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Introduction: Sleep disorders are commonclinical psychosomatic disorders that can co-
exist with a variety of conditions. In humans and animal models, sleep deprivation (SD) is
closely related with gastrointestinal diseases. Shu-Xie Decoction (SX) is a traditional
Chinese medicine (TCM) with anti-nociceptive, anti-inflammatory, and antidepressant
properties. SX is effective in the clinic for treating patients with abnormal sleep and/or
gastrointestinal disorders, but the underlying mechanisms are not known. This study
investigated the mechanisms by which SX alleviates SD-induced colon injury in vivo.

Methods: C57BL/6mice were placed on an automated sleep deprivation system for 72 h
to generate an acute sleep deprivation (ASD) model, and low-dose SX (SXL), high-dose SX
(SXH), or S-zopiclone (S-z) as apositive control using theoral gavageweregivenduring the
whole ASD-induced period for one time each day. The colon length was measured and
the colonmorphologywas visualizedusinghematoxylin andeosin (H&E) staining. ROSand
the redox biomarkers include reduced glutathione (GSH), malondialdehyde (MDA), and
superoxide dismutase (SOD) were detected. Quantitative real-time PCR (qRT-PCR),
molecular docking, immunofluorescence and western blotting assays were performed
to detect the antioxidant signaling pathways.

Results: ASD significantly increased FBG levels, decreased colon length, moderately
increased the infiltration of inflammatory cells in the colonmucosa, altered the colon
mucosal structure, increased the levels of ROS, GSH, MDA, and SOD activity
compared with the controls. These adverse effects were significantly alleviated by
SX treatment. ASD induced nuclear translocation of NRF2 in the colon mucosal cells
and increased the expression levels of p62, NQO1, and HO1 transcripts and proteins,
but these effects were reversed by SX treatment.

Conclusion: SX decoction ameliorated ASD-induced oxidative stress and colon injury by
suppressing thep62/KEAP1/NRF2/HO1/NQO1signalingpathway. In conclusion, combined
clinical experience, SX may be a promising drug for sleep disorder combined with colitis.
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1 Introduction

Sleep homeostasis is critical for human health and metabolism
(Xie et al., 2013). Sleep-wake cycles regulate several biological
functions associated with the gastrointestinal tract including waste
clearance, cell repair and regeneration, digestion, absorption, and
electrolyte balance (Hablitz et al., 2020). Sleep deprivation (SD) is
defined as less than 6 h sleep per night, and is caused by lifestyle
changes, aging, and disordered sleep (Siegel, 2022). Individuals with
SD exhibit physical stress and aberrant physiological functions
(Musiek et al., 2018). SD disrupts neuro-autonomic control
(Deurveilher et al., 2021), inflammatory and coagulation pathway
responses, and increases oxidative stress. Therefore, SD causes
metabolism disorders (Pandey and Kar, 2018), digestive diseases,
cardiovascular diseases (Shamsuzzaman et al., 2003), and
neurological disorders (Cappuccio et al., 2010; Patel et al., 2012;
Orr et al., 2020).

Oxidative stress is caused by an imbalance between the production
of reactive oxygen species (ROS) and the activity of antioxidant
mechanisms (Sies et al., 2017). ROS including superoxide,
hydrogen peroxide, hydroxyl radical, and nitric oxide are highly
reactive, and are formed in cells due to incomplete reduction of
molecular oxygen during metabolic activities. The peroxyl radicals
are highly reactive and disrupt the integrity of the membranes by
oxidizing integral proteins and polyunsaturated lipids in the cell
membranes (Folden et al., 2003). Malondialdehyde (MDA) is the
end product of lipid peroxidation and is an effective biomarker of lipid
peroxidation and an indirect index of the reactive oxygen species
(ROS) levels in the plasma (Weismann et al., 2011). The enzymatic
and non-enzymatic antioxidant mechanisms, including α-tocopherol
(Wallert et al., 2019), ascorbate (Goncalves et al., 2021), uric acid
(Amaro et al., 2015), catalase (Ren et al., 2018), superoxide dismutase
(SOD) (Zhang et al., 2018a), and reduced glutathione (GSH) (Wang
et al., 2021a) protect the cells against the deleterious effects of free
radicals and lipid peroxidation. The cellular stress response to acute
sleep deprivation involves ROS generation due to oxidative stress and
activation of antioxidant mechanisms and enzymes to detoxify ROS
(Ramanathan and Siegel, 2011; Vaccaro et al., 2020; Koutsoumparis
et al., 2022). Sleep deprivation (SD) induces ROS accumulation
(Pandey and Kar, 2018) in various tissues including the colon
(Vaccaro et al., 2020). Furthermore, SD-induced pathology in the
colon is alleviated by scavenging the free radicals by inducing the
antioxidant mechanisms (Alzoubi et al., 2019).

SQSTM1 gene encodes p62, a multifunctional ubiquitination-binding
scaffold protein, which shuttles between the nucleus and the cytoplasm
(Kwon et al., 2019). p62 participates in the ubiquitin-proteasomal and the
autophagy-lysosomal protein degradation systems, and plays a key role in
DNA repair and oxidative stress responses (Kwon et al., 2019). Aberrant
expression of p62 is reported in carcinogenesis (Wei et al., 2014; Moscat
et al., 2016), neurodegenerative disorders (Calvo-Garrido et al., 2019;
Blaudin de Thé et al., 2021), and metabolic diseases such as obesity
(Aragonès et al., 2020), T2DM, and NAFLD (Hu and Zender, 2016).

Nuclear factor erythroid 2-related factor 2 (NRF2) is a key player
in the cellular antioxidant response mechanisms (Pan et al., 2016;
Singh et al., 2019). During normal conditions, Kelch-like ECH-
associated protein 1 (KEAP1) associates with NRF2 (Hochmuth
et al., 2011; Hast et al., 2013) and promotes its degradation
through the ubiquitin proteasome pathway (Villeneuve et al.,
2013). Oxidative stress induces oxidation of KEAP1 at multiple

cysteine residues (Dayalan Naidu et al., 2018; Suzuki et al., 2019).
This disrupts association between KEAP1 and NRF2. Furthermore,
during oxidative stress, p62 binds to KEAP1, induces ubiquitination,
and subsequent degradation of KEAP1 (Fan et al., 2010; Komatsu
et al., 2010). Therefore, under sustained oxidative stress conditions
with elevated ROS, newly synthesized NRF2 protein molecules
translocate to the nucleus, bind to the AREs of antioxidant
response genes, and drive the transcription of antioxidant genes
such as NAD(P)H quinone oxidoreductase 1 (NQO1) and heme
oxygenase 1 (HO1) (Huang et al., 2000; Eggler et al., 2009).

Clinical treatment for sleep disorders includes drugs such as hypnotic
benzodiazepines (temazepam and nitrazepam), Z drugs (zolpidem and
zopiclone), and melatonin. These drugs provide temporary relief from
SD-related symptoms but are also associated withmultiple adverse effects.
The (S)-enantiomer of zopiclone (eszopiclone, S-z) is a non-
benzodiazepine cyclopyrrolone, which significantly improves sleep
efficiency, sleep latency, wake time after sleep onset, number of
awakenings, number of nights awakened weekly, total sleep time,
quality of sleep, and depth of sleep compared with the placebo (p <
0.05) (McCall et al., 2006). Eszopiclone is commonly prescribed for
insomnia (Najib, 2006). An overdose of zopiclone, either alone or
together with its metabolites, causes oxidative stress in the
erythrocytes, and is associated with adverse effects such as
methemoglobinemia and hemolytic anemia (Chan, 2014).

Herbal medicine is commonly used for the treatment of a variety
of gastrointestinal disorders (Kong et al., 2020; Molagoda et al., 2020;
Wu et al., 2021). Shu-Xie Decoction (SX) is an herbal formula
developed by Dr. Shuyu Yang and colleagues using a combination
of Suanzaoren Decoction and Huanglian Jiedu Decoction, also called
Yangxue Rougan decoction. The quality and composition of the SX
decoction was confirmed by UHPLC-QE-MS (Zhang et al., 2022). SX
is used in the First Affiliated Hospital of Xiamen University (Xiamen,
China) for the management of diabetic patients with sleep
disturbances, mood disorders, and gastrointestinal dysfunction,
which are collectively referred to as a triad of ‘Shu-Xie.’ A previous
study reported that SX suppresses inflammation and depression in
mice (Zhang et al., 2022). However, the underlying mechanisms by
which SX protects against SD-induced colon dysfunction are poorly
understood.

Network pharmacology combines high-throughput data integration
(Kamdar andMusen, 2017), database searching andmining (Barneh et al.,
2016), target prediction (Tanoli et al., 2018), and simulation laboratories
(Hsin et al., 2016). Its systematic and holistic nature is in line with the
principles of holistic view and evidence-based treatment of TCM, which
can effectively promote the in-depth study of TCM compounding and
reveal the material basis of the efficacy of TCM (Xu et al., 2019). The
research idea and method are to firstly screen the main active ingredients
and targets of the herbal compound, then collect and screen the
therapeutic targets of the herbal compound, construct the target
interaction network between the herbal compound and the disease,
conduct protein interaction analysis, and gene function enrichment
analysis. Finally, molecular docking will be performed to reveal the
targets and molecular mechanisms of the herbal compound for the
treatment of certain diseases.

Therefore, in this study, we investigated the clinical value of SX in
alleviating SD-induced colon dysfunction and the underlying
mechanisms using a mouse model. Our aim was to provide pre-
clinical evidence for the utility of SX in the clinical treatment of
patients with sleep deprivation-related disorders (Wang et al., 2021b).
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2 Materials and methods

2.1 Animals

Six-to-eight-week-old SPF-grademale C57BL/6J mice (20 ± 1 g) were
purchased from Beijing Vital River Laboratory Animal Technology Co.,
Ltd. (Beijing, China), and housed at the Laboratory Animal Center of
Xiamen University (Xiamen University, Fujian, China) according to the
institutional guidelines. The mice were maintained under ambient
laboratory conditions, which included 55 ± 5% relative humidity
(RH), 22°C ± 2°C temperature, and a 12:12 h light: dark cycle. They
were fed a standard chow diet (SDS RN3) and filtered water. All the
animal experiments were approved by the Animal Ethics Committee of
Xiamen University (Acceptance No.: XMULAC20200142).

2.2 Preparation of the SX decoction

Shu-Xie Decoction (SX) was prepared from 10 plant materials
(Supplementary Table S1) by the TCM Pharmacy of the Nanputuo
Branch, The First Affiliated Hospital of Xiamen University (Xiamen,
China). The low and high doses of the SX Decoction (1.56 g/mL and
3.12 g/mL) were prepared for animal administration using a rotary
evaporation apparatus at 45°C. The dosage was based on the oral SX
dose for humans (1.714 g/kg per day). Therefore, the dosage was
15.6 g/kg per day (low dose) and 31.2 g/kg per day (high dose) for
mice. The intragastric dosing for mice was set at 0.1 mL/10 g body
weight. SX dosing in the 2 doses were administered by oral gavage
once a day for 3 days during the modeling period.

2.3 S-zopiclone

S-zopiclone (S-z) was donated by the First Affiliated Hospital of
Xiamen University (Xiamen, China). The intragastric dosing of mice was
3.75 mg/kg/day or 0.375 mg/mL (2 mg S-z dissolved in 5.33 mL distilled
water) as previously published (Gerashchenko D and Kilduff, 2017).

2.4 Animal grouping and model construction

The C57BL/6J mice (n = 50) were randomly assigned to the
following five groups (n = 10 per group) and allowed to
acclimatize for 1–2 weeks: 1) normal control (CON) group (the
non-sleep deprived group; provided distilled water; mice placed in
the restriction chamber without rotating bar); 2) ASD group (24 h
sleep deprivation for 3 days; provided with distilled water; placed in
the restriction chamber); 3) ASD + SXL group (24 h sleep deprivation
for 3 days; 11.5 g/kg/d SX decoction; placed in the restriction
chamber); 4) ASD + SXH group (24 h sleep deprivation for 3 days;
23 g/kg/d SX decoction; placed in the restriction chamber); and 5)
ASD + S-z group (24 h of sleep deprivation for 3 days; 3.75 mg/kg
S-zopiclone; placed in the restriction chamber) (Figure 1B). SD was
performed using the horizontal bar-style automated sleep deprivation
system for mice (YAN-239, Shanghai Xiyao Biological Technology
Co., LTD, Shanghai, China; bar speed: 5; rotation direction changed
every 10–30 s; stopped for 1 min after every 5 min) (Figure 1C). While
modeling, the control and the ASD group mice were provided with the
same amount of distilled water daily via gavage. All the treatment

groups were provided with the appropriate therapeutic drug using the
gavage between 8:00 a.m. and 10:00 a.m., once a day for three
consecutive days. The body weights and food and water intake
were estimated daily. The study protocol is shown in Figure 1A.

2.5 Sample collection

The mice were subjected to fasting during the last 10 h of
modeling. Then, the mice were anesthetized with isoflurane and
weighed. The blood samples were collected using retro-orbital
bleeding method. After sacrificing the mice, the colons were
carefully harvested and weighed. The colon length was measured.
The colons were separated from the mesenteric and adipose tissues,
cut along the longitudinal axis, and rinsed with ice-cold phosphate-
buffered solution (pH = 7.4). The colons of four mice from each group
were Swiss rolled and fixed in neutral buffer containing 10% formalin
for 24 h at 2°C–8°C. The fixed colon tissues were dehydrated with
gradient ethanol solutions, and embedded in paraffin at 56°C–60°C for
further histological and immunofluorescence analysis. The colons of
the remaining six mice in each group were frozen quickly in liquid
nitrogen and stored at −80°C. The blood samples were centrifuged at
12,000 rpm and room temperature for 5 min. The serum and
erythrocyte samples were collected for further analysis.

2.6 Histopathology

The paraffin-embedded colon Swiss rolls were cut into 4-μm-thick
slices (RM2245, Leica, German) and stained with hematoxylin and
eosin (H&E) (C0105S, Beyotime Biotechnology, Shanghai, China).
The stained sections were photographed using the Leica Aperio micro-
scanning system (Versa 200, Leica, German) and scored to quantify
the degree of intestinal injury using a previously published scoring
system by Ding and Wen, which included scoring the degree of
intestinal epithelial cell damage and the degree of inflammatory
infiltration (Ding and Wen, 2018).

2.7 Assay for ROS

ROS levels in blood cells were measured for three consecutive days
using the DCFDA/H2DCFDA- Cellular ROS Assay Kit (ab113851,
Abcam, United States) according to the manufacturer’s instructions.
DCFH-DA was diluted 1:1,000 with PBS to obtain a final
concentration of 10 μmol/L. Blood cells (200,000 cells per 0.1 mL)
were incubated for 30 min with diluted DCFH-DA in a 37°C cell
incubator with constant mixing every 3–5 min. The cells were washed
three times with serum-free medium to remove excess DCFH-DA.
The fluorescence intensity in the stained cells was measured at 485/
535 nm using a digital microplate luminometer (Varioskan Flash
Microplate Reader, Thermo Fisher Scientific, United States).

2.8 Estimation of serum GSH, SOD activity,
and MDA levels

Serum GSH levels were estimated using the GSH Assay Kit (A006-
2; Nanjingjiancheng, Nanjing, China) according to the manufacturer’s
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instructions. Total SOD activity in the serum was estimated using the
SOD activity assay kit (A001-3; Nanjingjiancheng, Nanjing, China)
according to the manufacturer’s instructions. The levels of serum
MDA, a by-product of lipid peroxidation, were estimated using the
Lipid Peroxidation MDA Assay Kit (Beyotime Biotechnology,
Shanghai, China) according to the manufacturer’s instructions.

2.9 AutoDock and Autodock Vina analysis

The TCMSP database was used to obtain the main active ingredients
and targets of SX (Ru et al., 2014), then the therapeutic targets of SX were
collected and screened, and the “Cytoscape” software was used to build a
network of SX and ASD target interactions to find the drug components
that interacted most with the targets (Su et al., 2014). Protein interactions
were analyzed through the STRING website, as well as functional GO and
KEGG enrichment analyses (Szklarczyk et al., 2011; Kanehisa et al., 2017).
The 2D planar structures of Baicalin (BAI) and Paeoniflorin (PAE) were
downloaded from the ChemSpider website (www.chemspider.com) and
converted to 3D spatial structures using the OpenBabel (version 3.1.1)
toolbox (O’Boyle et al., 2011). The sequences of p62, KEAP1,NRF2,NQO1,
andHO1 proteins were downloaded fromProteinData Bank (https://www.

rcsb.org/), processed by the Pymol software (Seeliger and de Groot, 2010),
and docked onto the 3D structures of BAI and PAE proteins using the
AutoDockTools (1.5.7) to determine their binding efficiencies. The
compounds with the lowest binding energy were screened by molecular
docking to reveal the targets. The binding affinity or binding energy values
less than 0 indicated spontaneous binding of the ligand to the receptor.

2.10 Western blotting

The colon tissues were incubated with the RIPA lysis buffer
(Merck Millipore) containing 1 mM Phosphatase inhibitor and
protease inhibitor cocktail (ThermoFisher), ground in a tissue
grinder, lysed on ice for 30 min, and centrifuged at 12,000 rpm and
4°C for 10 min. The supernatant was collected and the protein
concentrations of the samples were quantified using the BCA
protein assay kit (ThermoFisher, United States). Equal amounts of
protein samples (30 mg/sample) were denatured by boiling in the
loading buffer containing bromophenol blue for 10 min. Then, the
samples were separated on a 10% SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred onto a 0.45 μm
polyvinylidene fluoride (PVDF) membrane (Millipore, MA,

FIGURE 1
SX alleviates ASD-induced clinical symptoms associated with gastrointestinal dysfunction in mice. (A) Schematic representation of the experimental
design. After 14 days of habituation, mice were sleep deprived for 3 days and orally administered with distilled water, SX, or S-z, once a day. Fasting blood
glucose levels, body weight, and food and water consumption were recorded at all points. (B)Grouping of mice. CON = control; ASD = acute sleep deprived;
Veh = vehicle; SXL = low-dose SX; SXH = high-dose SX; S-z = S-zopiclone. (C) Schematic diagram shows acute sleep deprivationmodeling. SX alleviates
ASD-induced weight loss. (D, E) Body weights of the CON, ASD, ASD + SXL, ASD + SXH, and ASD + S-z group mice during habituation and ASDmodeling. p <
0.05, CON vs. ASD; (F, G) Fasting blood glucose levels of the CON, ASD, ASD + SXL, ASD + SXH, and ASD + S-z group mice during habituation and ASD
modeling. p < 0.05, ASD vs. SXL, SXH and S-z. Data were expressed asmeans ± SEM. n = 7 per group. Two-way ANOVA for D and F; one-way ANOVA for E and
G; * p < 0.05, ** p < 0.01 vs. control group; # p < 0.05 vs. ASD group; ns, no significant.
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United States). The membranes were blocked with 5% BSA in 1 ×
PBST for 1.5 h at room temperature and incubated overnight at 4°C
with primary antibodies against p62, KEAP1, NRF2, NQO1, HO1, and
β-actin (Supplementary Table S2) on a shaker. Then, after washing in
1 × PBST, the blots were incubated with HRP-conjugated secondary
antibody (ThermoFisher, United States) at room temperature for 1 h.
The blots were then developed using the Western Bright ECL
chemiluminescent substrate kit (Advansta Inc., San Jose, CA,
United States). The protein bands were visualized and analyzed
using the Qinxiang imaging system (Clinx Science Instruments Co.
Ltd., Shanghai, China).

2.11 Real-time reverse transcription-
polymerase chain reaction

Total RNAwas extracted from the colon samples (50 mg per mice)
using the RNA Extraction kit (DP419, Tiangen, Beijing, China)

according to the manufacturer’s protocol. The RNA samples were
quantified using the Nanodrop spectrophotometer (ND-1000,
Nanodrop Technologies, United States). Then, cDNA templates
were prepared from RNA samples (2000 ng per sample) using the
FastKing RT kit (with gDNase) (KR116, Tiangen, Beijing, China).
Q-PCR analysis was performed in a Real-time PCR machine
(LightCycler®480 II, Roche, Swiss) using specific primer sequences
(Supplementary Table S3) and SuperReal PreMix Plus kit (SYBR
Green) (FP205, Tiangen, Beijing, China). Relative mRNA levels of
specific genes were estimated using the 2−ΔΔCT method.

2.12 Immunofluorescence

Paraffin-embedded colonic Swiss rolls were cut into 4-μm-thick
sections, washed three times with 0.01M PBS (pH = 8.0), and blocked
and permeabilized in 1 × PBS containing 5% BSA and 0.02% TritonX-100
for 1 h at room temperature. Then, the sections were incubated with

FIGURE 2
SX alleviates acute sleep deprivation-induced histopathological injury in the colon. (A) Representative images show the lengths of colons harvested from
theCON, ASD, ASD+ SXL, ASD+ SXH, and ASD+ S-z groups ofmice. (B)Quantitative data shows the colon lengths ofmice belonging to the CON, ASD, ASD+
SXL, ASD + SXH, and ASD + S-z groups. (C) Body weights of the CON, ASD, ASD + SXL, ASD + SXH, and ASD + S-z group mice after modeling. (D) Colon mass
indices (%) (colonic weight/body weight) of the CON, ASD, ASD + SXL, ASD + SXH, and ASD + S-z groups of mice. (E) The colon histopathological scores
of the CON, ASD, ASD + SXL, ASD + SXH, and ASD + S-z group mice. p < 0.05, ASD vs. SXL, SXH and S-z. (F) Representative H&E-stained images show the
morphological changes in the colon mucosa of mice belonging to the CON, ASD, ASD + SXL, ASD + SXH, and ASD + S-z groups (×1, ×20,
and ×40magnification). M:mucosa; SM: submucosa; red arrow:multiplemucinous glands; yellow arrow: inflammatory cells. Datawere expressed asmeans ±
SEM. n = 6–7 per group. Statistical significance was determined by one-way ANOVA; * p < 0.05 vs. control group; # p < 0.05 vs. ASD group; ns, no significant.

Frontiers in Pharmacology frontiersin.org05

Wang et al. 10.3389/fphar.2023.1107507

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1107507


primary antibodies against HO1 (1:100), NQO1 (1:100), and NRF2 (1:100)
in a wet and dark box device overnight at 4°C. Later, the sections were
washed with PBS, placed in a dark box and incubated with Alexa Fluor
488 or 594-conjugated secondary antibodies (Invitrogen, 1:200,
United States) at room temperature for 1 h. Mouse IgG was used as the
negative control. The sections were then washed with PBS and sealed with
anti-fluorescence quenching sealing medium containing DAPI (Vector
Laboratories, Newark, California, United States). The stained samples
were imaged at × 200 and × 400 magnification using the Nikon Eclipse
C1 Ortho-Fluorescent Microscope (Nikon, Japan).

2.13 Statistical analysis

The statistical analysis was performed using the GraphPad Prism
software, version 8.0 (GraphPad, CA, United States). The data are
represented as means ± SEM. The data from multiple groups were
compared using the one-way analysis of variance (ANOVA)
comparison test. Two-way Repeated Measures ANOVA was used
to compare the data between repeated measures at various times. p <
0.05 was considered as statistically significant.

3 Results

3.1 SX alleviates ASD-induced clinical
symptoms in mice

In the present study, we established an acute sleep deprivation
model in C57BL/6J mice using the horizontal bar-style automated

sleep deprivation system (Figure 1A). The ASD group mice gradually
developed clinical symptoms of gastrointestinal dysfunction such as
undigested stool, passivity, irritability, decreased appetite, disordered
hair, and decreased bodymass (p < 0.05, Figures 1D, E; Supplementary
Tables S1–S9). The fasting blood glucose (FBG) levels in the ASD
group mice were significantly higher than the CON group mice (p <
0.01, Figures 1F, G; Supplementary Tables S1–S9), but these effects
were partially reversed in the ASD + SXH/SXL (high and low dose)
and the ASD + S-z group mice (Figures 1F, G; Supplementary Tables
S1–S9). The ASD group mice showed significant body weight loss
compared to the CON group mice, but the body weights of the ASD +
SXH/SXL (high and low dose) were not significantly higher than the
ASD group mice (Figure 2C). Furthermore, fasting blood glucose
(FBG) levels were significantly higher in the ASD group mice
compared to the CON group, but were significantly lower in the
ASD + SXH/SXL (high and low dose) and the ASD + S-z group mice
compared to the ASD group (Figure 1G).

3.2 SX alleviates ASD-induced colon injury,
inflammation, and dysfunction

The ASD group mice showed symptoms associated with
gastrointestinal dysfunction, including undigested food in the stools,
decreased appetite, and lower body mass. Therefore, we analyzed the
colon lengths from distinct groups of mice. The ASD group mice showed
reduced colon length (Figure 2A) and weight loss compared to the CON
group mice (p < 0.05, Figure 2B; p < 0.01; Figure 2C; Supplementary
Tables S1–S9). This demonstrated that ASD induced reduction in colon
length. However, there was no significant difference in the colon mass

FIGURE 3
SXalleviatesASD-inducedoxidative stress in themouse serum. (A) (A). ROSfluorescence intensityof bloodcells after 72 hof ASD,waveformsare imagesobtained
in “multi-point scanning”mode for each well, with the top and bottom wells being multiple wells. The average of each well was taken for statistical analysis. Positive
control Rosup concentration was 100 μM. (B). Fluorescence intensity before and after ASD was measured at 488 nm excitation wavelength and 535 nm emission
wavelength, time point by time point (0, 24, 48, 72 h). (B)ROS levels in the blood cells of ASDgroupmice at 0, 24, 48, and 72 h. (C) SerumGSH levels in the CON,
ASD, ASD+SXL, ASD+ SXH, andASD+ S-z groups ofmice. p<0.0001, ASD vs. SXL, SXH, S-z. (D) SerumMDA levels in theCON, ASD, ASD+ SXL, ASD+SXH, and ASD
+ S-z groups of mice. p < 0.0001, ASD vs. SXL, SXH, S-z. (E) Total SOD activity in the serum of CON, ASD, ASD + SXL, ASD + SXH, and ASD + S-z groups of mice. p <
0.05, ASD vs. SXH; p < 0.001 ASD vs. S-z. The data are represented as means ± SEM. n = 7 each group. Statistical significance was determined based on one-way
ANOVA; **** p < 0.0001, *** p < 0.001, ** p < 0.01 vs. CON group; #### p < 0.0001, ### p < 0.001, ## p < 0.01, # p < 0.05 vs. ASD group.
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index (ratio of colon weight to body weight) between the ASD and CON
group mice. Histopathological examination of the colon showed mild
structural changes in the colon mucosa of the ASD group mice including
loss of goblet cells and crypt, and moderate infiltration of inflammatory
cells in the mucosal (M) and submucosal (SM) regions of the colon
(Figure 2F). Histopathological scores for the colon were significantly
higher for the mice in the ASD group compared to the CON group mice
(p < 0.001, Figure 2E). Furthermore, mice in the ASD + SXH/SXL (high
and low dose) and the ASD + S-z groups showed lower numbers of
inflammatory cells in the submucosal region of the colon (Figure 2F). The
histopathological scores for the colon in the mice belonging to the ASD +
SXH/SXL (high and low dose) and the ASD + S-z groups were
significantly lower than those in the ASD group mice (Figure 2E).
This demonstrated that SX and S-z alleviated ASD-induced colon
injury, inflammation, and dysfunction.

3.3 SX alleviates ASD-induced oxidative stress

Previous studies showed that colon length was reduced in mice
with increased stress (Ono et al., 2022) and colitis (Ren et al., 2011;
Wen et al., 2013; Zhang et al., 2018b). Thus, we investigated the

correlation between oxidative stress and ASD modeling by
estimating intracellular ROS levels in the blood cells using ROS-
sensitive dye, DCFH-DA, with full wavelength fluorometric enzyme
labeler, for three consecutive days after inducing SD. ROS levels
showed gradual increase between days 1 and 3, and were significantly
higher in the blood cells on day 3 (72 h) of modeling in the ASD
group mice (p < 0.0001; Figure 3B). Here we presented the
waveforms of the 72 h ROS fluorescence intensity (AU) assay
(enzyme-labeled multi-point assay mode) (Figure 3A). Next, we
analyzed the levels of ROS-related biomarkers, namely, GSH,
SOD activity, and MDA, to determine the differences in oxidative
stress product between the control and ASD groups, and if treatment
with SX or S-z mitigated oxidative stress-induced colon damage in
the ASD groupmice. Compared with the CON group, the ASD group
showed significantly higher levels of GSH (p < 0.0001; Figure 3C),
MDA (p < 0.0001; Figure 3D), and SOD activity (p < 0.001;
Figure 3E). This demonstrated that ASD induced oxidative stress.
Furthermore, ASD + SXH/SXL and ASD + S-z mice showed
significantly lower levels of GSH, MDA, and SOD activity
compared with the ASD group mice (Figures 3C–E). These
results demonstrated that SX and S-z protected against oxidative
stress in the mice subjected to acute sleep deprivation.

FIGURE 4
Molecular docking diagrams of BAI and PAEwith p62, KEAP1, NRF2, HO1, and NQO1. (A)Molecular docking diagrams of BAI with p62, KEAP1, NRF2, HO1,
and NQO1 proteins. (B) Binding affinity (kcal/mol) of BAI with p62, KEAP1, NRF2, HO1, and NQO1 proteins. (C)Molecular docking diagrams of PAE with p62,
KEAP1, NRF2, HO1, and NQO1 proteins. (D) Binding affinity (kcal/mol) of PAE with p62, KEAP1, NRF2, HO1, and NQO1 proteins. BAI, Baicalin; PAE, Paeoniflorin.
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3.4 Identification of SX target proteins based
on molecular docking analysis

To determine the potential target proteins of the SXDecoction, the
sequences of the oxidative stress-related proteins such as p62, KEAP1,
NRF2, NQO1, and HO1 were downloaded from the RCSB PDB
archive. Their 3D structures were visualized using the PYMOL
software and docked with the 3D structures of active ingredients of
SX, baicalein (BAI) and paeoniflorin (PAE), using the AUTODOCK
software to assess the binding affinities. Both BAI and PAE showed
differential binding affinity with p62, KEAP1, NRF2, NQO1, and
HO1 proteins (Figures 4A, C). NQO1 and HO1 showed strongest

binding affinity with BAI (Figure 4B) and NQO1 showed strongest
binding affinity with PAE (Figure 4D).

3.5 SX modulates ASD-induced
NRF2 signaling pathway in the colon

NRF2 is a key regulator of genes encoding antioxidant enzymes.
During normal conditions, NRF2 is bound by KEAP1 in the cytoplasm
and sequestered in an inactive state and targeted by the ubiquitin-
proteasomal protein degradation pathway. KEAP1 is sensitive to redox
changes and releases NRF2 when acted upon by ROS, which is

FIGURE 5
SX modulates ASD-induced oxidative stress in the colon through the p62/KEAP1/NRF2/HO1/NQO1 signaling pathway. (A) Representative
immunofluorescence images show the localization of NRF2 protein in the colon sections based on staining with the fluorophore-labeled anti-NRF2 antibody
(red fluorescence). The nuclei are stained with DAPI (blue fluorescence). (B) Representative western blot shows the expression levels of p62, KEAP1, NRF2,
NQO1, HO1, and β-actin proteins in the colons ofmice belonging to the CON, ASD, ASD+ SXL, ASD+ SXH, and ASD+ S-z groups. β-actin was used as the
internal loading control. The experiment was repeated three times. (C) The dot plot shows the numbers of NRF2 positive cells (based on immunofluorescence
staining in A) in the colonic mucosa of mice belonging to the CON, ASD, ASD + SXL, ASD + SXH, and ASD + S-z groups. p < 0.05, ASD vs. SXL, SXH, and S-z.
(D–H) The relative expression levels of p62, KEAP1, NRF2, NQO1, and HO1 proteins compared to the β-actin protein levels in the colons of mice belonging to
the CON, ASD, ASD + SXL, ASD + SXH, and ASD + S-z groups. Note: for p62 in (D), p < 0.05, ASD vs. SXL, SXH; p = 0.4302, ASD vs. S-z); for KEAP1 in (E), p <
0.05 ASD vs. SXH; p < 0.01 vs. S-z); for NRF2 in (F), p < 0.01, ASD vs. SXL, SXH, and S-z); for NQO1 in (G), p < 0.05, ASD vs. SXL, SXH, and S-z; for HO1 in (H) p <
0.05, ASD vs. SXH); (I–K) qRT-PCR results show the transcript levels of KEAP1, NRF2, and NQO1 compared with the β-actin transcript levels. For KEAP1 in (I),
p < 0.05, ASD vs. SXH; for NRF2 in (J), p < 0.01 ASD vs. SXL; p < 0.05, ASD vs. S-z; for NQO1 in (K), p < 0.001 ASD vs. SXL and S-z; p < 0.01, ASD vs. SXH; KEAP1,
Kelch-like ECH-associated protein 1; NRF2, nuclear factor erythroid 2-related factor 2; NQO1, NAD(P)H: quinone oxidoreductase 1; HO1, heme oxygenase 1;
Data are expressed asmeans ± SEM. n= 4 per group. Statistical significancewas determined by one-way ANOVA; * p < 0.05, ** p < 0.01 vs. CON; # p < 0.05, ##

p < 0.01 vs. ASD. ns, no significant. Scale bar: 20 μm.
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generated by exogenous chemicals and oxidative damage.
Subsequently, NRF2 translocated to the nucleus, binds to the ARE
sequences of ROS-responsive genes, and activates transcription of the
downstream oxidative stress response genes. Furthermore, NRF2 is
also activated by accumulation of p62 (Jain et al., 2010; Tan et al.,
2021). Therefore, nuclear translocation of NRF2 is a necessary step to
activate the antioxidative mechanisms in the cells.
Immunofluorescence staining of the colon sections demonstrated
nuclear localization of NRF2 (red florescence) in the nucleus (cyan
fluorescence of DAPI as the nucleus marker) of different groups
(Figure 5A). The colon tissues from the ASD group showed

increased nuclear localization of NRF2, but this effect was reversed
by treatment with SX and S-z (Figure 5C). The expression levels of key
oxidative stress-related proteins in the colon tissues were analyzed by
qRT-PCR and western blotting. qRT-PCR results were confirmed by
the western blotting results. qRT-PCR results showed significantly
higher expression levels of KEAP1 (p < 0.05, Figure 5I), NRF2 (p <
0.05, Figure 5J), and NQO1 (p < 0.001, Figure 5K) transcripts in the
ASD group compared to the CON group, but these effects were
reversed in the ASD + SX mice (Figures 5I–K). Western blotting
results also showed significantly higher expression levels of p62 (p <
0.05, Figure 5D), NRF2 (p < 0.05, Figure 5F), NQO1 (p < 0.01,

FIGURE 6
Immunofluorescence analysis of NRF2 (red), HO1 and NQO1 (green) in colon mucosal layers (×400 magnification). (A) Representative fluorescence
confocal images show NRF2 and HO1 staining in the colon sections of mice belonging to the CON, ASD, ASD + SXL, ASD + SXH, and ASD + S-z groups. The
nuclei were stained with DAPI (blue). (B) Representative fluorescence confocal images showNRF2 and NQO1 staining in the colon sections of mice belonging
to the CON, ASD, ASD + SXL, ASD + SXH, and ASD + S-z groups. The nuclei were stained with DAPI (blue). (C)Quantitative analysis of NRF2 fluorescence.
(D) Quantitative analysis of HO1 fluorescence. (E) Quantitative analysis of NQO1 fluorescence. The immunofluorescence signal intensity in the images was
quantified using the ImageJ software. n = 3 per group. The experiment was repeated three times. The data are shown as mean ± S.E.M. ** p < 0.01 vs. CON
group; # p < 0.05, ## p < 0.01 vs. ASD group. Scale bar: 50 μm.
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Figure 5G), and HO1 (p < 0.05, Figure 5H) proteins and reduced
expression levels of KEAP1 (p < 0.01, Figure 5E) in the ASD group
compared to the CON group. Furthermore, SX and S-z treatment
groups showed significant downregulation of p62, NRF2, NQO1, and
HO1 proteins and upregulation of KEAP1 protein levels (Figures
5D–H). These results suggested that acute sleep deprivation enhanced
the expression levels of NRF2-responsive antioxidative pathway genes
in the mouse colon. Furthermore, our data demonstrated that SX was a
promising therapy for the management of colon dysfunction and
oxidative stress in subjects with acute sleep deprivation by targeting
the p62/KEAP1/NRF2/HO1/NQO1 antioxidant pathway.

3.6 SX modulates ASD-induced antioxidative
response in the colon through the
NRF2 relative pathway

Immunofluorescence microscopy was performed to confirm
the above results. Colon sections from distinct groups of mice were
subjected to immunofluorescence staining with antibodies against
antioxidant pathway proteins. NRF2 (red fluorescence) and
HO1 or NQO1 (green fluorescence) expression levels were
higher in the colon sections from the ASD group mice
compared to those from the CON group (Figures 6A, B), but
these effects were reversed by SX or S-z treatment (Figures
6C–E). These data confirmed that SX modulated ASD-induced
antioxidant response in the colon through the NRF2/NQO1/
HO1 signaling pathway.

4 Discussion

Studies related to sleep disorders have generally focused on the
central nervous system (CNS) because the suprachiasmatic nucleus of
the hypothalamus represents the key center of sleep-wake regulation
(Chen et al., 2018), and is regulated by the aminergic (Oikonomou
et al., 2019; Faria et al., 2021) and the cholinergic brainstem and the
hypothalamic system (Goldstein et al., 2018; Venner et al., 2019).
However, sleep disturbance is a common comorbidity in subjects with
inflammatory bowel diseases (IBD) such as Crohn’s disease (CD) and
ulcerative colitis (UC) (Ananthakrishnan et al., 2014), and diabetes
mellitus (Reutrakul and Van Cauter, 2018), and is linked to elevated
risk of recurrence in subjects with CD (Ananthakrishnan et al., 2013).
Sleep impairments are linked to alterations in the intestinal structure
and functions, and are associated with symptoms such as altered stools
and weight loss, possibly through disruption of the intestinal immune
homeostasis and the intestinal microbiota (Gao et al., 2018). In this
study, we treated the acute sleep-deprived mice with SX, which is used
clinically for the treatment of sleep disorders, mood disorders, and
gastrointestinal dysfunction, and investigated the potential
mechanisms by which SX alleviated ASD-induced colon injury.
Our study showed that ASD induced mild colon injury as
evidenced by shortened colon length, altered colon morphology,
moderate infiltration of inflammatory cells, and reduced numbers
of cupped blood cells based on the H&E staining data. The shortening
of colon length reduced digestive capacity because of decreased
luminal surface area of the colon and the digestive glands and
intestinal flora. Furthermore, our study showed that SX treatment

FIGURE 7
Diagrammatic representation shows the mechanism by which SX alleviates ASD-induced oxidative stress and colon injury.
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significantly restored the length of the colon and the structure of the
mucosal layer.

Oxidative phosphorylation in the mitochondria is a major site of
ATP and ROS production in all cells. Physiological levels of ROS act as
signaling molecules to maintain physiological functions. However,
excessive production of ROS induces oxidative stress that extensively
damages DNA (Srinivas et al., 2019; Tan et al., 2020), proteins
(Gavazzi and Faury, 2021), and lipids (Farmer and Mueller, 2013).
Sleep disturbances trigger a stress response and cause an imbalance
between ROS production and antioxidant mechanisms, thereby
resulting in persistently high intracellular ROS levels (Pandey and
Kar, 2018). In our study, acute sleep-deprived mice demonstrate
fasting hyperglycemia and increased levels of ROS, GSH, SOD, and
MDA in the colon. This demonstrated that ASD-induced oxidative
stress promoted colon damage and dysfunction.

Oxidative stress can be treated with antioxidant drugs or changes
in extrinsic factors including nutrition, lifestyle, and radiation.
Furthermore, the majority of the ROS-mediated signaling pathways
and ROS detoxifying enzymes are regulated by the stress response
transcription factor NRF2 and the nuclear factor κB (NF-kB)
(DeNicola et al., 2011; Vernier et al., 2020). These represent
promising therapeutic targets.

During oxidative stress, oxidation of multiple cysteine residues in
KEAP1 inhibits its ubiquitin ligase activity and interaction with NRF2.
This releases NRF2, which translocated into the nucleus and
transcribes several target genes (Hochmuth et al., 2011).
Furthermore, p62 binds and targets KEAP1 in the NRF2-KEPA1
complex for degradation, thereby releasing NRF2 for translocation
into the nucleus (Kapuy et al., 2018; Yen et al., 2020). NRF2 modulates
the expression of several downstream antioxidative genes such as
NQO1, HO1, and GSH, which protect cells and tissues from
xenobiotic and oxidative stress (Hochmuth et al., 2011). Our study
confirmed previous reports that acute sleep deprivation promoted
expression of antioxidant genes that protect against oxidative stress
(Koutsoumparis et al., 2022). Our results showed that ASD induced
transcription and translation of p62, KEAP1, NRF2, HO1, and
NQO1 in the mouse colon. This demonstrated that ASD induced a
significant antioxidant response in the mouse colon to manage
excessive ROS levels. This caused significant changes in colon
structure and functions. Therefore, our study showed that ASD
activated the antioxidant response through the p62/KEAP1/NRF2/
HO1/NQO1 signaling pathway. ASD also induced reduction in the
levels of KEAP1 transcripts and protein.

SX contains promising drug candidates that may prevent and treat
colitis and reduce inflammation-related gastrointestinal dysfunction,
such as Salvia miltiorrhiza (Wen et al., 2013). In this study, we
investigated the affinity of SX-major active components, baicalin
(BAI) and paeoniflorin (PAE) (Zhang et al., 2022), and oxidative
stress response proteins using molecular docking techniques. Our
results demonstrated high affinity binding between SX-related
components such as BAI and PAE and the antioxidant response
proteins, NQO1, HO1, p62, NRF2, and KEAP1. Previous studies
have shown that BAI could regulating the NRF2/KEAP1 through
both KEAP1 non-dependent and -dependent pathways (Qin et al.,
2014). These results were further confirmed by the RT-PCR and
western blotting results. In this study, we used S-z as a positive
drug control. S-z is a GABA-A receptor agonist that is currently
used as a hypnotic drug and is associated with adverse effects such as
dry mouth, dizziness, and drowsiness (Boyle et al., 2012; Yoshida et al.,

2019; Carter et al., 2020). A high dose of S-z alone or in combination
with its metabolites induces oxidative stress in the erythrocytes (Chan,
2014). In our study, the relative changes in the levels of p62, HO1, and
NQO1 proteins were significantly higher with SX compared to S-z.
This demonstrated that SX was a potent drug against oxidative stress
in ASD. In a future study, we plan to validate the protective effects of
SX against ASD-induced colon injury by using a mouse model of ASD
combined with colon-specific knockout of NRF2. Furthermore, using
CETSA or SPR will provide a deeper understanding on the direct
interaction between main ingredients of SX and molecules, this will be
addressed in future studies.

5 Conclusion

This study demonstrated that acute sleep deprivation induced
damage to the colon mucosal layer by increasing the ROS levels.
Furthermore, we demonstrated that SX decoction significantly
ameliorated ASD-induced colon injury by suppressing the p62/
KEAP1/NRF2/HO1/NQO1 signaling pathway, which is activated in
response to ASD-induced oxidative stress (Figure 7). Therefore, SX
decoction is a promising therapeutic strategy for the treatment of SD-
induced oxidative stress and colon injury.
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