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Background and objective: For patients with advanced colorectal liver metastases

(CRLMs) receiving first-line anti-angiogenic therapy, an accurate, rapid and

noninvasive indicator is urgently needed to predict its efficacy. In previous

studies, dynamic radiomics predicted more accurately than conventional

radiomics. Therefore, it is necessary to establish a dynamic radiomics efficacy

prediction model for antiangiogenic therapy to provide more accurate guidance

for clinical diagnosis and treatment decisions.

Methods: In this study, we use dynamic radiomics feature extraction method that

extracts static features using tomographic images of different sequences of the

same patient and then quantifies them into new dynamic features for the

prediction of treatmentefficacy. In this retrospective study, we collected 76

patients who were diagnosed with unresectable CRLM between June 2016 and

June 2021 in the First Hospital of China Medical University. All patients received

standard treatment regimen of bevacizumab combined with chemotherapy in the

first-line treatment, and contrast-enhanced abdominal CT (CECT) scans were

performed before treatment. Patients with multiple primary lesions as well as

missing clinical or imaging information were excluded. Area Under Curve (AUC)

and accuracy were used to evaluate model performance. Regions of interest (ROIs)

were independently delineated by two radiologists to extract radiomics features.

Three machine learning algorithms were used to construct two scores based on

the best response and progression-free survival (PFS).

Results: For the task that predict the best response patients will achieve after

treatment, by using ROC curve analysis, it can be seen that the relative change rate

(RCR) feature performed best among all features and best in linear discriminantanalysis

(AUC: 0.945 and accuracy: 0.855). In terms of predicting PFS, the Kaplan–Meier plots

suggested that the score constructed using the RCR features could significantly

distinguish patients with good response from those with poor response (Two-sided

P<0.0001 for survival analysis).
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Conclusions: This study demonstrates that the application of dynamic radiomics

features can better predict the efficacy of CRLM patients receiving antiangiogenic

therapy compared with conventional radiomics features. It allows patients to have

a more accurate assessment of the effect of medical treatment before receiving

treatment, and this assessment method is noninvasive, rapid, and less expensive.

Dynamic radiomics model provides stronger guidance for the selection of

treatment options and precision medicine.
KEYWORDS

colorectal cancer liver metastases, radiomics, dynamic radiomics, antiangiogenic therapy,
efficacy prediction
1 Introduction

Colorectal cancer (CRC) is the fourth most common malignancy

worldwide, with approximately 800,000 newly diagnosed cases each

year (1). CRC accounts for approximately 10% of all tumors (2). The

liver is the most common metastatic site for CRC, and approximately

a quarter of all patients with CRC have liver metastases (3, 4). Surgery

is the best treatment for colorectal cancer liver metastases (CRLMs).

At present, judging whether CRLM patients can undergo surgery is

mainly based on two aspects: “technical” and “oncological”. For the

“technical” definition of resectable CRLM, the current consensus is

that complete macroscopic resection is feasible while maintaining at

least 30% of future liver remnants (FLRs) or a residual liver to body

weight ratio >0.5. The “oncological” criteria for resectable CRLM

mainly consider that patients can achieve higher disease-free survival

and cure rate, and based on the number of this lesion ≥ 5,

concomitant unresectable extrahepatic lesions and tumor

progression are contraindications for surgery in patients with

CRLM (5). Under these criteria surgical resection can only be

applied to a limited number of cases, and the probability of

postoperative recurrence of the liver is extremely high (6).

Inhibition of angiogenesis during tumor growth is the standard

treatment for unresectable CRLM. Antiangiogenic drugs (e.g.,

bevacizumab) are currently used in combination with

chemotherapy in patients with CRLM (7). However, the patient

response to this treatment varies, and there are currently no good

indicators for predicting the efficacy of treatment (8). Therefore, it is

important to accurately and noninvasively predict the response of

CRLM patients to the initial treatment.

Radiomics is a promising and noninvasive method that analyzes

traditional medical images to extract quantifiable data, which show

the biological characteristics of pathological processes at the

microscopic level (9, 10). These data can be converted into image-

based signatures to improve the accuracy of diagnosis, prognosis and

prediction of cancer patients. Computed tomography (CT) has the

advantages of repeatability, standardization, and extraction of

quantitative data. It is indispensable in diagnosis and follow-up

(11). Although some PET and MRI based radiomics studies have

achieved remarkable results in the field of metastatic colorectal cancer

(12, 13), CT based imaging criteria are still the preferred criteria for
02
evaluation of tumor drug response in clinical trials so far. CT-based

radiomics has been shown to help predict therapy response and

outcome in multiple cancers, including CRC (14–16). Ligero et al.

verified that their established CT-based radiomics signature is

associated with the response of a variety of advanced solid tumors

to immune checkpoint inhibitors (17). Jain et al. predicted the overall

survival (OS) and response to chemotherapy of small cell lung cancer

(SCLC) patients based on the radiomic features within and around

lung tumors extracted from CT images (18). In predicting the efficacy

and prognosis of CRLM after treatment, Wei et al. constructed a deep

learning-based radiomics model using CT images to predict the

response of CRLM to advanced first-line chemotherapy, with an

AUC of 0.935 in the validation cohort (19); Liu et al. constructed a

CT-based radiomics model to predict the survival of unresectable

colorectal liver metastases treated with hepatic arterial infusion

chemotherapy, and the c-index of the test group reached 0.743 (20).

On the other hand, although various imaging modalities such as

ultrasound (US), computed tomography (CT), magnetic resonance

imaging (MRI), and positron emission tomography/computed

tomography (PET/CT) can be used for the diagnosis and evaluation

of CRLM, CT is still the current method of choice for the diagnosis

and treatment of CRLM (21, 22). Previous studies have shown that

the sensitivity and specificity of CT for the diagnosis of CRLM are

82.1% and 73.5%, respectively (23).

Existing radiomics features were mainly analyzed based on static

medical images at one time point. However, the occurrence and

development of tumors is a dynamic process, and static image

features cannot contain more dynamic information. For this reason,

Carvalho et al. proposed “delta radiomics”, which can represent the

change in radiomics characteristics over time (24). This approach can

provide additional information to identify, quantify, and potentially

predict treatment-induced changes during treatment and has been

shown to have potential for predicting treatment efficacy and

prognosis in colorectal (25) esophageal (26), pancreatic (27), and

lung (28) cancers. To improve the workflow and specific techniques of

radiomics related to time series, Qu et al. proposed a feature

extraction method called dynamic radiomics (29, 30). This method

can use multiple series of images from the same type of imaging

examination to jointly extract features to delineate the changes in

features over time.
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For antiangiogenic therapy, the number of blood vessels in the

tumor is a common indicator used to evaluate its efficacy (31). In the

process of contrast-enhanced CT (CECT), after intravenous injection

of contrast medium, tumor vascularity can be effectively observed by

comparing the images acquired at different vascular phases (32), while

dynamic radiomics features can reflect the changes in the scanned

images at different periods and then indirectly evaluate the vascularity

of tumors. Therefore, this method is suitable for assessing the efficacy

of antiangiogenic therapy. In this retrospective study, dynamic

radiomics was applied to predict the efficacy of antiangiogenic

therapy for the first time. Compared with conventional radiomics,

the model constructed by this method can more accurately predict

patient response to treatment and progression-free survival (PFS).

Achieve more efficient and precise assessment of patients before they

receive treatment. It is helpful for clinicians to make clinical decisions

and stratify patients’ prognosis.
2 Materials and methods

2.1 Patients

The entire cohort was enrolled from June 2016 to June 2021 by

reviewing records of the institutional Picture Archiving and

Communication System (PACS, Philips) for the identification of

patients with histologically confirmed CRLM. A total of 76 patients

were confirmed to meet the criteria and all included patients were

from single center. The inclusion criteria for this study were as

follows: (1) patients were older than 18 years; (2) colorectal

adenocarcinoma with liver metastasis was confirmed by

histopathological examination; (3) no surgery or other therapy

prior to first-line treatment; (4) advanced first-line treatment with

bevacizumab combined with a standard chemotherapy regimen

(FOLFOX/XELOX/FOLFIRI) was used; (5) first-line treatment

evaluation information based on Response Evaluation Criteria in

Solid Tumors (RECIST) was available; (6) baseline images of

abdominal CECT before first-line treatment were available, which

needed to include images in the precontrast phase (PP), arterial phase

(AP), portal venous phase (PVP) and delay phase (DP); and (7) the

interval between abdominal CT examination and histopathological

diagnosis was less than 31 days (range 4–30 days). The exclusion

criteria were as follows: (1) the patient had more than one primary

tumor site; (2) the CT image quality was poor due to patient

respiration or motion artifacts; (3) the patient’s margin was too

blurred to delineate; (4) the patient’s clinical data were missing; and

(5) the patient’s advanced first-linetreatment had not been completed

or the best efficacy had not been reached. Clinical information

included age, sex, primary tumor location (left-sided, right-sided

and rectum), primary tumor size, and serum carcinoembryonic

antigen (CEA) and alpha-fetoprotein (AFP) results at baseline.

This retrospective study was conducted in accordance with the

principles of the Declaration of Helsinki and approved by the Ethics

Committee of the First Affiliated Hospital of China Medical

University, with a waiver of the requirement for informed consent

based on its retrospective design.
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2.2 CT protocol

The contrast administration of abdomen CT scans are patient

specific and based on clinical guidelines (33). Sixty-four-slice spiral

CT scanners were used to collect the image data of the patients

according to a standardized scanning protocol (34). The CT

manufacturers used included GE, Phillips, Siemens and Toshiba.

The acquisition methods of each CT phase are as follows: Routine

plain scan was performed to obtain PP, then 1.2-1.5 mL/kg body

weight iohexol was injected intravenously with a high-pressure

syringe at a flow rate of 2.5 mL/s, followed by a 20-30 mL saline

flush. Patients were imaged in the supine position at full inspiration.

AP was obtained 30-35 s after intravenous injection of contrast, PVP

was obtained 60-75 s after intravenous injection of contrast, and DP

was obtained 100-120 s after intravenous injection of contrast. As

shown in Table 1, the scanning parameters were as follows: tube

voltage 120 kVp (range 100-140 kVp), layer thickness 2 mm, matrix

512 × 512, tube current 333 mA (range 100-752 mA), exposure time

751 ms (range 500-1782 ms), and standardreconstruction algorithm.

All steps were in accordance with the Image Biomarker

Standardization Initiative (IBSI) standards. The CT images were

stored in DICOM format. Prior to radiographic analysis, each

image was examined to ensure that the images collected were

suitable for analysis (35).
2.3 Lesion segmentation

The CT images were anonymized for all personal and institutional

data and labeled with random numbers. For each patient, metastatic liver

lesion with the largest cross-sectional area and well-defined margin was

selected as target lesion for segmentation, and lesions were segmented

separately at different phases. The specific process wasas follows: First, all

CT images (PP, AP, PVP and DP) of 76 lesions were contoured slice by

slice using a soft tissue window (window width: 350 HU, window level:

40 HU) for selected liver lesions using a semiautomatic fast marching

segmentation algorithm. Then, the images were manually modified and

segmented using open-source 3D-Slicer software (www.slicer.org) by two

radiologists with 10 years of work experience to remove adjacent normal

tissues or surrounding bile ducts. In case of contradiction, othersenior

radiologists (over 20 years of work experience) would assess the tumor

mask again for agreement. CT images in DICOM format were imported

into 3D-Slicer software, and regions of interest (ROIs) were subsequently

exported into Nearly Raw Raster Data (NRRD) and Medical Reality

Markup Language (MRML) formats for storage and further analysis.
TABLE 1 Equipment parameters of this study.

Manufacturers: Toshiba, GE, Phillips and Siemen

Tube voltage: 120 kVp (range 100−140kVp)

Slice thickness: 2.0 mm

Matrix: 512×512

Tube current: 333 mA (range 100–752 mA)

Exposure time: 751 ms (range 500–1782 ms)
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2.4 Feature extraction

The radiomics features of the ROIs were extracted using the

“PyRadiomics” package in the Python environment. The extracted

radiomics features could be divided into the following categories:

first-order features, shape-based features, texture features and wavelet

features. First-order features describe the distribution of the ROI’s

endogenous intensities (36). Shape-based features capture the

intuitive features of the ROI into two-dimensional and three-

dimensional sizes and shapes. These features are independent of the

grayscale intensity distribution in the ROI. Texture features were

extracted based on five texture matrices: (1) gray level co-occurrence

matrix (GLCM), (2) gray level size zone matrix (GLSZM), (3) gray

level running length matrix (GLRLM), (4) neighboring gray level

difference matrix (NGTDM) and (5) gray level dependence matrix

(GLDM) (37). Wavelet features refer to the characteristics of different

frequency bands extracted from the wavelet decomposition of the

image (38). Based on the suggestions of Pyradiomics developers, we

used the following initial settings for feature extraction: ‘binWidth’ =

25; ‘Interpolator’ = sitk.sitkBSpline; ‘resampledPixelSpacing’ = [1, 1,

1]; ‘voxelArrayShift’ = 1000; ‘normalize’= True; ‘normalizeScale’

= 100.
2.5 Dynamic feature construction

Dynamic radiomics features use the static feature changes of

different series of the same imaging examination or different imaging

examinations to construct new features that can describe the change

rule, which can be expressed as:

f(y (x(t1)),y (x(t2)),⋯,y (x(tk))) (1)

where f(·) represents the conversion from static radiomic features

to dynamic radiomic features, y(·) represents the process of

extracting static features from images, and x(tk) represents a series

of medical images.

According to the number of series collected and the feature

extraction method, 5 construction methods of dynamic features

are proposed:

(1) Standard discrete (SD) feature:

SD(y (x(t))) =
1
ko

k

i=1
y (x(ti)) − y (x(t))j j (2)

(2) Discrete change (DC) feature:

DC(y (x(t))) = (
1
ko

k

i=1
y (x(ti)) − y (x(t))j j)=y (x(t)) (3)

(3) Relative change rate (RCR):

RCR(y (x(t))) =
y (x(tj)) − y (x(ti))
�� ��

y (x(ti))
, 1 ≤ j ≤ i ≤ k (4)

(4) Relative average change rate (RACR):

RACR(y (x(t))) =
y (x(tj)) − y (x(ti))
�� ��

y (x(t))
, 1 ≤ j ≤ i ≤ k (5)
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(5) Ploy (P) feature:

q̂ = argminok
i=1(y (x(ti)) −m(ti, q))

m(ti, q) =ok
i=1ai · ti, q = (a1, a2 ⋯ a7)

T

(
(6)

where the set q of P features is calculated based on the least-

squares estimation model.
2.6 Evaluation

The patients were divided into two groups according to the best

response to first-line treatment: those who achieved objective response

(OR) and those who did not achieve objective response (NOR).

Objective response was defined as achievement of complete response

(CR) or partial response (PR) according to Response Evaluation

Criteria in Solid Tumors (RECIST) criteria version 1.1 (39). Due to

the small number of samples included, we employed leave-one-out

cross-validation to measure the prediction performance of different

features in different algorithms. We used the t test to screen the features

that differed between the OR and NOR groups and then used the least

absolute shrinkage and selection operator (Lasso) to reduce the

dimensionality of the training set to obtain the required features for

the training model. For comparison with traditional radiomics, in

addition to the five constructed dynamic features, we included the

static features of different series and the collection of static features for

modeling. In the training cohort, three machine learning methods were

used to construct the scores for the prediction of the efficacy of

chemotherapy + bevacizumab, including support vector machine

(SVM), linear discriminant analysis (LDA) and random forest (RF).

Among all kinds of features, the one with the best predictive

performance was selected.

The features with the best performance in the classification task

were used for univariate Cox regression analysis to select the features

related to Progression-free survival (PFS) (P <0.05), and a PFS-based

efficacy prediction score was constructed using a random survival

forest model. PFS was defined as the time from randomization to the

first occurrence of disease progression or death from any cause.
2.7 Statistical analysis

The area under the receiver operating characteristic (ROC) curve

(AUC) in the validation dataset was analyzed using the “pROC” package

in R, and the performance of different prediction scores was compared

using the AUC and accuracy. Time-dependent ROC curves were plotted

using the ßurvivalROC” package in R, and the predictive performance of

the model at 90, 180, 270 and 360 days was evaluated using AUCs. We

used the “rms” package to draw nomograms, and calibration curves were

used to assess the discriminability of the nomograms. Kaplan–Meier

plots were constructed to analyze potential differences in PFS between the

high-risk and low-risk groups. All statistical analyses were performed

using R (version 4.1.1). Fisher’s exact test was used to determine whether

there were significant differences in clinical variables between the OR and

NOR groups. Two-sided p values<0.05 were considered

statistically significant.
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3 Results

3.1 Patient characteristics

A total of 76 patients (40 males and 36 females, median age of 60

years, age range between 36 and 76 years) diagnosed with CRLM at the

First Affiliated Hospital of China Medical University were enrolled in

this study. Figure 1 shows the patient recruitment process. Based on the

best response, the patients were divided into an OR group (33 patients)

and an NOR group (43 patients). As shown in Table 2, no significant

differences in other clinical variables were found between these two

groups. Our work flow diagram is shown in Figure 2.
3.2 Construction and validation of
classification prediction scores

After excluding features with the same values in all patients (40),

we obtained 1329 radiomic features and constructed dynamic features

using static features from four different vascular phases. After

performing a t test (P s 0.05), we further screened features on the

training set using Lasso. Table 3 and Table 4 show the performance of

different features in test samples after cross-validation based on the

leave-one-out method.

Of the three machine learning methods, all five dynamic features

showed their best predictive performance in LDA (Figures 3A–C).

Compared with other dynamic features, RCR features showed the best

classification performance in all three machinelearning methods. As

shown in Table 5, after lasso processing, the RCR features constructed

from each of the 16 radiomics features were selected for constructing

machine learning models. In the LDA model, the RCR AUC and

accuracy in the validation data reached 0.945 and 0.855, respectively.

It also had the best performance compared to all static features

(Figures 3D-F).

Previous studies have shown that age, sex, and CEA and AFP

levels are also factors predicting the efficacy of bevacizumab (41, 42),

so we used these variables and our best predictive score (the result of

RCR features in the LDA model) to construct a nomogram

(Figure 4A). The calibration curves of the nomogram showed good

agreement between the classification results predicted by the

nomogram and the actual observations (Figure 4C).
3.3 Efficacy prediction model based on PFS

We selected the RCR features with the best performance in the

classification task, constructed a PFS-based efficacy prediction model

using leave-one-out cross-validation + random survival forest, and

divided the patients into high- and low-risk groups according to the

median risk score. Kaplan–Meier plots demonstrated a significant

difference (P <0.0001) in PFS between the two groups (Figure 5A).

The time-dependent ROC curve indicated that the PFS-based

prediction score had good predictive power at different time points

(Figure 5B). We also constructed a nomogram (Figure 4B), and

survival calibration plots showed that the survival probabilities
Frontiers in Oncology 05
predicted by the nomogram also had good agreement with the

actual observations (Figure 4D).
4 Discussion

In this study, we use a new dynamic radiomics feature extraction

method and workflow based on multiple series. The extraction of all

dynamic features is based on static feature extraction, which describes

the variation of static features at different times. In the study by Qu

et al., it had been confirmed that dynamic radiomics had better

predictive performance compared with traditional radiomics in the
FIGURE 1

Flow chart of the enrolled patients in the study.
TABLE 2 Baseline clinical characteristics of the patients.

NOR,n(%) OR,n(%) P value

Total 43 33

Sex

male 20 (46.5) 20 (60.6) 0.323

female 23 (53.5) 13 (39.4)

Tumor site

left 11 (25.6) 12 (36.4) 0.597

rectum 17 (39.5) 11 (33.3)

right 15 (34.9) 10 (30.3)

Tumor size (mean (SD)) 4.28 (2.55) 3.50 (2.15) 0.165

CEA

normal 4 (9.3) 5 (15.2) 0.671

high 39 (90.7) (84.8)

AFP

normal 41 (95.3) 31 (93.9) 1

high 2 (4.7) 2 (6.1)

Age

≤55 11 (25.6) 11 (33.3) 0.629

>55 32 (74.4) 22 (66.7)
fron
P values were derived from Fisher’s exact test.
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tasks of tumor diagnosis prediction, tumor patient gene mutation

status prediction and patient prognosis prediction (29). We used this

method to predict both the response to antiangiogenic therapy and

PFS in patients with CRLM. Compared with traditional radiomics,

the prediction performance of dynamic features is greatly improved

and superior to that of clinical predictors (36, 37) (Figure S1,

Figure S2).

In the field of CRC, radiomics has been widely used for diagnosis

and predicting prognosis and the efficacy of drugs (43–45). In recent

years, the analysis of CRLM using image features extracted by deep

learning has also been common in radiology. Shi et al. used an

artificial neural network (ANN) model to predict the mutation status

of RAS and BRAF genes in CRLM patients (35). Zhu et al. used deep
Frontiers in Oncology 06
learning-assisted magnetic resonance imaging to predict tumor

response to chemotherapy in CRLM patients (46). Starmans et al.

used deep learning to differentiate the pure histopathological growth

patterns of CRLM on CT (47). Compared with deep learning and

traditional radiomic features, dynamic features have the following

advantages. (1) Compared with traditional radiomic features,

dynamic features can reflect changes in the static features of all

sequences, so this method can extract more features and

information for model construction. (2) Dynamic features calculate

the relative changes in static features. Therefore, dynamic features are

less affected by image quality differences between different series of

the same patient or between different patients. (3) Compared with

deep learning features, dynamic features are easier to interpret and
FIGURE 2

Workflow of the necessary steps in this study.
TABLE 3 Prediction AUCs based on various dimensions of LDA, RF
and SVM.

LDA RF SVM

RACR 0.867 0.780 0.822

RCR 0.945 0.841 0.908

SD 0.689 0.623 0.662

DC 0.724 0.615 0.716

P 0.651 0.631 0.671

AP 0.675 0.574 0.618

DP 0.787 0.666 0.749

PP 0.604 0.635 0.548

PVP 0.693 0.768 0.591

Multi_static 0.853 0.642 0.817
Multi_static refers to the feature set analysis of multiple series.
TABLE 4 Prediction accuracies based on various dimensions of LDA, RF
and SVM.

LDA RF SVM

RACR 0.737 0.684 0.737

RCR 0.855 0.803 0.803

SD 0.658 0.605 0.632

DC 0.645 0.592 0.618

P 0.605 0.645 0.618

AP 0.605 0.540 0.553

DP 0.737 0.658 0.645

PP 0.592 0.526 0.526

PVP 0.618 0.763 0.526

Multi_static 0.763 0.592 0.724
frontie
Where Multi_static refers to the feature set analysis of multiple series.
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B C

D E F

A

FIGURE 3

ROC curves for LDA (A), RF (B) and SVM (C) models with different dynamic features when using leave-one-out cross-validation. ROC curves for LDA (D),
RF (E), and SVM (F) models with static features of different series and RCR features when using leave-one-out cross-validation, where Multi_static refers
to the feature set analysis of multiple series.
B

C D

A

FIGURE 4

The nomogram (A) predicts the best response in patients with CRLM. The total score is calculated by summing the points for each factor. The total score
corresponds to the patient’s best response prediction. (C) is the calibration curve corresponding to the nomogram. The nomogram (B) predicts 1-year,
3-year and 5-year PFS in patients with CRLM. Total points are calculated by summing the points for each factor. The total score corresponds to the 1-,
3-, and 5-year PFS probabilities of the patients. (D) Calibration plots to predict 1-year progression-free survival (PFS).
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a

therefore more acceptable to doctors (48). (4) Compared with deep

learning, it is suitable for small sample research and more suitable for

medical (49). (5) Different sequences of medical images are

considered, which is more consistent with the actual image

diagnostic process of doctors (21).

In this study, the RCR feature had the best prediction

performance among all models, which may be because it contains

the relationship between any two sequences, contains the most

features and has less information about the whole population.

Further research is needed on how to optimize other dynamic

features and explore how to select features for different tasks.
Frontiers in Oncology 08
Lesion segmentation is a critical task for both radiomics and

dynamic radiomics. Stefano et al. discussed the impact of manual

segmentation and semi-automated segmentation on radiomics

studies in their study (50), and the authors concluded that manual

flexible delineation of targets allows highly accurate segmentation.

However, manual segmentation is labor-intensive and time-

consuming and is less feasible due to tasks with large data.

Moreover, manual segmentation results are easily influenced by

observer subjectivity. Therefore, many semi-automatic delineation

algorithms are applied in practice, such as region growing or

thresholding. But the result of semi-automatic segmentation is not

as precise as manual segmentation. In this paper, we used manual

segmentation to delineate ROIs for the following reasons: (1) the data

volume in this study was small, which requires us to minimize bias as

much as possible in the operation, while the results of manual

segmentation are more accurate; (2) the additional workload due to

the use of manual segmentation in this study is acceptable; (3) in

order to reduce the influence of subjective factors on the segmentation

results, each lesion was segmented independently by two radiologists.

Once their segmentedresults were quite different, a senior physician

would adjudicate the results to ensure the accuracy of the results.

As Pasini et al. reported in their study (51), due to the use of four

different CT scanners, some analysis is necessary to assess whether

there is a batch effect. For this reason, we performed principal

component analysis (PCA) on the RCR features finally adopted in

this paper, and the results are shown in Figure S3. No significant batch

effects was observed among the data collected by different scanners.

Therefore, we did not use any statistical harmonization methods such

as ComBat to calibrate the data.

Despite the good results achieved by dynamic features, our study still

has some limitations. First, the data in this study were collected

retrospectively. Secondly, although omitted leave-one-out cross-

validation was used to test the performance of models, the insufficient

sample size may still lead to the bias of the results, requiring very large

datasets and multicenter data for prospective investigation to further

verify the robustness and reproducibility of our conclusions. Despite

these limitations, we believe that the results obtained in this study are

credible and can be extended to a larger patient population.
BA

FIGURE 5

Kaplan–Meier plots (A) obtained by dividing patients into high-risk and low-risk groups using the median predictive score of the random survival forest
model; (B) shows ROC curves estimated at 90, 180, 270, and 360 days using the predictive scores.
ABLE 5 Radiomics features used to construct RCR features obtained
fter lasso selecting.

Radiomics feature
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5 Conclusion

In this study, dynamic radiomic feature extraction and workflow

were used to predict the efficacy of advanced first-line chemotherapy

combined with antiangiogenic therapy in patients with CRLM. While

retaining the advantages of traditional radiomics, such as non-invasive,

rapid and inexpensive, the dynamic radiomics model achieved higher

accuracy than radiomics in predicting both optimal efficacy and PFS. The

application of dynamic radiomics to predict the efficacy of antiangiogenic

therapy has strong clinical significance and broad development prospect.
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