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Summary 
 
The flue gas stacks of industrial steam boilers can be considered an untapped waste 
heat source, which is characterised as highly intermittent. Although Organic Rankine 
Cycles pose strong potential to reuse such low-grade heat, the component and system 
levels analysis of ORCs to efficiently utilise these highly intermittent heat sources in a 
techno-economic fashion is still an unanswered research question. Such a holistic 
approach ultimately expedites the commercial adoption of ORCs to utilise a broader 
range of waste heat sources achieving the highest possible techno-economic benefits. 
To answer this research question, emphasising scale ORCs that employ axial flow 
turbines owing to their scalability and superior isentropic efficiency, this thesis 
undertakes turbine and cycle configuration optimisation by integrating the Craig and 
Cox loss model to simulate a small-scale axial flow ORC turbine. The transient waste 
heat of an actual industrial steam boiler stack was employed as a heat source to 
investigate ten novel cycle configurations. The optimisation was undertaken using 
parametric, metaheuristic (nature-inspired) and mathematics-based optimisers. 
Artificial Neural Networks (ANNs) and genetic algorithms (GAs)-based on the loss 
model led to an optimised turbine configuration that improved turbine total-to-static 
efficiency and cycle efficiency by 5.2% and 0.24%, respectively. The recuperative 
cycle proved the optimal thermodynamic configuration, with a 26.5% increase in 
mean power generation. Furthermore, a multi-objective analysis revealed the 
recuperative cycle integrated with an air preheater as the optimum thermo-economic 
configuration, with a 48.9% improvement in the combined overall value of the 
multiple objectives, including the Specific Investment Cost and mean power, 
achieving the final payback within 1.72 years. The ideal configuration was observed 
as a strong function of the Levelized cost of fuel and electricity prices. Application of 
a mathematical technique based on the non-linear programming by quadratic 
Lagrangian algorithm was validated for single- and multi-objective cycle configuration 
optimisations, providing results comparable to the well-established metaheuristic-
based genetic algorithm, with a computational efficiency of greater than one order of 
magnitude. The overall approach of the direct loss model, artificial neural network- 
and genetic algorithm-based turbine optimisation, parametric cycle pre-optimisation, 
mathematical technique-based component optimisation and payback evaluation can 
be considered a blueprint for the future evaluation and design of organic Rankine 
cycles utilising transient waste heat sources 
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𝐶𝐶𝑎𝑎𝐶𝐶𝐹𝐹 Soderberg’s Reynolds number correction factor (-) 
𝑆𝑆 Entropy (J/K-mol) 
𝑘𝑘 Blade pitch (m) 
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𝐺𝐺 Specific volume (m3/kg) 
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𝐺𝐺𝐶𝐶 Velocity ratio (-) 
𝑊𝑊 Work done (J) .
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𝐻𝐻𝑎𝑎1 Annulus loss (-) 
𝐻𝐻𝑝𝑝 Profile loss (-) 
𝐻𝐻𝑘𝑘 Secondary loss (-) 
ΔXPse Blade back radius loss (-) 
ΔXpm Mach number loss increment (-) 
𝑍𝑍 Zweifel coefficient (-) 
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𝛼𝛼 Absolute fluid flow angle (°) 
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𝛾𝛾 Specific heat ratio (𝛾𝛾), (-) 
μ Dynamic viscosity (μ) kg/m-s) 
μ*2 Reduced squared dipole moment (C-m) 
Φ Flow coefficient (Φ) (-) 
ρ Density kg/m3 
ψ Stage loading coefficient (-) 
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Subscript 
 

𝑎𝑎 Axial velocity component 
𝐵𝐵 Blade 
𝐶𝐶 Critical 
𝐶𝐶𝐸𝐸𝑃𝑃𝐷𝐷 Condensate extraction pump fluid discharge 
𝑎𝑎ℎ𝑎𝑎𝑎𝑎 Characteristic for BACKONE EoS 
𝑑𝑑𝑎𝑎𝑎𝑎 Determiner 
𝐺𝐺𝑎𝑎𝐷𝐷𝐺𝐺𝑝𝑝1 Group 1 loss 
ℎ Hydraulic 
𝑎𝑎𝑎𝑎 Inlet 
𝑎𝑎𝑘𝑘 Isentropic 
𝑐𝑐𝑎𝑎 Leading edge 
𝐿𝐿𝑃𝑃𝑇𝑇 Low pressure turbine 
𝐾𝐾 Kelvin 
𝑘𝑘𝑑𝑑𝑃𝑃 Pressure drop gain across the orifice 
𝑁𝑁 Nozzle 
𝐷𝐷𝐺𝐺𝑎𝑎 Exhaust 
𝑃𝑃 Pump 
𝑝𝑝 Primary loss 
𝐶𝐶𝐺𝐺 Regenerator discharge 
𝑆𝑆 Isentropic 
𝑘𝑘 Secondary loss 
𝑘𝑘𝑝𝑝𝑎𝑎𝑎𝑎 Specific 
𝑇𝑇 Turbine 
𝑘𝑘𝑎𝑎𝑠𝑠 − 𝐼𝐼𝑎𝑎 Stage inlet 
𝑘𝑘𝑎𝑎𝑠𝑠 − 𝑂𝑂𝐺𝐺𝑎𝑎 Stage outlet 
𝑊𝑊 Radial velocity component 
1 Before nozzle 
2 Between nozzle and blade 
3 After blade 
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1 Chapter 1     Introduction 
 
1.1 Importance of energy 
 
Energy is one of the most vital resources for our continued existence on Earth. In addition to 

nuclear and geothermal energy, the sun is the major source of energy. In 1964, Nikolai 

Kardashev developed the Kardashev scale which has since been widely used as a method of 

measuring a civilisation’s level of technological advancement [1, 2]. He defined a type 1 

civilisation as one that can harness all the energy received by a planet from its parent star. 

Earth receives ≈1.74×1017 Watts annually. The world’s current annual consumption is 

≈2×1013 Watts, which is lower by about four order of magnitudes. According to theoretical 

physicist and futurist Michio Kaku, humanity is expected to attain type 1 status within the next 

100–200 years [3]. 

 

Countries with high energy consumption have a greater per capita income. Developed 

economies have demonstrated a 50-fold increase in energy consumption since the 1860s 

[4].This has led to increased focus on electricity generation and a similar trend is now being 

witnessed in developing economies. Studies have also correlated an increase in energy 

consumption with an improved quality of life, enhanced social progress index and higher 

industrial production [5]. 

 

1.2 Historic global energy scenario 
 

Energy in thermal form was first harnessed by primitive humans when they were able to use 

fire for heating, cooking and illumination—all essentials for survival. The principles of electricity 

generation were based on the principles of electromagnetism discovered by Michael Faraday 

in the 1820s. Mining technology improved to ensure coal replaced timber as the primary fuel 

for combustion in the 1780s. The Edison Electric Light Station in London was the world's first 

coal-fired public power station, built in 1882 (Figure 1-1) [6].  

 

The combination of the development of prime movers, fuel sources and electricity generation 

led to the first Industrial Revolution in the late eighteenth century, which resulted in a significant 

increase in energy demand. Coal was the fuel of choice for power generation during the first 

industrial revolution. The chemical energy from the coal combustion was converted to 

electricity using steam engines and later, steam turbines.  
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Figure 1-1: Edison’s Jumbo steam turbine was installed between 1882 and 1885 in the 
Holborn Viaduct Station in London and in the Pearl Street Generating Station, Manhattan, 
New York [6] 

 
1.3 Current energy trends 
 
Traditionally, oil and natural gas resources are concentrated across the Middle East, North 

America, Russia and South America [7]. In contrast, coal is the most abundant fossil fuel, with 

an estimated 100 trillion tons worldwide [8]. The International Energy Agency (IEA) observed 

that the energy demands for coal-dependent countries like China and India has been 

increasing by 7% on a yearly basis [9]. The report also predicted a global annual increase in 

the primary energy demand by 1.15% until 2035, this mainly due to the increased energy 

demands of the industrial sector as well as the changes in patterns of heating and cooling 

demand. In addition, the transportation sector has witnessed significant growth and an 

escalation in energy consumption due to increased globalisation. Increased electrification has 

led to a six-fold increase in fossil fuel consumption since the 1950s [10]. In 2018, global energy 

consumption grew by 2.3%, twice as fast as the average rate over the previous 10 years [11]. 

During the same year the demand for electricity grew by 4%, faster than all other forms of 

energy [11]. It is acknowledged that oil industry has a cycle life of 300 years, of which over 150 

years have already elapsed. Currently, natural gas is witnessing a dramatic increase in 

consumption patterns as it is considered the cleanest fossil fuel (Figure 1-2). In addition, 

natural gas-based power plants provide grid stability for simultaneous operation with 

renewables due to their quick response times and high turndown ratios. 
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Figure 1-2: Increase in global fossil fuel consumption from 1800 to 2019 year, measured in 
terawatt-hours (TWh) [13] 
 
1.4 Future energy trends, renewables and ORC 
 
Whereas coal is the fuel of the past and natural gas of the present, the future will involve a mix 

of renewables (Figure 1-3). Environmental concerns caused due to fossil fuel combustion 

cannot be ignored anymore due to the associated impacts of global warming. Studies have 

highlighted the need to reduce the equivalent greenhouse gas emissions by 50%, equivalent 

to 40–48 billon tonnes of carbon dioxide, to restrict average global temperature rise within 2⁰C 

[12]. A reduction in the combustion of fuels will lead to a decline in greenhouse gas emissions 

and airborne-suspended particulate matter. It is expected that oil, gas, coal and renewables 

will meet 32.6%, 23.7%, 30.0% and 13.7% of global energy needs, respectively, in the near 

future [8]. 

 

Despite the advances in technology and imaging, medium-to-long range weather forecasts 

suffer from inaccuracy [13]. Studies have pointed to a 10-day forecast having an accuracy of 

less than 50% [14]. Recent developments include the use of artificial intelligence algorithms 

[15]. As the majority of renewables depend upon the weather, the intermittency posed by 

renewable energy sources has led to operating them alongside fossil fuel-based power plants 

to compensating their short-term instability [16]. This requires the fossil fuel-based plant to 

operate in idle mode as a standby to renewable energy sources resulting in reduced part load 

efficiency and increased capital expenditure. 

 

The next century is expected to have a threefold increase in electricity consumption. However, 

it has been widely acknowledged that the renewables alone will not meet the entire demand 

of the future [17]. Equally, the variations in power generation by typical renewables is a serious 
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impediment, limiting our dependence on them. At this crucial juncture, this study wishes to 

consider the contribution of ORCs to the global energy mix. As such, Organic Rankine cycles 

(ORCs) stand out as one of the unique tools of renewable energy utilisation which can provide 

reliable and continuous power generation. Compared to typical renewable energy sources, 

ORCs offer flexibility to adapt to an ever-increasing range of heat source temperatures; this 

freedom offered by virtue of the different ORC working fluids. The present installed capacity of 

ORCs was merely 2.75 gW in the year 2017, compared to 4282 gW for fossil fuels,  pointing 

towards significant additional untapped potential [18, 19]. 

 

 
Figure 1-3: Expected rise of renewable energy in the twentieth-first century [10] 

 
1.5 History of ORC 
 
The concept of the organic Rankine cycle was established in 1824 by Sadi Carnot [20]. Since 

the rules of thermodynamics themselves were evolving during that time, the concept remained 

theoretical. Condensation at pressures greater than atmospheric was required due to gland-

sealing issues caused by the poor vacuum systems for early steam turbines, which led to a 

rise in the condensing temperature. ORCs were first manufactured for waste heat recovery 

from these primary expanders as an alternative to vacuum systems [21]. Du Tremblay 

developed the first ORC as a bottoming cycle on a passenger ship with ether as the working 

fluid. An accident in 1856 at the port of Bahia, possibly due to the volatility of ether,  stopped 

any further developments for a long time [22]. Willsie developed the next ORC for a 4.5 kW 

plant in St. Louis, Missouri, and an 11 kW plant in Needles, California [23, 24] after a 50-year 

gap with sulphur dioxide as the working fluid along with a solar heat source. Prof. Luigi 

D’Amelio developed the first ORC with a turbo expander and high molecular weight working 

fluid [25]. These fluids led to a simpler system with lower enthalpy drop across the expander, 

lower operational speed, reduced diameter and lesser number of stages. 



Y. C. Engineer, PhD Thesis, Aston University, 2022 22 

 
 

 
 

Figure 1-4: Pictorial view of 145 kW turbine-driven ORC solar pond power plant at Ein Bokek, 
Dead Sea, Israel, commissioned in 1979 [26] 

 
Between 1958 and 1961, Tabor and Bronicki undertook detailed studies of working fluid 

thermodynamic properties, thermal stability tests and their selection based on the heat source 

and sink slopes, which in turn were based on the limited number of working fluids available at 

that time [27]. They observed that the number of atoms within the fluid molecule determined 

its state after the expander. Fluids with fewer than 10 atoms moved towards wetness on the 

saturation scale and heavier fluids having greater than 10 atoms moved towards dryness or 

superheat. Tabor and Bronicki were the first to propose the use of recuperators for ORCs and 

turbines instead of reciprocating engines (Figure 1-4). 

 

Italian institutes have contributed significantly towards modern commercial ORC development. 

The Polytecnico di Milano carried out work toward this end from the 1970s onwards, pioneering 

the modern-day, packaged ORC powerplants. They studied the suitability of the radial outflow 

turbine and developed the first ORCs for commercial geothermal energy sources [28, 29]. 

 
1.6 Introduction to the ORC cycle 
 
The fundamental components of an ORC are similar to steam-based Rankine cycle, except 

that an organic fluid with a higher molecular mass and a lower boiling point is circulated through 

it. The properties of the fluid allow for the utilisation of lower-grade heat sources, which allows 

ORCs to avoid combustion, as is the case with most steam-based Rankine cycles (other than 

nuclear fission). As a result, they are suitable for converting low-grade heat into useful work in 

the form of mechanical shaft power or electricity.  
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(a) (b) 
 

Figure 1-5: Exemplar of a sub-critical organic Rankine cycle with a superheater (a) T-s 
Diagram, (b) Components flow diagram  [30] 

 
The working fluid operates in a closed loop, consisting primarily of four components: a feed 

pump, an evaporator, a turbine (i.e., expander) and a condenser (Figure 1-5(a)). Based on the 

type of working fluid and expander chosen, the fluid might operate in the superheated or wet 

regimen after expansion. A superheater might be provided (Figure 1-5(b)), to protect against 

blade erosion, as some expanders, particularly turbo expanders, are unable to handle wet 

fluids. ORC condensers are usually plate or shell and tube heat exchangers. Heat is rejected 

from the condenser using a cooling circuit, with water as its working medium. The high latent 

heat of water provides maximum heat dissipation along with minimum evaporation loss in the 

cooling tower. Whereas condensers for steam-based Rankine systems typically work at 0.1 

Bar(a) in tropical conditions and 0.07 Bar(a) in temperate conditions and marine environments,  

commercial organic Rankine cycle systems operate with condensation pressures greater than 

atmospheric [21]. This helps ORCs avoid additional working fluid-based sealing arrangements 

for the expander and condensate recovery pump shafts, necessary to avoid air ingress into 

the system. The temperature difference between the heat source, and heat sink of the cooling 

fluid in the condenser determines the exergy efficiency of the cycle. Improving cycle efficiency 

was typically done by regeneration and recuperation of the working fluid. 

 

 

 

 



Y. C. Engineer, PhD Thesis, Aston University, 2022 24 

2 Chapter 2      Literature Review  
 
2.1 Introduction  
 
Based on the previous chapter, it can be safely concluded that there is an increasing interest 

in Organic Rankine cycles (ORCs) vis-à-vis utilising renewable and waste thermal energy. The 

variety of potential working fluids provides ORCs with the flexibility to adapt to a wide range of 

heat source and heat sink temperatures compared to steam-based cycles. In the past, ORC 

systems were widely used to generate power from bio-heat [30-33], geothermal [34-40], ocean 

thermal (OTEC) [41], solar thermal [42-45], combined heat and power (CHP) [46] and waste 

heat [47-72] sources. Waste heat recovery (WHR) applications are of particular interest as 

they provide untapped heat sources, which contribute to global warming and energy loss. 

Industrial waste heat sources are readily available and contain steady streams with large 

quantities of low- and medium-grade heat energy at easily accessible locations. The saturation 

curve of an ORC working fluid expansion varies depending on the choice of working fluid, 

which leads to a variety of expander designs. Certain working fluids complete the expansion 

phase in a two-phase state, which limits the choice of expanders for a given application. 

Considering the variations in ORC plant size, heat grade and working fluids, a variety of 

expanders were used by previous studies. Zhao et al. noted that turbines, such as axial and 

radial turbines, were used for 69.96% of overall ORC publications whereas scroll, screw, vane 

and piston expanders were used in 14.23%, 6.12%, 5.32%, 4.39% of the studies, respectively 

[73]. Although research on ORC turbines and cycles has been multidirectional, there has been 

limited research on the use of novel optimisation techniques. 

 

The aims of this literature review chapter are as follows, and a brief overview of the chapter is 

shown in Figure 2-1: 

• Review the available working fluids and classify them based on environmental and 

thermodynamic factors including their expansion behaviour.  

• Compare steam- and organic fluid-based cycles based on heat source temperature 

and expander suitability. 

• Identify previously untapped ORC sources, including WHR applications. 

• Classify ORC expanders, identify non-dimensional parameters and suitable loss 

prediction models for design & off-design efficiency.  

• Study the suitable combinations of machine learning and optimisation algorithms for 

turbine efficiency, cycle efficiency and multi-objective thermo-economic feasibility. 
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Figure 2-1: Approach of the literature review 
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2.2 Equation of State (EoS) 
 
The equation of state (EoS) is a correlation developed to determine the pure fluid or zeotropic 

mixture properties in a state of thermodynamic equilibrium [74]. Zeotropic mixtures are a 

mixture of pure fluids with physical properties between their individual constituents, their 

composition varied based on the application. Computational solvers use EoS instead of lookup 

tables. At the time of this study, there was no existing EoS that could accurately predict the 

working fluid properties for all fluids under all conditions [75]. Previous studies widely employed 

cubic equations of state such as the Redlich-Kwong-Soave or the more advanced statistical 

associating fluid theory (SAFT) working fluid modelling [76-80]. 

 

The Peng-Robinson EoS, as stated in equation 2.1 was developed by Ding-Yu Peng and 

Donald Robinson at the University of Alberta in 1976. Compared to later models, it offers a 

simpler generalisation of the working fluid, while accounting for fluid compressibility and 

maintained accuracy near the critical point [81, 82]. It is also known for its suitability for gaseous 

mixtures involving a combination of compounds[83]. Previous studies also validated the 

suitability of the Peng Robinson EoS while operating with refrigerants [77]. 

 

𝑃𝑃 =  
𝐶𝐶 𝑇𝑇

𝐺𝐺𝑃𝑃𝑟𝑟𝑙𝑙𝑚𝑚𝑟𝑟 − 𝑏𝑏𝑚𝑚𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟
−  

𝑎𝑎𝑚𝑚𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟 × FactorαTc × 𝑇𝑇𝐾𝐾
𝐺𝐺𝑃𝑃𝑟𝑟𝑙𝑙𝑚𝑚𝑟𝑟2 + 2 × 𝑏𝑏𝑚𝑚𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟 × 𝐺𝐺𝑃𝑃𝑟𝑟𝑙𝑙𝑚𝑚𝑟𝑟 − 𝑏𝑏𝑚𝑚𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟

2 
                  2.1 
 
 
 
 

Where 𝑃𝑃 is the pressure in Pa, 𝐶𝐶 is the universal gas constant in J/(mol K), 𝑇𝑇𝐾𝐾 is the 

temperature in Kelvin, 𝐺𝐺𝑃𝑃𝑟𝑟𝑙𝑙𝑚𝑚𝑟𝑟 is the molar volume in m3/mol. Acentric factors 𝑎𝑎𝑚𝑚𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟 

and 𝑏𝑏𝑚𝑚𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟 and critical temperature factor FactorαTc are functions of fluid-specific critical 

pressure 𝑃𝑃𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜 and critical temperature 𝑇𝑇𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜. The second order polynomial was used to 

characterize the working fluid’s saturation dome. 

 

The BACKONE EoS considers the Helmholtz energy (F) and depends on the characteristic 

intermolecular interactions that were physically determined using extensive molecular 

simulations [80, 81]. The Helmholtz energy (F) is determined as the sum of individual 

contributions. For dipolar fluids, the internal energy is defined as in equation 2.2, where FH is 

the hard-body contribution, FA is the attractive dispersion force contribution and FD is the 

dipolar contribution. 

 

For quadrupolar fluids, the QUADBACKONE equation uses FQ as the quadrupolar 

contribution, as depicted in equation 2.3. This EoS considered four substance-specific 

parameters: characteristic temperature Tchar, characteristic density ρchar, anisotropy 

parameter A and either reduced squared dipole moment μ*2 or reduced squared quadrupole 
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moment Q*2 [81]. The equations have been validated for property accuracy in the range of 

±1.5% with modern ORC working fluids like R1234yf, as shown Figure 2-2 [80, 82]. 

 
  𝐹𝐹
𝑅𝑅𝑇𝑇

= 𝐹𝐹𝐻𝐻
𝑅𝑅𝑇𝑇

+ 𝐹𝐹𝐴𝐴
𝑅𝑅𝑇𝑇

+ 𝐹𝐹𝐷𝐷
𝑅𝑅𝑇𝑇

                                                              2.2 
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+ 𝐹𝐹𝑄𝑄
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                                                              2.3 
 

 
The simpler Peng Robinson EoS was used for component-level simulation in the study (see 

Chapter 4), where phase change was not undertaken within the turbine and its simpler 

generalisation was adequate. The REFPROP database incorporating QUADBACKONE EoS 

was used for cycle-level simulations in this study (see Chapters 5 and 6), due to its better 

enthalpy conversion and phase change prediction [84]. 

 

 
 

Figure 2-2: Validation of enthalpy of vaporisation for R1234yf using BACKONE EoS validated 
by experimental data [57] 

 
2.3 Comparison between steam and ORC cycles  
 
2.3.1 Classification based on heat source temperature 
 
The choice between steam or organic fluids is based on the heat source temperature, which 

is classified as low-grade for a heat source temperature up to 70°C, medium-grade for a heat 

source temperature between 70°C and 350°C and high-grade for a heat source temperature 

above 350°C. In the case of low-grade heat sources, ORCs demonstrate lower exergy 

destruction in the evaporator as the temperatures of the working fluid are close to the heat 

source temperature. Low-grade applications usually have a larger heat source mass flow rate 

per unit power generation, which results in a smaller working fluid temperature increase across 

the evaporator [85]. Low- and medium-grade sources are suited to ORCs as the boiling point 
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of pressurised water is 265⁰C at 51 kg/cm2 and 284⁰C at 69 kg/cm2, the typical pressures 

considered for small steam-based power plants. In addition, steam-based systems require a 

mandatory superheater for turbine efficiency and wetness constraints, which increases the 

typical steam temperature above 350⁰C. The wet fluid behaviour exhibited by water (shown by 

the slope of the expansion curve in Figure 2-3), was compared to that of ORCs, which also 

demonstrated wet, dry and isentropic behaviour [86]. 

 

Hung et al. concluded that steam Rankine cycles were not suitable for operation with heat 

sources below 370⁰C [53]. Additionally, the higher specific volume of low-pressure steam 

relative to organic fluids led to a significant increase in equipment sizing and costs. The pinch 

point limitation and associated intermittency at the heat source are the biggest issues in the 

design of steam-based systems operating on low-grade heat sources [58]. 

 

 
 

Figure 2-3: T-s diagram of steam and commonly used ORC fluids [60] 

 
As the temperature of the heat source increases, the feasibility of a steam Rankine cycle vis-

à-vis organic Rankine cycles improves due to their higher Carnot efficiency and simple 

architecture. Park et al. mentioned that few ORC studies were conducted for heat source 

temperatures above 300⁰C and observed the abundance of steam-based cycles at higher 

temperatures [85].  

 

The shallow gradient of the expansion slope allowed the use of a large degree of superheat 

for steam Rankine cycles [86]. The majority of organic fluids also suffered from a thermal 

stability limit near 380⁰C [85]. Due to this limitation, intermediary fluids such as thermal oils or 

pressurised water were employed in an additional heat transfer loop for applications that 

involved high-grade heat sources [49, 85].  
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Liu et al. classified waste heat recovery cycles based on heat source temperatures and plant 

scale, as shown in Figure 2-4 [87]. They concluded that steam Rankine cycles were best suited 

for medium to high heat source temperatures above 300°C. Lower scale and lower 

temperature steam cycles for waste heat sources were less cost-effective and experienced 

surface corrosion issues, caused by carbonic (H2CO3) and sulphuric acid (H2SO4) formation 

below the dew point [88]. Waste heat source temperatures between 90°C and 250°C were 

observed to provide competitive cycle efficiency for ORC turbines [61]. 

 

 
 

Figure 2-4: Classification of thermodynamic waste heat recovery cycles based on heat 
source and plant size by Liu et al. [61] 

 
2.3.2 Comparison between steam and organic Rankine expanders 
 
A detailed comparison of expanders for ORCs and steam cycles for energy recovery from low- 

to medium-grade heat sources was undertaken by Bao et al. that concluded the following [89]: 

 
• For a finite temperature difference across the heat source and sink, ORCs demonstrate 

reduced specific power generation, usually 16-40% lower [90]. This is due to the 

reduced expansion ratio, smaller change in specific volume and corresponding 

enthalpy drop across the expander for the working fluid across ORC expanders.  

• The low expansion ratios, usually between 2.5 and 4, allow ORC expanders to operate 

at higher isentropic efficiency. 

• Owing to higher density, and consequently, lower specific volume of organic fluids, the 

required expander volume is smaller for ORCs. This manifested itself as increased 

partial admission and secondary blade losses in the case of ORC turbines. Due to the 

higher molar mass of organic fluids, the speed of sound in ORC fluids is much lower 

compared to steam, which resulted in predominantly supersonic flow across ORC 
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expanders. This led to additional primary losses during design point and off-design 

operation. 

• Most organic fluids are dry, which results in superheated exhaust from the expander 

hence additional heat load on the condenser. Steam usually exits the expander during 

the wet phase. 

• Leakage control was crucial in the case of utilising toxic, flammable, explosive or 

carcinogenic-behaviour organic fluids. 

 
2.4 Current ORC applications 
 
ORCs are commercially successful in the small- and medium-scale conversion of thermal 

energy to electricity for a variety of heat sources, where conventional steam powerplants could 

not provide viable solutions. Based on the intermittency of the heat source temperatures, 

ORCs provide flexibility of operation by providing subcritical and trans-critical cycles [91]. The 

choice of working fluids with variable boiling points allows ORC compatibility with a variety of 

heat sources. Existing commercial ORC installations on the basis of total number of 

installations were summarised in Figure 2-5 [92]. Seventy-three percent of the gross power 

generation from ORCs is carried out using geothermal sources. This can be attributed to the 

larger scale of geothermal ORC installations compared to other sources [93]. 

 

 
 

Figure 2-5: Existing ORC heat source classification based on total number of installations 

 
2.4.1 Geothermal waste heat recovery  
 
Geothermal locations demonstrate a temperature increase between 30⁰C and 90⁰C for every 

100 m depth. Typical heat source temperatures vary between 50⁰C and 350⁰C. High-grade 

sources commonly utilise steam Rankine cycles using flash and dry steam systems. Low- and 

medium-grade geothermal sources are more abundantly available [35]. The use of 
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supercritical cycles has also been recommended to limit pinch point restrictions, providing a 

15% increase in gross power output [39]. 

 

Geothermal ORCs incorporate the indirect utilisation of the extracted fluid, using a binary cycle, 

as shown in Figure 2-6 [36]. The geothermal brine extracted transferred its heat to the ORC 

working fluid with the help of a heat exchanger and was then reinjected below the surface [94]. 

Typical geothermal ORC heat sources have a temperature of around 300⁰C, and brine 

temperature between 100⁰C and 190⁰C. As the pumping of brine is energy intensive, the 

efficiency of heat source utilisation is important for geothermal ORC plants, limiting commercial 

applications to higher-grade heat sources. Worldwide power generation from binary 

geothermal ORCs is about 700 mWe—approximately 8% of the total power production from 

all geothermal sources [95]. 

 

 
 

Figure 2-6: Binary cycle-based geothermal ORC system [69] 

 
2.4.2 Biomass 
 
Biomass combustion achieves temperatures up to 1200⁰C, with an excess air ratio of 2 [96]. 

Due to the high temperature of bioheat source, biomass ORC power plants are limited to those 

plants considered too small for steam-based systems. The higher volumetric flow rate allows 

for an increased expander size in the case of ORCs, which improves expander efficiency and 

turndown ratio [97]. Steam Rankine cycles demonstrate higher cycle efficiency with higher 

working fluid pressure, temperature, and mass flow rate, typical of larger power plants. They 

also require additional capital investment, and greater safety measures, which negates their 

benefits and feasibility for smaller generation plants. In 2011, only 14% of the gross power 
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generation from ORCs utilised bioheat, mainly due to subsidies offered by the European Union 

(EU)  for small biomass ORC plants [33]. This validated the greater suitability of steam-based 

cycles for biomass power plants [93]. Wood pellets were reported as the main biofuel for over 

73% of biomass ORC applications within the European Union [98-101]. 

 

Despite the high temperatures generated by combustion, biomass ORCs suffer from low 

energy conversion efficiency (that is, 2nd law) due to the limitations imposed by the thermal 

decomposition of working fluids [96]. The use of thermic oil, siloxanes and unbranched long-

chain alkanes has been suggested for the high-temperature loop of binary biomass ORCs [32]. 

Many existing plants utilise octamethyltrisiloxane (OMTS) as a working fluid, due to its high 

evaporation temperature and thermal stability despite its poor heat transfer ratio at elevated 

temperatures, which eliminates the requirement for an intermediary fluid such as thermal oil 

[31, 32]. 

 
2.4.3 Solar thermal energy 
 
Solar thermal energy offers flexibility of heat source temperatures depending on the type of 

collectors and the receiver area. Mixed results were obtained about the impact of superheating 

on the energy conversion efficiency of the solar thermal ORC cycle as an increased collector 

temperature resulted in an increase in convection loss [102]. Solar collectors were classified 

based on the working fluid temperature generated. Conventional flat plate solar collectors were 

classified as low-grade, with a fluid output temperature between 75°C and 150°C, and without 

any degree of concentration [103]. They are seldom used for commercial applications due to 

their relatively poor viability [104]. 

 

Medium-grade solar collectors, such as the evacuated tube, achieve working fluid temperature 

between 130°C and 150°C. High-grade solar collectors, with working fluid temperature above 

150°C, such as the Fresnel Lens and Parabolic cylindrical trough collectors, are widely used 

commercially [103]. Both single loop and binary loop configurations are used, with pressurised 

water or thermal oil as the binary loop. Thermal energy storage systems are also integrated 

with solar thermal ORC systems, to mitigate the variation of solar radiation received during the 

day and unavailability after sunset, as shown in Figure 2-7 [105]. 

 

Solar thermal ORCs have been widely used in cogeneration desalination applications, as an 

alternative to pure membrane desalination. They are particularly useful for coastal rural 

locations without access to fresh water, electricity and abundant water supply [106]. The ORC 

system powers the desalination operation, while working fluid at the expander exhaust 

provides thermal energy for the desalination plant. The economic feasibility of this system is 

comparable to a solar photovoltaic-based system [107]. 
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Figure 2-7: Solar thermal ORC with binary heat transfer loops and latent heat thermal energy 
storage (LHTES) systems in conjunction with high-grade collectors [79] 

 
2.4.4 Waste heat recovery 
 
Whereas steam Rankine cycles can be used for waste heat recovery, they are not suitable for 

low- and medium-grade waste heat sources due to their high saturation temperature. Medium- 

to low-grade heat (200-50°C) accounts for 50–66% of the waste heat from the industrial sector 

(Figure 2-8), as industries reject over 54% of input energy [108, 109]. Such a significant amount 

of heat rejected into the environment leads to profound thermal pollution, if not adequately 

recovered. ORCs are better suited for energy recovery from medium- to low-grade streams as 

well as smaller-sized plants (Figure 2-9), due to their simplicity and compactness [14, 34]. The 

investigation of ORCs for waste heat recovery applications has previously been undertaken 

for IC engine exhausts [110], transport vehicles [52], gas turbines [111], cement plants [112], 

casting plant furnaces [113] and smelting furnaces [114] and industrial sources [90, 115-118]. 

The choice of working fluids allows cycle properties suited to optimising expander isentropic 

efficiency, optimal matching of the heat release curve with the fluid saturation curve and 

operation with transient waste heat sources to maintain the working fluid within the vapour 

phase at the turbine’s moving blades [119]. 
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Figure 2-8: Sectoral shares of waste heat distribution by temperature [82] 

 

 
 

Figure 2-9: Classification of steam Rankine and organic Rankine cycles for WHR 
applications based on heat source temperature and power generation [84] 

Figure 2-10 illustrates a typical WHR ORC application. WHR-based ORCs provide additional 

power without any additional fuel costs, which is a factor of increasing importance in a world 

with rising energy prices [53, 120]. ORCs are scalable, operated at lower pressures, with 

minimum human intervention and are safe for operation with fluctuating waste heat sources 

[58, 62]. Park et al. reported that the existing experimental studies on WHR ORCs focussed 

on small-scale applications using repurposed and renovated expanders and limited work has 

been done in the field, despite the abundant availability of low-grade waste heat suitable for 

exploitation by ORCs [85]. 
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Figure 2-10: Typical WHR ORC application [84] 

 
Figure 2-11 classifies WHR ORC power generation based on heat source. Diesel engines and 

gas turbines are the most common heat sources [59]. Heat is extracted from the combustion 

product stream, exhaust gas recirculation stream and coolant stream. It was reported that 

ORCs improved the fuel economy for long-haul trucks by up to 10% on a commercial scale 

[121]. The work output from the ORC was used to aid the mechanical power of the diesel 

internal combustion engine, generate electricity for on-board requirements or combined with a 

hybrid powertrain [122]. Similar to other waste heat recovery applications, previous studies 

suggested that the variations in the operational profile of the heat source are of critical 

importance for IC Engines and gas turbines [59]. 
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Figure 2-11: Classification of existing ORC units utilise waste heat sources by installation 
capacity. Total installation capacity of WHR ORC is 349.1 mWel [94] 

 
Cement and metal plants have the second- and third -largest installed WHR ORC user base, 

at 8.3% and 7.2%, respectively (Figure 2-11). Cement plants are considered suitable for 

modular ORCs due to their similar plant layout, high-grade waste heat and continuous 

operation at stable parameters. Steel plants are greater in number and provide three different 

waste heat sources; these are after the furnace (300⁰C to 1600°C), before the quenching tower 

(200⁰C to 900°C) or indirect heat recovery from the cooling fluid used for the quenching tower 

[49]. The potential for ORC in steel plants has been reported as 2705 mWe in Europe [49]. 

 

WHR ORCs with unconventional heat sources have also been modelled. Singh et al. combined 

a solid oxide fuel cell and gas turbine cycle along with a medium-grade ORC bottoming cycle 

[123]. They concluded that the addition of an ORC bottoming cycle led to a 4% improvement 

in cycle efficiency, along with a 33% reduction in the cost per kW, over a ten-year life span. 

Song et al. reported that a recompression S-CO2 cycle demonstrated a 1.3% improvement in 

cycle efficiency when combined with a bottoming ORC, while simultaneously eliminating the 

need for a compressor pre-cooler [124]. The researchers then optimised the degree of 

recuperation of the S-CO2 cycle to achieve an additional 0.4% improvement in cycle efficiency.  

 

Ziółkowski et al. considered an ORC bottoming cycle as a replacement to a traditional 

condenser in a supercritical steam cycle [71]. They achieved 1.25% improvement in cycle 

efficiency, and a 15-fold reduction in the swept area of low-pressure turbine blades and the 

surface area of the surface steam condenser. Chacartegui et al. concluded that the ORC 

recuperated gas turbine combined cycles achieved an efficiency improvement around 3% 
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higher than the optimised conventional gas turbine combined cycles [90]. Muhammad et al. 

combined a binary loop ORC with a natural gas liquefaction plant with an intermittent steam 

demand [61]. The ORC used steam that would otherwise be vented to the atmosphere. 

 

Steam is the most used heat transfer medium for process industries due to its favourable latent 

heat thermal characteristics, non-reactive nature with a wide range of materials, non-toxicity, 

low cost, widespread availability, suitability for food grade products, flexibility with direct and 

indirect heating along with an established supply chain for components and ease of operation 

[115, 116]. Sub-critical industrial boilers are widely utilised by process industries and power 

generation plants  for steam generation using fossil fuels, biomass and refuse-derived fuels 

(RDF) [117, 118]. Typical industrial boilers reject up to 22% of input heat as low-grade stack 

losses directly into the environment; this is between 140°C and 200°C for solid fuel-fired 

boilers, having an estimate installed user base too large to be quantified [62, 125]. These 

untapped lower-grade waste heat sources can be used for the installation of WHR ORCs, 

although this heat source has not been investigated in detail previously [126]. 

 
2.5 Working fluids  
 
As discussed in the preceding section, the flexibility provided by the working fluid offers a great 

degree of flexibility for an ORC. As ORCs operate across a wide range of heat grades, over 

600 pure and zeotropic mixtures were investigated by previous studies; their feasibility 

depended on their suitability to the cycle characteristics. At the same time, the ORC industry 

is not unanimous on the choice of fluids for the same application [91]. This study considered 

multiple fluids, some of them outside the realm of traditional ORC Fluids. Organic compounds 

frequently studied included alkanes, alkenes, alcohols, fluorocarbons (FCs), 

chlorofluorocarbons (CFCs), perfluorocarbons (PFCs), perchlorocarbons (PCCs), 

hydrochlorocarbons (HCCs), hydrochlorofluorocarbons (HCFCs), hydrochlorofluoroolefins 

(HCFOs), carboxylic acids, fluoroketones, ethers, aromatic hydrocarbons, carbonate esters, 

hydrofluoroethers (HFEs), hydrofluoroolefins (HFOs), halons and xylenes. 

 

The basic constituents for HFCs, CFCs and HFOs are hydrogen, fluorine and carbon. 

Whereas HFCs and CFCs consist of saturated organic compounds, HFOs are alkenes 

constituted of unsaturated organic compounds composed of hydrogen, fluorine and carbon 

[127]. The utilised inorganic compounds included hydroxides, hydrogen nitrides (ammonia), 

halogens and nitrogen oxides. Siloxanes and refrigerants are classified as both organic and 

inorganic compounds. Previous research work conducted pertained mainly to the study of 

suitable working fluids for the best cycle efficiency [34, 38, 40, 51, 55, 57, 128-134]. Based on 

this previous research, this thesis undertook a study to establish the desirable properties of 

ORCs, focussing on thermodynamic, expansion, safety and environmental factors. 
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2.5.1 Thermodynamic factors 
 
The working fluid density, latent heat of vaporisation, liquid heat capacity, viscosity, thermal 

conductivity, freezing point temperature, critical pressure and temperature, maximum 

operating pressure and mass flow rate are the key thermodynamic parameters, as elaborated 

below [40, 135]. 

• Higher fluid density results in smaller component sizing, particularly, of the expander, 

valves and pipeline. However, it leads to a reduction in the amount of enthalpy 

extracted by the expander and lower expander operating speed [130]. Lower density 

leads to a larger volumetric flow rate, which improves the efficiency of the turbine and 

pumps but leads to larger component sizes [32, 64, 136].  

• Higher latent heat of vaporisation enables a larger amount heat transfer during the 

phase change of the fluid in the evaporator [60]. High latent heat also tends towards 

more isentropic expansion of the fluid, reducing condensation during expansion and 

entropy loss during condensing. 

• Lower liquid specific heat capacity results in a vertical saturated liquid line with benefits 

similar to high latent heat of vaporisation, but increases the pump work [89]. 

• Lower value of viscosity reduces pump power consumption [137]. It also increases the 

conduction heat transfer coefficient, which reduces the heat exchanger area. 

• Higher value of thermal conductivity reduces the heat exchanger area [67]. 

• The freezing point temperature at the condensing pressure needs to be lower than the 

minimum annual ambient temperature, to ensure that the stored working fluid remains 

in the liquid phase and ensures its circulation.  

• For subcritical cycles, the critical pressure and temperature needs to be higher than 

the maximum operating temperature. While operating near the critical pressure, minor 

changes to the temperature results in large changes in working fluid pressure, which 

make the behaviour of the system difficult to predict. For practical sub-critical industrial 

systems, the working pressure at the upper limit of the cycle does not exceed 70% of  

the critical point of the fluid at that given temperature [102]. Higher critical pressures 

allows higher operating pressures and cycle efficiency [32]. 

• Higher operating pressure allows higher fluid temperature, thus leading to higher 

expander inlet enthalpy, pressure ratio and power output. Hung et al. reported that the 

cycle efficiency is a strong a function of inlet temperature, which in turn is a function of 

operating pressure on saturated working fluids [53].  

• For a given amount of electrical output, the mass flow rate of fluid depends on the cycle 

efficiency. The cycle efficiency in turn is a function of the expander and pump efficiency. 

Lower mass flow rates ensure smaller and more economical component sizes, less 

space requirement and reduced operating costs. 
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2.5.1.1  Expansion behaviour of working fluids 
 
Fluids are classified based on their saturated liquid-vapour line in the T-s Diagram, as shown 

in Figure 2-12. Isentropic fluids are those fluids having a vertical line with an infinite slope for 

the liquid-vapour line [44]. In an isentropic expander, the working fluid exits the expander in 

the same phase as that in which it enters. Wet fluids demonstrate a negative state of phase 

line along the T-s gradient [138]. Fluids of this type have the working fluid exiting the expander 

in a wet state after isentropic expansion, which helps release greater enthalpy to the expander 

but could lead to expander damage due to the wetness created at the expander exhaust; this 

can be avoided by superheating. Fluids that are following a positive slope for the saturated 

liquid-vapour line are known as dry or overhang type slopes. After undergoing isentropic 

expansion, the working fluid leaves the expander in a superheated state. ORCs operating with 

dry fluids typically use a recuperator or pre-condenser to reduce the temperature of the working 

fluid after the expander and before the condenser. Lecompte et al. reported that the potential 

for dry fluids in recuperative ORC cycles is only limited by a heat exchanger cooling limit [58]. 

 

 
Figure 2-12: Wet, isentropic, and dry expansion [44] 

 
 
Supercritical cycles use higher evaporation pressure and heat the working fluid directly to a 

superheated vapour phase (that is, above the critical point of the fluid), as shown in Figure 

2-13. They do not demonstrate a typical phase change in the evaporator and vapour-liquid 

separation in the evaporation drum. Also, they do not undergo multiple thermosyphon-based 

recirculation cycles in the evaporator tubes and drum as is seen in saturated fluids [139]. 

Instead, they pass once through the evaporator and immediately enter the supercritical phase. 

Due to the poor heat transfer coefficients of a gas medium, they require a greater heat transfer 

area [44]. 

 

 

 

   
Isentropic fluid exhibiting a 

straight line across the turbine 
expander [44] 

Wet fluid exhibiting a negative 
slope across the turbine 

expander [44] 

Dry fluid exhibiting a negative 
slope across the turbine 

expander [44] 
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Figure 2-13: Comparison of subcritical and supercritical expansion of ORC Fluids [15] 

 
2.5.2 Safety and environmental factors 
 
Ozone depletion potential (ODP) determines the damage caused by a fluid’s molecules to 

ozone molecules in the upper atmosphere. Pronounced thinning of the ozone layer has taken 

place in polar regions, particularly Antarctica, as illustrated in Figure 2-14 [140]. Therefore, it 

is advisable to choose a fluid with low or zero ODP, which could continue in production for the 

foreseeable future [141]. CFCs are high in ODP and were banned by the Montreal Protocol of 

1989 [142]. CFCs were replaced by HCFCs, which demonstrated at least six times lower global 

warming potential  (GWP) [143].  

 

The United States Environmental Protection Agency’s (EPA’s) Significant New Alternatives 

Policy (SNAP) plans to phase out hydrochlorofluorocarbons (HCFCs) with hydrofluorocarbons 

(HFCs) after 2024 [144, 145]. As per the Kigali Amendment, HFCs will further be phased out 

by developed countries before 2036, to reduce projected global average warming by 0.2–0.4°C 

in 2100 [146]. Hydrofluoroolefins (HFOs) have been developed as low ODP replacements for 

HFCs and HCFCs. Working fluid manufacturers recently developed a new generation of HFOs 

such as R1234yf, R1234ze(E) and R1234ze(Z) [147] to replace HFCs and HCFCs globally. 

 

The GWP determines the potential contribution of a fluid towards global warming, which has 

been described as the largest threat to life on Earth [148-151], due to which this study restricts 

itself to low GWP fluids. The release of working fluids into the atmosphere usually occurs 
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through leakage during operation and at the end of their service life [152]. The additional 

hydrogen atom possessed by HCFCs decreases their stability; the shorter atmospheric 

lifespan prevents them from reaching the ozone layer [153]. Common parameters used to 

monitor the fluid toxicity level include LC50 (lethal concentration for 50% of animals), IDLH 

(concentration deemed to be immediately dangerous to life and health), permanent exposure 

limits (PEL) and carcinogenicity [154]. 

 

Flammability is a major hazard if lower chain hydrocarbons are used, as ORCs operated at 

elevated temperatures might exceed a hydrocarbon’s autoignition temperature [155], that is, 

the lowest temperature at which a fluid spontaneously bursts into flames, without any external 

energy source [156]. Thus, the ODP, GWP, toxicity and flammability are critical safety and 

environmental parameters, summarised for thermodynamic suitable working fluids in Table 2.1 

 

 

 
 

Figure 2-14: False-colour image showing ozone concentration above the continent of 
Antarctica on 2 October 2015 [135] 
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Table 2.1: Safety and Environmental classification of organic fluids, in increasing 
order of global  warming potential 

 
 

Fluid GWP 
[157, 
158] 

ODP 
[157, 
159] 

Flamm-
ability 
[160] 

Toxicity 
[160] 

Carcino-
genicity 

[161] 

Volatility 
[40] 

Atmos-
pheric  

Life [157, 
159] 

NOVEC 
649/1230 

1 0 No No No No 5 days 

Isobutane 
(R600a) 

3 0 Highly No No Yes 12 years 

Butane 
(R600) 

4 0 Highly No No Yes 12 years 

Pentane 
(R601) 

4 0 Highly Yes No Yes 12 years 

Isopentane 
(R601a) 

4 0 Highly Yes No Yes. 12 years 

Cyclopentane 4 0 Highly No No Yes 3 days 

R 1234yf 4 0 Mildly No No No 11 days 

R 1234ze-E 6 0 Mildly No No No 14 days 

R 1234ze-Z 6 0 Mildly No No No 14 days 

HDR 14 7 N.A. No No No No 35 days 

HFE 7000 530 0 No Low No High 5 years 

R141b 725 0.11 No No No Yes 9.3 years 

R365mfc 782 0 No No No No 8.6 years 

R245fa 930 0 No Low No No 7.6 years 

SES 36 1000 0 No No No No 8.6 years 

R134a 1300 0.0001 No No No No 13 years 
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R134a was the most widely used fluid for heat sources up to 110⁰C. R134a will be phased out 

after 2024 from its primary purpose as a refrigerant, due to its high GWP (13000), although It 

was the first chlorine-free HFC replacement for R12 [162, 163] . R245fa was developed by 

Honeywell, primarily as a non-ozone depleting alternative for closed cell foam spray insulation 

and a medium-grade ORC working fluid. It has been widely used for heat temperatures up to 

150⁰C [164]. In spite of its ideal thermodynamic properties, R141b had to be excluded from 

this study due to its high GWP [165]. R12, R113, R114 and R500 were not considered due to 

their high ODP and GWP values [43]. R1234yf, R1234ze-E and R1234ze-Z were developed 

as low GWP replacements for R134a as low-grade working fluids [166]. R1234ze-Z is an 

isomer of R1234ze-E, with greater prospects for lower heat source temperatures of up to 183⁰C 

[167]. HD-R14 is another working fluid under development, which can serve as a replacement 

for R245fa. The limited details obtained demonstrated promising properties [158]. 

 

2.5.3 Selection of working fluid based on heat source and sink 
 
As ORCs operate within finite heat source and sink temperatures, maximising the pressure 

drop between these temperatures is vital for working fluid selection. Rowshanie et al. [168] 

concluded that the optimum working pressure and temperature were key determiners for cycle 

efficiency. These parameters vary for different working fluids based on their T-s diagram. 

Assuming a heat source temperature of 165⁰C and pinch point of 5⁰C, a working fluid 

temperature of 160⁰C could be attained. 20⁰C of superheating was considered, due to which 

the saturation pressure at 140⁰C was noted. Superheating allows for the safe operation of 

working fluids during transient flow conditions. 

 

The heat sink temperature was assumed as 25⁰C, along with a pinch point of 5⁰C. This 

restricted the saturation pressure of the working fluid at the expander outlet to the equivalent 

of 30⁰C saturation temperature [169]. At this temperature, most fluids were observed at a 

pressure greater than atmospheric; this eliminated the requirement for a vacuum system. The 

saturated temperature at atmospheric pressure was used to evaluate the fluid phase during 

storage at room temperature. Pressure ratios and ideal cycle efficiency were calculated based 

on the saturation pressures corresponding to 140⁰C and 30⁰C; these used for expander 

efficiency and overall cycle loss determination. 

 

This study preferred subcritical cycles as their heat exchangers were easier to design and 

tolerated heat source intermittency. Fluid classifications based on their isentropic expansion 

behaviour identified the suitability of energy recovery devices downstream of the expander. 

Working fluid properties were incorporated from the REFPROP database into an Engineering 

Equation Solver (EES) model [84, 170]. Table 2.2 features the thermodynamic properties of 

working fluid
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Table 2.2: Working fluid properties of fluids operating between 140°C and 30°C 

 

Refrigerant 
Critical 

pressure 
Critical 

temperature 

Saturation 
pressure at 

160°c 

Saturation 
pressure at 

140°c 

Saturation 
pressure at 

30°c 
Type of fluid 

Pressure 
ratio 

Saturation 
temperature at 
atmospheric 

pressure 

Ideal cycle 
efficiency 

Units kg/cm2 °C kg/cm2 kg/cm2 kg/cm2  - °C % 

R134a 40.6 101 Critical Critical 7.706 Wet  -26.37 Critical 

R245fa 36.5 154 33.81 28.15 1.772 Dry 15.89 14.86 8.241 

R141b 42.5 204.2 21.1 14.9 0.92 Slight Dry 16.20 31.7 8.771 

HFO R1234yf 33.8 94.7 Critical Critical 7.835 Isentropic  -29.78 Critical 

HFO R1234ze-

E 
36.3 109 Critical Critical 75.796 Isentropic  -19 Critical 

HFO R1234ze-

Z 
35.3 150.1 35.25 29.49 2.112 Wet 13.96 8.9 8.577 

SES36 28.49 177.6 21.04 14.62 0.8298 Slight Dry 17.62 35.34 7.872 

NOVEC 1230 18.69 168.7 15.9 10.81 0.4965 Very Dry 21.77 48.67 6.572 

HFE 7000 24.8 164.6 22.84 15.8 0.8682 Very Dry 18.20 33.82 7.461 

Butane 37.96 152 Critical 31.14 2.84 Dry 10.96 -0.8 8.369 

Isobutane 36.4 134.7 Critical Critical 4.04 Dry  -12 8.237 

Pentane 33.6 196.5 18.92 13.29 0.826 Dry 16.09 35.49 8.275 

Isopentane 33.7 187.2 22.02 15.7 1.09 Dry 14.40 27.48 8.229 

Cyclopentane 45.7 238.6 13.97 9.716 0.5135 Dry 18.92 48.86 8.926 

R365 32.7 186.9 20.37 13.97 0.6923 Dry 20.18 39.82 8.082 



Y. C. Engineer, PhD Thesis, Aston University, 2022 45 

2.6 Classification of ORC expanders 
 
Expander selection was previously identified as the most important contributor to cycle 

efficiency [86]. Expander type selection for medium-sized, low- to-medium-grade heat sources 

is controversial [171-178]. The technical criterion deemed important by this study were the 

expander efficiency, internal leakages, rotational speed, scalability, equipment size, off-design 

operation, complexity and torque variation across a revolution. The commercial criterion 

considered were the acquisition cost, maintenance cost, operator supervision requirement, 

ease of availability and proven track record for industrial use.  

 

The expanders were broadly categorised as volumetric and velocity-based expanders [89]. 

Volumetric expanders are positive displacement expanders that undergo a pressure drop by 

increasing the volume of the expansion chamber along the passage of flow. The ratio between 

the chamber volume at the beginning and end of the expansion process is known as the 

volume ratio, and is typically between 2 and 6 [55]. The volume ratio of such expanders is 

fixed, integral to expander design and defines the maximum amount of work per cycle. A 

complete redesign of the expander is required for a change in operating parameters. This also 

causes over- and under-expansion losses if the expander runs at off-design conditions, limiting 

its suitability for transient heat sources [179].  

 

Limited operational flexibility is provided by varying the operating speed. Additionally, since all 

volumetric expanders are positive displacement machines, they suffer a performance drop 

during operation with low density working fluids. Volume-based expanders include 

reciprocating piston expanders, scroll expanders and screw expanders, which are discussed 

in detail in the next section. Compared to velocity-based expanders, volumetric expanders are 

more suitable for dealing with higher pressure ratios and operated at lower rotational speeds 

and flow velocities.  

 

Velocity-based expanders undergo expansion by passing flow through a row of nozzles. The 

reduction in pressure and temperature converts the flow energy of the fluid into kinetic energy 

by increasing the velocity. The kinetic energy is captured by the moving blades, and then 

rotated and converted into shaft power. As the speed of the moving blades is proportionate to 

the fluid velocity, velocity-based expanders operate at higher speeds than volume-based 

expanders, typically requiring speed reduction gearboxes, but reducing the number of moving 

parts. 

 

An effective increase in volumetric flow rate is generated by increasing the flow velocity and 

vane area. The change in the vane geometry allows a single turbine frame to cater to a variety 

of fluid flow conditions.  
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2.6.1 Volumetric expanders 
 
2.6.1.1  Scroll expander 
 
Scroll expanders use two interleaved scrolls, with the first scroll being fixed, and the second 

scroll orbiting eccentrically around the first scroll, as shown in Figure 2-15. In this study, it was 

observed that pockets of fluid were trapped between the scrolls and underwent expansion. 

Previous studies observed that high expansion efficiency, tolerance to two-phase flow and low 

rotating speeds benefit scroll expanders [180]. Scroll expanders have been used for ORC 

applications on a microscale from 0.1 kW up to 10 kW [174, 181]. Empirical simulation models 

have achieved isentropic efficiency up to 68% [136]. Kaczmarczyk et al. undertook a trial of a 

1.1 kW ORC system by running scroll expanders in both series and parallel operations, and 

found an increase in expander efficiency with a series combination of 11.6% as compared to 

an 10.8% in parallel operation [182]. 

 

 
 

Figure 2-15: Working principle of a scroll expander [162] 

 
Scroll expanders are limited by design to a fixed volumetric expansion ratio and under- and 

over- expansion losses at part load conditions. They are best suited for applications with a 

high-pressure ratio. External leakage occurs between the top or bottom plate and the shaft of 

the scroll, and an internal leakage occurs between the flanks of the scroll and the scroll 

housing, contributing to a significant proportion of the performance loss. The internal leakage 

increases exponentially with increase in pressure ratio [183]. Scroll expanders require 

continuous lubrication between the fixed and moving scrolls. A technical benefit is the ability 

to modify commercial scroll compressor seals, ports and added pressurised oil lubrication 

systems to operate them as expanders [174]. 

 

 

 

 

https://scholar.google.co.in/citations?user=YF6EEMcAAAAJ&hl=en&oi=sra
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2.6.1.2 Screw expanders 
 
Screw expanders utilise two helical screws, due to which the expansion of working fluid 

between the passage created is converted into shaft power, as shown in Figure 2-16. Gearing 

between both the screws ensures that the expansion timing and clearances between the 

screws is maintained. Compared to scroll expanders, screw expanders are more suitable for 

larger volumetric ratios (greater than 5), demonstrating high reliability and proven operating 

performance, as screw compressors usually 

operate at 1500 or 3000 rpm [164]. 

 

 
 

Figure 2-16: Exploded view of a typical twin-screw expander [165] 

 
Screw expanders require lubrication via a mixture of working fluid and oil. The heat generated 

by the localised bearing friction causes the working fluid to evaporate and the residual oil is 

used for lubrication. This limitation restricts the choice of working fluids at the high-pressure 

end bearing to a temperature lower than the bearing oil temperature. Oil-free designs are 

currently under development.  

 

Screw expander efficiency is sensitive to the clearance and volumetric flow rate. A clearance 

of the order of 50 microns is usually maintained between the screws and the outer housing 

[176]. This clearance is practically difficult to achieve for larger machines due to manufacturing 

limitations. An increased clearance leads to an increase in leakage flow to unacceptably high 

values which limits expander suitability for medium- and large-sized systems. Larger machines 

require a larger screw diameter or operating speed, which leads to higher tip velocity and 

generates additional secondary losses. Previous studies considered a tip velocity of 60 m/s as 

the upper limit without a significant compromise in leakage flow, which limited the male rotor 

diameter to 420 mm, for a 3000 rpm machine [176].  



Y. C. Engineer, PhD Thesis, Aston University, 2022 48 

2.6.1.3 Reciprocating piston expanders 
 
Two stroke reciprocating piston expanders have been used for expanding steam for over 140 

years and are now witnessing renewed interests vis-à-vis ORCs [171, 177]. The fluid 

undergoes expansion, pushes the piston in the outward direction to convert the potential 

energy of the fluid to linear kinetic energy (Figure 2-17), which is then converted to rotational 

shaft power by the crankshaft. The working fluid is vented through the exhaust port during the 

return stroke. Larger piston expanders use multiple pistons and synchronise the port timing 

with the help of a camshaft. All cylinders are connected to the crankshaft, which transmits the 

mechanical shaft power generated. 

 

 
 

Figure 2-17: Working principle of reciprocating piston expander with a double valve 
reciprocating expander [166] 

 

Reciprocating piston expanders have the advantages of a matured manufacturing setup and 

the ability to work at high-pressure ratios. However, the system is inherently unstable, as 

energy is transferred in one of the two strokes. The primary output is generated in a linear 

motion, and then converted to rotary output. Balancer shafts are usually required to counter 

the weight imbalance of the piston and crankshaft. This expander has the highest number of 

moving parts, resulting in large frictional losses. Piston expanders also require overhauling at 

regular intervals. In addition, they undergo torque pulsation, despite optimised cylinder timing 

sequences, due to the limit in the number of pistons, instead of providing continuous torque 

over a complete rotation like all the other expanders considered. They are suitable for 20 to 

100 kWe [184]. 
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2.6.1.4 Rotary vane expanders 
 
Rotary vane expanders are typically used for expanding air in high-risk spark-free 

environments. They operate with a single rotor along with moving vanes in a circular orbit 

(Figure 2-18); the multiple vanes providing steady torque. Rotary vanes are reported to handle 

pressure ratios up to 10 [180]. They have the advantages of a linear power curve, self-priming 

and operation at typically low speeds up to 3000 rpm [89]. Fukuta et al. experimentally 

determined the leakage of working fluid across the vanes, which played a major role in 

determining expander efficiency [185]. Yang et al. developed an experimental expander that 

used springs to minimise fluid flow leakage between the vanes and boundary walls [173]. 

Despite this, the maximum expansion efficiency attained so far has been 29%, and scalability 

beyond microgeneration remained a serious issue, with the largest possible size estimated at 

10 kWe [186]. 

 
 

Figure 2-18: Working of a rotary vane expander [170] 

 
2.6.2 Velocity-based expanders (turbines) 
 
Whereas volumetric expanders varied the size of the expansion chamber, turbines undertook 

expansion by imparting velocity to convert the static enthalpy of the working fluid into kinetic 

energy using the stationary nozzles, which was then recovered by the turbine’s moving blades. 

Weiß concluded that compared to volumetric expanders, turbines offered superior reliability, 

greater scalability with volumetric flow rate, greater scalability with pressure ratios, relatively 

simpler sealing systems, reduced wear and tear, similar tolerance to wetness and minimum 

vibration, but were limited by lower operation speeds [178].  

 

They demonstrated high flexibility to accommodate various expansion ratios by varying blade 

geometry. As impulse turbines could operate with variable admission arcs, they were better 

suited for part load operation than volumetric expanders [187]. The turbines can be broadly 

classified into axial flow, radial flow, and mixed flow machines, all regarded as highly reliable 

after a century of operation in steam, gas, nuclear and combined cycle-based power plants 



Y. C. Engineer, PhD Thesis, Aston University, 2022 50 

[187]. ORC turbines differ due to their fluid properties and more critical sealing requirements 

but have similar overall dimensions. 

 

2.6.2.1 Axial turbine 
 
Axial turbines enable the entry and exit of flow parallel to the shaft of rotation (Figure 2-19). 

Single-stage axial flow turbines are used for fluids with a lower pressure ratio. A single set of 

stationary and moving blades demonstrates optimum performance up to pressure ratio of 4 

[180]. Axial turbines offered higher scalability for volumetric flow than volumetric expanders by 

varying greater blade heights to improve overall profile efficiency and eliminating partial 

admission-induced pumping losses. 

 

 
(a) 

 
(b) 

 

Figure 2-19: (a) Components of the two-stage axial turbine [172] (b) pictorial view of four 
stage impulse biased axial steam turbine 

 
2.6.2.2 Radial turbine 
 
Radial turbines enable the entry of working fluid in the radial direction, otherwise called radially 

inward turbines, whereas those operating with the direction of working fluid flow away from the 

shaft are called radially outward turbines (Figure 2-20). While the axial turbine rotor is 

‘impacted’ by the flow of working fluid, the radial turbine uniformly orients the flow perpendicular 

to its axis, reducing mechanical stresses and unbalance. This was particularly important in the 

case of high-density fluids [180]. Compared to single stage axial turbines, radial outflow 

turbines are better suited to lower volumetric flow rates and higher pressure ratios, this 

because the flow towards a larger radius leads to an increase in flow path cross-sectional area 

[130]. However, radial flow turbines are not suitable for handling two-phase flow [188]. The 

complex vanes integral to the radial turbine rotors contribute to a significant increase in 

manufacturing cost when compared to axial turbines [61]. Radial turbines are less suited to 

transonic and supersonic flows as these flows face choking at the rotor vanes [178]. Lemort 



Y. C. Engineer, PhD Thesis, Aston University, 2022 51 

and Quoilin [134] developed operating maps of the radial inflow turbine for various ORC 

working fluids. Alshammari et al. studied ORC expander design and found radial turbines 

suitable for micro- and small-scale ORC-based waste heat recovery applications [172]. Shao 

et al. developed a 1.884 kWe experimental radial ORC turbine using R123, noting that an 

increase in heat source temperature led to an increase in the efficiency of the radial turbine 

[189]. 

 
 

Figure 2-20: Construction of a single-stage radial inflow turbine [172] 

 
2.6.2.3 Comparison between axial and radial turbines 
 
Zhao et al. reported that axial turbines are generally rated for a higher power output [73]. 

Pethurajan et al. reported that previous ORC radially inward turbines are limited to 

experimental designs and a maximum power output of 5 kWe [180]. They also stated the 

tendency of the blades to heat up when operated at high temperatures. Blade cooling for radial 

turbines is generally more difficult than for axial turbines [180]. Al Jubori et al. conducted a 

mean line analysis of axial flow and radial inlet ORC microturbines, using the Moustapha et al. 

and Whitfield & Baines loss models. They validated the analysis using Computational Fluid 

Dynamics (CFD) modelling [190]. 

The reported peak isentropic efficiency for the axial and radial turbine was 82.5%and 79.05%, 

respectively. The efficiency deviation between loss models and CFD simulation was 3.84% for 

axial flow turbines and 3.38% for radial inflow turbines. Axial flow turbines are more widely 

used for ORC application  due to their higher efficiency, superior reliability, design simplicity, 

reduced capital cost, relatively less wear and tear due to the reduced moving parts, minimum 

vibration and greater scalability for pressure ratios and volumetric flow rate [178]. Scalability is 

considered as a factor of paramount importance as the industrial grade heat source considered 

by this study could vary by quantity. A summary of all the expanders considered by this study 

is presented in Table 2.3. 
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Table 2.3: Summary of the comparison of expanders 

 
Type Capacity 

range 
(kW) 
[191] 

Rotational 
speed 

(rpm) [191] 

Cost Advantages Disadvantages 

Axial 

Turbine 

20 + 3000-14000 Medium Flexibility for part load operation, highest 

upward scalability, widely proven, established 

manufacturing, limited tolerance to two-phase 

flow, small size 

Downsizing for smaller sizes, limited 

tolerance for two-phase flow, gearbox 

typically required [178] 

Radial 

turbine 

1–100 8000–

80,000 

High Lightweight, mature, high efficiency, widely 

proven, natural flow direction for radially 

outward turbine [178],  

small size 

High cost, complex manufacturing, low 

efficiency in off-design conditions, limited 

to subsonic flow (Mach No. 0.85)[178], 

unsuitable for two-phase flow [180], 

gearbox typically required [178] 

Scroll 

expander 

1–10 <6000 Low Medium efficiency, simple manufacturability,  

established manufacturing lightweight, low 

rotational speed, highest tolerance to two-

phase flow [178], gearbox not required 

Sealing issues, scalability, off- design 

performance 
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Type Capacity 
range 
(kW) 
[191] 

Rotational 
speed 

(rpm) [191] 

Cost Advantages Disadvantages 

Screw 

expander 

15–200 <6000 Medium High efficiency, simple manufacturability, 

established manufacturing, lightweight, low 

rotational speed, high tolerance to two-phase 

flow [178], gearbox not required 

Sealing issues, unsuitable for transient 

operation 

Reciprocat

ing piston 

expander 

20–100 <6000 Medium High pressure ratio, mature manufacturability,  

established manufacturing, low rotational 

speed, adaptable to variable working condition, 

gearbox not required 

Inherently unbalanced with heavy 

vibration, 

Torque pulsation, high maintenance, 

heavyweight, complexity, off-design 

performance, unsuitable for two-phase 

flow [178] 

Rotary 

vane 

expander 

1–10 <6000 Low Stable torque,  

tolerance to two-phase flow, 

simple construction, low cost and noise, 

gearbox not required 

Sealing issues, low capacity, low 

efficiency, unproven, less manufacturing 

setup 
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2.7 Non-dimensional parameters 
 
Noting the advantages of the axial turbine, a detailed investigation into their design parameters 

was undertaken. The use of non-dimensional parameters was considered as a suitable 

approach for their scalability, unit-free approach and ease of understanding. They provided a 

preliminary approach to predict characteristics within a wide input parameter band for a typical 

machine within a reasonable limit. Dimensional approaches were seldom used to characterise 

turbomachines due to variations in working fluid, application and machine size. 

 
2.7.1 Volumetric flow ratio 
 
Volumetric flow ratio (𝐺𝐺𝐹𝐹𝐶𝐶) refers to the ratio of specific volume of fluid at the exhaust 

(�̇�𝐺𝑟𝑟𝑃𝑃𝑜𝑜) and inlet (�̇�𝐺𝑜𝑜𝑜𝑜) of the turbine (equation 2.4) [190]. It accounts for fluid compressibility and 

density [60]. Lower volumetric flow rate results in greater blading efficiency, but not necessarily 

greater power output [77]. A higher volumetric flow rate suggested a higher enthalpy drop, 

hence, a greater likelihood of a multistage turbine, along with a larger diametric variation 

between the first and last stage. The larger number of stages increases the rotor manufacturing 

difficulty, cost, and the likelihood of critical speed related issues. 

𝐺𝐺𝐹𝐹𝐶𝐶 =  �̇�𝑉𝑜𝑜𝑜𝑜𝑜𝑜
�̇�𝑉𝑖𝑖𝑖𝑖

                                                                     2.4 
 

2.7.2 Size parameter   
 
Size parameter is defined as a function of the volumetric flow rate of the fluid at the expander 

exhaust  �̇�𝐺𝑟𝑟𝑃𝑃𝑜𝑜 and isentropic enthalpy drop ∆ℎ𝑜𝑜𝑠𝑠 in equation 2.5 [191]. It is used for predicting 

the efficiency penalties due to flow compressibility and reduced blade heights. The enthalpy 

drop provides properties of the inlet and outlet fluid conditions, and the volumetric flow 

correlates the size parameter with the mass flow rate. ORC turbines usually maintain a size 

parameter between 0.02 and 1 [192-194]. 

 

𝑆𝑆𝑃𝑃 =  ��̇�𝑉𝑜𝑜𝑜𝑜𝑜𝑜
∆ℎ𝑖𝑖𝑖𝑖

                                                                2.5 
 
2.7.3 Reynolds number 
 
The Reynolds number (Re) is the ratio between inertial and viscous forces in the turbine flow 

passage. Arithmetically, it is a function of passage hydraulic diameter and fluid density (ρ), 

velocity (v) and dynamic viscosity (μ) (equation 2.6). It bears an implication in fluid flow and 

heat transfer governing equations and is used to predict flow behaviour patterns, classified as 

laminar, transient or turbulent. 

Turbulence is generated due to differences in the fluid's relative speed that leads to the 

increase of inertia force in the direction of flow and causes eddy currents, which in return, 

cause churning in the flow and increase its entropy because of high intermolecular chaotic 
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motion. Previous studies determined that the Reynolds number had a significant effect on 

profile losses [192]. At high Reynolds numbers, the relative surface roughness of the blade 

(ks) played an important role, as it controlled the boundary layer of the flow (Figure 2-21) [193]. 

 
                         𝐶𝐶𝑎𝑎 = 𝜌𝜌𝑟𝑟𝐷𝐷𝐻𝐻

𝜇𝜇
            2.6 

 
 

 
 

Figure 2-21: Craig and Cox correlated the effect of the surface finish with its induced profile 
losses [181] 

 
2.7.4 Velocity ratio  
 
The velocity ratio (𝐺𝐺𝐶𝐶) (equation 2.7) is the ratio between the velocity of the moving blade (𝑈𝑈) 

to actual velocity of the fluid passing across it (𝐶𝐶2). It is significant in the case of ORCs as high 

𝐶𝐶2 values are unavoidable due to low specific volumes and large volumetric expansion ratios 

[191]. Impulse turbines achieve a higher pressure drop per stage and are more cost effective, 

easier to operate and better suited for high velocity applications such as ORCs than reaction 

stages. As the velocity that can be captured by each row of moving blades is limited, two row 

and three row impulse designs were developed to capture larger enthalpy drops, albeit with a 

drop in efficiency. Kearton [197] stated that ideal values of velocity ratio for axial machines 

range between 0.2 and 0.3 for two row moving blade impulse biased Curtis stages, between 

0.4 and 0.5 for a single row impulse machines and between 0.7 and 1.0 for 50% reaction 

stages, as shown in Figure 2-22 [194]. 

 

𝐺𝐺𝐶𝐶 = 𝑈𝑈
𝐶𝐶2

= 𝐶𝐶𝑟𝑟𝑠𝑠β2
𝐶𝐶𝑟𝑟𝑠𝑠β1

               2.7 
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Figure 2-22: Velocity ratio for single stage impulse (Rateau wheels), two-stage impulse 
(Curtis wheels) and reaction disc axial stages [183] 

 
2.7.5 Specific speed 
 
Specific speed is used to scale turbomachinery independent of size, without impacting 

efficiency, for reasonable limits of Reynolds number. It considers the exhaust volumetric flow 

rate (�̇�𝐺𝑟𝑟𝑃𝑃𝑜𝑜), rotational speed (𝑁𝑁) and isentropic enthalpy drop (∆ℎ𝑜𝑜𝑠𝑠), as in equation 2.8. Typical 

preliminary design of new turbines consider two of the three parameters as constraints, and 

an ideal value of specific speed is specified to obtain the third parameter [186]. Dixon reported 

that radial turbines performed efficiently at specific speeds between 0.3 and 0.9, as shown in 

Figure 2-23 [198]. 

 
                                            𝑁𝑁𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟 = 60×𝑁𝑁×�𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜̇

(∆ℎ𝑖𝑖𝑖𝑖 )0.75  [199]                                                           2.8 

 

 
 

Figure 2-23: Max turbine efficiency versus specific speed for radial inflow turbine [158] 
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2.7.6 Specific diameter 
 
The specific diameter (𝐷𝐷𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟) (equation 2.9) is used in conjunction with the specific speed, as 

Figure 2-24. It is used to determine the mean flow path diameter (𝐷𝐷), using the exhaust 

volumetric flow rate (�̇�𝐺𝑟𝑟𝑃𝑃𝑜𝑜) and isentropic enthalpy drop (∆ℎ𝑜𝑜𝑠𝑠) [200]. Practical values for 

specific diameter tended to be slightly higher than those suggested by the Cordier line. The 

velocity ratio, specific speed and specific diameter are interdependent. 

 
                                      𝐷𝐷𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟 = 𝐷𝐷×∆ℎ𝑖𝑖𝑖𝑖0.25

�̇�𝑉𝑜𝑜𝑜𝑜𝑜𝑜
0.5  [199]                       2.9 

 

 
 

Figure 2-24: Efficiency correlation for expanders based on specific speed and specific 
diameter [186] 

2.7.7 Pressure ratio 
 
Pressure ratio is the ratio between the stagnation pressure at the outlet (𝑃𝑃𝑠𝑠𝑜𝑜𝑠𝑠−𝑂𝑂𝑃𝑃𝑜𝑜) and inlet 

(𝑃𝑃𝑠𝑠𝑜𝑜𝑠𝑠−𝐼𝐼𝑜𝑜) of the turbine, as shown in equation 2.10. A higher-pressure ratio means an increase 

in enthalpy drop and work done by the turbine, leading to higher flow and load coefficients. 

The compatibility for expanders with pressure ratios has been discussed above in section 2.6 

 

                                                     𝑃𝑃𝐶𝐶 = 𝑃𝑃𝑖𝑖𝑜𝑜𝑠𝑠−𝑂𝑂𝑜𝑜𝑜𝑜
𝑃𝑃𝑖𝑖𝑜𝑜𝑠𝑠−𝐼𝐼𝑖𝑖

                         2.10 

 
2.7.8 Stage loading coefficient 
 
The stage loading coefficient (ψ) is used for deciding the number of stages. As the amount of 

turning work done by the fluids across the profile increases beyond the ideal loading coefficient, 

a great probability of primary flow detachment emerges, hence, increasing the secondary 

losses. 

                                                                   ψ = Δh0
(𝑈𝑈𝑖𝑖𝑖𝑖)2

                                                    2.11 
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2.7.9 Flow coefficient 
 
Flow coefficient (Φ) is the ratio of the fluid axial velocity after the stationary blades (Ca2) to the 

meridional blade rotational speed (U). Figure 2-25 shows the Smith chart [195] prepared in 

1965, that is widely used for preliminary design by correlating the load and flow coefficients 

[196]. A reduction in enthalpy drop per stage leads to lower values of flow and load coefficient, 

thus improving efficiency. However, additional stages are required to accommodate the 

increased enthalpy drop. Alternatively, the flow coefficient can be reduced by reducing the 

axial component of velocity. For a given volumetric flow, this is compensated by an increase 

in blade height. 

 
𝛷𝛷 = 𝐶𝐶𝑎𝑎2

𝑈𝑈
                     2.12 

 

 
 

Figure 2-25: The Smith chart provided the correlation between the load coefficient, flow 
coefficient and efficiency [187, 189] 

 
2.7.10    Degree of reaction 
 
The degree of reaction (𝐷𝐷𝐷𝐷𝐶𝐶) is the ratio of the stagnation enthalpy drop across the moving 

blades to the enthalpy drop across the entire stage. It determines the distribution of expansion 

between the stator and the rotor. As the static enthalpy is simpler to calculate, preliminary 

studies typically restrict themselves to static enthalpy instead of stagnation enthalpy [203]. It is 

defined in equation 2.13. with 𝑃𝑃1 as the pressure before the stator, 𝑃𝑃2 as the pressure between 

the stator and rotor and 𝑃𝑃3 as the pressure after rotor. Based on the degree of reaction, turbines 

are classified as impulse stages, with a degree of reaction 0, where all the pressure drop is 

done in stationary blades and reaction stages with a degree of reaction of 0.5, where enthalpy 

drop is equally distributed between the stationary and moving blades, as shown in Figure 2-26. 

Real turbines are neither pure impulse or pure reaction, considering each profile contains some 

degree of frictional loss and associated entropy generation [178]. 
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𝐷𝐷𝐷𝐷𝐶𝐶 = 𝑃𝑃2−𝑃𝑃3
𝑃𝑃1−𝑃𝑃3

                        2.13 
 

 
 
                                   (a)                                                                    (b) 
 

Figure 2-26: Isentropic enthalpy drop for (a) a pure impulse turbine with DoR 0% and (b) a 
high-reaction turbine with DoR 50% 

Pure impulse machines have the benefit of a minimum pressure drop across the rotor, and 

lower axial thrust [197]. The first stage of large machines usually employs a highly impulse-

biased stage for a large pressure drop, which reduces the casing internal pressure, rotor tip 

leakage mass flow and casing thermal expansion. Low reaction machines place higher 

importance on the design and manufacturing of the stationary blades. 

As impulse turbines operate at higher velocities, they generally produced slightly lower 

efficiencies [178]. Typical impulse-biased stages have a degree of reaction between 5 and 

15%. Reaction-biased turbines are highly sensitive to radial clearance due to flow leakage. 

To compensate the flow leakage across the rotor, reaction turbines are usually equipped with 

a rotor tip sealing mechanism with clearances lower than half a millimetre. This mandates 

greater importance to maintain fluid quality and avoiding the build-up of scale, rust or residue 

within the turbine [198]. Shrouding of the moving blade passages also helps to reduce the 

leakage flow and limits the secondary flow loses at the tip [199]. Additionally, reaction 

turbines do not support partial admission, limiting their flexibility for lower volumetric flow 

rates [178]. 
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2.7.11 Zweifel loading coefficient 
 
Zweifel coefficient is the ratio between the actual to ideal tangential forces acting on the blade 

as shown in equation 2.14; where 𝑎𝑎ℎ𝐷𝐷𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎𝑜𝑜𝑚𝑚𝑙𝑙 𝑙𝑙𝑟𝑟𝑜𝑜𝑠𝑠𝑜𝑜ℎ is the axial chord length, 𝑘𝑘 is the pitch, 𝛼𝛼2 

and 𝛼𝛼3 are the absolute fluid flow angles at the entry and exit of the moving blades. It is used 

to determine the number of profiles used, and therefore the blade pitch [200]. Higher values 

lead to reducing spacing and increasing the number of blades. The reduced work done per 

blade reduces individual blade stresses and helps avoid resonant excitation modes. However, 

it leads to an increase in the surface area and induced frictional losses. Zweifel suggested a 

coefficient value within the range of 0.8 and 1.0; but values greater than 1 are normally used 

for modern Industrial machines. The reduced blade count associated with  higher coefficient 

values is possible as the use of modern materials and three-dimensional profiles incorporating 

carefully controlled loading across all sections of the blade provide the ability to withstand 

higher individual blade stresses, while fewer blades result in reduced manufacturing costs 

[200-202]. 

 
𝑍𝑍 = 2 � 𝑠𝑠

𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎 𝑎𝑎𝑙𝑙𝑖𝑖𝑠𝑠𝑜𝑜ℎ
� ∗ (𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝛼𝛼3) ∗ 𝑎𝑎𝐷𝐷𝑘𝑘𝛼𝛼3

2                           2.14 

 
2.7.12   Solidity  
 
Solidity is the ratio of axial chord length (𝑎𝑎ℎ𝐷𝐷𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎𝑜𝑜𝑚𝑚𝑙𝑙 𝑙𝑙𝑟𝑟𝑜𝑜𝑠𝑠𝑜𝑜ℎ) to the mean pitch (𝑘𝑘), as stated in 

equation 2.15. It is prioritised above the Zweifel coefficient for preliminary design studies, as it 

does not require flow deviations from velocity triangles, due to its simple nature [210]. 

 
𝑆𝑆𝐷𝐷𝑐𝑐𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑙𝑙 = 𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎 𝑎𝑎𝑙𝑙𝑖𝑖𝑠𝑠𝑜𝑜ℎ

𝑠𝑠
              2.15 

 
2.7.13   Aspect ratio 
 
The aspect ratio correlates between the blade height (ℎ𝑎𝑎𝐵𝐵) and chord length (𝑎𝑎ℎ𝐷𝐷𝑎𝑎𝑑𝑑𝑙𝑙𝑟𝑟𝑜𝑜𝑠𝑠𝑜𝑜ℎ), as 

stated in equation 2.16. Lower aspect ratios tend towards greater prominence of secondary 

flows. It is uncommon to change the chord length for a given profile; changes to optimise 

aspect ratio are undertaken by varying blade height. For impulse turbines, blade height is also 

varied for a given passage exit area by varying the degree of partial admission [211]. 

Maintaining the aspect ratios greater than 1 helps to ensure that the flow is attached to the 

profile and hence, limits the secondary losses [212]. Previous studies have observed that 

aspect ratio played a critical role in small turbines with lower blade heights [197]. 

 
𝐴𝐴𝑘𝑘𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷 =  ℎ𝑜𝑜𝐵𝐵

𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑎𝑎𝑙𝑙𝑖𝑖𝑠𝑠𝑜𝑜ℎ
                   2.16 
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2.7.14   Mach number 
 
Mach number is the ratio of the local velocity of the fluid (𝑎𝑎𝑓𝑓𝑙𝑙𝑃𝑃𝑜𝑜𝑑𝑑) to the local  in the given medium 

(𝑆𝑆𝑆𝑆), as shown in equation 2.17 [213]. The speed of sound is a function of the specific heat 

ratio (𝛾𝛾), universal gas constant (𝐶𝐶) and absolute temperature (𝑇𝑇). The fluid velocity increases 

proportionally with the enthalpy drop across the stage. Craig and Cox demonstrated a 

considerable efficiency drop for a profile operating in the transonic regime, where Mach 

numbers lie between 0.8 and 1.2 (see Figure 2-27). Turbine profiles operate at their best 

efficiency in subsonic conditions but operation at transonic or supersonic conditions is common 

for ORC machines due to the low speed of sound of ORC fluids.  

 

A compromise is required between turbine efficiency and an increasing number of turbine 

stages. Impulse turbines operating in the supersonic regime typically require two or three rows 

of moving blades to capture the kinetic energy of the fluid. Supersonic flow is also considered 

to be more sensitive to off-design operation. While operating in the supersonic regime, beyond 

a certain point, volumetric flow increases and the Mach number remains constant; this is known 

as the choked flow condition [203]. White and Sayma remarked that small-scale single-stage 

ORC systems employ high expansion ratios relative to their blades heights, which usually 

leads to fluid flows in the supersonic regime at the moving blades [81]. 

 
𝑀𝑀 = 𝑟𝑟𝑓𝑓𝑎𝑎𝑜𝑜𝑖𝑖𝑓𝑓

𝑆𝑆𝑆𝑆
=  𝑟𝑟𝑓𝑓𝑎𝑎𝑜𝑜𝑖𝑖𝑓𝑓

�𝛾𝛾𝑅𝑅𝑇𝑇
     2.17 

 
 

 
 

Figure 2-27: Correlation of Mach number with profile efficiency [181] 
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2.8 Turbine efficiency 
 
Most previous studies assumed a fixed value of turbine isentropic efficiency, usually between 

60% and 90%, due to the complex process of determining turbine losses and the lack of 

supporting literature [204]. Song et al. concluded that turbine efficiency has a significant impact 

on the selection of the working fluid and the cycle’s overall performance [131]. Yamamoto et 

al. remarked that ORC performance is a strong function of the expander’s operation [205].  

 

White and Sayma observed significant differences in cycle efficiency when off design-point 

turbine efficiency was considered, particularly for heat source temperatures above 150⁰C, 

where an increase in the heat source temperature led to a 13% reduction in power outputs for 

thermodynamically optimum cycle configurations, this due to the large amount of superheating 

required for ideal subcritical cycles [81]. When turbine efficiency was considered as fixed, the 

optimal thermodynamic cycles produced the best results at conditions where real world turbine 

performance was worse due to high volumetric expansion ratios. A single-stage expander was 

concluded as the optimal configuration for small-scale applications with low heat source 

temperatures and low volumetric flow rates, despite intermittency in turbine efficiency due to 

high fluid velocity [81]. 

 

2.8.1 Design point loss models  
 
There are two main approaches to predict design point turbine efficiency: direct and indirect. 

The direct approach consists of a group of individual losses collated into a loss model [192], 

while the indirect approach employs non-dimensional parameters. Soderberg’s model, 

developed in 1949 and still widely accepted, was one of the first to use the direct approach 

[206]. 

 

The Craig and Cox direct loss model, developed in 1971 and validated by previous 

researchers, is still considered a reliable and accurate method for designing modern impulse-

bladed axial flow turbines [207-210]. Macchi and Perdichizzi developed correlations between 

non-dimensional parameters and axial ORC turbine efficiency based on the Craig and Cox 

loss model [211]. Lazzaretto et al. employed an indirect approach to optimise the turbine 

efficiency, considering the volumetric expansion ratio and size parameter as performance 

predictors [212].  

 

White and Sayma optimised a radial ORC turbine using similitude theory, wherein the size 

parameter, isentropic enthalpy drop, mass flow rate and volumetric expansion ratio were 

considered as non-dimensional parameters to maintain uniform fluid velocity [81]. Latimer 

observed that the validity of estimations based on empirical correlations was limited to a family 
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of scaled-up profiles and needed to be revised with the passage of time to consider 

improvements due to developments in CFD [213]. 

2.8.2 Off-design point loss models 
 

For turbines operating with a transient heat source, it is also important to consider off-design 

losses, the importance of which depends on the fraction of unsteady flow. Advanced loss 

models factored the off-design correlation by studying the incidence losses. The Ainley-

Mathieson loss model was the first to consider a wide range of profiles. It factored in the off-

design loss by the ratio of the profile pitch to leading edge radius [214]. 

 

However, the loss model did not consider the leading-edge geometry and incidence-induced 

secondary losses, which overestimated off-design losses at high incidence angles up to a 

magnitude of 4 [215]. The off-design component of this loss model is considered unsatisfactory 

as it did not consider the shape, wedge and diameter of the leading edge [215].  

 

Craig and Cox evolved the off-design losses to consider the loss factor independently for 

positive and negative stalling incidence, as shown in Figure 2-28 [192]. However, Ning Wei 

[216] concluded that the Craig and Cox off-design profile loss model overestimated the loss at 

large incidence angles as well as produced a sharp decrease in efficiency at the point of 

maximum positive incidence [124].  
 

 
 

Figure 2-28: Craig and Cox calculated the positive and negative incidence loss 
independently [181] 
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Mukhtarov and Krichakin [217] were the first to consider the effect of the diameter of the leading 

edge and the secondary losses induced by the incidence loss. They determined the incidence 

loss as a function of incidence angle, convergence ratio, leading edge thickness and 

compressibility factor, but independent of incidence direction. However, the loss function was 

independent of the stalling direction and the results were limited to subsonic and transonic flow 

patterns with cascade geometry similar to those tested during their experiment.  

 

Moustapha et al. observed that Mukhtarov and Krichakin had overpredicted the profile 

incidence losses [215, 217]. Whereas Moustapha et al. maintained the same influencing 

factors, they considered the convergence ratio using the metal angle of the blades instead of 

the gas angle. Moustapha et al. also concluded that the leading-edge’s diameter significantly 

influenced the incidence losses as it determined the size of the horseshoe vortex developed 

at the leading edge. 

 

2.8.2.1 Primary incidence loss 
 
Along with the incidence angle, Moustapha et al.’s loss model also considered the ratio of the 

leading-edge radius to the pitch, which was deemed significant for the moving blade entry 

[215]. . Ning Wei observed that the Moustapha et al.’s off-design loss model was the only one 

that did not suffer from an erratic increase in loss estimation in the negative incidence region 

[216]. It provided an individual breakup of primary and secondary off-design losses. The 

improved primary loss prediction of Moustapha’s loss model, compared to the Ainley-

Mathieson and Mukhtarov-Krichakin models is shown in Figure 2-29. 

 

 
 

Figure 2-29: The primary loss correlation provided by Ainley-Mathieson [209] (a), and 
Mukhtarov-Krichakin [212] (b) was improved upon by Moustapha et al. [210]  (c) 
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2.8.2.2 Secondary incidence loss 
 
The secondary incidence loss predicted by Moustapha was based on the Mukhtarov-Krichakin 

loss model with the addition of the profile’s leading-edge radius effect, similar to the primary 

incidence loss [215, 217]. Moustapha’s secondary loss factor addressed the Ainley-Mathieson 

loss model’s underprediction of profile losses for low-aspect ratio profiles operating with a large 

value of positive incidence [214]. Experimental validation undertaken is shown in Figure 2-30 

[215].  

 

 
 

Figure 2-30: The secondary loss correlation provided by Ainley-Mathieson (a) [209], and 
Mukhtarov-Krichakin [212] (b) loss was improved upon by Moustapha et al.[210] in (c) 

 
2.9 Cycle configuration based on operating conditions 
 
Operating conditions such as the degree of superheating and pressure ratio significantly 

influence the turbine performance, and hence, the overall cycle operation of ORC. The 

admission of a working fluid at a high degree of superheating to the expander increases the 

thermodynamic potential across it for a given pressure ratio, thus providing theoretically 

economical solutions to improve expander power output [218]. However, extracting the 

additional thermodynamic potential of a superheated fluid depends on the fluid flow passage’s 

losses [219]. 

 

Most previous theoretical studies proposed expanding the working fluid directly from the 

saturated condition at the highest possible pressure to maximise the power output, without 

considering variable turbine efficiency. Weiß et al. reported that the isentropic efficiency for 

small axial ORC turbines increased by almost 2% when the pressure ratio was changed from 

16 to 22; equally, operating at pressure ratios below 14 marked a decrease in the isentropic 

efficiency up to 8% [220]. The steeper change in the isentropic efficiency at a low-pressure 

ratio was attributed to compression shocks in the convergent-divergent nozzle section. Multiple 

cycle configurations incorporate recuperation to improve cycle efficiency and reduce the 

effective thermal load on the boiler [221]. Recuperation extracts thermal energy from the 
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working fluid at the outlet of the expander to preheat it before entering the boiler [90]. As ORC 

fluids have high heat transfer coefficients due to low Prandtl numbers, commercial ORCs utilise 

direct recuperation to a large extent. Guo et al. considered recuperated and superheated 

ORCs using zeotropic mixtures as working fluids to match the gradient of the heat source and 

sink [222]. The results demonstrated the benefits of using a recuperator in all cases, but the 

benefit was not linear, as the slope first increased, then decreased with change in the degree 

of recuperation. This signified the non-linear influence of superheating the working fluid. 

However, the study assumed fixed turbine efficiency (80%) as an important factor for 

superheated ORC systems [81].  

Whereas recuperation involves indirect heat transfer between spent and preheated working 

fluid, regeneration involves direct heat transfer by mixing intermediary pressure working fluid 

to preheat pressurised condensate, leading to a direct increase in working fluid consumption. 

This leads to an increase in the HP turbine mass flow rate and reduction in heat rejected to the 

condenser, which improves cycle efficiency. Whereas recuperation requires additional heat 

exchangers, regeneration is cost-effective and regularly used in steam-based systems to 

improve cycle efficiency and remove dissolved oxygen [223, 224].  

 

Xi et al. optimised conventional, single regenerative and double regenerative ORC cycles 

using the genetic algorithm (GA) [70]. They concluded that regenerative cycles had a lower 

power output, but reduced boiler heat load, higher exergetic efficiency and could provide 

superior thermodynamic performance at optimal operating conditions. Mago et al. observed 

that the regenerative ORC cycle offered better second law efficiency and reduced 

irreversibility, compared to a conventional ORC cycle [225]. Battista et al. suggested the 

optimum regenerative flow rate was ~ 20% of the rated flow [52]. 

 
2.10   Economics 
 
Whereas ORCs have been widely investigated for WHR applications, most previous studies 

were limited to thermodynamic analysis and dissimilar results were obtained after factoring in 

techno-economic optimisation due to intermittent heat transfer from sources, heat sources 

temperature levels, plant scale, working fluid cost and electricity prices [226]. Although higher 

heat source temperature leads to higher cycle efficiency, it increases capital expenditure [227].  

 

Quoilin et al. stated that higher evaporating pressures were better suited for WHR ORCs as 

they reduce expander and evaporator expenditure [62]. Expander selection, efficiency 

prediction models and part load operation are seen as paramount to evaluate the economic 

feasibility of ORCs [228]. 

 

Pili et al. evaluated the economic feasibility of WHR from industrial heat sources using ORCs 

with sensible heat storage, reporting that the use of thermal storage did not justify additional 
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capital expenditure [229]. The thermo-economic optimisation of recuperative ORCs was noted 

as a function of pinch point and recuperator effectiveness, limited by additional heat exchanger 

cost despite higher thermodynamic efficiency [226]. 

 

2.11   Machine learning for turbine design  
 
Using conventional modelling approaches to optimise the turbine design and minimise internal 

losses under a wide range of operating conditions is computationally intensive if one is using 

CFD-based analysis. Machine learning can be considered as a computationally effective and 

reliable solution to recognise the interrelated parameters that are strongly correlated to the 

turbine design such as aerodynamic losses, pressure ratio, flow coefficient, stage loading 

coefficient, blade velocity, exit angles across the flow path, enthalpy drops across the turbine 

and Mach numbers, specifically when coupled with global optimisation algorithms. 

 

Machine learning was first used for pattern classification in the 1960s, but advanced 

computational capabilities and greater interest in the field of artificial intelligence have ensured 

that the field has garnered significant interest in recent years [230]. Machine learning 

algorithms are now limited solely by hardware capability to process large data sets, which 

leads to more reliable prediction models. Their accuracy is undergoing continuous 

improvement, as data collection has significantly increased in the past twenty years. With the 

advent of advanced computational capabilities, the field of machine learning has proven these 

models’ suitability for a wide variety of applications, particularly highly non-linear models [231]. 

 

Limited machine learning models have been developed for turbomachinery in the past for the 

purpose of single parameter optimisation. For example, to optimise either profile geometry or 

cycle efficiency [232, 233]. Oyama et al. employed artificial neural networks (ANN) to optimise 

the design of a axial compressor operating with transonic flow, which was computationally 

intensive and time-consuming if CFD was employed [234]. Rashidi et al. successfully 

optimised the efficiency of an ORC cycle with regenerative feed water heaters using an ANN 

integrated with the swarm of bees optimisation [235]. This highlights the great potential of using 

machine learning coupled with global optimisation as an alternative computationally efficient 

tools for ORC expanders and cycle designs. Table 2.4 presents the commonly used machine 

learning algorithms, and their advantages and disadvantages. 
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Table 2.4: Comparison of machine learning algorithms 
 

Algorithm Figure Principle Advantages Disadvantages 
ANN 

 
Figure 2-31: Typical ANN 
structure 

A set of interconnected nodes based on 

the neurons simulating the human 

brain. The arrows represent the 

synapses in the brain. Each circle 

represents a neuron, which receives 

information from the preceding neuron’s 

row, where it undergoes processing and 

is then passed on as a signal to the 

subsequent row of neurons, as shown 

in Figure 2-31. As the learning 

progresses, the weight of the arrows is 

adjusted by the algorithm. 

It can undertake unsupervised 

learning as it does not require any 

constraints or needs to be 

provided with rules to learn the 

network. 

Neural networks required larger 

data sets in comparison to other 

machine learning algorithms. 

 

Decision tree 

 

Figure 2-32: Structure of a 
simple decision tree 
 
 

 

The algorithms develop a predictive 

model involving stepwise decision-

making represented by the branches of 

a tree, as in Figure 2-32. The end 

results are observed in the leaves of the 

tree. 

A decision trees is better suited to 

multivariable optimisation, when 

used in conjunction with the 

weighted attribute approach [236]. 

 

Compared to neural networks, a 

decision tree enables easy human 

interpretation to understand the 

underlying reasons for algorithm 

behaviour. 

A decision trees is not suitable to 

depict non-linear relationships. 

Small changes in data, or 

inaccurate datasets can lead to 

drastic changes in the end results.  

 

It demonstrates the greedy 

algorithm effect, which could get 

trapped at local optimum [237]. 
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Regression 

analysis 

 

Figure 2-33: Linear 
regression on a typical 
data set 

Regression analysis combines the use 

of multiple statistical methods to 

associate input and output variables. A 

mathematical criterion is used to 

generate the best fit for a set of data 

points, as shown in Figure 2-33. 

It provides a well-established 

statistical approach to linking 

linear relationships.  

 

The polynomial order can be 

varied to suit the complexity of the 

problem.  

It is not suitable for understanding 

complex relationships.  

 

It is inflexible, as it is limited by 

statistical measures.  

 

Bayesian 

regularisation 

 
 

Figure 2-34: Typical 

Bayesian network 

 

 
Figure 2-35: Directed 
acyclic graph 

Bayesian networks develop statistic-

based graphical models to represent 

the correlations along with criterion-

specific dependencies, as shown in 

Figure 2-34, using a directed acyclic 

graph, similar to Figure 2-35. 

It is suitable for understanding 

occurrences along with deducing 

their cause. This aids operator 

interpretation and is why it is 

extensively used for probabilistic 

studies. 

 

Acyclic graphs provide freedom 

from directed cycles and avoid 

limitations being placed on the 

origin points of a vertex. 

The construction of a Bayesian 

network is computationally 

expensive [238]. 

 

There is no universally accepted 

method to generate the Bayesian 

network from existing data [239]. 

This limits the Bayesian network’s 

ability to the statistical programming 

experience of the operator. 

 
 

https://en.wikipedia.org/wiki/File:Linear_regression.svg
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2.12    Optimisation 
 
In combination with machine learning algorithms, optimisers based on mathematical 

techniques and metaheuristic functions were considered in this study to mould the appropriate 

input variables for maximising the objective functions based on the relationship between the 

interrelated parameters. Mathematical techniques are notable for their clarity of approach and 

the metaheuristic optimiser is recommended due to its ability to handle diverse problems. An 

overview of the optimiser classification undertaken is presented in Figure 2-36. The general 

objective for all optimisers is to minimise or maximise the objective function defined by Arora 

in equation 2.18 [248]. 

 

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎 𝑓𝑓1(𝑥𝑥), … . . 𝑓𝑓𝑜𝑜(𝑥𝑥), … . 𝑓𝑓𝐼𝐼(𝑥𝑥),     𝑥𝑥 = (𝑥𝑥1, … … 𝑥𝑥𝑑𝑑), 2.4 
 
Subject to 

ℎ𝑗𝑗(𝑥𝑥) =  0, (𝑗𝑗 = 1,2, … . 𝐽𝐽) 
𝑠𝑠𝑘𝑘(𝑥𝑥) ≤ 0, (𝑘𝑘 = 1,2, … . .𝐾𝐾) 

 
Where 𝑓𝑓𝐼𝐼 are the non-linear objective functions, and ℎ𝑗𝑗  and 𝑠𝑠𝑘𝑘 are the equality and inequality 

constraints, respectively. The value of 𝐼𝐼 is determined by the number of objectives. Its value 

for single objective functions is 1. 

 

 
 

Figure 2-36: Classification of mathematical technique and metaheuristic-based optimisers 
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Recently, there has been an increasing interest in optimising ORCs [70, 232, 240-247]. Limited 

studies on optimising ORCs with variable turbine efficiency were undertaken, presenting an 

optimum solution with fewer details on the influence of individual ORC parameters, specifically 

for axial flow turbines [133, 207]. Meroni et al. optimised ORC cycle efficiency while considering 

variable turbine efficiency by integrating a one-dimensional turbine model with a steady-state 

thermodynamic cycle model [248]. The mass flow rate, pressure ratio and turbine parameters 

were considered as independent variables. They concluded that the pressure ratio was more 

impactful on the overall cycle efficiency [248].  

 
2.12.1   Mathematical techniques 
 
Mathematical techniques based on iterative methods are better suited than fixed-point 

algorithms for achieving global convergence [249, 250]. Iterative method operations are based 

on their evaluation of gradient, Hessians or functions. While solving non-linear problems, 

Hessian- and gradient-based solvers demonstrate an improved rate of convergence compared 

to function-based solvers as the latter require a high computational cost for undertaking non-

linear problems [251]. Gradient-based solvers observe the information provided by the change 

of slope to conduct their task whereas Hessian-based solvers used Hessians to determine the 

optimisation trajectory. As the former relies solely on the gradient, their performance is not 

comparable to the latter [252]. Furthermore, it requires experienced developers to fine-tune 

the learning rate to achieve optimal trajectory for a given problem’s error surface. A larger 

learning rate leads to drastic changes after every iteration, which fails to locate the minima, 

whereas a lower learning rate results in a drastic increase in the number of iterations and 

computation expense required to optimise the solution [253]. Additionally, gradient-based 

solvers do not perform well for solutions with multiple peaks and saddle points [252]. Hessian-

based solvers also consider the information of the change in curvature. This allows them to 

vary the length of the step and therefore, the rate of change [252]. 

 

Hessian-based solvers include Newton's method and sequential quadratic programming, and 

operate by minimising the root of a twice differentiable function. Previous studies compared 

the high computational cost of Newton’s method to store Hessian matrix data and to compute 

the inverse Hessian for each iteration [254]. They also observed its limitation to achieve 

convergence only if the search area is near the optimum solution. Sequential quadratic 

programming (SQP) methods solve the problem as a sequence of individual quadratic 

subproblems. Compared to Newton’s method, SQP is better suited to handle larger 

dimensional as well as non-linear problems [254].  

 

The non-linear programming by quadratic Lagrangian (NLPQL) algorithm stems from SQP 

using FORTRAN language that was developed by Schittkowski. He employed a smooth and 

continuously differentiable objective function to solve non-linear problems with well-scaled 
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gradients, similar to those undertaken by this study [255]. Whereas the NLPQL algorithm was 

widely used for single objective optimisation, mixed results were reported for its effectiveness 

and computational efficiency while undertaking multi-objective optimisation [256]. Song et al. 

applied the NLPQL algorithm to the blade design optimisation of a centrifugal ORC turbine 

[257]. A good agreement within 1% for shaft power and turbine efficiency was observed 

between the NLPQL optimised model and CFD simulations. Previous studies for Internal 

combustion (IC) engine single objective optimisation demonstrated significantly lower 

computational requirements but a narrower spectrum of solutions for the NLPQL algorithm 

compared to the GA [258]. 

 
2.12.2   Metaheuristic optimisers 
 
Metaheuristics are high-level algorithmic structures used to provide guidelines and strategies 

to develop optimisation algorithms [259]. Compared to traditional optimisation algorithms and 

iterative methods, metaheuristics do not guarantee a global optima, but are more 

computationally affordable for complex problems [260]. They operate by performing tests on a 

subset of solutions where the entire solution space is too large to be explored. Metaheuristic 

algorithms can be classified based on their search strategy and search algorithm. 

 

Search strategy-based optimisers are further classified as single solution-based and 

population-based solvers. Notable algorithms of this type include simulated annealing, guided 

local search and repeated local search [261, 262]. Population-based metaheuristic algorithms 

focus on improving the characteristics of the entire population. They offer a better result to 

computational cost ratio for complex problems and a higher probability of a globally optimised 

solution. Commonly used examples are genetic algorithms, ant colony optimisation and swarm 

of bees optimisation [261]. Based on a search algorithm, optimisers are classified as local or 

global search-based solvers. Local search-based metaheuristics include hill climbing, Tabu 

search and variable neighbourhood search [262]. Notable global search metaheuristics 

include evolutionary algorithms like genetic algorithms, swarm of bees optimisation and rider 

optimisation algorithms [246]. 

 

Nature-inspired evolutionary algorithms are classified as population-based and global search-

based approaches. They included genetic algorithms, genetic programming, evolutionary 

programming, particle swarm optimisation, evolution strategy, ant colony optimisation, 

estimation of distribution algorithm and differential evolution [263]. While the use of 

evolutionary algorithms for ORC turbines has been demonstrated previously, these were used 

for optimising networks developed with the help of CFD simulations, rather than loss models 

[264, 265].  
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2.12.3   Multi-objective optimisation  
 
As multi-objective optimisation (MOO) involves the optimisation of more than one objective 

function, usually involving a trade-off between multiple objectives, it is significantly more 

computationally extensive [266]. Any commercial ORC should be optimised both 

thermodynamically and economically.  

To the best of the author’s knowledge, the NLPQL algorithm was not previously used for the 

multi-objective turbine design or ORC optimisation, although previous engineering applications 

include diesel engine optimisation [267, 268]. Chen et al. used the NLPQL algorithm to 

simultaneously reduce the soot and NOx emissions from the combustion chamber of a direct 

injection diesel engine by 71% [256]. Jones et al. recommended metaheuristic algorithms for 

multi-objective optimisation studies [269]. Over 70% of studies using the metaheuristic 

technique relied on the evolutionary algorithms, followed by simulated annealing and Tabu 

search-based algorithms [270]. Wang et al. used the non-dominated sorting genetic algorithm-

Ⅱ(NSGA-Ⅱ) for thermo-economic optimisation of dual loop ORCs operating on engine waste 

heat, with exergetic efficiency and payback period as objective functions [271]. They achieved 

exergetic efficiency of 39% and a payback period of 1.24 years for the optimal working fluid 

pairing of Toluene and R124. Roumpedakis et al. conducted an exergo-economic optimisation 

for an indirect loop small-scale ORC driven by a solar thermal collector with the help of a multi-

objective genetic algorithm (MOGA) to optimise the components’ integration [272]. Their 

optimal integration demonstrated a minimum payback period of 11.9 years, which highlighted 

the importance of a combined thermo-economic evaluation of waste heat recovery ORCs, 

achieved using MOOs. 

 

Hu et al. compared the NLPQL and genetic algorithm for seven parameter marine speed diesel 

engine optimisations [258]. NLPQL had faster convergence and was more effective with fewer 

optimisation parameters, but it was dependent on a well-defined starting point to avoid 

entrapment within the local optima. Conversely, the MOGA was immune to starting point 

definition. It required a greater number of iterations but offered a broader Pareto front spread 

and finer solutions. The additional iterations also provided a better design for each sub-

objective. 
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2.13    Aim and objectives of the study 
 
Given the current literature, this thesis aims to enhance and optimise the use of waste heat 

recovery ORCs to utilise stack waste heat from bio-heat-driven industrial steam boiler plants. 

To achieve this aim, the specific objectives are as below.  

• Compare the axial ORC turbine’s loss models and their suitability for cycle-level 

studies. 

• Investigate the effect of fluid parameter changes on the turbine’s isentropic efficiency. 

• Use artificial intelligence coupled with evolutionary algorithms to optimise the ORC 

turbine design, aiming at maximum power generation. 

• Incorporate mathematical technique and metaheuristic optimisers to undertake 

thermodynamic and thermo-economic optimisation of ORC cycle configuration based 

on transient steam boiler flue gas stacks, while considering variable turbine efficiency. 

• Assess the numerical and metaheuristic optimisers for single- and multi-objective 

optimisation employing a case study analysing maximum power output and composite 

thermo-economic objective function. 

2.14    Research gap and contribution to the field 
 
ORC cycle-level efficiency optimisation was widely studied by previous researchers for small 

improvements in power output. Although the efficiency of the turbine was one of the most 

important determiners for cycle efficiency, previous studies were usually restricted to a fixed 

expander efficiency due to the complexity involved in the evaluation of the internal losses, 

which required an advanced knowledge of flow path geometry [31, 53, 60]. A few studies have 

studied either the turbine efficiency or cycle efficiency, but not both simultaneously [232, 233].  

 

A parametric analysis for the change in turbine efficiency employing an objective, 

computationally efficient predictive model has not been undertaken in detail. Most previous 

publications suggested the use of dry ORC fluids at a saturated turbine inlet. Whereas Kang 

carried out an experimental study to investigate the benefits of superheat for radial turbines, 

but no similar study has been conducted for axial turbines [130]. As the turbine is a multifaceted 

component, the design of the system and turbine are inter-dependent. Multiple parametric 

variations considered here explain the relationship between turbine efficiency and working fluid 

parameters, using a direct-loss approach, rather than conventionally used indirect loss 

correlations [211, 273]. The primitive and simple Soderberg loss model was evaluated against 

the widely accepted Craig and Cox loss model to simplify the evaluation of turbine efficiency 

for cycle-level studies. The original work by Craig & Cox [192] was limited to graphical 

correlations. The detailed description of Craig & Cox model and the developed numerical 

correlations are provided in Appendix 1. The use of loss models considered the impact of basic 

thermodynamic working fluid parameters like speed of sound, isentropic enthalpy drop and 

molar mass. 
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Mean-line simulations and CFD modelling are widely used for axial turbine flow path 

optimisation. However, mean-line simulations are limited to the secondary loss creation by 

boundary layer behaviour. The combination of machine learning and evolutionary algorithms 

has not been performed previously in this field and presented a novel approach towards 

globally optimising the problem of turbine design optimisation. The use of ANNs trained by a 

direct loss model also demonstrated the loss compromise of less significant moving blade 

efficiency to improve the more significant nozzle efficiency, hence improving the overall turbine 

isentropic efficiency. The integrated direct loss model-ANN-GA approach for turbine 

optimisation allows a new methodology for cycle-level analysis. 

 

Although organic Rankine cycles were commercially used for waste heat applications since 

the 1970s, limited studies considered their use for capturing waste heat from process steam 

boiler flue gas stacks [168]. Historically, process steam boilers have presented a challenge 

due to their intermittent steam demand, whereas ORCs present a novel way to utilise this 

fluctuating low-grade heat, while simultaneous reducing their stack losses and consequential 

global warming. Even though turbine efficiency is reduced at part load conditions, limited 

studies were undertaken incorporating the off-design behaviour of turbines at part load 

conditions and their impact on the overall cyclic performance.  

 
The estimation of losses at operating and reduced loads required the use of a design point 

and off-design loss model. This study considered the use of the Craig and Cox loss model for 

design point losses along with Moustapha’s off-design point loss calculation. Thermodynamic 

cycle-level optimisation was undertaken for multiple cycle configurations, including novel 

combinations of capturing turbine exhaust energy. These include the use of recuperation, 

regeneration, thermal storage and steam boiler air preheating. The suitability of the 

computationally efficient parametrically pre-optimised NLPQL algorithm to handle a complex 

thermodynamic problem against the widely used genetic algorithm was evaluated, noting the 

absence of a similar comparison for ORCs. 

 

As the configurations studied developed different amounts of electrical and thermal energy, an 

economic analysis was considered for further assessment. Thermodynamically superior cycles 

were thermo-economically optimised by a weighted multi-objective study to reduce specific 

investment cost and maximise power generation using the multi-objective NLPQL and MOGA 

optimisers. The NLPQL algorithm was not previously considered for turbomachinery-related 

multi-objective optimisation. It is interesting to note that the most thermodynamically efficient 

cycle was not the most suitable thermo-economically, and the results could vary based on 

monetary factors outside the focus of this thesis [227]. 
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2.15    General outline and structure of thesis 
 

This thesis consists of seven chapters that are briefly introduced below. 

 

Chapter 1 introduces the change in the global energy scenario, capturing the ever-increasing 

electricity demand along with the history of ORCs and their contribution to the future global 

energy mix.  

 

Chapter 2 is a comprehensive literature review that classified the types of ORC fluids based 

on their thermodynamic and environmental aspects. The varied applications of steam and 

organic fluids are concluded, wherein organic fluids are preferred for low-grade waste heat 

streams such as steam boiler flue gas stacks. Expander selection is flagged as critical to 

maximise energy recovery. Following a review of existing expanders, the axial turbine is 

selected as best suited for the application. This study details the influence of non-dimensional 

parameters on turbine performance. A comparison of design and off-design loss models is 

undertaken, comparing preliminary and advanced approaches. Finally, a comparison of 

machine learning and optimisation algorithms is undertaken to identify their suitability for 

turbine and cycle-level modelling.  

 
Chapter 3 investigation and selection of the tools used in the thesis. The Soderberg design 

point loss model, Craig and Cox design point loss model and Moustapha’s off-design point 

loss model are detailed, along with the functioning of NLPQL and GA Optimisers.  

 

Chapter 4 undertakes a component-level study of turbine design. The previously considered 

loss models are benchmarked against an existing steam turbine and then used for the 

parametric studies to investigate the influence of pressure ratio and working fluid temperature 

on turbine efficiency for multiple working refrigerants, within the engineering equation solver 

(EES) environment. Furthermore, the use of neural networks and genetic algorithms for 

optimising turbine efficiency is evaluated. The use of the NLPQL algorithm is not considered 

for turbine optimisation due to the complexity of the larger number of input variables involved. 

 

Chapter 5 applies the loss model optimised turbine to observe a cycle-level comparison of the 

impact of turbine efficiency on cycle characteristics. A case study is undertaken using medium-

sized industrial steam boiler flue gas stacks. The core components for the conventional ORC 

are parametrically optimised. Ten different cycle configurations have been suggested and 

compared. The component sizing for all cycles further optimised for maximum power 

generation, while undertaking a comparison of the parametrically pre-optimised numerical 

NLPQL algorithm and evolutionary genetic algorithm.  

 



Y. C. Engineer, PhD Thesis, Aston University, 2022 77 

Chapter 6 undertakes a multi-objective economic optimisation for thermodynamically superior 

cycle configurations with the help of the multi-objective NLPQL and MOGA optimisers. 

 

Chapter 7 concludes the thesis, including the key research outcomes with respect to the 

original objectives. The main contribution of the thesis, the potential for further research work 

and commercial prospects are also outlined. 

 
2.16    Summary of literature review 
 
There is immense potential of ORCs for steam boiler flue gas stacks as an untapped medium-

grade waste heat source. The limitations of steam-based cycles and turbines for such a low 

heat source temperature and mass flow rate were reported. The low boiling temperature and 

wide choice of refrigerants provided a selection of working fluids with good thermodynamic, 

environmental and safety factors. The Peng Robinson EoS was noted for its simpler 

generalisation and the QUADBACKONE EoS was suggested for its superior phase change 

prediction, being better suited for cycle-level simulation. 

 

The axial flow turbine was deduced as the most suitable expander for this application, mainly 

due to its reliability, scalability and flexibility in the part load operation. Non-dimensional 

parameters and loss models relevant for their scaling and efficiency prediction were 

considered. A comparative study of machine learning algorithms deduced artificial neural 

networks as the most advanced solution for complex interlinked parameters. Suitable 

expanders based on mathematical techniques and metaheuristics were observed, for both 

single- and multi-objective optimisation
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3 Chapter 3     Methodology 
 
3.1 Introduction 
 
As the design of a turbine is a complex task, requiring aerodynamic, thermodynamic, material 

and economic analysis, its design is an iterative process. Loss models are an integral part of 

any well-established turbine design philosophy; however, most of them are known to be too 

complicated for preliminary-level studies, as they require an extensive knowledge about flow 

path and solid geometry [206]. Parameters such as the stage inlet stagnation pressure and 

temperature, mass flow rate, profile geometric parameters and machine speed emerge as 

constraints [216]. To understand the influence of the working fluid parameters in this study, 

two different loss model approaches have been benchmarked: the Soderberg model and the 

Craig & Cox model. Soderberg’s loss model is considered as a relevant example of a simple 

loss model and widely accepted as an effective method to determine turbine efficiency [216]. 

Multiple studies described the Craig and Cox model as the most comprehensive one for 

impulse machines [210, 211, 274]. Considering the iterative approach required to optimise 

turbine design while minimising the losses, machine learning coupled with global optimisation 

algorithms were considered by this study for turbine efficiency improvement. Machine learning 

is a computationally inexpensive approach used to study highly non-linear correlated 

parameters. The artificial neural network (ANN) is a black-box modelling technique that uses 

machine learning to computationally correlate multiple input geometry and output flow 

parameters. In this study, optimisers based on mathematical techniques and metaheuristics 

were preferred to the parametric studies due to the large number of input variables. While the 

use of metaheuristic optimisers, particularly evolutionary algorithms, has been validated by 

previous studies [51, 70, 271], the use of mathematical techniques has not been validated for 

turbomachinery applications previously. The non-linear programming by quadratic Lagrangian 

(NLPQL) algorithm and genetic algorithm (GA) were employed as the mathematical technique-

based and metaheuristic optimisers of choice, respectively. 

 

This chapter aims to develop a method for investigating and optimising turbine efficiency and 

cycle performance by accomplishing the following objectives: 

• Comparing the approach of primitive and detailed three-dimensional design-point 

turbine loss models for the number of input variables, validation, determination of 

individual losses and accuracy. 

• Evaluating the loss model of Moustapha et al. for off-design point losses [215]. 

• Investigating the varied approach of mathematical technique and evolutionary 

algorithm -based optimisers. 
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3.2 Loss models 
 
As the flow pattern of a working fluid through a turbine is complex and three-dimensional, 

multiple analytical and non-dimensional loss models were developed to simplify the 

optimisation process. These were usually two-dimensional mean line empirical correlations, 

which provided performance predictions at the mean blade height. Although creating the mean 

line design was only a preliminary design step, its accuracy ensured its suitability for cycle-

level turbine efficiency predictions. Macchi stated that the efficiency of a well-designed axial 

flow ORC turbine can be predicted within 2% accuracy with the use of mean line loss models 

[196]. Losses have been categorised as profile losses, end wall losses and leakage losses. 

Profile losses are considered as the loss generated by the profile at the mean line section, 

wherein flow is assumed as two dimensional. This loss included the inherent aerodynamic loss 

as well as the trailing edge loss [275]. Endwell losses arise primarily due to the secondary 

flows generated by boundary layers created at the hub and tip diameters. The losses were 

modelled using the EES platform due to its large database of ORC working fluids [170]. 

Leakage losses include flow passing through pressure balancing holes, shaft end seals, 

interstage diaphragm glands and over the rotor tips. 

 

3.2.1 Soderberg loss model  
 
Soderberg’s model (1949) was developed from a large number of tests performed on steam 

turbines with low aspect ratio blading, similar to those required for a small ORC turbine[206]. 

The model required only a few parameters as it was limited to the measurement of flow 

deviation, while accounting for Reynolds number [216]. Lewis and Sayers have noted its 

suitability for a wide range of Reynolds number and aspect ratios [276, 277]. Soderberg stated 

that the use of the model was limited to reasonable Zweifel coefficients and well-designed 

profiles, which restricted its use to an efficiency predictor, rather than a design tool [200]. The 

enthalpy drop incurred was distributed across the stator and the rotor to determine the degree 

of reaction across the stage. The parameters employed in Soderberg model are listed in Table 

3.1 
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Table 3.1: Parameters required for Soderberg’s loss model 

Term Symbol Unit 

Inlet fluid pressure 𝑃𝑃1 kg/cm2a 

Inlet fluid temperature 𝑇𝑇1 °C 

Outlet pressure 𝑃𝑃3 kg/cm2a 

Degree of reaction 𝐷𝐷𝐷𝐷𝐶𝐶 - 

Rotational speed 𝑁𝑁 rpm 

Rotor diameter 𝐷𝐷ℎ𝑃𝑃𝑏𝑏 m 

Nozzle pitch 𝑘𝑘𝑁𝑁 m 

Nozzle height ℎ𝑎𝑎𝑁𝑁 m 

Nozzle throat width 𝑎𝑎ℎ𝑎𝑎𝑁𝑁 m 

Blade pitch 𝑏𝑏𝑁𝑁 m 

Blade height ℎ𝑎𝑎𝐵𝐵 m 

Blade throat width 𝑎𝑎ℎ𝑎𝑎𝐵𝐵 m 

Mass flow rate of fluid 𝑀𝑀𝐹𝐹𝐶𝐶 kg/sec 

Nozzle exit angle 𝛼𝛼2 ° 

 
Soderberg’s model considers four basic factors: deflection, pitch, blade heights and Reynolds 

number. The deflection of the nozzle Ɛ is provided as a function of nozzle exit angle α2 by the 

equation 3.1. Soderberg determined the basic loss coefficient for fixed nozzles 𝐺𝐺𝑁𝑁∗  by equation 

3.2, which is suitable for deflection up to 120˚. The relation between the deflection and the 

basic loss coefficient for different ratios of maximum profile thickness to overall profile length 

is shown in Figure 3-1 [206]. 

Ɛ =  90˚ −  𝛼𝛼2 3.1 

 

𝐺𝐺𝑁𝑁∗ =  0.04 +  0.06 ( 
Ɛ

100
)2 

 
3.2 



Y. C. Engineer, PhD Thesis, Aston University, 2022 81 

 
 

Figure 3-1: Variation of basic loss coefficient with increase in deflection angle for various 
ratios of maximum profile thickness to overall profile length [206] 

The basic loss coefficient 𝐺𝐺𝑁𝑁∗  was corrected for the pitch 𝑘𝑘𝑁𝑁 and nozzle height 𝐻𝐻𝑎𝑎𝑁𝑁 

determined from the equation considering the change in height, as shown in equation 3.3. 

 

1 + 𝐺𝐺1𝑁𝑁 = (1 +  𝐺𝐺𝑁𝑁∗ ) × �0.993 + 0.021 ×
𝑘𝑘𝑁𝑁
𝐻𝐻𝑎𝑎𝑁𝑁

� 3.3 

  

The hydraulic diameter 𝐷𝐷ℎ, density 𝜚𝜚2, dynamic viscosity 𝜇𝜇2 and mean exit velocity 𝑎𝑎2 were 

considered at the nozzle throat section to determine the Reynolds number 𝐶𝐶𝑎𝑎 in equation 

3.4. 

𝐶𝐶𝑎𝑎 =  
𝜚𝜚2𝑎𝑎2𝐷𝐷ℎ 

 𝜇𝜇2
 3.4 

Where the hydraulic diameter 𝐷𝐷ℎ was determined using the nozzle height 𝐻𝐻𝑎𝑎𝑜𝑜 and throat 

width 𝑎𝑎ℎ𝑎𝑎𝑜𝑜 as per equation 3.5. 

 

𝐷𝐷ℎ =  
4 × 𝐹𝐹𝑐𝑐𝐷𝐷𝑃𝑃 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

=  
4 × (𝐻𝐻𝑎𝑎𝑜𝑜 × 𝑎𝑎ℎ𝑎𝑎𝑜𝑜)

2(𝐻𝐻𝑎𝑎𝑜𝑜 + 𝑎𝑎ℎ𝑎𝑎𝑜𝑜)
    3.5 

 
The value of the loss coefficient 𝐺𝐺𝑁𝑁 was then corrected for the Reynolds number in equation 
3.6. 
 

𝐺𝐺𝑁𝑁 = 𝐺𝐺1𝑁𝑁 × 𝐶𝐶𝑎𝑎𝐶𝐶𝐹𝐹  3.6 
 

  
Where 𝐶𝐶𝑎𝑎𝐶𝐶𝐹𝐹 was the Reynolds Number correction factor, determined using equation 3.7.   
 

𝐶𝐶𝑎𝑎𝐶𝐶𝐹𝐹 = �
100000
𝐶𝐶𝑎𝑎

�
0.25

 3.7 
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Based on the isentropic velocity 𝐶𝐶2𝑠𝑠 and loss coefficient 𝐺𝐺𝑁𝑁, the actual velocity 𝐶𝐶2 was 

determined using equation 3.8.  

 

The Soderberg loss model determined the nozzle loss coefficient by considering the amount 

of deflection, height correction and Reynolds number correction factor to deduce the steam 

velocity C2 after the nozzle. This was further used to determine the axial absolute velocity (C2a)  

and relative velocity (Cw2) components as well as the radial relative velocity component (Vw2) 

using equations 3.9 and 3.10. The velocity triangles for fluid flow and moving blade velocity 𝐺𝐺 

are illustrated in Figure 3-2. 

 

For the moving blades, the relative blade inlet angle β2 and exit angle β3 were used to evaluate 

the deflection of the rotor ƐR using the equation 3.11. Soderberg considered a similar loss 

correlation 𝐺𝐺𝐵𝐵∗  for the moving blades mentioned in equation 3.12.  

Ɛ𝑅𝑅 = 180˚ − 𝛽𝛽2 − 𝛽𝛽3           3.11 

𝐺𝐺𝐵𝐵∗  =  0.04 +  0.06 × ( 
Ɛ𝑅𝑅

100
)2           3.12 

 
 

Figure 3-2: Velocity triangles of the flow across blades 

𝐶𝐶2 =
𝐶𝐶2𝑠𝑠

�1 + 𝐺𝐺𝑁𝑁
 3.8 

 

𝐶𝐶𝑚𝑚2  =  𝐶𝐶2 𝑆𝑆𝑎𝑎𝑎𝑎 𝛼𝛼2  = 𝐺𝐺𝑚𝑚2 
            3.9  

𝐺𝐺𝑤𝑤2 =  𝐶𝐶2𝐶𝐶𝐷𝐷𝑘𝑘𝛼𝛼2 − 𝐺𝐺 
  
          3.10 
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The rotor profile loss coefficient 𝐺𝐺𝐵𝐵∗  was corrected for the pitch 𝑘𝑘𝐵𝐵 and nozzle height 𝐻𝐻𝑎𝑎𝐵𝐵, as 

shown in equation 3.13. 

 
1 + 𝐺𝐺1𝐵𝐵 = (1 +  𝐺𝐺𝐵𝐵∗) × (0.975 + 0.075 ×

𝑘𝑘𝐵𝐵
𝐻𝐻𝑎𝑎𝐵𝐵

) 

 
 

3.13 
 
 

The final value of loss coefficient G1B was corrected for the Reynold’s number ReCF by equation 

3.14.  

 
 

𝐺𝐺𝐵𝐵 = 𝐺𝐺1𝐵𝐵 × 𝐶𝐶𝑎𝑎𝐶𝐶𝐹𝐹 
 
 3.14 

  
The final loss coefficient 𝐺𝐺𝐵𝐵 was used to determine the relative velocity of the fluid 𝐺𝐺3 after the 

blade from the isentropic enthalpy drop 𝐻𝐻3 − 𝐻𝐻3𝑠𝑠 in equation 3.15. 

The axial (Va3) and radial (Vw3) components of the relative velocity (V3) of the fluid after the 

moving blade V3 were evaluated in equations 3.16 and 3.17 to determine the absolute velocity 

after stage 𝐶𝐶3, as shown in equation 3.18. 

 
The specific work done was denoted by the change in angular momentum in the radial 

direction, which was used to determine the power output 𝑃𝑃, as in equation 3.19. 

 

𝑃𝑃 =  
𝑚𝑚. × 𝐺𝐺 × (𝐺𝐺𝑤𝑤2  + 𝐺𝐺𝑤𝑤3)

1000
 3.19 

 
 

The leaving loss was calculated as a function of working fluid velocity C3 leaving the turbine, 

as in equation 3.20, to determine the increase in exhaust entropy. 

 

𝐿𝐿𝑎𝑎𝑎𝑎𝐿𝐿𝑎𝑎𝑎𝑎𝑠𝑠 𝐿𝐿𝐷𝐷𝑘𝑘𝑘𝑘 =  
𝐶𝐶32

2 × 1000
 

 
 3.20 

 

 

𝐻𝐻3 − 𝐻𝐻3𝑠𝑠 =  
1
2

× 𝐺𝐺32𝐺𝐺𝐵𝐵 3.15 

𝐺𝐺𝑤𝑤3 = 𝐺𝐺3 𝐶𝐶𝐷𝐷𝑘𝑘𝛽𝛽3 
 

 
  3.16 
 
 

𝐺𝐺𝑚𝑚3 = 𝐺𝐺3 𝑆𝑆𝑎𝑎𝑎𝑎𝛽𝛽3 
 

  3.17 
 
 

𝐶𝐶3 =  �(𝐺𝐺𝑤𝑤3 –  𝐺𝐺)2  +  𝐺𝐺𝑚𝑚32  
 

  3.18 
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The Soderberg model was limited to profile and secondary losses. Losses due to tip clearance, 

inlet boundary layer, detailed blade geometry, partial admission and disc friction were not 

considered [130, 287]. Moreover, Soderberg’s model did not consider incidence losses for off-

design conditions. Dixon and Hall stated that Soderberg’s method was suitable for rapid 

estimates of turbine efficiency within ±3% accuracy, which was validated by Horlock [198, 288]. 

 

3.2.2 Craig and Cox loss model  
 
The Craig and Cox loss model was previously validated by Angelino et al. along with various 

studies as the most comprehensive loss model for ORC turbines (Table 3.2) [207-209, 211]. 

Lozza compared the Craig and Cox model with the relatively modern loss model by Kacker-

Okapuu and reported that the Craig and Cox loss model was better suited for predicting flow 

with low aspect ratios, impulse turbines and moving blades with large flow angles [192, 210, 

278]. Wei reported that the Craig and Cox loss model provided results closest to the 

experimental data at the design point [216].  
 

Table 3.2: Parameters required for Craig and Cox loss model 
 

Term Symbol Unit 
Inlet fluid pressure 𝑃𝑃1 kg/cm2a 

Inlet fluid temperature 𝑇𝑇1 °C 

Outlet pressure 𝑃𝑃3 kg/cm2a 

Degree of reaction 𝐷𝐷𝐷𝐷𝐶𝐶 - 

Rotational speed 𝑁𝑁 rpm 

Rotor diameter 𝐷𝐷ℎ𝑃𝑃𝑏𝑏 m 

Nozzle chord length 𝑏𝑏𝑁𝑁  m 

Nozzle height ℎ𝑎𝑎𝑁𝑁  m 

Nozzle throat width 𝑎𝑎ℎ𝑎𝑎𝑁𝑁  m 

Nozzle pitch 𝑘𝑘𝑁𝑁  m 

Nozzle backbone length (camber length) 𝑏𝑏𝐵𝐵𝑁𝑁  m 

Nozzle trailing edge thickness 𝑎𝑎𝑎𝑎𝑁𝑁  m 

Blade chord length 𝑏𝑏𝐵𝐵  m 

Blade height ℎ𝑎𝑎𝐵𝐵 m 

Blade throat width 𝑎𝑎ℎ𝑎𝑎𝐵𝐵 m 

Blade pitch 𝑘𝑘𝐵𝐵 m 

Blade backbone length (camber length) 𝑏𝑏𝐵𝐵𝐵𝐵 m 

Blade trailing edge thickness 𝑎𝑎𝑎𝑎𝐵𝐵 m 

Blade overlap 𝐷𝐷𝐿𝐿𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑝𝑝 m 

Mass flow rate of fluid 𝑀𝑀𝐹𝐹𝐶𝐶 kg/sec 

Nozzle exit angle 𝛼𝛼2 ° 

Shroud thickness 𝑎𝑎ℎ𝑎𝑎𝑠𝑠ℎ𝑟𝑟  m 

Shroud to casing clearance 𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠ℎ𝑟𝑟  m 

Axial gap between nozzle and blade 𝐸𝐸𝑜𝑜𝑏𝑏  m 

Equivalent sand grain roughness of profile 𝑘𝑘𝑘𝑘 m 
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The Craig and Cox model determined two groups of losses: Group 1, which included nozzle 

primary loss, nozzle secondary loss, nozzle annulus loss, blade primary loss, blade secondary 

loss and blade annulus loss; and Group 2, which include nozzle gland leakage loss, balance 

hole loss, rotor tip leakage loss, lacing wire loss, wetness loss, disc windage loss and partial 

admission loss. The current  

study concerns itself with Group 1 losses (as shown in Figure 3-3), which determine the 

aerodynamic efficiency associated with the flow path design, whereas the Group 2 losses 

depended more on the manufacturing precision of the turbine. Equations 3.21 - 3.25 present 

the breakdown of the nozzle and blade individual primary, secondary and annulus losses 

based on curve fitting in Craig and Cox maps. 

 

Group 1 losses for the nozzle and blade were the summation of 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃1𝑁𝑁𝑟𝑟𝑁𝑁𝑁𝑁𝑙𝑙𝑟𝑟 and 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃1𝐵𝐵𝑙𝑙𝑚𝑚𝑑𝑑𝑟𝑟. 

Incidence losses 𝑁𝑁𝑃𝑃𝑜𝑜𝑁𝑁 and 𝑁𝑁𝑃𝑃𝑜𝑜𝐵𝐵were considered using Moustapha’s off design loss model. 

 

 
 

Figure 3-3: Blading loss distribution as per Craig & Cox [24] 

𝐺𝐺𝑃𝑃𝑁𝑁 = 𝐻𝐻𝑃𝑃𝑏𝑏𝑁𝑁 ×  𝑁𝑁𝑃𝑃𝑟𝑟𝑁𝑁 × 𝑁𝑁𝑃𝑃𝑜𝑜𝑁𝑁 × 𝑁𝑁𝑃𝑃𝑜𝑜𝑁𝑁 + 𝑐𝑐𝐷𝐷𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁 +  𝛥𝛥𝐻𝐻𝑃𝑃𝑠𝑠𝑟𝑟𝑁𝑁  + 𝛥𝛥𝐻𝐻𝑃𝑃𝑃𝑃𝑁𝑁 3.21 

𝐺𝐺𝑠𝑠𝑁𝑁 = 𝑁𝑁𝑃𝑃𝑟𝑟𝑁𝑁 ×  𝑁𝑁𝑆𝑆𝑚𝑚𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑁𝑁 × 𝐻𝐻𝑠𝑠𝑏𝑏𝑁𝑁 × 𝑁𝑁𝑠𝑠𝑜𝑜𝑁𝑁 3.22 

𝐺𝐺𝑃𝑃𝐵𝐵 = 𝐻𝐻𝑃𝑃𝑏𝑏𝐵𝐵 ×  𝑁𝑁𝑃𝑃𝑟𝑟𝐵𝐵 × 𝑁𝑁𝑃𝑃𝑜𝑜𝐵𝐵 × 𝑁𝑁𝑃𝑃𝑜𝑜𝐵𝐵 + 𝑐𝑐𝐷𝐷𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵 +  𝛥𝛥𝐻𝐻𝑃𝑃𝑠𝑠𝑟𝑟𝐵𝐵  + 𝛥𝛥𝐻𝐻𝑃𝑃𝑃𝑃𝐵𝐵 3.23 

𝐺𝐺𝑠𝑠𝐵𝐵 = 𝑁𝑁𝑃𝑃𝑟𝑟𝐵𝐵 ×  𝑁𝑁𝑆𝑆𝑚𝑚𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝐵𝐵 × 𝐻𝐻𝑠𝑠𝑏𝑏𝐵𝐵 × 𝑁𝑁𝑠𝑠𝑜𝑜𝐵𝐵 
 3.24 

𝐺𝐺𝑚𝑚 = 𝐻𝐻𝑚𝑚1 
 3.25 
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The profile losses due to the flow deviation (ΔXPseN, ΔXPseB), Reynolds number losses 

accounting for wall friction (𝑁𝑁𝑃𝑃𝑟𝑟𝑁𝑁 ,𝑁𝑁𝑃𝑃𝑟𝑟𝐵𝐵), incidence loss (𝑁𝑁𝑃𝑃𝑜𝑜𝑁𝑁 ,𝑁𝑁𝑃𝑃𝑜𝑜𝐵𝐵) and trailing edge thickness 

loss for the nozzle and  

blade (NptN, NptB) were combined to evaluate the nozzle and blade primary losses expressed 

by  GpN   and GpB. The additional loss increment due to trailing loss for the nozzle and blade 

was defined by lossincrN and lossincrB. Additional losses for supersonic flow with convergent 

blading were factored in by ΔXpmN and ΔXpmB. The combined secondary loss factor, defined 

by GsN and GsB, was a function of the basic secondary loss factor stated as XsbN and XsbB and 

secondary loss due to aspect ratio NSaspectratN and NSaspectratB. The total auxiliary loss Gawas 

a function of annulus loss Xa1. The blade losses were determined using equations 3.26 to 3.28. 

 

GGroup1Nozzle  =
GpN  +  GsN  +  Ga

200
 

 

 
     3.26 
 
 

GGroup1Blade =   
GpB + 𝐺𝐺𝑠𝑠𝐵𝐵 + 𝐺𝐺𝑚𝑚 × (𝐶𝐶3

2

𝐺𝐺32
)

200
 

 

 
     3.27 
 
 

Gtotal =  GGroup1Nozzle +  GGroup1Blade 
 

 
     3.28 
 

 

Like Soderberg’s loss model, Craig and Cox loss model utilised the mean exit velocity C3 and 

equivalent hydraulic diameter Dh at the throat section to determine the Reynolds number, as 

shown in equation 3.29. 

 

 
Where DhN was the nozzle equivalent hydraulic diameter determined from the equation 3.30. 
 

 

The loss model also considered the surface finish of the profiles with the help of the equivalent 

sand grain roughness to evaluate the profile loss ratio [290, 291]. For axial turbines, Reynolds 

numbers between 2 x104 and 2 x 105 were estimated. Craig and Cox varied the blade opening, 

instead of varying the chord length or axial width to optimise the correlation. Figure 3-4 governs 

the relation between the surface finish, Reynold’s number and profile loss ratio. The surface 

friction coefficient had greater significance at higher Reynolds number. 

ReN =  
𝜚𝜚2𝑎𝑎2𝐷𝐷ℎ𝑁𝑁 

 𝜇𝜇2
 

 
3.29 
 

𝐷𝐷ℎ𝑁𝑁 =  4∗𝐹𝐹𝑙𝑙𝑟𝑟𝑤𝑤 𝐴𝐴𝑟𝑟𝑟𝑟𝑚𝑚
𝑃𝑃𝑟𝑟𝑟𝑟𝑜𝑜𝑃𝑃𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟

 = 4∗(𝐻𝐻𝑜𝑜𝑁𝑁∗𝑜𝑜ℎ𝑟𝑟𝑁𝑁)
2(𝐻𝐻𝑜𝑜𝑁𝑁+𝑜𝑜ℎ𝑟𝑟𝑁𝑁)

 
 
3.30 
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Figure 3-4: Impact of blade surface finish and Reynolds number on profile loss ratio 
observed by Craig and Cox [23] 

 

 

Lift parameter 𝐹𝐹𝐿𝐿, presented in Figure 3-5 represented the deflection of the working fluid 

between the inlet and outlet angles. Correcting the lift parameter for the pitch 𝑘𝑘 and backbone 

length 𝑏𝑏𝐵𝐵 produced the modified lift coefficient 𝐿𝐿𝐶𝐶𝑃𝑃, described by equations 3.31 and 3.32. The 

modified lift coefficient was then used to determine the basic profile loss 𝐻𝐻𝑃𝑃 using Figure 3-6. 

 

 
Figure 3-5: Lift parameter determined deviation as a function of fluid inlet and outlet angle 

[23] 

𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁 =
𝐹𝐹𝐿𝐿𝑁𝑁 × 𝑘𝑘𝑁𝑁
𝑏𝑏𝐵𝐵𝑁𝑁

 

 

 
         3.31 
 
 

𝐿𝐿𝐶𝐶𝑃𝑃𝐵𝐵 =
𝐹𝐹𝐿𝐿𝐵𝐵 × 𝑘𝑘𝐵𝐵
𝑏𝑏𝐵𝐵𝐵𝐵

 

 
         3.32 
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Figure 3-6: The basic profile loss was determined as a function of the modified profile loss, 

pitch, backbone length and contraction ratio [23] 

 
The profile loss 𝐻𝐻𝑃𝑃 considered incompressible flow conditions. It accounted for variations in 

blade angles, passage geometry and pitch to backbone length ratio. The trailing edge 

loss 𝑁𝑁𝑃𝑃𝑜𝑜  was determined using the trailing edge to pitch ratio and fluid outlet angle with an 

additional increment factored. The contraction ratio is the ratio of the passage area at the inlet 

and throat sections. The Mach number loss increment Δ𝐻𝐻𝑃𝑃𝑃𝑃was determined using the Mach 

determiner and relative outlet isentropic Mach number 𝐶𝐶𝑎𝑎𝑐𝑐𝑀𝑀𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑟𝑟𝑃𝑃𝑜𝑜𝑜𝑜𝑠𝑠𝑟𝑟𝑜𝑜𝐵𝐵, determined by 

equations 3.33 to 3.36. 

 

𝑀𝑀𝑎𝑎𝑎𝑎ℎ𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁 =
𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝑎𝑎𝑎𝑎(𝑎𝑎ℎ𝑎𝑎𝑁𝑁  + 𝑎𝑎𝑎𝑎𝑁𝑁 )

𝑘𝑘𝑁𝑁
 

 

3.33 
 

 

𝑀𝑀𝑎𝑎𝑎𝑎ℎ𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵  =
𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝑎𝑎𝑎𝑎(𝑎𝑎ℎ𝑎𝑎𝐵𝐵  + 𝑎𝑎𝑎𝑎𝐵𝐵 )

𝑘𝑘𝐵𝐵
 

 
3.34 

 

𝑀𝑀𝑎𝑎𝑎𝑎ℎ𝑟𝑟𝑃𝑃𝑜𝑜𝑜𝑜𝑠𝑠𝑟𝑟𝑜𝑜𝑁𝑁 =
𝐶𝐶2𝑠𝑠

𝑆𝑆𝑆𝑆𝑟𝑟𝑃𝑃𝑜𝑜𝑁𝑁
 

 

 
3.35 

 

𝐶𝐶𝑎𝑎𝑐𝑐𝑀𝑀𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑟𝑟𝑃𝑃𝑜𝑜𝑜𝑜𝑠𝑠𝑟𝑟𝑜𝑜𝐵𝐵 =  
 𝐺𝐺3𝑠𝑠 

𝑆𝑆𝑆𝑆𝑟𝑟𝑃𝑃𝑜𝑜𝐵𝐵 
 

 
3.36 

  
 

Blade back radius was determined by the pitch to blade back radius ratio, profile loss increment 

Δ𝐻𝐻𝑃𝑃𝑠𝑠𝑟𝑟 and outlet isentropic Mach number 𝑀𝑀𝑎𝑎𝑎𝑎ℎ𝑟𝑟𝑃𝑃𝑜𝑜𝑜𝑜𝑠𝑠𝑟𝑟𝑜𝑜. The secondary loss aspect ratio factor 

NSaspectrat was determined by the camber length and height. Secondary loss 𝐺𝐺𝑠𝑠 was inversely 

proportional to the aspect ratio. Basic secondary loss 𝐻𝐻𝑠𝑠 factored in the lift parameter, pitch, 
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camber and square of the relative mean velocity across blading. Uncontrolled expansion loss 

depended on the profile height and axial distance between subsequent rows of blading. The 

annulus wall loss 𝐻𝐻𝑚𝑚1, as shown in Figure 3-7 was determined by the ratio of the nozzle–blade 

gap to nozzle height or by the half cone angle created by the overlap in blading. The loss 

coefficient determined by the cumulative of the above losses was used to determine the actual 

velocity after the profile, as shown in equation 3.37. 

 

 
 

Figure 3-7: Annulus wall loss was a function of the profile height and gap between the fixed 
and moving blades [23] 

 
 

𝐶𝐶2 =
𝐶𝐶2𝑠𝑠

�1 + 𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃1𝑁𝑁𝑟𝑟𝑁𝑁𝑁𝑁𝑙𝑙𝑟𝑟
 

 
      3.37 

 
 
This thesis utilised a surface fitting function to digitize the curves used by the Craig and Cox 

loss model. The function was selected from the curve fitting toolbox in the MATLAB 

programming environment [292]. The Craig and Cox loss model contained multidimensional 

plots. The data points provided by the loss model were converted to a set of polynomial 

equations with orders between 2 to 5 depending on the complexity of the curve. The absolute 

deviation of the predicted parameter using the developed equation values was within ±2%.  

 

For certain data sets, it was not possible to generate analogous polynomial equations within 

the expected constraints due to the complexity of the curves, despite the use of higher-order 

polynomial equations. The values between nearby data points were interpolated by using a 

weighted mean approach. The weighted mean approach was used to determine the modified 

lift coefficient used in the basic profile loss for the stationary and moving blades. Off-design 

losses 𝑁𝑁𝑃𝑃𝑜𝑜𝑁𝑁, 𝑁𝑁𝑃𝑃𝑜𝑜𝐵𝐵, 𝑁𝑁𝑠𝑠𝑜𝑜𝑁𝑁 and 𝑁𝑁𝑆𝑆𝑜𝑜𝐵𝐵 were considered using Moustapha’s loss model [223].  
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3.2.3 Off-design loss model 
 
Alongside design point losses, this study investigated the utilisation of an actual transient heat 

source, which resulted in the turbine operating at off-design conditions. Moustapha et al.’s loss 

model was selected to conduct the off-design analysis owing to its reliability [195, 222, 223, 

225]. It exclusively considered the incidence-induced secondary losses, an individual breakup 

of primary (𝑁𝑁𝑃𝑃𝑜𝑜) and secondary (𝑁𝑁𝑠𝑠𝑜𝑜) off-design losses, the loss factor independently for 

positive and negative stalling incidence, leading edge shape, wedge angle and diameter, the 

ratio of the leading-edge radius to the pitch and lastly, the convergence ratio using the fluid 

angle rather than the metal angle of the blades [223]. Equation 3.38 shows the conversion of 

the pressure loss coefficient to a kinetic energy loss coefficient; where 𝛾𝛾  is the ratio of specific 

heats, 𝛷𝛷2 is the off-design kinetic energy loss coefficient (ratio of actual to ideal gas exit 

velocity) and 𝑀𝑀 is the Mach number. Moustapha et al.’s primary loss correlation has been 

expressed in equations 3.39 and 3.40, where ∆𝛷𝛷𝑃𝑃2 is the primary off-design kinetic energy loss 

coefficient, 𝑑𝑑𝑙𝑙𝑟𝑟 is the leading-edge diameter, 𝑘𝑘 is the profile pitch, 𝛽𝛽𝑀𝑀1 is the metal inlet angle, 

𝛽𝛽𝑀𝑀2 is the metal outlet angle and [𝛼𝛼1 − 𝛼𝛼1𝑑𝑑𝑟𝑟𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜] is the incidence angle. 
 

𝑁𝑁𝑃𝑃𝑜𝑜  =
�1 − (𝛾𝛾 − 1)

2 𝑀𝑀2
2 � 1
𝛷𝛷2 − 1��

−𝛾𝛾
𝛾𝛾−1−

− 1

1 − �1 + (𝛾𝛾 − 1)
2 𝑀𝑀2

2�
−𝛾𝛾
𝛾𝛾−1 

 3.38 
 

 

 
 And 

 
Moustapha et al.’s loss model defined the secondary incidence loss (𝑁𝑁𝑠𝑠𝑜𝑜) function as per 

equation 3.41. Chord length, inlet gas angle and outlet gas angle were denoted by 𝑎𝑎ℎ𝐷𝐷𝑎𝑎𝑑𝑑𝑙𝑙𝑟𝑟𝑜𝑜𝑠𝑠𝑜𝑜ℎ, 

𝛼𝛼1 and 𝛼𝛼2. 

𝑁𝑁𝑠𝑠𝑜𝑜 = 𝑎𝑎𝑥𝑥𝑝𝑝 (0.9 𝑥𝑥") + 13(𝑥𝑥")2+ 400(𝑥𝑥")4 3.41 
 

if 0 ≤ x" ≤ 0.3  

and 
if -0.4 ≤ x" ≤ 0  

Where 

𝑥𝑥" = (𝛼𝛼1− 𝛽𝛽𝑀𝑀1)
(𝛽𝛽𝑀𝑀1+𝛽𝛽𝑀𝑀2)

*�cos𝛽𝛽𝑀𝑀1
cos𝛽𝛽𝑀𝑀2

�
−1.5

� 𝑑𝑑𝑎𝑎𝑙𝑙
𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑎𝑎𝑙𝑙𝑖𝑖𝑠𝑠𝑜𝑜ℎ

�
−0.3

  

∆𝛷𝛷𝑃𝑃2 = 0.778 × 10−5 × 𝑥𝑥′ + 0.56 × 10−7 × (𝑥𝑥′) 2 + 0.4 × 10−10 × (𝑥𝑥′)3

+ 2.0544 × 10−19 × (𝑥𝑥′) 6 
 3.39 
 
 

𝑎𝑎𝑓𝑓 0 ≤ (𝑥𝑥′) ≤ 800  

∆𝛷𝛷𝑃𝑃2 = −5.1734 × 10−6 × 𝑥𝑥′ + 7.6902 × 10−9 × (𝑥𝑥′) 2 
     
 
3.40 

𝑎𝑎𝑓𝑓 − 800 ≤ (𝑥𝑥′) ≤ 0 
 

𝑥𝑥′ = �
𝑑𝑑𝑙𝑙𝑟𝑟
𝑘𝑘
�
−1.6

�
𝑎𝑎𝐷𝐷𝑘𝑘𝛽𝛽𝑀𝑀1
𝑎𝑎𝐷𝐷𝑘𝑘𝛽𝛽𝑀𝑀2

�
−2

[𝛼𝛼1 − 𝛼𝛼1𝑑𝑑𝑟𝑟𝑠𝑠𝑜𝑜𝑠𝑠𝑜𝑜] 
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3.3 Machine learning 
 
Given that the Craig and Cox loss model includes many interdependent parameters, machine 

learning was considered as an approach with lower computational cost to simulate the loss 

model with a high level of accuracy. The ANN uses machine learning to develop a black-box 

model that correlates between multiple input geometry and output flow parameters. ANNs are 

well suited to understand non-linear relationships and provide better scalability with parallel 

processing. ANNs have demonstrated the highest suitability for understanding mathematical 

data involving the complex velocity field within a turbine [279].  

 
3.4 Optimisation approach 
 
After machine learning was correlated to the turbine’s parameters, optimisers were required to 

mould the appropriate input variables to minimise the flow path losses. Local and global 

optimisation are the two main optimisation techniques. Global optimisation guarantees the 

global optimal combination of parameters to achieve the objective function, whereas local 

optimisation most likely converges towards local optima. Optimisers based on mathematical 

techniques and metaheuristics were preferred to parametric studies due to the large number 

of input variables. Whereas the use of metaheuristic optimisers, particularly evolutionary 

algorithms, was validated by previous studies [51, 70, 271], the use of mathematical 

techniques for the ORC cycle optimisation was not considered previously. This study observed 

mathematical techniques that were noted for their clarity of approach while metaheuristic 

optimisers were noted for their ability to handle diverse problems. 

 

Chapter 4 utilised the genetic algorithm (GA) to maximise steady state turbine power output 

by varying the turbine’s geometric configuration. The evolutionary approach of the genetic 

algorithm made it suitable for optimising a problem with a large number of independent 

variables [29]. Chapter 5 utilised this optimum turbine configuration to maximise mean turbine 

power for the considered transient waste heat source, while expanding the horizon of 

numerical optimisation approaches by considering NLPQL alongside the genetic algorithm. 

Chapter 6 optimised a composite function consisting of the specific investment cost (SIC) and 

maximum mean power using NLPQL and genetic algorithms. The cycle-level variables 

optimised included the pump displacement, boiler heat exchanger area, turbine displacement, 

condenser heat exchanger area, mass of thermal storage, recuperator heat exchanger area 

and APH heat exchanger area. Whereas the multi-objective genetic algorithm (MOGA) was 

already proven by previous studies, the use of the NLPQL algorithm for turbomachinery-based 

multiple-objective studies had not been undertaken previously [271, 280].  
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Previous studies signposted the NLPQL algorithm as less computationally intensive as 

compared to the widely used GA, which stood out in tasks with a small number of independent 

variables [25]. The evaluation of the abilities of the mathematical technique-based solver to 

handle thermodynamic and thermo-economic cycle level-problems against the well-

established metaheuristic optimiser is one of the aims of Chapters 5 and 6. 

 
3.4.1 Mathematical-technique-based optimiser 
 
Based on the literature review, an optimiser incorporating an iterative approach rather than a 

fixed point approach was selected due to the higher probability of global convergence [250]. 

Within this category, Hessian-based solvers were preferred over gradient or functions-based 

solvers, as they were limited by entering local optima due to the trajectory of the gradient and 

computational expense, respectively [251]. Hessian-based solvers consider the slope of the 

function as noted by gradient-based solvers, as well as the change in the trajectory of the 

slope, which allows them to adapt the step size and optimise with minimum supervision [252]. 

 

Three Hessian-based solvers were considered—Newton’s method, sequential quadratic 

programming (SQP) and non-linear programming by quadratic Lagrangian (NLPQL). The SQP 

and NLPQL algorithms undertook optimisation within multiple parameter bands to avoid the 

local optima issue faced by Newton’s method [244]. The NLPQL algorithm is a variation of the 

SQP algorithm which utilises a smooth and continuously differentiable objective function to 

optimise solutions. Additionally, the quadratic approximation of the Lagrangian function allows 

for computational efficiency while solving larger dimensional problems, particularly those with 

non-linear relationships, such as ORC cycles. The function is defined by user-specified 

constraints, that are linearised by the algorithm. Each objective function provides a direction 

to the optimisation process. The quadratic problem is generated, solved and iterated to 

generate a direction towards the optimum solution using the finite difference method [255]. 

Figure 3-8 explains the optimisation procedure adopted by the NLPQL algorithm.  

 

 
Figure 3-8 :Flowchart of cycle-level optimisation using the NLPQL algorithm 
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3.4.2 Metaheuristic optimisers 
 
Based on the literature review undertaken, this study considered population-based and global 

search-based approaches suitable for the problem of flow path optimisation. Nature-based 

metaheuristics is an active research field satisfying both the above criteria. Ezugwu et al. [260] 

concluded that genetic algorithms, particle swarm optimisation and differential evolution were 

the most global and robust nature-based evolutionary algorithms. This study further noted the 

ability of GAs to handle non-differentiable, stochastic and non-linear objective functions as well 

as discontinuous constraints with the help of simple operators, thereby requiring reduced 

computational energy [281]. Additionally, they had a low risk of premature convergence [260]. 

Figure 3-9 demonstrates the scheme used by the genetic algorithm. 

 
 

Figure 3-9: The basic structure of the genetic algorithm 

 
 
3.5 Conclusion 
 
This chapter aimed to establish a method for investigating and optimising turbine efficiency 

and cycle performance. The Craig and Cox loss model was employed owing to its wide 

acceptance that best suited to axial ORC turbines; however, it requires an advanced 

knowledge of flow path geometrical parameters.  

 

Comparatively, the Soderberg loss model has a simpler approach and relies primarily on the 

Reynolds number and flow path deviation to estimate profile efficiency. Whereas the 

Soderberg loss model simply provides a loss factor, the Craig and Cox loss model provides 

details on the breakup of losses which were required for detailed studies.  

 

The Moustapha off-design loss model was preferred by this study for cycle level off-design 

research due to its differentiation of primary and secondary off-design losses as well as its 

consideration of positive and negative incidence values. In addition, other loss models 

overestimated incidence losses, particularly in the case of positive incidences. 
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Machine learning techniques represent a novel approach towards understanding the behaviour 

of complex relationships, including ORC turbine flow paths and ORC cycles. Artificial neural 

networks were considered as best suited for turbine performance estimation due to their ability 

to handle complex data sets, despite the limited transparency they offered. Mathematical 

technique and metaheuristic optimisers were noted for their clarity of approach and versatility 

with complex problems, respectively.  

 

The NLPQL algorithm represents the most advanced mathematical technique-based solving, 

due to its quadratic approximation of the function to be optimised. Genetic algorithms have 

been widely accepted as the most robust optimisers for global optimisation and provide an 

ideal benchmark for comparing the NLPQL optimiser. 
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4 Chapter 4     Artificial Neural Network-based Turbine 
Optimisation 

 
4.1 Introduction 
 
The use of direct loss models is the best approach for determining turbine efficiency, as 

highlighted by the methodology. This chapter aims to envisage the cause of turbine efficiency 

losses in small-scale axial flow turbines, and their consequent impact on the performance of 

the organic Rankine cycle (ORC). Experimental data from an axial steam turbine was used to 

evaluate the established Soderberg loss model and benchmark it against the more complex 

Craig & Cox loss model. The use of these loss models allowed for a breakdown-based 

investigation of the factors contributing to the loss coefficient, which explained changes to 

turbine and cycle behaviour caused by changing the degree of turbine inlet superheat and 

pressure ratios across the turbine. Genetic algorithm (GA) as a global optimisation tool 

integrated with artificial neural networks (ANNs) was employed to optimise the design of a 

single-stage axial flow turbine to maximise its internal efficiency and the overall organic 

Rankine cycle (ORC) efficiency, whereby the turbine’s internal losses were incorporated. 

 
The objectives of this chapter are to:  

• Employ loss models to imitate a small-scale axial flow turbine and integrate it with a 

one-dimensional (1-D) model of an organic Rankine cycle. 

• Understand the influence of turbine inlet flow conditions such as superheating and total-

to-static stage pressure ratio on the turbine and cyclic performance, utilising low-, 

medium- and high-temperature organic fluids. 

• Undertake a loss comparison between the primitive Soderberg and advanced Craig 

and Cox loss models. 

• Investigate the turbine’s aerothermal losses by observing the contributory factors 

• Employ ANN deep learning modelling coupled with generic algorithm (GA)-based 

global optimisation to optimise the turbine flow path as well as study the path’s influence 

on the ORC performance.  

The range of parametric analyses and employing an objective, computationally efficient 

predictive model coupled with a global optimiser are the critical contributions of this chapter. 

The multiple perspectives considered explain the relationship between turbine efficiency and 

working fluid parameters, using a direct-loss approach, rather than the conventionally used 

indirectly loss correlations [211, 273]. 

 

This approach enabled studying the impact of basic thermodynamic working fluid parameters 

like speed of sound, isentropic enthalpy drop and molar mass. The use of ANNs trained by a 

direct loss model also demonstrates the compromise of less significant moving blade efficiency 
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to improve the more significant nozzle efficiency, thus improving overall turbine isentropic 

efficiency. This ANN-integrated approach for turbine optimisation is considered a new 

methodology for cycle- level analysis. 

 
4.2 Working fluids 
 
Compared to traditional steam-based cycles, ORCs offer a high degree of freedom in terms of 

the choice of working fluid [129]; this is crucial choice as the working fluid influences the 

exergetic efficiency and irreversibility of the cycles [282]. There is a proven relationship 

between the working fluid properties and the turbine’s architecture and performance [129]. 

Thus, given the strong relationship of the working fluids with the cyclic and component 

performance, six working fluids were investigated, each with its own merit:  

Pentafluoropropane (R245fa), Isobutane (R600), trans-1-chloro-3,3,3-trifluoropropene 

R1233zd(E), 1,3,3,3-Tetrafluoropropene isomers (R1234ze(E), R1234ze(Z) and 2,3,3,3-

Tetrafluoropropene (R1234yf),  [129, 282].  

 

Previous studies have confirmed R245fa as the working fluid exhibiting the highest power 

output with a heat source in the range of 160–200°C  and highest specific work output [42, 57]. 

The low saturation pressure of R245fa and the high specific enthalpy of R600 have ensured 

the fluids are regularly used for low- to-medium-grade heat recovery [34, 204, 283]; they were 

considered in the study as baseline fluids. R1234yf and both the R1234ze isomers have 

emerged as alternatives to alleviate the environmental impacts of the existing organic fluids 

[167]. R1233zd(E) is a drop-in replacement for R245fa with lower global warming potential 

(GWP) [41]. 

 

A mixture of thermodynamic fluid “type” was chosen, with R245fa and R600 exhibiting dry fluid 

behaviour, R1234yf and R1234ze(E) exhibiting isentropic behaviour and R1234ze(Z) 

exhibiting a wet slope. Wet fluids were of interest because they require less sensible heat 

dissipation in the condenser, reducing cooling tower losses. The working fluid temperature at 

the turbine inlet was maintained between 110 to 160⁰C, which ensured that the fluids were not 

operating in a wet or supercritical regime. The Peng–Robinson equation of state was selected 

for its simpler generalisation and good prediction of properties, which exhibited a mixture of 

constituents as well as fluids in a two-phase state of matter [79, 81]. 
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4.3 Loss models 
 
4.3.1 Soderberg Loss model 
 
Soderberg’s loss model, originally formulated in 1922 was chosen for this study due to its 

relative simplicity [22]. The limited flow path geometrical parameters required by this loss 

model enables its utility for researchers and engineers with limited turbomachinery proficiency, 

while providing the advantages of direct loss correlation. The model determines primary and 

secondary loss coefficients based on the deflection, pitch, blade height and Reynolds number. 

An additional correction for blade height induced secondary losses is provided using the aspect 

ratio [206]. 

 
4.3.2 Craig and Cox loss model 
 
Compared to the Soderberg loss model, the Craig and Cox loss model provided a break-up of 

twenty-three individual loss factors. Craig and Cox developed a graphical correlation based on 

primary and secondary losses obtained from linear cascade tests, mainly derived from testing 

with compressed air. This was supplemented by loss corelations from previous efforts focused 

on specific annulus losses [214, 284-286]. Despite the added complexity, this model allows 

operators to undertake a detailed investigation of contributory losses. As this optimisation was 

limited to Group 1’s theoretical aerothermodynamic performance, Group 2’s losses were 

discarded. 

 

The regression for Craig and Cox model was developed by MATLAB curve fitting toolbox. The 

surface fit function was used to produce a series of polynomial equations. To minimise 

deviation and optimise calculation time, equations between the 2nd to 5th order were used as 

required. The absolute deviation between the values predicted by the polynomial equation from 

the actual values was less than 2%. A robust fit was chosen as it provided equal weightage to 

the upper and lower bounds. The least absolute residual (LAR) method develops a curve that 

minimises the absolute difference of the residuals, rather than the squared differences, as 

dictated by the commonly utilised Bi-square approach [287]. This leads to an equal importance 

being placed on all datapoints, including extreme values, and offers overall adaptability to the 

overall plot. As the loss model did not suffer from outliners and anomalies, the LAR method 

was selected. Although incidence losses were considered by Craig and Cox in their loss model, 

they were not considered within this chapter as the design optimisation was considered under 

steady state condition. A detailed description of the Craig and Cox model and the developed 

numerical correlations are provided in Appendix 1. 
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4.3.3 Cycle thermodynamic modelling 
 
To study the influence of the inlet temperature on the turbine and cycle performances, the loss 

models were incorporated into a one-dimensional (1-D) model for a superheated ORC cycle, 

as shown in Figure 4-1(a). The T-s diagram for the cycle, as in the case of R1234ze(Z), is 

presented in Figure 4-1(b). An industrial boiler’s flue gas stack was considered as the heat 

source. A temperature of 170°C was considered for the heat source stack [288].  

 

  
 

            (a)       (b) 

Figure 4-1: (a) Components of a superheated ORC; (b) T-s diagram of superheated ORC for 
dry fluid R245fa 

 
The heat input to the ORC boiler is stated in equation 4.2, whereas the heat rejection from the 

water-cooled surface condenser, operated at a mean temperature of 30°C, is calculated using 

equation 4.4. Work done (𝑊𝑊𝐼𝐼𝑜𝑜) and efficiency (𝜂𝜂𝑇𝑇) of the turbine were quantified using 

equations 4.1 and 4.3. Cycle efficiency was quantified as in equation 4.6. The thermodynamic 

properties at each point in the cycle were determined by using mass and energy balance 

equations. 

 

 

 

𝑊𝑊𝐼𝐼𝑜𝑜 =  
ṁ × (𝑃𝑃1 − 𝑃𝑃7)

𝜂𝜂𝑃𝑃
 

 

4.1 
 

𝑄𝑄𝐼𝐼𝑜𝑜 =  − ṁ(ℎ4 − ℎ1) 
 

4.2 
 
 

𝜂𝜂𝑇𝑇 =  ( 1 − (𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃1𝑁𝑁 +  𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃1𝐵𝐵)) 
 

4.3 
 

𝑄𝑄𝑂𝑂𝑃𝑃𝑜𝑜 = ṁ(ℎ5 − ℎ7) 
 

4.4 
 

𝜂𝜂𝐶𝐶𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟 =
𝑊𝑊𝑇𝑇 −𝑊𝑊𝑃𝑃

𝑄𝑄𝐼𝐼𝑜𝑜
=
ṁ × �(ℎ4 − ℎ5) − (ℎ1 − ℎ7 )�

𝑄𝑄𝐼𝐼𝑜𝑜
 

4.5 
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4.3.4 Neural network and optimisation approach 
 
A black-box model based on an ANN was considered as a computationally inexpensive 

method to improve the turbine design parameters. In the current study, 210 trials were 

generated form the developed 3D flow path model and employed to develop the neural 

network; 70% of the data points were used to train the neural network, 15% were used to 

internally validate the neural network evolution and halt the training when generalisation 

stopped improving, while the remaining 15% were used to verify the developed neural network 

and its independency. A dropout rate of 0.8 was utilised, which provided a good balance 

between refining the existing population and allowing for new variants. The network comprised 

70 neurons in the hidden layer, exceeding the number of individual non-linear terms in the loss 

model, to avoid underfitting of the function, as shown in Figure 4-2. While previous studies 

used a trial and error method to determine the number of neurons, which was time-consuming 

and relied on operator experience [289], this study considered a large number of neurons, as 

neural networks did not suffer from over-fitting the problem. As a result, the number of neurons 

considered were greater than twice the number of independent variables. The performance of 

the ANN for training and testing data was evaluated by comparing the root-mean-squared error 

(RMSE) between the target values and output values. The setup parameters are furnished in 

Table 4.1. 

 

 
Figure 4-2: Architecture of the ANN used 
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Table 4.1: Artificial neural network and genetic algorithm setup parameters 

 
Parameter Description 

Artificial neural 
network model 

Deep neural network (Regression) 

Number of 
epochs 

1000 

Input layers Number of 
nodes 

10 

Input variables Turbine speed, hub diameter, degree of reaction, nozzle 
exit angle, nozzle throat, blade throat, nozzle pitch, 
blade pitch, nozzle backbone radius, blade backbone 
radius  

Hidden layers Number of 
nodes 

70 

Number of 
layers 

1 

Number of 
output layer 

Number of 
nodes 

32 

Number of 
variables 

22 

Output 
variables 

Nozzle exit velocity, total to total efficiency, total to static 
efficiency, cycle efficiency, power, volume ratio, flow 
coefficient, load coefficient, nozzle primary loss, blade 
primary loss, nozzle secondary loss, blade secondary 
loss, total loss, heat loss to condenser, Mach determiner 
for nozzle, Mach determiner for blade, exhaust 
superheat, inlet total enthalpy, outlet total enthalpy 

Optimisation 

Optimizer 
function 

Genetic algorithm 

Population 
Type 

Double vector 

Creation type Tournament 

Learning rate 0.001 

 
 

A unipolar log-sigmoid activation function (equation 4.6) was chosen for the hidden layer owing 

to its robustness when used in neural networks being trained by back-propagation [307]. The 

function assigned a weight between 0 and 1 for each neuron. A linear function was chosen for 
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the output layer which comprised of 32 outputs. The Bayesian regularisation algorithm was 

employed to train the network owing to its robustness for quantitative studies and for previously 

demonstrating the highest correlation coefficient between predicted and actual data sets [308]. 

Genetic algorithms were employed to determine the optimal design parameters of the axial 

flow turbine within the predefined constraints as furnished in Table 4.2, aiming to maximise the 

turbine power generation. The summary of the learning and optimisation procedure undertaken 

is presented in Figure 4-3. 

 

 
Table 4.2: Turbine optimisation constraints for the genetic algorithm 

 

Parameter Lower constraint Upper constraint 

Speed (in rpm) [195] 2000 7000 

Hub diameter [195] 0.1 0.7 

Degree of reaction [291] 0.0 0.5 

Nozzle exit angle [292] 12 20 

Nozzle throat [187] 0.003 0.01 

Blade throat [187] 0.002 0.01 

Nozzle pitch [293] 0.01 0.04 

Blade pitch [293] 0.015 0.04 

Nozzle backbone length [192] 0.02 0.1 

Blade backbone length [192] 0.02 0.1 

𝑆𝑆(𝑥𝑥) = 1
1+𝑟𝑟−𝑎𝑎

= 𝑟𝑟𝑎𝑎

𝑟𝑟𝑎𝑎+1
  [290]  4.6 
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Figure 4-3: Layout of the optimisation procedure 

4.4 Assumptions 
 

The study was limited to subcritical cycles. Pressure losses from heat exchangers and piping 

were ignored. The pinch point for the heat source was considered as 10°C [302, 303]. The 

heat source and sink temperatures were assumed as constant. The pinch point for the heat 

sink was considered as 5°C [304]. As the turbine was assumed to operate at the design point, 

off-design losses were ignored. Profile trailing edge thickness was maintained at 0.3mm, taking 

into consideration limitations within the manufacturing process. Gearbox and generator losses 

were ignored [305]. Although the feed pump efficiency was assumed as 70%, the work done 

by the pump was minor (below 10% of the overall power generated) and ignored during 

determining cycle efficiency, as it was negligible compared to the turbine work [59]. The 

thermodynamic model was executed using the EES platform that considered the effect of the 

operating conditions on the thermophysical properties of the working substance [83, 169]. 

 
4.5 Validation 
 
The results predicted by numerical Soderberg, Craig and Cox and ANN black-box models were 

benchmarked against their analogous actual values measured during the steady operation of 

a 450-kW axial-flow impulse back-pressure steam turbine manufactured by IB Turbo–India, 

depicted in Figure 4-4. 



Y. C. Engineer, PhD Thesis, Aston University, 2022 103 

 
 

Figure 4-4: Pictorial view of the simulated steam turbine operating in a rice mill firm at Karnal, 
India (permission granted for image) 

The turbine consisted of forty stationary nozzles along with 221 moving blades. The nozzle 

exit metal angle was maintained as 20°. The moving blade metal inlet and exit angles was 

machined at 22.5° and 19° to the tangential axis. The nozzles had mean pitch, height, throat 

width and exit area of 12.4 mm, 42.7 mm, 40.6 mm and 64.1 mm2, respectively. The turbine 

mean diameter was 336.55 mm, operated at 9000 rpm and integrated with a speed reduction 

gearbox to couple with a 15000 RPM alternator. Steam inlet conditions were 10.53 kg/cm2(a) 

and 296°C, while steam exhaust pressure was 7.86 kg/cm2(a). The predicted values showed 

an agreement within 3% of the actual values as multiple load points, as measured and shown 

in Table 4.3. 

 

Both loss models along with the trained ANN demonstrated a good prediction of fluid behaviour 

across the stationary blades. Critical thermodynamic parameters like total-to-static efficiency, 

steam exit temperature and exit static enthalpy showed a variation within ±4% band. This was 

in agreement with previous studies [294]. Considering the low degree of reaction,  the fluid 

velocity at the stationary blade exit C2 reflected the primary nozzle’s conversion effectiveness. 

Comparison between the loss models demonstrated a deviation within ±1% from the value of 

the existing machine. Relative velocity at the moving blade exit V3 and fluid relative exit angle 

β3 reflected the moving blade efficiency wherein larger deviations were observed as incidence 

losses were not considered. 
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Table 4.3: A comparison of the results of the validation 
 

Thermodynamic 
parameters 

Experimental data Soderberg loss model Craig and Cox loss 
model ANN black-box model 

Load 1 Load 2 Load 3 Load 1 Load 2 Load 3 Load 1 Load 2 Load 3 Load 1 Load 2 Load 3 

In
pu

t 

Inlet pressure 
(kg/cm2) 10.5 14.4 9.44 10.5 14.4 9.44 10.5 14.4 9.44 10.5 14.4 9.44 

Inlet temperature 
(°C) 296 311 295 296 311 295 296 311 295 296 311 295 

Outlet pressure 
(kg/cm2) 7.8 8.7 6.6 7.8 8.7 6.6 7.8 8.7 6.6 7.8 8.7 6.6 

Mass flow rate 
(kg/cm2) 6.11 3.32 5.36 6.11 3.32 5.36 6.11 3.32 5.36 6.11 3.32 5.36 

O
ut

pu
t 

Total-to-static stage 
efficiency (%) 89.76 90.12 86.44 90.73 92.9 89.7 92.46 92.68 89.38 88.5 89.41 87.17 

Static enthalpy after 
nozzle (kJ/kg) 2981 2957 2980 2971 2948 2965 2971 2950 2967 2972 2952 2967 

Pressure after 
nozzle (kg/cm2) 8.12 9.1 6.88 8.10 9.0 6.6 8.101 9.1 6.87 7.86 8.7 6.6 

Stagnation enthalpy 
after stage (kJ/kg) 2979 2951 2965 2967 2946 2961 2968 2947 2962 2975 2952 2964 

Exit temperature (°C) 263.25 252 258.1 260.4 256 253.1 252.9 253.5 253.8 261.7 252.4 254.8 

Power output 
corrected for 
gearbox and 
generator efficiency 
(kW) 

396 372 407 401 383 423 408.4 381 419 391 368 410 



Y. C. Engineer, PhD Thesis, Aston University, 2022 105 

4.6 Results and discussion 
 
4.6.1 Effect of turbine inlet temperature 

 
The turbine inlet temperature range in this investigation was 110–160⁰C to ensure the 

investigated fluids were superheated. As shown in Figure 4-5(a), both loss models 

demonstrated total-to-static turbine efficiency improvement in the case of all fluids except for 

R600. Whereas the Craig and Cox model demonstrated an increase in turbine efficiency for 

R245fa, R1234ze(Z), R1233zd(E), R1234ze(E) and R1234yf by 11%,11.7% 8%, 4.5% and 

3.8%, respectively, the Soderberg model demonstrated an improvement by 11%, 11.5%, 

9.7%, 5.5% and 4.5%, respectively.  

 

Despite similar trends for all fluids, the Soderberg model observed 2% lower turbine 

efficiencies on average compared to the Craig and Cox loss model for R1234yf, R1234ze(E) 

and R1234ze(Z). Whereas the Craig and Cox model attributed this to the higher secondary 

losses for the moving blade, it was not possible to identify the loss component as the 

Soderberg model did not provide a break-up of individual secondary losses. The combined 

effect of the increased inlet fluid enthalpy and variable turbine efficiency increases the power 

output by up to 36% for both models in Figure 4-5(b). R245fa, R1233zd(E) and R1234ze(Z) 

working fluids demonstrated an improvement in cycle efficiency, whereas R1234yf, 

R1234ze(E), and R600 demonstrated a reduction in cycle efficiency with increased superheat 

(Figure 4-5(c)). R245fa, R1233zd(E) and R1234ze(Z) experienced the least drop in internal 

energy across the turbine, which was noted by their lowest power output (Figure 4-5(b)); The 

low outlet isentropic Mach numbers (up to 8%  for these fluids), pointed to a lower isentropic 

heat drop, as shown in Figure 4-5(d). Additionally, the U/C2 ratios observed for R245fa, 

R1233zd(E) and R1234ze(Z) were on average 18% higher than those for other fluids (Figure 

4-5(e)). The flow coefficients were lowest for these three fluids (Figure 4-5(f)), which aligned 

well with the Smith chart [195]. The Soderberg model observed higher flow coefficients than 

the Craig and Cos loss model, pointing towards the additional efficiency losses due to the 

higher meridional fluid velocity [195]. From the results, it can be concluded that using a 

multistage, higher rotational speed, or a larger diameter turbine is highly recommended for 

R600 to maximise turbine efficiency for such fluids. 
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Figure 4-5: The influence of turbine inlet temperature on (a) total-to-static efficiency, (b) 
power, (c) cycle efficiency, (d) relative stage outlet isentropic Mach number, (e) U/C2 ratio 

and (f) flow coefficient 
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To understand the contradicting trend of turbine efficiency in the case of R600 fluid, the 

breakdown of individual losses was studied. This was done using the Craig and Cox loss model 

as the Soderberg model did not provide any analysis of the loss function. The overall turbine 

loss consists of the primary and secondary losses for the nozzles and blades. Figure 4-7 shows 

the distribution of the loss factors for all working fluids in the turbine stage between turbine 

inlet temperature range from 110 to 160ºC. The primary blade loss in the case of R600 over 

the investigated range of superheat increased by 6.1%, compared to 1.7%, 1.48%, 2.62%, 

2.59% and 2.6% for R245fa, R1233zd(E), R1234ze(Z), R1234yf and R1234ze(E), 

respectively. This was attributed to four factors: the moving blade profile, the fluid velocity, the 

higher enthalpy drop and lower molar mass. 

 

The moving blade had a converging flow path across its length which limits the velocity drop 

across the profile, as shown Figure 4-6. Based on Bernoulli’s equation, at supersonic velocity, 

the fluid behaviour is reversed, wherein a converging fluid path results in a further increase in 

velocity. Whereas all other fluids operated at subsonic or transonic conditions, R600 operated 

at supersonic conditions, where the fluid velocity was compounded by the convergent flow 

path. A convergent-divergent nozzle would be better suited in this case.  

 

 

 
 

Figure 4-6: Converging area of the moving blade section 
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As fluid velocity was higher in the case of R600, the fluid experienced higher localised 

velocities at the suction surface. The incremental profile loss generated was applicable for 

Mach numbers higher than 0.7 and pitch-to-suction surface ratios lower than 0.7 [192]. The 

enthalpy drop across the turbine,  a function of the internal energy, was relatively higher in the 

case of R600.. The drop in internal energy across the investigated turbine was 77.6 Joules for 

R600, while in the case of R245fa, R1233zd(E), R1234ze(E), R1234ze(Z) and R1234yf, the 

mean internal energy drop was 33.4, 33.5, 39.7, 37.2 and 38.9 Joules, respectively. The 

significantly higher drop in internal energy maintained the fluid at supersonic velocity, which 

resulted in a greater Mach number loss. 

Considering the low speed of sound of organic fluids, it was not uncommon for them to operate 

in the supersonic regime. This was more significant in the case of R600, due to its relatively 

lower molar mass of 58.12 g/mol, while those for R245fa, R1233zd(E), R1234ze(E), 

R1234ze(Z) and R1234yf were 134.04, 130.5, 114.04, 114.04, and 114.0 g/mol, respectively. 

The correlation of these factors is shown in equations 4.7 and 4.8; where 𝐶𝐶 and 𝑀𝑀𝑀𝑀 denoted 

the universal gas constant and the molar mass of the fluid. 

 

𝑀𝑀 =
𝐺𝐺
𝑎𝑎
    4.7 

  

𝑎𝑎 =  �𝛾𝛾𝑇𝑇
𝐶𝐶
𝑀𝑀𝑀𝑀

 
  
  4.8 

 

Contradicting the consensus that superheating causing a loss in cycle efficiency [47, 119, 131, 

215, 313, 314], it was observed that superheating of the working fluid could lead to improved 

cycle efficiency when used with high molecular mass fluids, converging blade profiles and 

subsonic fluid velocities. Compared to the traditional approach, where a fixed turbine efficiency 

was considered, this study noted that the turbine efficiency varied between 66 and 83%, as 

shown in Figure 4-5(a), across the investigated range of superheat considered for both loss 

models.  This revealed that the working fluid’s properties and the turbine’s design configuration 

were interrelated. Thus, this finding emphasised the importance of considering the loss model 

at the component and cycle levels.  
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(a) R245fa (b) R600 

  
(c) R1234ze(Z) (d) R1234yf 

  
(e) R1234ze(E) (f) R1233zd(E) 

 

Figure 4-7: The influence of turbine inlet temperature on the loss coefficients for all six 
working fluids 
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4.6.2 Effect of pressure ratio on the turbine’s efficiency 
 
The effect of varying the pressure ratio on turbine efficiency was investigated by varying the 

turbine inlet pressure. Pressure ratios between 3 and 10 were considered while all other 

geometric parameters were considered as fixed. The turbine’s inlet temperature was 

maintained at a constant 140⁰C. The additional enthalpy drop across the turbine led to a more 

effective temperature drop, which manifested in the form of reduced turbine exhaust 

temperature, as seen in Figure 4-8 (a). There was a significant improvement in turbine 

efficiency up to a pressure ratio of 6; the benefits were less significant beyond that, as shown 

in Figure 4-8 (b). The power generated at pressure ratios above 6 was at limited efficiency; 

see Figure 4-8 (c). Both loss models demonstrated similar efficiency contours, despite the 

underestimation of efficiency by the Soderberg loss model by 6% and up to 21% (as in the 

case of R600, which has been discussed later). Although limited by the marginal improvements 

to expander efficiency beyond a pressure ratio of 5, the increased pressure ratios led to an 

increase in work done (Figure 4-8 (c)) and cycle efficiency (Figure 4-8 (d)). 

 

The Craig and Cox loss model was used to investigate the breakdown of the losses. The model 

showed a significant increase in total losses beyond the pressure ratio of 6, as noted in Figure 

4-9. Whereas a proportional increase of loss coefficient of about 4.5 was observed per unit 

increase in pressure ratio for the nozzle primary losses (as noted in Figure 4-10), the blade 

primary losses demonstrated an exponential two-fold increase beyond a pressure ratio of 6, 

as shown in Figure 4-11. The secondary losses remained relatively constant, irrespective of 

the pressure ratio, as observed in Figure 4-12 and Figure 4-13. Detailed investigation of the 

primary losses demonstrated a direct relation between the fluid velocity and primary loss 

coefficients, as shown in Figure 4-14 and Figure 4-15. The Mach number loss was identified 

as the largest contributor to the variable turbine efficiency.  

 

The nozzle primary loss coefficient for all fluids increased by up to 275% for a corresponding 

44% increase in the nozzle outlet isentropic Mach numbers, with conventional profiles having 

difficulty in undertaking a high expansion ratio [211]; therefore, multistage turbines could be 

considered for higher pressure ratios, as suggested by Meroni et al. [133]. The additional 

profile increment loss was a component of the nozzle primary loss, which occurred for values 

of blade exit isentropic Mach numbers beyond 1.2 [192]. For R600, increasing the pressure 

ratio reduced the turbine efficiency, as the energy losses in the form of heat are relatively 

higher when compared to other fluids. Such heat losses are primarily due to the high flow 

speed of the turbine blades, which is the work-producing element in the turbine due to its low 

molar mass, leading to supersonic flow. 

 

In the case of all the investigated fluids, except R600, the moving blade outlet isentropic Mach 

number demonstrated subsonic fluid velocities up to the pressure ratio of 6. 
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               (a) 

 
(b) 

 
             (c) 

 
(d) 

 
Figure 4-8: The influence of pressure ratio on: (a) Exhaust temperature; (b) Total-to-static 

efficiency; (c) Power output; (d) Cycle efficiency 

 
A further increase in pressure ratio led to the operation in the transonic regime. It was observed 

that increasing the pressure ratio from 3 to 6 led to an average increase of the blade primary 

loss coefficient by 172% (3.8 units). Increasing the pressure ratio from 6 to 9 increased the 

blade primary loss coefficient by 191% (11.5 units). Pressure ratios between 3 and 5 

demonstrated a reduction in fluid velocity, indicating that the given turbine was best configured 

for a pressure ratio of 5 for these fluids.  
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In contrast, R600 demonstrated an increase in total loss coefficient across the entire range of 

pressure ratios; this was due to the higher moving blade primary and secondary losses, which 

resulted from the higher working fluid velocity at the moving blades, as shown in Figure 4-15. 

Similar to the effect of superheating, both loss models demonstrated similar trends, although 

the Soderberg model was noted to underestimate the drop in efficiency caused by these high 

values of Mach number, exceeding 1.2 in the case of R600 (Figure 4-5 (b)). 

 

 
 

Figure 4-9: Variation of total loss coefficient with change in pressure ratio 
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Figure 4-10: Variation of nozzle primary loss coefficient with change in pressure ratio 
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Figure 4-11: Variations in blade primary loss coefficients with change in pressure ratio 

 

 
 

Figure 4-12: Variations in nozzle secondary loss coefficients with change in pressure ratio 

 

 
 

Figure 4-13: Variations in blade secondary loss coefficients with change in pressure ratio 
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Figure 4-14: Variations in nozzle outlet isentropic Mach number with change in pressure ratio 

 

 
Figure 4-15: Variations in blade outlet isentropic Mach numbers with change in pressure ratio 
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optimised profile improved the nozzle efficiency by 13.7% at the expense of 18.9% drop in 

blade efficiency. As the flow path developed was that of a highly impulse-loaded machine, the 

algorithm achieved 5.14% higher stage efficiency by compromising blade efficiency for nozzle 

efficiency. The algorithm increased the degree of reaction, which led to a more evenly 

distributed enthalpy drop across the nozzle and moving blade that led to a 2.6% reduction in 

nozzle exit velocity (C2). This, in turn, resulted in additional performance gains due to the lower 

flow coefficient (ϕ) and an optimised u
C2

  coefficient.  

 

The backbone radius ratio loss was a function of the pitch to back bone radius ratio. Decreasing 

the pitch and increasing the backbone length achieved an 8.6% improvement in backbone 

radius ratio loss. Reduced trailing edge thickness led to a 66% and 28% reduction in the trailing 

edge thickness increment loss, respectively (lossincrN, lossincrB). The nozzle exit angle 

(α2) was optimised to reduce the axial component of velocity (Ca2) and the associated losses. 

The backbone radius ratio loss (ΔXpse), trailing edge thickness increment loss 

(lossincrN, lossincrB) and axial component nozzle exit velocity (Ca2) were factors of the primary 

loss (GpN, GpB). The selection of a larger throat width (thrN) resulted in lower profile losses for 

the nozzle due to the reduced boundary layer developed. Reducing the nozzle exit angle led 

to a reduction in the axial velocity component, that did not carry out useful work. The optimised 

blade profile led to a 1% improvement in cycle efficiency (Table 4.4). The RMS error value and 

training charts shown in Figure 4-16 demonstrate the convergence achieved by the ANN.  

 

 
 
   (a)       (b) 

 

Figure 4-16: (a) RMS error after 1000 iterations; (b) ANN training performance 
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Table 4.4: Genetic algorithm (GA)-optimised parameters and test results 
 

Variable 
type Parameter 

Original value 
from loss 

model 

GA- 
optimised 

values 

GA-optimised 
values verified 
by Loss model 

In
de

pe
nd

en
t V

ar
ia

bl
e 

Speed (rpm) 5000 4715.31 4715.31 
Hub diameter 0.660 0.630 0.630 
Degree of reaction 0 0.07 0.07 
Nozzle exit angle (𝛼𝛼2) 14 12.23 12.23 
Nozzle throat (𝑎𝑎ℎ𝑎𝑎𝑁𝑁) 0.00497 0.0065 0.0065 
Blade throat(𝑎𝑎ℎ𝑎𝑎𝐵𝐵) 0.0035 0.0061 0.0061 
Nozzle pitch 0.029 0.023 0.023 
Blade pitch 0.011 0.025 0.025 
Nozzle backbone length 0.0736 0.0792 0.0792 
Blade backbone length 0.0217 0.0792 0.0792 

D
ep

en
de

nt
 V

ar
ia

bl
e 

u 172.7 162.8 162.8 
𝐶𝐶2 281.6 281.8 274.4 
 𝐺𝐺 𝐶𝐶2�  0.61 0.57 0.59 
𝐶𝐶𝑚𝑚2 68.11 59.87 58.21 
Total to static efficiency 0.788 0.81 0.84 
Total to total efficiency 0.89 0.93 0.92 
Cycle efficiency  8.78 9.75 9.53 
Power 119.5 141.8 123.1 
Volume ratio 7.45 7.34 7.5 
Flow coefficient (𝜙𝜙) 0.37 0.20 0.35 
Load coefficient (𝛹𝛹) 1.32 2.06 1.62 
G_pN 33.2 30.56 28.84 
G_pB 7.95 6.40 8.34 
G_sN 3.16 2.15 2.55 
G_sB 7.79 8.08 10.38 
G_total 0.31 0.33 0.30 
𝑐𝑐𝐷𝐷𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁  0.0099 0.0034 0.0037 
𝑐𝑐𝐷𝐷𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵  0.0077 0.0057 0.0058 
𝑀𝑀𝑑𝑑𝑟𝑟𝑜𝑜𝑁𝑁 10.34 31.83 16.6 
𝑀𝑀𝑑𝑑𝑟𝑟𝑜𝑜𝐵𝐵 19.95 24.52 14.48 
𝛥𝛥𝐻𝐻𝑃𝑃𝑠𝑠𝑟𝑟𝑁𝑁 17.48 9.39 10.3 

𝛥𝛥𝐻𝐻𝑃𝑃𝑠𝑠𝑟𝑟𝐵𝐵 5.785 5.294 5.414 

 
 
The optimised solutions and original solution mentioned in Table 4.5, were in good agreement 

with the Smith chart, which correlates the turbine efficiency to the flow coefficient (𝜙𝜙) and load 

coefficient (𝛹𝛹) [316]. The optimiser achieved 5.2% improvement in total-to-static efficiency. 

The research noted that the optimiser reduced the flow coefficient (𝜙𝜙) to maximise efficiency. 

The GA-optimised profiles were verified with the Craig & Cox loss model. Table 4.6 presents 

the range of independent variables demonstrating the 98th percentile results for best total-to-

static efficiency. 
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Table 4.5: A comparison of losses optimised by ANN and GA 

 

Losses Original Optimised Loss reduction in % 

Total losses 0.311 0.2951 5.14% 

Total nozzle group 1 loss 0.218 0.193 11.5% 

Total blade group 1 loss 0.093 0.102 -9.67% 

Nozzle primary loss 𝐺𝐺𝑃𝑃𝑁𝑁 33.22 28.84 13.18% 

Nozzle secondary loss 𝐺𝐺𝑠𝑠𝑁𝑁 3.16 2.55 19.3% 

𝑐𝑐𝐷𝐷𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁 0.0099 0.00375 62% 

Nozzle Profile loss 𝐻𝐻𝑃𝑃𝑁𝑁 17.48 9.397 46.24% 

 
               

Table 4.6: The range of parameter variations provided by optimised solutions 
 

Parameter Unit Lower value Upper value 
Turbine speed rpm 4500 5200 
Degree of reaction -- 0.05 0.1 
Hub diameter m 0.5 0.6 
Nozzle exit angle ° 12.5 14 
Nozzle throat mm 6.490 6.511 
Blade throat mm 6.089 6.177 
Nozzle pitch mm 22.807 23.779 
Blade pitch mm 25.211 26.007 
Nozzle backbone length mm 71.439 90.471 
Blade backbone length mm 71.439 90.471 

 
 
4.7 Conclusion  

 
This chapter aimed to envisage the cause of the turbine efficiency losses in the small-scale 

axial flow turbines and their impact on ORC performance. The Soderberg and Craig and Cox 

loss models were employed to imitate a small-scale axial flow turbine and integrated it with a 

one-dimensional (1-D) model of an ORC. The ANN coupled with GA was utilised to optimise 

the turbine flow path and study its influence on the ORC performance and to understand the 

influence of turbine inlet flow conditions on the turbine and cyclic performance utilising a range 

of organic fluids. The main findings of the current study are summarised below. 

• The results obtained highlight the importance of considering turbine efficiency as a part 

of the cycle-level study. Direct loss models are preferred as they are independent of 

working fluids. Although the Soderberg loss model typically demonstrated a maximum 

deviation of 5% in isentropic efficiency, the mean deviation was less than 2%. 
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Additionally, it demonstrated similar trends to the Craig and Cox loss model in most 

cases, which highlighted its suitability for preliminary cycle-level studies. However, it 

had limited values as a turbine design and optimisation tool as it did not provide a 

detailed loss breakdown.  

• Considering variations in superheat and pressure ratios, the choice of working fluid has 

a significant impact on cycle design. Higher temperature working fluids, with a higher 

isentropic drop and lower molar mass are less suitable for conventional single-stage 

turbine designs, as they lead to approximately 30% higher fluid velocities, as observed 

in the case of R600. 

• Although superheating led to an increase in Mach number loss and blade back radius 

ratio loss, turbine efficiency improved for most of the investigated organic fluids, with a 

maximum 12.4% improvement in turbine efficiency in the case of R245fa, R1233zd(E) 

and R1234ze(Z). Cycle efficiency demonstrated an improvement in the case of R245fa, 

R1233zd(E) and R1234ze(Z), which implied that superheated ORC cycles could be 

beneficial but need to account for variations in turbine efficiency. 

• Increasing pressure ratios led to an average 38% increase in turbine efficiency for 

R245fa, R1234ze(Z), R1234yf and R1234ze(E). The Mach number of the working fluid, 

which reached 2.1 at the moving blade, was noted as the most influential on the primary 

losses. 

• Moving blade relative velocity above 1.6 led to a drastic increase in primary loss which 

nullified improvement in the turbine efficiency achieved by higher pressure ratios.  

• Using deep learning for profile optimisation offered a simple and computationally 

efficient approach for optimising the flow path’s design. The optimised flow path 

showed a 5.2% improvement in turbine total-to-static efficiency and a 0.24% 

improvement in cycle efficiency. High percentile results generated by ANNs can be 

used as a good starting point for advanced blade design. 
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5 Chapter 5     Single Objective Thermodynamic Cycle 
Optimisation 
 

5.1 Introduction 
 
The previous chapter was centred around investigating the variations in ORC turbine’s 

isentropic efficiency with changes in boundary conditions and providing a recommendation of 

an optimised turbine geometry. This chapter details how the optimised turbine geometry was 

employed to investigate the impact of utilising transient heat sources. Considering the 

variations in turbine efficiency for any cycle configuration studies with heat source 

temperatures above 150⁰C is an indispensable strategy [81]; nevertheless, most cycle 

optimisation studies have been restricted to a fixed turbine efficiency [51, 226] or similitude 

theory [81]. In reality, scaling the turbine using similitude influences the Reynolds number, a 

significant factor for primary profile losses that can cause major variations in turbine efficiency 

[273, 295]. 

 

Although previous studies were undertaken to establish the feasibility of ORCs for utilising low-

grade heat sources, limited studies based on flue gas stacks, widely used for industrial process 

steam boilers, were previously considered [119]. One of the few studies for flue gas-based 

waste heat recovery (WHR) using ORCs was undertaken by Wang et al. [296]. Although the 

study considered heat source temperatures between 150⁰C to 250⁰C, it was limited to steady 

state heat source conditions, zero pressure drop across heat exchangers and a fixed turbine 

isentropic efficiency of 80%. Additionally, the operation of the working fluid was restricted to 

the saturation phase. 

 

Previous studies have provided controversial results about the benefits of using a recuperator 

to improve cycle efficiency. Whereas some previous theoretical studies showed an improved 

cycle efficiency, others ‘that adding recuperators was not advisable in the case of an 

unconstrained waste heat source stream due to the additional pressure drop and increased 

capital expenditure [58]. This was more relevant for low- and medium-grade heat sources and 

wet type fluids that provided limited potential for sensible heat recovery [280]. 

 

Building on the extensive literature review undertaken, no single study exists that investigated 

the impact of utilising a quantified waste heat source under transient conditions. Investigating 

ORCs utilising Transient heat sources require is computationally intensive process, which are 

best undertaken with the help of an efficient optimiser. Previously, the use of the genetic 

algorithm (GA) has been well proven for organic Rankine cycles (ORC) optimisation, but 

operate under steady heat source [70]. This thesis notes that the gradient-based non-linear 

programming by the quadratic Lagrangian (NLPQL) algorithm had significantly lower 
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computational requirements compared to the GA,  but has not previously validated with a 

similar application [258]. 

 

Therefore, this chapter aims to optimise the component sizes for a range of various ORC 

configurations, targeting the highest power output for a finite transient waste heat source, 

considering the variations in turbine efficiency. The objectives are as follows. 

• Developing a one-dimensional (1-D) thermodynamic model coupled with the Crag and 

Cox turbine model to assess the thermodynamic feasibility of an ORC driven with an 

actual transient heat source wasted from an existing micro co-generation steam power 

plant considering the variation in the turbine efficiency. 

• Optimising the component sizes for a range of ORCs’ configuration by considering 

variable turbine efficiency. The study concerned integrated various heat recovery 

components to enhance the energy conversion efficiency and minimise the steam 

power plant’s fuel consumption. Two optimisation algorithms were utilised and 

compared: NLPQL and GA. 

• Benchmarking the improvements in the power output and computational efficiency 

achieved by the parametrically pre-optimised NLPQL and GA in comparison to a 

conventional parametric optimisation. 

 
In the author’s opinion, the optimisation study on an ORC for the given configurations with 

variable turbine efficiency based on actual transient waste heat source and its comparison 

using different optimisation techniques is the critical contribution of this chapter. 

 

5.1.1 Heat source 
 
This study considered an actual transient waste heat source from a steam boiler operating at 

a textile plant at Ghaziabad in India. Steam was utilised in the process for conducting dyeing 

operations over colourless white fabric, commonly known as ‘grey fabric’ [297]. As the textile 

plant had over 150 machines including jiggers, calenders, mercerisers, jet dyeing and loop 

dyeing machines, a reasonably constant steam flow was maintained by the steam boiler, 

shown in Figure 5-1(a). Such an integrated system smooths the fluctuations in flue gas 

temperature.  

 

The boiler undertook combustion of crushed Indonesian sub-bituminous coal with a gross 

calorific value of 23 MJ/kg, using a screw feeder as shown Figure 5-1(b) [298]. The steam 

boiler along with its superheater was rated to produce 4.44 kg/sec of steam at an operating 

pressure of 19 kg/cm2 and 240⁰C, from feed water at 100⁰C. The steam first passed through 

an incidental co-generation micro steam turbine, manufactured by IB Turbo, India, as shown 

in Figure 5-1(c), which reduced the steam pressure to 4 kg/cm2, which was then utilised during 
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the process. The electricity generation from the steam turbine varied between 240 and 300 

kWe hourly. 

 

   
(a)        (b)               (c) 

 

Figure 5-1: (a) Steam boiler considered for study; (b) Boiler coal feeding mechanism; (c) 
Micro co-generation steam turbine 

 
The boiler used a forced and induced draft fans to maintain the flow of air and flue gas, as 

shown in Figure 5-2. Ambient air was first directed to the furnace where an atmospheric 

fluidised bed combustion system facilitated the mixing of fuel and air. The combustion products 

then passed through the pressurised superheater, evaporator, economiser and a non-

pressurised water pre-heater, all using a counter-current design. Consideration of the pinch 

point required the use of multiple heat exchangers, highlighting the importance of recovering 

lower-grade heat. The flue gas was passed through an electrostatic precipitator that captured 

part of the suspended particulate matter and a wet scrubber for desulphurisation, which 

removed dissolved gases by washing the by-products of combustion, particularly sulphur 

dioxide (SO2) and nitrogen oxide (NOx). 

 
Figure 5-2: Flue gas path of the micro co-generation steam boiler 

 
The hourly mass flow rate of the steam is determined based on the stoichiometric air to fuel 

ratio from the fuel sample, as detailed by Widodo et al. [299]. Excess air quantity was 

considered as 35%, as specified by the steam boiler manufacturer and validated using the 
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findings of Mastral et al. [300] for atmospheric fluidised bed combustion boilers. This was used 

to determine the mass flow rate of flue gas, presented as Figure 5-3(a). Noting that the ash 

content of Indonesian coal was lower than 1.7%, its contribution to the mass flow rate was 

ignored [301]. 

The dry flue gas heat loss is a greater contributor to steam boiler inefficiency [302], which is 

quantified by measuring the flue gas temperature after the water preheater impeded into the 

steam boiler. Accordingly, the use of an organic Rankine cycle operating with a medium 

temperature working fluid was a feasible heat recovery technology to boost the plant energy 

conversion efficiency. Table 5.1 shows exemplar readings for the operating conditions in the 

plant. Figure 5-3(b) shows the typical variation in total input thermal energy within an operating 

shift. 

 

Table 5.1: Flue gas parameters 

 
 
 

Read-
ing 
no. 

Time of 
day 

Steam 
flow 

Steam boiler 
fuel 

consumption 

Steam 
boiler fuel 

input 
energy 

Stoichi-
ometric 

air 

Total 
flue 
gas 

Total 
feed 
air 

Flue gas 
Temper-

ature 

Power 
from 

steam 
turbine 

 hhmm kg/sec kg/sec kJ/sec kg/sec kg/ 
sec 

kg/ 
sec °C kW 

1 0730 3.58 0.597 11947.8 4.61 6.23 5.62
9 181 284 

2 0830 3.05 0.509 10174.6 3.93 5.30 4.79
3 177 264 

3 0930 3.48 0.581 11610.0 4.48 6.05 5.46
9 176 278 

4 1030 3.09 0.515 10301.2 3.98 5.37 4.85
3 178 264 

5 1130 3.65 0.608 12158.8 4.69 6.34 5.72
8 179 296 

6 1230 2.59 0.433 8654.7 3.34 4.51 4.07
7 164 242 

7 1330 2.87 0.479 9575.8 3.70 4.99 4.51
1 172 259 

8 1430 2.63 0.438 8769.9 3.39 4.57 4.13
2 173 242 

9 1530 3.60 0.599 12010.0 4.63 6.26 5.66 181 273 
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(a) (b) 
 

Figure 5-3: (a) Mass flow rate of the flue gas; (b) Input energy to system from the flue gas 
 
5.1.2 Assumptions  
 
As the average annual temperature recorded for the city of Ghaziabad, India, was observed 

as 25.7°C for the year 2020, this was considered as the ambient temperature for the study 

[303]. This was considerably greater than the global average annual temperature of 13.9°C 

[12]. The ambient temperature is one of great interests, as previous studies determined an up 

to 30% drop in power output of ORC systems at elevated temperatures [304]. Altun et al. 

observed a 1.4% (from  11.23% to 8.05%) drop in cycle energy efficiency and 10% (49.31% 

to 44.98%) drop in cycle exergetic efficiency for a 10°C increase in the condensation 

temperature (noted from 0°C to 30°C) [305].  

 

The volumetric efficiency of the pump was considered 50%. As the pump power consumption 

was less than 10% that of turbine power generation, it was ignored for determining cycle 

efficiency [63, 306]. Pump sealing losses, turbine sealing losses, turbine bearing losses, 

gearbox and generator efficiency of the turbine were ignored for the sake of simplicity. 

Pressure drop across the boiler air preheater (APH) for fresh air was overlooked as this could 

be reduced using a heat exchanger with reduced gas velocity [307]. Ash content of the fuel 

was discarded for flue gas mass flow calculations. 
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5.2  Methods and materials 
 
5.2.1 Cycle architecture 
 

 
 

Figure 5-4: Conventional ORC 
 
 

The conventional ORC consists of four components: boiler, expander, condenser and 

circulating pump, as shown in Figure 5-4. Ten different configurations of the ORC were 

investigated. These configurations involved the use of regeneration, thermal energy storage, 

direct recuperation and regeneration. Recuperators are indirect heat exchangers that are often 

used to enhance the process energy conversion efficiency. Continuous regeneration involves 

direct contact between two different streams; the absence of a heat exchanger led to a lower 

investment in capital expenditure as compared to recuperation and greater flexibility to control 

the degree of heat recovery during operation. An air preheater is a gas-to-gas recuperator 

typically utilised in steam boilers to increase the temperature of the feed air. The heat transfer 

effectiveness between two gaseous mediums in conventional air preheaters is relatively low 

that limits the process energy conversion efficiency. As organic fluids have high values of latent 

heat, the air preheater converted of the low-grade ORC exhaust fluid from saturated vapour to 

liquid phase, where heat transfer coefficients were an average of 2.4 times higher than the 

gaseous state. [308]. The previous chapter concluded that superheating working fluids led to 

an improvement in cycle efficiency. In this chapter, the addition of a thermal mass is used to 

understand the impact of maintaining the superheat at system-level ORC studies. 

 

The dedicated one-dimensional (1-D) simulation package Simcenter Amesim was used to 

recreate the variations of the ORC cycle. The superheated ORC cycle is shown in Figure 

5-5(a), the simulation model of which is shown in Figure 5-5(b). The thermal storage with cycle 

addition of three masses of GS 53 cast iron of 104 kg each to buffer the variation in thermal 

energy into the system is shown in Figure 5-6. Figure 5-7 features the addition of an air 

preheater as an integrated heat energy recovery device to optimise the steam boiler’s feed air 
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temperature, while the modelling of the five stage heat exchangers is demonstrated in Figure 

5-7 (b). Figure 5-8 shows a recuperative cycle, then combined with thermal storage in Figure 

5-9. In Figure 5-10, high temperature exhaust fluid first passes through the recuperator and 

then an air preheater as this order maximises the ORC’s internal cycle efficiency. A 

regenerative cycle is presented in Figure 5-11, where intermediate pressure working fluid is 

extracted to increase the temperature of the ORC fluid to the economiser. The combination of 

the regenerative cycle along with thermal energy storage was investigated as in Figure 5-12. 

The regenerative cycle is also combined with the air preheater, as in Figure 5-13. Lastly, an 

ORC that features a combined recuperation and regeneration is proposed in Figure 5-14.  

 
 

(a) 
 

(b) 

 
 Figure 5-5: Superheated ORC: (a) Schematic; (b) Simcenter AMESIM cycle block diagram 

 
 
 

 
 

(a) 

 
 
 

 
(b) 

 

Figure 5-6: Superheated ORC with thermal storage: (a) Schematic; (b) Modelled using 
Simcenter AMESIM 
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(a)  
(b) 

Figure 5-7: Superheated ORC with air preheating: (a) Schematic; (b) Modelled using 
Simcenter AMESIM 

 
 
 

 
 

(a) 
 

(b) 

Figure 5-8: Superheated ORC with recuperation: (a) Schematic; (b) Modelled using 
Simcenter AMESIM 
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(a) 

 
 

(b) 

Figure 5-9: Superheated ORC with thermal storage and recuperation: (a) Schematic; (b) 
Modelled using Simcenter AMESIM 

 

 
 
 
 
 
 

(a) 

 
 
 

(b) 

Figure 5-10: Superheated ORC with air pre-heating and recuperation: (a) Schematic; (b) 
Modelled using Simcenter AMESIM 
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(a) 

 
 
 

(b) 

 

Figure 5-11: Superheated ORC with regeneration (a) schematic (b) modelled using 
Simcenter AMESIM 

 
 

 
 
 
 
 

(a) 

 
 

(b) 

 
 
 

Figure 5-12: Superheated ORC with thermal storage and regeneration: (a) Schematic; (b) 
Modelled using Simcenter AMESIM 
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(a) 

 
 

(b) 
 

Figure 5-13: Superheated ORC with air preheating and regeneration: (a) Schematic (b) 
Modelled using Simcenter AMESIM 

 
 

 
 

 
(a) 

 
 
 

(b) 
 

Figure 5-14: Superheated ORC with recuperation and regeneration: (a) Schematic (b) 
Modelled using Simcenter AMESIM 
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5.2.2 Thermodynamics 
 
Whereas the Peng-Robinson equation was used in the previous chapter for component-level 

analysis, it was not suitable for a detailed cycle-level study as it did not consider the effects of 

viscosity variation [77]. The Helmholtz rule of internal energy was better suited to consider the 

change of working fluid’s thermodynamic energy across multiple phases [329], defined as the 

sum of the internal energy as well as flow energy. Equation 5.1 stated the loss of Helmholtz 

free energy was equal to the maximum amount of theoretical work that the system could 

perform in an isochoric thermodynamic process [329].  

 

𝐹𝐹 = 𝑈𝑈 − 𝑇𝑇 𝑆𝑆 
 

      5.1 

Where, F is the Helmholtz free energy, U is the internal energy of the system, T is the absolute 

temperature of the environment and S is the entropy of the system.  

 
The industrial steam boiler used coal as the fuel for its combustion. The mass balance equation 

for the boiler’s air circuit, stated in equation 5.2, was used to determine the heat input in the 

ORC. 

 

𝑚𝑚𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠  +  𝑚𝑚𝑚𝑚𝑠𝑠ℎ = 𝑚𝑚𝑠𝑠𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟ℎ𝑜𝑜𝑟𝑟𝑃𝑃𝑟𝑟𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟 𝑚𝑚𝑜𝑜𝑟𝑟 + 𝑚𝑚𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 𝑚𝑚𝑜𝑜𝑟𝑟 + 𝑚𝑚𝑓𝑓𝑃𝑃𝑟𝑟𝑙𝑙 5.2 

 
Where, 𝑚𝑚𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟 𝑠𝑠𝑚𝑚𝑠𝑠 is the total flue gas discharged, 𝑚𝑚𝑚𝑚𝑠𝑠ℎ is the quantity of ash produced, 

𝑚𝑚𝑠𝑠𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟ℎ𝑜𝑜𝑟𝑟𝑃𝑃𝑟𝑟𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟 𝑚𝑚𝑜𝑜𝑟𝑟 is the ideal quantity of air required for stoichiometric combustion, 𝑚𝑚𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 𝑚𝑚𝑜𝑜𝑟𝑟 

is the additional air considered for superior combustion and 𝑚𝑚𝑓𝑓𝑃𝑃𝑟𝑟𝑙𝑙 is the quantity of coal.  

 

The heat loss fraction due to dry flue gases were modelled to calculate the fuel savings 

achieved by the APH, as shown in equation 5.3. 

𝐿𝐿𝐹𝐹𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠 = 𝑚𝑚𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟 𝑠𝑠𝑚𝑚𝑠𝑠  × 𝐶𝐶𝑃𝑃𝑓𝑓𝑎𝑎𝑜𝑜𝑙𝑙 𝑠𝑠𝑎𝑎𝑖𝑖  ×
�𝑇𝑇𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠 − 𝑇𝑇𝑓𝑓𝑟𝑟𝑟𝑟𝑑𝑑 𝑚𝑚𝑜𝑜𝑟𝑟�

𝐺𝐺𝐶𝐶𝐺𝐺𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙
 

      5.3 
 

 
Where, 𝐿𝐿𝐹𝐹𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠 is the dry flue gas loss fraction, 𝐶𝐶𝑃𝑃𝑓𝑓𝑎𝑎𝑜𝑜𝑙𝑙 𝑠𝑠𝑎𝑎𝑖𝑖 is the specific heat of the flue gas, 

𝑇𝑇𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟𝑠𝑠𝑚𝑚𝑠𝑠 is the exhaust temperature of the flue gases, 𝑇𝑇𝑓𝑓𝑟𝑟𝑟𝑟𝑑𝑑 𝑚𝑚𝑜𝑜𝑟𝑟 is temperature of the air provided 

to boiler after the APH and 𝐺𝐺𝐶𝐶𝐺𝐺𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙 is the gross calorific value of the coal. 

 

Utilising the first law of thermodynamics, the thermal-energy balance for the ORC is 

determined using equation 5.4. 

 
𝑄𝑄 =  ��𝑚𝑚𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟 𝑠𝑠𝑚𝑚𝑠𝑠 × ℎ𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝑖𝑖𝑖𝑖� −  ��𝑚𝑚𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟 𝑠𝑠𝑚𝑚𝑠𝑠 × ℎ𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜�  5.4 
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Where, 𝑄𝑄 is the total heat energy provided to the ORC system, ℎ𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝑖𝑖𝑖𝑖 is the specific enthalpy 

of the flue gas before the ORC heat exchangers and ℎ𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 is the specific enthalpy of the flue 

gas after the ORC heat exchangers.  

 

Based on the instantaneous power generation, the mean power, 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝐷𝐷𝑃𝑃𝑎𝑎𝑎𝑎𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏 is calculated 

by integrating the work done by the turbine 𝑊𝑊𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏 for the entire duration of the operation, shown 

in equation 5.5. 

 
The turbine efficiency ηTurb was determined using the Craig and Cox and Moustapha loss 

models as a function of the mass flow rate (ṁ), turbine speed (𝑁𝑁),  pressure ratio (𝑃𝑃𝑅𝑅), turbine 

inlet temperature(𝑇𝑇1), nozzle primary loss (𝐺𝐺𝑃𝑃𝑁𝑁), blade  primary loss (𝐺𝐺𝐵𝐵𝑁𝑁), nozzle secondary 

loss (𝐺𝐺𝑆𝑆𝑁𝑁) and blade secondary loss (𝐺𝐺𝑆𝑆𝐵𝐵), using equation 5.6. 

 

 

Quoilin et al. [85] previously reported pump power consumption lower than 10% of power 

generation for low temperature ORCs. Due to the insignificance of this value, the pump power 

requirement was ignored, and the cycle efficiency �Ƞ𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟� was determined using equation 5.7. 

Ƞ𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟 =  
𝑊𝑊𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏

∑�𝑚𝑚𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟 × ℎ𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝑖𝑖𝑖𝑖�
          5.7 

 

The heat transfer area of the heat exchangers (𝐴𝐴𝐻𝐻𝐻𝐻) for a given quantity of heat 

(𝑄𝑄𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑠𝑠𝑓𝑓𝑟𝑟𝑟𝑟) was determined using equation 5.8. 

𝐴𝐴𝐻𝐻𝐻𝐻 =
𝑄𝑄𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑠𝑠𝑓𝑓𝑟𝑟𝑟𝑟
𝑈𝑈0 𝐹𝐹 𝛥𝛥𝑇𝑇𝑙𝑙𝑃𝑃

            5.8 

 
Where, 𝛥𝛥𝑇𝑇𝑙𝑙𝑃𝑃 is the logarithmic mean temperature difference across the heat exchanger, 𝐹𝐹 is 

the logarithmic mean temperature difference (LMTD) correction factor, provided by Fettaka et 

al. [330]. 𝑈𝑈0 was the convective heat transfer coefficient, determined by considering the 

convective heat transfer resistances across both the fluids, as in equation 5.9. 

 

 

 

𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝐷𝐷𝑃𝑃𝑎𝑎𝑎𝑎𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏 =
∫ 𝑊𝑊𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏
𝑜𝑜=𝑃𝑃𝑚𝑚𝑎𝑎
𝑜𝑜=0

𝑎𝑎
    5.5 

ηTurb = 𝑓𝑓( ṁ,𝑁𝑁,𝑃𝑃𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏𝐼𝐼𝑜𝑜,𝑃𝑃𝑅𝑅 ,𝑇𝑇1,𝐺𝐺𝑃𝑃𝑁𝑁 ,𝐺𝐺𝑃𝑃𝐵𝐵 ,𝐺𝐺𝑆𝑆𝑁𝑁 ,𝐺𝐺𝑆𝑆𝐵𝐵) 
 

         5.6 
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1
𝑈𝑈0 

=  
1

ℎ𝑎𝑎𝑎𝑎𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟
+

1
ℎ𝑎𝑎𝑎𝑎𝑂𝑂𝑅𝑅𝐶𝐶

    5.9 

 
Where, ℎ𝑎𝑎𝑎𝑎𝑓𝑓𝑙𝑙𝑃𝑃𝑟𝑟 is the heat transfer resistance of flue gas and ℎ𝑎𝑎𝑎𝑎𝑂𝑂𝑅𝑅𝐶𝐶  is the heat transfer 

resistance of the ORC fluid.  

 

The log mean temperature difference for the economiser (∆𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟), evaporator 

�∆𝑇𝑇𝑟𝑟𝑟𝑟𝑚𝑚𝑃𝑃�,  superheater �∆𝑇𝑇𝑆𝑆𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟ℎ𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟�, recuperator (∆𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟) and APH (∆𝑇𝑇𝐴𝐴𝑃𝑃𝐻𝐻) were 

determined using equations 5.10–5.12. 

 

Where, 𝑇𝑇𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝐼𝐼𝑜𝑜 is the temperature of the flue gas entering the heat exchanger, 𝑇𝑇𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝑂𝑂𝑃𝑃𝑜𝑜 is the 

temperature of the flue gas leaving the heat exchanger, 𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝐼𝐼𝑜𝑜  is the temperature of the 

working fluid entering the heat exchanger, 𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝑂𝑂𝑃𝑃𝑜𝑜 is the temperature of the working fluid 

leaving the heat exchanger, 𝑇𝑇𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏𝑇𝑇𝑎𝑎ℎ is the temperature of the working fluid from the turbine to 

the recuperator, 𝑇𝑇𝐶𝐶𝑟𝑟𝑜𝑜𝑑𝑑𝐼𝐼𝑜𝑜 is the temperature of the working fluid from the recuperator to the 

condenser, 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑜𝑜 is the temperature of the working fluid from the pump to recuperator, 

𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝐼𝐼𝑜𝑜 is the temperature of the working fluid from the recuperator to the economiser, 

𝑇𝑇𝐴𝐴𝑜𝑜𝑟𝑟𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑𝐼𝐼𝑜𝑜 is the temperature of the feed air at ambient temperature, 𝑇𝑇𝐴𝐴𝑜𝑜𝑟𝑟𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑𝑂𝑂𝑃𝑃𝑜𝑜 is the 

temperature of the feed air after APH recovery, 𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝐴𝐴𝑃𝑃𝐻𝐻𝐼𝐼𝑜𝑜 is the temperature of the working 

fluid from the turbine to APH and  𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝐴𝐴𝑃𝑃𝐻𝐻𝑂𝑂𝑃𝑃𝑜𝑜 is the temperature of the working fluid from the 

APH to the condenser. 

 

 The effectiveness (ɛ) and energy balance for the recuperator were determined using 

equations 5.13 and 5.14, where, ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝐼𝐼𝑜𝑜 is the specific enthalpy of the working fluid from the 

recuperator to the economiser, ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑜𝑜 is the specific enthalpy of the working fluid from the 

pump to the recuperator, ℎ𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏𝑇𝑇𝑎𝑎ℎ is the specific enthalpy of the working fluid from the turbine 

to the recuperator and ℎ𝑟𝑟𝑟𝑟𝑜𝑜𝑑𝑑𝐼𝐼𝑜𝑜 is the specific enthalpy of the working fluid from the recuperator 

to the condenser. 

∆𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟 ,∆𝑇𝑇𝑟𝑟𝑟𝑟𝑚𝑚𝑃𝑃 ,∆𝑇𝑇𝑆𝑆𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟ℎ𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟 =
�(𝑇𝑇𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝐼𝐼𝑜𝑜 − 𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝑂𝑂𝑃𝑃𝑜𝑜) − (𝑇𝑇𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝑂𝑂𝑃𝑃𝑜𝑜 − 𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝐼𝐼𝑜𝑜 )�

ln �𝑇𝑇𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝐼𝐼𝑜𝑜 − 𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝑂𝑂𝑃𝑃𝑜𝑜
𝑇𝑇𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝑂𝑂𝑃𝑃𝑜𝑜 − 𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝐼𝐼𝑜𝑜

�
 5.10 

∆𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟 =
�(𝑇𝑇𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏𝑇𝑇𝑎𝑎ℎ − 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝐼𝐼𝑜𝑜) − �𝑇𝑇𝐶𝐶𝑟𝑟𝑜𝑜𝑑𝑑𝐼𝐼𝑜𝑜 − 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑜𝑜��

ln �𝑇𝑇𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏𝑇𝑇𝑎𝑎ℎ − 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝐼𝐼𝑜𝑜
𝑇𝑇𝐶𝐶𝑟𝑟𝑜𝑜𝑑𝑑𝐼𝐼𝑜𝑜 − 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑜𝑜

�
 5.11 

∆𝑇𝑇𝐴𝐴𝑃𝑃𝐻𝐻 =
�(𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝐴𝐴𝑃𝑃𝐻𝐻𝐼𝐼𝑜𝑜 − 𝑇𝑇𝐴𝐴𝑜𝑜𝑟𝑟𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑𝑂𝑂𝑃𝑃𝑜𝑜) − (𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝐴𝐴𝑃𝑃𝐻𝐻𝑂𝑂𝑃𝑃𝑜𝑜 − 𝑇𝑇𝐴𝐴𝑜𝑜𝑟𝑟𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑𝐼𝐼𝑜𝑜)�

ln �𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝐴𝐴𝑃𝑃𝐻𝐻𝐼𝐼𝑜𝑜 − 𝑇𝑇𝐴𝐴𝑜𝑜𝑟𝑟𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑𝑂𝑂𝑃𝑃𝑜𝑜
𝑇𝑇𝑂𝑂𝑅𝑅𝐶𝐶𝐴𝐴𝑃𝑃𝐻𝐻𝑂𝑂𝑃𝑃𝑜𝑜 − 𝑇𝑇𝐴𝐴𝑜𝑜𝑟𝑟𝐹𝐹𝑟𝑟𝑟𝑟𝑑𝑑𝐼𝐼𝑜𝑜

�
 5.12 
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ɛ =
ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝐼𝐼𝑜𝑜 − ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑜𝑜
ℎ𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏𝑇𝑇𝑎𝑎ℎ − ℎ𝑟𝑟𝑟𝑟𝑜𝑜𝑑𝑑𝐼𝐼𝑜𝑜

 

 
5.13 

𝑚𝑚� ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝐼𝐼𝑜𝑜 − ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑜𝑜� =  m( ℎ𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏𝑇𝑇𝑎𝑎ℎ − ℎ𝑟𝑟𝑟𝑟𝑜𝑜𝑑𝑑𝐼𝐼𝑜𝑜) 5.14 

 
The mass and energy balance equation for the regenerator followed was stated in equations 

5.15 and 5.16, respectively, where,  𝑀𝑀𝐹𝐹𝐶𝐶𝑏𝑏𝑙𝑙𝑟𝑟𝑟𝑟𝑑𝑑 is the fraction of mass used for regeneration, 

𝑚𝑚𝑏𝑏𝑙𝑙𝑟𝑟𝑟𝑟𝑑𝑑 is the mass of bleed fluid, ℎ𝑏𝑏𝑙𝑙𝑟𝑟𝑟𝑟𝑑𝑑 is the specific enthalpy of bleed fluid, 𝑚𝑚𝐶𝐶𝑇𝑇𝑃𝑃𝐷𝐷 is the 

mass of condensate extraction pump fluid discharge, ℎ𝐶𝐶𝑇𝑇𝑃𝑃𝐷𝐷 is the specific enthalpy of 

condensate extraction pump fluid discharge, ℎ𝐿𝐿𝑃𝑃𝑇𝑇𝑂𝑂𝑃𝑃𝑜𝑜 is the specific enthalpy of the low 

pressure turbine discharge, 𝑚𝑚𝑅𝑅𝐺𝐺𝑂𝑂𝑃𝑃𝑜𝑜 is the mass of the regenerator discharge and ℎ𝑅𝑅𝐺𝐺𝑂𝑂𝑃𝑃𝑜𝑜 is the 

specific enthalpy of the regenerator discharge. 

 

𝑀𝑀𝐹𝐹𝐶𝐶𝑏𝑏𝑙𝑙𝑟𝑟𝑟𝑟𝑑𝑑 =
ℎ𝑅𝑅𝐺𝐺𝑂𝑂𝑃𝑃𝑜𝑜 −  ℎ𝐶𝐶𝑇𝑇𝑃𝑃𝐷𝐷
ℎ𝐿𝐿𝑃𝑃𝑇𝑇𝑂𝑂𝑃𝑃𝑜𝑜 − ℎ𝑏𝑏𝑙𝑙𝑟𝑟𝑟𝑟𝑑𝑑

 5.15 
 

𝑚𝑚𝑏𝑏𝑙𝑙𝑟𝑟𝑟𝑟𝑑𝑑ℎ𝑏𝑏𝑙𝑙𝑟𝑟𝑟𝑟𝑑𝑑 + 𝑚𝑚𝐶𝐶𝑇𝑇𝑃𝑃𝐷𝐷ℎ𝐶𝐶𝑇𝑇𝑃𝑃𝐷𝐷 = 𝑚𝑚𝑅𝑅𝐺𝐺𝑂𝑂𝑃𝑃𝑜𝑜ℎ𝑅𝑅𝐺𝐺𝑂𝑂𝑃𝑃𝑜𝑜 
 5.16 

 
The mass flow rate across the regenerator orifice was calculated by equation 5.17, where k is 

the pressure drop coefficient, Ψ is the discharge coefficient and 𝑘𝑘𝑑𝑑𝑃𝑃 is the pressure drop, 

calculated from the Reynolds number. 

ṁo𝑟𝑟𝑜𝑜𝑓𝑓𝑜𝑜𝑟𝑟𝑟𝑟  =
1
√𝑘𝑘 

× 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑜𝑜𝑓𝑓𝑜𝑜𝑟𝑟𝑟𝑟 × Ψ × �
2 ×  𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑠𝑠𝑜𝑜𝑟𝑟𝑟𝑟𝑚𝑚𝑃𝑃  × 𝑃𝑃𝑎𝑎𝑑𝑑𝑟𝑟𝑤𝑤𝑜𝑜𝑠𝑠𝑜𝑜𝑟𝑟𝑟𝑟𝑚𝑚𝑃𝑃

𝑘𝑘𝑑𝑑𝑃𝑃
   5.17 

 
Equation 5.18 determines the heat rejection from the condenser, Where, 𝑄𝑄𝑟𝑟𝑟𝑟𝑜𝑜𝑑𝑑 is the heat 

rejected by the condenser, ℎ𝐶𝐶𝑟𝑟𝑜𝑜𝑑𝑑𝐼𝐼𝑜𝑜 is the enthalpy of the working fluid entering the condenser, 

ℎ𝐶𝐶𝑟𝑟𝑜𝑜𝑑𝑑𝑂𝑂𝑃𝑃𝑜𝑜 is the enthalpy of the working fluid leaving the condenser, 𝑈𝑈0 is the heat transfer 

coefficient for the condenser tubes, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑜𝑜𝑑𝑑𝑟𝑟𝑜𝑜𝑠𝑠𝑟𝑟𝑟𝑟 is the total heat transfer area for the 

condenser, 𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑘𝑘 is the heat sink temperature and 𝑇𝑇𝑓𝑓𝑙𝑙𝑃𝑃𝑜𝑜𝑑𝑑 is the temperature of the working fluid 

entering the condenser. 

 
𝑄𝑄𝑟𝑟𝑟𝑟𝑜𝑜𝑑𝑑 = 𝑚𝑚(ℎ𝐶𝐶𝑟𝑟𝑜𝑜𝑑𝑑𝐼𝐼𝑜𝑜 − ℎ𝐶𝐶𝑟𝑟𝑜𝑜𝑑𝑑𝑂𝑂𝑃𝑃𝑜𝑜) = 𝑈𝑈0 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑜𝑜𝑑𝑑𝑟𝑟𝑜𝑜𝑠𝑠𝑟𝑟𝑟𝑟 × �𝑇𝑇𝑠𝑠𝑜𝑜𝑜𝑜𝑘𝑘 − 𝑇𝑇𝑓𝑓𝑙𝑙𝑃𝑃𝑜𝑜𝑑𝑑� 

 
   5.18 
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5.2.3 NLPQL optimisation 
 
The NLPQL Algorithm search matrix is defined in equation 5.19. [267] 

𝑂𝑂𝑏𝑏𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝑎𝑎 𝑓𝑓𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 = min 𝑓𝑓(𝑥𝑥) 
 

 
𝑠𝑠𝑗𝑗 = 0, 𝑗𝑗 = 1, … ,𝑚𝑚𝑟𝑟 

 
𝑥𝑥𝑥𝑥𝐶𝐶𝑜𝑜 ∶ 𝑠𝑠𝑗𝑗(𝑥𝑥) ≥ 0, 𝑗𝑗 = 𝑚𝑚𝑟𝑟 + 1, … . ,𝑚𝑚 

 
𝑥𝑥_𝑚𝑚𝑎𝑎𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑥𝑥_max    

   5.19  

Where, 𝑥𝑥 is the non-dimensional parameter vector to be optimised and 𝑓𝑓(𝑥𝑥) is the objective 

function to be minimised. The constraints of the input parameters were provided by 𝑠𝑠𝑗𝑗(𝑥𝑥), and 

𝑥𝑥𝑃𝑃𝑜𝑜𝑜𝑜 and 𝑥𝑥𝑃𝑃𝑚𝑚𝑎𝑎 are the input constraints applied for the individual components.  

 

Equation 5.20 is the optimisation’s objective function, constrained by waste heat source, 

turbine’s isentropic efficiency, heat transfer coefficients, working fluid thermophysical 

properties, pump displacement, boiler heat exchange area, turbine displacement, condenser 

heat exchange area. 

𝑂𝑂𝑏𝑏𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝑎𝑎 ∶ 𝑀𝑀𝑎𝑎𝑥𝑥 (𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝐷𝐷𝑃𝑃𝑎𝑎𝑎𝑎)        5.20 

Where, mean power is a function of cycle configuration, fluid enthalpy, fluid superheat, 

degree of recuperation, degree of regeneration, thermal mass and APH heat transfer. 

 
5.2.4 Materials and components 
 
5.2.4.1 Working fluid 
 
The suitability of working fluids was investigated in the second and fourth chapters. 

Accordingly, R245fa was selected, owing to its high exergetic efficiency, low vapour expansion 

ratio and work output for heat source temperature greater than 160⁰C, which was mainly due 

to the optimal evaporator pressure achieved for the range of temperatures considered [38, 53, 

158]. Additionally, the low value of vapour expansion ratio led to minimal number of stages 

(i.e., single stage) to avoid supersonic flow-induced turbine flow path losses. Besides, it was 

widely studied and has proven popular for commercial ORC plants [58, 68, 129, 137, 215, 233, 

331-334]. Thermodynamically, the fluid was suitable for ORC cycles exploiting low- to medium-

grade heat [58] [129, 132, 215, 296]. R245fa exhibits a dry working fluid slope, which eliminates 

the chances of moisture build-up at the turbine exhaust. This provided an increase in superheat 

across the turbine, even in the case where the turbine received a saturated working fluid at its 

inlet, which improved the reliability of a turbine operating with a fluctuating waste heat source.  

As this study involved superheating the working fluid, it was confirmed that the autoignition 

temperature of 412⁰C [130] and thermal stability limit of 250⁰C were above the expected 
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working fluid temperature [60]. An above atmospheric condensing pressure for this fluid at 

typical ambient temperatures eliminated the requirement of a vacuum system and ejector 

assembly, greatly simplifying the pressure vessel, as well as turbomachinery shaft sealing. 

The critical pressure of 36.4 kg/cm2 ensured the operation was limited to the subcritical regime 

[42]. The relatively high density and low saturation pressure of the fluid align with the actual 

operating conditions Ecologically, R 245fa is non-toxic, and has zero ozone-depleting and 

acceptable global-warming indices of 0 and 930, respectively, in alignment with  the Montreal 

Protocol of 1987 [40, 162].  

 

5.2.4.2 Feed tank 
 
In the analysed ORC, the feed tank was placed between the condenser and feed pump at a 

height of 10 m, to maintain a net pressure suction head (NPSH) by gravity feed at the pump 

inlet. This reduces the possibility of cavitation [139], while avoiding the requirement of an 

additional condensate extraction pump. Non-condensable gases accumulated near the 

condenser, reducing its ability to absorb heat [309]. The feed tank was maintained in the liquid 

phase at the atmospheric pressure, which allowed for isolation from the rest of the system and 

the venting of non-condensable gases of R245fa [86]. 

 
5.2.4.3 Feed pump 
 
The chosen centrifugal feed pump had a nominal speed of 1500 rpm and a displacement of 

0.004 m3. Figure 5-15 shows the variation in pump displacement and the corresponding 

change in power consumption and mean boiler inlet pressure. It was observed that peak boiler 

pressure was maintained with displacement between 80 and 120 cm3, where 80 cm3 was 

selected, due to its corresponding lower power consumption. Beyond a displacement of 120 

cm3, the additional working fluid pumped could not be evaporated by the ORC boiler, which, 

in turn, resulted in a drop in the working pressure of the system, also noted in Figure 5-15. 

Based on this, 120 cm3 was restricted as the maximum value for the operating conditions. 

 
Figure 5-15: Variations in pump outlet pressure with increasing displacement 
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5.2.4.4 Boiler 
 
ORCs permitted the use of once-through evaporators, without any requirement of steam 

drums, moisture separators and fluid recirculation. This was possible as ORC fluids with a high 

molecular mass had limited variations in a specific volume of the working fluid in the liquid and 

vapour phases [86]. Aluminium was chosen as the heat exchanger material due to its 

favourable heat transfer properties in both steady and dynamic operations. Conduction and 

convection heat transfer from the steam boiler flue gas to the ORC fluid was considered. 

Hollow channels with flue gas on the outside and working fluid on the inside were considered 

for the counterflow heat exchanger, as shown in Figure 5-16. The use of an intermediary fluid 

such as thermal oil was not considered to minimise the 2nd law deficiencies due to an additional 

set of pinch points, which are increasingly relevant for a low-medium grade heat source. 

 

To optimise the pinch point, the counterflow heat exchanger was divided into three sections—

an economiser, an evaporator and a superheater, as shown in Figure 5-16. Un-finned tubes 

were employed to avoid the fins coagulating ash particles and degrading the heat transfer area 

effectiveness [310]. The heat exchangers were modelled using the logarithmic mean 

temperature difference (LMTD) method for counterflow heat exchangers [175]. The sizing of 

the heat transfer area was deduced by noting the benefit gained, observed by the parametric 

study, shown in Figure 5-17. 

 

 
 

Figure 5-16: Proposed integration of an ORC boiler with an existing boiler flue gas circuit 
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Figure 5-17: Variations in power output with increasing ORC boiler heating surface area 

 

The total heating surface area considered was 550 m2, divided as 100 m2, 300 m2 and 150 m2 

for the economiser, evaporator and superheater, respectively. Given the transient operation of 

the cycle, employing a relatively larger evaporator ensured vaporisation did not occur in the 

economiser and the superheater received the working fluid in a dry condition. It was critical to 

avoid pressure variations in the flue gas path of the steam boiler, to avoid changes to its 

induced and forced draft fan system, subsequently leading to an increase in capital 

expenditure and power consumption. Accordingly, the Reynolds number of the flue gas flow 

was maintained below 3000, operating within the Laminar region. 

 

It was important to size the waste heat exchangers to maintain the flue gas exhaust 

temperature above the acid dew point. Reducing the temperature of flue gas to condensation 

levels led to the saturation of the flue gas with sulphur trioxide (SO3) and carbon dioxide (CO2) 

produced by the combustion of coal, resulting in sulphuric and carbonic acid formation with a 

pH between 3.5 and 5.0, which, in turn, led to the corrosion of and damage to the aluminium 

heat exchangers and the low carbon steel flue gas ducts and stack employed in the integrated 

ORC-steam system [88]. The acid dew point temperature depended on the saturation 

temperature of the vapour, which varied depending on the composition of the flue gas. 

Therefore, typical recuperated steam boilers operate with flue gas temperatures between 

180⁰C and 200⁰C [68, 280, 311, 312]. Considering the acid dew point, it was decided to 

maintain the minimum flue gas temperature at 90⁰C higher than the mean local ambient 

temperature [311]. Given the global average annual temperature 13.9⁰C, flue gas 

temperatures between 104⁰C and 118⁰C were maintained.  
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For the ORC boiler, the heat exchangers were designed with a hydraulic diameter of 20 mm 

along with an overall cross-sectional area of 5024 mm2, to maintain the Reynolds number 

above 14000. This ensured the working fluid operated within the turbulent flow regime of 

advanced convective heat transfer performance between the tube wall and working fluid 

[313]. The results obtained an overall heat transfer coefficients 𝑈𝑈0  of 28–37.5 W/m2/⁰C  for 

the heat exchangers, in line with previous studies [21].  

 

The variations observed were a function of the heat source temperatures, flue gas mass flow 

rates and working fluid enthalpy. The Mac Adams correlation was used to model the pressure 

drop of the working fluid across the boiler, as it was widely validated to determine the pressure 

drop in case of the two-phase boiling flow [339, 340]. For the evaporation phase, Verein 

Deutscher Ingenieure (VDI) atlas for horizontal tubes correlation was used as it had been 

validated for modelling two-phase modern refrigerant flows [341, 342]. For temperature rise 

across a single phase, the Nusselt number correlation provided by the Gnielinski modification 

to the original Petukhov–Popov equation for single phase heat transfer across turbulent flow 

in tubes was used, due to its wide acceptance of Reynolds number values above 4000, as 

stated in equation 5.21  [343-345], where 𝑓𝑓𝐷𝐷𝑓𝑓𝑓𝑓 is the Darcy friction factor, described by 

Petukhov and shown in equation 5.22 [346]. 

 

𝑁𝑁𝐺𝐺 =
�
𝑓𝑓𝐷𝐷𝑓𝑓𝑓𝑓

8 � × (𝐶𝐶𝑎𝑎 − 1000) × 𝑃𝑃𝑎𝑎

1.00 + 12.7��
𝑓𝑓𝐷𝐷𝑓𝑓𝑓𝑓

8 � × 〖(𝑃𝑃𝑎𝑎〗
2
3 − 1�

 
              5.21 
 
 
 
 

𝑓𝑓𝐷𝐷𝑓𝑓𝑓𝑓 = (0.79 × ln(𝐶𝐶𝑎𝑎𝐷𝐷) − 1.64)−2               5.22 
 

  

5.2.4.5 Turbine 
 
The Craig and Cox loss model [192] was incorporated for modelling design point turbine 

efficiency using turbine speed, pressure ratio, inlet pressure and inlet temperature. Off-

design point losses were calculated using Moustapha et al.’s incidence loss prediction 

method [215]. Based on these models, efficiency contours for multiple values of turbine inlet 

temperature were developed and interpolated. Cubic interpolation between data points was 

used to develop the contours. Extrapolation was not considered to restrict the study to 

experimental proven data, as shown in Figure 5-18. The contours emphasised the increased 

turbine efficiency observed for higher pressure ratios and higher inlet temperature 

(superheat), in line with the findings of the previous chapter. To maintain these parameters, it 

was essential to minimise pinch point losses and investigate novel cycle configurations such 
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as those including a thermal storage medium, which could be used to maintain turbine 

isentropic efficiency during periods with lower heat source temperature. Noting the enthalpy 

drop across the turbine was below 40 kJ/kg at steady state conditions, an operational speed 

of 5000 rpm and mean dimeter of 0.55 m was considered along with a single row or 

stationary and moving blades were considered, as per a Rateau wheel configuration, which 

maintained 𝑈𝑈
𝐶𝐶2

 ratios within the optimum band of 0.4 to 0.5[314]. Considering the 

compounding employed by regeneration cycles, reducing the operating speed to 3000 RPM 

was considered to maintain efficient 𝑈𝑈
𝐶𝐶2

 ratios.  

 

A parametric study conducted to decide the turbine displacement noted the highest power 

output with a turbine displacement of 0.00013 m3 per cycle, corresponding to an inlet 

volumetric flow rate 0.0108 m3/sec and mass flow rate of 1.32 kg/sec. This has been 

depicted in Figure 5-19. 
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(a) 

 

 

 
 

(b) 
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Figure 5-18:Turbine efficiency contours for pressure ratio and turbine inlet temperature 

plotted for turbine inlet pressure of (a)16 Bar, (b) 20 Bar and (c) 24 Bar 

 
 

 
 

Figure 5-19: Variations in turbine power output with increasing turbine displacement 
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5.2.4.6 Condenser  
 
A heat sink temperature of 30⁰C and minimum pinch point between the heat sink and the ORC 

working fluid of 5⁰C were considered. Condenser pressure between 2.86 and 3.02 kg/cm2 was 

maintained to avoid air ingress into the condenser and pump suction seals, in line with previous 

commercial efforts [86]. Aluminium was chosen as the heat transfer tube material [315]. Similar 

to other components, a proportional study for the condenser heat exchanger sizing was 

conducted. The size of the condenser was increased to 180 m2, beyond which the benefit in 

power output were not proportional to the increase in the heat exchange area, as shown in 

Figure 5-20. The heat rejection undertaken by the condenser was a significant contributor to a 

conventional Rankine cycle’s electrical power requirement, due to cooling water circulation 

pumps, condensate extraction pumps and cooling tower draft fans [316]. Ecologically, 

condenser heat rejection resulted in a significant water evaporation loss [317]. In addition, 

reduced condenser heat load would lead to smaller equipment sizing, hence lower capital 

expenditure. 

 

 
Figure 5-20: Variations in power output with condenser heat transfer area 

 
5.2.4.7 Recuperator 
 
The recuperator operated as a pre-cooler for worked fluid before the condenser, which 

simultaneously pre-heats the working fluid before the economiser. The LMTD approach was 

used to model the counterflow heat exchanger. Based on a proportional study, as shown in 

Figure 5-21, increased power output was observed in a heat transfer area of up to 785 m2. 
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Figure 5-21: Variations in power output with recuperator heat transfer area 

5.2.4.8 Thermal mass 
 
Cast iron (sensible heat storage) or customised phase change material (latent heat storage) 

were initially considered as a 10000 kg thermal mass heat storage medium. Whereas the use 

of cast iron for thermal energy storage has previously been validated for gas turbine plants, 

phase change materials have garnered significant interest in recent years due to their superior 

temperature control and higher thermal efficiency [318]. Considering the transient heat source 

temperature would vary across the year, sensible heat storage material will provide more 

flexibility in harnessing high-grade heat from the system. Phase change materials are better 

suited to heat sources with lower variations in heat storage, as they cannot store thermal 

energy after the mass is converted to liquid state [319]. The initial temperature for the thermal 

masses to maintain the total heat input to the system were 88.70⁰C, 122.86⁰C and 138.18⁰C 

for the economiser, evaporator and superheater, respectively. 

 
5.2.4.9 Regenerator 
 
The degree of regeneration ranged between 22.0% and 26.9%, beyond which evaporation of 

the working fluid in the separation tank could occurred. This limitation was overcome by using 

a fixed size orifice with a cross-sectional area of 100mm2, along with a hydraulic diameter of 8 

mm, placed across the intermediate pressure line. This led to an average mass flow rate of 

0.21 kg/sec across the orifice and maintained the intermediate pressure between 10.05 and 

11.6 kg/cm2 at the ORC feed heater.  

 
5.2.4.10  Air preheater 
 
To achieve the minimum pinch point, the air preheater was designed as a series of five 

independent counterflow heat exchangers that utilised ambient air, as summarised in Figure 

5-22. The air circuit was designed with a Reynolds number varying between 2100 and 3100, 

to minimise the flue gas pressure drop; Prandtl numbers between 0.7124 and 0.7126 were 

observed. The working fluid was maintained at a Reynolds number between 40000 and 90000, 

operating purely in the turbulent regime, which in turn enabled a heat transfer coefficient 
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between 24 W/ms2/⁰C and 33 W/ms2/⁰C. The Prandtl numbers for the flue gas observed 

remained constant 0.7124 and 0.7126, pointing to good heat transfer by conduction. 

 

 
 

Figure 5-22 Flue gas schematic with integration of ORC and the air preheater 
 

5.2.5 Optimisation 
 
As the study was based on waste-heat capturing, maximising power output was defined as the 

objective function. The sizing of the pump, boiler, turbine and condenser were globally 

optimised by benchmarking a mathematical technique-based optimisation algorithm known as 

NLPQL, against the well-established genetic algorithm between the values mentioned in Table 

5.2. In the case of the NLPQL Algorithm, the initialization values were decided based on a 

preliminary parametric study. 

 

Table 5.2: Variation of core component sizing provided to optimiser 

S. 
No. 

Component Parameter Minimum 
Value 

Initial 
Value 

Maximum 
Value 

Unit 

1 Pump Displacement 64 80 96 cm3 

2 Boiler Heat Transfer 

Area 

80 100 120 m2 

3 Turbine Displacement 104 130 156 cm3 

4 Condenser Heat Transfer 

Area 

144 180 216 m2 

5 Recuperator Heat Transfer 

Area 

150 120 180 m2 
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5.2.5.1 Non-linear programming by quadratic Lagrangian (NLPQL) parameters 
 
NLPQL algorithm is a sequential programming method that solves problems with a continuous 

differentiable objective function by using quadratic approximation of the Lagrangian function 

and a linearisation of the constraints [255, 258]. The optimiser was designed considering the 

Karush Kuhn Tucker (KKT) criterion, where a first order derivative test was used to solve non-

linear programming equations [352, 353]. Besides, KKT criterion allowed the use of inequality 

constraints [354]. In this optimisation study, the fitness function to be minimised is the inverse 

of the mean power output. The relative gradient steps were defined by the finite difference 

method, stated for two parameters as in equation 5.23, where δ  is the relative gradient step 

size. Initial runs were performed using x = x0 and y = y0 values to determine the algorithm’s 

starting point f(x0, y0). Incremental steps of size δ were added to compute the combination of 

parameters f(x0 + δx0, y0) and f(x0, y0 + δy0) for each iteration. Parameters for the NLPQL 

optimizer are furnished in Table 5.3. 

 

 
 

𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑(𝑓𝑓)(𝑥𝑥0,𝑙𝑙0) =

⎝

⎜
⎛

δf
δ𝑥𝑥(𝑥𝑥0,𝑙𝑙0)

δf
δy(𝑥𝑥0,𝑙𝑙0)⎠

⎟
⎞

=  

⎝

⎜
⎛
𝑓𝑓(𝑥𝑥0,𝑙𝑙0) − 𝑓𝑓(𝑥𝑥0 + δ𝑥𝑥0, 𝑙𝑙0)

 (δ𝑥𝑥0)
𝑓𝑓(𝑥𝑥0,𝑙𝑙0) − 𝑓𝑓(𝑥𝑥0,𝑙𝑙0 + δ𝑙𝑙0)

 (δ𝑙𝑙0) ⎠

⎟
⎞

 

 

       5.23 

 
 

Table 5.3:Setup parameters for the NLPQL algorithm 

 
 
 
 
 
 
 
 
 
 
 
5.2.5.2 Genetic algorithm parameters 
 
The genetic algorithm (GA) is a well-known global optimisation approach and is used as a 

benchmark for NLPQL. The randomly generated initial population size was maintained as 

greater than 4.5 times the number of independent variables, as recommended by previous 

studies [243]. The reproductive ratio of 80% was within, the 50% to 85% bounds suggested by 

previous researchers [320]. An iterative process noted that a minimum of ten generations were 

required to obtain meaningful results. High values of mutation probability (15%) and mutation 

amplitude (0.2) allowed for greater design exploration diversity, created space for gradual 

Parameter Value 

Relative gradient step size for finite difference 0.0001 

Desired final accuracy 0.00001 

Number of iterations Not limited 
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variations in each characteristic for subsequent generations and reduced chances of 

convergence towards the local optimum [355]. The total number of runs is defined in equation 

5.24. A summary of the GA setup parameters is shown in Table 5.4. 

𝑁𝑁𝐷𝐷. 𝐷𝐷𝑓𝑓 𝑎𝑎𝐺𝐺𝑎𝑎𝑘𝑘 = 

𝑃𝑃𝐷𝐷𝑝𝑝𝐺𝐺𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑆𝑆𝑎𝑎𝑚𝑚𝑎𝑎 +
𝑃𝑃𝐷𝐷𝑝𝑝𝐺𝐺𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝑆𝑆𝑎𝑎𝑚𝑚𝑎𝑎 × 𝐶𝐶𝑎𝑎𝑝𝑝𝑎𝑎𝐷𝐷𝑑𝑑𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷 × (𝑁𝑁𝐷𝐷. 𝐷𝐷𝑓𝑓 𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝑎𝑎𝑘𝑘 − 1)

100
 

5.24 

 
 

Table 5.4: Optimisation setting of GA 

Parameter Value 
Population size 50 
Number of generations  12 
Reproduction ratio 80% 

Mutation probability  15% 

Mutation amplitude 0.2 
 
 
5.3 Validation 
 
The predicted baseline cycle performance was compared to the experimental/numerical data 

published by Maraver et al.’s study, which optimised subcritical and transcritical ORCs 

constrained by technical parameters [280]. Maraver et al. considered a conventional ORC 

cycle with R245fa working fluid, operating in steady state conditions, without any heat 

recovery. A heat source temperature slope from 170⁰C to 90⁰C was considered, as in Figure 

5-23. 

 

The gradient for the heat sink temperature rise was maintained between 10⁰C and 20⁰C, along 

with a condenser temperature of 35⁰C, shown in Figure 5-23. A minimum pinch point of 10⁰C 

was maintained at the heat exchangers (boiler and condenser). Subcooling of the condenser 

was maintained at 5⁰C. A minimum superheating of 5⁰C was observed, which led to working 

fluid temperature of 115⁰C at an evaporator pressure of 14.6 kg/cm2. Maraver et al. stated the 

cycle’s Carnot efficiency at 34.5%. Variable turbine efficiency was considered using previously 

defined correlations for size parameter and volume ratio provided by Macchi and Perdichizzi 

for axial flow ORC turbines [211]. Table 5.5 shows the data yielded from the optimisation study 

validation. 
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Figure 5-23: T-s diagram of the optimal ORC, validated against the study by Maraver et al. 

[280] 

 
Table 5.5: Results of conventional ORC validation comparison 

Parameter Maraver et al. Model Deviation in % 
Cycle efficiency 10.43 10.28 1.43% 

Turbine exhaust temperature 73.9 73.5 0.54% 

Turbine exhaust specific entropy 1830 1881 2.78% 

 
 

5.4 Results and discussion 
 
5.4.1 Parametric cycle evaluation 
 
5.4.1.1 Pump and boiler sizing 
 
The feed pump maintained the mean working pressure of the boiler at 23 kg/cm2 for the simple 

cycle configuration. Increasing the pressure further beyond this value increases the wetness 

of fluid entering the turbine during low thermal energy input, which subsequently leads to 

mechanical damage due to erosion, as well as working fluid leakage across the turbine’s shaft 

seals [321]. Thermodynamically, wet fluid entering a turbine lowers the turbine isentropic 

efficiency [192].  

Cycles that operated with a reduced working pressure exhibited an increase in the degree of 

superheat at the turbine inlet, which led to a subsequent increase of superheat at the turbine 

exhaust, hence increasing the heat load in the condenser or requiring an additional heat 

recovery device. As the continuous operation of the steam boiler was paramount for the textile 

plant, the ORC heat exchangers were sized to ensure the flue gas outlet temperatures 

exceeded 104⁰C, the acid dew point temperature, as shown in Figure 5-24. 
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Figure 5-24: Flue gas temperatures observed before and after the use of the ORC boiler 

 
 
5.4.1.2 Power output 
 

 
(a) 

 
Cycle name Configuration Cycle name Configuration 
C-0 Conventional C-5 Recuperative & Thermal mass 
C-1 Thermal mass C-6 Regenerative & APH 
C-2 Recuperative  C-7 Regenerative 
C-3 APH C-8 Regenerative & Recuperative 
C-4 Recuperative & APH C-9 Regenerative & Thermal mass 
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(b) 

 
Cycle name Configuration Cycle name Configuration 
C-0 Conventional C-5 Recuperative & Thermal mass 
C-1 Thermal mass C-6 Regenerative & APH 
C-2 Recuperative  C-7 Regenerative 
C-3 APH C-8 Regenerative & Recuperative 
C-4 Recuperative & APH C-9 Regenerative & Thermal mass 

 
Figure 5-25: (a) Absolute and (b) nominal power output achieved by various parametrically 

optimised ORCs 

 
Figure 5-25 shows the absolute and normalised power output of the parametrically optimised 

cycles along with that of the basic ORC. It can be observed that the use of recuperation 

demonstrated promising results. It was observed that increasing the recuperation enhanced 

the overall cycle efficiency from 5.16% to 5.97% and power output from 49.97 kW to 57.50 kW. 

Although the use of the thermal mass reduced the system’s nominal power output by 1.1%, 

combining it with a high degree of recuperation provided the second-best results of any cycle, 

with 14.1% enhancement of the system’s nominal power output. Incorporating the regeneration 

showed an adverse impact on power output in agreement with Xi et al. [70]. Recuperative 

cycles perform indirect heat transfer, wherein the entire working fluid passed through the 

turbine. In contrast, regenerative cycles used direct heat transfer, wherein a part of the 

intermediary working fluid was used for preheating and was not available for the low-pressure 

turbine, thereby reducing its mass flow rate and overall power output; this conclusion was in 

line with previous findings by Feng et al. [322]. 
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5.4.1.3 Turbine efficiency 
 

 

 
Figure 5-26: Normalised variation in turbine efficiency 

 

Figure 5-26 shows the variation in normalized mean turbine isentropic efficiency for the 

parametrically optimised ORC configurations. Turbine isentropic efficiency for the conventional 

ORC was observed as 85.62%. Variations of up to 7% were observed across the investigated 

cycle configurations, which fosters the importance of considering turbine efficiency for cyclic-

level analysis. Regeneration-based cycles demonstrated the lowest isentropic efficiency of 

84.5%, in line with the findings by Mago et al. [225]. As the turbine for the regenerative cycle 

was compounded across two stages, the mean isentropic efficiency for both the turbines was 

considered. The low isentropic efficiency for the regenerative cycle stemmed from the low 
𝑈𝑈
𝐶𝐶2

 ratios in the turbine stage, despite the reduced speed considered for such a configuration. 

Additionally, the reduced mass flow rate to the LP turbine led to an increase in the fraction of 

secondary losses. The use of a smaller diameter turbine could address these issues, as it 

leads to a lower blade pitch velocity (𝑈𝑈) and reduced secondary losses due to the increased 

blade heights. In contrast, cycles employing recuperation demonstrated the highest isentropic 
efficiencies, up to 91%. As observed in the turbine performance mapping (Figure 5-18), the 

high degree of superheat was observed as a factor contributing to this improved turbine 

isentropic efficiency. 
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5.4.1.4 Degree of superheat 
 
The study of the normalised superheat comparison at the turbine inlet and outlet are shown in 

Figure 5-27 and Figure 5-28, respectively. The absolute superheat at the turbine inlet was 

23.48°C for the conventional cycle and varied between 13.27°C and 31.1°C for other 

configurations. The absolute superheat at the turbine outlet was 47.76°C for the conventional 

cycle, and varying between 34.8 and 58.4°C for other cycles. Both the recuperative and 

regenerative cycles demonstrated high values of inlet superheat temperature due to thermal 

energy recovery devices.  

 

However, the outlet superheat was highest in the case of regenerative cycles due to the poor 

isentropic efficiency of the turbines in the regenerative cycle. ORC with APH demonstrated the 

lowest mean superheat at turbine inlet (23.48°C for the APH cycle and 13.2°C for the 

conventional cycle) and mean turbine inlet temperature (152.4°C for the APH cycle and 

147.1°C for the conventional cycle). It is linked to the removal of heat from the working fluid by 

the APH for the steam boiler, validated by the increased sub-cooling of working fluid at the 

pump discharge, noted as 22.6°C for the conventional cycle and 36.8°C for the APH cycle. 

 
 

Cycle name Configuration Cycle name Configuration 
C-0 Conventional C-5 Recuperative & Thermal mass 
C-1 Thermal mass C-6 Regenerative & APH 
C-2 Recuperative  C-7 Regenerative 
C-3 APH C-8 Regenerative & Recuperative 
C-4 Recuperative & APH C-9 Regenerative & Thermal mass 
 
Figure 5-27: Normalised Variations in turbine inlet superheat for multiple cycle configurations 

with respect to (WRT) conventional ORC 
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Figure 5-28: Increases in exhaust superheat temperature noted for all cycles 

 
5.4.1.5 Feedwater temperature 
 
Given the fixed size of the boiler’s heater exchangers, the working fluid was preheated to its 

highest possible value. It is worth mentioning that the conventional cycle did not operate at 

preheating temperature but at the saturation temperature of 38.6°C. Compared to the 

traditional cycle, cycles incorporating recuperation and regeneration achieved a significant 

increase in the working fluid temperature. The improved thermal energy recovery was 

observed in Figure 5-29, where the inlet temperature of the working fluid to the economiser 

was noted. The thermal energy transferred by the APH from the ORC system to the steam 

boiler’s air circuit was also recorded. The use of thermal mass did not contribute to fluid 

temperature. 
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Cycle name Configuration Cycle name Configuration 
C-0 Conventional C-5 Recuperative & Thermal mass 
C-1 Thermal mass C-6 Regenerative & APH 
C-2 Recuperative  C-7 Regenerative 
C-3 APH C-8 Regenerative & Recuperative 
C-4 Recuperative & APH C-9 Regenerative & Thermal mass 
 

Figure 5-29: Increases in feedwater temperature achieved when energy recovery was 
employed 

 
 
5.4.1.6 Flue gas temperature  
 
It is important to understand the cycle performance with respect to fixed heat exchanger sizing. 

As the temperature of the working fluid increased, the LMTD and heat across the boiler’s heat 

exchangers were reduced. It resulted in an increase in the flue gas temperature, and penalised 

cycles with superior thermal energy recovery, as shown in Figure 5-30. 
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Cycle name Configuration Cycle name Configuration 
C-0 Conventional C-5 Recuperative & Thermal mass 
C-1 Thermal mass C-6 Regenerative & APH 
C-2 Recuperative  C-7 Regenerative 
C-3 APH C-8 Regenerative & Recuperative 
C-4 Recuperative & APH C-9 Regenerative & Thermal mass 

 
 Figure 5-30: Increases in flue gas temperature noted due to reduced ORC boiler LMTD 

 
5.4.1.7 Condenser heat load  
 
The mean cooling load requirement for the conventional ORC cycle was 308 kWth. To fulfil 

such a requirement, a cooling water flow of 108 m3/hr was used. This led to a substantial 

evaporation loss of 6.5 m3/hr for a wet cooling tower [323]. The condenser heat load, cooling 

water fluid and evaporation loss mentioned were to be sized in proportion to the condenser’s 

thermal load. As discussed earlier, increased heat rejection to the condenser can led to an 

adverse operational, capital expenditure, environmental and thermodynamic impact, as 

studied in the following chapter. 

This study considered three different approaches to reduce the condenser’s heat load. The 

regenerative cycle reduced the total quantity of the mass flow to the condenser [70]. The 

second approach involved enthalpy reduction with the help of an indirect heat exchange using 

recuperation. The final method extracted the low-grade heat for preheating air for the steam 

boiler cycle. 
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Figure 5-31: Thermal load of condenser compared for all configurations 
 
 
As the mass flow rate of working fluid to be condensed by the working fluid for the regenerative 

cycle was approximately 20% lower compared to a conventional cycle, a similar reduction in 

the condenser heat load for this cycle was demonstrated, as depicted in Figure 5-31. 

Recuperation demonstrated a direct benefit of up to 28% reduction in condenser heat loss, 

which was proportional to the degree of recuperation undertaken. All three cycles incorporating 

air preheating for removal of waste heat from the ORC system to the external boiler cycle 

demonstrated the lowest condenser heat loads, achieving this by reducing the sensible heat 

of the working fluid. For the finite-sized condenser, this reduction in heat load allowed achieving 

a lower mean condenser pressure of 2.01 kg/cm2, in comparison to 2.30 kg/cm2 achieved by 

the conventional cycle. The condenser heat load for the APH incorporated cycle was 50% of 

the conventional ORC cycle. The cycles employing the APH along with other variations 

demonstrated even better results. The regenerative APH cycle along with its reduced mass 

flow rate and external heat removal provided the maximum benefit of a 65% reduction in 

condenser heat rejection. The combination of recuperation along with air preheating resulted 

in a 60% lower condenser heat load. 
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5.4.1.8 Air preheater heat gain 
 
The integration of the APH provided an opportunity to utilise ORC waste heat for an existing 

industrial process. In addition to the lowest condenser heat loads for all cycles incorporating 

air preheating, the APH-based ORC cycles demonstrated a considerable reduction of steam 

boiler fuel consumption of 1.9%, 1.16% and 1.66% for the basic APH, recuperative APH and 

regenerative cycles, respectively. The results observed were in line with previous studies that 

observed the influence of input air temperature on steam boiler efficiency [324].  

 

The absolute thermal energy recovered by the APH- based cycles is shown in Figure 5-32. 

Integrating the APH with the recuperative cycle achieved the maximum thermal energy 

recovery of 196 kWth. The estimated steam boiler fuel consumption for all cycles has been 

depicted in Figure 5-33. In addition to the fuel savings, there were proportionate financial 

benefits in terms of capital equipment sizing, fuel transportation, exhaust gas loss, flue gas 

treatment, air pollution and de-sulfurization and ash handling. Previous studies have estimated 

the generation of 2.62 metric tons of CO2 emissions per metric ton of coal [324]. The recovery 

of combustion waste heat provides environmental benefits in the form of reduced CO2 

emissions, particulate matter emissions, ash generation and ash discharge which were not 

quantified by this study [324]. 

 

 

 
Figure 5-32: Thermal energy gain in APH-based cycles 
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Figure 5-33: Fuel consumption estimated for all cycle configurations 

 
 
5.4.1.9 Thermal storage 
 
Chapter 4 elaborated the benefit of providing superheated steam to ORC turbines. The 

turbines perform most reliably when the working fluid does not experience a significant 

variation in inlet temperatures [360]. Uniform operating temperatures reduce cyclic thermal 

stresses and induced turbine component expansion [361, 362]. The major benefit of the 

thermal mass ORC was noted in terms of more stable superheat of the working fluid at the 

turbine inlet, compared to a conventional ORC in Figure 5-34(a). The contours of the turbine 

isentropic efficiency (Figure 5-34(b)) demonstrated a resemblance to the turbine inlet 

superheat, that is, high efficiency during periods of high inlet temperature and vice-versa. 

Overall, the cycle employing thermal mass demonstrated lower fluctuation of the turbine 

isentropic efficiency. 
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(a) (b) 
Figure 5-34 (a): Turbine inlet superheat maintained with addition of thermal mass (b): Steady turbine 

isentropic efficiency achieved with the help of thermal mass 

However, while the thermal mass did maintain superheat temperatures for longer (14.88×103 

- 26.2×103s of heat source profile), it also absorbed to consume thermal energy during periods 

of high heat source temperature (0 to 14.88×103, 26.2×103 to 28.8×103s of heat source profile), 

neutralising the overall improvement to turbine isentropic efficiency to 1%, as previously 

observed in Figure 5-17, over the duration of the study. 

 
5.4.2 Optimisation study results 
 
Two global optimisation approaches were used to optimise the component sizes: NLPQL and 

GA. The NLPQL algorithm was less computationally intensive and in good agreement with GA, 

as shown in Figure 5-35. On reflection, despite the growing popularity of the genetic algorithm 

and artificial intelligence, simpler mathematical solvers are capable of optimising ORC 

problems at similar level of complexity. Considering the case of the conventional ORC, the 

NLPQL algorithm achieved the desired final accuracy within 50 iterations, whereas the genetic 

algorithm required 624 iterations. The reduced number of iterations required by the NLPQL 

was in line with previous studies undertaken for diesel engines [258, 325]. A population size 

of 50 individuals and 12 generations were required to achieve convergence for the GA. As the 

genetic algorithm did not consider initialisation values, but was merely restricted by constraints, 

it explored widely spread characteristics over a larger search area, wherein additional 

iterations were required for convergence. The improvement of fitness function for the NLPQL 

and GAs was observed in Figure 5-36 and Figure 5-37, respectively. The Pareto fronts 

demonstrated negligible improvement of the objective function after 46 and 550 iterations, 

respectively. 

 

It is noteworthy mentioning that despite the benefits of the NLPQL algorithm for single objective 

optimisation, mixed results were reported for the effectiveness and computational efficiency 

for the NLPQL algorithm while undertaking multi-objective optimisation [256, 258]. A few 

previous studies have used the Latin hypercube algorithm [363] and multi-island genetic 

algorithm [364] for initial iterations in combination with and prior to the NLPQL algorithm, to 
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ensure the NLPQL algorithm was not trapped within local optima. A simpler approach based 

on parametric evaluation was considered by this study (in section 5.4.1: Parametric cycle 

evaluation), validated by the analogous results achieved in the case of both optimisers.  

 

 
 

 
 

Figure 5-35: Comparison of convergence time required for NLPQL and GA optimisers 

 
 

 
Figure 5-36: NLPQL algorithm achieved convergence within 48 iterations 
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Figure 5-37:Pareto spread of GA population improvement in objective function over 624 
iterations 

 
 

 

 

Figure 5-38:Normalised power output gains of all cycles with optimisers compared 
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Figure 5-39: Variations in turbine isentropic efficiency noted for all cases 

 
In the case of the conventional ORC, both optimisers improved power output by 5 kWe, 

equivalent to 10% of the total power generation of the parametrically optimised ORC. Cycle 

efficiency improvement using optimisers within the given cycle varied from 2% in the case of 

the APH cycle upto 12% in the case of the recuperative cycle. In the case of NLPQL algorithm, 

the recuperative cycle produced an overall 26.5% improvement compared to the parametrically 

optimised conventional ORC cycle. The optimisation improved the efficiency proportionally to 

the degree of recuperation. A strong correlation between the mean turbine isentropic efficiency 

and the overall power generation was observed, as shown in Figure 5-39. It confirms the 

importance of considering the turbine performance towards overall cycle performance 

optimisation. The analogues optimised component sizes for such cycles are mentioned in 

Table 5.6. The variation in component sizing was explained by the differing approaches 

adopted by local and global optimisers. 

 
As the only objective of the optimisation was to increase the electrical power output, the 

optimised cycles did not improve the thermal energy recovery in the case of the APH-based 

cycles, as shown in Figure 5-40. Optimising the cycles for power output resulted in an up to 

24% reduction in thermal heat recovery. The recuperative APH cycle provided a balanced 

result for exploiting electrical as well as thermal energy recovery. However, to further 

understand the compromise between electrical and thermal energy recovery, a techno-

economic study encompassing capital expenditure, operation and installation cost, electrical 

savings and fuel savings have been analysed in Chapter 6. 
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Table 5.6: Optimised component sizes provided by parametric optimisation, NLPQL and genetic algorithm

Type of 
Cycle Unit Conventional Thermal Mass Recuperative APH Recuperative & APH 

Component  Param-
etric NLPQL GA Param-

etric NLPQL GA Param-
etric NLPQL GA Param

-etric NLPQL GA Param-
etric NLPQL GA 

Pump 
displacement cm3 80 89 96 80 95 95 80 91 90 80 79 79 80 88 85 

Boiler area m2 100 103 120 100 90 117 100 120 117 100 120 120 100 120 111 

Turbine 
displacement cm3 130 104 104 130 104 105 130 104 107 130 104 104 130 104 105 

Condenser 
area m2 180 215 216 180 214 214 180 216 211 180 216 215 180 216 111 

Recuperator 
area m2       180 180 174    150 143 161 

Type of 
Cycle unit Recuperative & Thermal 

mass Regenerative & APH Regenerative Regenerative & 
Recuperative 

Regenerative & Thermal 
Mass 

Component  Param-
etric NLPQL GA Param-

etric NLPQL GA Param-
etric NLPQL GA Param

-etric NLPQL GA Param-
etric NLPQL GA 

Pump 
displacement cm3 80 88 87 80 94 94 80 96 93 80 93 93 80 91 93 

Boiler area m2 100 119 113 100 119 119 100 112 119 100 118 120 100 100 111 

Turbine 
displacement cm3 130 111 111 130 105 105 130 128 114 130 113 112 130 124 123 

Condenser 
area m2 180 216 215 180 213 213 180 199 211 180 216 215 180 204 215 

Recuperator 
area m2 150 161 159       150 150 151    
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Cycle 
name 

Configuration Cycle 
name 

Configuration Cycle name Configuration 

C-3 Recuperative  C-4 APH C-6 Recuperative & APH 
 

 
Figure 5-40: Thermal energy captured by APH-based cycles 

 
5.5 Conclusion 
 
This chapter aimed to optimise the component sizes for a range of ORC configurations targeting 

the highest power output for a finite transient waste heat source and considering the variation of 

turbine efficiency. Ten different cycle configurations were studied, including novel combinations of 

recuperators, regenerators, thermal storage mediums and steam boiler air pre-heaters.  

 

A parametric optimisation was initially undertaken for a conventional Rankine cycle to estimate a 

baseline for equipment sizing, which was later considered as the initialisation for the NLPQL 

algorithm. The main findings of the parametric study were: 

• The recuperative cycle generated the highest power, 15% greater than the conventional 

cycle, whereas regeneration-based cycles did not demonstrate any improvement in terms 

of electrical power generation. 

• Turbine isentropic efficiency varied by up to 7% across multiple cycle configurations, which 

foster the importance of considering a loss model rather than assuming a fixed isentropic 

efficiency. The regenerative cycles suffered from poor isentropic efficiency as well as a 

loss of mass flow of working fluid to the low-pressure turbine stage.  

• The heat rejection of the cycle was an additional factor, often overlooked by previous 

studies, which required additional energy. The addition of the APH significantly reduced 

the condenser heat load, while simultaneously providing the steam boiler with over 195 
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kWth of usable low-grade heat recovery, which led to a reduction in fossil fuel consumption 

and environmental benefits of up to 1.9%. The combination of the APH, recuperator and 

regenerator as thermal energy recovery devices led to a condenser heat load reduction 

upto 65%. 

• Although the use of thermal mass did not provide significant benefits in terms of power 

generation for this study, its buffering properties were evident and could be of benefit to 

future studies with a higher transience of heat sources. 

• The combination of the regenerative and recuperative cycle led to a 32% increase in 

degree of superheat and could be considered for the operation of cycles with wet ORC 

fluids and dealing with a high degree of intermittency. 

A comparative study between the mathematical technique based NLPQL algorithm and genetic 

algorithm was undertaken in this chapter. The NLPQL algorithm demonstrated comparable results 

with significantly reduced computational cost which led to faster convergence, proving its 

effectiveness for single objective ORC cycle thermodynamic optimisation. The NLPQL- optimised 

recuperative cycle was noted as the optimal cycle, with a 26.5% increase in mean power 

generation compared to the 49.9 kW generated by the parametrically optimised conventional 

cycle. The optimised cycle also improved turbine isentropic efficiency by 12.57%, the highest of 

any cycle, yet again highlighting the importance of turbine efficiency. 

 

The recommendation of this chapter is to consider organic recuperative cycle configurations for 

utilising finite transient heat sources. Variable turbine isentropic efficiency was deemed integral to 

any ORC and recommended to be considered for any detailed studies at cycle level. 

 

The success of the NLPQL optimiser depended on the initialisation midpoint. When combined with 

a parametric pre-optimiser, the use of the NLPQL algorithm could be explored for multi-objective 

optimisation studies. Alternatively, a GA could be used to determine the preliminary design point, 

aided by its wider search area, followed by NLPQL for a final localised study. 

 

A multi-objective optimisation study could be undertaken to apport the value of electrical energy 

and thermal energy recovered, then used to determine the most economical overall solution. This 

study is undertaken in Chapter 6, encompassing equipment cost, operation cost, fuel savings and 

electrical cost.  

 

 

 

 



Y. C. Engineer, PhD Thesis, Aston University, 2022 165 

6 Chapter 6     Thermo-Economic Optimisation 
 
6.1 Introduction 
 
Organic Rankine cycles (ORCs) have been widely studied previously for the conversion of low- 

to-medium-grade heat into power. However, high investment costs and the lack of suitable 

components for small-sized ORCs have limited their widespread adoption [77]. The 

thermodynamic study conducted in Chapter 5 concluded that cycles incorporating recuperation, 

air preheating, a combination of recuperation and thermal storage, a combination of recuperation 

and air preheating and a combination of regeneration and air preheating boosted the 

thermodynamic performance of the conventional ORC. Whereas the recuperative cycle 

demonstrated the highest cycle efficiency, it is not necessary that it is the most commercially viable 

configuration, due to variable component costs as well as the multiple combinations of electrical 

and thermal outputs produced by the varied configurations. Optimising for cycle efficiency leads 

to larger heat exchanger sizing despite diminishing gains, due to the absence of consideration of 

the economic aspects. A combined thermo-economic assessment was thus noted as an essential 

criterion for commercial ORC evaluation as it assessed the additional cost and complexity implied 

versus benefits brought in by these subsystems [318]. Whereas the previous chapter validated 

the use of the non-linear programming by quadratic Lagrangian (NLPQL) algorithm for single 

objective optimisation for cycle-level thermodynamic studies, the NLPQL algorithm was not 

previously used for multi-objective ORC-related optimisation to the best of the researcher’s 

knowledge. 

 

Therefore, the aim of this chapter is to thermo-economically evaluate and optimise cycle 

configurations for the waste heat recovery ORC, which will be achieved through achieving the 

following objectives: 
• Benchmark the thermo-economic viability of the thermodynamically superior cycle 

configurations against conventional ORC. 

• Evaluate the suitability of the NLPQL and genetic algorithms for multi-objective ORC 

optimisation. 

• Assess the most financially viable cycle for combination with the transient steam boiler 

flue gas stacks and determine the corresponding payback period. 
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6.2 Methodology  
 
6.2.1 System description 
 
The waste heat source considered was flue gas from an industrial steam boiler operating in a 

medium-sized textile plant, as detailed in Chapter 5. Indonesian sub-bituminous coal fuelled the 

steam boiler. The levelised cost of fuel (LCOF) at the textile plant was 5.22 × 10-3 €/MJ for 

bituminous coal with a gross calorific value of 23 MJ/kg, as reported by Alameer et al. [365]. These 

prices included the raw material, transportation, unloading and taxation. The levelised cost of 

electricity (LCOE) for the textile plant was inferred/deduced as € 0.15 per unit kW, deduced by 

noting the monthly electricity payment; this value was validated by Rettig et al. in a previous study 

[91]. 

 

Whereas Chapter 5 compared 10 different cycle configurations, this chapter focuses on cycles 

that demonstrate improved electrical and thermal output with respect to conventional ORC 

benchmarks, as listed in Table 6.1. R245fa is maintained as the working fluid due to its low 

evaporation temperature, high thermal efficiency, thermal stability, low cycle-specific investment 

cost and compatibility with common ORC materials, as noted by Imran et al. [326]. The size of all 

major components, considered as independent variables, were varied to minimise the specific 

investment cost (SIC) and maximise the mean power generation, noted in Table 6.2. The variables 

to be optimised were provided a degree of freedom of 25% from the starting point values. The 

preliminary investigation revealed that broadening the degree of freedom further leads to 

convergence issues. 

Table 6.1: Cycle configuration and variables 
 

Cycle Independent Variables 
Conventional ORC Pump displacement, boiler heat exchanger area, turbine displacement, 

condenser heat exchanger area 

Recuperation Pump displacement, boiler heat exchanger area, turbine displacement, 
condenser heat exchanger area, recuperator heat exchanger area 

Recuperation + 
APH 

Pump displacement, boiler heat exchanger area, turbine displacement, 
condenser heat exchanger area, APH heat exchanger area, recuperator 
heat exchanger area 

APH Pump displacement, boiler heat exchanger area, turbine displacement, 
condenser heat exchanger area, APH heat exchanger area 

Recuperation + 
Thermal Mass 

Pump displacement, boiler heat exchanger area, turbine displacement, 
condenser heat exchanger area, mass of thermal storage, recuperator 
heat exchanger area 

Regeneration + 
APH 

Pump displacement, boiler heat exchanger area, turbine displacement, 
condenser heat exchanger area, APH heat exchanger area 
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Table 6.2: Range of variables considered 

 
S. No. Component Parameter Minimum 

value 
Starting 

value 
Maximum 

value 
Unit 

1 Pump Displacement 60 80 100 cm3 

2 Boiler Heat transfer 

area 

75 100 125 m2 

3 Turbine Displacement 98 130 162 cm3 

4 Condenser Heat transfer 

area 

135 180 225 m2 

5 Recuperator Heat exchange 

area 

120 150 180 m2 

6 APH 1- 5 Heat exchange 

area 

225 300 375 m2 

7 Thermal 

mass 1–3 

Mass 1 10,000 10,000 kg 

 
 
6.2.2 Problem definition 
 
An economic comparison of cycle configurations is the most recommended approach for the 

combined evaluation of electrical and thermal energy. The variable turbine efficiency was 

considered as a key parameter for the thermodynamic modelling undertaken, carried over from 

the previous chapter (Chapter 5). Whereas that chapter considered a single objective function, a 

composite approach incorporating varied contradicting objectives was adapted for multi-objective 

optimisation in this chapter. 

 
6.2.3 Multi-objective optimisation approach 
 
Two general approaches were previously noted for multi-objective optimisation [327]. The first 

approach combined the individual objective functions into a single composite function using the 

weighted sum method. Defining the constraints, weighing and objective functions are iterative 

processes, even for operators familiar with the problem domain [327]. This method involved the 

movement of all objective functions simultaneously. The second approach was to develop and 

examine a Pareto front. It contained a set of solutions that were nondominated with respect to 

each other; achieved by compromising individual objectives. Each point on the Pareto front 

represented a set of variables linked to a design point. The band of optimal solutions within the 
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Pareto front increased in proportion to the number of objectives. The weighted sum was selected 

in this study as it was better suited to problems with a limited number of objective functions, well-

defined constraints and weightage. It enabled assigning weightage to individual objective 

functions and did not require operator intervention for global optima selection. Equally, the results 

obtained were visualised on a Pareto front; this to correlate the trade-off between individual 

objectives. 

 

The weighted sum composite function has been defined in equation 6.1. Eighty percent of the 

weightage was assigned to minimise the specific investment cost (𝑆𝑆𝐼𝐼𝐶𝐶), and 20% weightage was 

assigned to maximising the power generation (𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝐷𝐷𝑃𝑃𝑎𝑎𝑎𝑎), to ensure the scale of operations 

was sufficient to generate meaningful saving in the absolute value, with limited manpower, in line 

with previous findings [266]. Articulation preference was not considered in the interest of 

computational efficiency. 

 

𝐹𝐹𝑤𝑤𝑟𝑟𝑜𝑜𝑠𝑠ℎ𝑜𝑜𝑟𝑟𝑑𝑑 𝑠𝑠𝑃𝑃𝑃𝑃 = � 0.8 × 𝐹𝐹(𝑆𝑆𝐼𝐼𝐶𝐶) +  0.2 × 𝐹𝐹 �
1

𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝐷𝐷𝑃𝑃𝑎𝑎𝑎𝑎
�                 6.1 

 
6.2.4 Specific investment cost 
 
The specific Investment cost (𝑆𝑆𝐼𝐼𝐶𝐶), mentioned in equation 6.2, factors in the expenses in the form 

of capital investment and labour cost, against the value of economic benefits provided in terms of 

electricity generation and thermal energy recovery. €𝑊𝑊𝑇𝑇 is the value of electricity generation by 

the turbine and €𝑊𝑊𝑃𝑃 is the value of electricity consumption by the pump considering the LCOE. 

€𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the value of thermal energy recovery, considering the LCOF. The air preheater (APH) 

cycle recovered low-grade thermal energy, for which a good correlation with high-grade electrical 

energy does not exist; instead, an economic indicator was considered as a suitable appropriation. 

Input heat costs were not considered, as the application was centred around a waste heat 

recovery-based source. 

The component  and labour cost components were determined as in Table 6.3. Indices for the 

material cost of the cast iron thermal mass were calculated by using the international prices for 

2021 [368]. The cost of the working fluid was considered as 34.08 €/kg, based on the findings of 

Roumpedakis et al., sourced from manufacturer quotes [281]. The total capital expenditure have 

been summarised in equation 6.3. 

 

𝑆𝑆𝐼𝐼𝐶𝐶 =
𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝐶𝐶𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠  +  𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝐿𝐿𝑚𝑚𝑏𝑏𝑟𝑟𝑃𝑃𝑟𝑟

€𝑊𝑊𝑇𝑇 + €𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 6.2 
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𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝐶𝐶𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠 = 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑇𝑇𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑃𝑃𝑜𝑜𝑠𝑠𝑟𝑟𝑟𝑟 + 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑇𝑇𝑟𝑟𝑚𝑚𝑃𝑃𝑟𝑟𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟 + 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑆𝑆𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟ℎ𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟
+ 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑇𝑇𝑃𝑃𝑟𝑟𝑏𝑏𝑜𝑜𝑜𝑜𝑟𝑟 + 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝐶𝐶𝑟𝑟𝑜𝑜𝑑𝑑𝑟𝑟𝑜𝑜𝑠𝑠𝑟𝑟𝑟𝑟 + 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑃𝑃𝑜𝑜𝑃𝑃𝑜𝑜𝑜𝑜𝑠𝑠 + 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝐹𝐹𝑙𝑙𝑃𝑃𝑜𝑜𝑑𝑑 + 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑅𝑅𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟
+ 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑅𝑅𝑟𝑟𝑠𝑠𝑟𝑟𝑜𝑜𝑟𝑟𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟 + 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝐴𝐴𝑃𝑃𝐻𝐻 + 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑃𝑃𝑚𝑚𝑙𝑙𝑀𝑀𝑚𝑚𝑠𝑠𝑠𝑠 

 
6.3 

 
                    

 
 .

𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
and 𝐾𝐾𝑊𝑊𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 denote the specific work done, and power consumed by the pump. 𝐺𝐺𝐷𝐷𝑐𝑐𝑜𝑜𝑚𝑚𝑜𝑜𝑘𝑘, 

𝑀𝑀𝑎𝑎𝑘𝑘𝑘𝑘𝑓𝑓𝑙𝑙𝑃𝑃𝑜𝑜𝑑𝑑, 𝑀𝑀𝑎𝑎𝑘𝑘𝑘𝑘𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑃𝑃𝑚𝑚𝑙𝑙 and  𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑟𝑟𝑚𝑚𝑃𝑃𝑜𝑜𝑜𝑜𝑚𝑚𝑙𝑙 denote the volume of the working fluid storage tank 

between the condenser and pump, mass of working fluid required, mass of thermal storage 

required and total capital expenditure. 𝐷𝐷𝑃𝑃𝑜𝑜𝑃𝑃𝑟𝑟 and 𝐿𝐿𝑃𝑃𝑜𝑜𝑃𝑃𝑟𝑟 denote the diameter and length of piping, 

calculated to limit fluid pressure drop to within 0.02 kg/cm2 per unit metre of length using the Mac 

Adams correlation for frictional pressure drop [330, 331], as mentioned in Table 6.4.The pipeline 

length was decided based on observations of previous similar-sized configurations [332, 333]. 

 

Table 6.3: Component and labour costs 
 

Component Equation Reference 

Heat 

exchangers 

190 + 310 × (𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑃𝑃𝑜𝑜𝑠𝑠𝑟𝑟𝑟𝑟 +  𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑟𝑟𝑚𝑚𝑃𝑃𝑟𝑟𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟

+  𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑆𝑆𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟ℎ𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟 + 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝑟𝑟𝑜𝑜𝑑𝑑𝑟𝑟𝑜𝑜𝑠𝑠𝑟𝑟𝑟𝑟

+  𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑅𝑅𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟 + 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴𝑃𝑃𝐻𝐻) 

Quoilin and Declaye [62], 

Roumpedakis et al. [272] 

Turbine 1.5 × (225 + 170 × 𝐺𝐺𝚤𝚤�̇�𝑜) Quoilin and Declaye [62] 

Feed pump 900 × �

.
𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

× 𝐾𝐾𝑊𝑊𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
300

� 
Lecompte and Huisseune 

[228] 

Storage tank 31.5 +  16 × 𝐺𝐺𝐷𝐷𝑐𝑐𝑜𝑜𝑚𝑚𝑜𝑜𝑘𝑘) Quoilin and Declaye [62] 

Working fluid 34.08 × 𝑀𝑀𝑎𝑎𝑘𝑘𝑘𝑘𝑓𝑓𝑙𝑙𝑃𝑃𝑜𝑜𝑑𝑑 Roumpedakis et al. [272] 

Piping (0.89 + 0.28 × 𝐷𝐷𝑃𝑃𝑜𝑜𝑃𝑃𝑟𝑟) × 𝐿𝐿𝑃𝑃𝑜𝑜𝑃𝑃𝑟𝑟 
Lecompte and Huisseune 

[228] 

Thermal mass 0.25 ×  𝑀𝑀𝑎𝑎𝑘𝑘𝑘𝑘𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑃𝑃𝑚𝑚𝑙𝑙 Golubev et al. [328] 

Miscellaneous 300 
Kavvadias and Quoilin 

[329] 

Installation 

labour 
0.3 × 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑟𝑟𝑚𝑚𝑃𝑃𝑜𝑜𝑜𝑜𝑚𝑚𝑙𝑙 

Quoilin and Declaye [62], 

Roumpedakis et al. [272] 
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Table 6.4: Diameter and length of working fluid piping 

 
 

𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎2020 = 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑅𝑅𝑇𝑇𝐹𝐹𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟 ×
𝐶𝐶𝐸𝐸𝑃𝑃𝐶𝐶𝐼𝐼2020

𝐶𝐶𝐸𝐸𝑃𝑃𝐶𝐶𝐼𝐼𝑅𝑅𝑇𝑇𝐹𝐹𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟
 

 
6.4 

 
The chemical engineering plant cost index (CEPCI) was used to adjust the variations of the 

equipment cost and inflation, as in equation 6.4 [373], where 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎2020 is the inflation adjusted 

material cost based on year 2020, and 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑅𝑅𝑇𝑇𝐹𝐹𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟 is the material cost based on the year it is was 

derived. The 𝐶𝐶𝐸𝐸𝑃𝑃𝐶𝐶𝐼𝐼2020 index was used as a scaling reference for the year 2020, according to the 

index value of the material-based on the year of publishing (𝐶𝐶𝐸𝐸𝑃𝑃𝐶𝐶𝐼𝐼𝑅𝑅𝑇𝑇𝐹𝐹𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟). Annual CEPCI indices 

were noted as 573.9, 567.3, 603.1 and 595 for the years 2011, 2013, 2018 and 2020, respectively. 

 
6.2.5 Payback 
 
The payback was determined by the expenditure and annual income, as shown in equation 6.5. 

The total expenditure is the sum of equipment capital, installation labour, annual operational 

manpower and annual maintenance costs. The income is the sum of the electrical and thermal 

energy generation. 

 
𝑃𝑃𝑎𝑎𝑙𝑙𝑏𝑏𝑎𝑎𝑎𝑎𝑘𝑘 (𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘)

=
𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝐶𝐶𝑟𝑟𝑃𝑃𝑃𝑃𝑟𝑟𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠 + 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝐿𝐿𝑚𝑚𝑏𝑏𝑟𝑟𝑃𝑃𝑟𝑟 + 𝐴𝐴𝑎𝑎𝑎𝑎𝐺𝐺𝑎𝑎𝑐𝑐 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑂𝑂𝑃𝑃𝑟𝑟𝑟𝑟𝑚𝑚𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜 𝑃𝑃𝑚𝑚𝑜𝑜𝑃𝑃𝑟𝑟𝑤𝑤𝑟𝑟𝑟𝑟 + 𝐴𝐴𝑎𝑎𝑎𝑎𝐺𝐺𝑎𝑎𝑐𝑐 𝐶𝐶𝐷𝐷𝑘𝑘𝑎𝑎𝑀𝑀𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑚𝑚𝑜𝑜𝑟𝑟𝑟𝑟

𝐴𝐴𝑎𝑎𝑎𝑎𝐺𝐺𝑎𝑎𝑐𝑐 (€𝑊𝑊𝑇𝑇 − €𝑊𝑊𝑃𝑃  + €𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
 6.5 

 
 
 
 
 

Section of piping Diameter (mm) Length (m) 

Pump to economiser 50 3 

Superheater to turbine 80 5 

Turbine to condenser 800 6 

Condenser to pump 50 10 

Recuperator piping on liquid side 50 3 

Recuperator piping on vapour side 800 3 

Regenerator bleed 3 5 
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6.2.6 Optimisation 
 
The NLPQL algorithm was employed within the specified constraints and the Hessian of the 

Lagrange functions was used for quadratic approximation. The quadratic subproblem was formed 

by linearising the Karush-Kuhn-Tucker criterion, by using equation 6.6 [353]. NLPQL was 

benchmarked against GA, which is a population-based approach and recommended by Konak et 

al [367]. 

 
𝐿𝐿(𝑥𝑥, λ, µ) = 𝑓𝑓(𝑥𝑥) + λ g(x) +  µ h(x) [265]         6.6 

 
 
As the optimisation of one objective could lead to a compromise in another, the spread of the 

Pareto front, as typically shown in Figure 6-1 helps to visually elaborate the distribution and trade 

between individual objectives. 

 
 

Figure 6-1: Expected Pareto front for two objective optimisations [20]. Cases A–H represent 
individual iterations, wherein A–D represent Pareto optimal cases 

 
6.2.7 Assumptions 
 
The average ambient temperature recorded for the location of the textile plant, at Ghaziabad, in 

north India was considered as 25.7°C, and the wet bulb temperature was 21.4°C, based on data 

recorded by the Indian Meteorological Department [303]. The average ambient temperature is 

considerably higher than the global average annual temperature of 13.9°C [303]. This will ensure 

better economics for colder locations, as previous studies noted up to 30% reduced payback 

period for ORC systems with lower heat sink temperatures [12, 38, 305].  
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The volumetric, isometric and mechanical efficiency of the pumps were considered as 50%, 65% 

and 70%, respectively; and steam boiler efficiency was considered as 82% [8, 301]. Variable 

turbine efficiency was considered using the Craig and Cox design point loss model [192] and 

Moustapha et al.’s off-design loss model [215]. Working fluid gland leakage across the pump and 

turbine were ignored. Isentropic efficiency of the cooling water pump was considered as 65%. 

Operation of the ORC cycle was considered as 8000 hours per annum [296]. 

 

6.3 Results and discussion 
 
The costs for major equipment before optimisation are furnished in Table 6.5. The values agreed 

with those reported by Shengjun et al. [334], that stated heat exchangers were 80–90% of the 

conventional ORCs’ cost. The specific investment cost before optimisation was 44842 €/kW. In 

the current study, the cost per unit of installed capacity for the optimised conventional cycle was 

2122 €/kW, in line with Astolfi et al.’s predictions of 1800 – 2500 €/kW for techno-economically 

optimised ORCs [227]. This significant improvement was mainly attributed to reduced heat 

exchanger sizing, as detailed in section 6.3.2. 

 

Table 6.5: Material cost of equipment before optimisation 

 
 
 
 

S. No Component Cost in Euros (€) 

1 Pump 317 

2 Boiler 17,240 

3 Turbine  341 

4 Condenser 70,832 

5 Piping 6,500 

6 Working fluid 10,480 

7 Recuperator 24,714 

8 APH 46,690 

9 Thermal Mass 9,600 
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6.3.1 Individual objective trade-off 
 
For most configurations, the optimisation enhances the value of both objectives towards the 

prespecified aim, with the multi-objective genetic algorithm (MOGA) providing 1.98% better value 

of objective function. On average, for a given cycle, both optimisers led to a 26.95% improvement 

in the value of the composite objective function, 21.72% improvement in the value of the SIC but 

a 1.1% reduction in power generation, compared to the un-optimised conventional ORC, as shown 

in Table 6.6. The maximum improvement in mean power was limited to 7.9% for the MOGA-

optimised conventional ORC cycle. 

 
Besides, mean power decreased by up to 8.6% while the objective function improved by up to 

30.9% in the case of the APH and regenerative APH cycles. The contrasting trends for the 

individual objectives emphasised the increased weightage for the SIC at the expense of power 

generation. This was also observed in the Pareto front, as shown in Figure 6-2, which 

demonstrates a clearly defined trade-off between both objectives. The composite objective 

function provides a consolidated approach to achieve the best overall configuration. 

 

 
 

Figure 6-2: Pareto front for conventional ORC cycle with NLPQL optimisation. The considered 
objectives are mean power and specific investment cost
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Table 6.6: Improvement in composite objective Function and SIC values achieved by optimiser 
 

 

Cycle Optimiser 
Composite 
objective 

function [-] 

Composite 
objective 
function 

improvement to 
original [%] 

Composite 
objective function 

improvement 
within cycle [%] 

SIC 
[€/kW] 

SIC 
improvement to 

original [%] 

SIC 
improvement 

within cycle [%] 

Mean 
power 
[kW] 

Mean power 
improvement to 

original [%] 

Mean power 
improvement 

within cycle [%] 

Conventional 

ORC 

Before 

optimisation 
13682   18229   49.97   

NLPQL 9954.8 27.3 27.3 14774 18.9 18.9 50.83 1.7 1.7 

MOGA 9291.2 32.1 32.1 14197 22.1 22.1 53.91 7.9 7.9 

Recuperation 

Before 

optimisation 
14349 -4.9  19581 -7.4  57.5 15.1  

NLPQL 9752.2 28.7 32.0 14789 18.9 24.5 55.35 10.8 -3.7 

MOGA 9610.1 29.8 33.0 14464 20.7 26.1 53.34 6.7 -7.2 

Recuperation + 

APH 

Before 

optimisation 
8638 36.9  13623 25.3  54.78 9.6  

NLPQL 6993.4 48.9 19.0 12063 33.8 11.5 55.71 11.5 1.7 

MOGA 6478.7 52.6 25.0 11487 36.9 15.7 57.52 15.1 5.0 

APH 

Before 

optimisation 
7075.2 48.3  11445 37.2  48.02 -3.9  

NLPQL 4892.5 64.2 30.9 9235 49.3 19.3 47.72 -4.5 -0.6 

MOGA 5493.9 59.8 22.3 9649 47.1 15.7 45.66 -8.6 -4.9 

Recuperation + 

Thermal Mass 

Before 

optimisation 
11486 -5.9  19769 -8.4  58.05 16.2  

NLPQL 9780.7 28.5 32.5 15046 17.5 23.9 57.86 15.8 -0.3 

MOGA 9585.6 29.9 33.8 14496 20.5 26.7 53.96 8.0 -7.0 

Regeneration + 

APH 

Before 

optimisation 
8386.1 38.7  12886 29.3  49.45 -1.0  

NLPQL 6976.2 49.0 16.8 11245 38.3 12.7 46.91 -6.1 -5.1 

MOGA 6933.8 49.3 17.3 11219 38.5 12.9 47.09 -5.8 -4.8 
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Table 6.7  Component size for optimised configuration 

 

 

 

Cycle Component Pump 
displacement 

Boiler 
area 

Turbine 
displacement 

Condenser 
area 

Recuperator 
area APH area Thermal 

mass 
  cm3 m2 cm3 m2 m2 m2 kg 

conventional 
ORC 

NLPQL 77.8 75.0 98.0 143.1 - - - 

MOGA 99.65 97.72 98.07 148.3 - - - 

Recuperation 
NLPQL 94.65 79.2 98.10 135 180 - - 

MOGA 94.34 80.83 98.46 135.1 180 - - 

Recuperation + 
APH 

NLPQL 78.24 125.0 126.5 135 143 354 - 

MOGA 87.37 122.09 109 137.1 180 249.6 - 

APH 
NLPQL 77.78 109.0 130.8 135 - 225 - 

MOGA 83.6 110.13 155.2 136.5 - 252.2 - 

Recuperation + 
Thermal Mass 

NLPQL 91.59 92.93 98.0 135 144.4 - 31976 

MOGA 92.12 87.79 102.9 135 142.5 - 35762 

Regeneration + 
APH 

NLPQL 97.63 117.34 113.6 135 - 296.5 - 

MOGA 98.9 124.4 115.8 135 - 299.2 - 
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6.3.2 Heat exchanger sizing 
 
Compared to the thermodynamic study undertaken in Chapter 5, the inclusion of the economic 

aspect led to reduced boiler and condenser sizes along with larger recuperator and APH sizing, 

as seen in Table 6.7. Along with increased capital expenditure, larger condensers led to an 

increased thermal energy loss. However, larger recuperators and air pre-heaters recovered 

this thermal energy in the form of electrical and thermal energy, respectively.  

 

Table 6.8 shows that the optimised APH cycle reduces the condenser heat load, thereby 

reducing the cooling tower’s capital expenditure by 62%, and evaporation loss by 1.8 m3/hr 

(62%). The power consumed by the cooling water pump reduced by 5.8 kW (62%), 

corresponding to an 11% reduction of the ORC’s total power generation. The T-s diagrams in 

Figure 6-3 demonstrate the extent of sensible and latent heat recovery undertaken up to APH 

5. The NLPQL optimiser’s results showed that the minor benefits achieved with the help of the 

thermal mass were not thermo-economically justified in line with the previous chapter (Chapter 

5). 

 

Table 6.8: Reduced cooling water evaporation loss and pump consumption for ORC with 
APH 

 

Cooling water pump power 
consumption 

 
 

Conventional 
ORC before 
optimisation 

NLPQL- 
optimised 

integrated APH 

Working fluid mass flow rate kg/hr 4,767 4,767 

Heat load kJ/hr 867,594 333,690 

Temperature Inlet to condenser °C 20 20 

Temperature outlet of condenser °C 28 28 

Mean WF inlet enthalpy kJ/kg 431 311 

Mean WF outlet enthalpy kJ/kg 249 241 

Cooling water (CW) flow m3/hr 108.4 41.7 

Pump power required kW 9.36 3.60 

Cooling Tower    

Flow m3/hr 108.45 41.71 

Refrigeration required TR 286.90 110.35 

Evaporation loss m3/hr 2.92 1.12 
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Cycles incorporating air preheating required a larger ORC boiler size than the initialisation 

value would suggest, whereas a reduced boiler size was noted for all other configurations. This 

was because the large area of the air preheater enabled more thermal energy recovery. It is 

noteworthy that the largest boiler heat exchanger area was noted for the recuperative APH 

cycle, wherein sequential heat exchangers allowed for the highest thermal energy recovery. 

 
 

(a) 

 
 

(b) 

Figure 6-3: T-s Diagram for (a) NLPQL-optimised APH cycle; (b) NLPQL-optimised 
recuperative APH cycle 

 
6.3.3 Thermal energy recovery  
 
Despite the lowest power generation, the APH cycle showed the lowest value of the objective 

function, optimising it from 7,075 to 4,892 by the NLQPL algorithm that led to a 49% 

improvement in SIC despite the reduction in the power generation by 4.5%. Whereas the 

conventional cycle dissipated an average of 324 kWth to the condenser, the large size of APH 

used by this configuration reduced that by 57% to 156.9 kWth. The APH reduced the enthalpy 

of the working fluid from 48°C superheated gas to a saturated vapour with gas mass fraction 

of 0.61, as shown in Figure 6-4, extracting sensible and latent heat. Further investigation 

showed that the operational revenue generated by this configuration was € 8.35 for power 

generation and €8.82 fuel saving. Equipment costs for the NLPQL-optimised APH cycle are 

populated in Table 6.9. 
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Figure 6-4: High effectiveness of an air pre-heater demonstrated for an APH-based cycle 

 
 

Table 6.9: Material cost of the APH cycle after optimisation 
 
 
 
 
 

 

 

 

 

 

 

 

 

The regenerative APH and recuperative APH cycles showed the second- and third- lowest 

values of the objective function. Despite similar results, both configurations undertook a 

different approach. The regenerative APH cycle had a 6.7% lower SIC, as it undertook direct 

preheating of the working fluid and reduced heat exchanger cost. However, the working fluid 

used for preheating was not provided to the low-pressure turbine for power generation, the 

reduced mass flow rate dropping this configuration’s power generation by 6.1%. In contrast, 

the entire mass of working fluid evaporated from the ORC boiler (in the case of the recuperative 

APH cycle), passed through the turbine, generating higher power output, while incurring 

additional heat exchanger cost. The total heat exchanger cost for the regenerative APH and 

recuperative APH cycles are given in Table 6.10. 

 

 

 

S. No. Component Cost in Euros (€) 

1 Pump 316.2 

2 Boiler 17,521 

3 Turbine 340.7 

4 Condenser 53,172.1 

5 Piping 6,500 

6 Working fluid 10,461 

7 APH 35,065 
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Table 6.10: The total heat exchanger cost in Euros for the regenerative APH and 
recuperative APH cycles 

 

S. No. Heat exchanger 
Regenerative APH 
cost in Euros (€) 

Recuperative APH 
cost in Euros (€) 

1 Boiler 17,997 17,925 

2 Condenser 53,181 48,705 

3 Regenerator 7,800 - 

4 Recuperator - 77,744 

5 APH 56,627 41,503 

 Total 135,605 185,877 

 
Additionally, for the recuperative APH cycle, the optimal combination of 180 m2 recuperator 

and 354m2 APH was obtained at multiple control variables. Figure 6-5 shows the latent and 

sensible heat recovery undertaken by the recuperative APH cycle. It was observed that the 

optimised design of the counterflow recuperator allowed the preheated working fluid to enter 

the boiler at a mean temperature of 72°C; much higher than the exit temperature of the low-

pressure working fluid (mean temperature 48.4°C), which left the recuperator in the saturated 

phase at 0.88 gas mass fraction. The wet fluid was further reduced to a mean gas mass fraction 

of 0.54 after the APH, demonstrating the effective recovery of waste heat by 85 kJ/kg, which 

allowed for a reduction in both the condenser size (from 180 to 137 m2) and cost by 24%, as 

shown in Table 6.10. The recovery of latent heat was possible due to the use of two heat 

exchangers at different pinch points. The lower condenser area offset the cost of the larger 

recuperator and APH, maintaining an SIC of 12,013 €/kW.  

 

 
 

(a) 

 
 

(b) 

 
Figure 6-5: (a) Sensible heat recovery by the recuperative APH cycle; (b) Latent heat 

recovery using multiple pinch points and large heat exchangers 
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Whereas previous studies proposed the use of a dual-loop bottoming ORC, the direct use of 

industrial low-grade heat offered a simpler and more effective approach to minimise the 

irreversibility as reported by Feng et al. [322, 335-339]. In fact, the trade-off between 

recuperation by the ORC fluid and steam boiler APH is a strong function of the fuel prices and 

LCOE. Higher fuel prices tended towards greater thermal recuperation by the APH compared 

to the recuperator and vice-versa. 

 

For the thermal and electrical energy prices considered by the investigated textile plant, 

recovering the ORC waste heat as thermal energy was more viable than a combination of 

thermal energy recovery by APH and electrical energy recovery by the recuperator. This raises 

the question of eliminating the ORC altogether and recovering all the internal energy for an 

APH. However, it has previously been concluded that increasing the temperature of the 

primary combustion air beyond 97°C has resulted in poor performance of steam boilers, as 

shown in Figure 6-6, as any additional thermal energy capture has been lost to flue gas [340]. 

 

 
 

Figure 6-6: Peak boiler performance achieved with an air temperature of 97°C [37] 

 
6.3.4 Pump sizing 
 
The regenerative APH cycle optimisation yielded the largest pump size, to compensate for the 

low mass flow rate of the LP turbine that led to poor isentropic efficiency due to increased 

secondary losses. Given that the work done was distributed across two turbines, the individual 

turbines were operating at mean pressure ratios of 3.2 and 2.61, lower than that of 7.88 in the 

conventional ORC with a single turbine configuration. In line with the findings in Chapter 4, this 

led to reduced turbine isentropic efficiency. Increasing the pump size led to an increased mass 

flow rate and pressure ratio across the turbines, as shown in Figure 6-7. 
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(a) 

 

 
 

(b) 

Figure 6-7: (a) Higher mass flow rate; (b) Higher turbine inlet pressure observed for a 
NLPQL-optimised regenerative APH cycle 

 
 
6.3.5 Payback analysis 
 
Table 6.11 shows payback values resulting from the NLPQL-optimised ORC with APH 

configuration, considering an interest rate of 8% per annum and annual maintenance cost of 

1% of the capital cost [341]. Generally, ORCs do not require diversified manpower from the 

process industry viewpoint as it operates in a closed loop and is automatically controlled [296]. 

Five hours of weekly preventive maintenance have been considered, including the supervision 

and monitoring of the health check of the components equivalent to 30 €/hr for a single operator 

[49, 342, 343]. The analysis yielded a payback period of 1.72 years. 
 
 

Table 6.11: Payback calculations for the most feasible ORC with APH combination 
 

Expenditure 
    

Capital Cost 
  

 Annual  
Pump 

 
€ 316 

 
Boiler 

 
€ 17,521 

 
Turbine 

 
€ 341 

 
Condenser 

 
€ 53,172 

 
APH 

 
€ 35,065 

 
Piping 

 
€ 6,500 

 
Working fluid 

 
€ 10,461 

 
Equipment cost- Total 

 
€ 123,376 

 
Labour cost for installation 

 
€ 3,7013 

 
Total capital cost 

 
€ 160,389 
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Operational cost 
    

Manpower cost (260 hours, 

€30/hour) 
 

€ 30 7,800 

Pump power consumption 
 

€ 6.78 54,240 

Maintenance cost 
 

€ 
 

1,233 

     
Income 

    
Electrical 

 
kWe 47.72 381,760 

  
€ 8.59 68,717 

     
Thermal 

 
kWth 168.3 1,346,400 

  
€ 8.82 70,551 

Payback without interest 
 

years 1.22 
 

Simple interest cost for payback duration @ 8% per 

annum € 
 

15,609 

Payback with interest 
 

years 1.72 
 

 
 
6.3.6 Optimiser comparison 

 
Reflecting on the results, it emerges that using an NLPQL algorithm improved the objective 

function by up to 64%. Despite the localised approach of the NLPQL algorithm, the variation 

in the final values of objective function was within 3%, compared to the GA algorithm, which 

was more globalised, as shown in Table 6.6. This was attributed to the careful selection of 

initialisation values, building on the knowledge developed in Chapter 5. In line with previous 

findings, this study identified higher incidence of convergence issues when the NLPQL 

algorithm was operated with larger variations of independent variables. This was due to the 

NLPQL algorithm’s dependence on the user- specified initialisation centre point and local 

search region; an issue that was overcome in this study by the use of parametrically pre-

optimised data sets [258]. Figure 6-8 shows a comparison of the convergence time of the 

employed optimisers using the same computational capacity. In agreement with previous 

studies, the NLPQL algorithm approached optimal configurations with significantly less 

computational expense by one order of magnitude [258]. The results point towards 

consideration of this seldom-used optimiser for future studies of ORCs’ techno-economic 

analysis. 
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Figure 6-8: Convergence time required for multi-objective optimisation 

 
 

6.4 Conclusion 
 
A new method of optimisation which employed a composite objective function that weighed 

the technical and economic aspects was developed. The composited objective function 

included contradicting objectives: minimise specific investment cost and maximise mean 

power generation. The following concludes the key finding of this chapter. 

• Two different optimisation techniques were considered: mathematical and metaheuristics 

techniques. The thermo-economic optimisation study yielded a reduced heat exchanger 

size, particularly for heat exchangers where heat was rejected into the environment. 

• The best cycle configurations were achieved when the low-grade energy rejected by the 

ORC was utilised, as it offset the additional capital expenditure of ORC itself. This waste 

heat could be undertaken for preheating ORC fluid or steam-boiler air. 

• The optimised APH cycle achieved a 64.2% improvement in the value of the objective 

function, compared to the conventional ORC before optimisation and achieved a payback 

period of 1.72 years. The selection criterion pointed towards case-specific investigation 

that depended on the price of fuel and the levelised cost of electricity (LCOE). 

• The NLPQL algorithm provided optimised solutions within 2% of that of the multi-objective 

genetic algorithm, proving its suitability for multi-objective ORC thermo-economic 

optimisation considering the computational cost and accuracy aspects, owing to fewer 

iterations aided by suitable initialisation. 
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7 Chapter 7     Conclusions and Prospects 
 
7.1 Introduction 
 
Global warming remains the most pertinent threat for our planet. Despite significant strides in 

renewable energy, conventional sources form the backbone of the energy sector for most 

countries today. Biomass and coal-based steam boilers are widely used to meet the thermal 

energy demands of most industrial process plants for energy deficit developing countries like 

India. The flue gas stacks of these boilers represent a readily available, yet untapped waste 

heat source, despite their transient nature. Organic Rankine cycles represent an opportunity 

to reduce these stack losses, by generating renewable power, simultaneously reducing the 

heat expelled to the environment. 

 

This thesis aimed to assess the optimum ORC turbine and cycle configurations to integrate 

this technology with the coal and emerging bioheat-driven steam boilers. The study centred 

around the inclusion of turbine efficiency, by utilising Craig and Cox and Soderberg loss 

models. Besides, Moustapha’s off-design point loss model was incorporated to model 

incidence losses. The use of genetic algorithms coupled with artificial neural networks were 

explored for optimising the turbine’s flow path geometry. Moreover, several cycle 

configurations were studied and optimised from the technical and economic viewpoints, 

providing varied electrical and thermal output. The study included a comparison between 

employing mathematical -based optimisers and well-proven metaheuristic optimisers, to 

evaluate their technical ability to perform computationally affordable multi-objective 

optimisation for ORC technoeconomic optimisation. 

 

7.2 Conclusions 
 
The following are the key objectives achieved and the conclusion of their outcomes: 

 

Objective 1: Comparing the axial ORC turbine’s loss models and their suitability for cycle-level 

studies. 

 

The variations in turbine efficiency with the change of working fluid choice, pressure and 

temperature highlighted the importance of considering turbine efficiency as a part of the cycle-

level study. Direct loss models were preferred as they are independent of working fluid. The 

Soderberg and Craig & Cox models were validated for 1-D modelling and simulation of a small-

scale axial flow ORC turbine. Despite its simplicity, the Soderberg model demonstrated similar 

trends and deviation in isentropic efficiency was less than 2%. However, it did not provide a 

detailed break-up of individual losses, as was the case in Craig and Cox loss model; thus, 
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limiting its capability to preliminary cycle-level studies and rendering it unsuitable for turbine 

design and optimisation. 

 

Objective 2: Investigate the effect of fluid parameter changes on the turbine isentropic 

efficiency. 

 

The selection of working fluid provided the single largest flexibility of ORCs, which in turn 

demonstrated a significant influence on cycle design. Fluids with higher evaporation 

temperatures like R600 showed higher isentropic enthalpy drop and were characterised by 

lower molecular mass. The additional isentropic enthalpy drops in these fluids suggested better 

suitability for ORCs with multi-stage turbines, as the fluid velocities observed were 30% higher 

than high molecular mass fluids.  

Increasing working fluid enthalpy by additional superheating contributed to higher turbine 

efficiency for most investigated organic fluids, despite increasing the Mach number loss and 

blade back radius ratio loss. In the case of R245fa, R1233zd(E) and R1234ze(Z), an 12.4% 

increase in isentropic efficiency was noted, which contributed to improved overall cycle 

efficiency. This proved that superheated ORC cycles could be more efficient, but need to 

consider the variations in turbine efficiency. 

The impact of variable turbine efficiency was observed when the cycle pressure ratio 

increased. Higher pressure ratios led to an averaged 38% increase in turbine efficiency for 

R245fa, R1234ze(Z), R1234yf and R1234ze(E); this despite the significant increase in Mach-

number-induced primary losses beyond 1.6 Mach number. The velocity of the working fluid at 

the moving blade exceeded Mach 2.1. 

 

Objective 3: Employ artificial intelligence coupled with evolutionary algorithms to optimise the 

ORC turbine design, aiming at maximum power generation. 

 

Given the increasing interest in utilising artificial intelligence in different fields, ANN deep 

learning was coupled with the genetic algorithm optimiser to optimise the turbine design. The 

ANN considered the variable turbine efficiency modelled by a direct turbine loss model. The 

optimisation led to 9.7% higher moving blade losses and reduced nozzle losses by 11.5%. 

Thus, an overall turbine total-to-static efficiency improvement of 5.2%, translating into a 0.24% 

improvement in cycle efficiency, quantifies the impact of turbine efficiency on the overall cycle 

performance. The deep learning approach offered a simple yet computationally efficient 

approach for optimising turbine flow path design, suitable for cycle design users with limited 

turbomachinery experience. High percentile results generated by ANNs prove its suitability for 

advanced blade design. 
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Objective 4: Undertaking thermodynamic and thermo-economic optimisation of an ORC cycle 

configuration based on transient steam boiler flue gas stacks while considering variable turbine 

efficiency. 

 

Various cycle configurations were studied using the transient steam boiler waste heat source, 

including novel combinations of recuperators, regenerators, thermal storage mediums and 

steam boiler air preheaters. The recuperative cycle showed the highest mean power output, 

15% greater than the conventional ORC.  

Differences in turbine efficiency up to 7% was observed across multiple cycle configurations, 

highlighting the importance of considering a loss model rather than assuming a fixed isentropic 

efficiency. Regeneration-based ORC configurations suffered poor isentropic efficiency and a 

loss of mass flow of working fluid to the low-pressure turbine stage, resulting in poor cycle 

efficiency.  

A novel configuration with integrated steam boiler air preheater was developed that recovered 

195 kWth thermal energy. This configuration reduced the steam boiler’s fossil fuel combustion 

by 1.9% and significantly reduced the ORC condenser heat load. The maximum condenser 

heat load was reduced by up to 65% for ORC with combined APH, recuperator, and 

regenerator, leading to lower evaporation loss. In addition, the recuperative-regenerative cycle 

produced the highest working fluid temperature, quantified by a 32% increase in the degree of 

superheat at turbine inlet, thus providing this configuration with better suitability to cycles with 

a high degree of heat source intermittency along with the use of wet fluids. 

Thermo-economic optimisation suggested reducing heat exchanger size, particularly those 

where heat was rejected to the environment. As such, both optimisers concluded the ORC-

APH configuration as the most suitable. This configuration achieved a 64.2% improvement of 

the objective function value over the conventional unoptimised ORC. The resulting payback 

period of 1.72 years indicated its economic feasibility. Moreover, the evaluation revealed that 

optimal configuration was a strong function of the local electricity and steam boiler fuel cost. 

 

Objective 5: Assessing the numerical and metaheuristic optimisers for single- and multi-

objective optimisation employing a case study targeting maximum thermo-economic benefits. 

 

A single objective thermodynamic optimisation was undertaken between the mathematical-

technique-based NLPQL algorithm and the metaheuristic genetic algorithm. The 

parametrically pre-optimised NLPQL algorithm demonstrated similar results along with 

significantly reduced computational cost, leading to faster convergence. The NLPQL-optimised 

recuperative cycle was noted as the optimal configuration, with a 26.5% increase in mean 

power generation compared to the 49.9 kW generated by the parametrically optimised 

conventional cycle. The optimised recuperative cycle also improved turbine isentropic 

efficiency by 12.57%, the highest of any cycle, yet again highlighting the importance of turbine 
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efficiency. The NLPQL optimiser’s success and optimisation time were noted as a function of 

the initialisation midpoint. As a result, using a parametric or GA pre-optimiser to determine the 

preliminary design point within a wider search area, followed by NLPQL for a final localised 

study, can be recommended. 

A multi-objective thermo-economic optimisation study was undertaken in Chapter 6 by 

applying a composited objective function with contrasting objectives using the parametrically 

pre-optimised multi-objective NLPQL and multi-objective Genetic Algorithm, to conclude the 

ORC with APH as the optimum thermos-economic configuration for the given case study. The 

multi-objective NLPQL algorithm provided optimised solutions within 2% of that of the MOGA, 

paving the way for its future use in computational economical multi-objective ORC thermo-

economic optimisation. 

 
7.3 Prospects 
 
The following can be recommended for future work:  

• Considering variable turbine efficiency using direct method-based approaches is 

advisable even for preliminary cycle-level design studies, particularly for superheated 

ORC cycles, where a simple correlation such as the Soderberg loss model can be used 

to observe trends. In addition, loss model validation is strongly suggested for profile 

validation with high-pressure ratio nozzles. 

• The suitability of multi-stage turbines for high-pressure ratio cycles with low working 

fluid molecular mass requires further investigation, as such turbines are better suited 

to the higher enthalpy drops of such fluids but typically require larger volumetric flow 

rates. Development of high enthalpy low volumetric flow specific multi-stage ORC 

turbines incorporating partial admission, higher number of stages, reduced stage 

diameters and higher rotational speed promise superior isentropic efficiency and 

reduced windage losses and can lead to improved isentropic efficiency, even for small 

machines. 

• The use of recent artificial intelligence-based techniques provides a user-friendly 

approach to turbine flow path loss and other technical optimisations. Such techniques 

can be used to develop a consolidated thermodynamic numerical tool incorporating 

optimised turbine and cycle efficiency optimised by Artificial intelligence (AI), allowing 

automated transient cycle optimisation for cycle-level studies. Generally, artificial 

intelligence in thermal and thermodynamic systems is still nascent and requires more 

research effort to extend it beyond the use of commercial tools such as ANN. This is 

timely with the worldwide effort to decarbonise the energy sector based on the huge 

data generated over the years. 

• The air pre-heated ORC was noted as the optimum thermo-economic configuration, 

wherein the sizing of the heat exchangers was a function of the prevailing levelised 

cost of fuel and high levelised cost of electricity for the considered case study. 
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Variations in these indices could lead to changes in the thermal and electrical output 

for optimised cycles. Therefore, it is recommended to develop a combined fuel and 

electricity cost index-based algorithm for assessing the ideal boiler and APH sizing.  

• Whereas the use of thermal mass did not improve power generation, its buffering 

properties were evident and could benefit future studies with higher transience of heat 

sources. They could be added to existing cycles to eliminate the ingress of wet fluid at 

the turbine inlet. Besides, further evidence-based analysis is needed for analysing the 

techno-economic feasibility of using low-cost sensible heat storage compared to 

emerging technologies such as phase change materials and sorption heat storages. 
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Appendices 

APPENDIX 1  
 

Polynomial Equations of the Craig and Cox Loss Model 
 

This thesis utilised a surface fitting function to digitise the curves used by the Craig and Cox 

loss model. The function was selected from the curve fitting toolbox in the MATLAB 

programming environment [344]. The Craig and Cox loss model contained two or three-

dimensional plots. The data points provided by the loss model were converted to a set of 

polynomial equations with orders between 2 to 5 depending on the complexity of the curve. 

The absolute deviation of the predicted parameter using the developed equation values was 

within 2%. For the basic profile loss coefficient, it was not possible to generate analogous 

polynomial equations within the expected constraints due to the complexity of the gradient, 

despite the use of higher-order polynomial equations. The values between nearby data points 

were interpolated by using a weighted mean approach.  

 

Profile loss ratio due to Reynolds number NprN was defined as in equation 1 and Figure 1. 

 

 
Figure 1 – profile loss due to Reynold’s number 

 

NprN =  0.9135 −  4.299 × 10 − 8 × ReN +   0.7864 × �
ks
b
� × 103

+   2.158 × 10−15 ×  ReN2 +   1.255 × 10−8  ×  ReN ×  �
ks
b
� × 103

−    0.136 × ��
ks
b
�  × 103�

2

+  1.333 × 10−14  ×  ReN2 × �
ks
b
� × 103

− 1.092 × 10−9 × ReN × ��
ks
b
� × 103�

2

+ 0.00787 × ��
ks
b
�  × 103�

3

   

1 

where  
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ks is the surface finish measured by equivalent sand grain size [345, 346]. Craig and Cox 

observed that the surface friction coefficient had greater significance at higher Reynold’s 

number values. b is the backbone length,  𝐶𝐶𝑎𝑎𝑁𝑁is the Reynold’s number, determined in equation 

2, wherein DhNwas the nozzle equivalent hydraulic diameter at the throat section, determined 

in equation 3. 

ReN =  
ϱ2C2DhN 

 μ2
 2 

 

DhN =  4∗Flow Area
Perimeter

 = 4∗(HtN∗thrN)
2(HtN+thrN)

 3 

 

The lift parameter 𝐹𝐹𝐿𝐿, represented the deflection of the working fluid by measuring the deviation 

of the fluid between the inlet and outlet angles, as given in equation 4 and Figure 2. Correcting 

the lift parameter for the pitch 𝑘𝑘 and backbone length b produced the modified lift coefficient 

𝐿𝐿𝐶𝐶𝑃𝑃, described by equation 5, which was a primary loss contributor. 

 
Figure 2 – Determining the lift parameter using deviation of flow 

 
 

𝐹𝐹𝐿𝐿𝑁𝑁 = 9.807 + 0.2042 × αNin  +  0.1345 × α2  +  0.004977 × αNin2  
−   0.004855 × αNin × α2 −  0.005104 × α22 +  3.081 × 10−5  × αNin3

− 0.0002772 × αNin2 × α2 +  0.0001862 × αNin × α22

+  7.86 × 10−5  × α23 − 3.341 × 10−7 × αNin4

+  3.035 × 10−7 ×  αNin3  ×  α2  +  1.758 × 10−6 ×  αNin2 × α22   
− 1.952 × 10−6 × αNin × α23 −  5.388 × 10−7 × α24

+  4.641 × 10−9 × αNin4 × α2  −   4.783 × 10−9 × αNin3 × α22

+   1.157 × 10−10 × αNin2 × α23 +   4.891 × 10−9 × αNin × α24

+    1.373 × 10−9 × α25  
 

4 

𝐶𝐶𝑃𝑃𝑁𝑁 =
𝐹𝐹𝐿𝐿𝑁𝑁 × 𝑘𝑘𝑁𝑁

𝑏𝑏𝑁𝑁
 

 

             5 
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where αNinis the fluid outlet angle. 

and α2is the fluid inlet angle at minimum loss angle. 

 

To determine the basic profile loss, a quadratic equation for each contraction ratio was 

prepared, as shown in equations 6 to 11. These values were adjusted for zero trailing edge 

thickness loss and assigned a weightage, as shown in equations 12 to 16. An increase in the 

Profile loss was noted by increasing the pitch to chord ratio, as in figure 3. 

 
Figure 3 – Basic profile loss derived from the lift coefficient 

 
For 𝐶𝐶𝐶𝐶𝑁𝑁 =1.0 

𝑍𝑍𝑜𝑜1 = 0.0278 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁3 −  0.3845 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁
2  + 1.7306𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁 − 1.0024 

 

6 

For 𝐶𝐶𝐶𝐶𝑁𝑁 =1.1 
𝑍𝑍𝑜𝑜2 = 0.016 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁3 −  0.2398 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁

2  + 1.1452 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁 − 0.531 
 

7 

For 𝐶𝐶𝐶𝐶𝑁𝑁 =1.3 
𝑍𝑍𝑜𝑜3 = 0.0102 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁3 −  0.1598 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁

2  + 0.7972 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁 − 0.2512 
 

8 

For 𝐶𝐶𝐶𝐶𝑁𝑁 =1.5 
𝑍𝑍𝑜𝑜4 = 0.0049 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁3 −  0.0701 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁

2  + 0.3212 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁 + 0.381 
 

9 

For 𝐶𝐶𝐶𝐶𝑁𝑁 =2.0 
𝑍𝑍𝑜𝑜5 =  0.0188 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁

2 − 0.2 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁 + 1.179 
 

10 

For 𝐶𝐶𝐶𝐶𝑁𝑁 =5.0 
𝑍𝑍𝑜𝑜6 =  0.0045 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁

2 − 0.0467 𝐿𝐿𝐶𝐶𝑃𝑃𝑁𝑁 + 0.5104 
 

11 

If 𝐶𝐶𝐶𝐶𝑁𝑁 ≤1.1, then 12 
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𝐻𝐻𝑃𝑃𝑏𝑏𝑁𝑁 × 𝑘𝑘𝑁𝑁 × 𝑘𝑘𝑎𝑎𝑎𝑎 α2
𝑏𝑏𝑁𝑁

= 𝑍𝑍𝑜𝑜1 ×
1.1 − 𝐶𝐶𝐶𝐶𝑁𝑁

1.1 − 1
+ 𝑍𝑍𝑜𝑜2 ×

𝐶𝐶𝐶𝐶𝑁𝑁 − 1
1.1 − 1

 

 
If 𝐶𝐶𝐶𝐶𝑁𝑁 >1.1 and ≤ 1.3, then 

𝐻𝐻𝑃𝑃𝑏𝑏𝑁𝑁 × 𝑘𝑘𝑁𝑁 × 𝑘𝑘𝑎𝑎𝑎𝑎 α2
𝑏𝑏𝑁𝑁

= 𝑍𝑍𝑜𝑜2 ×
1.3 − 𝐶𝐶𝐶𝐶𝑁𝑁
1.3 − 1.1

+ 𝑍𝑍𝑜𝑜3 ×
𝐶𝐶𝐶𝐶𝑁𝑁 − 1.1
1.3 − 1.1

 

 

13 

If 𝐶𝐶𝐶𝐶𝑁𝑁 >1.3 and ≤ 1.5, then 
𝐻𝐻𝑃𝑃𝑏𝑏𝑁𝑁 × 𝑘𝑘𝑁𝑁 × 𝑘𝑘𝑎𝑎𝑎𝑎 α2

𝑏𝑏𝑁𝑁
= 𝑍𝑍𝑜𝑜3 ×

1.5 − 𝐶𝐶𝐶𝐶𝑁𝑁
1.5 − 1.3

+ 𝑍𝑍𝑜𝑜4 ×
𝐶𝐶𝐶𝐶𝑁𝑁 − 1.3
1.5 − 1.3

 

 

14 

If 𝐶𝐶𝐶𝐶𝑁𝑁 >1.5 and ≤ 2, then 
𝐻𝐻𝑃𝑃𝑏𝑏𝑁𝑁 × 𝑘𝑘𝑁𝑁 × 𝑘𝑘𝑎𝑎𝑎𝑎 α2

𝑏𝑏𝑁𝑁
= 𝑍𝑍𝑜𝑜4 ×

2 − 𝐶𝐶𝐶𝐶𝑁𝑁
2 − 1.5

+ 𝑍𝑍𝑜𝑜5 ×
𝐶𝐶𝐶𝐶𝑁𝑁 − 1.5

2 − 1.5
 

 

15 

If 𝐶𝐶𝐶𝐶𝑁𝑁 >2 and ≤ 5, then 
𝐻𝐻𝑃𝑃𝑏𝑏𝑁𝑁 × 𝑘𝑘𝑁𝑁 × 𝑘𝑘𝑎𝑎𝑎𝑎 α2

𝑏𝑏𝑁𝑁
= 𝑍𝑍𝑜𝑜5 ×

5 − 𝐶𝐶𝐶𝐶𝑁𝑁
5 − 2

+ 𝑍𝑍𝑜𝑜6 ×
𝐶𝐶𝐶𝐶𝑁𝑁 − 2

5 − 2
 

16 

 

Profile loss due to trailing edge thickness 𝑁𝑁𝑃𝑃𝑜𝑜, derived from Stewart [347], as shown in equation 

17. An additional trailing edge incremental loss was derived, as seen in equation 18. 

 

𝑁𝑁𝑃𝑃𝑜𝑜𝑁𝑁 =  1.189 +  25.35 × �
𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

� −  0.05721 × α2  +  160.9 × �
𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

�
2

 

− 3.033 × �
𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

� × α2 +  0.005574 × α22 +  504.7 × �
𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

�
3

− 13.3 × �
𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

�
2

× α2  +  0.1267 × �
𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

� × α22  −  0.000195 × α23  

+  346.9 × �
𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

�
4
− 11.64 × �

𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

�
3

× α2 +  0.2035 × �
𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

�
2

× α22  

− 0.001499 × (
𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

) × α23 +  2.099 × 10 − 6 × α24     

17 

LossincrN =  172.2 × �
𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

�
2

 −  6.526 × (
𝑎𝑎𝑎𝑎𝑁𝑁
𝑘𝑘𝑁𝑁

)  +  0.05865   

 

18 

 
Where , 

𝑎𝑎𝑎𝑎𝑁𝑁is the trailing edge thickness; 

𝑘𝑘𝑁𝑁 is the profile pitch. 

 

Mach number loss for convergent profiles was applicable for the outlet isentropic Mach number 

greater than 1.1, as shown in equation 19, derived from Figure 4. It was a function of the Mach 

determiner MdetN and relative outlet isentropic Mach number 𝐶𝐶𝑎𝑎𝑐𝑐𝑀𝑀𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑟𝑟𝑃𝑃𝑜𝑜𝑜𝑜𝑠𝑠𝑟𝑟𝑜𝑜𝐵𝐵. 
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Figure 4 – Mach number loss for convergent blading 

 
𝛥𝛥𝐻𝐻𝑃𝑃𝑃𝑃𝑁𝑁 =  −26.67 +  68.09 × RelMachWoutisenN  +  0.3699 × MdetN  

− 56.65 × RelMachWoutisenN
2 −   0.9062 ×  RelMachWoutisenN  ×  MdetN  

+  0.002599 × MdetN
2 +  15.49  ×  RelMachWoutisenN

3   
+  0.5014 × RelMachWoutisenN

2  ×  MdetN  
− 0.001435 × RelMachWoutisenN  ×  MdetN

2  
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where 

MdetN = 𝑚𝑚𝑟𝑟𝑟𝑟𝑠𝑠𝑜𝑜𝑜𝑜(𝑜𝑜ℎ𝑟𝑟𝑁𝑁 +𝑜𝑜𝑟𝑟𝑁𝑁 )
𝑠𝑠𝑁𝑁

; 

 

 

𝐶𝐶𝑎𝑎𝑐𝑐𝑀𝑀𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑟𝑟𝑃𝑃𝑜𝑜𝑜𝑜𝑠𝑠𝑟𝑟𝑜𝑜𝐵𝐵 =  
 𝐺𝐺3𝑠𝑠 

𝑆𝑆𝑆𝑆𝑟𝑟𝑃𝑃𝑜𝑜𝐵𝐵 
 

 

 

Blade back radius loss Δ𝐻𝐻𝑃𝑃𝑠𝑠𝑟𝑟𝑁𝑁 was determined by the pitch to blade back radius ratio, profile 

loss increment Δ𝐻𝐻𝑃𝑃𝑠𝑠𝑟𝑟  and outlet isentropic Mach number 𝑀𝑀𝑎𝑎𝑎𝑎ℎ𝑟𝑟𝑃𝑃𝑜𝑜𝑜𝑜𝑠𝑠𝑟𝑟𝑜𝑜. It was applicable on 

outlet isentropic Mach numbers greater than 0.8, and has been defined in Figure 5 and 

equation 20. 

 

 
Figure 5 – Blade back radius ratio loss 
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ΔXpseN = − 9.176 +  93.52 × �
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2
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𝑏𝑏𝑁𝑁
�
3
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Secondary losses 
 
𝑁𝑁𝑆𝑆𝑚𝑚𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑁𝑁  indicated the secondary loss due to the aspect ratio, determined by the camber 

length and height, as shown in equation 21 and Figure 6. 𝐻𝐻𝑠𝑠𝑏𝑏𝑁𝑁  indicated the basic secondary 

loss factor which was a function of the relative velocities across the blading, pitch, lift parameter 

and backbone length, as shown in equation 22 and Figure 7.  
 

 

Figure 6 – Secondary loss aspect ratio factor 
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Figure 7 – Secondary loss and basic loss factor 
 

𝑁𝑁𝑆𝑆𝑚𝑚𝑠𝑠𝑃𝑃𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟𝑚𝑚𝑜𝑜𝑁𝑁 =  − 0.08718 × �
𝑏𝑏𝑁𝑁
ℎ𝑎𝑎𝑁𝑁

�
3

 −  0.08718 × �
𝑏𝑏𝑁𝑁
ℎ𝑎𝑎𝑁𝑁

�
2

+ 0.9544 × (
𝑏𝑏𝑁𝑁
ℎ𝑎𝑎𝑁𝑁

)  + 0.02289 
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𝐻𝐻𝑠𝑠𝑏𝑏𝑁𝑁 =  0.4842  +  0.4659  ×  VratiosqrN +  0.07775 × �
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APPENDIX 2  
 

Engineering Equation Solver (EES) Code for the Craig and Cox 
Loss Model 

 
The EES code using the Craig and Cox design point and Moustapha off-design point loss 

model has been presented below. The polynomial equations presented in Appendix 1 were 

used to determine turbine and cycle efficiency. 

 
Function noz_5(CR_n,Z_n1,Z_n2,Z_n3,Z_n4,Z_n5,Z_n6) 
 
If (CR_n<1.1) Then  
  
 A:= Z_n1*(1.1-CR_n)/(1.1-1)+(Z_n2)*((CR_n-1)/(1.1-1))   
Endif 
If(CR_n<1.3) AND (CR_n>=1.1) Then  
 A:=Z_n2*(1.3-CR_n)/(1.3-1.1)+(Z_n3)*((CR_n-1.1)/(1.3-1.1))  
Endif 
If (CR_n<1.5) AND (CR_n>=1.3) Then  
 A:=Z_n3*(1.5-CR_n)/(1.5-1.3)+(Z_n4)*((CR_n-1.3)/(1.5-1.3))  
Endif 
If (CR_n<2) AND (CR_n>=1.5) Then  
 A:=Z_n4*(2-CR_n)/(2-1.5)+(Z_n5)*((CR_n-1.5)/(2-1.5))  
Endif 
If (CR_n<5) AND (CR_n>=2.0) Then  
 A:=Z_n5*(5-CR_n)/(5-2)+(Z_n6)*((CR_n-2)/(5-2)) 
  
  
Else A:= Z_n6 
noz_5:=A    
End 
  
Function bl_5(CR_b,Z_b1,Z_b2,Z_b3,Z_b4,Z_b5,Z_b6)
  
 
If (CR_b<1.1) Then  
 B:= Z_b1*(1.1-CR_b)/(1.1-1)+(Z_b2)*((CR_b-1)/(1.1-1))   
Endif 
If(CR_b<1.3) AND (CR_b>=1.1) Then  
 B:=Z_b2*(1.3-CR_b)/(1.3-1.1)+(Z_b3)*((CR_b-1.1)/(1.3-1.1))  
Endif 
If (CR_b<1.5) AND (CR_b>=1.3) Then  
 B:=Z_b3*(1.5-CR_b)/(1.5-1.3)+(Z_b4)*((CR_b-1.3)/(1.5-1.3))  
Endif 
If (CR_b<2) AND (CR_b>=1.5) Then  
 B:=Z_b4*(2-CR_b)/(2-1.5)+(Z_b5)*((CR_b-1.5)/(2-1.5))  
Endif 
If (CR_b<5) AND (CR_b>=2.0) Then  
 B:=Z_b5*(5-CR_b)/(5-2)+(Z_b6)*((CR_b-2)/(5-2))  
  
Else B:=Z_b6 
 bl_5:=B    
End 
  
Function noz_7(ZZ_n,ZZ_n1,ZZ_n2,ZZ_n3) 
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If (ZZ_n<=0.4) Then  
A:= ZZ_n1 
Endif 
  
If(ZZ_n<0.8) AND (ZZ_n>0.4)  Then  
 A:=ZZ_n1*(ZZ_n2-ZZ_n1)*(ZZ_n-0.4)/(0.8-0.4)  
Endif 
  
If (ZZ_n<1.2) AND (ZZ_n>=0.8) Then  
 A:=ZZ_n2*(ZZ_n3-ZZ_n2)*(ZZ_n-0.8)/(1.2-0.8)  
Endif 
  
If (ZZ_n>=1.2) Then  
 A:=ZZ_n3 
Endif 
  
noz_7:=A    
End 
 
"Total loss is the sum of Group 1 and Group 2 Losses" 
  
"Group 1 Losses include Nozzle Profile Loss, Nozzle Secondary Loss, Nozzle Annulus Loss, 
Blade Profile Loss, Blade Secondary Loss and Blade Annulus loss" 
  
"Group 2 losses include Nozzle Gland Leakage loss, balance hole loss Tip leakage loss, 
Lacing Wire Loss, Wetness Loss Disc Windage Loss, Partial Admission Loss" 
  
"Group 1 losses can be divided in 2 parts - Nozzle losses and Blade losses" 
  
"Further Nozzle losses have 3 parts- Primary , Secondary and Annulus. Blade losses also 
have 3 parts- Primary , Secondary and Annulus." 
  
"Terminology 
1 is before Nozzle 
2 is between Nozzle and Blade 
3 is after Blade" 
  
"INPUTS" 
  
"Mass flow Rate in TPH  through entire turbine,Hub Diameter in m ,RPM" 
MFR=10 
D_hub= 0.660  
N=3000  
DoR=0.1 
 
" R245fa Conditions before stage. P in ata , Temp in Celsius" 
P_1=16 
T_1=160 
  
"R245fa Parameters After Stage. P in ata , Temp in Celsius" 
 P_3 = 2 
T_aftcondenser=28 
Boiler_Heatinput = 5.5*(178) 
  
"Nozzle" 
No_Nozzles=40 
alpha_2=14  "Nozzle exit Angle / Fluid outlet angle 
from Nozzle, used in fig 4 " 
Ht_N= 0.02524 "Nozzle Height " 
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thr_N=0.004978 " Throat Width" 
s_N=0.0294      "Nozzle pitch" 
b_N =0.07364 "Nozzle backbone length (Camber 
length) " 
te_N=0.0003  "Nozzle Trailing edge thickness" 
leadedgedia_N = 0.003236 " Nozzle leading edge dia" 
alphametal_Nout = 14 " Nozzle exit metal angle " 
alphametal_Nin = 90 " Nozzle inlet metal angle" 
stagger_N = 30 " nozzle stagger angle" 
  
"Blade" 
Overlap=0.00254 "Overlap of Blade over Nozzle" 
Ht_B=Ht_N+Overlap "Blade Height" 
thr_B=0.0035299 " Throat Width" 
s_B=0.0112268 "Blade pitch" 
b_B=0.0217 "Blade backbone length (Camber length)" 
te_B=0.0003  "Blade Trailing edge thickness" 
  
No_Blades=90 "No of Blades" 
thk_shr=0.003 "shroud thickness" 
Clearance_ShroudCasing=0.0254 "Shroud to casing clearance"  
E_nb=0.024 "Nozzle Blade Gap" 
alphametal_Bin = 23 " Blade inlet metal angle" 
alphametal_Bout=45 
leadedgedia_B = 0.01 
stagger_B = 30 
  
"Equivalent Grain Size ks*1000/b"  
ks=2 
b=100000 
 
 "Fluid inlet angle to Nozzle" 
alpha_Nin=90 
 
 
"CALCULATIONS" 
  
"Loss Composition"  
 
 "Nozzle Primary Loss" 
G_pN=(X_pbN*N_prN*N_piN*N_ptN)+lossincr_N+delX_PseN+delX_pmN 
 
 "Nozzle Secondary Loss"  
G_sN= (N_prN*N_SaspectratN*X_sbN) * (N_siN)  

 
"Blade Primary Loss"  

G_pB=(X_pbB*N_prB*N_piB*N_ptB)+lossincr_B+delX_PseB+delX_pmB
  
 "Blade Secondary Loss" 
G_sB= (N_prB*N_SaspectratB*X_sbB) * (N_siB) 
  
 "Annulus Loss" 
G_a=X_a1  
  
G_Group1Nozzle= (G_pN+G_sN+G_a)/100  
G_Group1Blade = (G_pB+G_sB+G_a*(C_3)^2/(V_3)^2)/100 
G_total= (G_Group1Nozzle+G_Group1Blade) 
   
MFR_persec=MFR*1000/3600 
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SpVol_1=volume(R245fa,T=T_1,P=P_1) 
Vol_1 = SpVol_1*MFR_persec 
Inlet_Area=No_Nozzles*s_N*Ht_N 
C_1=Vol_1 / Inlet_Area  
SpVol_2=volume(R245fa,T=T_2,P=P_2) 
Vol_2 = SpVol_2*MFR_persec 
Vol_2eachNozzle=Vol_2/No_Nozzles 
SpVol_3=volume(R245fa,T=T_3,P=P_3) 
Vol_3 = SpVol_3*MFR_persec 
Vol_3eachNozzle=Vol_3/No_Nozzles 
  
"Thermodynamic Calculations" 
  
"Working fluid Properties" 
H_01=enthalpy(R245fa,T=T_1,P=P_1) "Enthalpy of Inlet velocity C_1 is ignored 
here" 
H_1=H_01 "Static Enthalpy =  Stagnation Enthalpy" 
S_01=entropy(R245fa,T=T_1,P=P_1) 
H_2s=H_1s*DoR + (1-DoR)*H_3s "Isentropic Enthalpy after nozzle" 
P_2s=pressure(R245fa,h=H_2s,s=S_2s) 
T_2s=temperature(R245fa,h=H_2s,s=S_2s) 
S_2s=S_01 
C_2s=sqrt(2*(H_01-H_2s))*(sqrt(1000)) 
C_w2s=(C_2s*cos(alpha_2))  
C_a2s=(C_2s*sin(alpha_2)) 
C_2=sqrt( 2*1000* (H_01-H_2s)/(1+G_Group1Nozzle)  ) 
C_w2=C_2*cos(alpha_2) 
C_a2=C_2*sin(alpha_2) 
H_02=H_2+(0.5*(C_2)^2)/1000 
  
S_3s=S_2s 
H_1s=H_01 "assuming Isentropic expansion" 
H_3s=enthalpy(R245fa,s=S_3s,P=P_3) 
T_3s=temperature(R245fa,P=P_3,h=H_3s) 
 
"Assuming Complete isentropic Stage"  
H_2=H_2s +G_Group1Nozzle*((C_2s)^2)/2000 
P_2=P_2s 
T_2=temperature(R245fa,P=P_2,h=H_2) 
S_2=entropy(R245fa,P=P_2,h=H_2) 
 
"Speed of sound"  
SS_outN=soundspeed(R245fa,T=T_2,P=P_2) 
SS_outB=soundspeed(R245fa,T=T_3,P=P_3) 
  
"Mean, Tip Diameter" 
D_mean=D_hub+Ht_B 
D_tip= D_hub+2*Ht_B+2*thk_shr 
 
"Nozzle Throat Area" 
TotalThroatArea_N=No_Nozzles*Ht_N*thr_N  
AreaPer_N=Ht_N*thr_N 
  
"Blade Throat Area" 
TotalThroatArea_B=No_Blades*Ht_B*thr_B 
  
"Velocity Triangle Nozzle Calculation" 
U=pi*D_mean*N/60 
U_tip = pi*D_tip*N/60 
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V_2=sqrt((C_2)^2+(U)^2-(2*C_2*U*cos(alpha_2))) 
V_w2=(C_2*cos(alpha_2))-U 
V_a2=sqrt((V_2)^2-(V_w2)^2) 
  
V_2s=sqrt((C_2s)^2+(U)^2-(2*C_2s*U*cos(alpha_2))) 
V_w2s=(C_2s*cos(alpha_2))-U 
V_a2s=sqrt((V_2s)^2-(V_w2s)^2) 
  
beta_2 =arctan(V_a2/V_w2) 
UVRatio=U/C_2s 
 
"Velocity triangle tip values" 
V_2tip=sqrt((C_2)^2+(U_tip)^2-(2*C_2*U_tip*cos(alpha_2))) 
V_w2tip=(C_2*cos(alpha_2))-U_tip 
V_a2tip=sqrt((V_2)^2-(V_w2tip)^2) 
  
"Velocity Triangle Blade Calculation" 
beta_3=beta_2 
  
"Relative velocity after blade" 
V_3=sqrt((V_2^2+2000*(H_2-H_3s)/(1+G_Group1Blade))) 
V_w3=V_3*cos(beta_3) 
V_w3tip=V_3*cos(beta_3) 
  
"Power and Efficiency" 
MFRKgperSec=MFR/3.6 
ActualWorkDoneperKG=U* (V_w2+V_w3)/1000 
Power= MFRKgperSec*U* (V_w2+V_w3)/1000 
  
"Total to Total efficiency" 
Workideal_TT=MFRKgperSec*(H_01-H_3s) 
efficiencyTT=Power/Workideal_TT 
  
"Total to Static Efficiency" 
V_a3=V_3*sin(beta_3) 
C_3=sqrt((V_w3-U)^2+(V_a3)^2) 
C_w3=(C_3*cos(alpha_3)) 
C_a3=V_a3 
alpha_3=arcsin(c_a3/c_3) 
  
Workideal_TS=MFRKgperSec*(H_01-H_3s+((C_3)^2)/2000) 
EfficiencyTS=Power/Workideal_TS 
  
"Flow Coefficient" 
PHI_FlowCoeff= C_a2/U 
 
"Load Coefficient" 
PSI_LoadCoeff=(C_w2-C_w3)/U 
  
"Ideal velocity after blade"  
V_3s=V_2 + sqrt(2*1000*(H_2- H_3s)) 
V_w3s=V_3s*cos(beta_2) 
V_a3s=V_3s*sin(beta_2) 
C_3s=sqrt((V_w3s-U)^2+(V_a3s)^2) 
C_w3s=C_3s*cos(beta_2)  
C_a3s=C_3s*sin(beta_2) 
 
"After Blade" 
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H_3= H_2+ G_Group1Blade*(C_3)^2/2000 
T_3=temperature(R245fa,h=H_3,s=S_3) 
S_3=entropy(R245fa,P=P_3,h=H_3) 
LeavingLoss=((C_3)^2)/2000 
DELTAH_13isen=(H_1)-(H_3s) 
  
"Nozzle Reynolds Number" 
rho_N=density(R245fa,P=P_2,s=S_01) 
mu_n=viscosity(R245fa,P=P_2,h=H_1)  
Re_n=(rho_N*(Vol_2eachNozzle/AreaPer_N)*D_hydrN)/mu_n 
  
"Nozzle Hydraulic Diameter" 
D_hydrN=(4*Ht_N*thr_N)/(2*(Ht_N+thr_N)) 
  
"Blade Reynolds Number" 
rho_b=density(R245fa,P=P_3,s=S_3) 
mu_b=viscosity(R245fa,P=P_3,s=S_3) 
Re_b=(rho_b*(Vol_2eachNozzle/AreaPer_N)*D_hydrB)/mu_b 
  
"Blade Hydraulic Diameter" 
D_hydrB=(4*Ht_B*thr_B)/(2*(Ht_B+thr_B)) 
  
"Off Design" 
 alphametal_Ninaxial = 90 - alphametal_Nin 
alphametal_Noutaxial = 90 - alphametal_Nout  
stagger_Naxial = 90 -  stagger_N 
   
alphametal_Binaxial = 90 - alphametal_Bin 
alphametal_Boutaxial = 90 -  alphametal_Bout 
stagger_Baxial = 90 - stagger_B  
  
incidence= alphametal_Noutaxial - alphametal_Binaxial   
  
  
"Ratio of Nozzle Area to Blade Area" 
Area_NB = TotalArea_N/TotalArea_B 
TotalArea_N=(3.14*((D_mean/2)+(Ht_N/2))^2)-(3.14*((D_mean/2)-(Ht_N/2))^2) 
TotalArea_B=(3.14*((D_mean/2)+(Ht_B/2))^2)-(3.14*((D_mean/2)-(Ht_B/2))^2) 
  
"Ratio of Blade Area to Casing Area" 
TotalArea_Shrouded=(3.14*(D_tip)^2)/4 
TotalArea_Casing=(3.14*(D_tip+(2*Clearance_ShroudCasing))^2)/4 
  
 
"Pressure Ratio" 
PressureRatio = P_1/P_3 
  
"Specific Speed" 
N_s=(N/60)*sqrt(Vol_3)/(DELTAH_13isen*1000^0.75) 
  
"Size Parameter" 
SizeParameter=sqrt(Vol_3)/(DELTAH_13isen^0.25) 
  
"Volume Ratio" 
VolumeRatio= Vol_3/ Vol_1  
  
"NOZZLE LOSSES" 
  
"Profile loss Ratio" 
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  ValN_prN= 0.9135 +(-4.299)*(10)^(-8)*Re_n +0.7864*ks/b + 2.158*(10)^(-15)*(Re_n)^2 + 
1.255*(10)^(-8) *Re_n*ks/b + (-0.136)*((ks/b)^2) + 1.333*(10)^(-14)*(Re_n)^2*ks/b + (-
1.092)*(10)^(-9)*Re_n*(ks/b)^2 + 0.00787*(ks/b)^3 
  
N_prN=max(0,ValN_prN) 
  
"Lift Parameter" 
"Fluid inlet Angle at minimum Loss Condition (alpha-i_min) is 90" 
 ValF_LN = 9.807+ 0.2042*alpha_2 + 0.1345*alpha_Nin + 0.004977*(alpha_2)^2  -
0.004855*alpha_2*alpha_Nin  -0.005104*(alpha_Nin)^2 + 3.081*(10)^(-5)*(alpha_2)^3 -
0.0002772*(alpha_2)^2*alpha_Nin + 0.0001862*alpha_2*(alpha_Nin)^2 + 7.86*(10)^(-
5)*(alpha_Nin)^3 -3.341*(10)^(-7)*(alpha_2)^4 + 3.035*(10)^(-7)*(alpha_2)^3*alpha_Nin + 
1.758*(10)^(-6)*(alpha_2)^2*(alpha_Nin)^2 -1.952*(10)^(-6)*alpha_2*(alpha_Nin)^3 + -
5.388*(10)^(-7)*(alpha_Nin)^4 + 4.641*(10)^(-9)*(alpha_2)^4*(alpha_Nin) - 4.783*(10)^(-
9)*(alpha_2)^3*(alpha_Nin)^2 + 1.157*(10)^(-10)*(alpha_2)^2*(alpha_Nin)^3 + 4.891*(10)^(-
9)*(alpha_2)*(alpha_Nin)^4 + 1.373*(10)^(-9) *(alpha_Nin)^5 
  
F_LN=max(0,ValF_LN) 
 
"Modified Lift Coefficient & Basic Profile Loss" 
 LC_mN=F_LN*s_N/b_N 
  
"1 " 
 Z_n1=0.0278*LC_mN^3-0.3845*LC_mN^2+1.7306*LC_mN-1.0024 
"1.1" 
Z_n2=0.016*LC_mN^3-0.2398*LC_mN^2+1.1452*LC_mN-0.531 
"1.3" 
Z_n3=0.0102*LC_mN^3-0.1598*LC_mN^2+0.7972*LC_mN-0.2512 
"1.5" 
Z_n4=0.0049*LC_mN^3 - 0.0701*LC_mN^2 + 0.3212*LC_mN + 0.381 
"2" 
Z_n5= 0.0188*LC_mN^2 - 0.2*LC_mN + 1.179 
"5" 
Z_n6 = 0.0045*LC_mN^2 - 0.0467*LC_mN + 0.5104 
  
(ValX_pbn*s_N*sin(alpha_2))/b_N =noz_5(CR_n,Z_n1,Z_n2,Z_n3,Z_n4,Z_n5,Z_n6) 
  
X_pbN=max(0,ValX_pbn) 
 
"Trailing edge Thickness loss" 
tetopitchratio_N=te_N/s_N 
  
ValN_ptN =  1.189 + 25.35*tetopitchratio_N +  -0.05721*alpha_2 + 
160.9*(tetopitchratio_N)^2 +-3.033*tetopitchratio_N*alpha_2 + 0.005574*(alpha_2)^2 +  
504.7 *(tetopitchratio_N)^3 -13.3 *(tetopitchratio_N)^2*(alpha_2) +  
0.1267*(tetopitchratio_N)*(alpha_2)^2 + -0.000195*(alpha_2)^3 +  346.9*(tetopitchratio_N)^4 
+ -11.64*(tetopitchratio_N)^3*alpha_2+ 0.2035*(tetopitchratio_N)^2*(alpha_2)^2 +   -
0.001499*(tetopitchratio_N)*(alpha_2)^3 +   2.099e-06 *(alpha_2)^4 
  
N_ptN=max(1,ValN_ptN) 
  
"Trailing Edge thickness Loss increment"  
Vallossincr_N =172.2*(tetopitchratio_N)^2 + -6.526*(tetopitchratio_N) + 0.05865 
   
lossincr_N=max(0,Vallossincr_N) 
 
"contraction Ratio" 
Sinalpha_Nin=sin(alpha_Nin) 
Sinalpha_2=sin(alpha_2) 
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CR_DeterminerN=1-(Sinalpha_2/Sinalpha_Nin) 
ZZ_n=(s_N/b_N) 
  
"0.4" 
 ZZ_n1=  2.8225*CR_DeterminerN^3+ 0.9693*CR_DeterminerN^2+ 
0.3523*CR_DeterminerN + 1.107 
"0.8" 
ZZ_n2 = 1.6255*CR_DeterminerN^3 + 1.1095*CR_DeterminerN^2 + 
0.2963*CR_DeterminerN + 1.081 
  
"1.2" 
ZZ_n3=  1.4543*CR_DeterminerN^2 + 0.2455*CR_DeterminerN+ 1.0402 
  
ValCR_n=noz_7(ZZ_n,ZZ_n1,ZZ_n2,ZZ_n3) 
 
CR_n=max(1,ValCR_n) 
  
"Mach No Loss" 
 RelMachW_outisenN=C_2s/SS_outN  
Mach_determinerN=arcsin((thr_N+te_N)/s_N) 
  
ValdelX_pmN =-26.67 + 68.09*RelMachW_outisenN +0.3699*Mach_determinerN +-
56.65*(RelMachW_outisenN)^2 + -0.9062*RelMachW_outisenN*Mach_determinerN 
+0.002599*(Mach_determinerN)^2 + 15.49*(RelMachW_outisenN)^3  + 
0.5014*(RelMachW_outisenN)^2*(Mach_determinerN) +  -
0.001435*(RelMachW_outisenN)*(Mach_determinerN)^2 
  
delX_pmN=max(0,ValdelX_pmN) 
  
"Blade back radius Loss/ Profile Loss" 
 Mach_outisenN = C_2S/SS_outN 
   
ValdelX_PseN = -9.176 + 93.52 *(s_N/b_N) + 11.15 *Mach_outisenN + -197.2*(s_N/b_N)^2 
+ -140.5*(s_N/b_N)*Mach_outisenN + 4.793*(Mach_outisenN)^2 + 88.67 *(s_N/b_N)^3 + 
261.3*(s_N/b_N)^2*(Mach_outisenN) + 34.38*(s_N/b_N)*(Mach_outisenN)^2 + -
8.748*(Mach_outisenN)^3 + -83.59 *(s_N/b_N)^3*(Mach_outisenN) + -56.58 
*(s_N/b_N)^2*(Mach_outisenN)^2 + 10.13*(s_N/b_N)*(Mach_outisenN)^3 + 
2.157*(Mach_outisenN)^4 
  
delX_PseN=max(0,ValdelX_PseN)    
  
"Secondary Loss Aspect Ratio Factor" 
ValN_SaspectratN =  0.006704*(b_N/Ht_N)^3  - 0.08718*(b_N/Ht_N)^2 + 0.9544*(b_N/Ht_N) 
+0.02289 
  
N_SaspectratN = max(1,ValN_SaspectratN) 
  
"Basic Secondary Loss Factor" 
 V_ratiosqrN=(C_1/C_2)^2 
  
ValX_sbN=  0.4842  + 0.4659  *V_ratiosqrN + 0.07775*(F_LN*s_N/b_N) + - 0.2736 
*(V_ratiosqrN)^2 + 1.694 *(V_ratiosqrN)*(F_LN*s_N/b_N) + 0.04304*(F_LN*s_N/b_N)^2 + -
0.05759*(V_ratiosqrN)^2*(F_LN*s_N/b_N) + 0.01489*(V_ratiosqrN)*(F_LN*s_N/b_N)^2 + - 
0.002299*(F_LN*s_N/b_N)^3 
  
X_sbN=max(1,ValX_sbN) 
   
"BLADE LOSSES” 
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"Profile loss Ratio" 
 ValN_prB= 0.9135 +(-4.299)*(10)^(-8)*Re_b +0.7864*ks/b + 2.158*(10)^(-15)*(Re_b)^2 + 
1.255*(10)^(-8) *Re_b*ks/b + (-0.136)*((ks/b)^2) + 1.333*(10)^(-14)*(Re_b)^2*ks/b + (-
1.092)*(10)^(-9)*Re_b*(ks/b)^2 + 0.00787*(ks/b)^3 
  
N_prB=max(0,ValN_prB) 
   
"Lift Parameter" 
"Fluid inlet Angle at minimum Loss Condition (alpha-i_min) is 90" 
 ValF_LB = 9.807+ 0.2042*beta_3 + 0.1345*beta_2 + 0.004977*(beta_3)^2  -
0.004855*beta_3*beta_2  -0.005104*(beta_2)^2 + 3.081*(10)^(-5)*(beta_3)^3 -
0.0002772*(beta_3)^2*beta_2 + 0.0001862*beta_3*(beta_2)^2 + 7.86*(10)^(-5)*(beta_2)^3 -
3.341*(10)^(-7)*(beta_3)^4 + 3.035*(10)^(-7)*(beta_3)^3*beta_2 + 1.758*(10)^(-
6)*(beta_3)^2*(beta_2)^2 -1.952*(10)^(-6)*beta_3*(beta_2)^3 + -5.388*(10)^(-7)*(beta_2)^4 
+ 4.641*(10)^(-9)*(beta_3)^4*(beta_2) - 4.783*(10)^(-9)*(beta_3)^3*(beta_2)^2 + 
1.157*(10)^(-10)*(beta_3)^2*(beta_2)^3 + 4.891*(10)^(-9)*(beta_3)*(beta_2)^4 + 
1.373*(10)^(-9) *(beta_2)^5 
  
F_LB=max(0,ValF_LB) 
  
"Modified Lift Coefficient & Basic Profile Loss" 
LC_mB=F_LB*s_B/b_B 
  
"1 " 
 Z_b1=0.0278*LC_mB^3-0.3845*LC_mB^2+1.7306*LC_mB-1.0024 
"1.1" 
Z_b2=0.016*LC_mB^3-0.2398*LC_mB^2+1.1452*LC_mB-0.531 
"1.3" 
Z_b3=0.0102*LC_mB^3-0.1598*LC_mB^2+0.7972*LC_mB-0.2512 
"1.5" 
Z_b4=0.0049*LC_mB^3 - 0.0701*LC_mB^2 + 0.3212*LC_mB + 0.381 
"2" 
Z_b5= 0.0188*LC_mB^2 - 0.2*LC_mB + 1.179 
"5" 
Z_b6 = 0.0045*LC_mB^2 - 0.0467*LC_mB + 0.5104 
  
(ValX_pbb*s_B*sin(beta_3))/b_B =bl_5(CR_b,Z_b1,Z_b2,Z_b3,Z_b4,Z_b5,Z_b6) 
  
X_pbb=max(0,ValX_pbb) 
  
"Trailing edge Thickness loss" 
tetopitchratio_B=te_B/s_B 
  
ValN_ptB =  1.189 + 25.35*tetopitchratio_B +  -0.05721*beta_3 + 160.9*(tetopitchratio_B)^2 
+-3.033*tetopitchratio_B*beta_3 + 0.005574*(beta_3)^2 +  504.7 *(tetopitchratio_B)^3 -13.3 
*(tetopitchratio_B)^2*(beta_3) +  0.1267*(tetopitchratio_B)*(beta_3)^2 + -
0.000195*(beta_3)^3 +  346.9*(tetopitchratio_B)^4 + -11.64*(tetopitchratio_B)^3*beta_3+ 
0.2035*(tetopitchratio_B)^2*(beta_3)^2 +   -0.001499*(tetopitchratio_B)*(beta_3)^3 +   
2.099e-06 *(beta_3)^4 
  
N_ptB=max(1,ValN_ptB) 
  
"Trailing Edge thickness Loss increment"  
Vallossincr_B =172.2*(tetopitchratio_B)^2 + -6.526*(tetopitchratio_B) + 0.05865 
  
lossincr_B=max(0,Vallossincr_B) 
  
"Contraction Ratio" 
 Sinbeta_2=sin(beta_2) 
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Sinbeta_3=sin(beta_3) 
CR_DeterminerB=1-(Sinbeta_3/Sinbeta_2) 
  
ValCR_b= 1.098 + 0.7112*CR_DeterminerB + -
0.02163*(s_B/b_B)+2.549*(CR_DeterminerB)^2 +-0.8594*CR_DeterminerB*(s_B/b_B)  +  -
0.008569*(s_B/b_B) ^2 
  
CR_b=max(1,ValCR_b) 
  
"Mach No Loss" 
RelMachW_outisenB=V_3s/SS_outB  
  
Mach_determinerB=arcsin((thr_B+te_B)/s_B) 
  
ValdelX_pmB =-26.67 + 68.09*RelMachW_outisenB +0.3699*Mach_determinerB +-
56.65*(RelMachW_outisenB)^2 + -0.9062*RelMachW_outisenB*Mach_determinerB 
+0.002599*(Mach_determinerB)^2 + 15.49*(RelMachW_outisenB)^3  + 
0.5014*(RelMachW_outisenB)^2*(Mach_determinerB) +  -
0.001435*(RelMachW_outisenB)*(Mach_determinerB)^2 
  
delX_pmB=max(0,ValdelX_pmB) 
  
"Blade back radius Loss/ Profile Loss"  
Mach_outisenB = C_3s/SS_outB  
  
ValdelX_PseB = -9.176 + 93.52 *(s_B/b_B) + 11.15 *Mach_outisenB + -197.2*(s_B/b_B)^2 + 
-140.5*(s_B/b_B)*Mach_outisenB + 4.793*(Mach_outisenB)^2 + 88.67 *(s_B/b_B)^3 + 
261.3*(s_B/b_B)^2*(Mach_outisenB) + 34.38*(s_B/b_B)*(Mach_outisenB)^2 + -
8.748*(Mach_outisenB)^3 + -83.59 *(s_B/b_B)^3*(Mach_outisenB) + -56.58 
*(s_B/b_B)^2*(Mach_outisenB)^2 + 10.13*(s_B/b_B)*(Mach_outisenB)^3 + 
2.157*(Mach_outisenB)^4 
     
delX_PseB=max(0,ValdelX_PseB) 
  
"Secondary Loss Aspect Ratio Factor" 
ValN_SaspectratB =  0.006704*(b_B/Ht_B)^3  - 0.08718*(b_B/Ht_B)^2 + 0.9544*(b_B/Ht_B) 
+0.02289 
  
N_SaspectratB=max(1,ValN_SaspectratB) 
"Basic Secondary Loss Factor" 
ValV_ratiosqrB=(V_2/V_3)^2  
  
V_ratiosqrB =min(1,ValV_ratiosqrB) 
  
ValX_sbB =  0.4842  + 0.4659  *V_ratiosqrB + 0.07775*(F_LB*s_B/b_B) + - 0.2736 
*(V_ratiosqrB)^2 + 1.694 *(V_ratiosqrB)*(F_LB*s_B/b_B) + 0.04304*(F_LB*s_B/b_B)^2 + -
0.05759*(V_ratiosqrB)^2*(F_LB*s_B/b_B) + 0.01489*(V_ratiosqrB)*(F_LB*s_B/b_B)^2 + - 
0.002299*(F_LB*s_B/b_B)^3 
  
X_sbB = max(1,ValX_sbB)  
  
"Annulus Wall Loss/ Uncontrolled Expansion loss" 
ValX_a1 = 9.424   + - 1.539*(10)^(-9)*(Area_NB) + - 12.98*(E_nb/Ht_N) + 1.932*(10)^(-
9)*(Area_NB)^2 + 3.352*(10)^(-10)*(Area_NB)*(E_nb/Ht_N) + 14.53*(E_nb/Ht_N)^2 + -
8.973*(10)^(-10)*(Area_NB)^3 + -3.416*(10)^(-10)*(Area_NB)^2*(E_nb/Ht_N)+ -2.542*(10)^(-
11)*(Area_NB)*(E_nb/Ht_N)^2 +-3.81*(E_nb/Ht_N)^3 + (2.244)*(10)^(-
10)*(Area_NB)^3*(E_nb/Ht_N)+ -3.54*(10)^(-11)*(Area_NB)^2*(E_nb/Ht_N)^2 + 9.455e-
12*(Area_NB)*(E_nb/Ht_N)^3 +0.3394*(E_nb/Ht_N)^4 
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  X_a1 = max(0,ValX_a1) 
  
 
" OFF-DESIGN MOUSTAPHA LOSS MODEL"  
  
" Nozzle Primary Off design loss" 
X_NPoffdesign = ((leadedgedia_N/s_N)^(-1.6)) * (cos (alphametal_Ninaxial ) / 
cos(alphametal_Noutaxial))^(-2) * incidence 
  
  
"X__NPoff design should be between 0 and +800" 
 del_phiNoffdesign=sqrt( (0.778 * 10^(-5) * X_NPoffdesign) + 0.56 * 10^(-7) * 
(X_NPoffdesign)^2 + (0.4 * 10^(-10) * (X_NPoffdesign)^3) + 2.054*10^(-19)) 
  
ValN_piN = ((1-(stagger_Naxial-1)/2)*(mach_outisenN)^2* (1/(del_phiNoffdesign)^2-1)^((-
stagger_Naxial)/(stagger_Naxial-1))-1)/ (1 - (1+((stagger_Naxial - 1)/2)* 
(mach_outisenN)^2)^((-stagger_Naxial)/(stagger_Naxial-1))) 
  
N_piN=abs(ValN_piN) 
  
"Nozzle Secondary Offdesign loss" 
N_siN = (2.718)^(0.9*X_NSoffdesign) + 13* (X_NSoffdesign)^2 + 400 * (X_NSoffdesign)^4 
  
X_NSoffdesign = (incidence/ (180 - (alphametal_Ninaxial  + alphametal_Noutaxial)))* ((cos 
(alphametal_Ninaxial ) / cos(alphametal_Noutaxial))^(-1.5) )*((leadedgedia_N/s_N)^(-0.3)) 
  
 " Blade Primary Off design loss" 
X_BPoffdesign = ((leadedgedia_B/s_B)^(-1.6)) * (cos (alphametal_Binaxial ) / 
cos(alphametal_Boutaxial))^(-2) * incidence 
  
"X__BPoff design should be between 0 and +800" 
 del_phiBoffdesign=sqrt( (0.778 * 10^(-5) * X_BPoffdesign) + 0.56 * 10^(-7) * 
(X_BPoffdesign)^2 + (0.4 * 10^(-10) * (X_BPoffdesign)^3) + 2.054*10^(-19)) 
  
ValN_piB = ((1-(stagger_Baxial-1)/2)*(mach_outisenB)^2* (1/(del_phiBoffdesign)^2-1)^((-
stagger_Baxial)/(stagger_Baxial-1))-1)/ (1 - (1+((stagger_Baxial - 1)/2)* 
(mach_outisenB)^2)^((-stagger_Baxial)/(stagger_Baxial-1))) 
   
N_piB=abs(ValN_piB) 
  
"Nozzle Secondary Offdesign loss"  
N_siB = (2.718)^(0.9*X_BSoffdesign) + 13* (X_BSoffdesign)^2 + 400 * (X_BSoffdesign)^4 
  
X_BSoffdesign = (incidence/ (180 - (alphametal_Binaxial  + alphametal_Boutaxial)))* ((cos 
(alphametal_Binaxial ) / cos(alphametal_Boutaxial))^(-1.5) )*((leadedgedia_B/s_B)^(-0.3)) 
  
“ANNULUS LOSSES” 
"Shroud Loss" 
A_k=TotalArea_Casing - TotalArea_Shrouded  
A_t=TotalThroatArea_B  
x=Blade_TipLeakageCoeff  
y= (Overlap/2)/Ht_B 
si=V_3/V_2"  
"Moving blade velocity coefficient"  
F_k = 0.1025 + 0.8093*x + - 1.928*y + - 0.3397*x^2 + - 8.332*x*y + 18.59*y^2 + 5.272*x^2*y 
+ 13.68*x*y^2 + - 35.69*y^3 
Blade_TipLeakageCoeff = (((1-(si)^2)/(si)^2)+((V_w3tip)^2-(V_w2tip)^2)/(V_w3tip)^2)  
(DELTAeta_Shroud) =(F_k)*(A_k)/(A_t)*(eta_afterUncontrolledExpLoss)" 
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 "CYCLE EFFICIENCY" 
 
"1 After phase change Condenser 2" 
P_aftcondenser=p_sat(R245fa,T=T_aftcondenser) 
H_aftcondenser=enthalpy(R245fa,P=P_aftcondenser,x=0) 
S_aftcondenser=entropy(R245fa,P=P_aftcondenser,x=0) 
  
"2 After Pump " 
P_pump=P_1  
S_pump=entropy(R245fa,P=P_1,T=T_pump) 
H_pump=enthalpy(R245fa,P=P_pump,T=T_pump) 
T_pump = T_aftcondenser + 4.74 
  
"3 After Economiser" 
P_economiser=P_pump 
T_economiser = T_boiler- 1 
H_economiser = enthalpy(R245fa,P=P_economiser,T=T_economiser) 
S_economiser = entropy(R245fa,P=P_economiser,T=T_economiser) 
  
"4 After Boiler" 
P_boiler=P_pump 
T_boiler= t_sat(R245fa,P=P_boiler) 
H_boiler=enthalpy(R245fa,P=P_boiler,x=1) 
S_boiler=entropy(R245fa,P=P_boiler,x=1) 
  
"5 After Turbine"  
"All data taken from Loss model" 
   
" 6 After desuperheating Condenser" 
P_aftmidcondenser = P_aftcondenser 
H_aftmidcondenser=enthalpy(R245fa,P=P_3,x=1) 
S_aftmidcondenser=entropy(R245fa,P=P_3,x=1) 
T_aftmidcondenser=temperature(R245fa,P=P_3,x=1) 
   
"Turbine Work Done" 
W_actual = MFRKgperSec * (H_1-H_3) 
"Pump Work Done" 
W_Pump = MFRKgperSec*(H_pump-H_aftcondenser) 
  
"Boiler Heat Energy Used"  
Heatabsorbed_Boiler=MFRKgperSec*(H_boiler-H_pump) 
  
"Condenser Heat Energy Used" 
HeatLoss_Cond = MFRKgperSec*(H_3-H_aftcondenser) 
HeatLoss_Cond1= MFRKgperSec*(H_3-H_aftmidcondenser) 
HeatLoss_Cond2= MFRKgperSec*(H_aftmidcondenser-H_aftcondenser) 
 
Heatdrop_Cond = (H_3-H_aftcondenser) 
Heatdrop_Cond1= (H_3-H_aftmidcondenser) 
Heatdrop_Cond2= (H_aftmidcondenser-H_aftcondenser) 
  
"Cycle Efficiency" 
Efficiency_cycle =Power*100/(W_Pump+Boiler_Heatinput) 
Superheat_inlet =  T_1 - t_sat(R245fa,P=P_1) 
Superheat_outlet =  T_3 - t_sat(R245fa,P=P_3) 
  
  
"T-S DIAGRAM" 
  



Y. C. Engineer, PhD Thesis, Aston University, 2022 228 

"Superheater Outlet / Turbine Inlet" 
P[4] = P_1 
T[4]= T_1 
H[4] = H_1 
S[4] = S_01 
   
"Turbine Outlet" 
P[5] = P_3 
T[5]= T_3 
H[5] = H_3 
S[5] = S_3 
  
"Mid Condenser Outlet" 
P[6] = P_aftmidcondenser 
T[6]= T_aftmidcondenser 
H[6] = H_aftmidcondenser 
S[6] = S_aftmidcondenser 
   
"Condenser Outlet" 
P[7] = P_aftcondenser 
T[7]= T_aftcondenser 
H[7] = H_aftcondenser 
S[7] = S_aftcondenser 
 
P[8] = P[1] 
T[8]= T[1] 
H[8] = H[1] 
S[8] = S[1] 
  
 "Pump outlet" 
P[1] = P_pump 
T[1]= T_pump 
H[1] = H_pump 
S[1] = S_pump 
  
"Economiser outlet" 
P[2] = P_pump 
T[2]= T_economiser 
H[2] = H_economiser 
S[2] = S_economiser 
  
"Evaporator Outlet" 
P[3] = P_boiler 
T[3]= T_boiler 
H[3] = H_boiler 
S[3] = S_boiler 
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APPENDIX 3 
 

Engineering Equation Solver (EES) Code for the Soderberg loss 
model 

 

The EES code used to determine turbine and cycle efficiency applying the Soderberg design 

point and Moustapha off-design point loss model is presented below. 

 

"INPUTS" 
  
"Mass flow Rate in TPH  through entire turbine,Hub Diameter and RPM" 
MFR=10 
Dhub= 0.660 
N=5000 
  
" R245fa Parameters before stage" 
P1=16 
T1=160 
  
"R245fa Parameters After Stage" 
P2= 2 
 
"Nozzle Metal Exit Angle, Height, Throat and Axial Length" 
alpha_2=14 
htn= 0.02524 
thrn= 0.004978 
bn=0.036 
  
"Blade height and Axial Length" 
htb=0.02778 
bb=0.0143 
  
" Condenser temperature"   
T_aftcondenser=40 
  
  
"RESULTS" 
  
  
"R245fa Properties" 
C1=0  
C1s=0 
H01=enthalpy(R245fa,T=T1,P=P1) 
H1=H01  
S01=entropy(R245fa,T=T1,P=P1) 
H2s=enthalpy(R245fa,P=P2,s=S2s)  
H2=H01-(C2)^2/(2*1000) 
S2=entropy(R245fa,P=P2,h=H2) 
H02s=H2s+((C2s)^2)/2000 
H02=H2+((C2)^2)/2000 
H03s=H3s+(C3s)^2/2000 
H03=H3+((C3)^2)/2000 
  
"Mean Diameter" 
Dmean=Dhub+htb 
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"Hydraulic Diameter" 
Dhydr=(4*htn*thrn)/(2*(htn+thrn)) 
"Throat Area" 
Arean= (htn*thrn) 
"Nozzle Area for 1' Vane with full arc" 
AreanTotal=40*Arean 
 
" Velocity after nozzle ignoring losses" 
C2s=sqrt(2*(h01-h2s))*(sqrt(1000)) 
  
"assuming Isentropic expansion" 
S2s=S01 
S3s=S2s  
  
"Finding Reynolds Number " 
rho=density(R245fa,P=P2,s=S2s) 
mu=viscosity(R245fa,P=P2,s=S2s) 
Re=(rho*C2s*Dhydr)/mu 
  
"U/C2s Ratio" 
Utip=U+(2*htb)  
UVRatio= U/C2s 
  
"NOZZLE LOSSES" 
 "Placing Nozzle in Soderberg's model" 
defln=90-alpha_2 
Gsn=0.04+0.06*(defln/100)^2 
"Height correction" 
HtCFn=bn/htn 
1+G1n=(1+Gsn)*(0.993+0.021*HtCFn) 
"Reynold's Number Correction Factor " 
ReCF= (100000/Re)^0.25 
Gn= G1n*ReCF 
  
"C2" 
C2=C2s/sqrt(1+Gn) 
  
C_tangential2=(C2*cos(alpha_2)) 
C_axial2=(C2*sin(alpha_2))  
  
"Velocity Triangle, U , V2, Vw2, Va2, beta2" 
  
U=pi*Dmean*N/60 
V2=sqrt((C2)^2+(U)^2-(2*C2*U*cos(alpha_2))) 
Vw2=(C2*cos(alpha_2))-U 
Va2=sqrt((V2)^2-(Vw2)^2) 
 beta2 =arctan(Va2/Vw2) 
  
"BLADE LOSSES" 
"Placing blade in Soderberg's model" 
Inletangleb=beta2 
Exitangleb=beta2 
Deflb=180-(inletangleb+exitangleb) 
Gsb=0.04+0.06*(deflb/100)^2 
"Height Correction" 
1+G1b=(1+Gsb)*(0.975+0.075*(Bb/htb))  
"Reynold's Number Correction Factor" 
"Taking ReCF From Above" 
Gb= G1b*ReCF 
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"Relative velocity after blade" 
V3=V2/(sqrt(1+Gb)) 
Vw3=V3*cos(inletangleb) 
  
"Power and Efficiency" 
MFRKgperSec=MFR/3.6 
ActualWorkDoneperKG=U* (Vw2+Vw3)/1000 
Power= MFRKgperSec*U* (Vw2+Vw3)/1000 
  
"Total to Total Efficiency" 
H3s=H2s 
WorkidealTT=MFRKgperSec*(H01-H3s) 
efficiencyTT=Power/WorkidealTT 
  
"Total to Static Efficiency" 
Va3=V3*sin(Inletangleb) 
C3=sqrt((Vw3-U)^2+(Va3)^2) 
C_tangential3=(C3*cos(alphab)) 
C_axial3=Va3 
alphab=arcsin(c_axial3/c3) 
  
WorkidealTS=MFRKgperSec*(H01-H3s+((C3)^2)/2000) 
EfficiencyTS=Power/WorkidealTS 
  
"Ideal velocity after blade”  
V3s=V2 
Vw3s=V3s*cos(inletangleb) 
Va3s=V3s*sin(Inletangleb) 
C3s=sqrt((Vw3s-U)^2+(Va3s)^2) 
  
"Actual velocity after blade" 
H3= H2+((C2)^2)/(2000)-ActualWorkDoneperKG-((C3)^2)/(2000) 
T3=temperature(R245fa,P=P2,h=H3) 
S3=entropy(R245fa,P=P2,h=H3) 
  
"Leaving Loss" 
LeavingLoss=((C3)^2)/2000 
 
T2=temperature(R245fa,P=P2,h=H2) 
densityafternozzle=density(R245fa,P=P2,h=H2) 
  
  
"T-S Diagram" 
  
"Ideal Nozzle" 
SNoIsen[1]=1 
PIsen[1]=P1 
TIsen[1]=T1 
H0Isen[1]=H01 
HIsen[1]=H01 
SIsen[1]=S01 
KEIsen[1]=((C1s)^2)/2000 
  
"Actual Before Nozzle" 
SNo[1]=2 
P[1]=P1 
T[1]=T1 
H0[1]=H01 
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H[1]=H01 
S[1]=S01 
KE[1]=((C1)^2)/2000 
 
"Ideal after Nozzle"  
SNoIsen[2]=3 
PIsen[2]=P2 
TIsen[2]=T2 
H0Isen[2]=H02s 
HIsen[2]=H2s 
SIsen[2]=S2s 
KEIsen[2]=((C2s)^2)/2000 
 
"Actual after Nozzle" 
SNo[2]=4 
P[2]=P2 
T[2]=T2 
H0[2]=H02 
H[2]=H2 
S[2]=S2 
KE[2]=((C2)^2)/2000 
 
"Ideal after Blade" 
SNoIsen[3]=5 
PIsen[3]=P2 
TIsen[3]=T3 
H0Isen[3]=H03s 
HIsen[3]=H3s 
SIsen[3]=S3s 
KEIsen[3]=((C3s)^2)/2000 
 
"Actual After Blade" 
SNo[3]=6 
P[3]=P2 
T[3]=T3 
H0[3]=H03  
H[3]=H3 
S[3]=S3 
KE[3]=((C3)^2)/2000 
  
MachoutIsenB = V3s/Mach_Number 
Mach_Number=soundspeed(R245fa,T=T3,P=P2) 
Phi_Flowcoeff = C_axial2/U   
  
  
"CYCLE EFFICIENCY" 
  
"1 After phase change Condenser 2" 
P_aftcondenser=p_sat(R245fa,T=T_aftcondenser) 
H_aftcondenser=enthalpy(R245fa,P=P_aftcondenser,x=0) 
S_aftcondenser=entropy(R245fa,P=P_aftcondenser,x=0) 
  
"2 After Pump " 
P_pump=p_sat(R245fa,T=T_1) 
S_pump=S_aftcondenser 
H_pump=enthalpy(R245fa,P=P_pump,s=S_pump) 
  
 "3 After Economiser"  
P_economiser=P_pump 
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H_economiser=enthalpy(R245fa,P=P_economiser,x=0) 
S_economiser=entropy(R245fa,P=P_economiser,x=0) 
  
"4 After Boiler" 
P_boiler=P_pump 
T_boiler= T_1 
H_boiler=enthalpy(R245fa,P=P_pump,x=1) 
S_boiler=entropy(R245fa,P=P_pump,x=1) 
  
"5 After Turbine" 
"All data taken from Loss model" 
   
" 6 After desuperheating Condenser" 
 P_1=P1 
P_3 = P2 
T_1=T1 
T_3=T2 
H_3 = H2 
H_aftmidcondenser=enthalpy(R245fa,P=P_3,x=1) 
S_aftermidcondenser=entropy(R245fa,P=P_3,x=1) 
T_aftermidcondenser=entropy(R245fa,P=P_3,x=1) 
   
"Turbine Work Done" 
W_actual = MFRKgperSec * (H1-H_3) 
"Pump Work Done" 
W_Pump = MFRKgperSec*(H_pump-H_aftcondenser) 
"Boiler Heat Energy Used" 
Heat_Boiler=MFRKgperSec*(H_boiler-H_pump) 
"Condenser Heat Energy Used" 
Heat_Cond = MFRKgperSec*(H_3-H_aftcondenser) 
Heat_Cond1= MFRKgperSec*(H_3-H_aftmidcondenser) 
Heat_Cond2= MFRKgperSec*(H_aftmidcondenser-H_aftcondenser) 
Heatdrop_Cond = (H_3-H_aftcondenser) 
Heatdrop_Cond1= (H_3-H_aftmidcondenser) 
Heatdrop_Cond2= (H_aftmidcondenser-H_aftcondenser) 
  
"Cycle Efficiency" 
Efficiency_cycle =W_actual*100/(Heat_Boiler) 
Superheat_inlet =  T_1 - t_sat(R245fa,P=P_1) 
Superheat_outlet =  T_3 - t_sat(R245fa,P=P_3) 
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