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Introduction: Phages play essential roles in biological procession, and the virion
proteins encoded by the phage genome constitute critical elements of the
assembled phage particle.

Methods: This study uses machine learning methods to classify phage virion
proteins. We proposed a novel approach, RF_phage virion, for the effective
classification of the virion and non-virion proteins. The model uses four protein
sequence coding methods as features, and the random forest algorithm was
employed to solve the classification problem.

Results: The performance of the RF_phage virionmodel was analyzed by comparing
the performance of this algorithm with that of classical machine learning methods.
The proposed method achieved a specificity (Sp) of 93.37%%, sensitivity (Sn) of
90.30%, accuracy (Acc) of 91.84%, Matthews correlation coefficient (MCC) of .8371,
and an F1 score of .9196.
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1 Introduction

Phages integrate their DNA sequences with bacterial genomes following infection and play
a role in maintaining the diversity of microorganisms (Shen et al., 2007; Xia et al., 2010; Wetie
Ngounou et al., 2014; Zou et al., 2016). If the abundance of a particular type of bacteria increases
rapidly in a bacterial population, the corresponding phage specifically infects and kills the
rapidly proliferating bacteria. The entire bacterial population returns to equilibrium following
this process. Phages also participate in the Earth’s material cycle and are essential to the human
microbiome (Brohee and Van Helden, 2006; Shen et al., 2019; Zhang and Quan, 2020). There
are approximately 1014 bacteria in each individual’s gut, while the number of bacteriophages is
1015−16, which is ten times higher than the number of bacteria. These findings indicate that
phage proteins play several crucial roles in biological processes (Ngo et al., 1994; Godzik et al.,
1995;Whisstock and Lesk, 2003;Wu et al., 2009; De Las Rivas and Fontanillo, 2010; Awais et al.,
2019).

Phage proteins can be classified as virion and non-virion proteins. The virion proteins
encoded by the phage genes are essential components of the assembled phage particle and
include the capsid protein, envelope protein, and virion enzymes (Chatterjee et al., 2011; You
et al., 2013; Peng et al., 2017). These virion proteins determine the specificity for recognizing
host bacteria and play essential roles in the recombination of phage viruses, receptor
recognition, bacterial attachment, and penetration. The non-virion proteins of phages are
synthesized in the infected cells and are also encoded by the phage genome. However, the non-
virion proteins cannot be packaged into mature phage particles. The non-virion proteins
primarily include enzymes and regulatory proteins, which play important roles in the processes
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of gene replication, transcription, and gene expression in phages (Sato
et al., 1994; Schwikowski et al., 2000; Wei et al., 2017).

Several computational methods have been reported for classifying
the functions of phage genes and virion proteins over the past few
decades. Li et al. proposed a novel tool named SynFPS for classifying
closely related genomes in whole genome comparison studies (Coates
and Hall, 2003). The method employs a support vector machine
(SVM) classifier and uses gene-to-gene distances as a feature. Feng
et al. proposed a naïve Bayes method for classifying phage virion
proteins based on the composition of primary amino acids and
dipeptides as coding schemes (Free et al., 2009). Ding et al.
proposed a method for classifying virion proteins using an SVM-
based approach (Kim and Subramaniam, 2006). In these models, the
key features among g-gap dipeptide compositions were initially
determined by analysis of variance. Yang et al. described an
ensemble algorithm-based method for classifying organellar
proteins, in which the amino acid composition, physicochemical
properties, sequence distribution, and structural characteristics of
the sequences were used as features (Zhang et al., 2012). Han et al.
proposed a two-layer multi-class SVM model for classifying
subcellular localizations (Vazquez et al., 2003). After the first layer
of SVM classification is completed, each amino acid sequence is
represented by a k-dimensional vector, and each element in the
vector corresponds to a classification result of the classifier (Yang
et al., 2020). The output of the first layer is used as the input for the
next layer, and the second layer uses SVM to determine the final result.
Jia et al. proposed a random forest algorithm-based method that used
different features extracted from protein sequences (You et al., 2017).

The method used a voting system for computing the final classification
results, which depended on seven independent models. Bahri et al.
proposed an ensemble method named Greedy-Boost based on the
adaptive combination, which improves the accuracy of detection (Guo
et al., 2008). Although the smoothing method improves the stability of
the classification system, the method has a high computational cost.
Zhang et al. proposed amethod based on logistic models for classifying
samples using the amino acid composition, transformation, and
distribution features and pseudo-amino acid composition as
features (Koike and Takagi, 2004). The final results were computed
based on the results obtained from the classification models. Liu et al.
used different weights for classifying the four SVMs used in their study
(You et al., 2015a). The method determined the final classification by
traversing and selecting appropriate parameters. These findings
indicate that ensemble algorithms can improve the accuracy of the
final classification.

This study aimed to develop a method for the classification of
phage virion proteins using machine learning methods. A novel
method, RF_phage virion, is proposed herein for the effective
classification of the virion and non-virion proteins. The method
uses four protein sequence coding methods as features, and the
random forest algorithm is used for solving the classification
problem. The performance of the RF_phage virion model was
determined by comparing the performance of this algorithm with
some classical machine learning methods. A schematic representation
of the RF_phage virion method is provided in Figure 1.

2 Materials and methods

2.1 Dataset

Ding’s dataset, which primarily focuses on phage virion proteins,
was used for classifying the phage proteins in this study (Bradford and

FIGURE 1
The outlines of RF_phage virion.

TABLE 1 The information of dataset.

Non-phage virion proteins Phage virion proteins

500 500
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Westhead, 2005; Cui et al., 2012; Romero-Molina et al., 2019). Ding’s
dataset comprises 1000 samples, of which phage virion proteins
constitute one-half, and the other half comprises non-phage virion
proteins. The dataset can be treated as a typical ideal dataset for the
classification of phage virion proteins. There is a large difference
between the number of non-phage and phage virion proteins.
Therefore, Ding’s dataset can be considered an ideal benchmark
dataset for phage virion protein classification problems. The
detailed information of the employed dataset is demonstrated in
Table 1.

2.2 Encoding methods

2.2.1 Amino acid composition (AAC)
The AAC feature describes the distribution of amino acid residues

(Li et al., 2012). The feature focuses on the frequency of occurrence of
each amino acid residue. At the same time, the AAC feature can
provide typical statistical information regarding the identified protein
sequences. The formula used for determining the AAC is provided in
Eq. 1:

AAC � aac i( )
length

, i ∈ A,C,/, Y{ } (1)

Where, length represents the length of the identified phage virion
protein sequence, and aac(i) represents the occurrence of the ith
amino acid residue in the protein sequence. The parameter i refers to
the twenty amino acids present in protein sequences. The sum of the
twenty amino acids equals to 1.

2.2.2 Composition of k-spaced amino acid pairs
(CKSAAP)

Although the AAC feature includes the amino acids present in
protein sequences, the feature does not provide any positional
information regarding the amino acids in protein sequences (Chen
and Liu, 2005; You et al., 2015b; Wang et al., 2018). The CKSAAP
feature describes the relationship between two amino acid residues
in protein sequences, and focuses on the frequency of amino acid
residue pairs, which are separated by n number of neighboring

FIGURE 2
The structure of the random forest algorithm.

FIGURE 3
The ROC curves of AAC feature. Note: LD means the linear discriminant classifier. SVM means the support vector machine. DT means the decision tree.
RF means the random forest and CNNBilstm mean convolution neural network with Bi-Long Short Term Memory.
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amino acid residues. For instance, n = 0 indicates that the two
amino acids are successive. There are 400 types of AACs, and
CKSAAP can compute the frequency of occurrence for each
combination. The formula used for determining the CKSAAP is
provided in in Eq. 2:

CKSAAP n � 0( ) � NAA

Ntotal
,
NAC

Ntotal
,/,

NAY

Ntotal
,/,

NYY

Ntotal
( )

400

(2)

In this study, the value of n was set to 3, and the scale of the
CKSAAP feature can reach 1600.

2.2.3 Di-peptide composition (DPC)
The DPC feature focuses on the correlation between two

successive amino acid residues (Sun et al., 2017). The scale of this

feature can reach 400. The DPC feature was calculated using the
formula in Eq. 3:

DPC � bipeptide i( )
length

, i ∈ AA,AC,/, YY{ } (3)

Where, the sum of the whole elements equals 1. In other words, the
DPC can be treated as a second-order term of amino acid pairs.

2.2.4 Dipeptide deviation extraction (DDE)
The DDE feature focuses on a binomial and uniform distribution

theoretical sequence, but does not consider the alignment of protein
relationships (Zhang et al., 2019). The feature can elucidate the
interrelationships within a set of proteins. There DDE feature
comprises three key parameters, namely, the size of the dipeptide

TABLE 2 The performances of AAC feature.

SP (%) SN (%) Acc (%) MCC F1 score

LD 74.16 70.07 72.12 4427 7268

SVM 46.99 52.24 49.61 −0077 4825

DT 63.47 74.50 68.99 3821 6718

RF 74.83 76.94 75.89 5178 7563

CNNBilstm 99.47 00 49.74 −0514 6643

FIGURE 4
The ROC curves of CSKAAP feature.

TABLE 3 The performances of CSKAAP feature.

SP (%) SN (%) Acc (%) MCC F1 score

LD 77.73 67.18 72.46 4516 7384

SVM 21.69 84.33 53.01 0772 3158

DT 57.24 68.29 62.77 2569 6059

RF 69.04 68.74 68.89 3778 6894

CNNBilstm 98.95 00 49.47 −0727 6620
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composition (Dc), the means of theoretical values (Tm), and the
theoretical value of variance (Tv). The formula used for calculating
the DDE is depicted in Eq. 4:

DDE t( ) � Dc i( ) − Tm i( )�����
TV i( )√ (4)

For instance, two pairs of successive amino acid residues have a
DPC of 400. The scale of the DDE feature is 400, as depicted in Eq. 5:

DDE t � 2( ) � ddei{ }, i ∈ 0, 400[ ] (5)
The formulae used for estimating the Dc, Tm, and Tv are provided

in Eq. (6) (7) (8), provided hereafter.

Dc i( ) � ni
N

(6)

There are 400 combinations of amino acid pairs in each dipeptide.
Therefore, the Dc(i) can be treated as an element in related DPC
features.

TM i( ) � Ci1

CN
×
Ci2

CN
(7)

Where, Tm represents the theoretical average, Ci1 represent the
occurrence of the first amino acid residue, Ci2 represents the
occurrence of the second amino acid residue, and CN represents
the entire set of amino acids.

Tv i( ) � TM i( ) 1 − TM i( )( )
N

(8)

Where, Tv represents the theoretical variations in dipeptides.

2.3 Random forest algorithm

The random forest algorithm was proposed by L. Breiman at the
beginning of this century and has been successfully used for dealing with
classification and regression problems in related areas (Saha et al., 2014;
Liu et al., 2018). The algorithm combines randomized decision trees and
subsequently aggregates the average results from the decision trees. This
algorithm can deal with high-dimensional small-sample problems. In
other words, the algorithm performs well in identification problems using
datasets where the scale of variables is much larger than the number of
samples. The random forest algorithm is also used in big dataset

FIGURE 5
The ROC curves of DPC feature.

TABLE 4 The performances of DPC feature.

SP (%) SN (%) Acc (%) MCC F1 score

LD 97.33 13.08 55.20 1932 6848

SVM 36.75 67.16 51.96 0411 4334

DT 48.78 65.19 56.98 1416 5314

RF 73.72 62.75 68.23 3669 6989

CNNBilstm 95.90 00 47.95 −1446 6482
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problems. The steps of the random forest algorithm are outlined in
Figure 2.

2.4 Measurement of performance

The samples in the classification problem in this study could be
categorized into two, namely, phage and non-phage virion protein
sequences. The defined positive samples comprised the virion protein
sequences, while the defined negative samples comprised the non-phage
protein sequences of phages. According to the definition, classified samples
can produce four results under common conditions. These formulations,
including the sensitivity (Sn), specificity (Sp), accuracy (ACC), F1 scores,
and Matthews correlation coefficient (MCC), were obtained using the
formulae in Eq. (4) (5) (6) (7) (8), provided hereafter.

Sn � TP

TP + FN
(4a)

Sp � TN

TN + FP
(5a)

Acc � TP + TN

TP + TN + FP + FN
(6a)

F1 � 2TP
2TP + FN + FP

(7a)

MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (8a)

Where, P and N represent the scale of positive and negative samples,
respectively. T and F represent sets of true and false predicted results,
respectively.

The F1 score is used to evaluate the distribution of positive and
negative samples in two-types problems. Performance measures
should consider several parameters, including the four basic
parameters, namely, TP, FP, TN, and FN. The performance
measure can be treated as a harmonic average of model
accuracy and recall. Another important measure of performance
is the MCC, and the values of this performance measure ranges
from −1 to 1.

3 Results

The random forest model was used in this study for classifying the
virion and non-virion proteins of phages using four typical protein

FIGURE 6
The ROC curves of DDE feature.

TABLE 5 The performances of DDE feature.

SP (%) SN (%) Acc (%) MCC F1 score

LD 97.33 13.08 55.20 1932 6848

SVM 36.75 67.16 51.96 0411 4334

DT 48.78 65.19 56.98 1416 5314

RF 73.72 62.75 68.23 3669 6989

CNNBilstm 95.90 00 47.95 −1446 6482
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features, namely, the AAC, CSKAAP, DPC, and DDE. The
performance of the method was determined by comparing with
state-of-the-art methods.

As depicted in Figure 3 and Table 2, the values of Sp, Sn, Acc,
MCC, and F1 score for the SVM-based method were 46.99%, 52.24%,
49.61%, −.0077, and .4825, respectively, while the values of these
indices for the decision tree model were 63.47%, 74.50%, 68.99%,
.3821, and .6718, respectively. The values of Sp, Sn, Acc, MCC, and
F1 score for the random forest algorithm using the AAC feature were
74.83%, 76.94%, 75.89%, .5178, and .7563, respectively, while the
values of these indices for the deep learning algorithm, which is a
convolution neural network, were 99.47%, 0%, 49.74%, −.0514, and
.6643, respectively.

As depicted in Figure 4 and Table 3, the values of Sp, Sn, Acc,
MCC, and F1 score for the SVM-based method were 21.69%,

84.33%, 53.01%, .0772, and .3158, respectively, while the values
of these indices for the decision tree model were 57.24%, 68.29%,
62.77%, .2569, and .6059, respectively. The values of Sp, Sn, Acc,
MCC, and F1 score for the random forest algorithm using the
CSKAAP feature were 69.04%, 68.74%, 68.89%, .3778, and .6894,
respectively, while the values of these indices for the convolution
neural network were 98.95%, 0%, 49.47%, −.0727, and .6620,
respectively.

As depicted in Figure 5 and Table 4, the values of Sp, Sn, Acc,
MCC, and F1 score for the SVM-based method were 54.82%,
75.37%, 65.10%, .3085, and .611, respectively, while the values
of these indices for the decision tree model were 65.26%, 67.85%,
66.55%, .3312, and .6611, respectively. The values of Sp, Sn, Acc,
MCC, and F1 score for the random forest algorithm using the DPC
feature were 65.26%, 67.85%, 66.55%, .3312, and .6611,
respectively, while the values of these induces for the
convolution neural network were 88.44%, 0%, 44.22%, −.2477,
and .6132, respectively.

As depicted in Figure 6 and Table 5, the values of Sp, Sn, Acc,
MCC, and F1 score for the SVM-based method were 36.75%, 67.16%,
51.96%, .0411, and .4334, respectively, while the values for the decision
tree model were 48.78%, 65.19%, 56.98%, .1416, and .5314,
respectively. The values of Sp, Sn, Acc, MCC, and F1 score for the
random forest algorithm using the DDE feature were 73.72%, 62.75%,
68.23%, .3669, and .6989, respectively, while the values of these indices
for the convolution neural network were 95.90%, 0%, 47.95%, −.1446,
and .6482, respectively.

FIGURE 7
The ROC curves of combination feature.

TABLE 6 The performances of combination feature.

SP (%) SN (%) Acc (%) MCC F1 score

LD 84.34 86.57 85.45 7092 8529

SVM 18.07 91.79 54.93 1460 2862

DT 83.73 88.06 85.90 7186 8559

RF 93.37 90.30 91.84 8371 9196

CNNBilstm 98.45 00 49.22 −0885 6597
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4 Discussions

In the section of results, we merely employed the AAC, CSKAAP,
DPC, andDDE features, respectively. Therefore, we combined the four
features to evaluate the performances in this work.

As depicted in Figure 7 and Table 6, the values of Sp, Sn, Acc,
MCC, and F1 score for the SVM-based method were 18.07%, 91.79%,
54.93%, .1460, and .2862, respectively, while the values for the decision
tree model were 83.73%, 88.06%, 85.90%, .7186, and .8559,
respectively. The values of Sp, Sn, Acc, MCC, and F1 score for the
random forest algorithm using the combination feature were 93.37%,
90.30%, 91.84%, .8371, and .9196, respectively, while the values of
these indices for the convolution neural network were 98.45%, .00%,
49.22%, −.0885, and .6597, respectively.

5 Conclusion

The present study uses machine learning methods to classify
phage virion proteins. Four protein sequence coding methods,
namely AAC, CSKAAP, DPC, and DDE, were used as features for
the effective classification of the virion and non-virion proteins. The
random forest algorithm was subsequently used to solve the
classification problem. By combining each of the four features with
the classification algorithm, we observed that the performance of the
model was best when the combination feature was used.

When it comes to the problem of classification of phage virion
proteins, such an issue can be regarded as a typical binary classification
problem in the field of machine learning. In this work, we employed
Ding’s dataset, which is a balanced dataset. Actually, the size of
positive samples can hardly be equal to the size of the negative
ones. In this work, the AAC, CSKAAP, DPC, and DDE feature
and their combination feature can be employed as the input of the
RF_phage virion model. There are several other features in the field of

protein research. Therefore, these features can also be employed in
future work. On the other hand, the other typical classification
algorithm can be utilized in future work. The size of the
combination feature can reach 2420. Considering such a situation,
some reduced useless information approaches can be utilized in this
future work.
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