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Introduction

Primary liver cancer is the most frequent fatal malignancy (Anwanwan et al., 2020) and the
sixth most common site of primary cancer in humans (Li et al., 2021). Primary liver cancer
comprises hepatocellular carcinoma (LIHC), intrahepatic cholangiocarcinoma (CHOL), and
other rare tumors, notably fibrolamellar carcinoma and hepatoblastoma (Sia et al., 2017). HCC
and ICCA account for more than 90% of malignancies in the liver (Satriano et al., 2019). A
variety of risk factors for liver cancer development have been identified, such as cirrhosis
(chronic liver damage caused by fibrosis), hepatitis B virus (HBV) infection, hepatitis C virus
(HCV) infection, alcohol abuse and aflatoxin B1 (European Association For The Study Of The
Liver, 2012). The cancer has different pathological features and metabolic landscapes in
different stages, so liver cancer can be diagnosed with the help of serologic testing,
diagnostic imaging and histology (Grandhi et al., 2016), which are the basis for the
traditional diagnosis of liver cancer stages (Xie, Ren, Zhou, Fan, Gao). Many staging
systems are used in liver cancer staging, including the Tumor-Node-Metastasis (TNM)-
based staging system, the Barcelona Clinic Liver Cancer (BCLC) staging system
(1999 version), the American Joint Committee on Cancer (AJCC) staging system (8th
edition, 2017) and the China liver cancer staging (CNLC) system (2018 version) (Amin
et al., 2017; Piñeros et al., 2019).

However, most primary liver cancer patients are diagnosed at an advanced stage. At this
stage, patients need to receive systemic therapy rather than surgical treatment (Villanueva,
2019). Thus, the application of a novel cancer staging method is significant when diagnosing
and evaluating liver cancer patients. The ability of automated methods combined with
morphological or immunohistochemical biomarkers has been demonstrated in the field of
cancer diagnosis and treatment (Beck et al., 2011; Kather et al., 2019). This method is worth
widely popularizing to replace classification methods, which are typically costly and labor
intensive. A critical requirement for the development of these methods is the construction of
datasets containing digitally scanned slides stained to show cell morphology and expression of
regioselective proteins with accompanying staging outcomes.
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B-cell receptor-associated protein 31 (BAP31) was named for
copurification with the B-cell receptor component (Kim et al.,
1994). It may also be noted that, relative to the corresponding
non-cancerous tissues, BAP31 is generally highly upregulated in
cancer, and it is expressed by many commonly used cell lines
(such as HeLa, HEK293, CHO, COS-7 and BHK-21) (Lambert
et al., 2001; Wakana et al., 2008; Wang et al., 2008). BAP31 has
the potential to be used as a prognostic marker for several different
forms of cancer (Yu et al., 2015; Tan et al., 2016; Wang et al., 2020).
BAP31 can also bind and upregulate serpin family E member 2
(SERPINE2), resulting in an increase in the phosphorylation levels
of Erk and p38. Western blot showed that the expression levels of
Erk1/2, phospho-Erk1/2, and phospho-p38 were significantly
decreased when SERPINE2 was knocked down; however, the
BAP31 expression was not different in these cells. Inhibition of
SERPINE2 attenuated BAP31-induced cell proliferation (Zhang
et al., 2020). These phenomenon suggest that SERPINE2 is a
downstream gene of BAP31 and may regulate cell proliferation by
influencing the phosphorylation of Erk1/2 and p38. Lipoprotein
receptor-related protein-1 (LRP-1), the downstream gene of
SERPINE2, is also positively correlated with SERPINE2 in human
tumors (Fayard et al., 2009). Through limited prognostic assessment
in stage I or II breast cancer, Ki-67 immunohistochemistry (IHC) is
commonly used as a tumor proliferationmarker and plays a significant
role (Nielsen et al., 2021). The expression levels of LRP1 and Ki-67 also
showed a positive correlation with the other two biomarkers. The
regulatory relationship among these four biomarkers is specific to
primary liver cancer. Thus, the thought arises of the relevant four
biomarkers which could assist the diagnosis of primary liver cancer.

Here, we show our dataset, which contains two digitally scanned
high-resolution tissue microarrays (TMAs) named LV1221 and LV
2089, which comprise tissue core sections from a total of 303 samples.
Both TMAs were stained for HE. Some specific biomarkers (BAP31,
SERPINE2, Ki-67, LRP1) and DAPI (4,6-diamidino-2-phenylindole)
were also stained. Each core was provided with clinical data,
pathologist annotation, and staging information. We segmented
cells from tissue and computed the expression level of biomarkers
in cancer cells by inForm advanced image analysis software (inForm
2.4.1, PerkinElmer). The exported outputs constitute part of the
dataset. The utility of our dataset was proven by performing
statistical analysis. Its application can avoid a massive workload in
related laboratories and provide better guidance for the diagnosis of
primary liver cancer.

Materials and methods

We first performed a panoramic scan of the primary liver cancer
tissue microarrays LV1221 and LV2089 by Aperio GT 450 (Leica
Biosystems, United States). All samples were annotated, and a unique
identifier was numbered. Examples of relevant images are shown in
the Supplementary Material. Slides were then stained for the specific
biomarkers by multiplex immunohistochemistry (mIHC) technology.
The advantage of mIHC staining is that it allows simultaneous
detection of multiple biomarkers on a single tissue section and the
comprehensive study of cell composition, cellular functional and cell-
cell interactions in situ (Tan et al., 2020). The stained slides were
scanned using the PerkinElmer Mantra System (PerkinElmer,
United States) to obtain IM3 format pictures. The IM3 format

pictures were then unmixed by inForm advanced image analysis
software (inForm 2.4.1, PerkinElmer) to prepare for subsequent
quantitative analysis. Representative cores were selected to train the
inForm and manually set parameters so that the inForm could realize
automated andmassive analysis. This analysis process consists of three
steps, including tissue segmentation, cell segmentation and phenotype.
In the phenotype step, we separated cancer cells and calculated the
expression levels of four markers. The results were recorded as the
H-score, which can help us quantitatively analyze the influence of
these biomarkers on the progression of primary liver cancer.

Patient cohort

The study cohort consisted of 303 primary liver cancer patients
(age 27–77), including 94 women and 209 men. We acquired
331 tissue samples from them and stored them in LV1221 and
LV 2089.

Ethic statement

This study was approved by the institutional review board of the
Fourth Military Medical University. Our samples are commercial
TMAs, and the supplier has completed the informed consent of all
patients in the process of data collection.

HE and pathologist annotations

The HE-stained original primary liver cancer tissue microarrays
were scanned by an Aperio GT 450 (Leica Biosystems, United States)
to obtain SVS format pictures, and TIF format pictures were also
exported for convenient visualization. Due to large pieces of defect and
non-tumor cell regions, these samples were independently evaluated
and diagnosed by two or more pathologists, and inappropriate parts
were excluded. We acquired 309 available cores and annotated them
with diagnoses, grade, TNM, stage, type, basic information of patients
and a unique identifier.

Multiplex immunohistochemistry staining and
multispectral imaging

The original slides of TMAs LV2089 and LV1221 were processed
through 5-μm-thick sections, deparaffinized in xylene, and rehydrated
in an ethanol gradient. Slides were stained according to Opal 7-plex
technology (PerkinElmer) so that we could simultaneously visualize
four markers and DAPI (4,6-diamidino-2-phenylindole) for nuclei on
the same slide. During each of the six cycles of staining, antigen
retrieval (AR) was conducted viamicrowave treatment in AR solution
pH 6 or pH 9 (AR6 or AR9) suggested by IHC validation; blocking was
followed by incubation for 15 min at room temperature (RT); and
primary antibodies [anti-BAP31 mouse monoclonal antibody, anti-
SERPINE2 antibody, anti-LRP1 antibody (Abcam; ab92544), and anti-
Ki67 antibody (Immunoway; YM6189)] were then incubated for 1 h at
RT or overnight at 4°C. Next, HRP labeled polymer goat anti-mouse
and rabbit antibodies were incubated at RT for 10 min followed by
TSA opal fluoroscopes (Opal 520, Opal 570, Opal 620, and Opal 690)
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for 10 min, which indicated BAP31, Ki-67, SERPINE2, LRP1,
respectively. Microwave treatment was performed to remove the
antibody TSA complex at each cycle of staining with AR solution
(pH 9 or pH 6) (Tan et al., 2020; Govek et al., 2021). Finally, all
303 available samples were counterstained with DAPI for 5 min and
mounted in ProLong Antifade Mountant (Solarbio). The slides were
scanned using the PerkinElmer Mantra System (PerkinElmer,
United States) to acquire multispectral images (Zhang et al., 2020).
An example of these images is shown in Figure 1A.

Multi-spectrum unmixing

The multispectral images were unmixed by the inForm Advanced
Image Analysis software (inForm 2.4.1 PerkinElmer), we chose NJGL
OPAL7C as Select Fluors and distinguished Opal 520, Opal 570, Opal
620, Opal 690, and DAPI as green, brown, pink, red, and blue.
Example unmixed pictures are shown in Figure 1B. Except for
exported pictures for single biomarkers, we also conducted
colocalization analysis for pixels after unmixing and found
correlations among these biomarkers. Examples of BAP31_
SERPINE2 colocalization and SERPINE2_LRP1 colocalization are
shown in Figure 1C. We set a coordinate axis to describe the
location of each pixel and used pixels to calculate the region area

(square microns), region position and proportion. These processes
could help us understand their interaction in tumor growth.

Machine learning

To score the biomarker expression level on cancer cells,
multispectral images representative of different samples were
selected and used to train the inForm software for segmentation.
The scoring protocol consisted of three automated steps, including
tissue segmentation, cell segmentation and phenotype. In the tissue
segmentation, the inForm software was trained using specific samples
from each category to automatically segment each image into the
cancer region (red), stromal region (green), and background (blue).
The parameter including the minimum segment size is 500 pixels, and
the edges are trimmed by 5 pixels. Images from all samples were
segmented, reviewed, merged and exported for further analysis using
the software’s batch processing and merge functions, and these
exported data were then merged into a single data set for analysis.
The percentage area of different tissues was also determined. In the cell
segmentation, based on the nuclear dye (DAPI), we set the minimum
nuclear size as 25 nm to segment each cell from tissue. In the
phenotype, the algorithm was developed to segment cancer cells
(red), immune cells (green), and stromal cells (blue) by training

FIGURE 1
The whole process of data and image acquisition: (A) The expression levels of four biomarkers in different stages were determined by multiplex
immunohistochemistry staining technology. The darker color indicates that the biomarker expression showed an upward trend. (B) A stained core was
multispectral unmixed, the merged image was unmixed into five pictures: Opal520-stainig BAP31 (green), Opal570-stainig Ki-67 (brown), Opal620-stainig
SERPINE2 (pink), Opal690-stainig LRP1 (red) and DAPI (blue). (C) Colocalization of BAP31 and SERPINE2. The colocalization analysis was performed. The
percentage of colocalization area (golden) was calculated. (D) All three steps to train the inForm for segmentation and the calculation of the H-score. From left
to right are the tissue segmentation, cell segmentation, phenotype and H-score. Each step is a further analysis based on the previous step. Different tissues
were first divided into cancer (red), stromal (green), and background (blue) tissues. Then, the cells were segmented. Finally, the software-trained algorithm
recognized cancer cells (red), immune cells (green), and stromal cells (blue). According to the biomarker expression level, we set thresholds to divide cells into
4 grades (blue means no expression, yellow means +1 expression, orange means +2 and brown means +3) and calculated the H-score.
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the software on a limited number of regions. An example of all three
steps is shown in Figure 1D. Cells in the tissue were then phenotyped
and counted by training the inForm software to recognize each cell
type. After segmenting the cancer cells, we selected a few samples and
artificially set 3 thresholds to divide the samples into 4 grades (blue
means no expression, yellow means +1 expression, orange means
+2 and brown means +3) according to the biomarker expression level.
An example of BAP31 is shown in Figure 1D. By calculating the
weighted average between grades and proportions of cells with
different expression levels, we obtained the H-score to quantify the
expression of each biomarker.

Data records

We processed the cores from tissue microarrays LV2089 and
LV1221 by inForm v2.4.1 and built the data records. The data
records are organized into four folders, including Clinical data,
Optical acquisition and imaging, Machine Learning (artificial

intelligence, AI) based ROI scoring, and Colocalize. The structure
of our data records is shown in Figure 2.

Clinical data

The clinical data of the patients are stored in LV1221 specs.xlsx
and LV2089 specs.xlsx, which contain pathologist annotations,
including age, sex, diagnosis, grade and unique identifiers for each
sample.

Optical acquisition and imaging

The Optical acquisition and imaging folder contains four parts:
HE, RGB, Pathological Study, and Composite. They contain optical
images of 309 available samples and are stored in TIF format. The HE
part contains the HE-stained original pathological sections of all
309 samples. The RGB part contains RGB pictures from these

FIGURE 2
Detailed structure drawing of the data record.
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available samples. The composite part contains 309 composite images
to analyze the expression levels of four markers in all available
samples, and BAP31, Ki-67, SERPINE2, LRP1, and DAPI were
distinguished as green, brown, pink, red, and blue by IHC staining
technology. The Pathological Study part contains pathological view for
BAP31, Ki-67, SERPINE2, LRP1, and DAPI.

AI-scoring

The AI-scoring folder contains two parts, Machine Learning and
Score. In the Machine Learning part, we analyzed samples in three
steps: tissue, cell and phenotype. In the tissue segmentation step, the
cancer region, stroma region and background were stained red, green,
and blue, respectively. In the cell segmentation step, all cell nuclei
larger than 25 nm were identified and stained, and in the phenotype
step, the cancer, immune and stromal cells were distinguished as red,
green and blue. We organized these outputs into two subfolders, image
and data. The image folder includes tissue_seg.tif, cell_seg_map.tif,
phenotype_seg_map.tif and phenotype_map.tif. The data folder
includes tissue_seg_data.txt, tissue_seg_data_summary.txt, cell_seg_
data.txt, and cell_seg_data_summary.txt, and the phenotype data are
included in the cell section. In the Score part, the expression levels of
four markers in the cancer cells were calculated, and the results were
expressed as the H-score. We organized the outputs into two
subfolders, image and quantification, where the former contains
all_seg.tif and score_map.tif and the latter contains score_data.txt.

Colocalize

The Colocalize folder contains three parts: nuclearization, BAP31_
SERPINE2 and SERPINE2_LRP1. In the nuclearization part, it
contains colocalization analysis outputs of each marker with DAPI.
In the BAP31_SERPINE2 and SERPINE2_LRP1 parts, to further
understand the influence of the colocalization relation on cancer, the
biomarker colocalization relation was analyzed, and the outputs were
divided into the following parts: BAP31_SERPINE2 and SERPINE2_
LRP1, where the former contains BAP31_SERPINE2 (analyzing
BAP31 based on SERPINE2), SERPINE2_BAP31 (analyzing
SERPINE2 based on BAP31), and the latter contains SERPINE2_
LRP1 (analyzing SERPINE2 based on LRP1), LRP1_SERPINE2
(analyzing LRP1 based on SERPINE2). We calculated the
colocalization region area and proportion. The outputs, including
coloc_data.txt, coloc_quant_data.txt, and quant_data.txt, were stored
in the data subfolders, and coloc.tif was stored in image subfolders.

Technical validation and result

Taking the example of BAP31 and SERPINE2, we used the
H-score and percentage of the colocalized area to test the usability
of these data in our dataset. This analysis was performed on 16 cores
from normal liver tissues, 5 cores from cancer adjacent liver tissues,
and 250 cores from primary liver cancer tissues, including intrahepatic
cholangiocarcinoma (CHOL) and hepatocellular liver cancer (LIHC).
All analyses were performed in GraphPad Prism software 7.0
(SanDiego, CA, United States). The methods used included one-
way analysis of variance (ANOVA) and the chi-square test.

ANOVA was used to compare the mean H-score in different
groups and stages (McHugh, 2011). We set three groups, cancer,
normal + adjacent and normal, to compare the means and obtained
a p-value of 0.0059 (p < 0.05 was considered statistically significant).
After performing the same analysis for SERPINE2, the result was
also statistically significant (p < 0.0001). The above results indicated
that the expression of these two biomarkers is discrepant in different
tissues, and this conclusion matches the result in GEPIA2 (http://
gepia2.cancer-pku.cn/#index) (Tang et al., 2019). We also used
ANOVA to compare the expression of BAP31 in different stages.
The H-score was used to represent the expression level.
We performed ANOVA on BAP31 expression levels in different
stages and obtained a p-value of 0.0004. This result indicated that
the expression of BAP31 varies in different stages. To further
understand this difference, we also performed a chi-square test.
To realize the chi-square test analysis of H-score and stages, H-score
was converted from continuous variable to categorical variable by
dividing it into two parts based on the median, above the median
and below the median were represented by 1 and 0 respectively,
stage I, II and III, IV were represented by Early and Advance
respectively. Through software analysis, we also obtained a
p-value equal to 0.0236, which indicated that BAP31 expression
varies in different stages, and the graph showed an increasing trend
(Dang et al., 2018). The percentage of the colocalized area was also
analyzed by ANOVA. We selected the colocalization of
SERPINE2 and BAP31 to perform ANOVA with four stages and
obtained a p-value equal to 0.0065. Colocalization showed the
percentage of the colocalized area of the two biomarkers in the
whole cores, and its size may be related to the degree of interaction
between the two biomarkers. This result could indicate that the
interaction of the two biomarkers would increase with the
development of cancer. Moreover, through the signature query
function of GEPIA2, the overall survival time of the high
2 signatures (BAP31 and SERPINE2) group and the low 2 signatures
(BAP31 and SERPINE2) group showed significant differences (p < 0.
05). It may also be noted that, the survival information of liver cancer
patients from another database TCGA (https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga) shows a trend,
which is that the overall survival (months) shortens with the increased
transcription of the corresponding mRNA (Blum et al., 2018). This
result validates the usability of our database for survival assessment. Our
results suggest that data from multispectral analysis can provide an
important effect on liver cancer diagnosis and should be further studied
on the basis of a larger patient cohort. The supplementation of survival
outcomes can also provide a vital signal to predict survival outcomes
(Vrabac et al., 2021).

Usage notes

The structure of the data record is shown in Figure 2. The data files
from the inForm software can be easily merged byMacros in Excel and
further processed by GraphPad Prism 7. We selected GEPIA2 (http://
gepia2.cancer-pku.cn/#index) as an external dataset to verify the
validity of the data. However, compared with external datasets, the
data have no survival outcomes, so further study of our data can focus
on developing the ability to predict the survival of patients. All data
records are publicly available at: https://github.com/Xvshen/code-
availability.
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