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A two-layer multi-time scale stochastic production simulation framework is
constructed to account for the long-term contract electricity quantity of ultra-
high voltage direct current (UHVDC) transmission. On the upper layer, based on the
characteristics of load demand and renewable energy output extracted from the
historical operating data, monthly and daily production simulationmodels are carried
out considering the seasonal characteristics of hydropower during a high-water
period and low-water period to optimize the distribution of contract electric quantity
sending through UHVDC transmission in the target year or month. According to the
DC transmission electric quantity optimized by the daily production simulation in the
upper layer, together with the forecast scenario, the lower layer of the framework
provides the optimization of day-ahead scheduling and intra-day rolling dispatch in
the implementation process. The day-ahead dispatch optimization makes full use of
the adjustment capability of transmission and optimizes the DC transmission electric
quantity correction. Its compensation is based on the result of the daily production
simulation, then the correction will be returned to the upper layer to restart the
optimization of the remaining UHVDC contract electric quantity of the subsequent
period and its distribution plan. Combined with the day-ahead DC transmission plan,
the intra-day rolling optimization is carried out to adjust the output of the unit using
more accurate forecasting scenarios. The distributionally robust optimization model
is used in the lower layer to convert an uncertain problem into a deterministic
quadratically constrained quadratic programming (QCQP) problem according to the
form of an uncertain distribution set. Then the QCQP problem is further converted
into a linear programming (LP) problem by using the reformulation linearization
technique (RLT). A test systemwith the energy composition and distribution referring
to a real provincial power grid in northwest China is established for verification. The
results show that the proposed method can effectively improve the economics of
system operation and the accommodation of renewable energy based on ensuring
security.

KEYWORDS

renewable energy, multi-time scale, long-term stochastic production simulation,
short-term distributionally robust optimization, chance constrained programming

OPEN ACCESS

EDITED BY

Xiuxian Li,
Tongji University, China

REVIEWED BY

Yumin Zhang,
Shandong University of Science and
Technology, China
Yanbo Chen,
North China Electric Power University,
China

*CORRESPONDENCE

Cheng Zheng,
1409282453@qq.com

SPECIALTY SECTION

This article was submitted to Smart Grids,
a section of the journal
Frontiers in Energy Research

RECEIVED 21 October 2022
ACCEPTED 19 January 2023
PUBLISHED 06 February 2023

CITATION

Hao L, Zheng C, Cai J, Lv X, Chen H and
Shao Y (2023), Multi-time scale stochastic
production simulation under VHVDC
long-term contract trading electricity
quantity constraint.
Front. Energy Res. 11:1075889.
doi: 10.3389/fenrg.2023.1075889

COPYRIGHT

© 2023 Hao, Zheng, Cai, Lv, Chen and
Shao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 06 February 2023
DOI 10.3389/fenrg.2023.1075889

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1075889/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1075889/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1075889/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1075889/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1075889&domain=pdf&date_stamp=2023-02-06
mailto:1409282453@qq.com
mailto:1409282453@qq.com
https://doi.org/10.3389/fenrg.2023.1075889
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1075889


1 Introduction

The dual-carbon goal will promote the rapid development of
renewable energy in China. It is estimated that the total installed
capacity of wind power and solar power will reach more than
1.2 billion kilowatts by 2030 (Xi, 2020). Due to the reverse
distribution of load and installed capacity of renewable energy, the
limited level of grid interconnection and other reasons, the difficulty of
renewable energy consumption in some areas has become increasingly
apparent (Shu et al., 2017). Transmission of surplus power across
regions is an effective way to solve the above problems, and UHVDC
transmission plays an important role in the long-distance cross-
regional consumption of wind and solar resources (Liu et al.,
2014). Usually, the transmission mode for UHVDC is established
with a fixed power adjustment according to the regional long-term
contract trading electric quantity (Zhong et al., 2015), which is difficult
to give full play to the power regulation potential of DC transmission
and cannot adapt to the massive random power output of renewable
energy. It causes the abandonment of renewable energy and the
increase of the peak-shaving pressure of traditional units.

The existing studies involving DC transmission plan mostly focus
on optimizing the day-ahead or intra-day power distribution of the
known daily DC transmission electric quantity (Li et al., 2021; Cui
et al., 2022; Zhang et al., 2022). However, there is limited research on
how to obtain the daily delivery of electric quantity from the long-
time-scale DC electric quantity contract which is usually signed on a
yearly or monthly basis. In addition, due to the uncertainty of the
actual operation scenarios, it is also necessary to continuously update
the subsequent remaining contract electric quantity and its
distribution plan based on the actual power delivered every day.

In recent years, scholars have focused intensively on unit
commitment and economic dispatch for the power grid with
increasing stochastic power source permeability, and successively
put forward the scenario method (Wang et al., 2008; Papavasiliou
and Oren, 2011; Hao et al., 2020), chance-constrained programming
(Wu et al., 2014; Wang et al., 2019; Xu et al., 2020) and robust
optimization (Wei et al., 2016; Lu et al., 2020; Velloso et al., 2020).
Among them, the probability of stochastic renewable energy output
distribution of scenario method and chance-constrained
programming is difficult to obtain accurately, which makes the
optimization results have safety risks. Moreover, the result of
robust optimization is conservative. To solve the above-mentioned
contradictions, some researches combine chance-constrained
programming and robust optimization and establish the
distributionally robust optimization (DRO) method (Delage et al.,
2010; Bian et al., 2015; Lubin et al., 2016; Wang et al., 2017; Zhang
et al., 2017; Xie et al., 2018; Zhang et al., 2018; Zhou et al., 2018).
According to the different probability distribution sets (ambiguity
sets) introduced to describe the random variable, DRO has
corresponding decision models and processing methods (Delage
et al., 2010). proposes DRO under the constraints of first and
second moments, in which, the distribution type in the set and the
moment information are not fixed, and the correlation between the
uncertainties is considered. Based on this (Zhou et al., 2018), proposes
a new model equivalent transformation method by using this
distribution set, and equivalently transforms the original problem
into a QCQP problem, and uses the RLT relaxation model to optimize
the real-time dispatch of the system with wind power and thermal
power units. The conventional units involved in the study of power

grid economic dispatch are mostly thermal power units, with few
related to hydropower and other units (Shao et al., 2020). There are
many hydropower and wind power generation resources in Northwest
China, while its regional load is generally small. Much of the clean
energy power generation is sent out through inter-provincial DC
transmission lines. Therefore, it is especially necessary to consider
the seasonal characteristics and reservoir capacity constraints of
hydropower plants in the production simulation.

In view of the above problems, a two-layer framework of multi-
time scale stochastic production simulation under VHVDC long-term
contract trading electricity quantity constraint is established in this
paper. According to the energy composition and distribution of a
provincial power grid in northwest China, a test system is established
to verify the effectiveness of the proposed framework and method.

2 Multi-time scale stochastic production
simulation framework

In this paper, a two-layer framework of multi-time scale stochastic
production simulation for the power grid at the sending-end with
high-proportion renewable energy is established under the constraint
of UHVDC long-term contract trading electric quantity. Based on the
characteristics of the load and renewable energy output extracted from
the historical operation data for many years, the electric quantity
distribution of UHVDC transmission in each month and each day is
optimized. During the actual implementation process, the hourly and
15-min scale delivery power through UHVDC and unit output are
optimized according to the forecast information of load and renewable
energy, and if necessary, the subsequent electric quantity distribution
of UHVDC transmission will be updated. The framework considers
the completeness and accuracy of the information at different time
scales, from comprehensive, low-precision, large-scale overall power
quantity planning to local, high-precision, small-scale scheduling
optimization, thus improving the reliability of optimization. The
stochastic production simulation framework is shown in Figure 1.

1) The upper layer

Through monthly and daily production simulation, together with
the iteration between them, the upper layer of the framework can
obtain the sending electric quantity of each month (or each day)
through UHVDC transmission in the target year (or month) to be
optimized. According to the expected scenario of the representative
day of each month, the monthly production simulation optimizes the
monthly distribution of electric quantity through UHVDC
transmission under the contract trading electric quantity constraint
of the target year. From this, the daily production simulation optimizes
the daily electric quantity distribution in the target month according to
the expected scenarios of each day in the target month to be optimized.
The representative days and their expected scenarios of the target
month for monthly production simulation and the expected scenario
of each day in the target month for daily production simulation are
both obtained by historical load demand and renewable energy output
data mining. When the distribution result cannot meet the system
operation constraints of a certain month, the fixed DC transmission
electric quantity allocated to this month is taken as the constraint and
optimize the daily DC transmission electric quantity in this month,
and return the sum of the daily electric quantities to the monthly
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production simulation as the electric quantity correction of this
month, then restart the monthly production simulation for the
optimization of unexecuted months. The long-term production
simulation can not only determine the distribution of DC
transmission electric quantity in the following year by year-ahead
optimization but also determine the DC transmission electric quantity
in each unexecuted month or day by intra-year optimization
combined with the correction information of the lower layer.

2) The lower layer

The lower layer of the framework optimizes the UHVDC
transmission power and unit output power of the following period
according to its DC transmission electric quantity plan optimized by
the daily production simulation in the upper layer. The day-ahead
dispatch can compensate for the DC transmission electric quantity
given by the daily production simulation, and the electric quantity
correction is sent back to the daily production simulation. The intra-
day rolling dispatch optimizes the unit output power combined with
more accurate short-time forecast information.

3) Iterative optimization of the upper and lower layers

The daily DC transmission electric quantities produced by the
upper layer base on the expected scenarios may not completely
suitable for the forecast scenarios in the economic scheduling of
the lower layer. Therefore, these daily DC transmission electric
quantities can be adjusted with compensation in the day-ahead
optimization of the lower layer when necessary, and then the
electric quantity correction is sent back to the daily production
simulation and restart the daily production simulation to update
the daily electric quantities for the remaining days of this month.
When the iteration of this month is over, the corrected electric
quantity of UHVDC transmission of this month is returned to the
monthly production simulation and the electric quantities for the

remaining months of this year are redistributed until the annual plan is
completed.

4) Treatment of renewable energy output uncertainty

Considering the limited forecast accuracy of medium and long-
term renewable energy output, in the monthly and daily production
simulation of the upper layer, the expected scenario calculated based
on long-term historical data is used to reflect the uncertainty of the
system, and the long-term stochastic production simulation is carried
out under the expected scenarios. The accuracy of day-ahead and
intra-day forecast scenarios is better, but there are still forecast errors,
which brings hidden risks to system safe operation. Therefore, the
ambiguity set (Delage and Ye et al., 2010) is selected in the lower layer
to describe the output forecast error of renewable energy units. Based
on this, aiming at minimizing the operation cost under the forecast
scenarios, the short-term DRO is carried out under the constraints of
random variables.

3 Long-term stochastic production
simulation

3.1 Objective function

The objective of long-term stochastic production simulation is to
minimize the overall operation costs under the expected scenarios.

min∑
t∈T

∑
i∈G

C Pi,t( ) + Cemis
t

⎛⎝ ⎞⎠ + δ∑
k∈K

AkQ
s
k,t + ρPcurt

n,t − λtPdc,t
⎛⎝ ⎞⎠Δt⎡⎢⎢⎣ ⎤⎥⎥⎦

(1)
C Pi,t( ) � αi,1P

2
i,t + αi,2Pi,t + αi,3( )Δt (2a)

Cemis
t �∑

i∈G
υemis
i Pi,tΔt (2b)

FIGURE 1
A two-layer framework for multi-time scale stochastic production simulation.
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whereT is the set of time intervals in the calculation cycle; t is the serial
number of time interval, the duration of each time interval is Δt; G is
the set of thermal power units; i is the serial number of thermal power
unit; Pi,t is the output power of thermal power unit i in interval t;
C(Pi,t) is the power generation cost of thermal power unit i in interval
t; Cemis

t is the emission cost of system in interval t; δ is the electricity
price of hydropower; K is the set of hydropower plants; k is the serial
number of hydropower plant; Ak is output coefficient of hydropower
plant k; Qs

k,t is the abandoned water spillage of hydropower plant k in
interval t; ρ is the penalty factor of renewable energy power
curtailment; Pcurt

n,t is the power curtailment of renewable energy
unit n in interval t; λt is the price of DC transmission electric
quantity in interval t; Pdc,t is the UHVDC transmission power in
interval t; αi,1, αi,2 and αi,3 are the cost coefficients of thermal power
unit i; υemis

i is the emission cost coefficients of thermal power unit i.
The specific process of the upper layer of the framework is shown

in Supplementary Material S1.

3.2 Constraints

3.2.1 System operation constraint
System operation constraints include power balance constraint,

branch transmission power constraint and system reserve capacity
constraint, see (A1)-(A4) in Supplementary Material S2 for details.

3.2.2 Thermal power generation constraint
Thermal power generation constraints include the generator

output power and the ramping up/down constraints, see (A5)-(A6)
in Supplementary Material S3 for details.

3.2.3 Hydropower generation constraint
Hydropower generation needs to satisfy the constraints of unit output

power, water consumption of power generation, reservoir capacity, water
flow of power generation, abandoned water spillage, and water flow
balance, see (A7)-(A12) in Supplementary Material S4 for details.

3.2.4 Renewable energy generation constraint

1 − ϖ( )Ptheo
n,t ≤Pn,t ≤Ptheo

n,t (3)
where Ptheo

n,t is the theoretical output power for renewable energy unit n
in interval t; ϖ is the rate of renewable electric power curtailment.

3.2.5 UHVDC transmission constraint
1) DC transmission power constraint

P_ dc,t ≤Pdc,t ≤min �P
rec
L,t , �Pdc,t}{ (4)

2) The ramp rate of DC transmission power

yt � 1, Rdn
dc ≤ Pdc,t − Pdc,t−1

∣∣∣∣ ∣∣∣∣≤Rup
dc

yt � 0, Pdc,t − Pdc,t−1
∣∣∣∣ ∣∣∣∣ � 0

{ (5)

3) Regulation times constraint of UHVDC transmission during a day

∑T
t�1
yt ≤ �Ψ (6)

where �Pdc,t and P_ dc,t are the upper and lower limits of DC transmission
power; �Prec

L,t is the maximum receivable power of the receiving-end power
grid; yt is the adjustment status variable, “1” means that the DC
transmission power in interval t has been adjusted compared with that
in interval t-1, “0” means unadjusted; Rup

dc and Rdn
dc are the ramp-up and

ramp-down limits of DC transmission power for each time respectively; T
is the total number of time intervals in a day; �Ψ is the upper limit of
adjustment times for DC transmission power in a day. In order to
maintain the stability of UHVDC, the DC transmission power should
be kept constant for a period of time after each adjustment.

4) Constraint of trading electric quantity

E_ −fM Pdc,m,t,ΔEm( )≤Eres ≤ �E − fM Pdc,m,t,ΔEm( ) (7a)

fM Pdc,m,t,ΔEm( ) � ∑
m∈M

ζm ∑
t∈Ta

Pdc,m,tΔt + ΔEm
⎛⎝ ⎞⎠ (7b)

E_m − fD Pdc,d,t,ΔEd( )≤Eres
m ≤ �Em − fD Pdc,d,t,ΔEd( ) (8a)

fD Pdc,d,t,ΔEd( ) � ∑
d∈D

∑
t∈Ta

Pdc,d,tΔt + ΔEd
⎛⎝ ⎞⎠ (8b)

where �E andE_ are the upper and lower limits of DC transmission contract
electric quantity of a year; �Em and E_m are the upper and lower limits of
DC transmission contract electric quantity of monthm;M and D are the
sets of executedmonths and executed days respectively;fM(Pdc,m,t,ΔEm)
and fD(Pdc,d,t,ΔEd) are the DC transmission electric quantity of the
executedmonths and the executed days in the currentmonth respectively;
Pdc,m,t and Pdc,d,t are the DC transmission power in interval t of monthm
and day d respectively;ΔEm andΔEd are the corrected electric quantity of
DC transmission of monthm and day d respectively; Eres and Eres

m are the
remaining electric quantity to be distributed in the current year and
current month respectively; ζm is the maximum number of days in
monthm.

4 Short-term DRO

4.1 Unit failure risk cost model

Compared with the uncertainty of wind/load, the power system
operation is more seriously affected by unit failure and outage (Zhang
et al., 2019). In this paper, the uncertainty of renewable energy is
mainly regulated by thermal power and hydropower units. Therefore,
the failure risk cost model of thermal power units is established by
referring to the reference (Shao et al., 2022).

Risk cost caused by thermal power unit failure:

A Pbase
t( ) � CLE

U
t (9)

whereA(Pbase
t ) is the risk cost caused by thermal power unit failure; CL

is the unit loss of load cost; EU
t is the expected value of thermal power

unit failure in interval t.
The probability of a single unit failure is:

PRG,i,t � PRi,t∏
y≠i

1 − PRy,t( )i, y ∈ G (10)

where PRG,i,t is the probability that only unit i fails at time t; PRi,t is the
probability that unit i fails in interval t.; G is the set of all units.
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The formula for calculating EU
t is:

EU
t �∑

i∈G

PRG,i,tP
base
i,t (11)

where Pbase
i,t is the base point for thermal power unit i in interval t.

4.2 Objective function

The objective of short-term DRO is to minimize the overall
operation costs of forecast scenarios.

min∑
t∈T

⎛⎝∑
i∈G

C Pbase
i,t( ) + Cemis

t
⎞⎠ +⎛⎝δ∑

h∈H

AhQ
s
h,t − λtPdc,t + τΔPdc,t

⎡⎢⎢⎣
+ρPcurt

n,t
⎞⎠Δt + A(Pbase

t )⎤⎦ (12)

where τ is the modified price for DC transmission electric quantity;
ΔPdc,t is the corrected DC transmission power in interval t by day-
ahead optimization.

The specific process of the DRO in the lower layer of the
framework is shown in Supplementary Material S5.

4.3 Constraints and distribution set
construction

4.3.1 Constraints
1) Power balance constraint

∑
i∈G

Pbase
i,t +∑

j∈J
Pbase
j,t +∑

n∈N
Pn,t � PL,t + Pdc,t (13)

Pn,t � Ptheo
n,t − Pcurt

n,t (14)

where Pbase
j,t is the base point for hydropower unit j in interval t.

2) The constraints of adjustment factor

In this paper, a randomvariable vectorΩt is established to represent the
output power forecast error of each renewable energy unit. An adjustment
factor is introduced to represent the power forecast error shared by each
adjustable unit, then the output power of each adjustable unit is:

Pi,t � Pbase
i,t − σ i,te

TΩt (15a)
Pj,t � Pbase

j,t − σj,te
TΩt (15b)

∑
i∈G

σ i,t +∑
j∈J

σj,t � 1, t ∈ T (16)

where e is the column vector with all elements being one; σ i,t is the
adjustment factor of thermal power unit i in interval t; σj,t is the
adjustment factor of hydropower unit j in interval t.

3) Robust chance constraint

inf
Ωt∈D

Pr Pbase
i,t − σ i,te

TΩt ≤ �Pi{ }≥ 1 − ε, ∀i ∈ G (17a)

inf
Ωt∈D

Pr Pbase
i,t − σ i,te

TΩt ≥P_ i{ }≥ 1 − ε, ∀i ∈ G (17b)

inf
Ωt∈D

Pr Pbase
k,j,t − σj,te

TΩt ≤ �Pk,j{ }≥ 1 − ε, ∀j ∈ J (17c)

inf
Ωt∈D

Pr Pbase
k,j,t − σj,te

TΩt ≥P_ k,j{ }≥ 1 − ε, ∀j ∈ J (17d)

inf
Ωt∈D

Pr σ i,te
TΩt ≤ rupi{ }≥ 1 − ε, ∀i ∈ G (18a)

inf
Ωt∈D

Pr σ i,te
TΩt ≥ rdni{ }≥ 1 − ε, ∀i ∈ G (18b)

inf
Ωt∈D

Pr σj,te
TΩt ≤ rupj{ }≥ 1 − ε, ∀j ∈ J (18c)

inf
Ωt∈D

Pr σj,te
TΩt ≥ rdnj{ }≥ 1 − ε, ∀j ∈ J (18d)

Pb,t � KGT
b PG,t + K JT

b PJ,t + KNT
b PN,t +Ωt( ) − KLT

b PL,t − Kdc
b Pdc,t (19a)

inf
Ωt∈D

Pr Pb,t

∣∣∣∣ ∣∣∣∣≤ �Pb{ }≥ 1 − ε, ∀b ∈ B (19b)

where 1 − ε is the confidence level; D is the distribution set that
represents the uncertainty of Ωt, as shown in Eq. 17a; rupi and rdni are
the upper and lower adjustment limits of thermal power unit i
respectively; rupj and rdnj are the upper and lower adjustment limits
of hydropower unit j respectively. Pb,t is the transmission power of line
b in interval t; KG

b , K
J
b and KN

b are the injection shift factor vectors of
thermal power unit bus, hydropower unit bus and new energy unit bus
to branch b respectively; Output vector for all thermal; PG,t, PJ,t and
PN,t is the total output power vectors of all thermal power units,
hydropower units and renewable energy units in interval t respectively.

4) Other constraints

The rest of the constraints are the same as Eqs 4–6, (A6) and
(A8)-(A12).

4.3.2 Construction of distribution set
The ambiguity set D proposed in (Delage et al., 2010) is chosen to

describe the uncertainty of Ωt in this paper, which is as follows.

D �
∫f Ωt( )dΩt � 1, f Ωt( )≥ 0
E Ωt( ) − μ0[ ]TΣ−1

0 E Ωt( ) − μ0[ ]≤ γ1
E Ωt − μ0( ) Ωt − μ0( )T[ ]7γ2Σ0

γ1 ≥ 0, γ2 ≥ 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(20)

where f(Ωt) is the joint probability distribution function ofΩt; μ0, Σ0

are statistical of the mean vector and statistical of the covariance
matrix of Ωt respectively; γ1 and γ2 are the conservative coefficients.

To sum up, Eqs 9–17 constitute the model of short-term DRO.
However, it is difficult to solve the robust chance constraint directly,
we need to transform it to an easy-to-solve model.

4.4 Conversion and solution.

4.1 Deterministic QCQP optimization problem
The key to solving the above short-term DRO model lies in the

equivalent transformation of Eqs 14–16 (Zhang et al., 2022). gives an
equivalent conversion method and proves it. Based on this method,
the robust chance constraints of Eqs 14–16 can be transformed into
Eqs 18–21, thus forming a deterministic QCQP optimization problem.
The detailed transformation process is shown in Supplementary
Material S6.

−σ i,tμT0 e + ξσ i,t
"""""
eTΣ0e
√

≤ �Pi − Pbase
i,t (21a)

σ i,tμ
T
0 e + ξσ i,t

"""""
eTΣ0e
√

≤Pbase
i,t − P_ i (21b)

−σj,tμT0 e + ξσj,t
"""""
eTΣ0e
√

≤ �Pk,j − Pbase
k,j,t (21c)
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σj,tμ
T
0 e + ξσj,t

"""""
eTΣ0e
√

≤Pbase
k,j,t − P_ k,j,t (21d)

σ i,tμ
T
0 e + ξσ i,t

"""""
eTΣ0e
√

≤ rupi (22a)
−σ i,tμ

T
0 e + ξσ i,t

"""""
eTΣ0e
√

≤ − rdni (22b)
σj,tμ

T
0 e + ξσj,t

"""""
eTΣ0e
√

≤ rupj (22c)
−σj,tμT0 e + ξσj,t

"""""
eTΣ0e
√

≤ − rdnj (22d)
ξ2 KN

b − e σT
G,tK

G
b + σT

J,tK
J
b( )[ ]TΣ0 KN

b − e σT
G,tK

G
b + σT

J,tK
J
b( )[ ]≤

P1,b − KGT
b Pbase

G,t − K JT
b P

base
J,t + μ0

Te σT
G,tK

G
b + σT

J,tK
J
b( )[ ]2

P1,b − KGT
b Pbase

G,t − K JT
b P

base
J,t + μ0

Te σT
G,tK

G
b + σT

J,tK
J
b( )≥ 0, ∀b ∈ B

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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(24)

where ξ � ""
γ1

√ +
"""""""""""(1−εε )(γ2 − γ1)
√

; σG,t, σJ,t are the adjustment factor
vectors for all thermal power units and hydropower units in interval t
respectively; P1,b � �Pb − KNT

b PN,t + KLT
b PL,t + Kdc

b Pdc,t − μ0
TKN

b ;
P2,b � �Pb + KNT

b PN,t − KLT
b PL,t −Kdc

b Pdc,t + μ0
TKN

b .

4.2 RLT method
RLT is used to transform the QCQP model into LP problems. To

facilitate RLT relaxation (Sherali and Tuncbilek et al., 1995), the
QCQP optimization problem is further converted into a general form:

min xTω0x + aT0 x + b0 (25)
s.t. xTωix + aTi x � bi, i ∈ Ec (26)

xTωix + aTi x ≤ bi, i ∈ Ic (27)
x_ ≤ x ≤ �x (28)

where x � [PbaseT
G,t ,QpT

J,t ,P
curtT
N,t , σT

t ]T, all decision variables are included
[Transformation of hydropower unit combination (A8)]; �x、 x are the
upper and lower limits of x respectively; ω is a high-dimensional
symmetric constant coefficient matrix; Ec is the set of equality
constraints; Ic is the set of inequality constraints; a0, ai are the high-
dimensional column vectors with constant coefficients of the objective
function and constraints respectively; b0, bi are the constant coefficients
corresponding to the objective function and constraints respectively.

By comparing Eqs 25–28 with the QCQP optimization problem
above, it can be found ω0 is a diagonal matrix. The ωi of the second
constraint in Eqs 13, 16, 21, 22, 23, 24 are all 0 matrices. The solution
of the first constraint in Eqs 23, 24 can be referred to literature (Zhou
et al., 2020), which will not be repeated here.

According to the characteristics of RLT (Anstreicher, 2009), the
original QCQP optimization problem is expressed as:

minω0 • X + aT0 x + b0 (29)
s.t. ωi • X + aTi x � bi, i ∈ Ec (30)

ωi • X + aTi x ≤ bi, i ∈ Ic (31)
x ≤ x ≤ �x,X � XT (32)

where X � xxT; ω • X �∑n

i�1∑n

j�1ωijXij.
The constraint conditions ofX were further determined (Anstreicher.

2009), thus the QCQP optimization problem was relaxed and processed
into LP problem. Since RLT is not the focus of this paper, only a brief

introduction is made in this paper, and the specific process is not
described too much.

5 Case study

Referring to the energy source composition and distribution of the
provincial-level sending-end power grid with clean energy as its main
source in northwest China, and considering the conditions of its
receiving-end power grid, this paper modifies the IEEE 10-machine
39-bus system to construct a test system with a UHVDC
interconnection line between the sending and receiving ends, the
system is shown in Figure 2. The power grid of sending-end is
divided into five areas of A, B, C, D, and E. The renewable energy
mainly locates in areas A and D, in which, wind farms G6 and G7 are
connected to bus 30 and 31 respectively, photovoltaic power stations G8

and G9 are connected to bus 37 and 32 respectively. Hydropower and
thermal power plants are mainly located in area C, in which G3 is the
frequency modulation power plant. Area B also contains part of the
hydropower plant such as G5. Area E has no power and no load, which is
only used as a power exchange area. The receiving-end power grid uses
thermal power plant G10 and load for equivalence. The period from May
to October is set as high-water period, and the remaining months are set
as low-water period. The relevant parameters of the test system are shown
in Supplementary Material S7. The simulation is based on MATLAB
platform, using Yalmip toolkit and calling CPLEX solver to calculate.

5.1 Long-term stochastic production
simulation

Based on the expected scenario for each representative day of a
month and the expected scenario for each day, the monthly and daily

FIGURE 2
Modified 10-machine 39-bus system.
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production simulations of the test system for the year to be optimized
are carried out by the upper layer of the framework proposed in this
paper. The generation of DC electric quantity correction in February,
August and November during daily production optimization restarts
the monthly production simulation respectively, and finally the DC
transmission electric quantities for each month and day of the year to
be optimized are obtained. The DC transmission electric quantity for
each month is shown in Supplementary Figure S1. It can be seen that
the overall DC transmission electric quantities from May to October
are relatively big, and the electric quantity in May is the biggest in the
whole year. Whereas, the monthly DC transmission electric quantities
from January to April and November to December are relatively small.
The electric quantity in November is the smallest in the whole year.

Taking January in the low-water period and July in the high-water
period as examples, the daily UHVDC transmission electric quantity
of January and July are shown in Supplementary Figures S2,
S3 respectively. It can be seen that the DC transmission electric
quantity difference among each day in July is small, while the
difference of daily DC transmission electric quantity in January is
big. The daily electric quantities in July are generally higher than those
in January. The main reason is that most of the conventional units in
the sending-end power grid are hydropower units, to reduce the
abandoned water in high-water period, the outputs of hydropower
stations are not allowed to be less than 70% of their installed capacity
from May to October. Therefore, the UHVDC transmission electric
quantity in the high-water period is quite different from that in the
low-water period.

5.2 Short-term DRO

5.2.1 Day-ahead optimization
When execute to January 21, the day-ahead optimization is

performed for January 22, and the optimization results are shown
as Figure 3; Supplementary Figure S4. Compared to the daily expected
scenario and the DC transmission plan in daily production simulation
of January 22, the following observations can be obtained from the
figures. From 9:00 to 12:00, the expected renewable energy output of
the power grid at the sending-end is huge, which makes the daily

optimization process in the upper layer already adjust the DC
transmission power upwards according to the single maximum DC
adjustment range, and there is no room for upward adjustment during
the day-ahead optimization, therefore, although the day-ahead
predicted renewable energy output is significantly larger than that
of the expected scenario, the DC transmission results of the day-ahead
optimization are still close to that of the daily production simulation.
From 13:00 to 24:00, the predicted renewable energy output is greater
than that of the daily expected scenario, and there is sufficient room
for upward adjustment of DC transmission, so the DC transmission
plan obtained from the day-ahead optimization increases compared
with that of the daily production simulation, further improving the
consumption of renewable energy.

When execute to June 30, the day-ahead simulation is performed
for July 1, and the optimization results are shown as Figure 4;
Supplementary Figure S5. In order to make full use of water
resources, the hydropower units were set to the constrain of high
output power during the high-water period including July 1, which
makes it impossible to maintain the DC transmission plan formulated
by the daily production simulation by greatly changing the output of
hydropower units as in the low-water period, but more dependent on
the adjustment capacity of DC transmission. Therefore, on the whole,
there is a big difference between the day-ahead optimized DC
transmission plan and the result of daily production simulation.
When the day-ahead predicted renewable energy output decreases,
the day-ahead optimized DC transmission power from 7:00 to 12:00 is
still adjusted upwards compared with that of the daily production
simulation. The reason is that in order to satisfy the robust chance
constraints of Eqs 16, 21, it is necessary to increase the output of
adjustable units during 7:00 to 9:00, so as to reserve sufficient
downward adjustment capacity of units, which leads to the increase
of day-ahead optimized DC transmission power. The renewable
energy output is large during 10:00 to 12:00, at the same time the
units have the ability to increase the output power according to the
single maximum DC adjustment range at this stage, so the DC
transmission power increases.

The daily electric quantity correction of UHVDC transmission
in January and July are generated after the day-ahead optimization
respectively, as shown in Supplementary Figures S6, S7, and then

FIGURE 3
Day-ahead optimization results of January 22.
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are returned to the daily production simulation. The monthly
electric quantity correction of UHVDC transmission is shown in
Supplementary Figure S8. By observing the monthly corrected
electric quantity, we can find that the monthly electric quantity
correction from January to April and November to December are
all positive, and those of May to October are all negative, showing
obvious characteristics of the high-water period and low-water
period. In addition, the absolute electric quantity correction during
the low-water period is greater than that in the high-water period,
indicating that the electric quantity correction produced by day-
ahead optimization during each day of the low-water period is
relatively large, while it is smaller in the high-water period, which is
consistent with the results in Supplementary Figures S6, S7. It can
be seen that for the power grid with a high proportion of
hydropower capacity, the seasonal characteristics of high-water
and low-water have a great influence on renewable energy
consumption and power dispatching.

5.2.2 Intra-day rolling optimization
Taking January 22 and July 1 as the examples, the intra-day rolling

DRO is carried out, the optimization results for the 2 days are shown

in Figure 5; Figure 6 respectively, and the adjustment factors are
shown in Figure 7; Figure 8.

The optimization results of January 22 in Figure 5 show that:
1) From 1:00 to 8:00 and from 18:00 to 21:00, the output of
renewable energies is mainly wind power, and in that period the
wind power output is relatively low. So, the output of hydropower
units is increased preferentially to meet the load demand of the
sending-end power grid together with the DC transmission
planed power. Because of the poor power supply economy, the
thermal power units maintain their minimum technical output. 2)
From 9:00 to 17:00, the overall output of renewable energies is at a
high level due to the increasing generation of photovoltaic, in this
process the thermal power units continue to maintain the
minimum technical output, while hydropower units reduce
their output as much as possible to increase the consumption
of renewable energy. 3) From 22:00 to 24:00, the hydropower
units are in full output power state. In order to cope with the
decrease of wind power output, G2 which has lower power
generation costs among thermal power plants gives priority to
increasing its output, and then the output of thermal power plant
G1 also increases to make up for the power shortage. 4) Some

FIGURE 4
Day-ahead optimization results of July 1.

FIGURE 5
Intra-day optimization results of January 22.

FIGURE 6
Intra-day optimization results of July 1.
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electric power from renewable energy is curtailed around 12:00, at
which time the thermal power is the minimum technical output,
and hydropower output also reaches the lower limit of robust
constraints.

It can be seen from the intra-day optimization results of high-
water period shown in Figure 6 that the hydropower units can
increase their output during the low-output period of renewable
energy to provide the cheap adjustment capacity, and reduce their
output during the high-output period of renewable energy to
promote the consumption of renewable energy. In order not to
abandon water as much as possible, the hydropower units decrease
their output with limit during the period that the renewable energy
output is high, and increase their output when the renewable
energy is low so as to meet the daily water level of the
hydropower station. From 11:00 to 15:00, some electric power
from renewable energy is curtailed, and at this time, both the
thermal power and the hydropower units are in their minimum
output state meeting the constraints.

It can be seen from Figures 7; Figure 8 that thermal power units
essentially do not participate in capacity adjustment. In the high-
water period, hydropower plant G3 is the main capacity
adjustment power plant. In Figure 8, G3 is in full output power
state from 20:00 to 24:00, and there is no more adjustable capacity,
so hydropower plant G4 then undertakes the capacity
adjustment task.

5.3 Security analysis of the scheduling method

The risk coefficient is set to ε � 0.2, and by simulating the actual
operation scenario for several times (1000 times), the ratio of the
number of times that did not meet the constraints to the total number
of simulations was counted as the probability of crossing the boundary
to measure the operation risk. The results were shown in Table 1.

It can be seen from the table that the probability of crossing the
boundary corresponding to the method in this paper is only 0.08, far
less than the risk coefficient 0.2 set in this paper. This indicates that the
robust chance constraint method adopted in this paper can effectively
ensure the safe operation of the high-proportion renewable energy
sending-end power grid.

FIGURE 7
Intra-day optimization results of σ on January 22.

FIGURE 8
Intra-day optimization results of σ on July 1.

TABLE 1 Simulation results of the method in this paper.

Parameter Result

Daily revenue/104yuan 441.23

Daily rate of power abandonment/% 3.87

Annual revenue/108yuan 38.86

Annual rate of power abandonment/% 7.12

Probability of crossing the boundary 0.08
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6 Conclusion

In this paper, a two-layer framework of multi-time scale stochastic
production simulation for the optimization of UHVDC transmission is
established for the sending-end power grid with a high proportion of clean
energy. Referring to the energy composition and distribution of the
provincial-level sending-end power grid with clean energy as its main
sources in northwest China, a test system is established for verification.
The research results show that: 1) Changing the daily transmission electric
quantity ofDC transmission line fromafixed value to a long- and short-term
coordinated optimization can better adapt to the uncertainty of renewable
energy output, load or system operation conditions. 2) Changing the
adjustment ability of DC transmission line from traditional two-stage to
multi-stage can make full use of DC transmission ability and promote the
consumption of renewable energy in the power grid. 3) In the lower layer, the
DRO method is adopted to deal with the randomness of renewable energy
output, which improves the system operation economy while meeting
certain safety requirements. 4) Taking full account of the hydropower
seasonal characteristics and the storage capacity of reservoir, the
adjustment ability of hydropower units can be reflected more accurately,
and the renewable energy consumption and dispatching plans can be
formulated more effectively. In this paper, the setting of the inter-
provincial power transaction is relatively simple, and the related research
will be further refined in the follow-up.
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