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Pancreatic cancer (PAAD) is one of the most malignant tumors with the worst
prognosis. The abnormalities in the mitochondrial energy metabolism pathway
are intimately correlated with the occurrence and progression of cancer. For the
diagnosis and treatment of pancreatic cancer, abnormal genes in the mitochondrial
energy metabolism system may offer new targets and biomarkers. In this study, we
compared the dysregulated mitochondrial energy metabolism-associated pathways
in PAAD based on pancreatic cancer samples in the Cancer Genome Atlas (TCGA)
database and normal pancreas samples from theGenotype Tissue Expression project
(GTEx) database. Then identified 32 core genes of mitochondrial energy metabolism
pathway-related genes (MMRG) were based on the gene set enrichment analysis
(GSEA). We found most of these genes were altered among different clinical
characteristic groups, and showed significant prognostic value and association
with immune infiltration, suggesting critical roles of MMRG involve tumor genesis
of PAAD. Therefore, we constructed a four-gene (LDHA, ALDH3B1, ALDH3A1, and
ADH6) prognostic biomarker after eliminating redundant factors, and confirming its
efficiency and independence. Further analysis indicated the potential therapeutic
compounds based on the mitochondrial energy metabolism-associated prognostic
biomarker. All of the above analyses dissected the critical role of mitochondrial
energymetabolism signaling in pancreatic cancer and gave a better understanding of
the clinical intervention of PAAD.
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Introduction

Pancreatic cancer has an extremely high mortality rate and is one of the most frequent
causes of death from cancer (Raimondi et al., 2009; Wang-Gillam et al., 2022). Only 4% of
people with pancreatic cancer survive 5 years following diagnosis, despite improvements in
its detection and treatment (Petersen et al., 2006; Vincent et al., 2011; Erkan et al., 2012).

OPEN ACCESS

EDITED BY

Nitish Kumar Mishra,
St. Jude Children’s Research Hospital,
United States

REVIEWED BY

Siddesh Southekal,
Eli Lilly, United States
Sushil Shakyawar,
University of Nebraska Medical Center,
United States

*CORRESPONDENCE

YuMing Zhu,
zym203202@163.com

SPECIALTY SECTION

This article was submitted to
Computational Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 06 December 2022
ACCEPTED 24 January 2023
PUBLISHED 06 February 2023

CITATION

Yang H, Cui Y and Zhu Y (2023),
Comprehensive analysis reveals signal and
molecular mechanism of mitochondrial
energy metabolism pathway in
pancreatic cancer.
Front. Genet. 14:1117145.
doi: 10.3389/fgene.2023.1117145

COPYRIGHT

©2023 Yang, Cui and Zhu. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Abbreviations: AUC, Area under the curve; CNV, Copy number variation; GSEA, Gene set enrichment
analysis; GTEx, Genotype Tissue Expression project; HR, Hazards ratio; IC50, Half maximal inhibitory
concentration; LDHA, Lactate dehydrogenase; MMRG, Mitochondrial energy metabolism pathway-related
gene; NK, Natural killer; OXPHOS, Oxidative phosphorylation; PAAD, Pancreatic cancer; PAAD, Pancreatic
cancer; PPI, Protein-protein interaction; PPP, pentose phosphate pathway; ROC, Receiver operating
characteristic; SNV, Single-nucleotide variation; ssGSEA, single sample gene set enrichment analysis;
TCGA, The cancer genome atlas.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 06 February 2023
DOI 10.3389/fgene.2023.1117145

https://www.frontiersin.org/articles/10.3389/fgene.2023.1117145/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1117145/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1117145/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1117145/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1117145&domain=pdf&date_stamp=2023-02-06
mailto:zym203202@163.com
mailto:zym203202@163.com
https://doi.org/10.3389/fgene.2023.1117145
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1117145


80%–85% of patients cannot remove cancer variants through
surgery in an advanced stage (Klein, 2021). Additionally, the
majority of chemotherapeutic drugs do not effectively treat
pancreatic cancer. Polymorphic genes may interact with other
genes or environmental variables to cause some spread of
pancreatic tumors (Raimondi et al., 2009; Yang et al., 2021).
Mitochondria, known as the energy source of cells, represents
the key intracellular signal transduction center and is an
important determinant in the genesis and progression of cancer,
affecting metabolic reprogramming, the development of metastatic
capacity, and response to chemotherapy drugs (Guerra et al., 2017;
Kalyanaraman et al., 2018; Ji et al., 2022). Abnormal mitochondrial
pathways and metabolic disorders can lead to changes in gene
expression, thereby promoting the development and progression of
cancer and immune system escape (Egan et al., 2021; Ye et al.,
2021). Therefore, we need to understand the impact and potential
role of the mitochondrial energy metabolism pathway in the
occurrence and development of pancreatic cancer.

Most of the energy required by aerobic cells to maintain their
physiological functions is produced by mitochondria, which are the
primary sites of oxidative phosphorylation and ATP production.
Additionally, they take involved in apoptosis, information transfer,
differentiation, and cell proliferation. (Carew and Huang, 2002;
Boese and Kang, 2021). Mitochondrial energy metabolism can be
brought on by a wide range of conditions affecting the mitochondria,
including oxidative stress, abrupt changes in ion concentration,
abnormal oxidative phosphorylation, changes in the electron
transfer chain complex enzymes, and mutations in the
mitochondrial DNA. (Ji et al., 2022; Shen et al., 2022). In many
cancer cells, bioenergy reprogramming involves the transformation
of maximum ATP generated by oxidative phosphorylation
(OXPHOS) from static and differentiated cells to the requirement
of balancing energy demand and substrate generation in fast-
growing cells to achieve cell biogenesis and reproduction
(Wallace, 2012; Guerra et al., 2017; Egan et al., 2021; Shen et al.,
2022). Cancer and mitochondrial energy metabolism are intimately
connected. For example, the resistance of breast cancer cells to PI3K
inhibition is associated with the transformation from glucose to
lactic acid (Park et al., 2016). The transition of ovarian cancer cells
from OXPHOS to glycolysis is accompanied by an increase in
antioxidant defense that seems to be dependent on the pentose
phosphate pathway (PPP). (Catanzaro et al., 2015), and glycolysis are
highly differentially expressed in melanoma (Falkenius et al., 2013).
Additionally, the expression of the β-F1-ATP enzyme is specifically
suppressed in renal and colon cancer, whereas glycolytic
glyceraldehyde-3-phosphate dehydrogenase expression was
elevated (Cuezva et al., 2002). The progression of a tumor is
indicated by mitochondria based on the bioenergy features of
cancer. Targeting mitochondria in immune cells and glycolytic
bioenergy and metabolism may currently be an effective
therapeutic approach for the management of cancer. The
significance of investigating novel therapeutic approaches is
underscored by the distinct mitochondrial and metabolic biology
of these cancer cells.

In this study, we systematically analyzed the mitochondrial
energy metabolism pathway significantly dysregulated in
pancreatic cancer in the TCGA database and excavated the core
genes related to the mitochondrial energy metabolism pathway. To
comprehensively describe the impact of core genes related to the

mitochondrial energy metabolism pathway on the occurrence and
development of pancreatic cancer, we analyzed mutation, expression
level, survival analysis, protein interaction, and the correlation of
biological tumor immune microenvironment. In addition, a
prognostic risk-scoring model was constructed and validated in
the validation set. Based on the mitochondrial energy metabolism
pathway signature, it can effectively predict the prognosis and
therapeutic effects of patients, and screen potential therapeutic
compounds for pancreatic cancer.

TABLE 1 Clinical characteristics of pancreatic cancer patients.

Characteristic Patients (176)

Radiation therapy

F 101 (76%)

T 32 (24%)

Unknown 43

History of chronic pancreatitis

F 13 (9.3%)

T 127 (91%)

Unknown 36

History of diabetes

F 107 (74%)

T 38 (26%)

Unknown 31

Alcohol history documented

F 64 (39%)

T 100 (61%)

Unknown 12

Tobacco smoking history

1 65 (45%)

2 20 (14%)

3 28 (20%)

4 23 (16%)

5 7 (4.9%)

Unknown 33

Vital status

Alive 118 (67%)

Dead 58 (33%)

Grade

Grade1/2 124 (71%)

Grade3/4 50 (29%)

Unknown 2

Age

<60 54 (31%)

≥ 60 122 (69%)

Gender

FEMALE 80 (45%)

MALE 96 (55%)

Risk score

Low 88 (50%)

High 88 (50%)
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Materials and methods

Data collection and processing

Expression profiles of pancreatic cancer patients and normal
control samples from TCGA and GTEx database respectively, were
obtained from the UCSC Xena resource (https://xenabrowser.net/
datapages/). These data contained 181 samples from TCGA
(177 cancer samples and 4 normal samples) and 167 normal
samples from the GTEx database. The publicly available copy
number variation (CNV) and single-nucleotide variation (SNV)
data of TCGA-PAAD cohorts were downloaded from the TCGA
database based on the R package TCGAbiolinks. Clinical
characteristics (including age, gender, cancer grade, chemotherapy
response, history of chronic pancreatitis, smoking status, diabetes
history and alcohol consumption status, overall survival (OS), etc.) of
TCGA-PAAD samples were also obtained and shown in Table 1 (N =
176, 1 case with no complete survival information was removed). The
GEO database (https://www.ncbi.nlm.nih.gov/geo) was used to gather
the expression profile and clinical information of the independent
validation cohort (GSE79668, N = 51). For immunotherapy response
analysis, we obtained the expression data and detailed clinical
information of 298 metastatic urothelial cancer who were treated
with anti-PD-L1 agent (IMvigor210 cohort) based on R package
IMvigor210CoreBiologies (Mariathasan et al., 2018). Also, we
collected the expression data and detailed clinical information of
97 melanoma patients treated with immune checkpoint blockade
(GSE91061) for further evaluation. Besides, global protein-protein
interaction (PPI) network from STRING database (https://www.
string-db.org) was obtained to analysis the potential gene
interactions. STRING database provided both validated and
predicted interactions for MMRG core genes, including direct
(physical) and indirect (functional) associations.

Acquisition of MMRG core genes, differential
expression analysis and survival analysis

Mitochondrial energy metabolism-associated pathways were
collected according to a previous study by (Ye et al., 2021). The
corresponding genes involved in these pathways (termed
mitochondrial energy metabolism pathway-related gene (MMRG))
were retrieved from the KEGG database of MSigDB (https://www.
gsea-msigdb.org/gsea/msigdb). Data from the TCGA-PAAD and
GTEx project was batch-corrected and normalized according to the
previous process (https://github.com/mskcc/RNAseqDB) (Wang et al.
, 2017). GSEA analysis was performed to identify the dysregulated
mitochondrial energy metabolism-associated pathways between
PAAD and normal tissues. The differential expression analysis
between normal and malignant tissues was investigated using the R
package limma. And the core enrichment genes identified by the
GSEA analysis based on R package clusterProfiler were defined as
MMRG core genes. The differential expression of these genes between
different clinical characteristics groups from the TCGA-PAAD cohort
(including grade, stage, drinking, smoking, history of chronic
pancreatitis, history of diabetes, cancer location, gender, age,
radiotherapy or not, chemotherapy response) were compared by
Wilcoxon rank-sum test. To investigate the prognostic value of

MMRG core genes, samples were split by median expression of
each gene, and OS was compared by log-rank test.

Construction of a prognostic risk model for
pancreatic cancer

The hazard ratio (HR) and prognostic significance of genes were
assessed using univariable cox regression analysis, and genes with p <
0.05 were screened for prognostic relevance. LASSO regression
analysis further screened prognostic factors (R package glmnet),
and the expression from each prognostic factor was weighted with
the LASSO regression coefficient to create a risk score model for
predicting sample survival:

Score � ∑
n

i�0
βi*χi

Where βi represents the corresponding weight coefficient of each gene, χi
represents the expression of each gene, and n represents the number of
signature genes. Based on the median score, the sample was split into
high- and low-risk groups. Subsequently, Kaplan-Meier survival curves
were created for prognostic analysis, and any differences were then
analyzed using log-rank tests to determine significance. The receiver
operating characteristic (ROC) curve was employed to assess the
prediction of scoring by the risk score model, and the R package
survivalROC was used to display the area under the curve (AUC). To
further verify the prediction model, the GSE79668 dataset was employed.

Analysis of immune cell infiltration levels

Immune and stromal scores of TCGA-PAAD samples were
computed using the ESTIMATE method based on particular gene
expression profiles of immune and stroma cells. Additionally, we also
estimated the immune cell infiltration based on three different methods
described below: 1) CIBERSORT, an analytical tool to characterize the
abundance of cell types. 22 immune cell types, containing natural killer
(NK) cells, naive and memory B Cells, myeloid subpopulations, plasma
cells, and 7 different types of T Cells, were identified using the leukocyte
signature gene matrix LM22, which consists of 547 genes. The
proportions of the 22 cell phenotypes in the samples were calculated
by CIBERSORT in conjunction with the LM22 feature matrix, and for
each sample, the proportions of all estimated immune cell types added up
to 1. 2) Single sample gene set enrichment analysis (ssGSEA) was
implemented to determine the proportion of 28 immune cell
infiltrates by R package GSVA. 3) The 64 immune cell infiltration
proportions were calculated by the R package xCell.

Drug resistance analysis and screening of
potential therapeutic compounds

We first predicted the sensitivity of TCGA-PAAD patients to
drugs in the GDSC v. 2 database (https://www.cancerrxgene.org/)
using the R package oncoPredict. Then the spearman correlation
between log-transformed half maximal inhibitory concentration
(IC50) for each drug and risk score was calculated. The PDB
database (https://www.rcsb.org/) was used to download information
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on protein structure (PDB ID: 5ZJF), while the ZINC small molecule
database (https://zinc.docking.org/) was employed to access data of
cisplatin compound (Cisplatin, ZINC6507066). Water molecules were
removed by AutoDockTools-1.5.6 software, and then exported to the
pdbqt format for docking after hydrogenation. The mol2 format of
Cisplatin structure was converted to pdbqt format by anaconda,
OpenBabel-3.1.1 and MGLTools-1.5.6. Afterwards, autodock-vina
was used for molecular docking, and the software PyMOL was
used for protein-compound binding maps.

Statistical analysis

The Wilcoxon rank-sum test was used to compare significant
differences between two groups of samples (including gene expression,
immune cell infiltration), while Kruskal–Wallis test was used to
compare significant differences among over than two groups of
samples. The threshold for statistical significance was p < 0.05. In
the study, ns stands for p > 0.05, * for p < 0.05, ** for p < 0.01, *** for
p < 0.001, and **** for p < 0.0001.

Results

MMRG core gene and mutation status in
pancreatic cancer

Five pathways of the mitochondrial energy metabolism (KETONE_
BODY_METABOLIC, OXIDATIVE_PHOSPHORYLATION, FATTY_

ACID_METABOLISM, GLYCOLYSIS_GLUCONEOGENESIS, and
CITRATE_CYCLE) were analyzed by GSEA enrichment. The findings
revealed that only the GLYCOLYSIS_GLUCONEOGENESIS pathway
was significantly enriched in the pancreatic cancer data (Figure 1A). These
results suggested changes in mitochondrial energy metabolism in PAAD.
Extraction of its core genes yielded 32 genes as mitochondrial energy
metabolism pathway-related genes MMRG, which were significantly
differentially expressed in normal and tumor samples (Figure 1B). It
indicated that the MMRG core gene played an important role in PAAD.
We further investigated the genomics alteration ofMMRGcore genes. For
somatic mutation, we observed that most of the MMRG core genes had
few mutations. The most mutated gene was PGAM4 (2%) and it had
mainly missense mutations (Figure 1C). For copy number variation of the
MMRG core genes, the amplified events were predominant (Figure 1D).

Differential expression of MMRG core genes
in clinical features

To further investigate the differences of MMRG core gene in
pancreatic cancer among different clinical characteristics groups, the
expression status of gender, grade, history of chronic pancreatitis,
radiation therapy, stage, age, and history of tobacco smoking were
analyzed. We found significant differences in HK3 between genders
(Figure 2A, p < 0.05). ALDH3B1, ENO1, ALDH2, GAPDH, and
LDHC had significant differences among grades (Figure 2B), while
ALDH3B1, PKM, and ALDH3B2 differed among chronic
pancreatitis histories (Figure 2C). Meanwhile, PGAM4 showed
significant differences among different reflex treatments

FIGURE 1
Analysis of MMRGgene function and core genemutation status in pancreatic cancer. (A)Disorderedmitochondrial energymetabolism-related pathways
in pancreatic cancer; (B) Heat map of core genes in significant gene concentration; (C) Mutation waterfall diagram of MMRG gene set; (D) CNV mutation
frequency distribution map.
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(Figure 2D). For ENO1, ALDH3A1, and ALDH2, significant changes
exist between stages (Figure 2E). Other genes, including PFKP,
PGK1, and ALDH3A1 fluctuated significantly with age
(Figure 2F), and ADH4 differed significantly with smoking
history (Figure 2G). The findings demonstrated that various
clinical characteristics of PAAD were influenced by the MMRG
core gene.

Survival analysis of MMRG core gene in
pancreatic cancer

Based on the TCGA expression and survival data, the OS
differences between the high and low expression of MMRG core
genes were analyzed, and high and low expression groups were split
according to the median expression value. 6 differentially expressed

FIGURE 2
Expression difference of MMRG core gene of clinical characteristics in tumor and normal samples. (A–G) The expression difference of MMRG core gene
set of gender, grade, history of chronic pancreatitis, radiotherapy, stage, age, and smoking history, respectively.
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MMRGs (LDHA, ALDH3B1, LDHAL6B, PKM, ALDH3A1, and
PGAM4) exhibited survival significance, as demonstrated by the
survival analysis of 32 MMRGs in pancreatic cancer (Figures 3A–F,
p < 0.05). Patients with pancreatic cancer in the low-expression group
had a much higher survival rate than those in the high-expression
group, with the LDHA associated with glycolysis being the most
significant (p < 0.001).

The immune microenvironment of MMRG
core genes

To understand the contribution of MMRG core genes on
immune response, we first calculated the correlation between
MMRG core genes expression and immune cell infiltration. Most
of the expression levels of MMRG were associated with the
infiltration of various immune cells in the tumor immune
microenvironment. In particular, HK3, ALDH1A3, and
ALDH1B1 showed significant positive association with the
infiltration of most immune cell types (Figure 4A, p < 0.05). This

is consistent with previous research that HK3 is correlated with
immune infiltrates and predicts response to immunotherapy (Tuo
et al., 2020; Xu et al., 2021). Also, highly expressed ALDH1A3 played
an important role in immune response of tumor (Samson et al.,
2019). On the contrary, HK2, GAPDH, PFKP, ENO2 showed
predominant negative association with immune infiltration
(Figure 4A, p < 0.05). HK2 contributes to immune responses and
is upregulated during inflammation (Hinrichsen et al., 2021). While
GAPDH modulates immunity through metabolism-associated
pathways (Kornberg et al., 2018). These results suggested that
MMRG core genes may participate in the process of tumor
immune invasion.

MMRG core genes interaction analysis

Based on the STRING database, we investigated the potential gene
interactions of these MMRG core genes which played critical roles in
glycolysis of mitochondrial energy metabolism. Within the PPI
network, gene nodes such as GPI, PKM, ALDOA, and TPL1 were

FIGURE 3
Survival analysis of MMRG core gene in pancreatic cancer patients. (A–F) Survival analysis of LDHA, ALDH3B1, LDHAL6B, PKM, ALDH3A1, and PGAM4,
respectively (p < 0.05).
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highly connected and might play a dominant role in the reciprocal
relationship (Figure 4B). In addition, the spearman correlation
analysis among the MMRG core genes (Figure 4C) showed that
there was a significant positive correlation between TPL1 and
GAPDH (p < 0.05, corr = 0.94), LDHA and HK2 (p < 0.05,
corr = 0.83).

MMRG core gene signature construction and
prognostic analysis

The univariable cox risk regression model was constructed by the
32 obtained MMRG core genes as candidate genes. 14 potential
prognostic factors were identified according to the threshold p <

FIGURE 4
MMRG core gene immune microenvironment and protein-protein interaction (PPI) network. (A) The correlation between differential expression of
MMRG and tumor immune cell infiltration (positive in red and negative in blue); (B) MMRG core gene protein-protein interaction (PPI) network. Color of the
gene indicates the differential expression (log2FC) and the node size indicates the degree which also displayed by the barplot leftside; (C) Spearman
correlation of MMRG core gene.

Frontiers in Genetics frontiersin.org07

Yang et al. 10.3389/fgene.2023.1117145

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1117145


0.05 (Supplementary Figure S1AB). Then, the genes used to develop
the risk model were further investigated using LASSO Cox regression
analysis. Four key prognostic genes were assessed after redundant
factors and overfitting were eliminated: LDHA, ALDH3B1,
ALDH3A1, and ADH6 (Supplementary Figures S1B, C). To create
a survival risk score model for PAAD samples, the expression of these
four genes was weighted along with the LASSO regression coefficients.

Patients with PAAD were divided into high-risk and low-risk
groups based on the predicted risk scores and the median score.
According to the survival analysis, both the training set and the
validation set had a better prognosis for the low-risk score group
(Figure 5A). The sensitivity and specificity of the signature were
assessed by time-related ROC analysis. The AUC values were
0.718, 0.678, and 0.791 for one, three, and 5 years for the TCGA
cohort (training set), while 0.633, 0.761, and 0.932 for the
GSE79668 cohort (validation set), respectively (Figure 5B,
Supplementary Figure S2B). Comparing the score distributions of
the two groups, it can be found that the score distributions of both the
training and validation sets were more continuous and devoid of

outliers or extremes (Figure 5C, Supplementary Figure S2C). In both
the training and validation sets, the survival pattern was consistent,
and the low-risk group performed better (Figure 5D, Supplementary
Figure S2D). Finally, the training and validation sets of the prognostic
factor expression model demonstrated similar gene expression trends
(Figure 5E, Supplementary Figure S2E).

Correlation of risk score models and clinical
characteristics

To ascertain whether the signature created was an independent
prognostic predictor, both univariable and multivariate cox analyses
were used. by a threshold p < 0.05. The results exhibited that the
signature functioned as an independent prognostic factor in the
training and validation set data (Figures 6A, B). By comparing the
distribution of risk score subgroups across clinical characteristics, we
were able to further investigate the independence of the model.
Subgroups with sample sizes of 2 and below were excluded from

FIGURE 5
Prognostic analysis of MMRG core gene signature. (A–E) KM, ROC, risk score, survival time distribution, and expression of prognostic factors of MMRG
core gene signature.
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the analysis. The study revealed that there was a substantial difference
in the clinical data on the history of chronic pancreatitis across the
groups (Figures 6C–H).

Correlation of immune infiltration in different
risk subgroups

The ESTIMATE score of the low-risk subgroup was much greater
than that of the high-risk subgroup, as illustrated in Figure 7A. (p <
0.01). Additionally, the immunological and stromal scores of the low-
risk subgroup were both considerably higher than those of the high-
risk subgroup (p < 0.05). When compared to the low-risk grouping,
the tumor purity of the high-risk subgroup was noticeably higher. The
results illustrated that the prognosis was better in the low-risk
subgroup, which was also in line with our above findings obtained.
The considerable variations in immune cell infiltration scores between
the high- and low-risk groups were evident from the disparities in
immune infiltration scores. For example, the high-risk group had
significantly higher immune infiltration ratings for CD56dim
neutrophils, natural killer cells, and type 2T helper cells compared
to the low-risk group (p < 0.05). However, the immune infiltration
scores of low-risk molecules were significantly higher in 10 cell types
such as activated B Cell, activated CD8 T Cell, and macrophage, etc.
(Figure 7B, p < 0.05).

Potential therapeutic strategies for MMRG

We then pretend to observe the predictive performance of our
mitochondrial energy metabolism-associated prognostic biomarker in

immunotherapy patients. Since publicly available PAAD
immunotherapy response data are not available, we employed
datasets from other cancer types instead, to investigate the
generalizability of our mitochondrial energy metabolism-associated
prognostic biomarker. Risk scores of metastatic urothelial cancer
patients treated with the anti-PD-L1 agent (IMvigor210 cohort,
N = 298) were predicted according to the original formula, and
patients were grouped by median risk score. The comparison
showed the low-risk group had a better prognosis (log-rank test
p = 0.0498, Figure 7C). But the objective response rate only
showed a slight difference (23.49% in the low-risk group and
22.15% in the high-risk group) (Figures 7D,E). Coincidentally, in a
melanoma cohort treated with immune checkpoint blockade
(GSE91061), we found the risk score also distinguished the patients
with clinical benefit (log-rank test between high- and low-risk group,
p = 0.029, Supplementary Figure S3A). And the high-risk group
showed significantly more non-responders (progression disease/
stable disease (PD/SD) base on RECIST v1.1) compared to
responders (partial response/complete response (PR/CR), Fisher
exact test p = 0.011, Supplementary Figure S3B). We believe in the
future, as the pancreatic cancer immunotherapy datasets are available,
we can do further evaluation.

Chemotherapy drug resistance and screening
of potential therapeutic compounds

Due to the worse prognosis of PAAD, we further investigate drug
response and potential therapeutic compounds based on the
mitochondrial energy metabolism-associated prognostic biomarker.
Spearman correlation between half maximal inhibitory concentration

FIGURE 6
Risk assessment model construction and correlation of clinical characteristics with different groups. (A) Forest map of univariable and multivariate cox
factors in the training set; (B) Forest map of univariable and multivariate cox factors in the validated set; (C–H) Risk scores in different clinical characteristics
(age, history of chronic pancreatitis, history of diabetes, history of alcohol documented, grade, and gender, respectively).
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(IC50) and the risk score reveled the top positive and negative correlated
drugs (Figures 8A, B). For the positively correlated drugs, the IC50 of
Cytarabine, Olaparib, Camptothecin, SB216763, and Cisplatin differed
significantly between the high and low groups (Figure 8C). While for
negatively related drugs, there was a substantial difference in the IC50 of
Axitinib, Navitoclax, Nilotinib, Vinblastine, and Vorinostat between the
high and low groups (Figure 8D). Findings proved that themodel can be
better applied to drug resistance analysis.

In addition, the study also screened potential therapeutic compounds
using molecular docking based on the MMRG core genes. We selected
lactate dehydrogenase LDHAwith the highest prognostic performance as
the docking protein and Cisplatin with the highest positive correlation
with the risk score as the small molecule for molecular docking. Structure
data of them were obtained from the PDB database and the ZINC small
molecule database respectively. The autodock-vina software was used for
molecular docking and Ligplus was used for interaction force analysis.

FIGURE 7
Difference of immune infiltration and prognosis of immunotherapy between high and low-risk scoring groups. (A) ESTIMATEScore, ImmuneScore,
StromalScore, TumorPurity of high and low score groups; (B) Immune infiltration score of high-risk groups; (C) KM curve of the high or low-risk groups; (D)
Objective response rate in high- and low-risk groups; (E) Risk score distribution in different clinical response groups.
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In the docking results, small molecules have some different cluster
conformations, and the one with the lowest activation energy is
selected for mapping. The docking affinity was −4.9 kcal/mol
(Supplementary Figure S4). The models were of potential clinical
value for potential therapeutic compound screening and state
simulation.

Discussion

During tumorigenesis, mitochondria are essential in regulating
cell proliferation and apoptosis. The major metabolic pathways
associated with mitochondrial energy metabolism are glycolytic/
gluconeogenesis, tricarboxylic acid cycle, oxidative phosphorylation,
ketone body metabolism, and lipid metabolism. The final 32 MMRG
genes related to the mitochondrial energy metabolism pathway were
obtained for analyzing the landscape alterations of pancreatic cancer
and clinical implications. Additionally, a prognostic risk model of the
mitochondrial energy metabolic pathway in pancreatic cancer for
predicting patient prognosis as well as guiding relevant
immunotherapy was built (Table 2).

It was found that all MMRG core genes were significantly different
between cancer samples and normal samples. This confirms that the
screened genes play an important role in PAAD. Based on survival

analysis, 6 out of 32 MMRGs (LDHA, ALDH3B1, LDHAL6B, PKM,
ALDH3A1, and PGAM4) in pancreatic cancer were of survival
significance. The enzyme lactate dehydrogenase A (LDHA), which
is crucial for cell development, is typically overexpressed in tumor
cells. Induced lactate dehydrogenase a supports aerobic glycolysis in
activated T Cells (Peng et al., 2016). A fundamental mechanism for the
control of LDH-A via acetylation was revealed in a work by Di Zhao
et al., and they confirmed that LDHA K5 acetylation might be a
potential marker of pancreatic cancer initiation (Fantin et al., 2006;
Zhao et al., 2013; Ye et al., 2021). In a variety of cancers, including lung
cancer (Moreb et al., 2008; Wei et al., 2015), breast cancer (Douville
et al., 2009), and colorectal cancer (Chen et al., 2015), the enzyme
aldehyde dehydrogenase 3B1 (ALDH3B1), which catalyzes the
oxidation of aldehydes to the appropriate carboxylic acids, has
been discovered to be important cancer stem cell marker. L-Lactate
Dehydrogenase A-Like 6B (LDHAL6B) could activate L-lactate
dehydrogenase activity and participate in the pyruvate metabolism
process. A pyruvate kinase that acts as a catalyst for the transition of
phosphate groups from phosphoenolpyruvate to ADP, creating ATP
and pyruvate, is encoded by the Pyruvate Kinase M1/2 (PKM), which
is involved in glycolysis. According to research, the lncRNA
GACAT2 regulates osteophytes and mitochondrial activity in an
inflammatory environment via binding to PKM1/2 proteins (Li
et al., 2022). The metabolism of lipid peroxidation, corticosteroids,

FIGURE 8
Drug resistance analysis and potential therapeutic compounds. (A) Top 6 drugs whose IC50 positively correlated with the risk score; (B) Top 6 drugs
whose IC50 negatively correlated with the risk score; (C, D) IC50 distribution difference of positive and negative related drugs between high and low score
groups.
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neurotransmitters, and biogenic amines all entail the oxidation of
different aldehydes to their corresponding acids by the enzyme
aldehyde dehydrogenase family 3 member A1 (ALDH3A1). The
expression of ALDH3A1 in non-small cell lung cancer is high
(Moreb et al., 2008). The protein, which is a part of the
phosphoglycerate metastasis family involved in glycolysis is
encoded by the phosphoglycerate mutase family 4 (PGAM4) gene.
PGM is upregulated in breast cancer and has an impact on other
cancers (Durany et al., 2000). According to our research, individuals
with pancreatic cancer who were in the low-expression group had a
much greater chance of surviving than those in the high-expression
group, with the most significant LDHA being linked to glycolytic
metabolism. Analysis of the mitochondrial energy metabolism
pathway in pancreatic cancer revealed that it is mainly involved in
the glycolytic gluconeogenesis process. This amplifies the importance
of these six MMRGs that exhibit differential expression in the
development of pancreatic cancer.

Univariable cox risk regression of 32 MMRG core genes yielded
14 differentially expressed genes, which were further modeled by
LASSO Cox regression analysis to finally obtain 4 key prognostic
genes: LDHA, ALDH3B1, ALDH3A1, and ADH6. LDHA,
ALDH3B1, and ALDH3A1 are all connected to the genesis and
development of various cancers and play a role in mitochondrial
energy metabolism. Hepatocellular carcinoma exhibits
downregulation of the ATP synthesis-related gene alcohol
dehydrogenase 6 (ADH6), which is a key prognostic indicator for
pancreatic cancer (Liao et al., 2017; Liu et al., 2020; Cao et al., 2022).
These researches imply that the genes utilized to build risk models
are tumor-related. In addition, based on ROC analysis in one, three,
and 5 years of validation set and training set, the survival of the
training and validation sets trended in agreement and the model had
good utility. To further investigate the independence of the model,
clinical traits and immune infiltration correlations were examined.
Consistent with our previous findings, Clinical data between high-
and low-risk groups for the presence or absence of chronic
pancreatitis revealed substantial variations.

In summary, our study shows that the MMRG-based PAAD risk
score model can be well used for patient staging as well as predicting
the clinical prognosis of patients. Based on a series of bioinformatics

analyses, pancreatic cancer is mainly associated with glycolytic
gluconeogenesis, a pathway related to mitochondrial energy
metabolism. Among them, LDHA, ALDH3B1, and ALDH3A1 have
survival significance and exhibit potential clinical predictive and
prognostic value.

Conclusion

In this study, we investigated the dysregulated mitochondrial
energy metabolism-associated pathways in PAAD and identified
32 MMRG core genes. They were altered among different clinical
characteristic groups, and showed significant prognostic value and
association with immune infiltration, suggesting critical roles of
MMRG involve tumor genesis of PAAD. We constructed a four-
gene (LDHA, ALDH3B1, ALDH3A1, and ADH6) prognostic
biomarker based on univariate then LASSO cox analysis, then
confirmed its efficiency and independence. Further analysis
indicated the potential therapeutic compounds based on the
mitochondrial energy metabolism-associated prognostic biomarker.
Overall, we constructed a valid prognostic model for PAAD that can
provide a reference for better clinical management of PAAD patients.
(Table 2)
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TABLE 2 Key resources table-Software and algorithms.

Software or algorithms Source

R package TCGAbiolinks https://bioconductor.org/packages/TCGAbiolinks/

R package IMvigor210CoreBiologies http://research-pub.gene.com/IMvigor210CoreBiologies

R package clusterProfiler http://bioconductor.org/packages/clusterProfiler/

R package limma https://bioconductor.org/packages/limma/

R package glmnet https://cran.r-project.org/web/packages/glmnet/

R package survivalROC https://cran.r-project.org/web/packages/survivalROC/index.html

ESTIMATE https://bioinformatics.mdanderson.org/estimate/

R package GSVA https://bioconductor.org/packages/GSVA/

R package xCell GitHub-dviraran/xCell: Cell types enrichment analysis

R package oncoPredict https://github.com/maese005/oncoPredict
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SUPPLEMENTARY FIGURE S1
LASSO regression analysis of 14 potential prognostic factors. The abscissa
represents the logarithm of the independent variable Lambda, and the
ordinate represents the coefficient of the independent variable; (B) LASSO
regression confidence interval of each lambda; (C) LASSO regression
coefficient of key prognostic genes.

SUPPLEMENTARY FIGURE S2
Prognostic analysis of MMRG core gene signature in validation set. KM, ROC,
risk score, survival time distribution, and expression of prognostic factors of
MMRG core gene signature.

SUPPLEMENTARY FIGURE S3
Performance of the mitochondrial energy metabolism-associated prognostic
biomarker in melanoma patients treated with immune checkpoint blockade
(GSE91061). KM curve of the high or low-risk groups; (B) Objective response
rate in high- and low-risk groups.

SUPPLEMENTARY FIGURE S4
Molecular docking results of Lactate dehydrogenase (LDHA) and Cisplatin.
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