and greenhouse gas emissions, the railway industry seems

to be the most environmentally friendly among the different transportation industries.

Railways are responsible for a very low percentage of energy consumption-only 0.3%

of the total transport energy, and are the least carbon-intensive mode of transport -

they are responsible only for 0.5% of the transportation greenhouse gas emissions in

2017 in the EEA-33 (EEA 2019b). At the same time, railways are also more efficient

than other means of transport in terms of safety, traffic congestion or land consumption.

Therefore, it is crucial for the environment, the economy and people to further investigate

the inefficiencies in the railway transport process, so its operations get improved and

further expanded.

The main environmental impact of railways is noise pollution. Apart from other

negative effects of railways on the natural habitat, such as collisions with animals, or

soil and water pollution caused by the herbicides used to maintain the rail lines, crossing

trains cause wheel and rail vibrations, and at high speeds, they also produce aerodynamic

noise. The older braking technology that is currently still being used in freight wagons

(LL-type composite brake blocks) also plays a major role in the sound levels produced

(Pyrgidis 2016, 428-429). This distorts both the wildlife and humans living close to the

railway lines. In this thesis, only the impact of railway noise on humans is considered.

Especially in Europe, railway transport is the second largest source of noise pollution after

road transport, and about 22 million people every year are estimated to be exposed to

high levels of railway noise that can be harmful to their health (EEA Report No 22/2019

2020).

Country-level measurements that are now reported by the EEA every five years re-

1EEA-33 includes EU-28 plus Switzerland, Iceland, Norway, Liechtenstein and Turkey
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INTRODUCTION

veal that railway noise levels inside and outside urban areas are above the safety levels

defined by the World Health Organisation (WHO) (EEA 2020). Exposure to high noise

levels for a long period can cause health problems such as chronic annoyance, stress or

insomnia or increase the risk of heart attacks (EEA Technical Report No 11/2010 2010).

Recognising the severe environmental impact of railway noise pollution, the European

Commission, in 2006, set noise emission limits for the new rail wagons. Members of the

Union Internationale des Chemins de Fer (UIC) (International Union of Railways) and

the Community of European Railway and Infrastructure Companies (CER) have agreed

on noise reduction plans and goals to eliminate railway noise-pollution by 2030 and 2050

(UIC & CER 2012).

In order for the countries to be able to comply with these goals and stay within the

noise-emission limits set by the European Commission, a necessary measure that needs to

be taken is to retrofit their wagon fleet with more silent braking technology. Therefore, to

measure the environmental efficiency of railway transport in a country both its negative

impact on people as well as measures to mitigate that impact need to be considered. In

this study, the negative impact of railways on people is measured as the number of people

in each country that are exposed to high levels of railway noise. The number of rail

wagons in each country that is retrofitted with more silent braking technology is used as

a proxy to measure the effort that each country makes to reduce railway noise pollution.

Conventional DEA only considers the initial inputs that enter the production and the

final outputs produced and ignores any inner structure of the production process. Never-

theless, in many applications, it is more useful to study the efficiency of the production

process capturing the different stages and any intermediate products that are involved in

the production of the final outputs. The railway transport process for example, similarly

to other production processes, involves different stages; To give the final outputs, which

are passenger and freight carrying services, in such a capital-intensive industry, an ini-

tial stage of building a good network of rail lines and acquiring the necessary number of

wagons at a not only affordable but at an also competitive cost is the first and critical

step for achieving efficiency. Therefore both stages of the railway transport process need

to be considered in order to get a better insight into the strengths and weaknesses of its

operation and set goals for improvement.

The first DEA studies that considered the different stages of a production process

were in mid-1980’s (Färe & Primont 1984; Charnes et al. 1986). Färe & Grosskopf

(2000) officially introduced the term Network DEA to describe the DEA models that
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are developed to deal with efficiency measurement when more than one sub-processes

are considered. The different sub-processes can be arranged in series, in parallel, or

series-parallel structures and intermediate products from one stage may become inputs

to another stage. There is a high volume of literature on Network DEA, concerning the

calculation of the efficiency scores of the sub-processes. This study focuses on two-stage

series structures.

Various algorithms have been developed to obtain the efficiency score of the overall

and the stage processes. In some approaches, the efficiency of each stage is calculated

independently and the linkage between the stages is not taken into account (Seiford &

Zhu 1999; Zhu 2000). In the network approaches (Färe 1991; Färe & Grosskopf 1996), the

inter-connection between the stages is considered in the calculation of the overall process

efficiency, but no measure of the stage efficiencies is provided.

The most broadly used approaches in the DEA literature are the efficiency decompo-

sition approaches. Two main efficiency decomposition approaches are used in the NDEA

literature; the multiplicative and the additive one. Kao & Hwang (2008) suggested de-

composing the overall efficiency as the product of the two-stage efficiencies. They linked

the two stages assuming that the aggregated outputs of the first stage are introduced

unchanged in the second stage. However, the multiplicative decomposition approach can

only be applied under the CRS assumption, as under the VRS, the resulting models can-

not be linearised. Another limitation of the conventional multiplicative approach is that

it can be generalised to multi-stage series structures only in the cases when there are

no stage-specific inputs and outputs. For general network structures, alternative mul-

tiplicative approaches have been developed, such as converting the original model to a

parametric linear one (see for example Zha & Liang (2010)). Chen et al. (2009) decom-

posed the overall efficiency of a DMU as the weighted average of the stage efficiencies.

They defined the decomposition weights endogenously, so they can reflect the relative

contribution of each stage to the overall process. The additive decomposition approach

has the advantage that the resulting models can be linearised both under the CRS and

the VRS assumptions. Furthermore, although under the CRS assumption, the additive

decomposition approach favours one stage against the other by assigning a higher value

to the decomposition weight of a stage, under the VRS assumption there is not such an

inherent bias in the optimisation process.

Conventional DEA is a deterministic approach that does not consider any sort of

noise, such as sampling noise, measurement and specification errors. DEA models have
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been extended in different directions to account for such deficiencies. Regarding sampling

noise, in conventional DEA, the efficient frontier is defined empirically based on the best-

performing DMUs included in the observed sample. However, alterations in the observed

sample (inclusion or omission of DMUs) may affect the shape of the efficient frontier and

the efficiency scores of DMUs. For example, when measuring the efficiency of different

supermarkets in a city, there is a chance that not all the supermarkets of the city are

included in the sample, or a new supermarket is going to open soon, or we may need to

consider efficiency measurement at a country-level.

In practice, the observed set of DMUs is just a random sample drawn from an under-

lying population, with an unknown efficient frontier. DEA can only provide an estimate

of the true efficiency score. Kneip et al. (1998) derived the rate of convergence of the

DEA estimator, i.e. the rate at which the estimation error decreases as the size of the

observed sample increases, under the VRS assumption. For the single input-single output

case, Gijbels et al. (1999) derived the analytical form of the distribution of the efficiency

differences between the sample frontier and the true unknown frontier. However, in higher

dimensions, the closed expression of this distribution cannot be obtained, and the only

way to approximate it is through bootstrapping techniques.

The idea in bootstrapping is that the observed sample which is drawn from an unknown

population through an unknown data generating process (DGP) mimics the population

that it comes from. Therefore if a bootstrap sample is drawn from the original sample

through a known DGP that is a consistent estimator of the unknown DGP, then it will be

like drawing a sample from the population itself. By repeating this process several times,

many bootstrap samples are generated and can be used to make statistical inference.

The DGP, i.e. the bootstrapping approach, that is used to generate the bootstrap

sample must mimic well the true unknown DGP. Näıve bootstrapping which consists

of drawing with replacement a bootstrap sample of equal size as the original sample

provides inconsistent estimates of the true efficiency scores. This happens because with

näıve bootstrapping, asymptotically, the probability that the bootstrap frontier coincides

with the sample frontier is positive, whereas the probability that the sample frontier

coincides with the true unknown frontier is zero. Different bootstrap approaches based on

smoothing or subsampling, and under different assumptions have been proven to provide

consistent estimates of the true efficiency scores.

The consistency of the DEA estimator obtained through different bootstrapping tech-

niques based on smoothing or subsampling, and under different assumptions has been
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broadly studied. The homogeneous smooth bootstrap approach (Simar & Wilson 1998)

requires the restrictive assumption that the distribution of inefficiencies is the same for

all DMUs. This assumption implies that all DMUs have a positive probability of reaching

the unknown efficient frontier. As it was discussed by Olesen & Petersen (2016) this is not

always the case. In the heterogeneous smooth bootstrap introduced by Simar & Wilson

(2000), the homogeneity assumption is relaxed, however, in practice, it is very difficult to

implement as it requires a large amount of data to be available to estimate a DMU-specific

inefficiency distribution. On the other hand, subsampling bootstrap does not require any

homogeneity assumption and is computationally easier than the heterogeneous smooth

bootstrap.

Numerous applications implement bootstrapping to get confidence interval estimates

for the efficiency scores of DMUs. However, in these studies, the transformation of inputs

into outputs is considered to occur at a single stage and any inner structure of the pro-

duction process is ignored. There are very limited attempts to make statistical inference

in the cases when the production process has a network structure, and there is no study

that provides confidence interval estimates for the efficiency scores of the overall and the

stage processes considering the inter-connection between the stages.

Therefore, in this thesis, we extend the application of the bootstrapping methodology

in the cases when the production process involves two stages arranged in series. Subsam-

pling bootstrap is being used as the most appropriate one, since it allows for heterogeneity

in the inefficiency distribution of DMUs, without requiring the computational burden of

the heterogeneous smooth bootstrap. The efficiency estimates for the overall and stage

efficiency scores are obtained using the additive decomposition methodology since this can

be applied under the VRS assumption and is computationally easier than the efficiency

composition methodologies. A practical approach is suggested to overcome some peculiar

results obtained from the additive decomposition algorithm.

First, Monte Carlo simulations are run to assess the performance of subsampling

bootstrap in different two-stage series structures. Then, the methodology is applied to

construct confidence interval estimates about the efficiency scores of European railways.

Confidence interval estimates are particularly insightful in this case; the additive decom-

position approach yields many efficient DMUs in the second stage, but the lower bounds

of the confidence interval estimates show that in reality this is not the case, and provide

the possible range of the true inefficiency of railway services in those countries.
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1.2 Research aims and objectives

Despite the great number of studies that assess the efficiency of railways, there is a lim-

ited number of studies that consider the inner structure of the railway transport process.

Additionally, even though noise pollution seems to be a major aftereffect of railway opera-

tions under the current train technology, no study incorporates this issue in the efficiency

measurement.

Furthermore, although bootstrapping techniques have been widely applied in one-stage

production structures to make estimations about the true efficiency scores of DMUs, and

consider sampling noise, there are very limited attempts to make statistical inference in

the cases when the production process has a network structure, and there is no study that

provides confidence interval estimates for the efficiency scores of the overall and the stage

processes considering the inter-connection between the stages.

Therefore, the aim of this research is on the one hand to assess the efficiency of

European railways considering its inner structure and the major environmental problem of

railway noise pollution, and on the other hand, to set a statistical framework for Network

DEA to consider for sampling noise, while taking into account the relations between the

different stages.

Therefore, the objectives of this thesis are formulated as follows:

• Unveil the sources of inefficiency in the railway transport process in the European

countries

• Investigate the impact of railway noise pollution on humans

• Provide a deep discussion on the decomposition weights in the additive decomposi-

tion approach

• Assess the performance of subsampling bootstrap in two-stage series structures

through Monte Carlo simulations

• Investigate the impact of the sample and subsample size in the coverage probabilities

• Provide suggestions on how to deal with the peculiarities of the additive decompo-

sition algorithm in the bootstrap context
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1.3 Structure of the thesis

The structure of this thesis is given below.

In Chapter 2, the main concepts and assumptions in DEA are discussed. The main

DEA models, i.e. the CCR, the BCC, the SBM and the additive model are formulated,

and the underlying assumptions behind each model are discussed and compared.

Chapter 3, is a review of the most influential approaches to efficiency measurement

when the inner structure of the production process is considered. More specifically, this

chapter focuses on the cases when the production process has a two-stage series structure.

The available efficiency measurement approaches for such structures are categorised into

five different general categories. In the independent approach, the efficiency of each

stage is calculated independently using the standard DEA models and interdependencies

between the stages are not considered. Therefore, efficiency decomposition and efficiency

composition approaches, as well as slacks-based measure approaches, and the network

approaches were developed to jointly assess the efficiency of the overall and the stage

processes. The strengths and weaknesses of each approach are discussed.

In Chapter 4, the additive decomposition approach is used to assess the efficiency of

European railways. First, the sources, as well as the impact of the railway noise pollution,

are discussed, and noise emission limits and goals set by the European Commission are

given. The railway transport process is divided into two stages, related to assets and

service provision, respectively. The negative impact of railways on people is measured as

the number of people in each country that are exposed to high levels of railway noise.

The number of rail wagons in each country that is retrofitted with more silent braking

technology is used as a proxy to measure the effort that each country makes to reduce rail-

way noise pollution. Data is extracted from Eurostat (2016), ERA 006REC1072 Impact

Assessment (2018), and EEA (2020). Sensitivity analysis is performed in order to choose

the decomposition weight restrictions that will prevent one of the two stages to be as-

signed zero contribution to the overall process, and at the same time, will not significantly

affect the efficiency scores. Next, based on the findings, policy suggestions for the coun-

tries are given, and finally, some limitations and future research directions are provided.

This Chapter has been published in the Transportation Research Part D: Transport and

Environment (Michali et al. 2021).

In Chapter 5, the bootstrap approaches used in the DEA context are discussed. First,

the main statistical concepts and definitions that will be used are given, and then the
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bootstrap idea is explained. In practice, bootstrapping is the only way to account for

sampling noise, and obtain estimations about the true efficiency scores of DMUs. A

necessary condition to get good approximations of the true efficiency scores is that the

bootstrap is a consistent estimator of the true unknown data generating process. Näıve

bootstrap, homogeneous and non-homogeneous smooth bootstrap and subsampling boot-

strap within the DEA context are discussed, and consistency issues and computational

difficulties for each approach are explained in detail.

In Chapter 6, the statistical framework is extended to Network DEA. The frontier

model is defined for a two-stage general series structure. Among the different bootstrap

approaches, subsampling bootstrap was chosen as the most appropriate since -as it is

discussed in Chapter 5 - it does not require any restrictive assumptions and is computa-

tionally easier compared to the heterogeneous smooth bootstrap. The general two-stage

series structure is studied in the cases of a five and a seven-dimensional structure. The

performance of subsampling is examined through Monte Carlo simulations, in which the

true probabilities that the true efficiency scores lie in the estimated confidence intervals

were calculated, for various sample and subsample sizes. The use of the algorithm sug-

gested by Simar & Wilson (2010) for the choice of the optimal subsample size is then

examined, and some practical considerations of its applicability are provided. Then, a

two-step approach is suggested to overcome some result inconsistencies that are due to the

peculiarities of the additive decomposition algorithm. Finally, the suggested methodology

is applied to obtain confidence interval estimates for the overall and stage efficiency scores

of the European railways. This Chapter, is based on an article published in the European

Journal of Operational Research (Michali et al. 2022).

Finally, in Chapter 7, conclusions and limitations of this research, as well as future

research directions are provided.
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Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a non-parametric technique based on linear pro-

gramming (LP), which is used to measure the comparative efficiency of a homogeneous

set of decision making units (DMUs) and provide targets for achieving efficiency improve-

ment. Such a set of DMUs can be the branches of a bank, or a supermarket, hotels,

airports, utility companies, etc., which consume multiple resources to produce multiple

outputs.

In DEA, the performance of each unit is evaluated by measuring its distance from an

empirically constructed efficient frontier; among the observed set of DMUs, those with

the best performance, i.e. those with the maximum attainable output level produced

by a given input level, are used to define the efficient frontier. The less well-performing

DMUs will be enveloped by the best practice frontier and use it as a benchmark against

which they will compare their performance. In contrast to the econometric approaches

where a production function needs to be estimated, the great advantage of DEA is that

no functional form is needed to describe the transformation of inputs into outputs since

the efficient production frontier is empirically constructed. This allows the inclusion

of multiple inputs/outputs in the production model without the risk of increasing the

estimation error.

The origins of DEA lie on the seminal works of Farrell (1957), Koopmans (1951)

and Debreu (1951). Farrell (1957) approximated the production function as a convex,

piecewise linear frontier obtained from the observed input-output data, solving a LP.

Based on the activity analysis of Koopmans (1951) and Debreu (1951)’s ”coefficient of

resource utilisation”, Farrell also defined a relative, radial input-based index to assess the
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technical efficiency of a firm, measuring the proportional reduction of inputs needed, given

the production of a single output, to reach the best practice frontier.

The concept of technical efficiency was firstly introduced by Koopmans (1951) who

defined the feasible activity of a firm as efficient if an increase in the production of any

of its outputs (decrease in the consumption of any of its inputs) is only possible only

by decreasing the production of another output (increasing the consumption of another

input). Koopmans’s definition of technical efficiency is similar to the Pareto optimality

and is therefore known as Pareto-Koopmans efficiency. Farrell’s technical efficiency differs

from Koopmans’s as the first one is a radial measure of technical efficiency and therefore,

some input excesses and/or output shortfalls may remain after a unit becomes efficient.

Farrell (1957) noted the difficulty in generalising the defined index to the multiple input-

multiple output setting.

About two decades later, Charnes et al. (1978) introduced the first DEA model in

the form of a fractional program, by generalising Farrell’s measure to the multiple input-

output setting; efficiency is measured as the ratio of the weighted sum of inputs to the

weighted sum of outputs, with the weights being assigned by the optimisation process.

Banker et al. (1984) extended Charnes et al. (1978) work to incorporate different as-

sumptions about the production technology under which units operate. Since then, a

considerable number of studies have focused both on the theoretical development of DEA

and its applications. According to Emrouznejad, Yang, Khoveyni & Michali (2022), the

rapid growth of the number of DEA publications started in the mid-2000s and during the

last decade, more than 1000 DEA-related articles are published each year. A full list of

publications on DEA since 1978 is provided by Emrouznejad & Yang (2018).

The aim of this chapter is to discuss the main concepts needed to set the DEA frame-

work. In Section 2.1, the production model is defined and its properties are given. In

Section 2.2 efficiency measurement in DEA is discussed and a simple example is provided.

Section 2.3 reviews the four basic DEA models. In Section 2.4, the curse of dimensionality

in DEA is briefly discussed, and finally, in Section 2.5 the main conclusions of the Chapter

are provided.

2.1 The production model

In DEA, a decision making unit (DMU) is a unit that transforms multiple inputs into

multiple outputs (see Figure 2.1). The main idea behind DEA is to assess the efficiency of

M. Michali, PhD Thesis, Aston University 2022 20



DATA ENVELOPMENT ANALYSIS

a DMU in transforming its inputs into outputs compared to other DMUs going through

the same transformation process. The term DMU was introduced by Charnes et al.

(1978) to emphasise, on the one hand, the control that a unit has over its consumption

and production quantities and, on the other hand, that the developed methodology ”is

centred on decision making by not-for-profit entities rather than the more customary

’firms’ and ’industries’” (Charnes et al. 1978, pg. 429).

Figure 2.1: A DMU representation

Suppose there is a set of N homogeneous DMUs, each consuming P inputs to produce

S outputs. The set needs to be homogeneous in the sense that all the DMUs perform

the same tasks, i.e. they consume the same type of inputs and produce similar outputs,

but in varying quantities. Let xj = (x1j, ..., xPj) ∈ RP
+ and yj = (y1j, ..., ySj) ∈ RS

+ denote

the non-negative input and output vectors of DMUj, j = 1, 2, ..., N . It is supposed that

all data are non-negative, but each vector has at least one positive element. Therefore,

each DMU has at least one positive input and output. The pair (x, y) ∈ RP+S
+ is called

an activity vector. An input-output correspondence is a feasible activity if the specific

output can be produced from that input quantity. The set that includes all the feasible

input-output activities is called the production possibility set (PPS) and is defined as

T = {(x, y) ∈ RP+S
+ |x can produce y}.

The boundary of the PPS comprises the efficient frontier and is defined empirically

upon the observed set of DMUs and some assumptions that are made about the returns to

scale (RTS) features of the production technology under which the DMUs operate. The

RTS refers to how a proportionate increase in the inputs of a unit affects the amounts of

the outputs produced. If such an increase in the inputs of a unit results in the amount of

outputs being increased by the same proportion, the production exhibits constant returns

to scale (CRS). When the change in the outputs is not proportionate to the change in

the inputs, the DMU operates under the variable returns to scale (VRS). If the outputs

are increased by a higher proportion, the units operate under increasing returns to scale

(IRS). Such economies of scale occur when the efficiency of a unit increases as the unit

M. Michali, PhD Thesis, Aston University 2022 21



DATA ENVELOPMENT ANALYSIS

increases the scale size of its operations. The production process exhibits decreasing

returns to scale (DRS) when the proportional increase in outputs is less than the input

increase, i.e. a unit becomes less efficient as it moves to a larger scale.

More specifically, the PPS has the following properties (see Banker, 1984):

(i) (Inclusion of observations) (xj, yj) ∈ T ∀ DMUj, j = 1, ..., N .

(ii) (Strong disposability) If (x, y) ∈ T and x′ ≥ x, y′ ≤ y, where x, x′ ∈ Rm, y, y′ ∈ Rr,

then (x′, y′) ∈ T .

(iii) (Convexity) If (xj, yj) ∈ T, j = 1, ..., N , then, for any vector of non-negative scalars

λj such that
∑︁N

j=1 λj = 1 ⇒ (
∑︁N

j=1 λjxj,
∑︁N

j=1 λjyj) ∈ T .

(iv) (Minimum Extrapolation) If T1 satisfies (i)-(iv) then T ⊆ T1.

Under the CRS assumption, the PPS also possesses the following property:

(v) If (x, y) ∈ T ⇒ (tx, ty) ∈ T for any positive scalar t.

Based on the observed input-output data and the properties (i)-(v) assumed, the PPS

under all the different production technologies is formulated as follows:

T =
{︁
(x, y) ∈ RP+S

+ |
N∑︂
j=1

λjxj ≤ x,
N∑︂
j=1

λjyj ≥ y, λ ∈ Λ
}︁
, (2.1)

where Λ is defined depending on the RTS assumptions; under the CRS assumption, Λ =

RN
+ , when the VRS is assumed, Λ = {RN

+ |
∑︁N

j=1 λj = 1}, Λ = {RN
+ |
∑︁N

j=1 λj ≤ 1}, under

the IRS assumption, and Λ = {RN
+ |
∑︁N

j=1 λj ≥ 1} under the DRS assumption.

The most common assumptions made in DEA are the CRS and the VRS. Figure 2.2

illustrates the PPSs under the CRS and VRS assumptions, respectively, based on a set of

eight DMUs which consume a single input and produce a single output (Table 2.1).

Table 2.1: One input and one output case

DMU A B C D E F G H
Input 2 7 6 5 3 8 6 4
Output 1 3 7 5 4 5 4 3
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Figure 2.2: PPSs under the CRS and the VRS assumptions

In Figure 2.2, the lined area represents the PPS under the CRS assumption, whereas

the grey shaded area represents the PPS when the VRS is assumed. The boundary of

the PPS under the CRS assumption is estimated by the blue ray starting from the origin

and passing through DMU E and is the best practice frontier under the CRS assumption.

Under the VRS assumption, the best practice frontier is assumed to be given by the grey,

piecewise linear curve defined by DMUs A, E and C. In each case, the inefficient DMUs

are enveloped by the best practice frontier. Although DMUs A and C are on the efficient

frontier under the VRS assumption, they are inefficient compared to the CRS frontier.

Therefore, even from this trivial example it can be seen that in DEA, the efficiency of

DMUs is a relative measure that depends on the RTS assumptions and the activity of

the DMUs included in the observed sample. Furthermore, the VRS frontier is ”closer” to

inefficient units and, therefore, suggests a more favourable efficiency measurement.

2.2 Efficiency measurement in DEA

Efficiency measurement in DEA is relative rather than absolute. Comparing the amount

of outputs produced by a DMU, given the input quantities, with the benchmark output

amounts, can give a measure of technical efficiency for a DMU. The objective of each

DMU is twofold: a DMU aims to increase its output production to a maximum possible

level, given that it continues to consume the same amount of input resources, or, to

minimise its input consumption while producing the same output quantities. Therefore,
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efficiency measurement can be input or output oriented. Then, input technical efficiency

is measured as the maximum feasible radial contraction of a DMUs’ inputs (i.e. the input

mix is maintained) given that the production level of outputs is not reduced. Output

technical efficiency can be defined similarly, as the maximum feasible radial expansion of

outputs without increasing its input levels.

Technical efficiency can be defined in terms of the PPS and the input requirement

and output correspondence sets that fully characterise the PPS. Consider a set of N

DMUs, and let X(y) be the input requirement set which consists of all the input vectors

x ∈ RP
+ that can produce y ∈ RS

+, and similarly, let Y (x) be the output correspondence

set containing all the output vectors y ∈ RS
+ which can be produced by the input vector

x ∈ RP
+. Then,

X(y) = {x ∈ RP
+|(x, y) ∈ T}, (2.2)

Y (x) = {y ∈ RS
+|(x, y) ∈ T}. (2.3)

The radial (or Farrell’s) input and output technical efficiency measures can now be defined

as follows:

Definition 2.2.1. The Farrell’s input and output technical efficiencies, respectively, are

defined as

θ∗ = inf{θ|θx ∈ X(y)}, (2.4)

ϕ∗ = sup{θ|θy ∈ Y (x)}. (2.5)

Consider the same set of eight DMUs given in the previous section, where each DMU

consumes a single input and produces a single output and let us consider the CRS case

first. Under the CRS assumption, the maximum radial input contraction (output expan-

sion) given the current output (input) levels is represented by the ray starting from the

origin and passing through the point E, i.e. the CCR-efficient boundary of the PPS.

Therefore, in the CRS case, all the inefficient DMUs will use DMU E as a benchmark

to improve their efficiency. The technical efficiency (TE) of a DMUj0 belonging to the

sample, can be calculated relatively to the best performing DMU as the following ratio of

ratios, which is always bounded on both sides:

0 ≤
Output of DMUj0 per input of DMUj0

Output of the efficient DMU per input of the efficient DMU
≤ 1. (2.6)
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Figure 2.3 illustrates the input and output technical efficiencies of the inefficient DMU

H, under the CRS and the VRS assumption, respectively.

Figure 2.3: CRS and VRS technical efficiency of DMU H

The inefficient DMU H for example, could become technically efficient by minimising

its input level to operate at point H1, or maximise its output production to operate

at point H3. The output technical efficiency is given as the proportion that the DMU’s

observed output is of the maximum output it could produce, given it consumes the same

input quantities, i.e. 1/ϕCRS∗
H = TECRS

H,O = H4H
H4H3

= 0.56. The input technical efficiency of

DMU H can be defined in a similar way as θCRS∗
H = TECRS

H,I = H2H1

H2H
= 0.56, where H2H1

is the minimum input level that DMU H could consume to produce the same output

level, and H2H is the actual input level of DMU H. It can be seen that under the CRS

assumption the input and output orientation yield the same technical efficiency score.

Under the VRS assumption, the locus of the points with the maximum output pro-

duction per unit of input is approximated by a piecewise linear curve. In this case, an

inefficient DMU can have more than one efficient DMUs as benchmarks, depending on

which line segment of the locus approximation its radial projection lies. Therefore, in

order to define the technical efficiency of a DMU using the ratio 2.6, we need to de-

fine a ”virtual”, efficient DMU, by taking the linear interpolation between the DMU’s

benchmarks, i.e. the virtual DMU lies on the linear segment defined by the benchmark

DMUs.

In this example, under the VRS assumption, the efficient operation of DMU H is given

by the points H5 or H6, which are the projections of point H to the VRS frontier, in the
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input and output orientation, respectively. Therefore, in the output orientation, DMU H

uses DMUs E and C as benchmarks, and its VRS output technical efficiency is given as

1/ϕV RS∗
H = TEV RS

H,O = H4H
H4H6

= 0.6. In the input orientation, DMUs A and E become the

benchmarks and DMU H’s input technical efficiency is θV RS∗
H = TEV RS

H,I = H2H5

H2H
= 0.67.

Unlike the CRS case, under the VRS assumption the input and output technical efficiency

scores can be different. The CRS and VRS technical efficiencies are called global and

pure technical efficiencies, respectively. Since the CRS frontier always envelops the VRS

frontier, we conclude to the following corollary:

Corollary 2.2.1. Given a set SN of N DMUs, for a DMUj0 ∈ SN , it always holds that

TECRS
j0

≤ TEV RS
j0

, in both orientations.

Therefore, the scale size of a DMU’s operation has an impact on its performance. The

divergence between the CRS and the VRS technical efficiency of a DMU is defined as

its scale efficiency. Banker et al. (1984) showed that the CRS technical efficiency can

be decomposed to the product of VRS technical efficiency and scale efficiency, i.e. for a

DMUj0

SEj0 =
TECRS

j0

TEV RS
j0

, (2.7)

where TEV RS
j0

is measured either in the input or in the output orientation.

An efficient DMU operating at IRS or DRS can maximise its average productivity if it

changes its scale size to CRS, as the local CRS is the most productive scale size (MPSS)

for a DMU to operate. The MPSS is defined as follows:

Definition 2.2.2. (Banker & Thrall 1992) A DMUj0 operates at the MPSS iff TECRS
j0

= 1

and SEj0 = 1.

Therefore, a CRS-efficient DMU is operating at the MPSS.

Table 2.2 depicts the output/input ratio, the CRS and VRS technical efficiencies and

the input and output scale efficiencies for the eight DMUs included in the foregoing single

input and output example.

M. Michali, PhD Thesis, Aston University 2022 26



DATA ENVELOPMENT ANALYSIS

Table 2.2: Efficiency measurement in the single input- single output case

DMU A B C D E F G H
Input 2 7 6 5 3 8 6 4
Output 1 3 7 5 4 5 4 3

Output/Input 0.5 0.429 1.167 1 1.333 0.625 0.667 0.75
TECRS 0.375 0.321 0.875 0.75 1 0.469 0.5 0.563
TEV RS

I 1 0.381 1 0.8 1 0.5 0.5 0.667
TEV RS

O 1 0.429 1 0.833 1 0.714 0.571 0.6
SEI 0.375 0.842 0.875 0.938 1 0.938 1 0.844
SEO 0.375 0.748 0.875 0.900 1 0.657 0.876 0.938

Farrell’s technical efficiency discussed above, requires the radial projection of DMUs on

the efficient frontier. However, a DMU radially projected on the efficient frontier may still

be able to further improve its activity by further reducing (increasing) its inputs (outputs)

without affecting the output (input) levels, because of the existence of input excesses

(output shortfalls). Therefore, in DEA Farrell’s technical efficiency is often related to weak

efficiency. Pareto-Koopmans technical efficiency considers a DMU as strongly efficient if

and only if it is not possible to improve any of its inputs or outputs without worsening

at least one of its other inputs and/or outputs. Therefore, weak and strong efficiency can

be defined as follows:

Definition 2.2.3. Let (x, y) ∈ P be the activity vector of DMUj, j = 1, 2, ..., N. DMUj is

strongly (weakly) efficient if and only if there is no other feasible activity (x′, y′) ̸= (x, y),

such that x′ ≤ x (x′ < x) and y′ ≥ y (y′ > y).

2.3 The basic DEA models

In this section, the four basic DEA models, namely the CCR, the BCC, the additive

and the SBM model, will be outlined. The first two models use radial projections of

DMUs to the efficient boundary, in the sense that they require proportionate reduction

(increase) of inputs (outputs), whereas the additive and the SBM models allow for non-

radial projections, i.e. changes to a DMU’s resources can be non-proportional.

2.3.1 The CCR model

The CCR model was introduced by Charnes, Cooper & Rhodes (1978) to measure the

relative, radial efficiency of DMUs under the CRS assumption. In this section, models
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will be explained based on the input-orientation, and then they will be briefly extended

to the output orientation.

Consider a set of N DMUs, each consuming P inputs xj = (x1j, ..., xPj) ∈ RP
+ and

producing S outputs yj = (y1j, ..., ySj) ∈ RS
+. For each DMUj0 belonging to the sample, a

virtual DMU is constructed by the inputs and outputs of DMUj0 , with (virtual input)j0 =

ν1x10 + ... + νPxP0 and (virtual output)j0 = w1y10 + ... + wSyS0. The weights νp and ws

are unknown and will be determined so they maximise the ratio of the virtual output to

the virtual input. Charnes et al. (1978) suggested the following model for obtaining the

optimal weights and the efficiency score of each DMU:

max θj0 =

∑︁S
s=1wsysj0∑︁P
p=1 νpxpj0

s.t.

∑︁S
s=1wsysj∑︁P
p=1 νpxpj

≤ 1, j = 1, ..., N, (2.8)

νp, ws > 0, p = 1, ..., P, s = 1, ..., S.

Model (2.8) needs to be solved N times, one for each DMU in the sample, and the

constraints ensure that the optimal objective value θ∗j0 of θj0 for a DMU under evaluation

does not exceed 1.

The CCR model can be converted from a fractional to a linear form by applying the

Charnes-Cooper (C-C) transformation (Charnes & Cooper 1962). Let a scalar t ∈ R+

such that t
∑︁P

p=1 νpxpj0 = 1. Multiplying the nominators and denominators in model (2.8)

by t does not affect the values of the ratios. Therefore, setting us = tws, s = 1, ..., S

and vp = tνp, p = 1, ..., P, model (2.8) is transformed into the following equivalent linear

programme:

max θj0 =
S∑︂

s=1

usysj0

s.t.
P∑︂

p=1

vpxpj0 = 1 (2.9)

S∑︂
s=1

usysj −
P∑︂

p=1

vpxpj ≤ 0, j = 1, ..., N,

us, vp ≥ 0, p = 1, ..., P, s = 1, ..., S.

Let (θ∗j0 , v
∗
p, u

∗
s) be the optimal solution to model 2.9. We can then define CCR-
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efficiency as follows:

Definition 2.3.1. A DMUj0 is CCR-efficient if and only if the optimal solution (θ∗j0 , v
∗
p, u

∗
s)

satisfies θ∗j0 = 1, and there exists at least one optimal (v∗p, u
∗
s), with v∗p, u

∗
s > 0. It is weakly

efficient if θ∗j0 = 1, and at least one element of (v∗p, u
∗
s) is zero. Otherwise, it is CCR-

inefficient.

For a CCR-inefficient DMUj0 , it holds that θ∗j0 < 1. The reference set Rj0 for the

inefficient DMUj0 consists of all DMUj, j ∈ {1, ..., N}\{j0} such that at the optimal

weights (v∗p, u
∗
s), at least one one of the inequality constraints in model (2.9) is binding,

i.e.

Rj0 = {j :
S∑︂

s=1

u∗
sysj −

P∑︂
p=1

v∗pxpj = 0}. (2.10)

Model 2.9 is the dual or multiplier model. The variable-constraint correspondence

between model 2.3.1 and the primal model is provided in Table 2.3 below.

Table 2.3: Primal-dual correspondences in the input orientation, under the CRS assump-
tion

duals
primal

λ1 λ2 ... λN θj0 primal RHS/
dual obj.

v1 −x11 −x12 ... −x1N x1j0 ≥ 0
v2 −x21 −x22 ... −x2N x2j0 ≥ 0
...

...
...

...
...

...
...

...
vP −xP1 −xP2 ... −xPN xPj0 ≥ 0
u1 y11 y12 ... y1N y1j0 ≥ y1j0
u2 y21 y22 ... y2N y2j0 ≥ y2j0
...

...
...

...
...

...
...

...
uS yS1 yS2 ... ySN ySj0 ≥ ySj0

≤ ≤ ... ≤ =
prim. obj./
dual RHS

0 0 ... 0 1

The primal or envelopment model is given below:
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min θj0

s.t. θj0xpj0 −
N∑︂
j=1

λjxpj ≥ 0 p = 1, ..., P, (2.11)

N∑︂
j=1

λjysj − ysj0 ≥ 0, s = 1, ..., S,

λj ≥ 0, j = 1, ..., N.

It can be seen that the constraints of the envelopment model are related to the PPS

T , defined in relation 2.1. The constraints of the envelopment model require the activity

(θj0xpj0 , ysj0) to belong to P , while the objective of the model requires minimising θj0 , so

that all the elements of the input vector are proportionally reduced as much as possible,

while the same production of outputs is secured, and the improved activity still belongs

to T .

The above models provide radial measures of a DMU’s efficiency (Farrell efficiency),

and therefore, an efficient DMU may still have some excess in its inputs or a shortfall in

its outputs. Let s− ∈ Rp and s+ ∈ Rs denote the slack vectors, representing the input

excesses and the output shortfalls, respectively. These can be obtained by solving the

following model:

min θj0 − ε(
P∑︂

p=1

s−p +
S∑︂

s=1

s+s )

s.t. θj0xpj0 −
N∑︂
j=1

λjxpj − s−p = 0 p = 1, ..., P, (2.12)

ysj0 −
N∑︂
j=1

λjysj + s+s = 0, s = 1, ..., S,

λj, s
−
p , s

+
s ≥ 0, j = 1, ..., N, p = 1, ..., P, s = 1, ..., S,

where ε > 0 is a non-Archimedean infinitesimal.

Model 2.12 can be solved in two phases:

Phase I

Model 2.11 is solved to obtain the optimal objective value θ∗j0 .

Phase II
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Using the optimal objective value θ∗j0 obtained in Phase I, the following linear model is

solved to obtain the slack values:

max
P∑︂

p=1

s−p +
S∑︂

s=1

s+s

s.t. θ∗j0xpj0 −
N∑︂
j=1

λjxpj − s−p = 0 p = 1, ..., P, (2.13)

ysj0 −
N∑︂
j=1

λjysj + s+s = 0, s = 1, ..., S,

λj, s
−
p , s

+
s ≥ 0, j = 1, ..., N, p = 1, ..., P, s = 1, ..., S,

so that input excesses and output shortfalls are maximised, while the optimal objective

value θ∗j0 is maintained.

Let (θ∗j0 , λ
∗, s−∗

p , s+∗
s ) be the optimal solution of the two-phase model 2.12, i.e. of

models 2.11 and 2.13.

Definition 2.3.2. A DMUj0 is CCR-strongly efficient if and only if the optimal solution

(θ∗j0 , λ
∗, s−∗

p , s+∗
s ) satisfies the conditions

(i) θ∗j0 = 1,

(ii) s−∗
p = 0 and s+∗

s = 0.

It is CCR-weakly efficient if the optimal solution satisfies condition ((i)), but not condition

((ii)). Otherwise, it is CCR-inefficient.

Definitions 2.3.1 and 2.3.2 both refer to strong and weak CCR efficiency, based on the

primal (multiplier) and the dual (envelopment) models, respectively. Due to the condition

of complementary slackness, these two definitions are equivalent.

The following Theorem gives the condition of complementary slackness.

Theorem 2.3.1. (Complementary Slackness) If a dual variable is greater than zero

(v∗p, u
∗
s > 0) then the corresponding primal constraint is binding (zero slack). If the pri-

mal constraint is not binding (positive slack) then the corresponding dual variable is zero

(v∗p = 0 and/or u∗
s = 0).

Let (x̂pj0 , ŷsj0) be the improved activity of DMUj0 , based on the optimal solution (θ∗j0 ,

λ∗, s−∗
p , s+∗

s ). Then, the efficient input and output targets (projections) of DMUj0 are given
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as

x̂pj0 = θ∗xpj0 − s−∗
p =

N∑︂
j=1

λ∗
jxpj, (2.14)

ŷsj0 = ysj0 + s+∗
p =

N∑︂
j=1

λ∗
jysj, (2.15)

for p = 1, ..., P and s = 1, ..., S.

Models 2.9 and 2.11 are the input-oriented CCR multiplier and envelopment models,

respectively. Depending on the nature of the problem and the decision maker’s prefer-

ences, an output expansion given the current input levels may be desirable to achieve

instead. The output-oriented multiplier and envelopment CCR models, respectively, are

given in Table 2.4 below:

Table 2.4: The output-oriented CCR models

Multiplier form Envelopment form

min ϕj0 =
1

θj0
=

S∑︂
s=1

vpxpj0

s.t.
P∑︂

p=1

usysj0 = 1 (2.16)

S∑︂
s=1

usysj −
P∑︂

p=1

vpxpj ≤ 0, ∀j,

us, vp ≥ 0, p = 1, ..., P, s = 1, ..., S.

max ϕj0

s.t. xpj0 −
N∑︂
j=1

µjxpj ≥ 0 ∀p, (2.17)

ϕj0ysj0 −
N∑︂
j=1

µjysj ≤ 0, ∀s,

µj ≥ 0, j = 1, ..., N.

The technical output efficiency score of DMUj0 is given by the optimal value ϕ∗
j0
which

is the reciprocal of the input-oriented efficiency θ∗j0 . Therefore, in the output orientation,

the higher the value of ϕ∗
j0
, the less efficient the DMUj0 is.

Let t− ∈ RP and t+ ∈ RS denote the input excesses and the output shortfalls in the

output orientation. Then these are defined similarly to the input-oriented case as

xpj0 −
N∑︂
j=1

µjxpj − t−p = 0, (2.18)

ϕj0ysj0 −
N∑︂
j=1

µjysj + t+s = 0, (2.19)
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for p = 1, ..., P and s = 1, ..., S, and can be obtained by solving a two-phase model

as in the input orientation. Let the optimal solution of the output-oriented two-phase

envelopment model for DMUj0 be (ϕ∗
j0
, µ∗, t−∗

s , t+∗
p ). Then the optimal solutions of the

input and output oriented envelopment models are related as given below:

θ∗j0 = 1/ϕ∗
j0
, (2.20)

λ∗
j = µ∗

j/ϕ
∗
j0
, j = 1, ..., N (2.21)

s−∗
p = t−∗

p /ϕ∗
j0
, p = 1, ..., P (2.22)

s+∗
s = t+∗

s /ϕ∗
j0
, s = 1, ..., S. (2.23)

Example:

The input and output oriented models discussed above, are going to be illustrated with

the following example. Consider the set of eight DMUs given in the previous section, but

this time, a two input-one output case is examined. The data set is given in Table 2.5

below.

Table 2.5: Two input and one output case

DMU A B C D E F G H
Input 1 2 7 6 5 3 8 6 4
Input 2 1 2 5 2 4 6 4 6
Output 1 3 7 5 4 5 4 3
Input 1/Output 2 2.33 0.86 1 0.75 1.6 1.5 1.33
Input 2/Output 1 0.67 0.71 0.4 1 1.2 1 2

In the three-dimensional case, it is possible to get the graphical representation of the

PPS under the CRS assumption, by using the ratios of inputs per unit of output. Figure

2.4 illustrates the PPS.
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Figure 2.4: PPS for the two input-single output case, under the CRS assumption

Table 2.6 illustrates the results for the input-oriented case, obtained both from the

multiplier and the envelopment models; for each DMU, its efficiency score θ∗, the optimal

weights (v∗1, v
∗
2, u

∗
1) from the multiplier model, the reference set, the optimal λ∗’s, the input

excesses s−∗
1 , s−∗

2 and output shortfalls s+∗
1 from the envelopment model are given1. Only

the non-zero λ∗
j , j = 1, ..., N for a DMUj0 are given; those λ∗

j ’s that are not mentioned,

are implied to be equal to zero, i.e. the corresponding DMUj, j = 1, ..., N does not belong

to the reference set of DMUj0 .

Table 2.6: Results for the two input-single output case, under the CRS

DMU θ∗ v∗1 v∗2 u∗
1 Reference Set λ∗ s−∗

1 s−∗
2 s+∗

1

A 0.48 0.41 0.19 0.48 C, D λ∗
C=0.04, λ∗

D=0.15 0 0 0
B 0.60 0 0.5 0.2 D λ∗

D=0.6 1.2 0 0
C 1 0.12 0.05 0.14 C λ∗

C=1 0 0 0
D 1 0.17 0.08 0.2 D λ∗

D=1 0 0 0
E 1 0.22 0.08 0.25 E λ∗

E=1 0 0 0
F 0.55 0.09 0.04 0.11 C,D λ∗

C=0.59, λ∗
D=0.17 0 0 0

G 0.60 0.13 0.06 0.15 C,D λ∗
C=0.37, λ∗

D=0.28 0 0 0
H 0.56 0.25 0 0.19 E λ∗

E=0.75 0 0.37 0

There are three efficient DMUs, C,D and E. In order to find the efficiency score and the

efficient targets of the inefficient DMUs, the latter are projected radially on the efficient

frontier towards the origin. The projections for each DMU can be obtained as in relations

2.14 and 2.15. Therefore, for the inefficient DMU G, for example, the efficient targets are

1Only one set of any alternative optimal weights per DMU is listed in Table 2.6
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given as

x̂1G = θ∗Gx1G − s−∗
1 = 0.60 · 6− 0 = 3.6

x̂2G = θ∗Gx2G − s−∗
2 = 0.60 · 4− 0 = 2.4

ŷ1G = y1G + s+∗
1 = 4 + 0 = 4

Efficient targets can also be calculated using the optimal values of λ∗, as

x̂1G = λ∗
Cx1C + λ∗

Dx1D = 0.37 · 6 + 0.28 · 5 = 3.62

x̂2G = λ∗
Cx2C + λ∗

Dx2D = 0.37 · 5 + 0.28 · 2 = 2.41

ŷ1G = λ∗
Cy1C + λ∗

Dy1D = 0.37 · 7 + 0.28 · 5 = 3.99.

The projections of all the other inefficient DMUs can be obtained in a similar way.

2.3.2 The BCC model

Banker, Charnes & Cooper (1984) introduced the BCC model, as an extension of the

CCR model to consider for the VRS cases. The only difference between the CCR and

the BCC models is the extra convexity constraint
∑︁N

j=1 λj = 1, λj ≥ 0 added in the

latter, in the envelopment form (see in Section 2.1 how the constraint λ ∈ Λ in relation

2.1 varies depending on the different RTS assumptions that are made). This convexity

constraint corresponds to the free in sign variable uj0 in the primal model. In Table 2.7,

the input and output oriented BBC models are given, in the multiplier and envelopment

form respectively.
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Table 2.7: The BCC models

Multiplier form Envelopment form
Input orientation

max θj0 =
S∑︂

s=1

usysj0 − uj0

s.t.
P∑︂

p=1

vpxpj0 = 1 (2.24)

S∑︂
s=1

usysj −
P∑︂

p=1

vpxpj − uj0 ≤ 0, ∀j

us, vp ≥ 0, s = 1, ..., S, p = 1, ..., P,

uj0 free in sign.

min θj0

s.t. θ0xpj0 −
N∑︂
j=1

λjxpj ≥ 0, ∀p

N∑︂
j=1

λjysj − ysj0 ≥ 0, ∀s, (2.25)

N∑︂
j=1

λj = 1, ∀j

λj ≥ 0, µj ≥ 0, j = 1, ..., N.

Output orientation

min ϕj0 =
S∑︂

s=1

vpxpj0 − uj0

s.t.
P∑︂

p=1

usysj0 = 1 (2.26)

S∑︂
s=1

usysj −
P∑︂

p=1

vpxpj + uj0 ≤ 0, ∀j,

us, vp ≥ 0, p = 1, ..., P, s = 1, ..., S.

uj0 free in sign.

max ϕj0

s.t. xpj0 −
N∑︂
j=1

µjxpj ≥ 0 ∀p,

ϕj0ysj0 −
N∑︂
j=1

µjysj ≤ 0, ∀s,

(2.27)

N∑︂
j=1

λj = 1, ∀j,

λj ≥ 0, µj ≥ 0, j = 1, ..., N.

The variable-constraint correspondences between the primal and the dual BCCmodels,

in the input orientation, are presented in Table 2.8.

Unlike the CCR model where the efficiency score of a DMU remains unchanged in both

orientations, the input and output oriented BCC models may yield different efficiency

scores. Similarly to the CCR model, in the BCC model the input excesses s−p and output

shortfalls s+s can be obtained by solving a two-phase model. A BCC-efficient DMUj0 is

defined analogously to a CCR-efficient DMUj0 , as given in Definitions 2.3.1 and 2.3.2

based on the multiplier and the envelopment models, respectively. The definition of the

reference set for inefficient DMUs, as well as the calculation of the efficient projections in

the BCC model are also similar to the CCR model and are therefore omitted. However,

it should be noted that, as distinct to the CCR model, the input and the output reference
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Table 2.8: Primal-dual correspondences between models (2.24) and (2.25)

duals
primal

λ1 λ2 ... λN θj0 primal RHS/
dual obj.

v1 −x11 −x12 ... −x1N x1j0 ≥ 0
v2 −x21 −x22 ... −x2N x2j0 ≥ 0
...

...
...

...
...

...
...

...
vP −xP1 −xP2 ... −xPN xPj0 ≥ 0
u1 y11 y12 ... y1N y1j0 ≥ y1j0
u2 y21 y22 ... y2N y2j0 ≥ y2j0
...

...
...

...
...

...
...

...
uS yS1 yS2 ... ySN ySj0 ≥ ySj0
uj0 1 1 ... 1 1 = 1

≤ ≤ ... ≤ =
prim. obj./
dual RHS

0 0 ... 0 1

set for a DMU can differ. Also, Tone (1996) proved that the reference set of a point

cannot include increasing and decreasing returns to scale DMUs at the same time.

Let uj0∗ be the optimal value of the free variable uj0 for DMUj0 , obtained by solving

the BCC multiplier model. Banker (1984) and Banker & Thrall (1992) examined how the

sign of the optimal value of this free variable can be used to determine the RTS prevailing

at a DMUj0 , and established this relationship as follows:

Proposition 2.3.1. Let a DMUj0 with activity vector (xpj0 , ysj0) be on the efficient fron-

tier. Then, as for the returns to scale at the point (xpj0 , ysj0), it holds that:

(i) Increasing returns to scale prevails at (xpj0 , ysj0) if and only if uj0∗ < 0 for all optimal

solutions.

(ii) Decreasing returns to scale prevails at (xpj0 , ysj0) if and only if uj0∗ > 0 for all

optimal solutions.

(iii) Constant returns to scale prevails at (xpj0 , ysj0) if and only if uj0∗ = 0 in any optimal

solution.

Optimal solutions from the CCR envelopment and the BCC multiplier models are

related as for the returns to scale characterisations as follows:

Proposition 2.3.2. (Banker & Thrall 1992)

(i) uj0∗ > 0 in all optimal solutions to the BCC model if and only if
∑︁N

j=1 λ
∗
j > 1 for

all the optimal solutions of the corresponding CCR model.
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(ii) uj0∗ < 0 in all optimal solutions to the BCC model if and only if
∑︁N

j=1 λ
∗
j < 1 for

all the optimal solutions of the corresponding CCR model.

(iii) uj0∗ = 0 in all optimal solutions to the BCC model if and only if
∑︁N

j=1 λ
∗
j = 1 for

some optimal solutions of the corresponding CCR model.

Both CCR and BCC models are radial and either input or output oriented. In the

next two subsections, two more basic DEA models, the addtive and the SBM models, are

going to be discussed. These models combine both orientations and deal directly with

input and output slacks.

2.3.3 The additive model

The additive model was introduced by Charnes et al. (1985) and as distinct form the CCR

and the BCC models, it is non-oriented. In the additive model, an inefficient DMU can be

projected to the efficient frontier in any direction within the quadrant created by the point

and its input-output oriented projections to the frontier, and therefore, improvements to

inputs and outputs can be non-proportional.

Additive models can be formulated under the CRS or the VRS assumption, in a similar

way to the radial DEA models, by omitting or including the free in sign variable uj0 in

the multiplier form and the convexity constraint
∑︁N

j=1 λj = 1 in the envelopment form.

The additive models in the multiplier and the envelopment form, respectively, are given

in Table 2.9 that follows.
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Table 2.9: The Additive models

Multiplier form Envelopment form
CRS

min
P∑︂

p=1

vpxpj0 −
S∑︂

s=1

usysj0

s.t.
S∑︂

s=1

usysj −
P∑︂

p=1

vpxpj ≤ 0, ∀j

(2.28)

us, vp > 0, s = 1, ..., S, p = 1, ..., P,

max
P∑︂

p=1

s−p +
S∑︂

s=1

s+s

s.t.
N∑︂
j=1

λjxpj + s−p = xpj0 , ∀p

N∑︂
j=1

λjysj − s+s = ysj0 , ∀s

(2.29)

λj ≥ 0, µj ≥ 0, j = 1, ..., N.

VRS

min
P∑︂

p=1

vpxpj0 −
S∑︂

s=1

usysj0 + uj0

s.t.
S∑︂

s=1

usysj −
P∑︂

p=1

vpxpj − uj0 ≤ 0, ∀j

(2.30)

us, vp > 0, s = 1, ..., S, p = 1, ..., P,

uj0 free in sign.

max
P∑︂

p=1

s−p +
S∑︂

s=1

s+s

s.t.
N∑︂
j=1

λjxpj + s−p = xpj0 , ∀p

N∑︂
j=1

λjysj − s+s = ysj0 , ∀s

(2.31)

N∑︂
j=1

λj = 1, ∀j

λj ≥ 0, µj ≥ 0, j = 1, ..., N.

From the objective function of the envelopment additive model, it can be seen that the

l1-distance for the slack vectors is being used; therefore, an inefficient DMU is projected to

the most distant point of the frontier by maximising the sum of input and output slacks.

Let (s−∗
p , s+∗

s ) be the optimal values of input excesses and output shortfalls for a DMUj0 .

Definition 2.3.3. A DMUj0 is Additive-efficient if and only if s−∗
p = 0 and s+∗

s = 0.

Furthermore, when the CRS is assumed, a DMUj0 is additive-efficient if and only if it

is CCR-efficient. Similarly, under the VRS assumption, DMUj0 is additive-efficient if and

only if it is BCC-efficient.

Although the additive model can discriminate among efficient and inefficient DMUs,

there is no scalar θ to measure the actual efficiency score of DMUs.
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2.3.4 The Slacks-Based Measure (SBM)

Tone(1997; 2001) introduced the Slacks-Based Measure (SBM) as an enhancement of the

additive model. SBM preserves the non-oriented nature of the additive model dealing

directly with slacks, while it introduces a scalar to measure the efficiency score of DMUs.

Consider the following fractional programme, under the CRS assumption:

min ρj0 =
1− 1

P

∑︁P
p=1 s

−
p /xpj0

1 + 1
S

∑︁S
s=1 s

+
s /ysj0

s.t. xpj0 =
N∑︂
j=1

λjxpj + s−p ,∀p (2.32)

ysj0 =
N∑︂
j=1

λjysj − s+s ,∀s

λj ≥ 0,∀j, s−p , s+s ≥ 0,∀p,∀s.

The aforementioned formulation of the SBM model refers to the CRS assumption. The

SBM model under the VRS assumption could be obtained by introducing the additional

constraint
∑︁N

j=1 λj = 1. In the remainder of this section, the SBM model under the CRS

assumption will be considered.

The scalar ρj0 in model 2.32 is equivalent to the following product:

ρj0 =
(︂ 1

P

P∑︂
p=1

xpj0 − s−p
xpj0

)︂(︂ 1
S

S∑︂
s=1

ysj0 + s+s
ysj0

)︂−1

. (2.33)

The ratio
xpj0

−s−p
xpj0

in the first component of relation 2.33, represents the relative reduction

rate of each input p, p = 1, ...P, and the first component is the mean reduction rate of

inputs. Similarly, the ratio
ysj0+s+s

ysj0
represents the relative expansion rate of each output s,

s = 1, .., S, and 1
S

∑︁S
s=1

ysj0+s+s
ysj0

measures the mean expansion rate of outputs. Therefore,

the first component of the SBM scalar, measures the input efficiency and the second

component measures the output efficiency of a DMUj0 .

Model 2.32 can be transformed into the non-linear programme below by multiplying

both the nominator and the denominator of the objective function by a positive scalar t,
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such that t = 1− 1
S

∑︁S
s=1 s

+
s /ysj0 . Then, it follows that

min τj0 = t− 1

P

P∑︂
p=1

ts−p /xpj0

s.t. t+
1

S

S∑︂
s=1

ts+s /ysj0 = 1

xpj0 =
N∑︂
j=1

λjxpj + s−p ,∀p (2.34)

ysj0 =
N∑︂
j=1

λjysj − s+s ,∀s

λj ≥ 0,∀j, s−p , s+s ≥ 0,∀p,∀s, t > 0.

Let σ− = ts−p , σ
+ = ts+s , and µj = tλj. Then, model 2.34 can be transformed into the

following linear model:

min τj0 = t− 1

P

P∑︂
p=1

σ−
p /xpj0

s.t. t+
1

S

S∑︂
s=1

σ+
s /ysj0 = 1

txpj0 =
N∑︂
j=1

µjxpj + σ−
p ,∀p (2.35)

tysj0 =
N∑︂
j=1

µjysj − σ+
s ,∀s

µj ≥ 0,∀j, σ−
p , σ

+
s ≥ 0,∀p,∀s, t > 0.

Let (τ ∗j0 , t
∗, µ∗, σ−∗

p , σ+∗
p ) be the optimal solution to model 2.35. Then, the SBM-

efficiency of a DMUj0 can be defined as follows:

Definition 2.3.4. A DMUj0 is SBM-efficient if and only if τ ∗ = 1.

The efficiency condition τ ∗j0 = 1 is equivalent to σ−∗
p = 0 and σ+∗

s = 0.

Tone (1997) noted that since the SBM model considering the input/output slacks deals

with all short of inefficiencies, the SBM efficiency score of a DMUj0 cannot be greater than

its CCR efficiency score. The following theorem states the relationship between the SBM

and CCR efficiency

Theorem 2.3.2. A DMUj0 is CCR-efficient if and only if it is SBM-efficient.
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Two of the modifications of the SBM model existing in the DEA literature are the

input and the output-oriented SBM models. These are obtained by introducing a small

positive number ϵ << 1 in the objective function of model 2.32, as it is presented in Table

2.10.

Table 2.10: Objective function of the SBM-input and SBM-output oriented model

Input orientation Output orientation

ρinj0 =
1− 1

P

∑︁P
p=1 s

−
p /xpj0

1 + ϵ
S

∑︁S
s=1 s

+
s /ysj0

(2.36) ρoutj0
=

1− ϵ
P

∑︁P
p=1 s

−
p /xpj0

1 + 1
S

∑︁S
s=1 s

+
s /ysj0

(2.37)

By introducing the small number ϵ in the denominator of relation 2.36, more im-

portance is given in identifying the input surplus, whereas the small number ϵ in the

nominator of relation 2.37 aims to give greater importance to the output slacks.

2.4 The curse of dimensionality in DEA

As it was discussed in the previous sections, the efficiency scores calculated with the

DEA methodology are relative and not absolute measures of the performance of a DMU.

Therefore, the efficiency score assigned to a DMU depends on the performance of the

other DMUs included in the sample, and what are the input/output bundles those DMUs

are using. As a result, as the number of inputs and outputs increases, the discrimination

power of the DEA models diminishes and a number of inefficient DMUs may be falsely

rated as efficient, or an inefficient DMU may falsely appear as less inefficient. This issue,

known as “the curse of dimensionality” is a common issue of non-parametric approaches.

There are several rules of thumb in the DEA literature for deciding about the ac-

ceptable number of inputs and outputs depending on the sample size. Homburg (2001)

suggested that N ≥ 2(p + q), whereas Raab & Lichty (2002) used the stricter rule that

N ≥ 3(p+ q), where N is the number of DMUs, p is the number of inputs, q the number

of outputs. Dyson et al. (2001) suggested that N ≥ 2 × p × q. The empirical rule which

is the most commonly used in the DEA literature is that introduced by Cooper et al.

(2007), who suggested that N ≥ max{p× q, 3(p+ q)}.

Therefore, in DEA, the selection of inputs and outputs is a task of great importance,

as the selected input/output variables should reflect the production process, but at the

same time their numbers should not exceed certain vague thresholds. There are various
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approaches in the DEA literature which are used to increase the discrimination power of

DEA models. Such methods include, for example, the aggregation of inputs or outputs,

the use of panel data to increase the size of the data set, or the use of weight restrictions

to limit the importance of a input or output variable in the production model. Podinovski

& Thanassoulis (2007) provide a detailed discussion of the main methods that can be used

to address the curse of dimensionality in DEA. Daraio & Simar (2007) suggest the use of

a scaled principal component analysis, i.e. a weighted aggregation of inputs and outputs.

Since in DEA applications inputs and outputs are usually highly correlated, this approach

would reduce the dimensions, without resulting in loosing too much information. As a

different approach, Charles et al. (2019) suggest the use of the pure DEA model that

considers either only inputs or only outputs to deal with the curse of dimensionality issue.

2.5 Conclusion

DEA has been a technique very broadly used in the efficiency evaluation of DMUs, as its

non-parametric nature does not require the estimation of a production function allowing

for the consideration of multiple inputs and outputs in the production model. Many

theoretical studies have focused on improving the existing DEA models, and there is a

thriving number of DEA applications.

In this Chapter, the production model was defined as a process that transforms multi-

ple inputs into multiple outputs and the properties of the PPS based on different returns

to scale assumptions were discussed. Among the four basic DEA models, in CCR and

BCC models the concept of Farrell’s radial efficiency is being used and efficiency of DMUs

is measured as their radial distance to the efficient boundary of the PPS without consid-

ering the existence of any slacks. Conversely, Pareto-Koopmans technical efficiency (or

strong efficiency) requires an efficient DMU not to be able to improve any of its inputs

or outputs without worsening the others. Therefore, non-radial models were developed to

deal directly with slacks. The additive model allows for non-proportional improvements

to inputs and outputs but does not include any scalar to measure their efficiency scores,

whereas, the SBM model still allows for non-proportional changes, while providing a scalar

for the efficiency ranking of DMUs. Finally, in this Chapter the important issue of “the

curse of dimensionality” in DEA was discussed in brief and some empirical rules for the

choice of the appropriate sample size were given.

In all the models discussed in this Chapter, inputs are considered to be directly trans-
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formed into outputs, and any intermediate stages that may be involved in the production

process are not taken into account. Therefore, the production process is considered as a

”black box”, where inputs enter and outputs exit the process, and no inner information

is provided. Network DEA is a branch of the DEA literature that studies the efficiency

assessment of DMUs whose operation involves different stages before the final products

are generated. In the following chapter, the main developments in Network DEA are

discussed.
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Network Data Envelopment Analysis

In conventional DEA, the production of outputs is considered to occur in one stage and

any inner structure of the production process is not taken into account. However, the

operational process of a DMU may involve intermediate sub-processes that interact with

each other; each sub-process can have different external inputs and outputs and some

outputs from one sub-process may need to be used as inputs to the next sub-process. As

an example, consider the supply chain process that involves both suppliers and manufac-

turers. If it is assumed that these two sub-divisions work cooperatively, then the objective

is to maximise the profits of the whole supply chain process. Standard DEA approaches

would evaluate the efficiency of the whole supply chain as a system and any existing

inefficiencies either in the supplier’s or manufacturer’s stage would not be investigated.

Ignoring the inner structure of DMUs may result in misleading conclusions about the

efficiency level of a DMU; a DMU can be overall efficient, while all of its sub-processes are

inefficient (see for example Kao & Hwang (2008)). Also, a DMU may have lower stage

efficiency scores compared to another DMU, but still have higher overall efficiency (Kao

& Hwang 2010). What is more, assessing the efficiency of each sub-process can offer a

better insight into what is the main source of inefficiency for the whole production process

and help decision-makers in improving a DMUs’ performance.

Network DEA (NDEA) models were developed as an extension of standard DEA to

consider the inner structure of DMUs in the efficiency evaluation process. The first studies

that considered the division of the DMUs’ operating process into different stages were from

Färe & Primont (1984) and Charnes et al. (1986). Färe & Primont (1984) assessed the

efficiency of utility firms each operating multiple electricity generation plants by treating
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each plant as a different sub-DMU. Charnes et al. (1986) divided the army recruitment

into two sub-processes and evaluated the efficiency of each sub-process separately. Later,

Chilingerian & Sherman (1990) divided the medical care services into managerial and

physician-controlled stages. Färe & Whittaker (1995) modelled the dairy production

process as a two-stage process composed of the crop and milk production sub-stages and

Färe et al. (1997) used the land as an input allocated to different crops. Wang et al. (1997)

divided the operation of the banking industry into the capital collection and investment

processes. Despite the network concept being already used in the DEA literature for more

than one decade, Färe & Grosskopf (2000) were the first to use the term “Network DEA”

to describe the different DEA approaches developed to handle multi-stage processes.

Nowadays, there is a high volume of DEA studies that consider various structures of

the production process and different approaches have been developed to calculate the effi-

ciency scores of each stage and the whole network system. Castelli et al. (2010) provide a

classification of the main contributions in the NDEA literature and the relevant model for-

mulations for shared-flow, multilevel and network models, and Cook & Zhu (2014) discuss

the existing modelling techniques for two-stage network structures. Kao (2014) provides

a classification of NDEA studies based on the network structure they use. Koronakos

(2017) discusses the most influential approaches in NDEA and provides a classification of

the multi-stage DEA applications.

This Chapter aims to review the main approaches that have been developed in the

NDEA literature to measure the efficiency of two-stage production structures. The rest

of this Chapter is structured as follows. In Section 3.1, the PPS in a network structure is

defined and the different types of series structures are presented. In Section 3.2, the main

approaches to measuring the efficiency of DMUs in two-stage structures are discussed,

and Section 3.3 is the conclusion of the chapter.

3.1 The production model

The structure of the production process can vary among the different operational sectors

and may involve two or more stages. The different stages can be arranged in series, in

parallel or in a way that combines series and parallel structures. In this Section, the

main network structures that are going to be discussed in this Chapter are presented, and

the mathematical notation is introduced. The main focus will be on the two-stage series

structures.
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Consider the K-stage production process depicted in Figure 3.1 and a set of N DMUs.

For each DMUj, j = 1, .., N let xk
j =

(︁
xk
1j, ..., x

k
Pkj

)︁
∈ RPk

+ denote the exogenous inputs

to stage k, let z
(a,k)
j =

(︁
z
(a,k)
1j , ..., z

(a,k)
Q(k−1)j

)︁
∈ RQ(k−1)

+ denote the intermediate products of

stage a that are introduced to stage k, and let z
(k,I)
j =

∑︁K
a=1 z

(a,k)
j denote the sum of

intermediate products produced from the different stages that become inputs to stage

k. Also, let z
(k,b)
j =

(︁
z
(k,b)
1j , ..., z

(k,b)
Qkj

)︁
∈ RQk

+ be the intermediate products of stage k

that are used as inputs to another stage b, and let z
(k,O)
j =

∑︁K
b=1 z

(k,b)
j be the sum of

intermediate products that exit stage k and are used as inputs to the next stages. Finally,

let ykj =
(︁
yk1j, ..., y

k
Skj

)︁
∈ RSk

+ be the final outputs that exit the system at stage k. The

sum of all stage-specific inputs
∑︁K

k=1 x
k
j = xj will be the overall process input, and∑︁K

k=1 y
k
j = yj will be the overall process output.

Figure 3.1: General network structure

Then, the PPS of the overall process can be defined as:

T =

{︄
(x, z, y)

⃓⃓⃓⃓ N∑︂
j=1

λk
jx

k
pj ≤ xp, p = 1, ..., Pk,

N∑︂
j=1

λk
jy

k
sj ≥ ys, s = 1, ..., Sk,

N∑︂
j=1

λk
j z

(k,I)
qj ≤ zq, q = 1, ..., Q(k−1),

N∑︂
j=1

λk
j z

(k,O)
qj ≥ zq, q = 1, ..., Qk, λ ∈ Λ, k = 1, ..., K

}︄
,

where Λ = RN
+ under the CRS, Λ = {RN

+ |
∑︁N

j=1 λ
k
j = 1} under the VRS, when IRS prevails

Λ = {RN
+ |
∑︁N

j=1 λ
k
j ≤ 1}, and Λ = {RN

+ |
∑︁N

j=1 λ
k
j ≥ 1} under the DRS assumption. The

properties of the PPS are defined accordingly to those of the one-stage structures (see

Chapter 2, pg. 22).

One type of network structure that is extensively studied in the DEA literature is the

series structure. The simplest form of a series structure consists of two stages. There are
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four types of two-stage series network structures, which are depicted in Figure 3.2.

Type 1 Type 2

Type 3 Type 4

Figure 3.2: The four types of two-stage series network structures

Consider the general two-stage series structure with exogenous inputs and outputs

(Type 1). In this case, a Decision Making Unit (DMU) in a first stage consumes P inputs

xp = (x1, ..., xP ) ∈ RP
+ to produce R final first stage outputs lr = (l1, ..., lR) ∈ RR

+ and Q

intermediate outputs zq = (z1, ..., zQ) ∈ RQ
+. In the second stage, intermediate products

obtained from the first stage, and external second stage inputs gt = (g1, ..., gT ) ∈ RT
+ are

consumed to produce S final outputs ys = (y1, ..., yS) ∈ RS
+. In Type 2 structures, final

first stage outputs lr are produced, but no exogenous inputs enter the second stage. In

Type 3 structures, no outputs leave the system in the first stage, but exogenous inputs gt

are introduced in the second stage. Finally, in Type 4 structures, there are no exogenous

inputs and outputs; first stage inputs (xp) are used to produce intermediate outputs (zq)

that are introduced to the second stage to produce the final outputs (ys) that leave the

system.

The aforementioned structures can be generalised to the general series structure de-

picted in Figure 3.3, where multiple stages arranged in series are involved in the produc-

tion process. In this case, each stage may have stage specific-exogenous inputs, final and

intermediate outputs.

This Chapter will focus on the most influential efficiency measurement approaches in

two-stage structures. Not all of those approaches can be directly extended to general

series structures or other multistage structures. The strengths and weaknesses of each

approach will be discussed in more detail in the following Sections. A list of the notations

that are being used in the rest of the Chapter can be found in the Appendix.

M. Michali, PhD Thesis, Aston University 2022 48



NETWORK DATA ENVELOPMENT ANALYSIS

Figure 3.3: General multi-stage series structure

3.2 Efficiency measurement in two-stage processes

When the production process has a network structure, the efficiency score of each stage

as well as of the overall process is of interest. Consider a two-stage process, and let θkj be

the efficiency of the k-th stage, k = 1, 2, and θ0j be the overall process efficiency of DMUj,

for j = 1, 2, .., N .

Definition 3.2.1. DMUj0 is considered to be overall efficient if and only if θ0∗j0 = 1 and

θk∗j0 = 1, k = 1, 2. It is stage-k efficient if θk∗j0 = 1, k = 1, 2.

Several approaches have been developed to evaluate θkj , k = 1, 2 and θ0j . The simplest

method of efficiency assessment when the production process has a network structure

is, for each DMU, to evaluate the efficiency of each stage independently from the others

by using a standard DEA approach. In these approaches, although the existence of the

different stages is considered, the interdependencies between the different stages are not

taken into account.

In the main volume of NDEA literature, the interdependencies among the different

stages are taken into account by jointly assessing the efficiency of the overall process and

the different stages. The different approaches that have been developed to consider the

dependencies among the different stages can be divided into four main categories: (i) the

efficiency decomposition approaches, (ii) the efficiency composition approaches, (iii) the

slacks-based measure approaches, (iv) and the network approaches. In the efficiency de-

composition approaches, the overall efficiency of the system is calculated first and the

stage efficiencies are obtained by the multiplicative or the additive decomposition of the

overall efficiency score. In efficiency composition approaches, stages efficiencies are calcu-

lated first by considering the stage interdependencies. The different models for the stage

efficiencies are combined in a multiple objective linear programme (MOLP) and the over-

all efficiency is obtained by aggregating the multiple objective functions. The slacks-based

measure approaches also decompose the overall efficiency into stage efficiencies, but they

allow for non-proportional changes in the inputs and outputs using the SBM model. Fi-
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nally, in network approaches, the overall efficiency of the process is evaluated considering

the different stages that are involved in the process and their interdependencies, but do

not provide any information about the stage efficiency scores. In the sections that follow,

the aforementioned approaches will be discussed in more detail.

3.2.1 The standard DEA approach

In this approach, the efficiency of each stage is calculated using the standard DEA mod-

els. Charnes et al. (1986), Chilingerian & Sherman (1990) and Wang et al. (1997) who

were among the first DEA studies to consider the inner structure of DMUs, applied the

independent approach in two-stage structures. Similarly, Seiford & Zhu (1999) and Zhu

(2000) evaluated the efficiency of the top 55 US commercial banks and of the Fortune 500

companies, respectively, both dividing the production process into the marketability and

profitability stages. Sexton & Lewis (2003) assessed the efficiency of 30 baseball teams

of the USA Major League Baseball, by separating front-office and on-field operations.

They calculated the efficiency of the second stage by using the optimal amount of inputs

given from the first stage. The independent approach is also applied to more complex

structures; Lewis & Sexton (2004) further divided the operation process of baseball teams

by splitting the front-office operations into two processes and the on-field operations into

three. Adler et al. (2013) evaluated the efficiency of 43 airports in Europe, where the

operation process was divided into two stages, the efficiency of each one of which was

evaluated independently, and the first stage was further split into passenger and cargo

transportation and the second into aeronautical and non-aeronautical activities.

Consider a two-stage production process with no exogenous inputs or outputs (Type 4

structure in Figure 3.2). Under the CRS assumption, the first and second stage efficiency

scores for DMUj0 in the input orientation, can be calculated independently by solving the

following mathematical models, respectively:

max θ1j0 =

∑︁Q
q=1 γ

A
q zqj0∑︁P

p=1 vpxpj0

s.t. θ1j ≤ 1, ∀j (3.1a)

vp, γ
A
q > 0, ∀p, ∀q,

max θ2j0 =

∑︁S
s=1 ηsysj0∑︁Q
q=1 γ

B
q zqj0

s.t. θ2j ≤ 1, ∀j (3.1b)

γB
q , ηs > 0,∀q,∀s

whereas the overall efficiency of the system is obtained as follows:
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θ0j0 = max

∑︁S
s=1 ηsysj0∑︁P
p=1 vpxpj0

s.t. θ0j ≤ 1, ∀j (3.2)

vp, γq, ηs > 0,∀p,∀q,∀s.

In models (3.1a) and (3.1b) stage efficiency scores are calculated independently. Al-

though this makes the independent approach computationally easy, the conflicting role of

intermediate products is not considered; for a DMUj0 that reduces the second stage inputs

to become efficient, the first stage outputs are also reduced affecting the first stage’s effi-

ciency score. Furthermore, the overall efficiency of the system is calculated based only on

the initial inputs xj0 that enter the system and the final outputs yj0 that exit the system,

and there is no consideration in relating the overall efficiency to the stage efficiencies.

3.2.2 Efficiency decomposition approaches

The efficiency decomposition approaches take into account the relationship between the

different stages of the production process, and provide evaluations of the overall as well

as of the stage efficiency scores. There are two main decomposition approaches in the

DEA literature, the multiplicative and the additive, introduced by Kao & Hwang (2008)

and Chen et al. (2009), respectively. In both approaches, the overall efficiency is obtained

first and then, the stage efficiencies are calculated while maintaining the optimal overall

efficiency level. In the multiplicative approach, the overall efficiency is decomposed as the

product of stage efficiencies, while in the additive approach, overall efficiency is defined

as the weighted sum of the stage efficiencies. In the following subsections, these two

decomposition approaches and some of their extensions are discussed.

3.2.2.1 The multiplicative decomposition approach

Kao & Hwang (2008) introduced the multiplicative decomposition approach for a two-

stage structure with no exogenous inputs and outputs (Type 4 structure in Figure 3.2).

The first stage, the second stage, and the overall process efficiency score of a DMUj,

j = 1, ..., N, with a Type 4 structure, in the input orientation, under the CRS assumption,
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are defined as

θ1j =

∑︁Q
q=1 γ

A
q zqj∑︁P

p=1 vpxpj

, θ2j =

∑︁S
s=1 ηsysj∑︁Q
q=1 γ

B
q zqj

, and θ0j =

∑︁S
s=1 ηsysj∑︁P
p=1 vpxpj

, (3.3)

respectively. For a DMUj0 , θ
0
j0
, θ1j0 and θ2j0 can be calculated independently using models

(3.2), (3.1a) and (3.1b), as discussed in Section 3.2.1.

In order to take into consideration the series relationship between the two stages, Kao

& Hwang (2008) assumed that the multipliers related to the intermediate products zqj,

are the same in both stages, i.e. γA
q = γB

q = γq. That means that the optimal aggregated

outputs from the first stage become inputs to the second stage.

The overall efficiency θ0j , j = 1, 2, ..., N can then be decomposed to the product of

stage efficiencies, i.e.

θ0j =

∑︁S
s=1 ηsysj∑︁P
p=1 vpxpj

=

∑︁Q
q=1 γqzqj∑︁P
p=1 vpxpj

·
∑︁S

s=1 ηsysj∑︁Q
q=1 γqzqj

= θ1jθ
2
j . (3.4)

The two-stage structure is taken into account in the calculation of the overall efficiency

score, by incorporating the ratio constraints of the two stages (models (3.1a) and (3.1b),

where γA
q = γB

q = γq) into model 3.2. Therefore, in the multiplicative decomposition

approach, the overall efficiency of DMUj0 is given by the following model:

max θ0j0 =

∑︁S
s=1 ηsysj0∑︁P
p=1 vpxpj0

s.t.

∑︁Q
q=1 γqzqj∑︁P
p=1 vpxpj

≤ 1, j = 1, ..., N (3.5)∑︁S
s=1 ηsysj∑︁Q
q=1 γqzqj

≤ 1, j = 1, ..., N

vp, γq, ηs,∀p,∀q,∀s.

The constraint
∑︁S

s=1 ηsysj∑︁P
p=1 vpxpj

≤ 1, j = 1, ..., N is omitted, as it is implied by the two

inequality constraints included in model (3.5).

Applying the Charnes-Cooper transformation, the fractional model (3.5) can be trans-
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formed into a linear one:

θ0∗j0 = max
S∑︂

s=1

η′sysj0

s.t.
P∑︂

p=1

v′pxpj0 = 1

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj0 ≤ 0, j = 1, ..., N (3.6)

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj ≤ 0, j = 1, ..., N

v′p, γ
′
q, η

′
s > 0,∀p,∀q,∀s.

Let (θ0∗j0 , v
′∗
p , γ

′∗
q , η

′∗
s ) be the optimal solution to model (3.6). The stage efficiency scores

for DMUj0 can be obtained as θ1∗ =
∑︁Q

q=1 γ
′∗
q zqj∑︁P

p=1 v
′∗
p xpj

, and θ2∗ =
∑︁S

s=1 η
′∗
s ysj∑︁Q

q=1 γ
′∗
q zqj

.

However, it is possible that model (3.6) has multiple optimal solutions, and in this

case, the decomposition θ0∗j0 = θ1∗j0 θ
2∗
j0

is not unique. This happens because the term γ′
qzqj

does not appear in the objective function or the normalisation constraint. Therefore, its

value can vary while continuing to satisfy the constraints and without affecting the value

of the objective function. Kao & Hwang (2008) noted that in such cases the comparison

of the stage efficiency scores among the DMUs lacks a common basis.

The solution that Kao & Hwang (2008) suggested to overcome the non-uniqueness of

the overall efficiency decomposition, was to obtain the overall efficiency score first and

then, give pre-emptive priority to one of the two stages. The efficiency score of the priority

stage is maximised while the overall efficiency level is maintained at its optimum level.

Then, the efficiency of the other stage is obtained using the decomposition equation.

Let p denote the priority stage, and θkp∗j , k = 1, 2 denote the optimal efficiency score

of the priority stage. First, suppose that stage one is the priority stage. After solving

model (3.6) to get the overall efficiency score θ0∗j0 , the efficiency score of the first stage is

obtained by solving the following linearised model, which ensures that θ0j0 = θ0∗j0 :
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θ1p∗j0
= max

Q∑︂
q=1

γ′
qzqj0

s.t.
P∑︂

p=1

v′pxpj0 = 1

S∑︂
s=1

η′sysj = θ0∗j0 (3.7)

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj0 ≤ 0, j = 1, ..., N

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj ≤ 0, j = 1, ..., N

v′p, γ
′
q, η

′
s > 0,∀p, ∀q,∀s.

Then, the efficiency score of the second stage is derived from the decomposition equa-

tion as θ2∗j0 = θ0∗j0 /θ
1p∗
j0

. Similarly, if stage two is considered as the priority stage, then its

efficiency score is obtained first, as follows

θ2p∗j0
= max

S∑︂
s=1

η′sysj0

s.t.

Q∑︂
q=1

γ′
qzqj = 1

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj ≤ 0, j = 1, ..., N (3.8)

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj ≤ 0, j = 1, ..., N

v′p, γ
′
q, η

′
s > 0,∀p, ∀q,∀s,

and then, form the decomposition equation, θ1∗j0 = θ0∗j0 /θ
2p∗
j0

. If the decomposition is unique,

the choice of the priority stage does not affect the efficiency scores, i.e. θ0∗j0 = θ1p∗j0
θ2∗j0 =

θ1∗j0 θ
2p∗
j0

.

As noted by Chen et al. (2009), a shortcoming of the multiplicative approach is that

it can not be applied under the VRS assumption. The product of the first and the second
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stage efficiency scores of a DMUj, j = 1, ..., N , under the VRS assumption would be

θ1jθ
2
j =

∑︁Q
q=1 γqzqj + uA∑︁P

p=1 vpxpj

·
∑︁S

s=1 ηsysj0 + uB∑︁Q
q=1 γqzqj

. (3.9)

However, the above quantity cannot be linearised. Therefore, under the VRS assumption,

alternative approaches should be used to obtain the overall and stage efficiency scores. As

an alternative, Kao & Hwang (2011) used an input-oriented VRS model in the first stage

and an output-oriented model in the second stage and calculated the overall efficiency

as the product of the overall technical and scale efficiencies, which were obtained as the

product of the stage technical and scale efficiencies, respectively.

Liang et al. (2008) studied the two stage processes using the game theory concepts

of cooperative and non-cooperative game. They showed that when there is only one

intermediate output from the first stage to the second stage, and no exogenous inputs

enter the second stage, the non-cooperative game approach coincides with the cooperative

approach of Kao & Hwang (2008). In the non-cooperative approach, one of the two stages

is considered as the leader, and the other stage as the follower. Let the exponent L denote

the leader stage, and the exponent F denote the follower stage, and let the first stage be

the leader and the second stage the follower. Then, the efficiency score of the leader stage

θ1Lj0 of a DMUj0 is calculated first using the standard DEA approach. The linear model

for obtaining the efficiency score of the first, leader stage, under the CRS assumption, is

given below:

θ1L∗j0
= max

Q∑︂
q=1

γ′
qzqj0

s.t.
P∑︂

p=1

v′pxpj0 = 1 (3.10)

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj ≤ 0, j = 1, ..., N

v′p, γ
′
q > 0, ∀p,∀q.

The efficiency score of the follower θ2F∗
j0

is obtained next, while keeping the efficiency
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of the leader at its optimum level, i.e. θ1Lj0 = θ1L∗j0
, as follows:

θ2F∗
j0

= max

∑︁S
s=1 ηsysj0

W
∑︁Q

q=1 γ
′
qzqj0

s.t.
P∑︂

p=1

v′pxpj0 = 1

∑︁S
s=1 ηsysj∑︁Q

q=1Wγ′
qzqj

≤ 1, j = 1, ..., N (3.11)

Q∑︂
q=1

γ′
qzqj0 = θ1L∗j0

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj ≤ 0, j = 1, ..., N

v′p, γ
′
q,W, ηs > 0, ∀p,∀q,∀s.

Let η′ = ηs/W. Then, model 3.11 is transformed to the following linear model:

θ2F∗
j0

= max

(︄
S∑︂

s=1

η′sysj0

)︄
/θ1L∗j0

s.t.
P∑︂

p=1

v′pxpj0 = 1

Q∑︂
q=1

γ′
qzqj0 = θ1L∗j0

(3.12)

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj ≤ 0, j = 1, ..., N

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj ≤ 0, j = 1, ..., N

v′p, γ
′
q, η

′
s > 0, ∀p,∀q,∀s.

Similarly, if stage two is considered as the leader and stage one as the follower, the

efficiency score of DMUj0 for the second stage is calculated first, and then, the efficiency

score of the first stage is maximised while θ2Lj0 = θ2L∗j0
. An advantage of the non-cooperative

approach is that in contrast to the cooperative approach, it always yields a unique overall

efficiency decomposition.

In contrast to one stage DEA, in NDEA, due to the existence of intermediate mea-
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sures, adjusting the inputs or outputs of a DMU by its input or output efficiency score,

respectively, will not necessarily project the DMU on the frontier. Chen et al. (2013)

demonstrated that in NDEA the duality between the envelopment and the multiplier

model does not hold and suggested using the first one to get the frontier projections and

the second one for calculating the overall and stage efficiency scores. Chen et al. (2010)

suggested the following envelopment model as the equivalent to model (3.6), under the

CRS assumption:

min θj0

s.t.
N∑︂
j=1

λjxpj ≤ θj0xpj0 , p = 1, ..., P

N∑︂
j=1

µj0ysj ≥ ysj0 , s = 1, ..., S (3.13)

N∑︂
j=1

(λj − µj)zqj ≥ 0, q = 1, ..., Q

λj, µj ≥ 0.

However, as noted by Chen et al. (2010), this model provides an overall efficiency

score, but fails to provide correct frontier projections for the DMUs. Therefore, they

suggested a new model to obtain the frontier projections introducing a new set of variables

z̃qj0 , q = 1, ..., Q to define the intermediate product levels, and dividing the intermediate

product constraints in model (3.13) into two new set of constraints where the intermediate

products are treated as inputs and as outputs, respectively. Then, the model takes the

following form:
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min θ̃j0

s.t.
N∑︂
j=1

λjxpj ≤ θ̃j0xpj0 , p = 1, ..., P

N∑︂
j=1

µj0ysj ≥ ysj0 , s = 1, ..., S (3.14)

N∑︂
j=1

λjzqj ≥ z̃qj0 , q = 1, ..., Q

N∑︂
j=1

µjzqj ≤ z̃qj0 , q = 1, ..., Q

z̃qj0 ≥ 0, q = 1, ..., Q

λj, µj ≥ 0, j = 1, ..., N.

Model (3.14) yields the same efficiency score as model (3.13), and also provides the

frontier projections for DMUs.

The dual of model (3.14) is given below:

max
S∑︂

s=1

η′sysj0

s.t.
S∑︂

s=1

η′sysj −
Q∑︂

q=1

γ′1
q zqj ≤ 0, j = 1, ..., N

Q∑︂
q=1

γ′2
q zqj −

P∑︂
p=1

v′pxpj ≤ 0, j = 1, ..., N (3.15)

P∑︂
p=1

v′pxpj0 = 1

γ′2
q − γ′1

q ≤ 0, q = 1, ..., Q

γ′1
q , γ

′2
q , v

′
p, η

′
s ≥ 0, ∀p,∀q,∀s.

In model (3.14) the constraints z̃qj0 ≥ 0 are redundant and can be omitted. Then, in model

(3.15) the constraint γ′2
q − γ′1

q ≤ 0, q = 1, ..., Q becomes γ′1
q = γ′2

q , i.e. the intermediate

products get the same weights both as outputs from the first stage and as inputs to the

next stage. Therefore, model 3.15 becomes identical to model 3.6.

Another limitation of the multiplicative approach is that it can only be generalised
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to multi-stage series structures only when there are no stage specific inputs and outputs,

i.e. it can only be applied in the case of Type 4 structures. Alternative multiplicative

approaches have been developed to deal with different structures. The most common

approach is the use of parametric techniques. Zha & Liang (2010), studied a two-stage

structure with inputs shared between the two stages. Under the cooperative game con-

dition, they defined the overall efficiency as the product of the stage efficiency scores.

In order to solve the resulting, non-linear model, they calculated the lower and upper

bounds of the stage efficiencies using a non-cooperative game approach, and then, treated

the efficiency score of each stage as a parameter, and searched in the feasible region of

the parameter to obtain the optimal solution.

3.2.2.2 The additive decomposition approach

The additive decomposition approach was introduced by Chen et al. (2009) for the case

of a Type 4 structure with no stage specific inputs and outputs. If it is assumed that the

aggregate outputs of the first stage are introduced unchanged to the second stage, then

the overall efficiency can be decomposed as the weighted average of stage efficiencies as

θ0j = w1jθ
1
j + w2jθ

2
j , i.e., in the input orientation, under the CRS assumption:

θ0j =

∑︁S
s=1 ηsysj +

∑︁Q
q=1 γqzqj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj
= w1j

∑︁Q
q=1 γqzqj∑︁P
p=1 vpxpj

+ w2j

∑︁S
s=1 ηsysj∑︁Q
q=1 γqzqj

(3.16)

and w1j + w2j = 1. (3.17)

The decomposition weights w1j and w2j can be defined endogenously by solving the system

of equations (3.16) and (3.17). Then, for a DMUj, j = 1, ..., N we have:

w1j =

∑︁P
p=1 vpxpj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj
, and w2j =

∑︁Q
q=1 γqzqj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj
. (3.18)

Intuitively, as noted by Chen et al. (2009), the decomposition weights w1j and w2j rep-

resent the relative contribution of each stage to the overall efficiency. Therefore, in the

input orientation, they are defined as the ratio of the stage-specific inputs to the overall

process inputs.

Then, the input overall efficiency of DMUj0 under CRS can be derived by solving the
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following fractional programme:

θ0∗j0 = max [w1j0θ
1
j0
+ w2j0θ

2
j0
] =

∑︁S
s=1 ηsysj0 +

∑︁Q
q=1 γqzqj0∑︁P

p=1 vpxpj0 +
∑︁Q

q=1 γqzqj0

s.t. θ1j =

∑︁Q
q=1 γqzqj∑︁P
p=1 vpxpj

≤ 1, j = 1, ..., N (3.19)

θ2j =

∑︁S
s=1 ηsysj∑︁Q
q=1 γqzqj

≤ 1, j = 1, ..., N

vp, γq, ηs > 0,∀p,∀q,∀.

The constraint
∑︁S

s=1 ηsysj0+
∑︁Q

q=1 γqzqj0∑︁P
p=1 vpxpj0

+
∑︁Q

q=1 γqzqj0
≤ 1 is omitted, as it is implied by the two in-

equality constraints included in model 3.19, requiring the efficiency score of each stage

not to exceed one.

Applying the Charnes-Cooper transformation, model 3.19 can be transformed into a

linear one.

θ0∗j0 = max

Q∑︂
q=1

γ′
qzqj0 +

S∑︂
s=1

η′sysj0

s.t.
P∑︂

p=1

v′pxpj0 +

Q∑︂
q=1

γ′
qzqj0 = 1,

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj ≤ 0, j = 1, ..., N (3.20)

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj ≤ 0, j = 1, ..., N

v′p, γ
′
q, η

′
s > 0.

Let (θ0∗j0 , v
′∗
p , γ

′∗
q , η

′∗
s ) be the optimal solution of model (3.20). The optimal multipliers

will be used in relations 3.18 to obtain the optimal decomposition weights for DMUj0 as

follows:

w∗
1j0

=

∑︁P
p=1 v

′∗
p xpj0∑︁P

p=1 v
′∗
p xpj0 +

∑︁Q
q=1 γ

′∗
q zqj0

, (3.21)

w∗
2j0

=

∑︁Q
q=1 γ

′∗
q zqj0∑︁P

p=1 v
′∗
p xpj0 +

∑︁Q
q=1 γ

′∗
q zqj0

. (3.22)

In order to obtain a unique efficiency decomposition, similarly to the multiplicative

approach, when calculating the stage efficiency scores, one of the two stages will be given
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pre-emptive priority. The efficiency of the stage that is given pre-emptive priority is

calculated first, while preserving the optimal overall efficiency level θ0∗j0 . Let θ
kp∗
j , k = 1, 2

denote the optimal efficiency score of the priority stage. Suppose stage one is the priority

stage, then, the following model is solved to calculate the efficiency score of the first stage:

θ1p∗j0
= max θ1j0

s.t. θ1j ≤ 1, j = 1, ..., N

θ2j ≤ 1, j = 1, ..., N (3.23)∑︁S
s=1 ηsysj0 +

∑︁Q
q=1 γqzqj0∑︁P

p=1 vpxpj0 +
∑︁Q

q=1 γqzqj0
= θ0∗j0

vp, γq, ηs > 0,∀p,∀q,∀s.

The equivalent linear model is

θ1p∗j0
= max

Q∑︂
q=1

γ′
qzqj0

s.t.
P∑︂

p=1

v′pxpj0 = 1

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj ≤ 0, j = 1, ..., N (3.24)

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj ≤ 0, j = 1, ..., N

(1− θ0∗j0 )

Q∑︂
q=1

γ′
qzqj0 +

S∑︂
s=1

η′sysj0 = θ0∗j0

v′p, γ
′
q, η

′
s > 0,∀p, ∀q,∀s.

Then, from the decomposition equation (3.16), the efficiency of the second stage is

calculated as

θ2∗j0 =
θ0∗j0 − w∗

1j0
θ1p∗j0

w∗
2j0

. (3.25)

If the second stage was given pre-emptive priority, then the efficiency score of that

stage would maximised first while preserving the overall efficiency level. The linearised

model for the second stage is given below:
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θ2p∗j0
= max

S∑︂
s=1

η′sysj0

s.t.

Q∑︂
q=1

γ′
qzqj0 = 1

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj ≤ 0, j = 1, ..., N (3.26)

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj ≤ 0, j = 1, ..., N

Q∑︂
q=1

γ′
qzqj0 +

S∑︂
s=1

η′sysj0 − θ0∗j0

P∑︂
p=1

v′pxpj0 = θ0∗j0

v′p, γ
′
q, η

′
s > 0.

Then, using the optimal decomposition weights given by (3.21) and (3.22), the efficiency

of the first stage is calculated as

θ1∗j0 =
θ0∗j0 − w∗

2j0
θ2p∗j0

w∗
1j0

. (3.27)

Lim & Zhu (2019) provided the primal-dual correspondences both for the multiplica-

tive and the additive approaches, under the CRS and the VRS assumptions. Under the

CRS assumption, the envelopment form of model (3.20) that can be used to obtain the

frontier projections is given below.

min θj0

s.t.
N∑︂
j=1

λjxpj ≤ θj0xpj0 , p = 1, ..., P

N∑︂
j=1

µj0ysj ≥ ysj0 , s = 1, ..., S (3.28)

N∑︂
j=1

(λj − µj)zqj ≥ z̃qj0 , q = 1, ..., Q

λj, µj ≥ 0.

In the output orientation, the decomposition weights are defined similarly, as the

M. Michali, PhD Thesis, Aston University 2022 62



NETWORK DATA ENVELOPMENT ANALYSIS

proportion of outputs produced from each stage as follows,

w1j =

∑︁Q
q=1 γqzqj∑︁Q

q=1 γqzqj +
∑︁S

s=1 ηsysj
, and w2j =

∑︁S
s=1 ηsysj∑︁Q

q=1 γqzqj +
∑︁S

s=1 ηsysj
, (3.29)

and the overall efficiency is decomposed as the weighted sum of stage efficiencies:

ϕ0
j = w1j

∑︁P
p=1 vpxpj∑︁Q
q=1 γqzqj

+ w2j

∑︁Q
q=1 γqzqj∑︁S
s=1 ηsysj

. (3.30)

The output-oriented overall efficiency under the CRS assumption can be obtained

through the following linear model

ϕ0∗
j0

= min
P∑︂

p=1

v′pxpj0 +

Q∑︂
q=1

γ′
qzqj0

s.t.

Q∑︂
q=1

γ′
qzqj0 +

S∑︂
s=1

η′sysj0 = 1,

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj ≤ 0, ∀j (3.31)

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj ≤ 0, ∀j

v′p, γ
′
r, η

′
s > 0, ∀p, r, s,

The linearised, output-oriented models for the overall and the stage efficiencies, when

each stage is considered as priority stage, and under the CRS assumption are given in

Table 3.1.
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Table 3.1: The Output-oriented models in the additive decomposition approach

1st stage as priority stage 2nd stage as priority stage
CRS

ϕ1p∗
j0

= min
P∑︂

p=1

v′pxpj0

s.t.

Q∑︂
q=1

γ′qzqj0 = 1,

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′qzqj ≤ 0, ∀j (3.32)

Q∑︂
q=1

γ′qzqj −
P∑︂

p=1

v′pxpj ≤ 0, ∀j

P∑︂
p=1

v′pxpj0 +

Q∑︂
q=1

γ′qzqj0−

− θ0∗
S∑︂

s=1

η′sysj0 = θ0∗j0

v′p, γ
′
r, η

′
s > 0,∀p, r, s,

ϕ2p∗
j0

= min

Q∑︂
q=1

γ′qzqj0

s.t.

S∑︂
s=1

η′sysj0 = 1,

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′qzqj ≤ 0, ∀j (3.33)

Q∑︂
q=1

γ′qzqj −
P∑︂

p=1

v′pxpj ≤ 0, ∀j

P∑︂
p=1

v′pxpj0 + (1− θ0∗j0 )

Q∑︂
q=1

γ′qzqj = θ0∗j0

v′p, γ
′
r, η

′
s > 0,∀p, r, s,

Remark 3.2.1. The optimisation process may result in w∗
1j = 0 or w∗

2j = 0 for some

DMUj. Then, restrictions can be imposed on the decomposition weights, i.e w1j ≥ c and

w2j ≥ c, where c ∈ (0, 0.5], for j = 1, 2, ..., N, in model 3.19. Therefore, for DMUj0 under

evaluation, the following two constraints need to be added to the linear model (3.20) when

the input orientation is used or to model (3.31) when the output orientation is used:

(c− 1)
P∑︂

p=1

v′pxpj0 + c

Q∑︂
q=1

γ′
qzqj0 ≤ 0

c
P∑︂

p=1

v′pxpj0 + (c− 1)

Q∑︂
q=1

γ′
qzqj0 ≤ 0

0 < c ≤ 0.5.

Since by definition w1j + w2j = 1, when both decomposition weights are restricted to

take values greater than a value c, then c can only take values in the interval (0, 0.5].

Cook et al. (2010) extended the additive decomposition approach to general multi-

stage series structures, as well as multi-stage parallel processes.

In the aforementioned models, the decomposition weights are defined endogenously.

However, in other additive decomposition approaches, the decomposition weights are pre-
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determined. If the decomposition weights are not defined endogenously, then model (3.19)

remains in the following form

θ0∗j0 = max w1j0

∑︁Q
q=1 γqzqj0∑︁P
p=1 vpxpj0

+ w2j0

∑︁S
s=1 ηsysj0∑︁Q
q=1 γqzqj0

s.t. θ1j =

∑︁Q
q=1 γqzqj∑︁P
p=1 vpxpj

≤ 1, j = 1, ..., N (3.34)

θ2j =

∑︁S
s=1 ηsysj∑︁Q
q=1 γqzqj

≤ 1, j = 1, ..., N

vp, γq, ηs > 0,∀p,∀q,∀,

where w1j0 + w2j0 = 1. In this case, model (3.34) cannot be directly converted into a

linear one using the Charnes-Cooper transformation, and heuristic algorithms have been

developed to solve such models.

Liang et al. (2006) and Lim & Zhu (2013) developed an algorithm to convert model

(3.34) into a parametric linear one, applying two Charnes-Cooper transformations simul-

taneously. For a fixed set of weights, a sequence of linear programs needs to be solved

for different values of the parameter. Guo et al. (2017) showed that in this approach, the

choice of the decomposition weights affects the overall efficiency score, and introduced a

new model where the overall efficiency is only affected by changes in the stage efficiency

scores.

As an other parametric approach, Ang & Chen (2016) suggested calculating the stage

and overall efficiency scores through the following procedure. First, they suggested cal-

culating the upper bounds of the stage efficiency scores θ̄
1
j0

and θ̄
2
j0
, respectively, as

θ̄
1
j0
= max

∑︁Q
q=1 γqzqj∑︁P
p=1 vpxpj

, (3.35a)

s.t. the constraints of (3.34)

θ̄
2
j0
= max

∑︁S
s=1 ηsysj∑︁Q
q=1 γqzqj

, (3.35b)

s.t. the constraints of (3.34)

Then, the lower bounds of the stage efficiency scores θ1j0 and θ1j0 , respectively, will be

obtained by maximising their efficiency score subject to the constraints of model (3.34),

while keeping the upper bound level of the other stage’s efficiency score unchanged.

Then, model (3.34) can be converted to the following parametric program, where θ1j0 is

a parameter that belongs to the interval defined by the lower and upper bounds obtained
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in the previous step.

max w1j0θ
1
j0
+ w2j0

∑︁S
s=1 ηsysj0∑︁Q
q=1 γqzqj0

s.t.

∑︁Q
q=1 γqzqj∑︁P
p=1 vpxpj

≤ 1, j = 1, ..., N∑︁S
s=1 ηsysj∑︁Q
q=1 γqzqj

≤ 1, j = 1, ..., N (3.36)∑︁Q
q=1 γqzqj∑︁P
p=1 vpxpj

= θ1j0

θ1j0 ∈ [θ1j0 , θ
1

j0
]

vp, γq, ηs > 0,∀p,∀q,∀s.

The optimal solutions to model will be found by searching within the interval defined

by the lower and upper bound of the corresponding efficiency score. If θ1j0 is assigned

a value, the efficiency score of the second stage is maximised. Therefore, Ang & Chen

(2016) suggested approximating model (3.36) with model (3.37) below.

max

∑︁S
s=1 ηsysj0∑︁Q
q=1 γqzqj0

s.t.

∑︁Q
q=1 γqzqj∑︁P
p=1 vpxpj

≤ 1, j = 1, ..., N∑︁S
s=1 ηsysj∑︁Q
q=1 γqzqj

≤ 1, j = 1, ..., N (3.37)∑︁Q
q=1 γqzqj∑︁P
p=1 vpxpj

= θ1j0

vp, γq, ηs > 0,∀p,∀q,∀s.

Model (3.37) can be converted into a linear one using the Charnes-Cooper transformation.

To obtain the optimal efficiency score of the second stage model (3.37) is solved by setting

θ1j0 equal to its upper bound θ̄
1
j0
and gradually reducing its value by a small value ϵ, until

the lower bound θ1j0 is reached. The optimal overall efficiency score is then obtained

as the maximum of the weighted sum of stage efficiency scores. Their approach can

also be extended to general multi-stage structures. However, the use of predetermined

decomposition weights significantly increases the computational burden compared to the

approaches where the decomposition weights are defined endogenously.
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Decomposition weight properties in the additive two-stage process, under the

VRS

Ang & Chen (2016) and Despotis et al. (2016a) showed that under the CRS assumption,

the endogenous definition of the decomposition weights results in a non-increasing rela-

tionship between them, i.e. w1j ≥ w2j, for j = 1, ..., N , for some series network structures.

This results in giving higher priority to the first stage in the efficiency decomposition. To

overcome this problem, Ang & Chen (2016) suggested the use of constant decomposition

weights instead, while Despotis et al. (2016a) introduced a novel overall efficiency com-

position approach that will be discussed in the next Section. In this section, we are going

to show that under the VRS assumption, such a non-increasing relationship between the

endogenous decomposition weights (w1j ≥ w2j, j = 1, ..., N) cannot be established.

The four types of two-stage series structures of a DMUj, j = 1, ..., N, are depicted in

Figure 3.2. Under the CRS, for the decomposition weights of structures of type 1 and

3, in the input-oriented, additive decomposition model, Ang & Chen (2016) showed that

w1j ≥ w2j, for all j = 1, ..., N. The relation between the decomposition weights for the

four types of two stage structures, under the VRS, is investigated below.

Firstly, we define the decomposition weights in all four types of two-stage structures

depicted in Figure 3.2, under the VRS assumption, in the input orientation.

Table 3.2: Decomposition weights for the four two-stage structures, under the VRS as-
sumption, in the input orientation

Type 1/Type 3 structures Type 2/Type 4 structures

w1j

∑︁P
p=1 vpxpj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj +
∑︁T

t=1 πtgtj

∑︁P
p=1 vpxpj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj

w2j

∑︁Q
q=1 γqzqj +

∑︁T
t=1 πtgtj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj +
∑︁T

t=1 πtgtj

∑︁Q
q=1 γqzqj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj

The linear version of the model to obtain the overall efficiency in a Type 1 structure,

under the VRS assumption, in the input orientation, is given in model (3.38) below. This

is the most general version of a two-stage structure. The corresponding models for the

other three structures can be actually obtained by removing the second stage specific

inputs gtj or the first stage specific output variable lrj or both, to obtain the linear model
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for the overall efficiency for Type 2, 3 and 4 structure, respectively.

θ0∗j0 = max

Q∑︂
q=1

γ′
qzqj0 +

R∑︂
r=1

µ′
rlrj0 + u1 +

S∑︂
s=1

η′sysj0 + u2

s.t.
P∑︂

p=1

v′pxpj0 +

Q∑︂
q=1

γ′
qzqj0 +

T∑︂
t=1

π′
tgtj0 = 1,

Q∑︂
q=1

γ′
qzqj +

R∑︂
r=1

µ′
rlrj −

P∑︂
p=1

v′pxpj + u1 ≤ 0, j = 1, ..., N (3.38)

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj −

T∑︂
t=1

π′
tgtj + u2 ≤ 0, j = 1, ..., N

v′p, γ
′
r, µ

′
q, π

′
t, η

′
s > 0,

u1, u2 free in sign.

Below, the relationship between the decomposition weights in each type of structure,

in the input orientation, is investigated.

Type 1 structure:

w1j − w2j =

∑︁P
p=1 vpxpj −

∑︁Q
q=1 γqzqj −

∑︁T
t=1 πtgtj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj +
∑︁T

t=1 πtgtj
(3.39)

From the first inequality constraint in model (3.38) that is derived from the requirement

that the efficiency of the first stage should not exceed one, it follows that

w1j − w2j ≥
∑︁R

r=1 µrlrj0 + u1 −
∑︁T

t=1 πtgtj∑︁P
p=1 vpxpj +

∑︁Q
q=1 γqzqj +

∑︁T
t=1 πtgtj

. (3.40)

Type 2 structure:

w1j − w2j =

∑︁P
p=1 vpxpj −

∑︁Q
q=1 γqzqj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj
(3.41)

Similarly to the previous case, from the inequality constraint requiring that the efficiency

of the first stage does not exceed one, it follows that

w1j − w2j ≥
∑︁R

r=1 µ
′
rlrj0 + u1∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj
. (3.42)
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Type 3 structure:

w1j − w2j =

∑︁P
p=1 vpxpj −

∑︁Q
q=1 γqzqj −

∑︁T
t=1 πtgtj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj +
∑︁T

t=1 πtgtj

≥ u1 −
∑︁T

t=1 πtgtj∑︁P
p=1 vpxpj +

∑︁Q
q=1 γqzqj +

∑︁T
t=1 πtgtj

. (3.43)

Type 4 structure:

w1j − w2j =

∑︁P
p=1 vpxpj −

∑︁Q
q=1 γqzqj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj
≥ u1∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj
. (3.44)

In all four cases, the denominator of the final fraction is positive, whereas the sign of the

nominator varies, depending on the values of the optimal weights and the value and sign

of the scalar u1.

If the last fraction of any of the inequalities (3.39)-(3.44) was greater (less) than 0,

then it would hold that w1j ≥ w2j (w1j ≤ w2j), for all j = 1, ..., N in that structure.

That would imply that the relative importance of the stages in the efficiency evaluation

of DMUj would be biased, in favour of the first (second) stage. Nevertheless, the sign of

the last fraction in inequalities (3.39)-(3.44) varies among the different DMUs. Therefore,

under the VRS assumption, no stage is favoured against the other by definition.

Remark 3.2.2. In the input-oriented additive decomposition model, under the VRS as-

sumption, the order relation between the endogenously defined decomposition weights is

not fixed, but it depends on the optimal input output mix and the first stage scalar (u1) of

each DMUj, j = 1, ..., N.

Hence, unlike the CRS case, under the VRS assumption, the decomposition weights

can be defined endogenously without introducing any bias in the production process.

3.2.3 Efficiency composition approaches

The efficiency composition approach was introduced by Despotis et al. (2016a) as an

alternative to efficiency decomposition approaches, to overcome the non-unique decompo-

sition issues and the bias introduced in the process under the CRS assumption, when the

decomposition weight are defined endogenously. In this approach, Despotis et al. (2016a)

suggested calculating the stage efficiency scores first, where the first stage efficiency score

is obtained in the output orientation and the second stage efficiency score is calculated in
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the input orientation, using the standard DEA approach. The first and the second stage

independent efficiency scores, in the output and input orientations, respectively, under

the CRS assumption and for a Type 4 structure are given below, by models (3.45) and

(3.46), respectively.

1st Stage (output-oriented) 2nd Stage (Input-oriented)

min

∑︁P
p=1 vpxpj0∑︁Q
q=1 γqzqj0

s.t.

∑︁P
p=1 vpxpj∑︁Q
q=1 γqzqj

≥ 1, ∀j (3.45)

vp, γq ≥ 0,∀p, q

max

∑︁S
s=1 ηsysj0∑︁Q
q=1 γqzqj0

s.t.

∑︁S
s=1 ηsysj∑︁Q
q=1 γqzqj

≤ 1, ∀j (3.46)

γq, ηs ≥ 0,∀q, s

Combining the constraints of models (3.45) and (3.46), the following augmented mod-

els are obtained:

1st Stage (output-oriented) 2nd Stage (Input-oriented)

min

∑︁P
p=1 vpxpj0∑︁Q
q=1 γqzqj0

s.t.

∑︁P
p=1 vpxpj∑︁Q
q=1 γqzqj

≥ 1, ∀j (3.47)∑︁S
s=1 ηsysj∑︁Q
q=1 γqzqj

≤ 1, ∀j

vp, γq, ηs ≥ 0,∀p, q, s

max

∑︁S
s=1 ηsysj0∑︁Q
q=1 γqzqj0

s.t.

∑︁S
s=1 ηsysj∑︁Q
q=1 γqzqj

≤ 1, ∀j∑︁P
p=1 vpxpj∑︁Q
q=1 γqzqj

≥ 1, ∀j (3.48)

vp, γq, ηs ≥ 0,∀p, q, s.

Models (3.47) and (3.48) can be merged to the bi-objective model (3.49).
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min

∑︁P
p=1 vpxpj0∑︁Q
q=1 γqzqj0

max

∑︁S
s=1 ηsysj0∑︁Q
q=1 γqzqj0

s.t.

∑︁P
p=1 vpxpj∑︁Q
q=1 γqzqj

≥ 1, ∀j (3.49)∑︁S
s=1 ηsysj∑︁Q
q=1 γqzqj

≤ 1, ∀j

vp, γq, ηs ≥ 0,∀p, q, s.

Model (3.49) can be transformed into a MOLP by applying the Charnes-Cooper trans-

formation. Setting v′p = τvp γ′
q = τγq and η′ = τηs, where τ is a scalar such that

τγqzqj0 = 1, results in the following MOLP.

Θ1∗
j0

= min
P∑︂

p=1

v′pxpj0

Θ2∗
j0

= max
S∑︂

s=1

η′sysj0

s.t.

Q∑︂
q=1

γ′
qzqj0 = 1 (3.50)

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj ≤ 0, ∀j

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj ≤ 0, ∀j

v′p, γ
′
q, η

′
s ≥ 0, ∀p, q, s.

If the first and the second objective function are optimised independently, the point

(Θ1∗
j0
,Θ2∗

j0
) comprises the ideal point of model (3.50). Model (3.50) can be transformed into

a LP with a single objective function using a scalarisation approach. Additive aggregation

of the two objective functions is one scalarisation approach that can be implemented, and
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results in the following LP model.

min
P∑︂

p=1

v′pxpj0 −
S∑︂

s=1

η′sysj0

s.t.

Q∑︂
q=1

γ′
qzqj0 = 1 (3.51)

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj ≤ 0, ∀j

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj ≤ 0, ∀j

v′p, γ
′
q, η

′
s ≥ 0,∀p, q, s.

Another scalarisation approach implemented by Despotis et al. (2016a) to transform

model (3.50) into a LP model was by using the L∞ norm (Tchebycheff norm). This is

used to formulate the following min-max model that detects a unique solution on the

Pareto front, for which the deviations from the ideal point (Θ1∗
j0
,Θ2∗

j0
) are minimised and

equal.

min δ

s.t.
P∑︂

p=1

v′pxpj0 −Θ1∗
j0

≤ δ

Θ2∗
j0
−

S∑︂
s=1

η′sysj0 ≤ δ

Q∑︂
q=1

γ′
qzqj0 = 1 (3.52)

Q∑︂
q=1

γ′
qzqj −

P∑︂
p=1

v′pxpj ≤ 0, ∀j

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj ≤ 0, ∀j

v′p, γ
′
q, η

′
s ≥ 0,∀p, q, s.

After an optimal solution has been obtained, either by solving model (3.51) or model

(3.52), the first and second stage efficiency scores for DMUj0 can be calculated as
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θ1∗j0 =

∑︁Q
q=1 γ

′∗
q zqj0∑︁P

p=1 v
′∗
p xpj0

=
1∑︁P

p=1 v
′∗
p xpj0

and θ2∗ =

∑︁S
s=1 η

′∗
s ysj0∑︁Q

q=1 γ
′∗
q zqj0

=
S∑︂

s=1

η′∗s ysj0 (3.53)

As it was discussed previously in this Chapter, in NDEA the duality does not hold, and

projections of the inefficienct DMUs based on the efficiency scores obtained through the

multiplier model do not necessarily reach the efficient frontier. Therefore, the envelopment

model that is equivalent to model (3.51) will be used to calculate the frontier projections.

The envelopment equivalent model is given below.

max ε

P∑︂
p=1

s−p + ε

S∑︂
s=1

s+s

s.t.
N∑︂
j=1

λjxpj + s−p = xpj0 ∀p, (3.54)

N∑︂
j=1

µjysj − s+s = ysj0 , ∀s,

N∑︂
j=1

λjzqj ≥ z̃qj0

N∑︂
j=1

µjzqj ≤ z̃qj0

λj, µjs
−
p , s

+
s ≥ 0,∀j, p, s,

where z̃qj0 = zqj0 + dq and dq = (d1, ..., dQ) is free in sign.

Let (λ∗, µ∗, z̃∗qj0 , s
−∗
s , s+∗

s ) be the optimal solution to model (3.54). The efficient pro-

jections of a DMUj0 are given as

x̂pj0 = xpj0 − s−∗
p , ŷsj0 = ysj0 + s+∗

p , ẑqj0 = z̃∗qj0 . (3.55)

The efficiency composition approach can also be applied under the VRS assumption.

However, it can only be applied to Type 4 structures and cannot be directly extended

into other two-stage structures due to the different orientations used to obtain the first

and second stage efficiency scores. Despotis et al. (2016b) introduced a novel approach

based on the weak-link concept, that allows the extension of the composition approach

to different two-stage structures. In this approach, the overall and stage efficiency scores

are calculated simultaneously in a two-phase method. Sahoo et al. (2021) suggested a
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simplified efficiency composition method. They introduced a linear NDEA model that

provides the same efficiency assessment, while it is computationally easier than the the

two-phase method, and can be directly applied to multi-stage series structures. They also

extended their approach to the dynamic efficiency assessment.

3.2.4 Slacks-based measure approaches

The Network slacks-based measure (NSBM) was introduced by Tone & Tsutsui (2009)

as an extension to the SBM and weighted SBM to deal with efficiency measurement in

production processes with intermediate measures. Tone & Tsutsui (2009) defined the

NSBM based on the production possibility set of k-stage processes, where k = 1, ..., K.

As it was defined in Section 3.1 let xk
j =

(︁
xk
1j, ..., x

k
Pkj

)︁
∈ RPk

+ denote the inputs to

stage k, let z
(k,b)
j =

(︁
z
(k,b)
1j , ..., z

(k,b)
Qkj

)︁
∈ RQk

+ be the intermediate products of stage k that

are used as inputs to another stage b, and finally, let ykj =
(︁
yk1j, ..., y

k
Skj

)︁
∈ RSk

+ be the final

outputs that exit the system at stage k. Then, the PPS under the VRS assumption can

be defined as

N∑︂
j=1

λk
jx

k
pj ≤ xp,∀p, k,

N∑︂
j=1

λk
jy

k
sj ≥ ys,∀s, k

N∑︂
j=1

λk
j z

(k,b)
qj = zq,∀q, (k, b) (as outputs from k) (3.56)

N∑︂
j=1

λb
jz

(k,b)
qj = zq,∀q, (k, b) (as inputs to k)

N∑︂
j=1

λk
j = 1

λk
j ≥ 0,∀j, k

where λk
j ∈ RN

+ is the intensity vector of stage k, k = 1, ..., K.

Tone & Tsutsui (2009) adopted the two following approaches to treat intermediate

products:

(a) The ”free” link approach, where the flow of the intermediate products is freely

determined to preserve the continuity of being outputs of one stage and inputs to
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another stage:

N∑︂
j=1

λb
jz

(k,b)
qj =

N∑︂
j=1

λk
j z

(k,b)
qj , ∀(k, b). (3.57)

(b) The ”fixed” link approach, where the intermediate flows are kept unchanged at the

current level:

z
(k,b)
qj0

=
N∑︂
j=1

λb
jz

(k,b)
qj ,∀(k, b),

z
(k,b)
qj0

=
N∑︂
j=1

λk
j z

(k,b)
qj ,∀(k, b).

(3.58)

Then, the DMUj0 under evaluation can be represented as

xk
pj0

=
N∑︂
j=1

λk
jx

k
pj + sk−s , ∀k

yksj0 =
N∑︂
j=1

λk
jy

k
sj − sk+s , ∀k

N∑︂
j=1

λk
j = 1

λk
j , s

k−
s , sk+s ≥ 0,∀j, k

(3.59)

and also (3.57) or (3.58) holds. The above representation refers to the VRS case. If the

constraint
∑︁N

j=1 λ
k
j = 1 is omitted, then the DMUj0 under the CRS assumption will be

represented. However, under the CRS assumption, Tone & Tsutsui (2009) noted that in

contrast to one-stage structures, their suggested NSBM may yield all the DMUs included

in the set under evaluation as inefficient.

Similarly to the SBM for one-stage structures, Tone & Tsutsui (2009) suggested three

types of NSBM, the input-oriented, the output-oriented and the non-oriented. Those

three versions of the NSBM are briefly presented below.

Input orientation: The input-oriented overall efficiency score of DMUj0 is calculated as

the weighted arithmetic mean of stage efficiencies through the following model, using
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either the ”free” link or the ”fixed” link approach.

θ∗j0 = min
K∑︂
k=1

wk

[︃
1− 1

Pk

(︃ Pk∑︂
p=1

sk−p
xk
pj0

)︃]︃
s.t. (3.59) and (3.57) or (3.58) (3.60)

where
∑︁K

k=1 w
k = 1, wk ≥ 0 represents the relative importance of stage k.

The optimal stage efficiency score can be obtain using the optimal input slacks sk−∗
p

from model (3.60) as

θk∗j0 = 1− 1

Pk

(︃ Pk∑︂
p=1

sk−∗
p

xk
pj0

)︃
, ∀k (3.61)

Output orientation: Similarly, the output-oriented overall efficiency score of DMUj0 is cal-

culated as the weighted harmonic mean of stage efficiencies through the model presented

below.

1/ϕ∗
j0
= max

K∑︂
k=1

wk

[︃
1 +

1

Sk

(︃ Sk∑︂
s=1

sk+s
yksj0

)︃]︃
s.t. (3.59) and (3.57) or (3.58) (3.62)

where
∑︁K

k=1 w
k = 1, wk ≥ 0.

The optimal stage efficiency score can be obtain using the optimal output slacks sk+∗
p

from model (3.62) as

ϕk∗
j0

=
1

1 + 1
Pk

(︃∑︁Pk

p=1
sk+∗
p

xk
pj0

)︃ , ∀k (3.63)

Non-oriented case: In the non-oriented case, input and output slacks are considered si-

multaneously, as follows:

ρ∗j0 = min

∑︁K
k=1 w

k

[︃
1− 1

Pk

(︃∑︁Pk

p=1
sk−p
xk
pj0

)︃]︃
∑︁K

k=1w
k

[︃
1 + 1

Sk

(︃∑︁Sk

s=1
sk+s
yksj0

)︃]︃
s.t. (3.59) and (3.57) or (3.58) (3.64)

and
∑︁K

k=1w
k = 1, wk ≥ 0.
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Let (sk−∗
p ,sk+∗

p ) be the optimal input and output slacks obtained from model (3.64).

The optimal stage efficiency score can be defined as

ρ∗kj0 =

1− 1
Pk

(︃∑︁Pk

p=1
sk−∗
p

xk
pj0

)︃
1 + 1

Sk

(︃∑︁Sk

s=1
sk+∗
s

yksj0

)︃ , ∀k (3.65)

All the above overall and stage efficiencies are independent from the units of measurement,

i.e. they are units-invariant. In contrast to the input and output-oriented cases, in the

non-oriented case the relationship between the overall and stage efficiency score cannot be

established. Lu et al. (2014) introduced a modification of the non-oriented NSBM where

the overall efficiency score is obtained as the arithmetic mean of the stage efficiencies.

Fukuyama & Mirdehghan (2012) noted that the models introduced by Tone & Tsutsui

(2009) do not consider the slacks of intermediate products, and therefore, do not provide

correct identification of the efficiency of a DMU. Chen et al. (2013) further remarked that

such envelopment-based approaches should only be used to obtain the frontier projections

of DMUs and multiplier-based approaches should be employed to calculate the efficiency

scores.

The NSBM models introduced by Tone & Tsutsui (2009) assume cooperation between

the stages. Defining the PPS in a similar way, where the different stages cooperate with

each other, Lozano (2016) studied a general two-stage structure with undesirable products

and Li et al. (2015) applied a NSBM model in a series structure. Other NSBM approaches

are based on a PPS that can be separated into two independent parts that correspond

to the different stages. Fukuyama & Mirdehghan (2012) used such an independent PPS

to identify non-dominated DMUs in a two-phase procedure. Another group of studies

assume a relational PPS, where the aggregated intermediate products of one stage are

equal to the aggregated intermediate inputs of the next stage. For example, Lozano (2015)

introduced a relational NSBM model where the slacks are not calculated at a stage level,

but at a system level, i.e. considering the total consumption of inputs and production

of outputs, and not within a specific stage. Kao (2018) provided a thorough review and

classification of NSBM approaches.
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3.2.5 Network approach

In the network approaches, the efficiency of DMUs is assessed considering that their

production process consists of different sub-processes, but the efficiency of the different

production stages is not examined. Färe (1991), Färe & Whittaker (1995) and Färe

& Grosskopf (1996) adopted the network approach in the efficiency evaluation, in the

presence of intermediate products.

The model used by Färe & Grosskopf (1996) for a Type 4 two-stage structure with

no exogenous inputs/outputs, under the CRS assumption is similar to model (3.14), and

its dual is given by model (3.15). Therefore, the network model suggested by Färe &

Grosskopf (1996) is equivalent to the multiplicative model of Kao & Hwang (2008) and

the game-theoretic model of Liang et al. (2008).

3.3 Conclusion

Various Network DEA models have been developed as an extension to conventional DEA

models to assess the performance of DMUs when the production involves multiple stages.

This Chapter has mainly focused on two-stage structures. The PPS of a general two-stage

process has been defined and the main approaches to deal with efficiency measurement in

two-stage production structures have been discussed.

In contrast to one-stage DEA models, in network DEA, the returns to scale properties

do not always hold, as in some cases the CRS efficiency score of a DMU may be higher

than its efficiency score under the VRS assumption. Furthermore, the duality between

the envelopment and the multiplier model does not always hold, and the projections

obtained with the multiplier model might not lie on the efficient frontier. Therefore, the

multiplier version should be used to calculate the overall and stage efficiency scores, and

the envelopment form should be employed to obtain the frontier projections.

Network DEA has the advantage over the conventional DEA that it can offer an in-

sight into the production process and reveal which production stage comprises the main

source of inefficiency. Among the different NDEA approaches, the efficiency decompo-

sition approaches seem to be the most influential ones, with the additive decomposition

approach offering the benefit of being applicable under general multi-stage structures and

the VRS assumption. In the following Chapter, the additive decomposition approach is

going to be implemented to assess the performance of the railway transport process in

European countries.

M. Michali, PhD Thesis, Aston University 2022 78



4

Empirical study: Noise-pollution

efficiency analysis of European

railways

An efficient transport system is critical for attaining economic growth; it allows for the

movement of people, goods and resources, provides access to services and facilities and

enhances the quality of life. Governments need to invest in transport infrastructure while

being considerate of sustainable development. During the last decades, the important

share of transport in energy consumption and air pollution increased concerns about the

impacts it will have on the natural ecosystem and climate change. Since railways are the

most eco-friendly means of transport while demonstrating the lowest traffic congestion

levels and high safety performance, they are becoming increasingly popular, and plans

regarding their improvement and broader adoption are included in many governmental

agendas.

However, railway noise generated by the wheel-rail contact, as well as aerodynamic

noise were proved to create a major environmental problem. Specifically in the European

Union (EU), railways are considered to be the second-highest source of noise pollution after

road, both inside and outside urban areas (EEA Report No 22/2019 2020). Prolonged

noise exposure is linked to well-being and health problems, such as sleep disturbances,

annoyance and higher risk of cardiovascular diseases (EEA Report No 10/2014 2014).

Railway noise is also related to economic costs, such as the depreciation of houses close

to rail lines and productivity decrease of the employees, when railway noise exists in the
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workplace.

Efficiency evaluation of railways is very important in order to identify its sources of

inefficiency and further improve its operation. It is crucial for the society and the economy

to keep this sustainable mode of transport competitive and manage to form the modal

split in its favour. DEA can be a useful tool in measuring the technical efficiency of DMUs

relatively to an empirically constructed production frontier, which allows the comparison

among the different DMUs. Its great advantage lies in its non-parametric nature which

allows for the inclusion of multiple inputs and outputs in the production model. Therefore,

there is a large number of studies using DEA models to assess the efficiency of railways

in different geographical areas.

The purpose of this Chapter is to provide an evaluation of the efficiency of railways in

the European countries during 2016-2017, considering the noise pollution generated, and

its impact on humans. However, the railway transportation process can be considered to

involve more than one stages, that are related to asset management and services provision,

respectively. For this reason, a network DEA (NDEA) model with intermediate and

undesirable outputs is formulated upon the assumption of variable returns to scale (VRS).

As distinct from the conventional one-stage DEA approaches, there is a quite limited

number of studies in the DEA literature that consider the inner structure of railways’

operation. In this study, we suggest that the final output of the railway transport process,

i.e. passenger and freight movement, is a result of a two-stage process, the first one of

which is related to asset management and the second one to the service offering. Ignoring

the role of one of the two stages may result in misleading conclusions for the efficiency

level of a country’s railway system. The number of people exposed to high levels of railway

noise is considered as an undesirable output. Despite the extended DEA literature, to the

best of our knowledge, this is the first time that DEA is being used to incorporate noise

effects on the operation of railway transport. Using the additive efficiency decomposition

approach, it is possible to define the source of inefficiency for each country. Furthermore,

a sensitivity analysis is performed to investigate how the different choices of stage weights

affect the efficiency scores and rankings of the countries.

The rest of this Chapter is structured as follows. Section 4.1 is a review of the relevant

DEA and NDEA literature on railway transport. In Section 4.2, the noise-pollution

problem caused by railways in Europe is discussed. Then, in Section 4.3 the railway

transport process is decomposed into two stages and in Section 4.4, a two-stage NDEA

model with undesirable output is formulated. In Section 4.5, the results of the analysis
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are discussed. Finally, in the last Section, conclusions, main contributions of this study

and some future research directions are provided. This Chapter is based on the published

work by Michali et al. (2021).

4.1 Review of the DEA literature on railway trans-

port

Many studies have aimed their attention at measuring the performance of the railway

transport industry. The first studies that used DEA in this direction were in the 1990s,

from Moesen (1994) and Oum & Yu (1994). Since then, many studies have assessed

railway performance globally, measured their performance in specific regions. Below, some

selected studies referring to different geographical regions are mentioned. The Section

will then focus on studies that evaluated the efficiency of European railways, and their

evolution in terms of efficiency since the late 1980’s will be discussed. Finally, studies

that consider undesirable outputs resulting from the railway operation and studies that

take into account the inner structure of the railway transport process will be reviewed.

Graham (2008) assessed the efficiency and productivity of 200 urban railways globally,

non-parametrically, using VRS and CRS DEA, and parametrically, by decomposing the

total factor productivity (TFP) change. Yu (2008b) used directional distance functions

and NDEA to measure the efficiency of 40 global railways. Yu & Lin (2008) measured

passenger and freight services’ efficiency and effectiveness of 20 railway companies using a

multi-activity NDEA. Kutlar et al. (2013) evaluated the technical and allocative efficiency

of 31 railway companies using CCR and BCC DEA models and used a second stage Tobit

regression to test the impact of outputs on the efficiency scores. Focusing on the US,

Chapin & Schmidt (1999) measured the performance of class I railroads using the CCR

and BCC DEA models on panel data and Shi et al. (2011) using sequential DEA and

Malmquist index (MI). Marchetti & Wanke (2017) used CCR and BCC DEA models to

assess the efficiency of rail concessionaires in Brazil and a second stage bootstrap truncated

regression to measure the impact of exogenous variables on the efficiency scores. Li et al.

(2018) used CCR DEA and generalised DEA to measure the efficiency of Chinese railway

administrations and Kuang (2018) applied BCC and super cross-efficiency DEA to assess

the efficiency of China Railway Bureau. Jitsuzumi & Nakamura (2010) used BCC DEA

to identify the sources of inefficiency in Japanese railways and calculate the optimal
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levels of subsidies. Mapapa (2004) applied CCR and BCC DEA and MI to evaluate the

performance of sub-Saharan African railways. Mohajeri & Amin (2010) combined DEA

and analytical hierarchy process (AHP) for the selection of the optimal railway station

location in Mashhad. Rayeni & Saljooghi (2014) assessed and compared the efficiencies

of Iranian railways over a 30-year period using cross-efficiency DEA. Azadeh et al. (2018)

assessed the performance of Tehran-Karaj railway electrification system using BCC DEA

and considering resilience engineering (RE). George & Rangaraj (2008) applied CCR

and cross efficiency DEA to measure the performance of Indian railways. Bhanot &

Singh (2014) used CCR and BCC DEA to compare indicators of business performance

of Indian Railway container transport. Sharma et al. (2016) assessed the performance of

16 railway zones in India in terms of the services they provide applying BCC DEA and

Malmquist Index. Kim et al. (2011) studied the modal shift to railways in Korea, as a more

environmental means of transport. They measured railway freight transport efficiency

applying CCR and BCC DEA models and made suggestions about how to expand the

use of railways in freight transportation. Reorganisation, incorporation or privatization

as well as passenger services, freight carriage, safety and energy consumption of railways

are some common research topics in DEA literature. Mahmoudi et al. (2020) provided an

extended review of DEA applications on the transportation and railway industry.

In the late 1980s, the need for increasing railways’ eroded modal market share and

coping with the new demands arising from globalisation sparked a series of reforms in

European railways. That stimulated many studies to assess the performance of the railway

system in Europe before and after such transformations, to extract useful conclusions

towards its efficiency improvement. Oum & Yu (1994) assessed the efficiency of railways

which were mainly focused on passenger services in 18 European countries and Japan,

during the time period from 1978 to 1989. They suggested that managerial autonomy

and less dependence on subsidies have a positive effect on the efficiency of a railway

system. UK, Ireland, Netherlands, Spain, and Sweden had the most efficient railway

systems during that period. According to Cantos et al. (1999), in the years that followed

- from 1985 to 1995 - the financial and managerial autonomy continued to have a positive

impact on the efficiency of railways and that reforms that took place, resulted in increasing

productivity. During the same time period, smaller European railway companies seemed

to have higher technical efficiency (De Jorge-Moreno & Garcia-Cebrian 1999).

Coelli & Perelman (1999) investigated the efficiency of 17 European railway firms

from 1988 to 1993, using distance functions. De Jorge-Moreno & Suarez (2003) used
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quadratic functions to observe the efficiency of 19 railway firms in Europe for a long time

period, from 1965 to 1998. They concluded that the separation of railway operations

from railway infrastructure management - introduced in 1991 - and the reductions in

personnel, affected the efficiency of firms. Hilmola (2007) studied the productivity and

efficiency of freight railways in 31 European countries, from 1980 to 2003. During the

1990s there was an efficiency downfall of all the previously best-performing countries.

Also, a high level of divergence in freight transport among the European countries was

observed (Hilmola 2007; 2008; Savolainen & Hilmola 2009). Countries in the Baltic region,

and notably Estonia and Latvia, were performing better in freight transport. However,

in passenger transport, Netherlands, UK, Spain and Denmark were more efficient, while

Eastern European countries were showing low performance (Hilmola 2008). Savolainen &

Hilmola (2009) suggested that an associated development of railway and airline passenger

transport would probably increase the efficiency. Growitsch & Wetzel (2009) used a DEA

super-efficiency model with bootstrapping on 54 railway European firms during 2000-2004

and found that vertical integration favours the performance improvement in the majority

of the railways included in the study. Cantos et al. (2010) studied the vertical and

horizontal separation of railways in 16 European countries for the time period 1985-2005.

In more recent years, Sozen et al. (2012) and Sozen & Cipil (2018) compared Turkish

railways to the railways of 23 EU member countries. Rotoli et al. (2015) considered

accessibility among the European countries and suggested it could be improved by giving

importance to the increase of railway speed. Rotoli et al. (2018) ranked the efficiency of

Italian rail segments, from the standpoint of three different stakeholders; rail regulator,

rail operator and the infrastructure manager. Khadem Sameni et al. (2016) were the first

to implement DEA to assess the efficiency of 96 railway stations in Great Britain in terms

of how well they manage train stops considering the existing station capacity.

Although railways are one of the safest means of transport, reduction of existing safety

risks such as train collisions, derailments, level crossings or exposure of railway stuff to

moving trains and electricity of high voltage can further improve its sustainability. Con-

cerning railway safety in Europe, Noroozzadeh & Sadjadi (2013) measured the efficiency

of 25 European passenger railways in 2008. Djordjević et al. (2018) used a non-radial

DEA model to assess the efficiency of European railways regarding their level of safety

in railway level crossings, during 2010-2012 and 2014. Roets et al. (2018) measured the

efficiency of railway traffic control centres in Belgium in 2015, using cost allocation re-

strictions and a metafrontier approach. In such studies, the number of accidents, number
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of victims, surveillance staff, number of safety and non-safety interventions are some of

the variables used to measure railway safety.

Within the global movement towards decreasing greenhouse gas emissions, some stud-

ies used DEAmodels to assess the energy-environmental efficiency of transport considering

CO2 emissions as an undesirable output. The majority of those studies refers to China

(Chang et al. 2013; Cui & Li 2014; Zhou et al. 2014). Concerning railway transport in

China, Liu et al. (2016) used a non-radial DEA model, window analysis and a second

stage Tobit regression. Song et al. (2016) combined a non-radial DEA model with a sec-

ond stage panel beta regression, and Liu et al. (2017) applied a SBM DEA model with

parallel structure. Ha et al. (2011) measured the environmental inefficiency of railway

companies in Japan, considering CO2 emissions produced both during the train operation

and the infrastructure construction. The environmental efficiency of railways in the EU

countries during 2014-2016 was studied by Djordjević & Krmac (2019) using a non-radial

DEA model. Emrouznejad, Marra, Yang & Michali (2022) provide a literature review

and bibliometric analysis that shows the evolution in the DEA studies treating CO2 as

an undesirable output.

In most of the studies in the DEA transport literature, the production process is con-

sidered as a ‘black box’, where inputs are directly transformed to outputs. However, some

studies model the production process considering its inner structure. Yu (2008b) mea-

sured the efficiency and effectiveness of 40 railways globally, during 2002, using a NDEA

model with two sub-processes - production and consumption process - with shared, inter-

mediate and exogenous inputs. Yu & Lin (2008) assessed the efficiency and effectiveness

of 20 selected railway companies during the same year. In this study, the production stage

was divided into two parallel processes - passenger and freight subprocesses - with stage-

specific and shared inputs. Mallikarjun et al. (2014) used a non-oriented four-stage series

NDEA model to study the performance of public railway transport in the US. Zhou & Hu

(2017) used an additive two-stage NDEA model to measure the performance of railways

in China, considering dust as an undesirable output of the second stage. Similarly, the

two stages are production and service related respectively. Wanke et al. (2018) applied

directional distance functions in a multi-stage NDEA model combining series and parallel

structure, with an undesirable output - number of accidents - to evaluate the efficiency of

Asian railways.

The number of studies considering the inner structure of the railway transport process

is limited compared to the high volume of the NDEA literature and the one-stage DEA
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literature in railways. Furthermore, there is a lack of studies evaluating the efficiency

of railways considering the major issue of noise-pollution that affects the people and the

natural habitat in the surroundings of railway lines. Traffic noise-pollution is considered

to be a serious problem mainly in Europe, where 113 million people are affected by long-

term exposure to traffic noise levels of at least 55 decibels coming from different modes

of transport (EEA 2021). In the following Section, the railway noise-pollution problem is

discussed in more detail.

4.2 The railway noise-pollution problem in Europe

The most serious problem that railways cause to the environment is noise pollution.

Notably in Europe, after road traffic noise, noise generated from railways is the second

highest environmental health problem. According to 2017 estimations, about 22 million

people were exposed to high levels of railway noise inside and outside urban areas (EEA

Report No 22/2019 2020).

Railway noise mainly comes from the wheel and rail vibrations, which are generated

by the contact of the rolling wheel with the rail (Kitagawa 2009, pg. 1). Bad rolling

conditions originating from the poor maintenance of the rail lines or wheel flats, result in

augmented noise levels. The braking technology that is used, also plays an important role;

cast iron brake blocks corrugate the wheel surface resulting in higher rolling noise levels,

while composite and sinter material blocks cause low roughness to the wheel, and thus,

produce less noise (Pyrgidis 2016, pg. 428-429). Until the mid 2000s, cast iron brakes

was the only brake technology used in freight wagons, due to their lower cost. On the

other hand, the disc brake technology that is used in passenger trains, which are usually

high-speed trains, generates lower rolling noise levels (Thomson & Gautier 2006, pg. 400).

In this type of trains, aerodynamic noise seems to be the major problem (Thomson et al.

2015).

In contrast to passenger trains which are mainly operating during the day, the ma-

jority of freight wagons operate during the night hours, and are therefore considered,

under the current brake technology, as the main source of noise pollution in Europe

(ERA 006REC1072 Impact Assessment 2018). In 2006, the technical specifications for in-

teroperability (TSI) which were introduced by the European Commission (EC), set noise

emission limits for new wagons and implicitly prohibited the use of cast iron blocks (Com-

mission Decision 2006/66/EC 2006). However, since the lifetime of wagons can be over
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40 years, the renewal procedure would be very slow. Therefore, in 2008, the Commission

announced new measures for noise emissions reduction, which suggested the retrofitting

of the existing wagon fleet with composite brake blocks (Council Directive 2008/57/EC

2008). This would result in up to 10dB noise reduction.

Depending on its duration and intensity, noise can affect human health, causing from

mild problems such as annoyance, sleeping disturbances or stress to the body to more

serious problems such as increased blood pressure, insomnia and risk for cardiovascular

diseases. Environmental noise in the classroom - coming from the road, rail and air traffic

- is also related to children cognitive impairment (Clark & Stansfeld 2007; EEA Technical

Report No 11/2010 2010).

The Environmental Noise Directive (END) (Council Directive 2002/49/EC 2002) de-

fined Lden indicator to be used as a threshold against which human exposure to envi-

ronmental noise is monitored. Lden is defined as the yearly average sound pressure level

during all days, evenings and nights, where evening sound pressure value has a penalty

of 5dB and night value has a penalty of 10 dB, where dB is considered as an A-weighting

scale, used to measure loudness corresponding to the frequencies that human ear can

perceive. Lden is calculated by the following formula:

Lden = 10·log 1

24

(︁
(day hours)·10

Lday
10 +(evening hours)·10

Levening+5

10 +(night hours)·10
Lnight+10

10
)︁
,

where Lday, Levening, and Lnight are the yearly average sound pressure levels over day,

evening and night hours, respectively.

According to the END, EU member states should keep environmental noise at levels

where Lden ≤ 55 dB and Lnight ≤ 50 dB. According to the World Health Organization

(WHO) guidelines, noise should not exceed 40 dB during night (WHO 2009, pg. 108-109).

Next, the structure of the railway transport process is discussed.

4.3 The Railway transport process considering the

impact of environmental noise

Railways is a capital-intensive industry that relies a lot on investments to maintain, im-

prove and expand its assets, rolling stock and infrastructure, aiming to provide passenger

and freight services of high quality and continue to be competitive in the modal market

share. Therefore, from the operational perspective, the railway transport process is di-
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vided into two stages; the asset related and the services related. The first stage is related

to the acquirement of rolling stock that satisfies EC standards and the development of a

rail network with adequate line length. In the second stage, the quality of the services

offered is evaluated by measuring the passenger and freight carriage as well as the impact

that noise generated from the moving trains had on the population.

In this study, the infrastructure investment costs and the operating and maintenance

costs are considered as inputs, and the number of wagons that are compliant with the

noise standards specified in TSI, the total number of rail wagons (including compliant

and non-compliant ones) and the length of operating lines are regarded as outputs of the

first stage. The length of the operating lines and the total number of wagons are then

introduced as inputs to the second stage, to produce two desirable outputs, million-tonne

freight-kilometres (MT-km) and million passenger-kilometres (M-km), and one undesir-

able output, the total number of people exposed to high levels of railway noise (Lden ≥

55 dB) inside and outside urban areas (see Figure 4.1)1. The passenger-km and tonne

freight-km are calculated as the number of passenger journeys or tones of freight journeys

multiplied by the average distance of all journeys, i.e. they represent the transport of one

passenger or one tonne of freight, respectively, over one kilometre.

Figure 4.1: Railways model structure

This study assesses the environmental efficiency of railway systems in 22 European

countries in 2016-2017. During that time, 20 of the countries under investigation were

members of the European Union (EU) - United Kingdom left the EU on 31st January

2020. Switzerland and Norway are also included in the dataset, as they belong to the

Schengen area. Concerning the rest of the EU members not included in this study, some

of them have missing data and some others, such as Malta and Cyprus, have no railway

system.

Data provided in Table 4.1, were collected from various sources. Infrastructure in-

1An alternative formulation of the second stage could separate wagons into noise TSI-compliant and
noise TSI-non-compliant for a more accurate reflection of the railway transport process.
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vestment and operational and maintenance costs were extracted from the 2019 European

Commission report (Schroten et al. 2019, pg. 63) and are both measured in billion euros.

The number of new and retrofitted wagons which are compliant with the TSI, as well

as the total number of wagons in each country, were found in the 2018 report of the

European Union Agency for the Railways (ERA) on the noise TSI (ERA 006REC1072

Impact Assessment 2018, pg. 23). The length of operating lines, passenger M-km and

freight MT-km were extracted from the Eurostat (2016) database. The number of people

exposed to noise levels higher than those established by the END as acceptable was found

in Noise Country Fact Sheets 2019, in the European Environment Agency (EEA) web-

page (EEA 2020). It should be noted that until 1st January 2019 - when common noise

assessment methods (CNOSSOS-EU) started to be applied by all the EU member states -

each country was using its own methods for noise pollution measurement, which involved

the use of different parameters to capture meteorological conditions, ground absorption

or population assignment to buildings (EEA Report No 22/2019 2020). All variables refer

to 2016 measurements, except for the last one, which refers to 2017, since noise pollution

impact measurements took place in 2007, 2012 and 2017. It should be noted that invest-

ment costs refer only to 2016 investments and do not capture any capital stock. Some

descriptive statistics of the data set are provided in Table 4.2.

The non-parametric Spearman correlation analysis (Table 4.3) indicates that there is

a positive relationship between the input and output variables. This can be interpreted

as that an increase in the amount of inputs consumed results in a certain increase in the

amount of outputs produced.

Because the efficiency scores calculated with the DEA methodology are relative and

not absolute measures of the performance of a DMU, as the number of inputs and outputs

increases, the discrimination power of the model diminishes and a number of inefficient

DMUs may be falsely rated as efficient (see Section 2.4). There are several rules of thump

in the DEA literature for relating the number of inputs and outputs to the sample size

(Charles et al. 2019). Following the threshold N ≥ max{p× q× s, 3(p+ q+ s)}, where N

is the number of observations, p is the number of inputs, q the number of the first stage

outputs, and s the number of second stage outputs, and given that in this case, due to data

unavailability, the number of observations is not possible to be increased, there is a need

to reduce the model dimensions. Here, the aggregation of the infrastructure investment

costs and operation and maintenance costs by simple addition is applied, since these two

variables are both measuring different types of costs and are highly correlated (Podinovski
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& Thanassoulis 2007).

Table 4.1: Data Set

DMU
Invest.
Costs
(bn e)

O&M
Costs
(bn e)

TSI
Wagons

Total
Wagons

Length
of Lines
(km)

Freight
MT-km

Pass.
M-km

Lden ≥
55 dB

1 Austria 2.61 1.66 6511 23345 5491 21361 12497 1081900
2 Belgium 1.78 0.38 2312 12013 3607 0 10025 324400
3 Bulgaria 0.30 0.25 568 16915 4029 3434 1455 42300
4 Croatia 0.19 0.30 383 2274 2604 2160 827 26400
5 Czech Rep. 1.35 1.36 8000 42199 9564 15619 8738 268500
6 Denmark 0.39 0.13 225 366 2045 2616 6332 84300
7 Estonia 0.06 0.14 0 20849 1161 2340 316 6100
8 Finland 0.41 0.18 200 9942 5926 9456 3868 119400
9 France 5.09 3.67 8558 77678 28364 32569 90612 3780000
10 Germany 7.74 3.92 59626 165653 38623 126686 95465 6390500
11 Ireland 0.16 0.21 100 254 1931 101 1991 42600
12 Latvia 0.11 0.17 0 11888 1860 15873 584 40600
13 Lithuania 0.22 0.31 0 14828 1911 13790 280 11600
14 Netherlands 2.73 1.02 9000 21226 3058 6641 17483 312500
15 Poland 3.50 0.69 2750 83500 19132 50650 19067 419700
16 Portugal 0.71 0.26 3123 3313 2546 2774 4266 137100
17 Slovenia 0.23 0.18 226 3230 1209 4360 611 47600
18 Spain 5.23 0.73 6781 20833 16167 10550 26646 69300
19 Sweden 1.07 0.45 931 11000 10882 21406 12800 549400
20 UK 6.46 3.45 15467 18246 16253 17053 68010 1709400
21 Norway 0.52 0.48 516 1623 3895 3312 3695 123400
22 Switzerland 2.50 1.58 19236 21200 3650 12447 20657 482400

Table 4.2: Some descriptive statistics of the data set

Invest.
Costs

O&M
Costs

TSI
Wagons

Total
Wagons

Length
Lines

Freight
MT-km

Pass.
M-km

Lden ≥
55 dB

Min. 0.0600 0.1300 0 254 1161 0 280 6100
1st Qu. 0.2475 0.2200 225.20 4970 2170 2908 1589 43850
Median 0.8900 0.4150 1621.5 15872 3772 10003 7535 130250
Mean 1.9709 0.9782 6568.8 26472 8359 17054 18465 730427

3rd Qu. 2.7000 1.2750 7695.2 21220 10552 16758 18671 466725
Max. 7.7400 3.9200 59626.0 165653 38623 126686 95465 6390500
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Table 4.3: Non-parametric Spearman correlation matrix

Invest.
Costs

O&M
Costs

TSI
Wagons

Total
Wagons

Length
Lines

Freight
MT-km

Pass.
M-km

Lden ≥
55 dB

Invest. Costs 1.000
O&M Costs 0.864 1.000
TSI Wagons 0.903 0.882 1.000

Total Wagons 0.657 0.707 0.645 1.000
Length Lines 0.840 0.766 0.715 0.586 1.000
Fr. MT-km 0.597 0.637 0.479 0.689 0.674 1.000

Pass. M-Km 0.951 0.810 0.888 0.591 0.831 0.561 1.000
Lden ≥ 55dB 0.862 0.801 0.822 0.536 0.764 0.616 0.886 1.000

Linear regressions were also used to assess whether the inputs of each stage have a

significant predictive value to each of the stage’s outputs. Here the undesirable output of

the second stage, i.e. the variable (Lden ≥ 55), is considered as input to the second stage.

This treatment of the undesirable output is further discussed in the following section,

where the models are formulated.

1st stage:

i. (Noise TSI Compliant Wagons)= 3011·(Aggregated costs)−2311.03

ii. (Total Wagons)= 8386·(Aggregated costs)+1740.217

iii. (Length of lines)= 2551·(Aggregated costs)+836.510

2nd stage:

iv. (Passengers M-km)= 2.162·(Length of lines)−0.388· (Total Wagons)

+0.013·(Lden ≥ 55dB)+1052.099

v. (Freight MT-km)= −206·(Length of lines)+0.596· (Total Wagons)

+0.004·(Lden ≥ 55dB)+217.957

Table 4.4: Regression results

Regress. No. R2 significance F coeff. 1 p-value coeff. 2 p-value coeff. 3 p-value
i. 0.613 0.000 0.000 - -
ii. 0.553 0.000 0.000 - -
iii. 0.771 0.000 0.000 - -
iv. 0.925 0.000 0.000 0.004 0.000
v. 0.913 0.000 0.680 0.000 0.206
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The 100R2% gives the percentage of the variability of the output variables that is

explained from each regression model. The significance F that is less than 0.05 in all

cases, indicates that all the above regressions are statistically significant, and therefore,

they have a predictive effect. Although the coefficients 1 and 3 in regression v. are non-

significant, the corresponding variables ”Length of lines” and ”Lden ≥ 55dB” are still

included in the model as their coefficients in regression iv. are significant.

In the following Section, the models that are going to be used for the efficiency eval-

uation of the railway process are provided.

4.4 A two stage Network DEA model with undesir-

able outputs

In this section, the DEA models that are going to be used to measure the efficiency of

railways are formulated.

According to Peterson (1996), among the western European railway companies in-

cluded in the study, the smallest operators showed increasing returns to scale (IRS), the

medium sized operators showed CRS and the largest operators showed decreasing returns

to scale (DRS). In this dataset, railways in different countries vary in size, and therefore,

small operators co-exist with large ones. Chen et al. (2009, pg. 1170-1171) mention that

in cases where large and small DMUs coexist in a dataset, a VRS assumption is required.

Since there are CRS, IRS, and VRS operators, a VRS DEA model was adopted in this

study to provide a more equitable efficiency analysis, regardless of the size of railway

operators2.

As it was discussed in Chapter 3 the great advantage of the additive decomposition

approach against the multiplicative is that the first one can be used under VRS as in

that case, the resulting models can be transformed into linear ones, without the need

of using any parametric LP. Chen et al. (2009) introduced the additive decomposition

method for a closed two-stage process with no external intermediate inputs or outputs

(see Section 3.2.2.2). In this Section, the additive approach is going to be applied to

the production process discussed in the previous section (see Figure 4.1), which is an

open two-stage production process, with external intermediate outputs and undesirable

outputs. The assumption introduced by Kao & Hwang (2008), that the optimal level of

2For a review of the different models used to assess the efficiency of railways under different returns
to scale assumptions see Mahmoudi et al. (2020).
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outputs resulting from the first stage is introduced unchanged to the second stage is also

adopted. The formulation of the models is done in the input orientation, and under the

assumption of VRS.

Consider the railway transport process described in the previous Section, which con-

sists of two serially connected stages (see Figure 4.2). Consider the general case where

there are N DMUs. Each DMUj, j = 1, ..., N consumes P inputs xpj, p = 1, ..., P in the

first stage to produce R final outputs lrj and Q intermediate products zqj, q = 1, ..., Q,

which are then used as inputs in the second stage. From the second stage S good outputs

ysj, s = 1, ..., S and D bad outputs (yb)dj, d = 1, ..., D are produced.

Figure 4.2: Two-stage process with undesirable outputs

If undesirable outputs are treated as normal outputs, then a DMU with lower un-

desirable products would be falsely considered as less efficient. In this approach, bad

outputs produced from the second stage are treated as normal inputs to this stage, and

thus, through the optimisation process, the aim is to proportionally decrease inputs to the

second stage and undesirable outputs simultaneously. The first and second stage input-

oriented efficiency scores of the DMUj0 , under the VRS assumption, can be calculated

independently one from another as

max θ1j0 =

∑︁Q
q=1 γ

A
q zqj0 +

∑︁R
r=1 µrlrj0 + uA∑︁P

p=1 vpxpj0

s.t. θ1j ≤ 1, j = 1, ..., N (4.1a)

vp, µr, γ
A
q > 0,

uA free in sign

max θ2j0 =

∑︁S
s=1 ηsysj0 + uB∑︁Q

q=1 γ
B
q zqj0 +

∑︁D
d=1 ξtybdj0

s.t. θ2j ≤ 1, j = 1, ..., N (4.1b)

γB
q , ξt, ηs > 0,

uB free in sign.

In order to link the two stages, as in Kao & Hwang (2008), it is assumed that for the

multipliers of the intermediate products, γA
q = γB

q = γq.

Then for a DMUj, the decomposition weights w1j, w2j can be defined as the proportion

of inputs consumed by each stage, as
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w1j =

∑︁P
p=1 vpxpj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj +
∑︁D

d=1 ξd(yb)dj
, (4.2)

w2j =

∑︁Q
q=1 γqzqj +

∑︁D
d=1 ξd(yb)dj∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj +
∑︁D

d=1 ξd(yb)dj
. (4.3)

Treating intermediate products as outputs and inputs at the same time, the overall

efficiency of DMUj under VRS, is defined and additively decomposed as

θ0j = w1jθ
1
j + w2jθ

2
j (4.4)

=

∑︁Q
q=1 γqzqj +

∑︁R
r=1 µrlrj + uA +

∑︁S
s=1 ηsysj + uB∑︁P

p=1 vpxpj +
∑︁Q

q=1 γqzqj +
∑︁D

d=1 ξd(yb)dj
, (4.5)

where for the decomposition weights, it holds that w1j + w2j = 1, j = 1, 2, ..., N.

The linearised model for the overall efficiency score is provided below:

θ0∗j0 = max

Q∑︂
q=1

γ′
qzqj0 +

R∑︂
r=1

µ′
rlrj0 + u1 +

S∑︂
s=1

η′sysj0 + u2

s.t.
P∑︂

p=1

v′pxpj0 +

Q∑︂
q=1

γ′
qzqj0 +

D∑︂
d=1

ξ′d(yb)dj0 = 1,

Q∑︂
q=1

γ′
qzqj +

R∑︂
r=1

µ′
rlrj −

P∑︂
p=1

v′pxpj + u1 ≤ 0, j = 1, ..., N (4.6)

S∑︂
s=1

η′sysj −
Q∑︂

q=1

γ′
qzqj −

D∑︂
d=1

ξ′d(yb)dj + u2 ≤ 0, j = 1, ..., N

(c0 − 1)
P∑︂

p=1

v′pxpj0 + c0

Q∑︂
q=1

γ′
qzqj0 + c0

D∑︂
d=1

ξ′d(yb)dj0 ≤ 0

c0

P∑︂
p=1

v′pxpj0 + (c0 − 1)

Q∑︂
q=1

γ′
qzqj0 + (c0 − 1)

D∑︂
d=1

ξ′d(yb)dj0 ≤ 0

v′p, γ
′
r, µ

′
q, η

′
s, ξ

′
d > 0,

u1, u2 free in sign.

where the last two constraints in model (4.6) are the linearised equivalents of w1j0 , w2j0 ≥

c0, for some chosen c0 ∈ (0, 0.5]. As it was discussed in Remark 3.2.1, these two constraints

are included to ensure that model (4.6) will not assign zero decomposition weights to any

stage. Regarding the choice of the value c0, further investigation and discussion is provided
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in the following Section. The primal model of model (4.6) and the variable-constraint

correspondences between the primal and the dual are provided in the Appendix.

Let (θ0∗j0 , v
′∗
p , γ

′∗
q , µ

′∗
l , η

′∗
s , ξ

′∗
d ) be the optimal solution to model (4.6). The optimal de-

composition weights w∗
1j0

and w∗
2j0

for DMUj0 are calculated substituting the optimal

multipliers into relations (4.2) and (4.3).

If stage one is considered as the priority stage, then, the first stage efficiency of DMUj0

is calculated by maximising θ1pj0 , while maintaining optimal overall efficiency θ0∗j0 . The linear

model for obtaining the first stage priority score is as follows:

θ1p∗j0
= max

Q∑︂
q=1

γ′
qzqj0 +

R∑︂
r=1

µ′
rlrj0 + u1

s.t.
P∑︂

p=1

v′pxpj0 = 1

Q∑︂
q=1

γ′
qzqj +

R∑︂
r=1

µ′
rlrj + u1 −

P∑︂
p=1

v′pxpj ≤ 0, j = 1, ..., N (4.7)

S∑︂
s=1

η′sysj + u2 −
Q∑︂

q=1

γ′
qzqj −

D∑︂
d=1

ξ′d(yb)dj0 ≤ 0, j = 1, ..., N

(1− θ0∗j0 )

Q∑︂
q=1

γ′
qzqj0 − θ0∗j0

D∑︂
d=1

ξ′d(yb)dj0 +
R∑︂

r=1

µ′
rlrj0 +

S∑︂
s=1

η′sysj0 + u1 + u2 = θ0∗j0

v′p, γ
′
r, µ

′
q, ξ

′
d, η

′
s > 0,

u1, u2 free in sign.

The second stage efficiency score of DMUj0 is obtained by substituting the optimal de-

composition weights and θ1p∗j0
in equation (3.25).
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Similarly, if stage two is considered as the priority stage, then

θ2p∗j0
= max

S∑︂
s=1

η′sysj0 + u2

s.t.

Q∑︂
q=1

γ′
qzqj0 +

D∑︂
d=1

ξ′d(yb)dj0 = 1

Q∑︂
q=1

γ′
qzqj +

R∑︂
r=1

µ′
rlrj0 + u1 −

P∑︂
p=1

v′pxpj ≤ 0, j = 1, ..., N (4.8)

S∑︂
s=1

η′sysj + u2 −
Q∑︂

q=1

γ′
qzqj −

D∑︂
d=1

ξ′d(yb)dj ≤ 0, j = 1, ..., N

Q∑︂
q=1

γ′
qzqj0 +

R∑︂
r=1

µ′
rlrj0 + u1 +

S∑︂
s=1

η′sysj0 + u2 − θ0∗j0

P∑︂
p=1

v′pxpj0 = θ0∗j0

v′p, γ
′
r, µ

′
q, ξ

′
d, η

′
s > 0,

u1, u2 free in sign.

Then, using the optimal decomposition weights w∗
1j0

and w∗
2j0

and the second stage opti-

mum efficiency level, the efficiency of the first stage is calculated through equation (3.27).

4.5 Efficiency analysis

In the model described above, the first stage measures the performance of European coun-

tries in building and maintaining their railway infrastructure and rolling stock, while the

second stage efficiency measures their performance in providing passenger and freight ser-

vices considering the less possible environmental noise impact on humans. The efficiency

of the whole process and the two sub-processes is evaluated using the additive decomposi-

tion methodology elaborated in the previous section while assuming that railways operate

under the VRS technology.

If the last two constraints in model (4.6) are omitted, through the optimisation pro-

cess, for five countries, namely France, Lithuania, Poland, Spain and the UK, the optimal

decomposition weights take values w∗
1 = 0 and w∗

2 = 1, whereas for Portugal and Switzer-

land it results that w∗
1 = 1 and w∗

2 = 0. That means that for these countries, one of the

two stages’ contribution to the overall process is ignored. Therefore, the decomposition

weight restrictions are incorporated into model (4.6). In order to investigate above what

level the decomposition weights should be restricted to lie, a sensitivity analysis of the
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overall efficiency scores to the decomposition weight restrictions was conducted. Then,

efficiency scores were calculated for the chosen decomposition weights’ threshold.

4.5.1 Sensitivity Analysis

Sensitivity analysis of the overall efficiency scores was performed for different given val-

ues of the lowest allowed level c0 of decomposition weights, i.e. wij, w2j ≥ c0, c0 ∈ S,

S = {0.01, 0.02, 0.03, ..., 0.48, 0.49, 0.5}. Results reveal that although for some countries

overall efficiency has a very slight downward tendency as c0 increases, for the majority of

countries, overall efficiency scores and optimal decomposition weights are generally stable.

Furthermore, for all countries, stage efficiency scores are stable.

Efficiency scores start to be more sensitive to changes of c0, as c0 exceeds some thresh-

old, and they are completely destabilised when c0 = 0.5. For c0 = 0.5, Austria and the

Netherlands show infeasibility in the stage efficiency models.

Rankings based on the overall efficiency score seem not to be significantly affected

for most of the countries, even for large values of c0. Portugal, Switzerland, Latvia,

UK, Bulgaria and Finland are the most sensitive to weight restrictions. Estonia and

Germany are overall efficient for all c0 ∈ S, and Poland is overall efficient for all c0 ∈

S\{0.47, 0.48, 0.49, 0.5}. For space-saving, rankings of the countries for half of the c0 val-

ues - with c0 step change being 0.02 - are given in Table 4.5.

Portugal and Switzerland are the only countries in the set, for which, for all the differ-

ent weight restrictions, efficiency decomposition is not unique and changing the priority

stage yields different stage efficiency scores. As c0 increases and restrictions on the decom-

position weights become more severe, the optimisation process is forced to assign greater

optimal values to some decomposition weights. Therefore, the optimal values of the de-

composition weights tend to coincide with the values of c0 and 1−c0 for a growing number

of countries. In this analysis, this upturn starts happening for c0 ≥ 0.14. Therefore, above

that threshold, for some countries the relative contribution of each stage to the overall

process is forced to change. However, for most countries, this does not affect their rank-

ings significantly. Nevertheless, as c0 increases, the number of countries for which it is

not possible to have a unique efficiency decomposition rises. For example, four countries

do not have unique efficiency decomposition for c0 = 0.2, and ten countries for c0=0.5.

For the cases when decomposition weight restrictions are needed, there is no rule for

choosing a value for c0 and the choice depends on what the managerial preferences are.
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Table 4.5: Overall efficiency rankings for different decomposition weight restrictions

c0

DMU
A
us
tr
ia

B
el
gi
um

B
ul
ga
ri
a

C
ro
at
ia

C
ze
ch

R
ep
.

D
en
m
ar
k

E
st
on
ia

F
in
la
nd

Fr
an
ce

G
er
m
an
y

Ir
el
an
d

L
at
vi
a

L
it
hu
an
ia

N
et
he
rl
.

P
ol
an
d

P
or
tu
ga
l

Sl
ov
en
ia

Sp
ai
n

Sw
ed
en

U
K

N
or
w
ay

Sw
it
ze
r.

0.02 21 22 15 17 16 12 1 14 4 1 13 8 6 19 1 10 18 5 11 7 20 9
0.04 21 22 15 17 16 12 1 14 4 1 13 7 6 19 1 10 18 5 11 8 20 9
0.06 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.08 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.10 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.12 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.14 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.16 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.18 21 22 15 17 16 11 1 14 4 1 13 5 7 19 1 12 18 6 10 8 20 9
0.20 21 22 15 17 16 11 1 14 5 1 13 4 7 19 1 12 18 6 10 8 20 9
0.22 21 22 15 17 16 11 1 14 5 1 13 4 7 19 1 12 18 6 10 8 20 9
0.24 21 22 15 17 16 11 1 14 5 1 13 4 7 19 1 12 18 6 9 8 20 10
0.26 21 22 15 17 16 11 1 14 5 1 12 4 7 19 1 13 18 6 9 8 20 10
0.28 21 22 15 17 16 11 1 14 5 1 12 4 7 19 1 13 18 6 9 8 20 10
0.30 21 22 15 17 16 10 1 14 5 1 12 4 7 19 1 13 18 6 9 8 20 11
0.32 21 22 14 17 16 10 1 13 5 1 12 4 7 19 1 15 18 6 8 9 20 11
0.34 21 22 14 17 16 10 1 13 5 1 11 4 7 19 1 15 18 6 8 9 20 12
0.36 21 22 13 17 16 10 1 12 5 1 11 4 7 19 1 15 18 6 8 9 20 14
0.38 21 22 13 17 16 10 1 12 5 1 11 4 7 19 1 15 18 6 8 9 20 14
0.39 21 22 13 17 16 9 1 12 5 1 11 4 8 19 1 15 18 6 7 10 20 14
0.40 21 22 13 17 16 9 1 12 5 1 11 4 8 19 1 15 18 6 7 10 20 14
0.42 21 22 13 16 14 9 1 12 5 1 11 4 8 19 1 17 18 6 7 10 20 15
0.44 21 22 13 15 14 9 1 12 5 1 11 4 8 19 1 17 18 6 7 10 20 16
0.46 21 22 13 15 14 9 1 12 5 1 11 4 8 19 1 17 18 6 7 10 20 16
0.48 21 22 12 15 14 9 1 10 5 1 13 4 8 19 3 17 18 6 7 11 20 16
0.50 21 22 11 15 14 9 1 10 5 1 13 3 7 19 4 17 18 6 8 12 20 16

Large values of c0 may be too restrictive, impacting on the efficiency scores and sometimes

resulting in infeasibility problems. Therefore, there is a range of smaller c0 values for which

efficiency scores and optimal decomposition weight values are not significantly affected.

That means that for this range of c0 values, efficiency scores show low volatility.

In order to deduce the sensitivity threshold, a volatility measure of the overall efficiency

scores was evaluated as follows3:

1. We calculate the overall efficiency scores of each DMUj, j = 1, ..., N, for all c0 ∈ S

2. For a small r ∈ Z+ we calculate the volatility index as the sum of the standard devia-

tions of the overall efficiency scores of each DMU, i.e. Vc0 =
∑︁N

j=1 sd{θ0∗j,c0−r, ..., θ
0∗
j,c0+r}

3. We choose the range of c0 values which minimise Vc0 .

Here, the above algorithm is repeated for r = 1, 2, 3, 4. Lower values of the volatility

index indicate greater stability of the efficiency scores. The resulting volatility indices are

presented in Table A2 in the Appendix. As it is shown in Table A2, the volatility index

is low and stable for all c0 ≤ 0.15 for all r = 1, 2, 3, 4. Volatility increases for c0 ≥ 0.19,

3This algorithm is based on the algorithm suggested by Politis et al. (2001) for the selection of
subsample size when applying subsampling bootstrap.
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c0 ≥ 0.18, c0 ≥ 0.17 and c0 ≥ 0.16 for r = 1, 2, 3, 4 respectively. Therefore, c0 = 0.15 is

deduced as an overall sensitivity threshold in this analysis.

However, if c0 is too small, for some DMUs one stage will be assigned a very low

contribution to the overall process. There is a range of c0 values which are not too

restrictive, but also ensure that no stage will be ignored. Table 4.6 shows the overall and

stage efficiency scores, as well as the decomposition weights for the case when c0 = 0.1,

where the exponent p indicates the priority stage. By imposing w1j, w2j ≥ 0.1, we prevent

one of the two stages to undertake the weight of the whole process, and secondly, c0 = 0.1

lies below the defined sensitivity threshold.

4.5.2 Efficiency scores

According to the results, four countries, Estonia, Finland, Germany and Poland are first-

stage efficient. These countries are also efficient in the second stage, except for Finland

which shows a relatively low performance in the second stage. In total, 11 out of 22

countries are efficient in the second stage - without including Switzerland. These coun-

tries constitute half of the sample, which seems to be a great difference to the number

of first-stage efficient countries. However, performing Wilcoxon signed-rank test for the

efficiency scores of the two stages, we fail to reject the null hypothesis that the scores of

the two stages do not differ significantly, for any level of significance. Also, the Spearman

correlation between the stage efficiency scores is zero, indicating that an increase (de-

crease) in one stage’s efficiency score does not imply an increase (decrease) in the other

stage’s score.

Bulgaria, Croatia, Czech Republic, Finland, Portugal, Sweden and Switzerland - con-

sidering the first stage as priority stage - have significantly lower second stage efficiency

score. To investigate whether their lower second stage efficiency is due to the number of

people affected by noise, Lden variable is excluded from the model. In this case, Switzer-

land and the Netherlands show infeasibility when the first stage is considered as the

priority stage. According to the results (see Table A3 in the Appendix for the case when

w1j, w2j ≥ 0.1), overall efficiency scores are lower for all countries except for Estonia and

Germany, which remain overall efficient. However, it is not possible to extract a safe

conclusion about whether this happens because countries perform relatively well in terms

of the number of people affected by railway noise or because the reduction of the model

dimensions results in increasing its discrimination power. Similarly, for the majority of
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Table 4.6: Efficiency scores and optimal decomposition weights, when w1j, w2j ≥ 0.1

DMU θ0∗ w∗
1j w∗

2j θ1p∗ θ2∗ θ1∗ θ2p∗

1 Austria 0.4336 0.6219 0.3781 0.2748 0.6949 0.2748 0.6949
2 Belgium 0.3974 0.6892 0.3108 0.3332 0.5397 0.3332 0.5397
3 Bulgaria 0.7038 0.6206 0.3794 0.9088 0.3685 0.9088 0.3685
4 Croatia 0.6653 0.7025 0.2975 0.7270 0.5195 0.7270 0.5195
5 Czech Rep. 0.6673 0.6950 0.3050 0.7356 0.5116 0.7356 0.5116
6 Denmark 0.7629 0.5592 0.4408 0.5760 1 0.5760 1
7 Estonia 1 0.4310 0.5690 1 1 1 1
8 Finland 0.7051 0.5351 0.4649 1 0.3657 1 0.3657
9 France 0.9882 0.1000 0.9000 0.8822 1 0.8822 1
10 Germany 1 0.8531 0.1469 1 1 1 1
11 Ireland 0.7313 0.6844 0.3156 0.7373 0.7181 0.7373 0.7181
12 Latvia 0.9773 0.2785 0.7215 0.9186 1 0.9186 1
13 Lithuania 0.9493 0.1000 0.9000 0.4932 1 0.4932 1
14 Netherlands 0.5480 0.8053 0.1947 0.4387 1 0.4387 1
15 Poland 1 0.4198 0.5802 1 1 1 1
16 Portugal 0.7873 0.9000 0.1000 0.8250 0.4480 0.7995 0.6769
17 Slovenia 0.6600 0.8027 0.1973 0.5764 1 0.5764 1
18 Spain 0.9559 0.1000 0.9000 0.5594 1 0.5594 1
19 Sweden 0.8058 0.3903 0.6097 0.8628 0.7692 0.8628 0.7692
20 UK 0.9380 0.1000 0.9000 0.3804 1 0.3804 1
21 Norway 0.4676 0.7176 0.2824 0.4818 0.4317 0.4818 0.4317
22 Switzerland 0.8936 0.9000 0.1000 0.9552 0.3398 0.8818 1

the countries, the second stage efficiency scores are the same or lower than those when

Lden is included in the model. Austria and Belgium are the only countries whose second

stage efficiency increases when Lden variable is omitted.

4.5.3 Policy Implications

Based on the optimal decomposition weights obtained, it is possible to specify which

stage is of the highest relative importance for each country. In other words, the optimal

decomposition weights can be used by the countries included in the data set as guidance

about defining the optimal portion of inputs that they should devote to each stage.

According to the results, 13 out of 22 countries included in the study, namely Portu-

gal, Switzerland, Germany, the Netherlands, Slovenia, Norway, Croatia, Czech Republic,

Belgium, Ireland, Austria and Bulgaria, should give more importance to their assets in-

vestment, operation and maintenance to improve their efficiency, since, for these countries,

the contribution of the first stage to the overall process is higher.

On the other hand, railway industries in France, Spain, the UK and Lithuania, should

focus their operation management almost completely on the services they provide, aiming
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to optimise their freight and passenger carriage, while reducing its noise effects on the

environment. Railway operation in Latvia and Sweden should also be more services-

related, while Denmark, Finland, Estonia and Poland should give approximately the

same balance in their assets and services operation.

Considering the interoperability framework in which European railways operate, to

limit the railway noise pollution problem and improve environmental efficiency, changes

and measures should be planned and adopted in a cross-country context. Abatement of

the railway noise sources in a single country would not resolve the problem and could

even harm the competitiveness of railways against other means of transport. Therefore,

the common standards set by the European Commission through the Directives can help

in this direction. Cooperation and exchange of expertise among the European countries

could further foster efficiency improvement of the railway sector.

Furthermore, in reducing railway noise, countries should also focus both on the good

maintenance of rail tracks and the increase of the number of wagons that are compliant

with the EC standards to achieve the maximum possible noise reduction.

The multiplier model, which was formulated in the previous sections, is used to cal-

culate the efficiency scores of DMUs. In NDEA, it is also possible to provide targets for

the input/output variables of each DMU by solving the envelopment form of the model,

which is based on the PPS. The envelopment equivalent of model (4.6) is provided in the

Appendix (model(1)). However, because of the use of the decomposition weight restric-

tions that affect the efficiency scores, in this case it is not possible to get the frontier

projections even with the envelopment model. Therefore, further study needs to be done

on how to get the frontier projections of the DMUs in the cases when the decomposition

weight restrictions are necessary.

4.6 Conclusion

Railways have unarguably many advantages, such as higher safety, less energy consump-

tion, less pollution and less traffic congestion, compared to other means of transport.

While recognising that the development and maintenance of railways should be given

priority, it is vital to take into consideration the impact that railways have on the envi-

ronment in order to be able to mitigate it. Acknowledging that noise pollution is a major

environmental problem caused by railways, this study focused on incorporating it in the

efficiency evaluation of the railway transport process.
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The railway industry is capital-intensive, and its purpose is to optimise its passenger

and freight services. For this reason, the railway transport process was divided into two

stages, assets and services-related. The problem of noise pollution is linked to both stages.

In the asset stage, good maintenance of the rail lines and retrofitting of the rail wagons

with more silent, composite brake technology can mitigate the noise generation. On the

other hand, high-quality railway services should entail the minimisation of the number of

people affected by railway noise. Therefore, both these factors were taken into account

when building the model.

The additive decomposition approach was adjusted to account for intermediate and

undesirable outputs. This allowed us to have a better insight into the railways’ operation,

detect which part of the production process is the main source of inefficiency, and which

stage has the highest relative importance for each country.

The performance of railways in 22 European countries during 2016-2017 was studied

since the railways’ pollution problem seemed to be more significant in this area. The as-

set, services and overall efficiency scores obtained, revealed that there was no significant

difference in the performance of European railways in total, between the two stages. An

interesting result is also that, except for Finland, countries which show efficient perfor-

mance in the asset stage are also efficient in services provision. However, although many

countries seemed to be efficient in the second stage, they got a low asset efficiency score,

indicating that the inverse relationship did not hold.

The overall efficiency rankings were not significantly affected by imposing different con-

straints on the decomposition weights of each stage. Consequently, changing the relative

importance of each stage, in general, did not affect its relative performance significantly.

This research can be extended by using DEA models to study the railway noise pol-

lution problem in different regions other than Europe. Furthermore, a future study could

distinguish between the noise generated by the passenger high-speed trains, and freight

wagons or between the impact that railway noise has inside and outside urban areas.

Finally, another future research may consider the impact of railway noise on wildlife.

A limitation of this study is that due to decomposition weight restrictions that need to

be used to avoid the assignment of zero relative importance in one stage, it is not possible

to obtain the frontier projections, i.e. the targets, for the countries, even when the envel-

opment form of the models is being used. This is an issue of the additive decomposition

algorithm in NDEA that needs to be studied further.

Another limitation is that due to data unavailability, the collected variables refer to
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consecutive years, and this has probably affected the accuracy of the results reported.

Furthermore, due to missing data, some European countries were not included in the

data set. Since DEA provides relative efficiency measurement, the inclusion or omission

of DMUs impacts the efficiency scores of the sample. Therefore, the obtained efficiency

scores can only be indicative of the real noise-pollution picture in European railways, as

the complete data set of European countries would be needed to have a more accurate

efficiency measurement. In most of the cases, the whole population of DMUs is not avail-

able, and the efficient frontier is formulated by the available sample of DMUs. Therefore,

DEA fails to consider any sampling variation, which would in practice affect the efficiency

scores of DMUs.

In general, conventional DEA lacks any consideration of noise in the efficiency measure-

ment process, such as sampling noise, specification or measurement errors. Furthermore,

the distribution of the deviations from the frontier is not examined. Stochastic DEA ap-

proaches have been developed to deal with these shortcomings, and provide a statistical

framework to efficiency measurement. In the following Chapter, the main extensions of

the deterministic DEA are discussed.
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Bootstrapping in DEA

Conventional DEA was developed as a deterministic method of efficiency measurement,

without considering any measurement or specification errors, sample noise or data varia-

tions. Extensions of the deterministic DEA based on axioms from production theory and

statistics or including distributional assumptions have been developed to deal with such

shortcomings.

Extensions of the deterministic DEA have been classified by Olesen & Petersen (2016)

into three main groups that aim to deal with the aforementioned deficiencies of DEA:

(i) approaches that consider sampling noise by treating inefficiencies as random one-side

deviations from the frontier, (ii) approaches that consider random noise - coming from

measurement or specification errors - and sampling noise simultaneously, by considering

random two-sided deviations from the frontier, and (iii) approaches that treat stochastic

inputs/outputs by defining a random PPS.

In the first category, the observed set of DMUs is considered a random sample drawn

independently and uniformly from an underlying population. Therefore, the true efficient

frontier is unknown, and the set of observed inefficiencies is just a random draw from an

unknown distribution. Banker (1993) was the first one that interpreted the DEA scores

as maximum likelihood estimators. The estimation of random inefficiencies is fully non-

parametric since both the structure of the frontier and the error term are specified through

postulates.

In the second direction, the error term of the model consists of both random noise and

random inefficiencies, and the difficulty in these approaches is how to disentangle those

two terms. In the semi-parametric approach introduced by Banker & Thrall (1992)
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the frontier is specified as a monotone and concave function, but no functional form is

assumed. The model residuals consist of a composite term of random noise and random

inefficiency. These two terms are assumed to be independent of each other and the inputs

and are also assumed to come from specific distributional structures. Then, random noise

and random inefficiency estimates can be obtained by maximising the likelihood function

reflecting the presumed structure.

The third group of studies allows for random disturbances in the data, such as mea-

surement errors, and it is mainly based on the theory of chance-constraints introduced

by Charnes & Cooper (1959). In chance-constrained programming (CCP), some of the

coefficients of the LP are random variables following a specific distribution and the ex-

pected loss of the criterion is minimised subject to the requirement that the probability

that any constraint is violated is bounded. Therefore, it can be said that the efficient

frontier envelops the observed DMUs most of the time. Efficiency measures are computed

based on probabilistic comparisons among DMUs and DMUs are no more characterised

as ”efficient” or ”inefficient”, but as ”probably efficient” or ”probably inefficient” (Cooper

et al. 2004, pg. 229). Again, in these approaches, no functional form is required for the

efficient frontier, but parametric assumptions need to be made for the variation of the

input and output variables.

There is a high volume of DEA literature in all three directions. This Chapter only

focuses on approaches related to the first direction that deals with sampling noise. Since

the true frontier is unknown, estimations need to be made based on the observed sample

of DMUs. DEA was proven to be a consistent but biased estimator of the true frontier

and the asymptotic properties of the DEA estimator have been widely studied. Although

results about the asymptotic distribution of the DEA estimator have been extracted,

in the case of multiple inputs and outputs the asymptotic distribution can only be ap-

proximated by applying bootstrapping techniques. Since the observed sample is the only

sample available, it cannot provide direct estimates of the true efficiency scores. The

main assumption in bootstrapping is that the observed sample mimics the underlying

population. Therefore, by generating many bootstrap samples from the observed sample,

we create a bootstrap world that mimics the true world. In bootstrapping, the originally

observed sample takes the role of the population and the bootstrap sample is now consid-

ered the original sample. If bootstrapping is consistent, asymptotically will provide good

approximations of the true efficiencies.

Many DEA studies have focused on the methodological development or the applica-
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tion of bootstrapping techniques. A review of the most influential studies in all three

directions can be found Olesen & Petersen (2016). Simar & Wilson (2015) provided a

discussion that focuses on the main statistical approaches to DEA, such as bootstrapping

techniques and partial frontier approaches. Moradi-Motlagh & Emrouznejad (2022) pro-

vided a bibliometric analysis of the bootstrap DEA literature, as well as developments

on the relevant software, and an extensive overview of the most impactful articles on the

field.

The rest of the Chapter is structured as follows: In Section 5.1, some important

concepts that are being used throughout the Chapter are defined. In Section 5.2, the

underlying data generating process is defined. Next, in Section 5.3, the properties of the

DEA estimator are discussed and the results on its convergence rates are detailed. In

Section 5.4, the main principles of the bootstrapping methodology in the DEA context

are discussed. In Section 5.5, the bias-corrected estimates are provided, and in Section

5.6, the procedure for constructing the confidence interval estimates is explained. In

Section 5.7, the main bootstrap approaches developed in the DEA context are reviewed

and consistency issues are discussed in detail. Some extensions of the use of bootstrap in

hypothesis testing and some example applications of bootstrapping in the DEA literature

are provided in Section 5.8. Finally, in Section 5.9 conclusions are given.

5.1 Preliminaries

In practice, the true PPS and hence, the true efficiency scores are unknown. Based

on an observed sample of DMUs, the DEA estimator is used to approximate the true

efficient frontier. There are two main properties that a well-defined estimator should

have: unbiasedness and consistency. These two properties are defined below.

Let ˆ︁θn be a set of random variables that is used as an estimator of a parameter θ.

The bias of the estimator ˆ︁θ is defined as the difference between the expected value of the

estimator and the the true parameter, i.e.,

Bias(ˆ︁θn) = E(ˆ︁θn)− θ (5.1)

Definition 5.1.1. (unbiasedness) ˆ︁θn is called an unbiased estimator of θ iff E(ˆ︁θn) = θ.

Regarding the second property of consistency, an estimator has to be consistent in

order to give meaningful results, i.e. as the sample size tends to infinity, the estimator
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needs to converge to the true parameter. There are different types of convergence. In

order to define a consistent estimator, first, we need to define two types of convergence of

random variables; convergence in probability and almost sure convergence.

Let Xn, n ∈ N be a sequence of random variables defined on a sample space Ω.

• Xn converges in probability to the random variable X if lim
n→∞

P (|Xn −X| > ϵ) = 0,

∀ϵ > 0, and this type of convergence is denoted as Xn
P→ X.

• Xn converges almost surely to the random variable X if P ( lim
n→∞

|Xn −X| = 0) = 1,

and this type of convergence is denoted as Xn
a.s.→ X.

Also, if Xn
a.s.→ X, then it is implied that Xn

P→ X.

Below, the weak and the strong consistency of an estimator are defined.

Definition 5.1.2. (consistency) ˆ︁θn is a weakly consistent estimator of θ if ˆ︁θn P→ θ.ˆ︁θn is a strongly consistent estimator of θ if ˆ︁θn a.s.→ θ.

Sometimes it may be difficult to prove the convergence of an estimator and obtain its

rate of convergence. Alternatively, common approach of demonstrating the convergence

of an estimator is by proving that the estimator is bounded in probability (stochastically

bounded). It is considered that Xn = Op(cn), if for any ϵ > 0 there exist 0 < M < ∞ and

m, such that for all n > m it holds that P (|Xn| ≥ Mcn) ≤ ϵ. If in the aforementioned

definition it is set that cn = 1, ∀n, then Xn = Op(1) implies that Xn is bounded in

probability.

Definition 5.1.3. (stochastic boundedness) A set of random variables Xn is bounded

in probability if there exist 0 < M < ∞ and m such that for all n > m it holds that

P (Xn ≥ M) ≤ ϵ, for any ϵ > 0.

Note that if Xn = Op(cn) then that means that Xn/cn = Op(1), and therefore we can

say that Xnc
−1
n is bounded in probability.

The rate of convergence represents the rate at which the estimation error decreases as

the sample size increases. The definition of the convergence rate is given below.

Definition 5.1.4. (convergence rate) An estimator ˆ︁θn converges at a rate n−τ , τ > 0

if τ is the largest positive number such that |ˆ︁θn − θ| = Op(n
−τ ).

Finally, another important concept that is mentioned in this chapter is that of the

asymptotic distribution of an estimator.
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Definition 5.1.5. (asymptotic distribution) Let Xn be a sequence of random vari-

ables with distributions FXn . Then, Xn converges in distribution to a random variable X

with distribution FX if lim
n→∞

FXn(x) = FX(x), at all points x at which FX(x) is continuous.

Convergence in distribution in denoted by Xn
D→ X. Note that both almost sure

convergence and convergence in probability imply convergence in distribution.

5.2 The Data Generating Process

Consider a production process where P inputs are consumed to produce S outputs, and

let SN = {(xj, yj)|j = 1, ..., N} be an observed set of DMUs. Below, the input orientation

is considered, but translation to the output orientation is straightforward.

The observed set of DMUs is considered as a sample drawn from a population of DMUs

-with unknown distribution f(x, y)- through a data generating process P = (T, f(·, ·)),

where T is the PPS of the population. Therefore, P is fully characterised by the assump-

tions made about T , the distribution of inputs and outputs f(x, y), and the sampling

process according to which the elements of SN were drawn. The true PPS T and, as a re-

sult, the true efficiency score θ(x, y) = inf{θ|θx ∈ X(y)} are unknown (for the definition

of X(y) see in Section 2.2).

The DGP is founded on the following axioms:

(i) T is a compact convex set

(ii) (x, y) /∈ T if x = 0 and y ≥ 0, i.e. all production requires some inputs

(iii) If (x, y) ∈ T and x′ ≥ x, y′ ≤ y, where x, x′ ∈ Rm, y, y′ ∈ Rr, then (x′, y′) ∈ T , i.e.

inputs and outputs are strongly disposable

(iv) All observations in SN are identically independently distributed (i.i.d.) random

variables in T

(v) θ(x, y|P) is differentiable for all (x, y) ∈ T , i.e. the frontier is smooth (usually,

θ(x, y|P) is assumed to be twice continuously differentiable)

(vi) f(x, y) has support T, is continuous on T , positive close to the boundary and strictly

positive on the boundary of T .

Now, consider a DMUj0 ∈ SN that consumes some inputs xj0 to produce some outputs

yj0 . The DEA estimators applied on the sample SN can be used to provide an estimate
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ˆ︁θ(xj0 , yj0) of θ(xj0 , yj0). More specifically, what is required is an estimation of the distribu-

tion ˆ︁θ(xj0 , yj0)−θ(xj0 , yj0), but with SN being the only sample available, this distribution

cannot be obtained directly.

In the next Section, a review of the main studies on the asymptotic properties of the

CRS and VRS estimators is provided.

5.3 Review on the properties of the DEA estimator

Banker (1993) was among the first researchers to consider DEA as a maximum likelihood

estimator (MLE) of the efficient frontier. Since then, several studies have focused on

investigating the statistical properties of the CRS and VRS DEA estimators in different

dimensions and established their rates of convergence. Below, some of the most influential

studies in the field are discussed.

For the case of one input and multiple outputs, Banker (1993) proved that if the effi-

cient frontier is considered as a monotonically increasing and concave production function

and the one-side deviations from the frontier, i.e. the inefficiencies, are considered to be

distributed independently of the inputs and have a monotonically decreasing density func-

tion, then DEA is a weakly consistent estimator of the true efficient frontier. That means

that as the number of DMUs included in the sample increases, the sample efficiency scores

of DMUs tend to the true efficiency values with some probability. However, he showed

that for finite samples of DMUs, DEA is a biased estimator, and very large samples are

required to achieve a bias that tends to zero.

The convergence rate of an estimator depends on how the difference between the

estimator and the true parameter is measured. For the two-dimensional case, Korostelev

et al. (1995) measured the divergence between the estimator an the true production set as

the Lebesgue measure of their symmetric difference, and proved that DEA is a consistent

estimator with optimal rates of convergence. Kneip et al. (1998) extended the results to

the multi-dimensional case. Assuming the frontier is smooth and under the consistency

requirement that the input-output density is positive close to the frontier and strictly

positive on the frontier, they proved that the convergence rate of the VRS-DEA point

estimator depends on the smoothness of the frontier.

Let ˆ︁θV RS(xj0 , yj0) be the estimator of the true efficiency score θ(xj0 , yj0) of DMUj0 ,

where ˆ︁θV RS(xj0 , yj0) is obtained under the VRS assumption by solving a BCC model (see

Section 2.3.2). For the case when the frontier is twice differentiable, Kneip et al. (1998)
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proved that for the efficiency score estimate of DMUj0 (fixed point (xj0 , yj0)) it holds that

ˆ︁θV RS(xj0 , yj0)− θ(xj0 , yj0) = Op(n
− 2

P+S+1 ), (5.2)

where P and S are the number of inputs and outputs respectively. Note that the PPS

defined by the sample is always a subsample of the population. Therefore, the distance of

the DMU under evaluation from the sample best practice is always lower than its distance

from the true best practice of the population. In other words, the true efficiency score is

always lower than the sample efficiency score. Under the global CRS assumption, Park

et al. (2010) adopting the same methodology as Kneip et al. (1998) proved that DEA

estimator converges at a faster rate, i.e. under the CRS assumption it holds that

ˆ︁θCRS(xj0 , yj0)− θ(xj0 , yj0) = Op(n
− 2

P+S ). (5.3)

In all cases, the rate at which the DEA estimator converges to the true frontier de-

pends on the number of inputs and outputs; as the dimensions of the model increase,

the number of data records should increase exponentially in order to achieve the same

rate of convergence. As an example, consider that the assumptions made in Kneip et al.

(1998) hold (a twice differentiable smooth frontier, positive density function close to the

frontier, VRS) and the single input -single output case with a set of N = 100 DMUs

being available. In this case, the rate of convergence would be 100−2/3 = 0.0464. Consider

now the case of P = 2 inputs and S = 3 outputs. In this case, a sample of N = 100

DMUs would have a much slower rate of convergence 100−2/6 = 0.2154. In order to achieve

the same rate of convergence as in the single input-output case, a sample of N = 10000

DMUs would be needed. Simar & Wilson (2008) provided a more detailed discussion on

the curse of dimensionality of DEA estimators and a comparison with parametric estima-

tors. Those usually have optimal rate of convergence N−1/2, which in the case of multiple

inputs/outputs is faster than that of non-parametric estimators. In cases when the size

of the sample is not possible to be increased, a reduction in the input/output dimensions

is necessary (see Section 2.4 for a reference to some dimension reduction approaches).

For the case of one input and one output, under the VRS assumption, Gijbels et al.

(1999) proved that

N2/3(ˆ︁θV RS(xj0 , yj0)− θ(xj0 , yj0))
D→ FU(·), (5.4)

and derived the analytical form of the distribution F (·). This analytical form depends
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on two constants. Gijbels et al. (1999) defined the estimators of those constants using

the method of moments. This is the only case where the asymptotic distribution can be

used in practice to make inference. Jeong & Park (2006) extended their work to higher

output dimensions. In the general case of multiple inputs and outputs, it is more difficult

to derive a closed expression for the asymptotic distribution of the DEA estimator. For

the multivariate case, Kneip et al. (2008) proved that

N2/P+S+1

(︃ˆ︁θV RS(xj0 , yj0)

θ(xj0 , yj0)

)︃
D→ FM(·), (5.5)

and found that the asymptotic distribution FM(·) is stochastically dominated by a cu-

mulative exponential distribution. However, it is difficult to estimate the distribution’s

parameters and thus, in practice, this result cannot be used for making inference. Park

et al. (2010) extended the asymptotic results to the CRS case, and under the global CRS

assumption they found that the DEA estimator follows an exponential distribution. For

the special case when P = S = 1,

n(ˆ︁θV RS(xj0 , yj0)− θ(xj0 , yj0))
D→ 1− e−λw, (5.6)

for some parameter λ and for all w ≥ 0.

5.4 The bootstrap setting

In practice, except for the bivariate case, the only way to get the sampling distribution

of ˆ︁θ∗(xj0 , yj0) − θ(xj0 , yj0) -or equivalently of
ˆ︁θ∗(xj0

,yj0 )

θ(xj0
,yj0 )

- in higher dimensions is by using

bootstrapping techniques, where ∗ denotes that the estimators are obtained either under

the CRS or the VRS assumption. To simplify the notation, the returns to scale specifica-

tion for the estimated frontier will be omitted from now on, since what is discussed holds

under both the CRS and the VRS assumption.

Bootstrap was first suggested by Efron (1979). Given a random sample Xn = {X1, ...,

Xn} drawn from an unknown probability distribution f, bootstrapping was introduced as

a method to obtain the sampling distribution of a random variable Y (Xn, f) = θ ˆ︁f − θf

based on the observed sample, through simulations. Since the observed sample is the

only sample available, the bootstrap methodology is being used for generating bootstrap

samples from the original sample by repeatedly simulating the data generating process
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(DGP) of the original sample. The main assumption that is made, is that the original

sample mimics the population that it comes from. Therefore, by repeatedly drawing

samples with replacement from the original sample would be like drawing samples from

the population itself. For every bootstrap sample, an estimate ˆ︁Y of the random variable

Y is obtained, and when the number of bootstrap samples becomes large, the sampling

distribution of Y can be approximated. In what follows, the main principles of the

bootstrap methodology within the DEA context are presented and the main bootstrapping

approaches are discussed.

As it was mentioned before, the main assumption in bootstrapping is that the original

sample SN generated through the unknown DGP P , mimics the underlying population

that it comes from. Therefore, a bootstrap sample S∗
N = {(x∗

j , y
∗
j )|j = 1, ..., N} gener-

ated from the original sample SN through a known DGP P̂ = P(Ψ̂, f̂(·, ·)) can be used

to estimate the unknown sampling distribution of ˆ︁θ(xj0 , yj0), i.e. ˆ︁ˆ︁θ (xj0 , yj0) - which is

obtained from a bootstrap sample - is assumed to be an estimate of ˆ︁θ(xj0 , yj0). In other

words, θ̂(xj0 , yj0) is an estimator of θ(xj0 , yj0) obtained from the sample SN through P ,

and ˆ︁ˆ︁θ (xj0 , yj0) is an estimator of θ̂(xj0 , yj0) obtained from the bootstrap sample S∗
N gen-

erated through P̂ . If P̂ is a consistent estimator of P , i.e. P̂ converges to P , for a given

DMUj0 it holds that

(︃ˆ︁ˆ︁θ (xj0 , yj0)− ˆ︁θ(xj0 , yj0)

)︃⃓⃓⃓⃓
P̂ ∼

(︃ˆ︁θ(xj0 , yj0)− θ(xj0 , yj0)

)︃⃓⃓⃓⃓
P , (5.7)

or equivalently,

ˆ︁θ(xj0 , yj0)ˆ︁ˆ︁θ (xj0 , yj0)

⃓⃓⃓⃓
P̂ ∼ θ(xj0 , yj0)ˆ︁θ(xj0 , yj0)

⃓⃓⃓⃓
P . (5.8)

The distributions of the right-hand side in relations (5.7) and (5.8) are unknown, but

Monte Carlo simulations of the left-hand side can provide approximations of them. By

generating a sufficiently large number B of bootstrap samples and applying the DEA

estimator to each one of those, a set of B estimates ˆ︁ˆ︁θ (xj0 , yj0) can be obtained1. These

can be used to derive the distribution of the left-hand side in relations (5.7) and (5.8).

Given that ˆ︁P is a consistent estimator of P , as B,N → ∞, the approximation of the right

1Normally, the notation that would be used for a bootstrap estimate would be ˆ︁θ∗(xj0 , yj0). Here,
the double-hat notation is being used instead of a star to denote the bootstrap estimates to avoid any
confusion with the notation used in the previous chapters, where star denotes the optimal value of a
parameter. However, the star notation is used as usual for the bootstrap sample.
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hand side becomes accurate. Later in this Chapter, the consistency of P will be discussed

in more detail.

5.5 Bias-corrected estimates

As it was mentioned before, DEA was proved to be a biased estimator of the true frontier.

To obtain the bias of the DEA estimator, its expected value E(ˆ︁θ) needs to be calculated.

This value is unknown, but it can be obtained empirically, by calculating the mean effi-

ciency of the bootstrap samples. Therefore, the bias of the DEA estimator can be obtained

as

ˆ︁BiasB(ˆ︁θ(xj0 , yj0)) =
1

B

B∑︂
b=1

ˆ︁ˆ︁θ b(xj0 , yj0)− ˆ︁θ(xj0 , yj0) (5.9)

And the bias-corrected estimator will be

ˆ︁θbc(xj0 , yj0) =
ˆ︁θ((xj0 , yj0)− ˆ︁BiasB(ˆ︁θ(xj0 , yj0))

= 2ˆ︁θ(xj0 , yj0)−
1

B

B∑︂
b=1

ˆ︁ˆ︁θ b(xj0 , yj0). (5.10)

An estimate of the variance of ˆ︁θ(xj0 , yj0) can be obtained as the variance of the boot-

strap samples as

ˆ︁σ2 =
1

B

B∑︂
b=1

(︃ˆ︁ˆ︁θ b(xj0 , yj0)−
1

B

B∑︂
b=1

ˆ︁ˆ︁θ b(xj0 , yj0)

)︃2

(5.11)

Therefore, if the last term in relation 5.10 is ignored, the variance of the bias-corrected

estimator ˆ︁θbc(xj0 , yj0) is approximately 4ˆ︁σ2.

As it was noted by Efron (1993), the bias correction introduces extra noise into the

estimation. Therefore, Efron (1993) suggested that the bias-corrected estimators should

not be used if

|ˆ︁BiasB(ˆ︁θ(xj0 , yj0))|ˆ︁σ ≤ 1

4
. (5.12)
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5.6 Confidence interval estimates

Construction of the confidence interval estimates for the true efficiency scores is of inter-

est. The approach suggested by Simar & Wilson (1998) for constructing the confidence

intervals, uses the bias-corrected estimations. However, as it was mentioned in the previ-

ous section, bias correction introduces extra noise into the estimation process. Simar &

Wilson (1999) suggested an approach for constructing the confidence interval estimates

without using the bias estimations.

For a reason related to the boundary constraints that will be discussed in the next

Section, in some cases, instead of estimating θ it is preferred to use the Shephard (1970)

distance functions. Let δ(x, y) = 1
θ(x,y)

denote the input distance function, and letˆ︁δ(x, y) = 1ˆ︁θ(x,y) be the input distance function estimate of δ(x, y). Then, for a confidence

level a ∈ (0, 1) the a-th quantiles ca/2, c1−a/2 of the sampling distribution of ˆ︁δ(x, y)−δ(x, y)

would be obtained by

P (ca/2 ≤ ˆ︁δ(x, y)− δ(x, y) ≤ c1−a/2) = 1− a. (5.13)

However the distribution ˆ︁δ(x, y)− δ(x, y) is unknown and therefore, the empirical distri-

bution ˆ︁ˆ︁δ (x, y)− ˆ︁δ(x, y) will be used to estimate the quantiles, i.e.

P (ˆ︁ca/2 ≤ ˆ︁ˆ︁δ (x, y)− ˆ︁δ(x, y) ≤ ˆ︁c1−a/2|SN) = 1− a. (5.14)

The quantiles can be obtained by sorting the values ˆ︁ˆ︁δ (x, y) − ˆ︁δ(x, y) in ascending order

and then setting ca/2,m equal to the first value that exceeds (a/2)100% of the observations

and c1−a/2,m equal to the value that is less than (1− a/2)100% of the observations.

Then, δ(x, y) will lie within the confidence interval

[ˆ︁δ(x, y)− ˆ︁c1−a/2, ˆ︁δ(x, y)− ˆ︁ca/2], (5.15)

and therefore the (1− a)100% confidence interval estimate for θ(x, y) will be

[︃
1ˆ︁δ(x, y)− ˆ︁ca/2 , 1ˆ︁δ(x, y)− ˆ︁c1−a/2

]︃
. (5.16)
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5.7 Some bootstrap approaches and consistency is-

sues

As it was mentioned in Section 5.4, in order for the relations (5.7) or (5.8) to hold, it is

necessary that P̂ is a consistent estimator of P . The simplest way to generate a bootstrap

sample is by drawing with replacement from the original sample, a bootstrap sample

of the same size. This is known as näıve bootstrap. However, it is proven that näıve

bootstrapping does not yield consistent boundary estimations (see Bickel & Freedman

(1981, pg. 1210), counter-example 2). Because the DEA efficiency score is bounded (0 ≤

θ ≤ 1 in the input orientation and θ ≥ 1 in the output orientation) it follows that the

DEA estimates obtained with näıve bootstrapping are inconsistent close to the boundary.

To further explain this, note that the true PPS always includes the PPS defined by

the sample, i.e. Ψ̂ ⊂ Ψ. That implies that for a DMUj0 , the true efficiency score is always

lower than the sample efficiency score, i.e. θ(xj0 , yj0) <
ˆ︁θ(xj0 , yj0). Therefore, a consistent

P should preserve the same relationship between the sample efficiency score and the

bootstrap efficiency score, i.e. it should hold that ˆ︁θ(xj0 , yj0) < ˆ︁ˆ︁θ (xj0 , yj0). However, in

näıve bootstrapping, the bootstrap estimate will equal with the sample estimate with

non-zero probability, whereas the probability that the sample estimate equals with the

true parameter is zero.

Different bootstrap methodologies have been developed to overcome the inconsistency

issue of the näıve bootstrapping. In the following subsections, the main bootstrap ap-

proaches within the DEA framework and how they can provide consistent estimates are

discussed.

Consider a sample SN = {(xj, yj), j = 1, ..., N} which is considered as N realisations

of the i.i.d. random input and output variables (X, Y ) ∈ RP+S
+ on the convex PPS ˆ︁T , and

let ˆ︁θj ≡ ˆ︁θ(xj, yj), j = 1, ..., N denote the sample efficiency scores obtained by applying a

DEA estimator.

First, due to the radial nature of the Farrell’s efficiency measure, it is more intu-

itive that the inputs (in the input orientation) of the Cartesian coordinates (xj, yj), j =

1, ..., N are transformed into polar coordinates, i.e. a point (x, y) is transformed into

(ω, η, y), where (ω, η) are the polar coordinates of x ∈ RP
+, P ≥ 2. The modulus ω =√︁

x2
1 + ...+ x2

P ∈ R+ denotes the distance of vector x from the origin and each element

i of the vector η ∈ [0, π
2
]P−1 is calculated as ηi = arctan(xi+1

x1
), i = 1, ..., P − 1, x1 > 0, or

ηi =
π
2
if x1 = 0, and denotes the angle of ω to the axes defined by the inputs.
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The transformation into polar coordinates will also be reflected onto the distribution

function. After the transformation to the polar coordinates, the DGP will now be char-

acterised by the density function f(ω, η, y). Using the Bayes’ law, this density function

can be decomposed into

f(ω, η, y) = f(ω|η, y)f(η|y)f(y). (5.17)

From the above decomposition it can be seen that decision is made on the output levels

first, then, based on the output levels, the input mix η is decided and finally the amount

of input levels is set.

The efficiency score can also be defined with respect to the polar coordinates. Let

xδ(y) = θ(x, y)x be the efficient level given the outputs and a specific input mix, and the

modulus of the efficient projection is ω(xδ(y)) = inf{ω ∈ R+|f(ω|y, η) > 0}. Therefore,

the Farrell efficiency score is defined as

θ(x, y) =
ω(xδ(y))

ω(x)
. (5.18)

In terms of the density function of θ(x, y), from relation (5.18) the density f(ω|η, y) with

support on [ω(xδ(y)),∞] results in the density f(θ|η, y) on [0, 1]. However, the support of

the new density function is bounded from both sides, and as it was previously mentioned,

boundary estimations may be problematic. In this case, due to the boundary in zero,

it may happen that the resulting lower bounds of the confidence interval estimates are

negative. Using the Shephard (1970) input distance function δ(x, y) = 1
θ(x,y)

instead, the

density f(δ|y, η) has now support on [1,∞] which is only bounded from below. Therefore,

the estimation of f(δ, y, η) will now be based on the sample SN,ˆ︁δ = {(ˆ︁δj, ηj, yj)|j =

1, ..., N}.

5.7.1 A homogeneous non-smooth bootstrap approach

In the homogeneous bootstrap, it is assumed that the distribution of inefficiencies is

homogeneous among the different DMUs. Therefore, it is implied that

f(δ|y, η) = f(δ), (5.19)

M. Michali, PhD Thesis, Aston University 2022 115



BOOTSTRAPPING IN DEA

i.e. it is assumed that the density distribution of the length of the input vector is inde-

pendent from the decision on the input mix that is going into the production. As it will

be further discussed below, although in practice this assumption is very convenient- and

even necessary in most of the cases when DMU-specific distributions are not available- it

is a quite restrictive one.

From the axiom (vi) it is implied that f(ω|η, y) is strictly positive on the boundary,

i.e. f(ω(xe(y))|η, y) > 0. In most of the cases, this is simply considered as a regularity

condition. However, Olesen & Petersen (2016) noted that this condition does not always

hold. They brought the example of some bank branches, which they all use the same

amount of an input and where the modulus ω follows a normal distribution which is trun-

cated to an interval the end points of which depend on the talent of the bank manager.

They showed that the management talent affects the support of the inefficiency distri-

bution, and as a result, not every DMU has a positive probability to reach the efficient

frontier. Making the assumption that the distribution of inefficiencies is homogeneous

across DMUs may partially overcome the issue - as it puts positive probability mass on

the frontier for all DMUs, but at the cost of ignoring the management talent variable.

As an alternative, Olesen & Petersen (2016) suggested conditioning the distribution of

inefficiencies on an environmental variable that captures the management talent, but as

they noted, measuring a management talent variable is very difficult in practice. In terms

of the incorporation of environmental variables in the production process, the consider-

ation of environmental factors in the efficiency measurement involves a semi-parametric

two stage procedure introduced by Simar & Wilson (2007).

Consider now the original sample SN , and let ˆ︁f(δ) be the empirical distribution of the

inverse efficiency scores ˆ︁δj, j = 1, ..., N, based on the sample SN,ˆ︁δ. A bootstrap sample

S∗
N = {(x∗

j , y
∗
j )|j = 1, ..., N} can be obtained through the two following steps:

1. Each observation (xj, yj) ∈ SN is first projected to the efficient frontier ∂ ˆ︁X(y) that

is estimated by the sample. Therefore, the projected points will be (ˆ︁δ−1
j xj, yj), j =

1, ..., N.

2. Each efficient point is projected back by a value ˆ︁ˆ︁δ j, where ˆ︁ˆ︁δ j, j = 1, ..., N are ran-

dom draws from the empirical distribution ˆ︁f(δ). This last projection away from the

frontier results to the points (ˆ︁ˆ︁δ j
ˆ︁δ−1
j xj, yj) in Cartesian coordianates that formulate

the bootstrap sample S∗
N .

Therefore, the bootstrap sample is defined as S∗
N = {(x∗

j , y
∗
j )|j = 1, ..., N}, where x∗

j =
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ˆ︁ˆ︁δ j
ˆ︁δ−1
j xj, j = 1, ..., N. By repeating the above process B >> 0 times, B bootstrap samples

can be obtained and used to get the distribution of ˆ︁δ(xj0 , yj0)− ˆ︁ˆ︁δ (xj0 , yj0) or
ˆ︁θ(xj0 , yj0)−ˆ︁ˆ︁θ (xj0 , yj0).

However, in näıve bootstrapping, the bootstrap inverse efficiency scores ˆ︁ˆ︁δ are drawn

from the empirical distribution ˆ︁f(δ), which puts probability mass 1/N at each ˆ︁δ. Let DN

denote the sample of inverse efficiency estimates ˆ︁δ obtained by applying a DEA estimator

to the sample SN . Then, in näıve bootstrap, ˆ︁f(δ) is defined as

ˆ︁f(δ) =
⎧⎪⎨⎪⎩1/N, if δ ∈ DN

0, otherwise.

(5.20)

Therefore, if the random draws in step 2 are done with replacement, the probability of

selecting a specific ˆ︁δj0 ≡ ˆ︁δ(xj0 , yj0) in a draw is 1/N, and the probability of not selectingˆ︁δj0 is 1− 1/N. When the process is repeated N times to obtain the bootstrap sample S∗
N ,

the probability of not drawing ˆ︁δj0 is (1− 1/N)N . Thus, the probability of selecting ˆ︁δj0 is

1− (1− 1/N)N . Therefore, asymptotically,

lim
N→∞

P (ˆ︁ˆ︁δ j0 =
ˆ︁δj0) = lim

N→∞

[︁
1−

(︁
1− 1

N

)︁N]︁
= 1− e−1 ≈ 0.632. (5.21)

However, from axiom (vi) it is assumed that the true density function f(δ) is continuous,

and therefore, the true probability that P (ˆ︁δj0 = δj0) = 0, which explains why the näıve

bootstrap is inconsistent.

Smoothing of the empirical distribution function or the use of subsampling techniques

have been proven to overcome the issue discussed above and to give consistent estimations

of the production frontier. In the following Sections, these approaches are reviewed.

5.7.2 Bootstrap with smoothing

The first study that applied a bootstrap technique to approximate the distribution of the

DEA estimator under the VRS assumption, was by Simar & Wilson (1998). To overcome

the inconsistency problem of the näıve bootstrap discussed above, Simar & Wilson (1998)

introduced a homogeneous smooth bootstrap. Although the homogeneity assumption is

restrictive, this method can give good estimations even with a relatively small data set.

Later, Simar & Wilson (2000) suggested a smooth bootstrap that was not based on the
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homogeneity assumption. However, due to the high computational burden of the last

approach, the homogeneous bootstrap is the most often used one. Next, both approaches

are discussed.

In smooth bootstrap, the random draws ˆ︁ˆ︁δ j are generated from a smooth version ofˆ︁f(δ|y, η). Under the homogeneity assumption, a smooth density function ˆ︁fh(δ) can be

obtained by smoothing the empirical density function using a kernel density estimation

as follows: ˆ︁fh(δ) = 1

Nh

N∑︂
j=1

K
(︂δ − ˆ︁δj

h

)︂
, (5.22)

whereK(·) denotes a symmetric kernel density function with zero mean, i.e.
∫︁∞
−∞K(δ)dδ =

1, K(−δ) = K(δ) and
∫︁∞
−∞ δK(δ)dδ = 0, and h is a smoothing parameter. More specif-

ically, in a frequency histogram determined by the sample, h is considered as the width

of the histogram bins. The length of this histogram will be equal to Nh. Then, ˆ︁fh(δ) can
be considered as the average of N density functions, whose domain has been stretched by

a value h (amount of variation of the N densities) and then centred around the observed

sample of ˆ︁δj.
However, ˆ︁fh(δ) does not take into account the boundary condition that δ ≥ 1, and

therefore, there is a positive probability that some of the random draws ˆ︁ˆ︁δ j, j = 1, ..., N

are less than one, although the support of the true density function f(δ) is [1,∞). A

solution to this could be to obtain the estimate ˆ︁fh(δ) ignoring the boundary conditions,

and then set ˆ︁fh(δ) = 0 for all δ < 1. However, in that case, the resulting density function

estimate ˆ︁fh(δ) would no more add to unity.

Therefore, to overcome this inconsistency caused by the boundary condition, kernel

smoothing can be used together with reflection techniques (Silverman 1986). A reflection

around a point x0 ∈ R is a function rx0 : R → R given by

rx0(x) = 2x0 − x. (5.23)

In this case, the observed efficiencies ˆ︁δj, j = 1..., N need to be reflected around the extreme

point given by the boundary condition, i.e. around x0 = 1. Therefore, we get N reflected

efficiency estimates 2 − ˆ︁δj, j = 1, ..., N. If DN is the original sample of inverse efficiency

estimates, the reflection results in the augmented set D2N = DN ⊔ {2 − ˆ︁δj|j = 1, ..., N},

where ⊔ denotes the disjoint union of two sets. That means if {x1, ..., xn} and {y1, ..., yn}

are two sets, their disjoint union is given as {x1, ..., xn, y1, ..., yn}. The density of the
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augmented set D2N is obtained using the kernel density estimator given in 5.22, which in

this case will take the form

ˆ︁gh(δ) = 1

2Nh

N∑︂
j=1

[︃
K

(︃
δ − ˆ︁δj
h

)︃
+K

(︃
δ − (2− ˆ︁δj)

h

)︃]︃
. (5.24)

Then, ˆ︁fh(δ) is defined as the truncated ˆ︁gh as follows:

ˆ︁fh(δ) =
⎧⎪⎨⎪⎩2ˆ︁gh(δ), if δ ≥ 1,

0, otherwise.

(5.25)

Now, ˆ︁fh(δ) adds to unity and has support over [1,∞).

Usually, the Gaussian kernel density function is being used. However as noted by Simar

& Wilson (2008), the choice of the scaling parameter h is of more importance. Different

rules for choosing h exist in the literature. One of the methods discussed in Silverman

(1986), suggests choosing the value of h that minimises the approximate mean integrated

square error (MISE), where MISEˆ︁g(h) = E
[︂ ∫︁

(gh(δ) − ˆ︁gh(δ))2dδ]︂. If a Gaussian kernel

function is being used, minimising the MISE results in

h = 1.06 min (ˆ︁σ, ˆ︁R/1.34)N−1/5, (5.26)

where ˆ︁σ and ˆ︁R are the estimated standard deviation and interquartile range, respectively,

of ˆ︁δj, j = 1, ..., N.

If ˆ︁fh(δ) is also assumed to be a normal density function, then the optimal value of h

becomes

h = 1.06ˆ︁σN−1/5. (5.27)

More rules and further discussion on the choice of the optimal smoothing parameter can

be found in Scott (2015).

The inconsistency issue of the homogeneous smooth bootstrap and the application of

the reflection technique is further explained through the following illustrative example.

Example:

Consider a sample consisting of ten inverse efficiency estimates ˆ︁δj, j = 1, ..., 10, D10 =
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{1, 1, 1, 1, 1.1, 1.2, 1.25, 1.3, 1.35, 1.4}. The empirical distribution of the sample can be

smoothed using a gaussian kernel density. In Figure 5.1 below, the discrete, empirical

distribution function is depicted in red color, and the blue thick line depicts the Gaussian

kernel density estimate ˆ︁f(δ), where the smoothing parameter h is defined by Silverman’s

rule (Silverman 1986). Similarly, in Figure 5.2, the empirical and the kernel cumulative

distribution estimations are provided.

Figure 5.1: In red: Empirical distribution ˆ︁f(δ), based on the sample D10. In blue: Gaus-

sian kernel density estimate ˆ︁f(δ), with bandwidth h = 0.0906.

Figure 5.2: In red: Empirical cumulative distribution ˆ︁F (δ), based on the sample D10. In

blue: Gaussian kernel cumulative distribution estimate ˆ︁F (δ).

From Figure 5.1 it can be seen that the smoothed estimate of f(δ) ignores the boundary

condition δ ≥ 1, and therefore, there is a positive probability that some of the random

draws ˆ︁ˆ︁δ j, j = 1, ..., 10 will be less than one. A way to obtain the random draws ˆ︁ˆ︁δ j,

j = 1, ..., 10 from ˆ︁f(δ) is by using the inverse kernel cumulative distribution ˆ︁F−1(p)

through the following procedure:

• First, we generate a random sample PN of ten probabilities pj ∈ [0, 1], j = 1, ..., N.

For example, the sample PN = {0.1631681, 0.5291093, 0.3951027, 0.3513978, 0.3189761,

0.2194194, 0.8379487, 0.9727054, 0.2068039, 0.5119396} consists of ten independent

and random draws form the uniform distribution U [0, 1].
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• Then, ˆ︁ˆ︁δ j = ˆ︁F−1(pj), as illustrated in Figure 5.2.

In this case, the resulting sample of ˆ︁ˆ︁δ j, j = 1, ..., 10 is {0.973663, 1.16801, 1.08851,

1.06581, 1.04977, 1.00206, 1.35429, 1.48408, 0.995894, 1.15718}. It can be seen thatˆ︁ˆ︁δ 1, ˆ︁ˆ︁δ 9 < 1.

If we apply the reflection technique, the augmented sample that includes the orig-

inal and the reflected efficiencies will be D20 = {1, 1, 1, 1, 1.1, 1.2, 1.25, 1.3, 1.35, 1.4} ⊔

{1, 1, 1, 1, 0.9, 0.8, 0.75, 0.7, 0.65, 0.6}. In Figure 5.3 the Kernel density function estimateˆ︁gh(δ) of the augmented set D20 is depicted with a blue thick line. Then, the truncated

density estimate ˆ︁fh(δ) is depicted in Figure 5.4.

Figure 5.3: In blue: Gaussian kernel density estimate ˆ︁gh(δ), with bandwidth h = 0.111,

based on the augmented sample D20. In red: the estimate ˆ︁fh(δ), with bandwidth h =
0.0906, based on the original sample D10.

Figure 5.4: In blue: Truncated Gaussian kernel density estimate ˆ︁f(δ), based on the

augmented sample D20. In red: the estimate ˆ︁fh(δ), with bandwidth h = 0.0906, based on
the original sample D10.

In Figure 5.5, the truncated Kernel cumulative distribution estimate ˆ︁Fh(δ) is depicted
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in a blue thick line. The inverse CDF F−1
h (δ) that will be used to draw the back projectionsˆ︁ˆ︁δ j, j = 1, ..., 10 is provided in Figure 5.6.

Figure 5.5: In red: Gaussian kernel cumulative distribution estimate ˆ︁F (δ) based on the

sample D10. In blue: Truncated Gaussian kernel cumulative distribution estimate ˆ︁F (δ),
based on D20.

Figure 5.6: In red: Gaussian kernel inverse CDF estimate ˆ︁F−1
h (δ) based on the sample

D10. In blue: Truncated Gaussian kernel inverse CDF estimate ˆ︁F−1
h (δ), based on D20.

It can be seen that for any probability p ∈ [0, 1], the value of the Kernel inverse

CDF will be ˆ︁F−1
h (p) ≥ 1. In this example, using the previously drawn random sample

of probabilities PN , the resulting sample of the inverse bootstrap efficiency estimates ˆ︁ˆ︁δ j,

j = 1, ..., N will be {1.04636, 1.1815, 1.12334, 1.10703, 1.0956, 1.06327, 1.36194, 1.51056,

1.05941, 1.17329}. □

In the above example, ˆ︁F−1
h (p) was used to draw the sample of ˆ︁ˆ︁δ j, j = 1, ..., N. However,

the PDF estimate ˆ︁fh(δ) or the corresponding inverse CDF estimate ˆ︁F−1
h (p) does not need

to be computed, and only decision on the Kernel function and the smoothing parameter

h are needed to draw the back projections ˆ︁ˆ︁δ j. Let D2N = {ˆ︁δ1, ..., ˆ︁δN , 2 − ˆ︁δ1, ..., 2 − ˆ︁δN}.
Then, ˆ︁ˆ︁δ j can be obtained through the following steps (Simar & Wilson 2008, pg. 51):
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1. Draw a näıve bootstrap sample β∗
j , j = 1, ..., N from D2N .

2. Calculate

β∗∗
j = β∗

j + hϵ∗i , (5.28)

where ϵ∗ are independent draws from the Kernel density function K(·), and h is the

smoothing parameter.

3. Correct the mean and variance of the random sample of β∗∗ to be the same as the

mean and variance of D2N by calculating

β∗∗∗
j = β ∗̄ +

β∗∗
j − β ∗̄√︃
1 +

h2σ2
K

σ2
β

, (5.29)

where β ∗̄ = (1/N)
∑︁N

j=1 β
∗
j is the mean of the sample β∗

j , σ
2
K is the variance of the

kernel density function, and σ2
β = (1/N)

∑︁N
j=1(β

∗
j − β ∗̄)2.

4. Finally, ˆ︁ˆ︁δ j are obtained by reflecting the draws β∗∗∗
j that are less than one, i.e.

ˆ︁ˆ︁δ j =

⎧⎪⎨⎪⎩2− β∗∗∗
j , if β∗∗∗

j < 1

β∗∗∗
j , otherwise

(5.30)

After obtaining ˆ︁ˆ︁δ j, j = 1, ..., N the bootstrap sample can be generated as it was

described in step 2 of the two-step procedure provided in the previous Section, as S∗
N =

{(ˆ︁ˆ︁δ j
ˆ︁δ−1
j xj, yj)|j = 1, ...N}.

Although the homogeneous smooth bootstrap seems to be the most easy to imple-

ment and therefore the most commonly used one, other smooth bootstrap approaches

have been suggested in the DEA literature. Simar & Wilson (2000) extended the homo-

geneous smooth bootstrap to a heterogeneous one, where the distribution of inefficiencies

varies across the DMUs. In the heterogeneous bootstrap, we need to draw N random

and independent points (ˆ︁δ, η, y) from the multivariate kernel density function estimateˆ︁fh(δ, η, y). However, in practice, the heterogeneous bootstrap is very difficult to imple-

ment, as it requires a great amount of data that is usually not available.

Kneip et al. (2008) proved the consistency of a double-smooth bootstrap technique. In

the double-smooth bootstrap, in addition to smoothing the empirical distribution of the
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efficiency estimates, the efficient frontier estimate needs to be smoothed as well. In this

case, the bootstrap sample is generated by projecting back the efficient projections, away

from a smoothed version of the frontier. Smoothing of the frontier requires the selection

of a second smoothing parameter. Kneip et al. (2008) suggest a rule for the selection of

the smoothing parameter (see (Kneip et al. 2008, pg. 16-18)).

Although this double-smooth method proposed is consistent, in practice it is compu-

tationally very demanding. Kneip et al. (2011) introduced a consistent, simplified version

of the original method, which is computationally easier. What they suggested is to use

the näıve bootstrap to draw observations that are ”far” from the frontier and fill the

bootstrap sample by drawing from a smooth, uniform distribution with support ”near”

the frontier. The terms ”near” and ”far” are controlled by another smoothing parameter.

5.7.3 Subsampling bootstrap

Another bootstrap approach that was proved by Kneip et al. (2008) to provide consis-

tent estimates is bootstrapping with subsampling. Subsampling bootstrap - originally

suggested by Swanepoel (1986) - consists of drawing m = Nκ observations, usually with

replacement, for κ ∈ (0, 1). Although subsampling seems very similar to the näıve boot-

strap, by drawing m < N observations, the frequency at which the sample maximum is

drawn is reduced, and under the conditions that m → ∞ and m/N → 0 as N → ∞, this

approach provides good approximations of the true efficiency scores. In other words, m

needs to tend to infinity at rate slower than N. Then,

m
2

P+S+1

(︃ˆ︁ˆ︁θ j0ˆ︁θj0 − 1

)︃
approx∼ N

2
P+S+1

(︃ˆ︁θj0
θj0

− 1

)︃
, (5.31)

where P the number of inputs, S the number of outputs, and ˆ︁θj0 ≡ ˆ︁θ(xj0 , yj0).

In order to obtain the bias of subsampling bootstrap estimations, the only difference

from relation 5.9 is that it needs to be multiplied by the term m
N

2
P+S+1 to consider for the

difference in the size of the original and the bootstrap sample.

The fact that no estimation of the density function of the efficiency estimates is re-

quired, makes subsampling bootstrap computationally easier than the smooth bootstrap,

and avoids any restrictive assumption of homogeneity in the distribution of the efficiency

estimates among DMUs.

Let SN = {(xj, yj)|j = 1, ..., N} be the originally observed sample of DMUs. The
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bootstrap subsample S∗
m = {(x∗

j , y
∗
j )|j = 1, ...,m}, is generated by drawing randomly

and independently with replacement (or without replacement) m < N observations from

SN . The DEA estimator based on the subsample S∗
m is used to calculate the bootstrap

efficiency estimates ˆ︁ˆ︁θ (xj0 , yj0). This process is repeated B >> 0 times. The bootstrap effi-

ciency estimates obtained on the subsamples Sm are used to approximate the distribution

N
2

P+S+1

(︂ ˆ︁θj0
θj0

− 1
)︂
. The a-quantile estimations ˆ︁ca/2, ˆ︁c1−a/2 are given by

P

(︃ˆ︁ca/2 ≤ m
2

P+S+1

(︂ˆ︁ˆ︁θ j0ˆ︁θj0 − 1
)︂
≤ ˆ︁c1−a/2,m|SN

)︃
= 1− a (5.32)

The estimated quantiles ˆ︁ca/2,ˆ︁c1−a/2 are used to get the approximation

P

(︃ˆ︁ca/2 ≤ N
2

P+S+1

(︂ˆ︁θj0
θj0

− 1
)︂
≤ ˆ︁c1−a/2,m

)︃
≈ 1− a. (5.33)

Then, the confidence interval for θ(xj0 , yj0) is

[︃ ˆ︁θj0
1 +N− 2

P+S+1ˆ︁c1−a/2,m

,
ˆ︁θj0

1 +N− 2
P+S+1ˆ︁ca/2,m

]︃
. (5.34)

Below, an example is provided to demonstrate how drawing a subsample from the

original sample SN overcomes the inconsistency problem of the näıve bootstrap. As it

was mentioned before, the true frontier is assumed to be smooth and therefore, there

is zero probability that the efficiency estimates can be equal to the true efficiency score

of a point (xj0 , yj0). Therefore, if the bootstrapping is consistent, the probability that a

bootstrap estimate ˆ︁ˆ︁θ j0 is equal to the sample estimate ˆ︁θj0 is zero.

For simplicity reasons, consider the production process with one input and one output,

i.e x ∈ R+ and y ∈ R+. Then, the efficient frontier is defined by a piece-wise linear curve.

Let (xj0 , yj0) ∈ SN for which the efficient projection (ˆ︁θj0xj0 , yj0) lies on a linear segment

P1P2 of the frontier, where P1 = (xk0 , yk0), P2 = (xλ0 , yλ0), k0, λ0 ̸= j0. The probability

that ˆ︁ˆ︁θ j0 = ˆ︁θj0 is equal to the probability that the bootstrap sample includes both the

points P1 and P2.

Let A denote the event that the bootstrap subsample S∗
m includes P1, B denote the

event that S∗
m includes P2, and let A′, B′ be the complement events of A and B that S∗

m

M. Michali, PhD Thesis, Aston University 2022 125



BOOTSTRAPPING IN DEA

does not include P1, and that S∗
m does not include P2, respectively. Then,

P (ˆ︁ˆ︁θ j0 =
ˆ︁θj0) = P (A ∩ B) = 1− P ((A ∩ B)′) = 1− P (A′ ∪ B′)

addition
law
= 1−

(︁
P (A′) + P (B′)− P (A′ ∩ B′)

)︁
. (5.35)

There are two possible ways of drawing the subsample: with or without replacement.

First, consider the case of drawing with replacement. When subsampling is done with re-

placement, the probability that in one draw P1 will be selected is 1/N , and the probability

that it will not be selected is 1−1/N.When this process is repeatedm times, the probabil-

ity that P1 is included in the subsample is P (A) = (1− 1/N)m. Similarly, P (B) = P (A).

The probability that we will draw either P1 or P2 is 2/N, and the probability that we will

not draw neither P1 nor P2 is 1 − 2/N. If this process is repeated m times, the proba-

bility that neither P1 nor P2 are included in the subsample is P (A′ ∩ B′) = (1− 2/N)m.

Therefore, substituting the above probabilities in relation 5.35 results in

P (ˆ︁ˆ︁θ j0 =
ˆ︁θj0) = 1− 2

(︃
1− 1

N

)︃m

+

(︃
1− 2

N

)︃m

. (5.36)

When the subsampling is done without replacement, the probability that the point

Pi, i = 1, 2 is drawn in the first draw will be 1/N, in the second draw the probability

will be 1/(N − 1), etc. and similarly, point P1 will not be drawn in the first draw with

probability 1− 1/N, in the second draw with probability 1− 1/(N − 1), etc., and in the

m-th draw with probability 1−1/(N − (m−1)). Therefore, the probability that P1 is not

included in the subsample will be P (A′) =
∏︁m

j=1

(︁
1 − 1/(N + 1 − j)

)︁
. In a similar way,

P (B) = P (A), and P (A′ ∩ B′) =
∏︁m

j=1

(︁
1 − 2/(N + 1 − j)

)︁
. Therefore, for subsampling

without replacement, from 5.35 it results that

P (ˆ︁ˆ︁θ j0 =
ˆ︁θj0) = 1− 2

m∏︂
j=1

(︃
1− 1

N + 1− j

)︃
+

m∏︂
j=1

(︃
1− 2

N + 1− j

)︃
. (5.37)

Asymptotically, under the condition that m tends to infinity at a slower rate than N,

both probabilities given in 5.36 and 5.37 tend to zero. Further discussion and an example

that demonstrates the consistency of subsampling bootstrap can be found in Kneip et al.

(2011, pg. 11-12).

The above can be generalised to more dimensions. In the case x ∈ Rp and y ∈ Rq we

would need the probability of drawing the (p + q) efficient points that form the frontier
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facet that (xj0 , yj0) is projected (see Simar & Wilson (2000, pg. 786)).

In some cases, a bootstrap subsample Sm may yield no feasible solutions. This happens

when yj0
≥
̸= max{yj|(xj, yj) ∈ Sm} and/or xj0

≤
̸= min{xj|(xj, yj) ∈ Sm}. In this case, the

DMU under evaluation can be added into the subsample, i.e. ˆ︁ˆ︁θ j0 = 1. Based on the

definition of the DGP, the probability of this happening tends to to zero, and therefore,

including the DMU under evaluation into the subsample does not affect the asymptotic

properties of the bootstrap estimator. However, the choice of the subsample size seems

to be crucial.

Although subsampling is easy to implement, its performance is sensitive to the choice

of the subsample size m. Based on the minimum volatility criterion introduced by Poli-

tis et al. (2001) for the subsample size selection, Simar & Wilson (2010) suggested the

following algorithm to choose an optimal subsample size in the DEA context. Let Im,low

and Im,up be the lower and the upper bounds of a confidence interval estimate for a DMU

(xj0 , yj0), resulting from subsampling bootstrap, with subsample size m. Then,

1. Obtain the confidence interval estimates [Im,low, Im,up], for various subsample sizes

m.

2. For a small r ∈ Z+, calculate the volatility index

Vm =
∑︁mbig

m=msmall
sd{Im−r,low, ..., Im+r,low}+

∑︁mbig

m=msmall
sd{Im−r,up, ..., Im+r,up}

3. Choose the subsample size m that corresponds to the minimum volatility Vm.

Although the above algorithm provides a rule of thumb, up to date, there is no robust

method for the selection of the optimal subsample size.

Simar & Wilson (2010) studied both subsampling with and without replacement and

found that the first one yields better results.

5.8 Extensions and applications of bootstrapping

The use of bootstrapping techniques in the DEA context is not limited to the efficiency

score estimation. Various studies have developed hypothesis tests for different assump-

tions, and bootstrap approaches have been applied to obtain the critical value of the test

statistic, in most cases using the homogeneous smooth bootstrap or subsampling boot-

strap. Up to the mid-2010s results were solely based on Monte Carlo simulations, and it

is during the last years that the theoretical foundations are set based on the central limit

theorem.
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Simar & Wilson (2001) developed hypothesis test on whether the inputs and outputs

can be aggregated, and Simar & Wilson (2002) tested the returns to scale. Simar &

Zelenyuk(2006; 2007) used hypothesis tests to compare the efficiency distributions and

their means between two samples. Simar &Wilson (2010) tested the convexity assumption

of the PPS and the returns to scale using subsampling bootstrap. Kneip et al. (2016)

based on the central limit theorem (Kneip et al. 2015), provided theoretical results on

the consistency of the hypothesis tests. Daraio et al. (2015) based on the theoretical

results of Kneip et al. (2016) and Kneip et al. (2015) developed a hypothesis test of

the separability condition2, both for non-conditional and conditional efficiencies. The

approach used by Kneip et al. (2016) and Daraio et al. (2015) requires randomly splitting

the original sample into two independent subsamples. However, this approach involves

some uncertainty regarding the split of the sample. To eliminate this ambiguity, Simar &

Wilson (2020) suggested repeating the random splits a large number of times.

Various bootstrapping techniques have been widely applied in the DEA context to

obtain bias-corrected estimates and confidence intervals for the efficiency scores. For

example, Wanke (2012) used a Gaussian kernel to draw bootstrap samples and provide

confidence interval estimates for the BCC efficiency scores of 68 Brazilian airports, and for

testing the returns-to-scale. Marchetti & Wanke (2017) applied a second stage bootstrap

truncated regression to assess the impact of contextual variables in the performance of the

Brazilian rail concessionaires. In Nwaogbe et al. (2017), the impact of contextual variables

on 30 major Nigerian airports was assessed by combining first stage bootstrap efficiency

estimations with a second stage censored quantile regression. Li et al. (2022) applied the

homogeneous smooth bootstrap to estimate the eco-efficiency of the Chinese hotel industry

and to perform hypothesis test about the returns to scale and for comparing the eco-

efficiency means between two hotel clusters. It is interesting to note that although different

review studies on the methodological developments of bootstrapping are available, there

is a lack of a bibliometric analysis of the studies that apply bootstrapping techniques in

the DEA context.

2The separability condition needs to be satisfied in order to regress the efficiency estimates on some
environmental variable Z ∈ Rr. The separability condition states that in order to use the second stage
regression, the shape of the conditional support of inputs and outputs (conditioned on Z) needs to be
independent of the environmental factor Z. See Simar & Wilson (2007) for more details.
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5.9 Conclusion

DEA provides an empirical estimation of the production frontier based on an observed

sample of DMUs, and sampling noise is not taken into account. However, alterations

in the observed sample can affect the shape of the efficient frontier and therefore, the

efficiency scores of DMUs. If the observed set of DMUs is considered as a random sample

drawn independently and uniformly from an underlying population through an unknown

data generating process, then the true efficient frontier is unknown, and DEA can only

provide estimates of the true efficiency scores. It has been proven that DEA is a consistent

but biased estimator of the true efficiency scores.

In the multivariate setting, the asymptotic distribution of the DEA estimator cannot

be obtained explicitly, and the only way to approximate its asymptotic distribution is

through bootstrapping techniques. In this chapter, the asymptotic properties of the DEA

estimator were discussed and the main bootstrap approaches that are being used in the

DEA context were reviewed. Due to the boundary conditions, näıve bootstrapping is

proved to provide inconsistent estimates, and smoothing techniques or subsampling boot-

strap should be used instead. Among the different bootstrapping techniques, subsampling

bootstrap is the computationally easiest one as it does not require any smoothing of the

empirical distribution of inefficiencies. Furthermore, it does not require any restrictive as-

sumption about the distribution of inefficiencies among DMUs, allowing for heterogeneity

in the efficiency estimation.

Although the application of bootstrapping approaches has been studied extensively

in the one-stage DEA literature, there are very limited attempts for making statistical

inference in NDEA. In the following chapter, bootstrapping is extended to cases where

the production process has a two-stage structure.
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Bootstrapping in Network DEA

Until now, studies on making statistical inference about DEA have been limited to pro-

duction processes with a one-stage structure. However, there is a high volume of studies

in the DEA field, that have developed the Network DEA (NDEA) models to measure the

efficiency of DMUs with more complex production processes that involve more than one

stages to produce the final outputs.

Despite the great number of applications of NDEA, there are very limited attempts

for making statistical inference in NDEA. Trinh & Zelenuyk (2015), based on the work

of Simar & Wilson (2002), developed hypothesis tests to examine whether the difference

between the first moments and the difference between the density distributions of the effi-

ciency scores in one-stage DEA and NDEA is significant. Bostian et al. (2018) suggested

a statistical approach to make inference about NDEA based on a parametric Bayesian

approach. Dia et al. (2020) applied a kernel smoothing bootstrap in a three-stage NDEA

assessing the efficiency of Canadian credit unions, where the CRS and VRS efficiency

scores of each stage are calculated independently. The overall efficiency is then calculated

as the average or as the product of the stage efficiency scores. To the best of our knowl-

edge, there is no study investigating the construction of confidence interval estimates for

the overall and stage efficiency scores in network production structures taking into account

the connection between the stages.

The aim of this Chapter is to address this deficiency in the DEA literature by studying

the performance of subsampling bootstrap in NDEA, through Monte Carlo simulations.

Among the different bootstrapping approaches, subsampling bootstrap does not require

any restrictive assumptions about the distribution of inefficiencies, while is computation-
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ally easier compared to the heterogeneous smooth bootstrap. Therefore, it was chosen as

the most appropriate for NDEA, especially since in network structures the dimensions of

the model are usually higher compared to one-stage structures.

In this Chapter, the general two-stage structure is being studied and the stage ef-

ficiency estimates are calculated using the additive decomposition approach, upon the

assumption of VRS. The input orientation is being examined, although the extension to

the output orientation is straightforward. Coverage probabilities of the confidence in-

tervals for a fixed point coming from two data generating processes (DGPs) - defined

on a five and a seven-dimensional input-output space, respectively - are calculated. We

show that in NDEA, coverage probabilities, i.e. the true probabilities that the estimated

confidence intervals include the true efficiency scores, are more sensitive to the choice

of subsample size than in one-stage structures. Finally, the subsampling methodology

is applied to the data set referring to European railways that was discussed in Chapter

4 to get confidence interval estimates about the true environmental efficiency of Euro-

pean railways and demonstrate the performance of subsampling bootstrap in real-world

cases. Some practical rules to overcome the issues that arise in the estimation of the

confidence intervals due to the peculiarities of the additive decomposition algorithm are

also suggested.

The remainder of this Chapter is structured as follows. In Section 6.1, the true frontier

in the general two-stage structure is defined. In Section 6.2, the Data Generating Pro-

cess is axiomatically defined. In Section 6.3, the corresponding DEA estimator and its

properties are discussed. In Section 6.4 subsampling methodology is adapted to NDEA.

Section 6.5 includes details about the Monte Carlo simulations and a discussion of the

results. Section 6.6 is an illustration of subsampling to a data set, where the production

model has a network structure. Finally, in Section 6.7, conclusions, limitations and future

directions of this study are provided. A list of the notations that are being used in this

Chapter can be found in the Appendix. This Chapter is based on the published work by

Michali et al. (2022).
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6.1 The frontier models in the general two-stage struc-

ture

Consider the general two-stage series structure depicted in Figure 6.1. Suppose that a

Decision Making Unit (DMU) in a first stage consumes P inputs xp = (x1, ..., xP ) ∈ RP
+

to produce R final first stage outputs lr = (l1, ..., lR) ∈ RR
+ and Q intermediate outputs

zq = (z1, ..., zQ) ∈ RQ
+. In the second stage, intermediate products obtained from the first

stage, and external second stage inputs gt = (g1, ..., gT ) ∈ RT
+ are consumed to produce S

final outputs ys = (y1, ..., yS) ∈ RS
+.

Figure 6.1: General two-stage series network structure of a DMU

In this network structure, the true production possibility set (PPS) of the overall

production process is defined as

T =

{︄
(x, l, z, g, y) ∈ RP+R+Q+T+S

+

⃓⃓
x can produce l, and z, z and g can produce y

}︄
.

The PPS T is unknown and is defined based on the following assumptions discussed in

Shephard (1970) and Banker et al. (1984)

(i) T is closed and convex

(ii) (x, l, z, g, y) /∈ T if x = 0 and (l, z, g, y)
̸=
≥ 0 or if z = g = 0 and y

̸=
≥ 0, i.e. all

production requires some inputs,

(iii) if (x, l, z, g, y) ∈ T and x̄ ≥ x, l̄ ≤ l and ḡ ≥ g, ȳ ≤ y then (x̄, l̄, z̄, ḡ, ȳ) ∈ T (strong

disposability of inputs and outputs).

Consider the decomposition of the production process into its component stages and
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let T1 and T2 denote the PPSs of the first and second stage respectively. Then,

T1 = {(x, l, z) ∈ RP+R+Q
+ |∃(g, y) ∈ RT+S

+ : (x, l, z, g, y) ∈ T}, (6.1)

T2 = {(z, g, y) ∈ RQ+T+S
+ |∃(x, l) ∈ RP+R

+ : (x, l, z, g, y) ∈ T}. (6.2)

T, T1 and T2 can be described by their input or output correspondence sets, which inherit

their properties. The input possibility sets for the overall process, the first and the second

stage, respectively are

X(l, y) = {(x, z, g) ∈ RP+Q+T
+ |(x, l, z, g, y) ∈ T}, (6.3)

X1(l, z) = {x ∈ RP
+|(x, l, z) ∈ T1}, (6.4)

X2(y) = {(z, g) ∈ RQ+T
+ |(z, g, y) ∈ T2}, (6.5)

and the output possibility sets of the overall process, the first and second stage, respec-

tively, are

Y (x, z, g) = {(l, y) ∈ RR+Q+S
+ |(x, l, z, g, y) ∈ T}, (6.6)

Y1(x) = {(l, z) ∈ RR+Q
+ |(x, l, z) ∈ T1}, (6.7)

Y2(z, g) = {y ∈ RS
+|(z, g, y) ∈ T2}. (6.8)

The efficient boundaries of the input possibility sets are defined below.

∂X(l, y) = {(x, z, g)|(x, z, g) ∈ X(l, y), θ0(x, z, g) /∈ X(l, y),∀0 < θ0 < 1}, (6.9)

∂X1(l, z) = {x|x ∈ X(l, z), θ1x /∈ X(l, z, y), ∀0 < θ1 < 1}, (6.10)

∂X2(y) = {(z, g)|(z, g) ∈ X(y), θ2(z, g) /∈ X(y),∀0 < θ2 < 1}. (6.11)

Similarly, the efficient boundaries of the output possibility sets are defined as

∂Y (x, z, g) = {(l, y)|(l, y) ∈ Y (x, z, g), λ0(l, y) /∈ Y (x, z, g),∀λ0 > 1}, (6.12)

∂Y1(x) = {(l, z)|(l, z) ∈ Y1(x), λ
1(l, z) /∈ Y1(x)}, (6.13)

∂Y2(z, g) = {y|y ∈ Y2(z, g), λ
2y /∈ Y2(z, g)}. (6.14)

Let DMUj0 denote a DMU under evaluation. Then, the Farrell (1957) input efficiency

measure of DMUj0 for the overall process and the two stages, respectively can be defined
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as

θ0(x, l, z, g, y) = inf{θ0|θ0(x, z, g) ∈ X(l, y)}, (6.15)

θ1(x, l, z) = inf{θ1|θ1x ∈ X1(l, z)}, (6.16)

θ2(z, g, y) = inf{θ2|θ2(z, g) ∈ X2(y)}. (6.17)

The output efficiency measure of DMUj0 for the overall process and the two stages,

respectively is defined as

λ0(x, l, z, g, y) = sup{λ0|λ0(l, y) ∈ Y (x, z, g)}, (6.18)

λ1(x, l, z) = sup{λ1|λ1(l, z) ∈ Y1(x)}, (6.19)

λ2(z, g, y) = sup{λ2|λ2(y) ∈ Y2(z, g)}. (6.20)

Here, the input efficiency measure is going to be used, and for simplicity of notation

let θ(x, z, g) ≡ θ0, θ(x) ≡ θ1 and θ(z, g) ≡ θ2.

The Farrell input efficiency measure θϕj0 , ϕ = 0, 1, 2 of the DMUj0 under evaluation is

the euclidean distance of the point (xj0 , lj0 , zj0 , gj0 , yj0) from its projection to the overall or

stage-efficient boundary, respectively, in direction parallel to the subspace defined by the

overall or stage-specific input coordinates, respectively, while keeping the level of outputs

fixed. Note that the above formulations refer to the specific network structure, but they

can be easily adapted to define the efficiency measure when the production process has a

different structure.

6.2 The data generating process

Let SN = {(xj, lj, zj, gj, yj)|j = 1, ..., N} be a random sample of N DMUs that is assumed

to be generated by an unknown data generating process (DGP), P . Similarly to one-stage

structures, in the general two-stage structure, the unknown DGP P is defined on the

following assumptions:

(i) All observations in SN are independent and indentically distributed (i.i.d.) random

variables in T , and (xj, lj, zj) ∈ T1, (zj, gj, yj) ∈ T2, for j = 1, ..., N.

(ii) f(x, l, z, g, y) has support T, is continuous on T, and f(θ0x, θ0z, l, θ0g, y) > 0,
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f(x, z, l) has support T1, is continuous on T1 and f(θ1x, z, l) > 0,

f(z, g, y) has support T2, is continuous on T2 and f(θ2z, θ2g, y) > 0.

(iii) θ(x, l, z, g, y|P) is twice continuously differentiable ∀(x, l, z, g, y) ∈ T

θ(x, z, l|P) is twice continuously differentiable ∀(x, z, l) ∈ T1

θ(z, g, y|P) is twice continuously differentiable ∀(z, g, y) ∈ T2

Assumption (ii) is required to ensure that DMUs will be observed on the frontier of each

process, whereas assumption (iii) requires that the frontier of each process is smooth.

6.3 The estimator

In practice, the true production sets T, T1, T2 are unknown, and therefore, the efficiency

scores θϕj0 , ϕ = 0, 1, 2 of a DMUj0 need to be estimated based on the observed sample of

DMUs.

Let ˆ︁θ0j , ˆ︁θ1j and ˆ︁θ2j denote the estimators of the overall, the first stage and the second

stage efficiency, respectively, for DMUj, j = 1, 2, .., N, with respect to the observed sample

SN .

The efficiency estimate for the overall process, under the VRS assumption can be

obtained using model (4.6) provided in Chapter 4, Section 4.4, where instead of the

undesirable outputs yb the second stage inputs g are used. Similarly, when stage 1 is

the priority stage, model (4.7) can be used to obtain the first stage efficiency estimates,

replacing yb with g, and then use relation (3.25) for the second stage efficiency estimate.

If stage 2 is given pre-emptive priority, then, model (4.8) is being used replacing yb with g

and the efficiency estimate for the first stage is obtained from the decomposition equation

(3.27).

Note that the true PPS always includes the sample PPS, i.e ˆ︁T ⊂ T, ˆ︁T1 ⊂ T1 andˆ︁T2 ⊂ T2. Therefore, it holds that ˆ︁θ0 ≥ θ0, for all points (x, l, z, g, y) ∈ ˆ︁T , ˆ︁θ1 ≥ θ1, for all

(x, l, z) ∈ ˆ︁T1, and ˆ︁θ2 ≥ θ2, for all (z, g, y) ∈ ˆ︁T2. As it was discussed in the previous Chapter,

Kneip et al. (1998) proved that the rate at which the estimator converges depends on the

number of input and output variables and the degree of the true frontier smoothness. If

it is assumed that the true frontier is twice differentiable then, the rate of convergence in

the one-stage structure is N− 2
(p−1)+q+2 , where N is the size of the sample and p, q are the

number of inputs and outputs, respectively. This result can be easily extended to series

network structures. The convergence rates of the overall and stage processes, respectively,
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are given in the following Proposition.

Proposition 6.3.1. For a two-stage process with final first stage inputs and second stage

outputs, under the assumptions 6.1 (i)-(iii) and 6.2 (i)-(iii), it holds that

ˆ︁θ0 − θ0 = Op(N
− 2

P+Q+R+T+S+1 ) (6.21)ˆ︁θ1 − θ1 = Op(N
− 2

P+Q+R+1 ) (6.22)ˆ︁θ2 − θ2 = Op(N
− 2

Q+T+S+1 ) (6.23)

Proof. The proof for the convergence rate for each stage results from the proof of the

convergence rate in the one-stage structure provided by Kneip et al. (1998, pg. 7-9)

considering the input and output possibility sets of each stage and the overall process, as

those are defined in relations (6.3)-(6.5) and (6.6)-(6.8).

In the next section, the subsampling bootstrap methodology used for the approxima-

tion of θϕ, ϕ = 0, 1, 2 is discussed.

6.4 Bootstrapping with Subsampling in NDEA

The subsampling methodology suggested by Kneip et al. (2008) and Simar & Wilson

(2010) can be adapted to the NDEA case, by considering the inner structure of DMUs.

Kneip et al. proved that drawing pseudo-samples of size m = Nk, for k ∈ (0, 1), where N

is the original sample size, allows for consistent inference.

Consider the general two-stage network structure depicted in Figure 6.1 and let SN

be the original sample of N DMUs. In each replication, a bootstrap subsample

S∗
m = {(x∗

j , l
∗
j , z

∗
j , g

∗
j , y

∗
j )|j = 1, ...,m}

consists of m < N independent and identically distributed (iid) draws with replacement

from the original sample.

For each bootstrap subsample, for a DMUj0 , models (4.6), (4.7) (or model (4.8)) and

relation (3.25) (or relation (3.27)) are used to get the overall and stage bootstrap efficiency

estimates ˆ︁ˆ︁θ 0∗
j0
, ˆ︁ˆ︁θ 1∗

j0
and ˆ︁ˆ︁θ 2∗

j0
, respectively.

LetA = 2/(P +R +Q+ T + S + 1), B = 2/(P +R +Q+ 1) and Γ = 2/(Q+ T + S + 1).

Adjusting the result of Kneip et al. (2008) to the specific general network structure, it
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holds that

mτ

(︃ˆ︁ˆ︁θ ϕ
j0ˆ︁θϕj0 − 1

)︃
approx∼ N τ

(︃ˆ︁θϕj0
θϕj0

− 1

)︃
, (τ, ϕ) ∈ {(A, 0), (B, 1), (Γ, 2)}. (6.24)

Therefore, for each DMUj, j = 1, ..., N in the sample, the bootstrap estimates of the

overall and stage efficiencies, respectively, can be used to approximate the right-hand side

in relations (6.24) for each process ϕ = 0, 1, 2, and construct the confidence intervals for

the true overall and stage efficiencies.

Similarly to one-stage structures, the quantiles ca/2,m,ϕ and c1−a/2,m,ϕ of the unknown

distributions N τ

(︃ ˆ︁θϕj0
θϕj0

− 1

)︃
of a DMUj0 , for a chosen confidence level a ∈ (0, 1), can be

estimated by the quantiles ˆ︁ca/2,m,ϕ and ˆ︁c1−a/2,m,ϕ of the bootstrap distributions mτ

(︃ ˆ︁ˆ︁θ ϕ

j0ˆ︁θϕj0 −

1

)︃
, where (τ, ϕ) ∈ {(A, 0), (B, 1), (Γ, 2)}.

Finally, the true overall and stage efficiencies will lie in the confidence intervals

[︃ ˆ︁θϕj0(︁
1 +N−τˆ︁c1−a/2,m,ϕ

)︁ , ˆ︁θϕj0(︁
1 +N−τˆ︁ca/2,m,ϕ

)︁]︃, (6.25)

for (τ, ϕ) ∈ {(A, 0), (B, 1), (Γ, 2)}, respectively.

6.5 Monte Carlo Simulations

In order to examine the performance of subsampling bootstrap in network structures,

Monte Carlo simulations were performed. Different sets of experiments were conducted

for the general network structure (see Figure 6.1) using a five-dimensional and a seven-

dimensional DGP, respectively, i.e. for P = R = Q = T = S = 1 and for P = R = T = 1,

Q = S = 2. For each DGP, two sets of experiments were performed, one to estimate the

efficiency of the overall process and another set of experiments to estimate the efficiencies

of the stage processes.

Each experiment consists of 1000 Monte Carlo trials with 2000 bootstrap

replications in each trial. Also, experiments were conducted for four sample

sizes N ∈ {25, 50, 100, 200} and twelve subsample sizes m = [Nk], for k ∈

{0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, where [Nk] denotes the integer

part of Nk.

In all the experiments, the confidence intervals for the true overall and stage efficien-

M. Michali, PhD Thesis, Aston University 2022 137



BOOTSTRAPPING IN NETWORK DEA

cies of a fixed point were estimated. Due to sampling noise, the true probability that the

confidence interval contains the true efficiency score may differ from the nominal prob-

ability that the confidence level represents. Therefore, through the Monte Carlo trials,

the true probability of the confidence interval containing the true parameter is approxi-

mated by calculating the coverage probabilities, i.e. the actual proportion of the estimated

confidence intervals that include the true efficiency score.

In set of experiments referring to the five-dimensional case, an efficient first stage

input xe is drawn from the uniform distribution U [5, 20]. The efficient input is used to

generate one final first stage output l = (xe)
β and one intermediate first stage output

z = (xe)
γ, where β, γ > 0. Second stage-specific efficient input ge is also drawn from

the uniform distribution U [5, 20]. The second stage efficient input and the intermediate

product from the first stage, are used to generate one final output y =
(︁
(ge)

ζzξe−0.2|ϵ|)︁ν ,
where ϵ ∼ N(0, 1) and ζ, ξ, ν > 0. The term e−0.2|ϵ| is added to the DGP to better reflect

real-world scenarios by adding some stochasticity to the data.

For the experiments of the seven-dimensional case, a similar DGP is used. An efficient

first stage input xe and a second stage-specific input ge are drawn from the uniform

distribution U [5, 20]. One final first stage output is given by l = (xe)
β and the two

intermediate first stage outputs are given by z1 = (xe)
γ and z2 = (xe)

δ, respectively, for

some β, γ, δ > 0. The two final outputs are generated by y1 =
(︁
(ge)

ζzξ1z
λ
2 e

−0.2|ϵ|)︁ν and

y2 =
(︁
(ge)

ζzλ1 z
ξ
2e

−0.2|ϵ|)︁ν , where ϵ ∼ N(0, 1) and ζ, ξ, λ, ν > 0. Both in the five and the

seven-dimensional case, the DGP ensures that at each stage, as well as in the overall

process, an increase in stage-specific inputs results in a non-proportional increase in the

stage outputs, to account for VRS.

As it was mentioned before, estimates of the overall and the stage efficiencies, respec-

tively, were obtained through different sets of experiments. In the set of experiments that

were performed to estimate the overall efficiency, inefficiency was added to the first stage

inputs x = xee
0.2|ϵ|. The inefficient inputs were then used to calculate the sample overall

efficiency of the fixed point under investigation. In the set of experiments concerning

the true stage efficiencies, inefficiency was introduced to each stage’s specific inputs, i.e.,

x = xee
0.2|ϵ| and g = gee

0.2|ϵ|, and these inefficient first and second stage-specific inputs

were used to calculate the first and second stage sample efficiencies of the fixed point.

Since the input orientation is considered, the true overall inefficiency can be defined as

the proportion of the input going to the production that exceeds the efficient input. There-

fore, the true first and second stage efficiencies are defined as xe/x and ge/g, respectively.
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In the case of multiple inputs, since radial projections to the efficient frontier are being

used, all inputs are reduced by the same proportion, and the true efficiency score would

be defined in a similar way.

Experiments were performed for β = 0.6, γ = 0.7, δ = 0.8, ζ = 0.1, ξ = 0.3, λ = 0.5

and ν = 0.8, and for the case when xe = ge. All the efficiency scores were obtained for the

fixed point with (xe0, ge0) = (13, 13) and ϵ0 = 1, and with true overall and stage efficiency

score θϕ0 = 0.8187, for ϕ = 0, 1, 2. This point lies about in the middle of the cloud of the

generated points.

In many subsamples, the fixed point shows infeasibility in one of the two stages.

Infeasibility problems occur when one (or more) of the outputs of the fixed point (overall

or stage-specific output) is (are) greater than the respective maximum output(s) of the

points included in the subsample, and/or when one or more of the inputs of the fixed

point is (are) less than the corresponding minimum input(s) of the points belonging to

the subsample. Infeasibility problems in the subsamples occur more often in NDEA

compared to one stage DEA because of the higher dimensions. Therefore, in this study,

in all bootstrap replications the fixed point of interest was being added to the subsample.

Another way to treat infeasibilities is to set the efficiency score of the infeasible DMU

equal to one. In the additive efficiency decomposition approach, in some cases the al-

gorithm may give zero optimal multipliers and therefore, zero efficiency scores. For the

overall process this happens in cases where the DMU is overall efficient. Therefore, for

DMUs with zero overall efficiency score, it can be set that their overall efficiency score

is equal to one. This is an approach also adopted by Chen et al. (2009). However, it

may also happen a DMU to be assigned a non-zero overall efficiency score, and get a zero

efficiency score for the one of the two stages when a stage is considered as priority stage,

but get a non-zero efficiency score when the priority stage changes. So, if the DMU under

evaluation is not included in the subsample, zero overall efficiencies need to be set equal to

one, and the stage efficiency estimates need to be obtained by the priority stage models.

On the other hand, including the DMU under evaluation in the subsample significantly

reduces the times when this happens and therefore, provides a partial solution to the

problem.

Confidence interval estimates for the true efficiency scores were obtained for three levels

of significance, α ∈ {0.1, 0.05, 0.01} to get the 90%, 95% and 99% confidence intervals.

Coverage probabilities represent the proportion of confidence intervals, i.e. the proportion

of Monte Carlo trials, that the true efficiency score is included in the estimated confidence
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interval. The resulting coverage probabilities of the confidence intervals for the overall

and stage efficiencies, for the five and seven-dimensional cases, respectively, when the

DMU under evaluation is included in the subsample are given in Tables 6.1 and 6.2.

Results from Monte Carlo simulations when the DMU under evaluation is not included

in the subsample, the efficiency score of infeasible DMUs is set equal to one and both

stages are considered alternately as priority stages are provided in Tables 6.3 and 6.4.

In most of the cases, the confidence intervals obtained with this approach have higher

range compared to those obtained when the DMU under evaluation is included in the

subsample. Furthermore, from the coverage probabilities reported in 6.3 and 6.4, it seems

that changing the priority stage does not affect the coverage probabilities.

Table 6.1: Coverage probabilities for the confidence interval estimates when P = R =
Q = T = S = 1 and the DMU under evaluation is included in the subsample

Overall 1st Stage 2nd Stage

1-α 1-α 1-α

N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

25 0.40 0.938 0.976 0.983 0.930 0.965 0.976 0.980 0.984 0.985

0.45 0.984 0.988 0.988 0.965 0.982 0.985 0.986 0.987 0.987

0.50 0.989 0.989 0.989 0.978 0.985 0.985 0.991 0.991 0.991

0.55 0.989 0.989 0.989 0.979 0.983 0.985 0.990 0.991 0.991

0.60 0.990 0.990 0.990 0.981 0.988 0.988 0.990 0.995 0.995

0.65 0.984 0.992 0.992 0.981 0.990 0.993 0.959 0.985 0.996

0.70 0.974 0.994 0.995 0.972 0.990 0.993 0.930 0.970 0.995

0.75 0.943 0.975 0.996 0.938 0.973 0.992 0.837 0.917 0.988

0.80 0.889 0.951 0.993 0.903 0.951 0.983 0.740 0.861 0.969

0.85 0.833 0.910 0.978 0.879 0.923 0.977 0.647 0.783 0.944

0.90 0.742 0.841 0.964 0.818 0.880 0.962 0.517 0.670 0.878

0.95 0.646 0.787 0.924 0.766 0.857 0.931 0.410 0.576 0.808

50 0.40 0.986 0.999 0.999 0.920 0.986 1.000 0.999 0.999 0.999

0.45 1.000 1.000 1.000 0.941 0.993 1.000 1.000 1.000 1.000

0.50 1.000 1.000 1.000 0.978 1.000 1.000 0.999 1.000 1.000

0.55 1.000 1.000 1.000 0.987 1.000 1.000 0.995 0.999 1.000

0.60 0.995 1.000 1.000 0.997 1.000 1.000 0.969 0.994 1.000
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0.65 0.987 0.998 1.000 0.994 0.999 1.000 0.906 0.973 0.999

0.70 0.958 0.982 0.999 0.983 0.996 1.000 0.767 0.905 0.992

0.75 0.910 0.966 0.994 0.969 0.987 1.000 0.618 0.787 0.968

0.80 0.826 0.915 0.980 0.937 0.974 0.995 0.434 0.643 0.910

0.85 0.707 0.826 0.954 0.900 0.942 0.984 0.296 0.466 0.771

0.90 0.556 0.723 0.905 0.855 0.909 0.975 0.180 0.320 0.643

0.95 0.412 0.568 0.821 0.769 0.859 0.949 0.104 0.205 0.481

100 0.40 1.000 1.000 1.000 0.868 0.967 1.000 1.000 1.000 1.000

0.45 1.000 1.000 1.000 0.900 0.977 1.000 1.000 1.000 1.000

0.50 1.000 1.000 1.000 0.958 0.993 1.000 0.989 0.998 1.000

0.55 1.000 1.000 1.000 0.980 0.996 1.000 0.945 0.987 0.999

0.60 0.996 1.000 1.000 0.988 0.997 1.000 0.791 0.941 0.999

0.65 0.973 0.995 1.000 0.995 0.999 1.000 0.539 0.792 0.983

0.70 0.903 0.959 0.997 0.988 0.996 1.000 0.261 0.488 0.884

0.75 0.786 0.899 0.986 0.975 0.991 0.999 0.130 0.300 0.730

0.80 0.563 0.789 0.947 0.944 0.978 0.996 0.047 0.140 0.489

0.85 0.361 0.556 0.868 0.903 0.946 0.988 0.015 0.059 0.273

0.90 0.210 0.363 0.717 0.839 0.908 0.973 0.007 0.025 0.131

0.95 0.106 0.211 0.515 0.773 0.850 0.940 0.006 0.009 0.069

200 0.40 1.000 1.000 1.000 0.737 0.929 0.999 1.000 1.000 1.000

0.45 1.000 1.000 1.000 0.819 0.958 0.999 0.995 1.000 1.000

0.50 1.000 1.000 1.000 0.920 0.982 0.999 0.817 0.976 1.000

0.55 0.998 1.000 1.000 0.958 0.994 1.000 0.430 0.791 0.995

0.60 0.971 0.996 1.000 0.985 0.997 1.000 0.098 0.365 0.907

0.65 0.868 0.964 0.999 0.995 0.997 1.000 0.014 0.103 0.621

0.70 0.628 0.841 0.985 0.994 1.000 1.000 0.001 0.015 0.288

0.75 0.333 0.569 0.903 0.987 0.996 1.000 0.000 0.000 0.077

0.80 0.136 0.310 0.731 0.967 0.988 0.999 0.000 0.000 0.017

0.85 0.037 0.124 0.442 0.925 0.964 0.997 0.000 0.000 0.002

0.90 0.011 0.036 0.226 0.861 0.927 0.984 0.000 0.000 0.001

0.95 0.007 0.013 0.087 0.773 0.846 0.949 0.000 0.000 0.001
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Table 6.2: Coverage probabilities for the confidence interval estimates when P = R =
T = 1, Q = S = 2 and the DMU under evaluation is included in the subsample.

Overall 1st Stage 2nd Stage

1-α 1-α 1-α

N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

25 0.40 0.728 0.872 0.978 0.948 0.977 0.988 0.171 0.331 0.769

0.45 0.882 0.957 0.996 0.970 0.985 0.989 0.312 0.517 0.901

0.50 0.950 0.987 0.997 0.982 0.990 0.990 0.460 0.756 0.962

0.55 0.945 0.985 0.997 0.982 0.989 0.990 0.450 0.751 0.964

0.60 0.977 0.995 0.997 0.983 0.990 0.990 0.557 0.854 0.988

0.65 0.993 0.998 0.998 0.986 0.992 0.992 0.872 0.957 1.000

0.70 0.993 0.997 0.998 0.977 0.992 0.993 0.917 0.969 1.000

0.75 0.972 0.993 0.998 0.958 0.982 0.992 0.960 1.000 1.000

0.80 0.939 0.974 0.997 0.930 0.964 0.988 1.000 1.000 1.000

0.85 0.908 0.951 0.994 0.895 0.942 0.980 1.000 1.000 1.000

0.90 0.849 0.914 0.980 0.817 0.901 0.966 0.999 1.000 1.000

0.95 0.774 0.871 0.952 0.748 0.845 0.943 0.996 0.998 1.000

50 0.40 0.598 0.808 0.980 0.908 0.984 1.000 0.056 0.193 0.585

0.45 0.761 0.903 0.995 0.935 0.989 1.000 0.147 0.320 0.748

0.50 0.910 0.978 0.999 0.977 1.000 1.000 0.303 0.491 0.893

0.55 0.941 0.990 1.000 0.983 0.999 1.000 0.375 0.570 0.930

0.60 0.980 0.996 1.000 0.995 1.000 1.000 0.497 0.785 0.965

0.65 0.987 0.999 1.000 0.996 1.000 1.000 0.597 0.891 0.998

0.70 0.990 0.996 1.000 0.991 0.997 1.000 0.847 0.946 1.000

0.75 0.977 0.990 0.999 0.972 0.989 1.000 0.917 0.980 1.000

0.80 0.947 0.976 0.996 0.935 0.973 0.997 0.954 1.000 1.000

0.85 0.907 0.949 0.985 0.890 0.940 0.986 1.000 1.000 1.000

0.90 0.851 0.910 0.969 0.830 0.898 0.964 1.000 1.000 1.000

0.95 0.753 0.842 0.943 0.751 0.831 0.935 0.998 1.000 1.000

100 0.40 0.556 0.770 0.985 0.816 0.956 0.999 0.048 0.170 0.543

0.45 0.652 0.845 0.992 0.858 0.972 1.000 0.075 0.242 0.618
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0.50 0.863 0.970 0.998 0.940 0.983 1.000 0.229 0.418 0.814

0.55 0.929 0.986 1.000 0.969 0.995 1.000 0.317 0.508 0.887

0.60 0.972 0.994 1.000 0.987 0.998 1.000 0.419 0.634 0.943

0.65 0.991 0.998 1.000 0.992 1.000 1.000 0.566 0.791 0.976

0.70 0.991 0.999 0.999 0.988 0.998 1.000 0.697 0.915 0.999

0.75 0.983 0.993 0.999 0.976 0.990 0.999 0.886 0.962 1.000

0.80 0.949 0.979 0.998 0.944 0.975 0.996 0.954 0.997 1.000

0.85 0.894 0.943 0.991 0.899 0.943 0.984 0.996 1.000 1.000

0.90 0.820 0.887 0.964 0.832 0.896 0.963 0.999 1.000 1.000

0.95 0.726 0.808 0.923 0.746 0.832 0.928 0.995 0.999 1.000

200 0.40 0.385 0.642 0.969 0.627 0.868 0.997 0.020 0.111 0.497

0.45 0.536 0.794 0.988 0.734 0.910 0.998 0.051 0.197 0.600

0.50 0.753 0.918 0.999 0.860 0.970 1.000 0.160 0.370 0.733

0.55 0.894 0.978 1.000 0.935 0.990 1.000 0.281 0.518 0.854

0.60 0.964 0.991 1.000 0.974 0.994 1.000 0.449 0.642 0.926

0.65 0.986 0.998 1.000 0.987 1.000 1.000 0.581 0.733 0.969

0.70 0.993 0.998 1.000 0.993 0.998 1.000 0.690 0.880 0.992

0.75 0.983 0.994 0.999 0.977 0.993 0.999 0.848 0.953 1.000

0.80 0.962 0.984 0.997 0.944 0.976 0.994 0.934 0.987 1.000

0.85 0.901 0.959 0.989 0.880 0.938 0.983 0.975 1.000 1.000

0.90 0.819 0.887 0.970 0.828 0.876 0.956 0.999 1.000 1.000

0.95 0.697 0.788 0.913 0.749 0.823 0.901 0.988 0.999 1.000

The results indicate that the choice of the subsample size is crucial for getting high

coverage probabilities, irrespective of the original sample size. However, as the sample size

increases, sensitivity on the subsample size seems to increase. Coverage probabilities of the

confidence intervals for the true overall and first stage efficiency seem to rise as k increases

and then, in most cases, after some point they show a downturn. These conclusions

seem to be in accordance with those for one stage structures (see Kneip et al. (2008, pg.

1682-1683)). According to the results, one of the two stages shows greater sensitivity to

the subsample size, and for some subsample sizes confidence interval estimates can even

have zero coverage probabilities. However, this sensitivity is not related to the choice of

priority stage. Monte Carlo simulations were performed both by treating first stage as the
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priority stage, and then by treating the second stage as the priority stage, and coverage

probabilities were not affected. Results for stage one being the priority stage and then for

stage two being the priority stage, when the DMU under evaluation is not included in the

subsample can be found in the Appendix. The issue lies in the additive decomposition

algorithm, which in some cases assigns zero or even negative efficiency scores, though less

often.1. If this happens at a stage level, and not to the overall efficiency, then this mainly

affects the coverage probabilities of that stage. The number of bootstrap replications

certainly affects the coverage probabilities in NDEA more than in conventional DEA due

to the lower convergence rate. However, it is computationally difficult to further increase

the replications to a number significantly higher than 2000.

In the five-dimensional case (see Table 6.1), coverage probabilities for the overall and

the second stage efficiency are very high for lower values of k, but as k increases they get

very poor and even tend to zero as the original sample size increases. In the cases when

the estimations of the overall efficiency scores are poor, the coverage probabilities of the

second stage seem to be also affected. For the first stage, k = 0.60 or k = 0.65 seems to

result in higher coverages.

In the seven-dimensional case (see Table 6.2), for the overall and the first stage, sub-

sample sizes resulting from k = 0.65 or k = 0.70, in most of the cases, yield higher

coverage probabilities, however, for a wide range of k, coverage probabilities are still very

high. Coverage probabilities for the second stage true efficiency are very poor for the first

half values of k, especially for the larger sample sizes. Nonetheless, as k increases coverage

probabilities for the second stage become very high; for this stage, in most of the cases,

a value of k around 0.9 gives the best coverage probabilities. The difference between the

results in the five and the seven-dimensional cases indicate that the coverage probabilities

and the optimal subsample sizes strongly depend on the DGP.

Wrong choice of subsample size may result in totally misleading confidence interval

estimates. Politis et al. (2001) suggested a minimum volatility criterion for the selection

of the optimal subsample size. Let Im,low and Im,up be the lower and the upper bounds

of a confidence interval estimate, resulting from subsampling bootstrap, with subsample

size m. For a small r ∈ Z+, Politis et al. suggested calculating the volatility index

Vm =
∑︁mbig

m=msmall
sd{Im−r,low, ..., Im+r,low} +

∑︁mbig

m=msmall
sd{Im−r,up, ..., Im+r,up} and then

choosing the subsample size m that corresponds to the minimum Vm.

1Similar issues seem to occur with the multiplicative decomposition algorithm. Peyrache & Silva
(2022) provide an example with negative efficiency scores in parallel structures.
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Table 6.3: Coverage probabilities for the confidence interval estimates when P = R = Q = T = S = 1. and the DMU under evaluation is not
included in the subsample.

Overall 1st Stage 2nd Stage
Stage 1 Priority Stage 2 Priority Stage 1 Priority Stage 2 Priority

1-α 1-α 1-α 1-α 1-α
N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
25 0.40 0.967 0.994 1.000 0.991 0.994 0.998 0.985 0.991 0.998 0.993 0.997 1.000 0.989 0.997 1.000

0.45 0.996 1.000 1.000 0.991 0.993 0.998 0.982 0.987 0.997 0.976 0.994 0.999 0.974 0.991 0.999
0.50 0.998 1.000 1.000 0.990 0.994 0.999 0.983 0.989 0.998 0.959 0.985 0.998 0.958 0.983 0.998
0.55 0.999 1.000 1.000 0.989 0.994 0.998 0.984 0.990 0.997 0.959 0.986 0.998 0.957 0.983 0.998
0.60 0.998 1.000 1.000 0.983 0.993 0.997 0.974 0.988 0.996 0.917 0.979 0.998 0.914 0.975 0.998
0.65 0.989 0.997 1.000 0.948 0.987 0.996 0.943 0.983 0.995 0.821 0.920 0.996 0.820 0.919 0.995
0.70 0.971 0.993 1.000 0.928 0.978 0.994 0.924 0.970 0.993 0.761 0.883 0.995 0.764 0.885 0.994
0.75 0.935 0.975 0.999 0.893 0.948 0.994 0.891 0.945 0.993 0.661 0.810 0.967 0.670 0.814 0.965
0.80 0.891 0.945 0.993 0.873 0.915 0.990 0.870 0.913 0.988 0.572 0.727 0.938 0.572 0.733 0.940
0.85 0.830 0.909 0.983 0.833 0.896 0.979 0.831 0.894 0.977 0.492 0.654 0.904 0.490 0.659 0.904
0.90 0.733 0.851 0.954 0.786 0.865 0.958 0.786 0.865 0.957 0.399 0.560 0.820 0.390 0.558 0.816
0.95 0.636 0.775 0.922 0.738 0.825 0.933 0.736 0.824 0.932 0.336 0.488 0.744 0.331 0.479 0.748

50 0.40 0.994 1.000 1.000 0.970 0.999 1.000 0.971 0.999 1.000 0.990 0.999 1.000 0.988 0.999 1.000
0.45 1.000 1.000 1.000 0.975 0.997 1.000 0.973 0.997 1.000 0.974 0.998 1.000 0.972 0.998 1.000
0.50 1.000 1.000 1.000 0.981 0.998 1.000 0.979 0.997 1.000 0.875 0.971 0.999 0.878 0.971 1.000
0.55 0.999 1.000 1.000 0.978 0.995 1.000 0.977 0.995 1.000 0.816 0.943 0.997 0.825 0.947 0.997
0.60 0.995 1.000 1.000 0.970 0.985 1.000 0.969 0.985 1.000 0.679 0.859 0.985 0.685 0.865 0.985
0.65 0.985 0.996 1.000 0.960 0.980 0.998 0.962 0.980 0.998 0.559 0.771 0.959 0.578 0.780 0.966
0.70 0.962 0.986 1.000 0.936 0.969 0.996 0.936 0.969 0.996 0.418 0.627 0.922 0.431 0.635 0.920
0.75 0.917 0.968 0.994 0.912 0.955 0.988 0.911 0.955 0.988 0.321 0.522 0.853 0.327 0.526 0.861
0.80 0.844 0.924 0.987 0.879 0.929 0.979 0.878 0.931 0.979 0.235 0.403 0.751 0.237 0.409 0.757
0.85 0.717 0.855 0.964 0.842 0.903 0.967 0.842 0.903 0.969 0.168 0.302 0.654 0.172 0.302 0.658
0.90 0.587 0.744 0.920 0.801 0.873 0.946 0.800 0.871 0.946 0.115 0.230 0.532 0.121 0.227 0.531
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0.95 0.427 0.599 0.839 0.749 0.823 0.919 0.747 0.822 0.919 0.075 0.174 0.430 0.066 0.168 0.425

100 0.40 1.000 1.000 1.000 0.975 0.996 1.000 0.976 0.997 1.000 0.845 0.984 1.000 0.851 0.984 1.000
0.45 1.000 1.000 1.000 0.982 0.998 1.000 0.983 0.998 1.000 0.732 0.942 1.000 0.747 0.943 1.000
0.50 1.000 1.000 1.000 0.986 0.996 1.000 0.985 0.996 1.000 0.363 0.704 0.986 0.387 0.735 0.989
0.55 0.999 1.000 1.000 0.979 0.994 0.998 0.980 0.994 0.998 0.212 0.541 0.943 0.230 0.561 0.952
0.60 0.997 0.999 1.000 0.977 0.989 0.997 0.977 0.989 0.997 0.110 0.326 0.849 0.123 0.346 0.861
0.65 0.972 0.996 1.000 0.965 0.981 0.997 0.966 0.981 0.997 0.056 0.175 0.668 0.059 0.186 0.690
0.70 0.904 0.961 0.997 0.947 0.971 0.992 0.947 0.971 0.992 0.018 0.090 0.463 0.019 0.096 0.480
0.75 0.781 0.910 0.989 0.933 0.959 0.985 0.933 0.959 0.985 0.009 0.050 0.315 0.009 0.053 0.323
0.80 0.567 0.772 0.957 0.900 0.946 0.981 0.898 0.946 0.981 0.008 0.031 0.189 0.007 0.029 0.199
0.85 0.355 0.555 0.872 0.854 0.912 0.964 0.853 0.909 0.964 0.005 0.014 0.118 0.004 0.014 0.118
0.90 0.205 0.367 0.700 0.796 0.871 0.953 0.796 0.870 0.953 0.002 0.012 0.077 0.001 0.009 0.076
0.95 0.104 0.211 0.511 0.734 0.828 0.929 0.734 0.826 0.928 0.001 0.009 0.055 0.002 0.006 0.053

200 0.40 1.000 1.000 1.000 0.936 0.993 1.000 0.936 0.993 1.000 0.012 0.269 0.982 0.020 0.294 0.982
0.45 1.000 1.000 1.000 0.957 0.996 1.000 0.957 0.996 1.000 0.004 0.056 0.833 0.004 0.071 0.846
0.50 1.000 1.000 1.000 0.982 0.997 1.000 0.982 0.997 1.000 0.000 0.003 0.325 0.001 0.005 0.357
0.55 0.996 0.999 1.000 0.986 0.997 1.000 0.986 0.997 1.000 0.000 0.003 0.104 0.000 0.002 0.128
0.60 0.970 0.993 1.000 0.978 0.997 1.000 0.978 0.996 1.000 0.000 0.001 0.025 0.000 0.001 0.029
0.65 0.858 0.965 0.998 0.974 0.990 0.999 0.973 0.990 0.999 0.000 0.000 0.005 0.000 0.000 0.009
0.70 0.613 0.842 0.988 0.960 0.981 0.998 0.960 0.981 0.998 0.000 0.000 0.004 0.000 0.000 0.003
0.75 0.303 0.567 0.914 0.929 0.971 0.995 0.929 0.970 0.995 0.000 0.000 0.000 0.000 0.000 0.000
0.80 0.106 0.279 0.721 0.898 0.945 0.988 0.897 0.943 0.988 0.000 0.000 0.000 0.000 0.000 0.000
0.85 0.041 0.103 0.442 0.848 0.906 0.977 0.847 0.904 0.976 0.000 0.000 0.000 0.000 0.000 0.000
0.90 0.022 0.048 0.200 0.780 0.865 0.957 0.780 0.864 0.957 0.000 0.000 0.000 0.000 0.000 0.000
0.95 0.010 0.024 0.078 0.714 0.799 0.915 0.714 0.799 0.914 0.000 0.000 0.000 0.000 0.000 0.000
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Table 6.4: Coverage probabilities for the confidence interval estimates when P = R = T = 1, Q = S = 2 and the DMU under evaluation is not
included in the subsample.

Overall 1st Stage 2nd Stage
Stage 1 Priority Stage 2 Priority Stage 1 Priority Stage 2 Priority

1-α 1-α 1-α 1-α 1-α
N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
25 0.40 0.810 0.931 0.995 0.929 0.951 0.955 0.929 0.951 0.955 0.911 0.964 0.988 0.938 0.980 0.987

0.45 0.930 0.982 1.000 0.957 0.965 0.968 0.957 0.965 0.968 0.963 0.982 0.991 0.979 0.988 0.990
0.50 0.972 0.996 1.000 0.967 0.972 0.972 0.967 0.972 0.972 0.976 0.993 0.993 0.989 0.992 0.992
0.55 0.971 0.995 1.000 0.967 0.970 0.972 0.967 0.970 0.972 0.976 0.990 0.993 0.987 0.990 0.992
0.60 0.982 0.998 0.999 0.970 0.976 0.976 0.971 0.976 0.976 0.981 0.995 0.996 0.991 0.994 0.995
0.65 0.989 0.996 0.999 0.968 0.984 0.986 0.968 0.984 0.986 0.990 0.994 0.997 0.988 0.993 0.996
0.70 0.980 0.994 0.999 0.957 0.980 0.986 0.957 0.981 0.987 0.971 0.993 0.998 0.972 0.993 0.997
0.75 0.956 0.982 0.996 0.934 0.962 0.987 0.935 0.962 0.987 0.949 0.979 0.998 0.947 0.978 0.997
0.80 0.921 0.958 0.994 0.902 0.949 0.985 0.902 0.950 0.985 0.923 0.954 0.993 0.922 0.958 0.995
0.85 0.877 0.935 0.987 0.871 0.930 0.973 0.872 0.930 0.973 0.891 0.938 0.985 0.890 0.936 0.981
0.90 0.810 0.887 0.965 0.817 0.885 0.960 0.815 0.885 0.960 0.838 0.901 0.965 0.832 0.904 0.965
0.95 0.746 0.835 0.944 0.740 0.850 0.941 0.739 0.849 0.942 0.788 0.869 0.954 0.776 0.861 0.954

50 0.40 0.696 0.859 0.989 0.960 0.995 1.000 0.972 0.995 1.000 0.933 0.987 0.998 0.955 0.997 1.000
0.45 0.818 0.932 0.999 0.972 0.995 1.000 0.976 0.996 1.000 0.974 0.993 1.000 0.991 1.000 1.000
0.50 0.936 0.987 1.000 0.983 0.997 1.000 0.984 0.998 1.000 0.988 0.998 1.000 0.997 1.000 1.000
0.55 0.962 0.996 1.000 0.986 0.998 1.000 0.985 0.997 1.000 0.991 0.997 1.000 0.997 0.999 1.000
0.60 0.984 0.998 1.000 0.984 0.994 1.000 0.984 0.994 1.000 0.989 0.999 1.000 0.993 0.999 1.000
0.65 0.990 0.997 1.000 0.971 0.991 1.000 0.971 0.990 1.000 0.977 0.995 0.999 0.982 0.995 0.999
0.70 0.986 0.993 0.997 0.958 0.981 0.996 0.959 0.980 0.995 0.961 0.979 0.999 0.957 0.982 0.999
0.75 0.972 0.988 0.997 0.928 0.966 0.991 0.927 0.967 0.991 0.943 0.968 0.992 0.937 0.967 0.993
0.80 0.939 0.974 0.996 0.885 0.943 0.985 0.885 0.943 0.986 0.893 0.949 0.984 0.896 0.944 0.986
0.85 0.893 0.938 0.985 0.835 0.903 0.973 0.835 0.901 0.973 0.837 0.905 0.972 0.829 0.904 0.973
0.90 0.840 0.900 0.970 0.785 0.853 0.956 0.785 0.853 0.956 0.767 0.854 0.955 0.763 0.851 0.953
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0.95 0.742 0.839 0.940 0.710 0.805 0.924 0.711 0.805 0.925 0.691 0.782 0.912 0.684 0.782 0.912

100 0.40 0.682 0.850 0.991 0.947 0.986 1.000 0.946 0.987 1.000 0.970 0.996 1.000 0.987 0.999 1.000
0.45 0.753 0.913 0.995 0.953 0.990 1.000 0.953 0.990 1.000 0.983 0.997 1.000 0.995 1.000 1.000
0.50 0.902 0.976 0.999 0.980 0.995 1.000 0.980 0.995 1.000 0.993 1.000 1.000 0.997 1.000 1.000
0.55 0.955 0.989 1.000 0.988 0.995 1.000 0.988 0.995 1.000 0.994 1.000 1.000 0.998 0.999 1.000
0.60 0.977 0.994 1.000 0.988 0.996 1.000 0.988 0.996 1.000 0.990 0.998 1.000 0.993 0.998 1.000
0.65 0.987 0.999 1.000 0.976 0.994 1.000 0.975 0.994 1.000 0.984 0.993 1.000 0.985 0.993 1.000
0.70 0.988 0.994 1.000 0.951 0.982 0.997 0.952 0.981 0.997 0.957 0.984 0.997 0.953 0.984 0.998
0.75 0.975 0.989 0.999 0.914 0.961 0.994 0.915 0.961 0.994 0.916 0.962 0.996 0.923 0.960 0.996
0.80 0.938 0.974 0.994 0.880 0.924 0.986 0.880 0.923 0.986 0.862 0.929 0.985 0.862 0.932 0.986
0.85 0.873 0.933 0.983 0.830 0.882 0.969 0.831 0.883 0.970 0.785 0.871 0.963 0.781 0.866 0.964
0.90 0.800 0.871 0.961 0.764 0.843 0.929 0.765 0.843 0.929 0.696 0.793 0.929 0.688 0.794 0.934
0.95 0.697 0.803 0.918 0.689 0.781 0.894 0.684 0.781 0.893 0.610 0.724 0.879 0.588 0.705 0.876

200 0.40 0.557 0.789 0.986 0.869 0.984 1.000 0.871 0.984 1.000 0.986 0.999 1.000 0.997 1.000 1.000
0.45 0.686 0.874 0.994 0.918 0.994 1.000 0.918 0.994 1.000 0.996 1.000 1.000 1.000 1.000 1.000
0.50 0.860 0.955 1.000 0.973 0.998 1.000 0.973 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.55 0.926 0.986 1.000 0.987 0.998 1.000 0.987 0.998 1.000 0.997 1.000 1.000 0.999 1.000 1.000
0.60 0.971 0.997 1.000 0.989 0.998 1.000 0.991 0.998 1.000 0.992 0.998 1.000 0.993 0.999 1.000
0.65 0.989 0.997 1.000 0.983 0.997 1.000 0.983 0.997 1.000 0.965 0.990 1.000 0.970 0.991 1.000
0.70 0.990 0.996 0.999 0.979 0.990 0.998 0.977 0.990 0.998 0.928 0.970 0.997 0.933 0.974 0.998
0.75 0.972 0.989 0.996 0.949 0.978 0.997 0.949 0.978 0.997 0.872 0.932 0.992 0.885 0.936 0.993
0.80 0.941 0.969 0.994 0.900 0.957 0.988 0.901 0.955 0.988 0.816 0.886 0.972 0.823 0.889 0.971
0.85 0.882 0.938 0.982 0.869 0.905 0.979 0.869 0.906 0.979 0.740 0.825 0.930 0.743 0.829 0.933
0.90 0.787 0.871 0.955 0.806 0.878 0.954 0.805 0.879 0.953 0.642 0.742 0.892 0.641 0.748 0.894
0.95 0.664 0.777 0.902 0.743 0.803 0.917 0.744 0.803 0.918 0.553 0.658 0.822 0.538 0.656 0.822
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Results from applying the above algorithm to the confidence interval estimates of each

Monte Carlo trial are given in Tables 6.5 and 6.6, for the five and seven-dimensional case,

respectively.

Table 6.5: Mode, mean and range of the optimal subsample size values among the different
Monte Carlo trials, using the minimum volatility algorithm, in the five-dimensional case.

Overall 1st Stage 2nd Stage
1-α 1-α 1-α

N 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
25 mode 5 5 5 5 5 5 5 5 5

mean 8.149 7.874 7.297 9.423 9.144 9.126 9.835 8.458 6.952
range 13 13 13 14 13 13 13 13 13

50 mode 33 33 8 33 33 33 33 33 8
mean 25 21.5 15.3 23.67 22.67 20.56 25.67 24.33 19.74
range 28 28 26 28 28 26 28 28 26

100 mode 63 63 63 63 63 63 63 63 63
mean 55.4 50.04 41.54 48.79 45.32 44.94 51.04 50.28 41.48
range 56 56 56 56 56 56 51 56 56

200 mode 117 117 117 117 117 117 117 117 117
mean 105.6 104.4 96.71 91.26 86.74 84.37 97.59 96.99 91.59
range 93 93 107 99 99 107 93 93 99

Table 6.6: Mode, mean and range of the optimal subsample size among the different Monte
Carlo trials, using the minimum volatility algorithm, in the seven-dimensional case.

Overall 1st Stage 2nd Stage
1-α 1-α 1-α

N 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
25 mode 5 5 5 5 5 5 5 5 5

mean 6.926 7.010 7.617 7.913 7.827 8.67 10.1 10.63 10.8
range 13 14 13 13 14 13 13 13 13

50 mode 33 33 8 33 33 8 8 8 12
mean 24.41 19.28 12.06 21.90 20.54 16.94 15.15 16.5 17.67
range 28 28 26 28 28 26 28 28 26

100 mode 63 63 63 63 63 63 12 12 12
mean 55.08 51.66 34.63 52.16 47.91 42.93 22.92 21.05 23.47
range 46 46 46 56 56 56 56 56 56

200 mode 117 117 117 117 117 117 10 10 10
mean 101.7 100.8 95.59 96.43 95.84 93.6 39.97 34.07 27.09
range 93 86 107 93 86 107 107 107 107

According to the results, in the five-dimensional DGP (see Table 6.5), in almost all
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the cases, the mode for the optimal subsample size is the same for obtaining the overall

and stage efficiency estimations and does not change for the different levels of significance.

However, from the range of the optimal subsample values, it can be seen that the optimal

subsample size can vary significantly among the different Monte Carlo trials, although

all samples are generated through the same DGP, and it should be expected that the

algorithm would yield similar values for the optimal subsample size.

Furthermore, as it was mentioned previously, for this five-dimensional DGP, values of

k = 0.60 and k = 0.65 yielded the highest coverage probabilities in most of the cases.

These values correspond to subsample sizes [250.60] = 6 and [250.65] = 8, respectively,

when N = 25, subsample sizes 10 and 12 when N = 50, 15 and 19 when N = 100 and

24 and 31 respectively, when N = 200. These subsample sizes, however, are much lower

than those indicated by the algorithm, especially when the sample size increases.

For the seven-dimensional DGP, there is a significant difference between the optimal

subsample size for obtaining the overall and first stage efficiency score, compared to the

optimal subsample size for the second stage. That raises an important issue, as all the

estimations, for the overall, first and second stage efficiencies, are based on the same

subsample size, and it is not possible to use the stage-specific optimal subsample size

without affecting the consistency of the results. This difference between the overall-first

stage and the second stage optimal subsample sizes in this DGP, is also reflected in the

coverage probabilities reported in Table 6.2, where the value of k with higher coverage

probabilities for the second stage (k = 0.90), was significantly different compared to

that for the overall and first stage estimations (k = 0.65, 0.70). Similarly to the five-

dimensional case, the subsample sizes that resulted in higher coverage probabilities in

Table 6.2, do not coincide with the optimal subsample sizes yielded by the minimum

volatility algorithm.

These issues indicate the great sensitivity of the algorithm, and demonstrate the need

for defining a more robust way for the subsample size selection in NDEA. This variability

of the optimal subsample size among the different Monte Carlo trials and the different

stages can be imputed to the zero-efficiency score issue of the NDEA algorithm that mainly

affects the upper bounds of the confidence intervals. This issue is further discussed in the

following Section were the subsampling bootstrap is applied in a real dataset, and some

suggestions for dealing with it are provided.
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6.6 Application

In this section, the subsampling methodology is applied in the efficiency analysis of rail-

ways in 22 European countries that was discussed in Chapter 4. A limitation of this data

set is that it does not include information about all the European countries, as countries

with missing data were excluded. As in DEA the efficient frontier is empirically con-

structed from the available set of DMUs, omission of DMUs may have an impact on its

shape and result in some DMUs being assigned a higher efficiency score. Since the true

frontier is unknown, the subsampling methodology can be used to provide estimations of

the true efficiency scores of European railways.

Confidence interval estimates were obtained for different values of k, i.e. for various

subsample sizes. Initially, the DMU under evaluation was included in the subsample.

For very small subsample sizes, for many countries in this data set, the upper bound of

the confidence interval estimate for some stage efficiency score was either above one, or

negative. The negative bounds result very rarely, and are due to the boundary condition

of θϕ, ϕ = 0, 1, 2 on zero. An upper bound above one occurs in the cases when in a

significant number of bootstrap replications, the algorithm returns zero values. This is an

issue that can occur in efficiency decomposition approaches, but becomes more common

when applying the subsampling bootstrap, because of the smaller size of the sample. If

this happens in more than (a/2)100% of the bootstrap replications, the upper bound

of the confidence interval is above one. This was more common in the cases when the

subsample size was very small, but even for larger subsample sizes there were still some

DMUs for which the upper bound exceeds one.

In some cases, obtaining the bootstrapped stage efficiency scores while treating both

stages as priority stages, and use the decomposition equation (3.25) - or the equivalent

equation for the first stage- to obtain the stage efficiency score when the priority-stage-

model yields infeasibility, overcomes the zero efficiency estimate issue. However, this

usually does not offer a solution to the problem, as both priority stages may yield zero

bootstrap estimates. Therefore, removing the zero bootstrap estimates seems to be the

only way to prevent them from distorting the upper bound of the confidence interval. Al-

though this reduces the size of the bootstrap efficiency sample, if the number of bootstrap

replications is large enough, it should not affect the quality of the results.

The subsample size that was used was m = 7, for k = 0.65. The choice of the

subsample size was based on the coverage probabilities obtained from the Monte Carlo
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simulations and the results from the minimum volatility algorithm of Politis et al. (2001)

for the overall process.

The model was implemented in R. In order to minimise the computational time, after

drawing the 2000 bootstrap subsamples for a specific k, i.e. for a specific subsample size,

the confidence intervals for each DMU were calculated separately and not in one for loop-

but based on the same subsamples. In this way, it is possible to use parallel processing

and reduce the computational cost. Although this dataset is small, in larger datasets this

approach can make a significant difference in the computational time.

Figure 6.2 reports the sample overall and stage efficiency scores and their corresponding

confidence interval estimates, for k = 0.65 and subsample size m = [220.65] = 7, for the

significance level a = 0.1. The original sample efficiency scores when stage one is the

priority stage are also depicted in Figure 6.2 with small circles. The blue circles denote

the efficiency estimate of the countries for which the decomposition is not unique, when

stage two is the priority stage. The exact values of the confidence interval estimates when

the DMU under evaluation is included in the subsample are provided in Table A4 in the

Appendix.

(a)
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(b)

(c)

Figure 6.2: Confidence interval estimates for (a) the overall, (b) the first stage, and (c)
the second stage efficiency scores of European railways, for k = 0.65, m = 7, and a = 0.1.

For some efficient countries, the confidence interval estimates converge to a single

point, as in the majority of the bootstrap replications these countries yield an efficiency

score equal to one, even for different subsample sizes.

According to the results, in this data set, the specific subsample size yields better

overall efficiency estimates compared to stage efficiency scores, and estimations about the

second stage are in most cases better compared to the first stage estimations. This is in

accordance with Monte Carlo simulation results, where for one of the two stages coverage

probabilities were more sensitive to the subsample size selection.

Confidence interval estimates reveal where the true efficiency score for each country

lies. Although some efficiency scores appear to be very high, the lower bound estimation

for their true efficiency is much lower, and sometimes a DMU with higher efficiency

score from another might in reality be less efficient. For example, based only on the
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original sample, France and Germany are second stage efficient, whereas Sweden has

lower efficiency score. However, the lower bound estimation for France and Germany

is lower than that of Sweden. That means in reality, there is a chance that those two

countries are less efficient in the second stage than Sweden. In this data set, confidence

interval estimation is particularly useful in the second stage, where without the bootstrap

estimations, 11 countries appear to be efficient. However, confidence interval estimates

reveal that there might be differences in their true efficiency scores. For the second stage

efficient countries Netherlands, Poland and Spain, for example, the lower bound remains

above 0.9, whereas for the UK, the lower bound is about 0.8. For Germany and France, the

lower bounds lie even lower, around 0.5. Therefore, confidence interval estimates should

be considered from the countries to get a better insight into what is the main source

of inefficiency for their railway network, to be able to form an effective improvement

agenda. As it was indicated by the results, considering these estimates, provides higher

discrimination among the different countries’ railway-efficiency level.

Confidence interval estimates for k = 0.65 and a = 0.1 when the DMU under evalua-

tion is not included in the subsample, are given in Figure 6.3 below.

As it was discussed in the previous section, not including the DMU under evaluation

in the subsample, increases the range of the confidence intervals. In this dataset, this

approach resulted in upper bounds above one for the majority of DMUs. The following

adaptations resulted in avoiding the high upper bound, and significantly reduced the

range of the confidence intervals: (i) setting the zero overall efficiency scores equal to one,

(ii) treating both stages as priority stage and (iii) using the decomposition equation when

the priority-stage-model yields zero efficiency score values. Alternatively, (i) setting the

zero overall efficiency scores equal to one, and (ii) removing the stage bootstrap efficiency

estimates that are equal to zero. However, even after following the aforementioned steps,

the resulting confidence intervals in most of the cases are too wide to offer any insight

about the true efficiency scores. Therefore, the including the DMU under evaluation in

the subsample seems to be a preferred approach.
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(a)

(b)

(c)

Figure 6.3: Confidence interval estimates for (a) the overall, (b) the first stage, and (c)
the second stage efficiency scores of European railways, for k = 0.65, m = 7, and a = 0.1,
when the DMU under evaluation is not included in the subsample.

The exact values of the confidence interval estimates when the DMU under evaluation

is not included in the subsample are provided in Table A5 in the Appendix.
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6.7 Conclusion

The DEA approach, where the production frontier is constructed empirically, does not con-

sider for sampling noise. Bootstrapping techniques are now well-established in the DEA

literature, and are broadly used to make statistical inference about the efficiency scores

in one stage production processes. However, in many cases, the production structure of

DMUs involves sub-stages which need to be considered in the efficiency measurement.

This Chapter examined the applicability and performance of bootstrapping in general

two-stage structures, where the additive decomposition approach is used to calculate the

overall and stage efficiency scores, and the VRS is assumed, and the subsampling boot-

strap was applied to obtain confidence interval estimates for the environmental efficiency

of European railways.

Bootstrapping can be computationally demanding, especially in high-dimensional

models. For this reason, among the different bootstrapping techniques, the subsampling

methodology was considered in this study, as it does not require any kernel smoothing and

also allows for heterogeneity in the efficiency distributions among the different DMUs.

Monte Carlo simulations were performed, based on samples obtained through two

DGPs, defined for a five and a seven dimensional two-stage series structure, respectively.

According to the results, in network structures, the coverage probabilities are more sen-

sitive to the DGP compared to single-stage structures. Similarly to one-stage processes,

coverage probabilities are very sensitive both to the sample and subsample sizes, and get

lower as the sample size increases. However, in contrast to conventional DEA, in NDEA

for some subsample sizes, coverage probabilities tend to zero. That means that the sub-

sample size should be selected very carefully, notably when the size of the original sample

is large, as in any other case, the resulting confidence intervals could be misleading.

The selection of the subsample size is a limitation of applying subsampling bootstrap

in NDEA. The algorithm suggested by Politis et al. (2001) may offer a rule of thumb,

especially in one-stage structures, but in NDEA, it was shown that the optimal subsample

size resulting from the minimum volatility algorithm is not always the one that yields the

highest coverage probabilities. This issue was further investigated and it seems that a

peculiarity of the additive efficiency decomposition approach that assigns zero optimal

weights to some DMUs when considering some stage as priority stage affects the perfor-

mance of the minimum volatility algorithm. Therefore, in this study it was suggested

to use the priority-stage model to get the efficiency score of both stages and use the
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decomposition equation in the cases when the priority-stage-model yields zero optimal

results.

A limitation of applying subsampling bootstrap in the specific data set was that small,

medium and large scale operators coexisted in the sample. As a result, a subsample

frontier may differ significantly from the original sample frontier, distorting the confidence

interval estimates. Furthermore, due to this heterogeneity, for some of the sample-efficient

countries the confidence interval estimate converged to a single point. If the size of the

original sample was larger, a solution to this could be to divide the data set into different

clusters and get confidence interval estimates in each cluster separately. However, if

clustering is applied in this data set then the size of the original sample would be too

small to provide any discrimination among DMUs. Therefore, in this case conditioning the

efficiency of DMUs on some environmental factors could offer a solution to the problem.

Future steps could focus on the consideration of environmental factors, defining a

reliable method for the subsample size selection, as well as studying the performance of

bootstrapping in other network structures, under different returns to scale assumptions,

and/or considering substitution effects. Extension to the output orientation can also be

considered, although the model orientation should not affect the results.
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Conclusion

Conventional DEA does not consider the inner structure of DMUs or any sampling noise

in the efficiency evaluation process. Therefore, a big branch of the DEA literature has

focused on the evaluation of the efficient frontier in the cases of multi-stage production

processes. Furthermore, bootstrapping techniques have been used to account for sampling

noise, and various studies have focused on deriving the properties of the DEA estimator.

In this thesis, the application of bootstrapping techniques was extended to network DEA

models, and the performance of these techniques was examined through Monte Carlo

simulations. The suggested approach was implemented to obtain confidence interval esti-

mations about the efficiency scores of the railway transport process in Europe.

First, we revised the main DEA models and provided a review and comparison of

the main approaches used in network DEA to obtain the efficiency scores of the overall

and stage processes in two-stage series structures. Among the different network DEA

approaches, we used the additive efficiency decomposition approach to study the efficiency

of European railways. Railways are a capital-intensive industry, which aims to provide

passenger and freight carriage. Therefore, in order to have an insight into the railway

operations process and better identify any sources of inefficiency, the railway transport

process was divided into two stages; the first one was related to the railway assets and

the second one to the railway service provision.

Although railways are the most environmentally friendly means of transport, noise

pollution generated from the contact of the rolling wheel with the rail lines, as well aero-

dynamic noise, seems to be a major environmental issue, especially in Europe. Regarding

the impact of railway noise on humans, this can cause mild to severe health
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issues depending on the duration and intensity of noise. The European Commission

has set noise emission limits and has defined common noise assessment methods for all

EU member states. To achieve noise-emission goals, countries need to gradually retrofit

their wagon fleet with more silent braking technology, as well as keep the rail line network

well-maintained. Therefore, in this study, the number of wagons that are compliant with

the noise emission limits, as well as the number of people exposed to high levels of railway

noise in each country were considered in the efficiency measurement.

As in Europe there are small and large-scale railway operators, the VRS assumption

was adopted. Although in the additive decomposition algorithm the endogenous defini-

tion of the decomposition weights results in a non-increasing relationship between them,

favouring the first stage, we showed that under the VRS assumption such a non-increasing

relationship cannot be established. However, decomposition weight restrictions had to be

used to prevent the optimisation process from assigning a zero weight to one of the two

stages, as in that case, the contribution of that stage to the overall process would be

ignored. The decomposition weight restrictions were defined based on sensitivity analy-

sis results. Sensitivity analysis revealed that although any use of decomposition weight

restrictions affects the efficiency scores, for a wide range of stepwise changes in the re-

strictions, efficiency scores are only very slightly affected, and rankings are robust to

alterations. For the cases when the stakeholders do not have specific suggestions regard-

ing the relative importance of each stage, and so there are no specific weight restrictions

that should be applied, we suggested an algorithm for the choice of the decomposition

weight restrictions so that their impact on the efficiency scores is minimised.

Poland, Netherlands and Germany were found to be overall efficient. Based on the

results, except for Finland, asset-efficient countries are also service efficient. However,

countries that appear to be efficient in the service provision stage, seem to be able to

apply further improvements to their asset management.

A limitation of the dataset that was used is that for many European countries, data

were not available. As a result, the efficient frontier and the efficiency scores of DMUs were

affected. In any case, the available set of DMUs is a sample drawn from an underlying

population. Therefore, next, we provided a review of the bootstrap approaches used in

the one-stage DEA context to account for sampling noise. We discussed the assumptions

made in each approach and we highlighted any inconsistency or computational issues using

illustrative examples. In this way, we affirmed the advantage of subsampling bootstrap,

which does not rely on any restrictive homogeneity assumptions about the distribution
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of inefficiencies among DMUs and is also computationally easier than other consistent

heterogeneous bootstrap approaches.

Although bootstrap approaches have been widely studied and implemented in one-

stage production structures, there is a very limited number of studies that make statistical

inference in multi-stage structures, and usually, in these studies, the relation between

the different stages is not considered. In this thesis, we set a statistical framework in

Network DEA. The frontier model was defined for general two-stage series structures, but

definitions can be extended to different network structures.

We run Monte Carlo simulations in R to assess the performance of subsampling boot-

strap in two-stage series structures. Data were generated for two different structures, a

five, and a seven-dimensional one, under the VRS assumption. For a fixed point with a

known true efficiency score, experiments were performed for a range of different sample

and subsample sizes, with the fixed point under evaluation being included and not being

included in the subsample. The probabilities that the true efficiency score lies within the

estimated confidence intervals were calculated.

Based on the resulting coverage probabilities, the performance of subsampling is more

sensitive to the sample and subsample size selection compared to one-stage structures,

due to the higher dimensions of the models. Usually, for larger samples (e.g. 200 DMUs)

the overall performance was lower. For subsamples that include neither a very small nor

very large proportion of the original sample DMUs, coverage probabilities were usually

very high. Furthermore, we showed that the choice of the priority stage does not affect

the resulting coverage probabilities.

The subsample size selection is a limitation of implementing subsampling bootstrap.

We revisited the minimum volatility algorithm that is being used in one-stage DEA. Based

on the findings, due to some peculiar stage efficiency estimates resulting from the additive

decomposition algorithm, the minimum volatility algorithm should preferably be applied

to the confidence interval estimates for the overall efficiency and not to the estimates for

the stage efficiencies.

The peculiarity of the additive decomposition algorithm lies in the return of some

negative or zero efficiency estimates for the stage efficiencies. These results impact the

upper bounds of the confidence interval estimates, and in some cases may result in upper

bounds that are above one. We suggested that one solution to this could be to set the

zero overall efficiency estimates equal to one and remove those discrepant stage efficiency

estimates from the bootstrap sample. However, this would be at the cost of reducing the
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size of the bootstrap efficiency sample, and it should only be used only in the cases when

the number of bootstrap replications is high enough so that the quality of the results

is not affected. Alternatively, it is suggested to set the zero overall efficiency estimates

equal to one, obtain the efficiency estimate for each stage while it is considered a priority

stage and if a zero estimate is obtained, use the decomposition equation to calculate this

efficiency estimate instead. This approach, also reduces significantly the times that upper

bounds above one occur.

In the case when the DMU under evaluation was not included in the subsample,

the range of the estimated confidence intervals was significantly larger than when the

DMU under evaluation was included in the subsample. Such large confidence intervals

could not offer any useful insight into the true inefficiency of DMUs. Therefore, the

subsampling methodology was implemented to get the confidence interval estimates for

the efficiency score of European railways, including each time the DMU under evaluation

in the subsample. For many countries that appeared to be efficient in one of the two

stages, the resulting confidence interval estimates revealed that their true efficiency score

is probably much lower. Sometimes, for a country that had a higher efficiency than score

another, the confidence interval estimates revealed that in reality, it might be less efficient.

To conclude, the above research can be extended in many directions. First, regarding

the efficiency measurement in the railway transport process, future studies could dis-

tinguish between different railway noise sources, such as noise generated by passenger

high-speed trains, or noise generated by freight wagons. Also, variables that consider the

impact of railway noise inside and outside urban areas separately, or on the wildlife could

be included in the model.

Furthermore, in this study targets for countries were not provided. Although in net-

work DEA, the envelopment model is said to provide frontier projections, in this case,

decomposition weights were restricted, and as a result, DMUs were not projected on the

efficient frontier even with the envelopment model. Therefore, future studies could inves-

tigate the impact of the decomposition weight restrictions on the frontier projections, and

suggest alternative, unbiased approaches for efficiency evaluation.

Since the duality between the envelopment and the multiplier model does not hold

in network DEA, the difference between the projections yielded by the two models could

be studied asymptotically. Furthermore, projections given by different network DEA

approaches could be studied asymptotically.

The performance of bootstrapping in other network structures could also be investi-
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gated. Finally, considering that the returns to scale properties in network DEA do not

hold as in one-stage DEA, another research direction could focus on how hypothesis tests

about the returns to scale in network DEA could be developed.
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The notation that is being used in Chapters 3 and 6 is given below.

List of notations in Chapter 3:
j Index of DMUs.
j0 DMU under evaluation.
N Number of DMUs in the sample.
xpj = (x1j, ..., xPj) Vector of 1st stage inputs for DMUj.
lrj = (l1j, ..., lRj) Vector of 1st stage outputs for DMUj.
zqj = (z1j, ..., zQj) Vector of intermediate products for DMUj.
gtj = (g1j, ..., gTj) Vector of 2nd stage inputs for DMUj.
ysj = (y1j, ..., ySj) Vector of 2nd stage outputs for DMUj.
vp = (v1, ..., vP ) Vector of multipliers for the 1st stage inputs in the fractional dual model.
µr = (µ1, ..., µR) Vector of multipliers for the 1st stage outputs in the fractional dual model.

γq = (γ1, ..., γQ)
Vector of multipliers for the intermediate products in the fractional dual
model.

πt = (π1, ..., πT ) Vector of multipliers for the 2nd stage inputs in the fractional dual model.

ηs = (η1, ..., ηS)
Vector of multipliers for the 2nd stage outputs in the fractional dual
model.

ξd = (ξ1, ..., ξD)
Vector of multipliers for the undesirable outputs in the fractional dual
model.

v′p = (v′1, ..., v
′
P ) Vector of multipliers for the 1st stage inputs in the linear dual model.

µ′
r = (µ′

1, ..., µ
′
R) Vector of multipliers for the 1st stage outputs in the linear dual model.

γ′
q = (γ′

1, ..., γ
′
Q)

Vector of multipliers for the intermediate products in the linear dual
model.

π′
t = (π′

1, ..., π
′
T ) Vector of multipliers for the 2nd stage inputs in the linear dual model.

η′s = (η′1, ..., η
′
S Vector of multipliers for the 2nd stage outputs in the linear dual model.

ξ′d = (ξ′1, ..., ξ
′
D) Vector of multipliers for the undesirable outputs in the linear dual model.

w1j Decomposition weight of the 1st stage.
w2j Decomposition weight of the 2nd stage.
θ0j Overall input efficiency score of DMUj.
θ1j 1st stage input efficiency score of DMUj.
θ2j 2nd stage input efficiency score of DMUj.
ϕ0
j Overall output efficiency score of DMUj.

ϕ1
j 1st stage output efficiency score of DMUj.

ϕ2
j 2nd stage output efficiency score of DMUj.

k Stage indicator.
p Priority stage indicator.
λj Intensity vector of the first stage in the envelopment model.
µj Intensity vector of the second stage in the envelopment model.
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List of notations in Chapter 6:
j Index of DMUs.
j0 DMU under evaluation.
N Number of DMUs in the sample.
m Number of DMUs in the subsample.
k exponent used to define the subsample size
xe Vector of first stage efficient inputs
ge Vector of second stage efficient inputs
xpj = (x1j, ..., xPj) Vector of 1st stage inputs for DMUj.
lrj = (l1j, ..., lRj) Vector of 1st stage outputs for DMUj.
zqj = (z1j, ..., zQj) Vector of intermediate products for DMUj.
gtj = (g1j, ..., gTj) Vector of 2nd stage inputs for DMUj.
ysj = (y1j, ..., ySj) Vector of 2nd stage outputs for DMUj.
vp = (v1, ..., vP ) Vector of multipliers for the 1st stage inputs in the fractional dual model.
µr = (µ1, ..., µR) Vector of multipliers for the 1st stage outputs in the fractional dual model.

γq = (γ1, ..., γQ)
Vector of multipliers for the intermediate products in the fractional dual
model.

πt = (π1, ..., πT ) Vector of multipliers for the 2nd stage inputs in the fractional dual model.

ηs = (η1, ..., ηS)
Vector of multipliers for the 2nd stage outputs in the fractional dual
model.

ξd = (ξ1, ..., ξD)
Vector of multipliers for the undesirable outputs in the fractional dual
model.

v′p = (v′1, ..., v
′
P ) Vector of multipliers for the 1st stage inputs in the linear dual model.

µ′
r = (µ′

1, ..., µ
′
R) Vector of multipliers for the 1st stage outputs in the linear dual model.

γ′
q = (γ′

1, ..., γ
′
Q)

Vector of multipliers for the intermediate products in the linear dual
model.

π′
t = (π′

1, ..., π
′
T ) Vector of multipliers for the 2nd stage inputs in the linear dual model.

η′s = (η′1, ..., η
′
S Vector of multipliers for the 2nd stage outputs in the linear dual model.

ξ′d = (ξ′1, ..., ξ
′
D) Vector of multipliers for the undesirable outputs in the linear dual model.

w1j Decomposition weight of the 1st stage.
w2j Decomposition weight of the 2nd stage.
θ0j True overall efficiency score of DMUj.
θ1j True first stage efficiency score of DMUj.
θ2j True second stage efficiency score of DMUj.ˆ︁θ0j Estimation of the overall efficiency score of DMUj.ˆ︁θ1j Estimation of the first stage efficiency score of DMUj.ˆ︁θ2j Estimation of the second stage efficiency score of DMUj.ˆ︂ˆ︂θ0 j Bootstrap estimation of the overall efficiency score of DMUj.ˆ︂ˆ︂θ1 j Bootstrap estimation of the first stage efficiency score of DMUj.ˆ︂ˆ︂θ2 j Bootstrap estimation of the second stage efficiency score of DMUj.
ϕ Stage indicator.
p Priority stage indicator.
a confidence level

Imlow

Lower bound of the confidence interval estimate obtained with
subsample size m

Imup

Upper bound of the confidence interval estimate obtained with
subsample size m

As it was discussed in Chapters 3 and 4, in NDEA, the multiplier model should be

used to obtain the efficiency scores of DMUs and the envelopment model to obtain the

frontier projections. However, as it is mentioned in Section 4.5.3 when decomposition
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weight restricitons were used, the envelopment-primal model cannot provide the frontier

projections. Model (1) is the primal of model (4.6), and Table A1 includes the variable-

constraint correspondences between the two models.

min θj0

s.t. −
N∑︂
j=1

λjxpj + θj0xpj0 + (c0 − 1)πj0xpj0 + c0ρj0xpj0 ≥ 0, ∀p

N∑︂
j=1

λjlrj ≥ lrj0 , ∀r

N∑︂
j=1

λjzqj −
N∑︂
j=1

µjzqj + θj0zqj0 + πj0c0zqj0 + ρj0(c0 − 1)zqj0 ≥ zqj0 , ∀q

−
N∑︂
j=1

µj(yb)dj + θj0(yb)dj0 + πj0c0(yb)dj0 + ρj0(c0 − 1)(yb)dj0 ≥ 0, ∀d (1)

N∑︂
j=1

µjysj ≥ ysj0 , ∀s

N∑︂
j=1

λj = 1

N∑︂
j=1

µj = 1

λj, µj ≥ 0,∀j, πj0 , ρj0 ≥ 0

Table A1: Primal-dual correspondences between models (4.6) and (1).

duals
primal

λj µj θj0 πj0 ρj0 primal RHS/
dual obj.

v′p −xpj 0 xpj0 (c0 − 1)xpj0 c0xpj0 ≥ 0
µ′
r lrj 0 0 0 0 ≥ lj0

γ′
q zqj −zqj zqj0 c0zqj0 (c0 − 1)zqj0 ≥ zqj0

ξ′d 0 −(yb)dj (yb)dj0 c0(yb)dj0 (c0 − 1)(yb)dj0 ≥ 0
η′s 0 ysj 0 0 0 ≥ ysj0
u1 1 0 0 0 0 = 1
u2 0 1 0 0 0 = 1

≤ ≤ = ≤ ≤
prim. obj./
dual RHS

0 0 1 0 0

In Section 4.5.1, a volatility index was calculated to choose the decomposition weight

restrictions c0. In Table A2, the values of the volatility index Vc0 for different values of c0
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are provided. The lower the value of Vc0 , the less the impact of the decomposition weight

restrictions to the efficiency scores.

Table A2: Volatility indices for the overall efficiency scores

Vc0

c0 r=1 r=2 r=3 r=4
0.01 - - - -
0.02 0.02677 - - -
0.03 0.02677 0,04233 - -
0.04 0.02677 0.04233 0.05784 -
0.05 0.02677 0.04233 0.05784 0.07332
0.06 0.02677 0.04233 0.05784 0.07332
0.07 0.02677 0.04233 0.05784 0.07332
0.08 0.02677 0.04233 0.05784 0.07332
0.09 0.02677 0.04233 0.05784 0.07332
0.10 0.02677 0.04233 0.05784 0.07332
0.11 0.02677 0.04233 0.05784 0.07332
0.12 0.02677 0.04233 0.05784 0.07332
0.13 0.02677 0.04233 0.05784 0.07332
0.14 0.02677 0.04233 0.05784 0.07332
0.15 0.02677 0.04233 0.05784 0.07332
0.16 0.02677 0.04233 0.05784 0.07402
0.17 0.02677 0.04233 0.05863 0.07590
0.18 0.02677 0.04328 0.06073 0.07837
0.19 0.02799 0.04568 0.06343 0.08152
0.20 0.03076 0.04861 0.06679 0.08501
0.21 0.03313 0.05189 0.07025 0.08857
0.22 0.03466 0.05437 0.07335 0.09201
0.23 0.03547 0.05569 0.07564 0.09498
0.24 0.03565 0.05651 0.07696 0.09710
0.25 0.03606 0.05695 0.07780 0.09877
0.26 0.03636 0.05738 0.07875 0.10020
0.27 0.03647 0.05822 0.07986 0.10183
0.28 0.03727 0.05915 0.08139 0.10451
0.29 0.03817 0.06060 0.08401 0.10747
0.30 0.03923 0.06326 0.08690 0.11042
0.31 0.04167 0.06576 0.08964 0.11324
0.32 0.04344 0.06782 0.09186 0.11582
0.33 0.04381 0.06903 0.09364 0.11816
0.34 0.04381 0.06941 0.09507 0.12042
0.35 0.04404 0.07007 0.09624 0.12344
0.36 0.04493 0.07123 0.09882 0.12848
0.37 0.04602 0.07416 0.10432 0.13448
0.38 0.04895 0.08015 0.11065 0.14099
0.39 0.05523 0.08615 0.11691 0.14779
0.40 0.05894 0.09112 0.12280 0.15471
0.41 0.05940 0.09439 0.12823 0.16276
0.42 0.06059 0.09649 0.13406 0.17116
0.43 0.06270 0.10101 0.13990 0.18142
0.44 0.06707 0.10686 0.14910 0.19375
0.45 0.07175 0.11558 0.16147 0.20728
0.46 0.07844 0.12697 0.17421 0.22148
0.47 0.08775 0.13726 0.18658 -
0.48 0.09380 0.14618 - -
0.49 0.09634 - - -
0.50 - - - -

In Section 4.5.2, to investigate whether for some first stage efficient countries, the
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lower second stage efficiency score is due to the number of people affected by noise, Lden

variable was excluded from the model. The resulting efficiency scores are provided in

Table A3 below.

Table A3: Efficiency scores and optimal decomposition weights, when Lden is omitted
from the model, and w1j, w2j ≥ 0.1

DMU θ0∗ w∗
1j w∗

2j θ1p∗ θ2∗ θ1∗ θ2p∗

1 Austria 0.4204 0.7703 0.2297 0.2748 0.9089 0.2748 0.9089
2 Belgium 0.3655 0.8872 0.1128 0.3328 0.6226 0.3328 0.6226
3 Bulgaria 0.6985 0.6430 0.3570 0.9081 0.3210 0.9081 0.3210
4 Croatia 0.6650 0.7123 0.2877 0.7421 0.4742 0.7421 0.4742
5 Czech Rep. 0.6431 0.7890 0.2110 0.7356 0.2970 0.7356 0.2970
6 Denmark 0.6490 0.7700 0.2300 0.5735 0.9016 0.5735 0.9016
7 Estonia 1 0.9000 0.1000 1 1 1 1
8 Finland 0.7006 0.5678 0.4322 1 0.3072 1 0.3072
9 France 0.9474 0.4462 0.5538 0.8822 1 0.8822 1
10 Germany 1 0.9000 0.1000 1 1 1 1
11 Ireland 0.7261 0.7161 0.2839 0.7339 0.7065 0.7339 0.7065
12 Latvia 0.9473 0.6478 0.3522 0.9186 1 0.9186 1
13 Lithuania 0.5885 0.7721 0.2279 0.4932 0.9117 0.4932 0.9117
14 Netherlands 0.4454 0.9000 0.1000 0.5146 -0.1774 0.3838 1
15 Poland 0.8495 0.4829 0.5171 1 0.7089 1 0.7089
16 Portugal 0.7826 0.9000 0.1000 0.8250 0.4008 0.7943 0.6769
17 Slovenia 0.6537 0.8174 0.1826 0.5764 1 0.5764 1
18 Spain 0.4528 0.6516 0.3484 0.4851 0.3926 0.4851 0.3926
19 Sweden 0.7696 0.4717 0.5283 0.8628 0.6863 0.8628 0.6863
20 UK 0.5788 0.6567 0.3433 0.3586 1 0.3586 1
21 Norway 0.4620 0.7717 0.2283 0.4808 0.3985 0.4808 0.3985
22 Switzerland 0.7207 0.9000 0.1000 0.9552 -1.3899 0.6896 1

The exact values of the confidence interval estimates for the overall and stage efficiency

scores in the cases when the DMU under evaluation is included and is not included in the

subsample are provided in Tables A4 and A5, respectively.
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Table A4: Sample efficiency scores and bootstrap confidence interval estimates when stage 1 is the priority stage, for a = 0.1, and when the
DMU under evaluation is included in the subsample.

DMU θ0∗ lower b. upper b. θ1p∗ lower b. upper b. θ2∗ lower b. upper b.

1 Austria 0.433637 0.208357 0.383818 0.274788 0.124054 0.302411 0.694873 0.394349 0.769616
2 Belgium 0.397365 0.200504 0.338427 0.333166 0.184933 0.474321 0.539735 0.307296 0.525567
3 Bulgaria 0.703788 0.326014 0.630012 0.908831 0.431459 0.853548 0.368453 0.159534 0.356542
4 Croatia 0.665272 0.479040 0.628639 0.727019 0.561044 0.898322 0.519453 0.310693 0.510360
5 Czech Rep. 0.667277 0.273828 0.605546 0.735596 0.374623 0.720089 0.511593 0.237643 0.502487
6 Denmark 0.762902 0.611630 0.714738 0.576000 0.371754 0.562920 1 0.555620 1
7 Estonia 1 1 1 1 1 1 1 0.999998 1
8 Finland 0.705130 0.531244 0.681369 1 0.999274 1 0.365703 0.203466 0.376088
9 France 0.988221 0.978487 0.988221 0.882214 0.809538 0.882214 1 0.512199 1

10 Germany 1 0.999999 1 1 0.999999 1 1 0.247326 1
11 Ireland 0.731261 0.566912 0.692171 0.737318 0.575343 0.737318 0.718122 0.548835 0.709402
12 Latvia 0.977333 0.958806 0.965361 0.918610 0.866319 0.918610 1 0.916369 1
13 Lithuania 0.949317 0.909080 0.949317 0.493179 0.318361 0.493179 1 0.916369 1
14 Netherlands 0.547971 0.340820 0.519539 0.438678 0.266457 0.558130 1 0.916369 1.001652
15 Poland 1 1 1 1 0.999921 1 1 0.620001 1
16 Portugal 0.787282 0.647227 0.765360 0.824983 0.704233 0.824983 0.447969 0.241157 0.404513
17 Slovenia 0.659973 0.472300 0.631500 0.576376 0.405605 0.584509 1 0.999993 1.040584
18 Spain 0.955938 0.922253 0.954360 0.559388 0.387003 0.546031 1 0.999998 1
19 Sweden 0.805756 0.680584 0.722400 0.862833 0.780057 0.850267 0.769217 0.645058 0.693513
20 UK 0.938041 0.889435 0.937427 0.380410 0.215562 0.375286 1 0.799631 1
21 Norway 0.467649 0.274073 0.425356 0.481784 0.307165 0.522290 0.431738 0.226559 0.431629
22 Switzerland 0.893634 0.814142 0.871282 0.955176 0.925232 0.955176 0.339756 0.082077 0.306216
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Table A5: Sample efficiency scores and bootstrap confidence interval estimates when stage1 is the priority stage, for a = 0.1, when the DMU
under evaluation is not included in the subsample.

DMU θ0∗ lower b. upper b. θ1p∗ lower b. upper b. θ2∗ lower b. upper b.

1 Austria 0.433637 0.169129 0.380566 0.274788 0.085673 0.747752 0.694873 0.320606 0.794757
2 Belgium 0.397365 0.170588 0.315284 0.333166 0.151864 0.510512 0.539735 0.248719 0.528217
3 Bulgaria 0.703788 0.288663 0.614996 0.908831 0.266616 0.851818 0.368453 0.092900 0.394161
4 Croatia 0.665272 0.187660 0.611379 0.727019 0.476124 0.759991 0.519453 0.118708 0.518712
5 Czech Rep. 0.667277 0.163166 0.578460 0.735596 0.255138 0.677112 0.511593 0.129482 0.598083
6 Denmark 0.762902 0.309675 0.645281 0.576000 0.376728 0.676997 1 0.443666 1
7 Estonia 1 0.113483 1 1 0.085119 1 1 0.135359 1
8 Finland 0.705130 0.225920 0.644926 1 0.470908 1.077505 0.365703 0.067574 0.374695
9 France 0.988221 0.704528 0.979453 0.882214 0.813515 0.882214 1 0.728649 1

10 Germany 1 1 1 1 1 1 1 0.545027 1
11 Ireland 0.731261 0.339602 0.657388 0.737318 0.448851 0.818779 0.718122 0.241490 0.698535
12 Latvia 0.977333 0.052632 0.960600 0.918610 0.231303 0.918610 1 0.056902 1
13 Lithuania 0.949317 0.022188 0.939561 0.493179 0.097823 0.493179 1 0.026116 1
14 Netherlands 0.547971 0.234199 0.470156 0.438678 0.025540 0.624109 1 0.532986 1.207284
15 Poland 1 0.252828 1 1 0.788225 1 1 0.251806 1
16 Portugal 0.787282 0.347551 0.736736 0.824983 0.391342 0.878788 0.447969 0.410544 0.875853
17 Slovenia 0.659973 0.239808 0.590949 0.576376 0.293321 0.900588 1 0.494209 1.109359
18 Spain 0.955938 0.088945 0.948399 0.559388 0.361779 0.548354 1 0.099149 1
19 Sweden 0.805756 0.306352 0.710857 0.862833 0.389731 1.077505 0.769217 0.266748 0.848623
20 UK 0.938041 0.448779 0.935648 0.380410 0.187375 0.380411 1 0.421112 1
21 Norway 0.467649 0.265462 0.421282 0.481784 0.286718 0.528833 0.431738 0.235597 0.396026
22 Switzerland 0.893634 0.699329 0.858995 0.955176 0.927642 1.039189 0.339756 0.489470 1.530992
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Cantos, P., Pastor, J. & Serrano, L. (1999), ‘Productivity, efficiency and technical change
in the European railways: a non-parametric approach’, Transportation 26(4), 337–357.

Cantos, P., Pastor, J. & Serrano, L. (2010), ‘Vertical and horizontal separation in the Eu-
ropean railway sector and its effects on productivity’, Journal of Transport Economics
and Policy 44(2), 139–160.

Castelli, L., Pesenti, R. & Ukovich, W. (2010), ‘A classification of DEA models when
the internal structure of the decision making units is considered’, Annals of Operations
Research 173, 207–235.

Chang, Y., Zhang, N., Danao, D. & Zhang, N. (2013), ‘Environmental efficiency analysis of
transportation system in China: a non-radial dea approach’, Energy Policy 58, 277–283.

Chapin, A. & Schmidt, S. (1999), ‘Do mergers improve efficiency? Evidence from dereg-
ulated rail freight’, Journal of Transport Economics and Policy 33(2), 147–162.

Charles, V., Aparicio, J. & Zhu, J. (2019), ‘The curse of dimensionality of decision-making
units: A simple approach to increase the discriminatory power of data envelopment
analysis’, European Journal of Operational Research 279, 929–940.

Charnes, A. & Cooper, W. (1959), ‘Chance-constrained programming’, Management Sci-
ence, INFORMS 6(1), 73–79.

170



BIBLIOGRAPHY

Charnes, A. & Cooper, W. (1962), ‘Programming with linear fractional functionals’, Eu-
ropean Journal of Operational Research 9(3-4), 181–186.

Charnes, A., Cooper, W., Golany, B., Halek, R., Klopp, G., Schmitz, E. & Thomas,
D. (1986), ‘Two phase data envelopment analysis approach to policy evaluation and
management of army recruiting activities: tradeoffs between joint services and army
advertising’, Research Report CCS no. 532, Center for Cybernetic Studies .

Charnes, A., Cooper, W., Golany, B., Seiford, L. & Stutz, J. (1985), ‘Foundations of data
envelopment analysis and pareto–koopmans empirical production functions’, Journal
of Econometrics 30, 91–107.

Charnes, A., Cooper, W. & Rhodes, E. (1978), ‘Measuring the efficiency of decision
making units’, European Journal of Operational Research 2, 429–444.

Chen, Y., Cook, W., Kao, C. & Zhu, J. (2013), ‘Network DEA pitfalls: Divisional effi-
ciency and frontier projection under general network structures’, European Journal of
Operational Research 226(3), 507–515.

Chen, Y., Cook, W. & Zhu, J. (2010), ‘Deriving the DEA frontier for two-stage processes’,
European Journal of Operational Research 202(1), 138–142.

Chen, , Cook, W., Li, N. & Zhu, J. (2009), ‘Additive efficiency decomposition in two-stage
DEA’, European Journal of Operational Research 196(3), 1170–1176.

Chilingerian, J. & Sherman, H. (1990), ‘Managing physician efficiency and effectiveness
in providing hospital services’, Health Services Management Research 13(1), 3–15.

Clark, C. & Stansfeld, S. (2007), ‘The effect of transportation noise on health and cogni-
tive development: A review of recent evidence’, International Journal of Comparative
Psychology 20(2-3), 145–158.

Coelli, T. & Perelman, S. (1999), ‘Comparison of parametric and non-parametric distance
functions: With application to European railways’, European Journal of Operational
Research 117(2), 326–339.

Commission Decision 2006/66/EC (2006), ‘concerning the technical specification for in-
teroperability relating to the subsystem ‘rolling stock-noise’ of the trans-European con-
ventional rail system’, Official Journal of the European Union L 37/1.

Cook, W. & Zhu, J. (2014), Data Envelopment Analysis: A Handbook of Modeling Internal
Structure and Network, Vol. 208, Springer US, New York.

Cook, W., Zhu, J., Bi, G. & Yang, F. (2010), ‘Network DEA: Additive efficiency decom-
position’, European Journal of Operational Research 207(2), 1122–1129.

Cooper, W., Huang, Z. & Li, S. (2004), Chance constrained dea, in W. Cooper, L. Seiford
& J. Zhu, eds, ‘Handbook on Data Envelopment Analysis’, Kluwer Academic Publish-
ers.

Cooper, W., Seiford, L. & Tone, K. (2007), Data Envelopment Analysis: A Comprehensive
Text with Models, Applications, References and DEA-Solver Software, 2 edn, Springer,
New York.

Cooper, W., Seiford, L. & Zhu, J. (2011), Data envelopment analysis: History, models,
and interpretations, in W. Cooper, L. Seiford & J. Zhu, eds, ‘Handbook on Data Envel-
opment Analysis. International Series in Operations Research & Management Science’,
Vol. 164, Springer, Boston, MA.

Council Directive 2002/49/EC (2002), ‘relating to the assessment and management of
environmental noise’, Official Journal of the European Union L 189/12.

Council Directive 2008/57/EC (2008), ‘on the interoperability of the rail system within
the Community’, Official Journal of the European Union L 191/1.

M. Michali, PhD Thesis, Aston University 2022 171



BIBLIOGRAPHY

Cui, Q. & Li, Y. (2014), ‘The evaluation of transportation energy efficiency: an application
of three-stage virtual frontier DEA’, Transportation Research Part D 29, 1–11.

Daraio, C. & Simar, L. (2007), Advanced Robust and Nonparametric Methods in Efficiency
Analysis. Methodology and Applications, Springer, New York.

Daraio, C., Simar, L. & Wilson, P. (2015), ‘Testing the ”separability” condition in two-
stage nonparametric models of production’, LEM Papers Series 2015/21, Laboratory
of Economics and Management (LEM), Sant’Anna School of Advanced Studies, Pisa,
Italy .

De Jorge-Moreno, J. & Garcia-Cebrian, L. (1999), ‘Measuring of production efficiency in
the European railways’, European Business Review 99(5), 332–344.

De Jorge-Moreno, J. & Suarez, C. (2003), ‘Has the efficiency of European railway com-
panies been improved?’, European Business Review 15(4), 213–220.

Debreu, G. (1951), ‘The coefficient of resource utilization’, Econometrica 19(3), 273–292.

Despotis, K., Koronakos, G. & Sotiros, D. (2016a), ‘Composition versus decomposi-
tion in two-stage network DEA: a reverse approach’, Journal of Productivity Analysis
45, 71–87.

Despotis, K., Koronakos, G. & Sotiros, D. (2016b), ‘The ”weak-link” approach to network
dea for two-stage’, European Journal of Operational Research 254(2), 481–492.

Dia, M., Takouda, P. & Golmohammadi, A. (2020), ‘Assessing the performance of Cana-
dian credit unions using a three-stage network bootstrap DEA’, Annals of Operations
Research .
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Färe, R., Grabowski, R., Grosskopf, S. & Kraft, S. (1997), ‘Efficiency of a fixed but
allocatable input: A non-parametric approach’, Economics Letters 56, 187–193.
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