
ConvXSS: a deep learning-based smart 
ICT framework against code injection 
attacks for HTML5 web applications in 
sustainable smart city infrastructure
Koundinya Kuppa 
Anushka Dayal 
Shashank Gupta
Amit Dua
Pooja Chaudhary
Shailendra Rathore

This is the accepted manuscript © 2022, Elsevier
Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International:
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kuppa, K., Dayal, A., Gupta, S., Dua, A., Chaudhary, P. & 
Rathore, S. (2022) 'ConvXSS: a deep learning-based 
smart ICT framework against code injection attacks for 
HTML5 web applications in sustainable smart city 
infrastructure'. Sustainable Cities and Society, 80.
DOI: https://doi.org/10.1016/j.scs.2022.103765

https://doi.org/10.1016/j.scs.2022.103765
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

ConvXSS:A Deep Learning-Based Smart ICT
Framework against Code Injection Attacks for

HTML5 Web Applications in Sustainable Smart
City Infrastructure

Koundinya Kuppa, Anushka Dayal, Shashank Gupta, Amit Dua, Pooja Chaudhary and Shailendra Rathore

Abstract—There has been a rapid increase in the interest in
smart cities owing to the surge in the deployment of Information
and Communications Technology (ICT). As a part of this,
HTML5-based mobile apps and JavaScript-based apps have
become popular owing to the portability of these applications
for both Android and iOS platforms. But this web technology
also comes with a dangerous feature where code and data can
be mixed. This opens up various security and privacy issues
in smart cities as the vulnerability could be exploited by the
attackers by injecting malicious code into the application. This
type of attack, commonly known as a code injection attack has
taken the first place in Web app vulnerabilities as published by
the Open Web Application Security Project (OWASP). Though
many approaches based on machine learning have been proposed
in the last few years for their detection, these methods cannot
cater to the existing needs well enough. In this paper we propose
ConvXSS, a novel deep learning approach for the detection
of XSS and code injection attacks, followed by context-based
sanitization of the malicious code if the model detects any
malicious code in the application. Firstly, we briefly discuss
XSS and code injection attacks that might pose threat to smart
cities. Along with this, we discuss various approaches proposed
previously for the detection and alleviation of these attacks
followed by their respective limitations. Then we propose our
deep learning model adopting whose novelty is based on the
approach followed for Data Pre-Processing. Then we finally
propose Context-based Sanitization to replace the malicious part
of the code with sanitized code. Numerical experiments conducted
on various datasets have shown various results out of which the
best model has an accuracy of 99.42%, a precision of 99.81%
and a recall of 99.35%. When compared with other state of the
art techniques in this domain, our approach shows at par or
in the best case, better results in terms of detection speed and
accuracy of CSS attacks.

Index Terms—Smart City, Security, Privacy, ICT, CPS, Web
Security, Deep Learning, CNN, Malicious Code.

I. INTRODUCTION

Nowadays, everything and everyone in this world is inter-
connected through the internet. Owing to the massive con-
nectivity the internet provides, these services are widespread

Koundinya Kuppa, Anushka Dayal, Shashank Gupta and Amit Dua are
with the Department of Computer Science and Information Systems, Birla
Institute of Technology and Science, Pilani, Rajasthan, India - 333031 (email:
f20180283@pilani.bits-pilani.ac.in, f20170902@pilani.bits-pilani.ac.in,
shashank.gupta@pilani.bits-pilani.ac.in,amit.dua@pilani.bits-pilani.ac.in)

Pooja Chaudhary is with the Department of Computer Science, NIT
Kurukshetra, Kurukshetra, India (email: pooja.ch04@gmail.com).

Shailendra Rathore is the Faculty of Science and Engineering,University of
Plymouth, United Kingdom (email: shailendra.rathore@plymouth.ac.uk)

in almost all the domains. Along with this, smartphones
became popular over the years owing to the portability and
the wide range of features available. Smart Energy Meters,
Smart Appliances and Security devices have become part of
everyday life. This is the first step towards transforming cities
into Smart cities. Due to the incapability of the infrastructure
of the present cities in terms of scalability, environment, and
security, there has been a sudden surge in the demand for
transformation towards smart cities.[1] So, in this process of
transformation, to grab the advantages of the technological
advances, there is a surge in the requirement of development
in many smart appliances and applications. Of all these, mobile
applications play an important role in ICT. But, as every
coin has two sides, to keep up with the rapid growth in
the technology to build Smart Cities, many developers today
are in the haste to develop mobile applications faster to stay
in the competition. This hastiness comes with the price of
security. To cater a larger number of people, development of
different versions of the apps in different languages has to
be done to support different platforms such as Android and
iOS which involves too much time and labor.[2] Therefore,
in order to reduce the work, developers started building apps
using standard web technologies like CSS, HTML5, JavaScript
owing to the convenient portability of such apps from one
platform to another. Hence, there is a tremendous development
of applications in the aforementioned languages. As mentioned
earlier, with a surge in the number of applications, there is
also an increase in the security risks involved. Such security
concerns should also be responsibly dealt by the developers.
Presently, web applications are at the risk of many hidden
vulnerabilities. The aforementioned development technologies
host a dangerous feature where they allow data and code to be
mixed, which is exploited by the attackers using sophisticated
techniques like Cross-Site Scripting (XSS) and Code Injection
attacks. This pose a serious threat to people living in smart
cities. Already, many users have fallen prey to such attacks
compromising their sensitive information to the attackers in
the end.[3] XSS attacks work only when the user knowingly
or unknowingly opens other malicious sites. On the other hand,
a code injection attack, similar to an XSS attack, takes place in
mobile applications and has a larger scope of damage since a
mobile application interacts with outside world through many
plugins and mediums and the code injection attack can happen
through any of these mediums. these attack methodologies will

Division of Cyber Security, Abertay University, United Kingdom (email: s520967@uad.ac.uk)



2

be discussed in the further sections.
Fig. 1 shows statistics taken from the OWASP (Open Web

Application Security Project) 2017 shows the ranking of
different attacks that take place on the applications where it
can be seen that the code injection attack takes the first position
and XSS attacks stand in the seventh position. [4]

Clearly, we can understand the severity of the attacks and
the increase of the security concerns of the aforementioned
apps. This would pose a serious threat when there would be
an increase in the number of ICT users during the smart city
transformation [5]. So, an extensive research has taken place
in the field of detection and mitigation of such attacks. Many
methods have been put forward for detection of such malicious
code attacks in the past but they also have their limitations.

A. Other Models and their Limitations/ Related Work:

There had been substantial research on the detection and
numerous methods were proposed for detecting malicious code
previously. One conventional approach followed to identify
malicious code is by checking whether the signature of a
virus is listed in a malicious virus signatures’ list prepared
based on the user’s perspective. This list of virus signatures,
known as a blacklist, is created on the system of the host
and an external security server regularly updates these virus
signatures. [6] However, owing to the complexities involved
and lack of up-to-date signature files, this method can barely
identify the malicious JavaScript code. Another method based
on the pre-established rules by security experts that determines
the malicious code from benign also has drawbacks. It can
only identify the familiar malicious code but fails to identify
the unfamiliar malicious code. Along with the growth in
Information and Communications Technology in smart cities,
there is also growth in the different types of attacks attackers
are coming with. Hence, the above methodology cannot be
used. For malicious code detection purposes, dynamic analysis
methods in which execution of the malware takes place in
a simulated environment is also used widely [7]. Though
these methods could detect the malware easily, they are time-
consuming, and could not dynamically protect the applications
owing to the behavioral changes in malware [8]. Along with
these techniques, others such as high-interaction honeypots
[9], low-interaction honeypots [10], drive-by downloads [11]
[12], heap spraying [13] etc. have relevance, but these methods
and approaches are designed for specific attacks; they often
consume time, and cannot cater to the ever-evolving attacks.
Subsequently, though several methods and approaches have
been designed based on machine-learning that could classify
malicious and benign code, these approaches require huge
amounts of time in designing the features manually for classi-
fication purposes which is near to impossible with innovative
attack strategies.[14]

Some other methods and approaches proposed by re-
searchers after extensive research include those by [15] in
which it was proposed to detect the malicious JavaScript code
using a static, non-linear, Support Vector Machine (SVM)
and accuracy turned out to be 94.38% which is quite high
but the author in [16] did not provide a reason for using

a non-linear SVM. The authors of [17] and [18] used a
combination of behavioral features and language syntax in
machine learning approach to detect XSS attack. This was
one of the rudimentary studies using classifier based on
Random Forests for detection. The authors in [19] proposed
a method in which they considered implementing the binary
measures obtained by converting structural features, behavioral
features, and classifiers instead of using weighted means.
Though this method provided a top rate of accuracy with many
models, there is no reasoning mentioned for this particular
approach. The authors of [20] discussed identification using
word frequency method (TFID) and also used structural as
well as functional behavior and Abstract Syntax tree methods
for classifying malicious from benign codes but these methods
did not play a good role to understand the pattern.[21]

A model which uses deep learning framework was devel-
oped in [14]. The author used stacked denoising autoencoders
(SDA) feature selection method for classification of malevolent
and benevolent codes. It also included many other models
such as Logistic Regression and SVM where features are
selecting using stacked denoising autoencoders (SDA) and it
was concluded that this feature selection is better then that of
PCA, ICA and FA. Though this method has better statistical
output than other models, the classifier could not effectively
classify benign from malicious and the training of neurons
take time due to many layers. So, if used a larger dataset, the
accuracy of this model can further come down. [22]

Hence, considering all the related work done before and
their limitations, we came up with a novel approach of
detecting the malicious code using CNN model as a classifier
and sanitize the malicious part of the code if it is detected for
security and privacy of smart cities.

B. About ConvXSS
Through this paper, we present a procedure that banks

on Convolutional Neural Networks- CNN for detection of
the malicious code. Our novelty lies in the pre-processing
phase, in which each line of code is taken and if encoded,
it is decoded, and it is then generalized so that unnecessary
randomness can be removed. Then, specifically, each word
of the code is semantically labelled based on the type of
the string and also using existing labelling information given
and the labelled information is converted into binary numbers
instead of directly converting the strings into numerical data
and the dataset is thus formed. In other words, the code
snippets are converted to their ASCII values, followed by
the scaling of this numerical data into an image-like format,
one ideal as an input to our CNN. A number of comparative
studies between different models we have built by tweaking
the hyper-parameters is then done to identify the one which
gives optimum results on half the data. After singling out the
best model as the framework of ConvXSS, the entire Dataset
is subsequently used to get our results. The data is divided into
3 sets - training, validation and testing. There is also inclusion
of context-based sanitization that sanitizes the malicious code
based on the context using a list of sanitizers. Before going
to the proposed framework, background knowledge about the
attacks is discussed in the next section.



3

Fig. 1: Ranking of various attacks on applications

II. BACKGROUND

The aforementioned development technologies host a threat-
ening feature where there is an allowance of blending of data
and code together which, is exploited by the attackers using
sophisticated attacks like Cross-Site Scripting (XSS). These
attacks have to mitigated for the security and the privacy of
people living in Smart Cities. For the injection of code, web
apps have a single medium; that is via the web site and for
this reason, called as “cross-site”. Disastrously, this feature’s
repercussion lies in the fact where if the developers are not
cautious, the unpredicted code blended with the data can be
triggered impulsively and accidentally. As shown in the Fig. 2
, In the XSS attack, the attackers inject a malicious code into
the web app via a web form or web request which is saved on
the server later. When the victims access this application, the
implementation of the code on the user’s application through
which the user information is stolen by the attackers. The
impact of this will be huge when the number of people using
smart mobile applications increases.

Based on the approach of attack, XSS attacks are classified
into DOM-based XSS attack, Stored XSS attack, Reflected
XSS. While DOM-based XSS attack has the origin of the
vulnerability from client’s side and not from server side,
Reflected XSS is the attack in which the code is passed through
request URL such as error message, search result etc. Stored
XSS attack is the third type of XSS attack where the malicious
code is introduced into the database of the website, such as
comment section. Further added to this disadvantage is that the
malicious code remains imperceptible for a very long time,
possibly forever because the malicious code, if present in

Fig. 2: XSS attacks on ICT Web Applications

the data of the app, is sometimes not displayed but instead
executed by the JavaScript engine thus leading to the rise in
the number of victims.[14]

A code injection attack is nearly identical to XSS attack.
XSS attacks mostly take place in web apps, whereas the code
injection attacks takes place in mobile apps. As shown in
the Fig. 3 the code injection attack in apps that are hybrid
works fundamentally like the XSS attack, but it does not
restrict the attack to the data of application only. Since mobile
apps required to interact with the external world for better
service and functionalities, the attack may use these interaction
channels distinctive to mobile phones, like Contacts, SMS,
MP4 metadata, MP3 etc., to inject the malicious code.

These channels could be broadly divided into categories
like Data Channels, Metadata Channels, ID Channels based



4

Fig. 3: Code Injection Attack on HTML-5 based Apps to
compromise security of Smart Cities

on the approach of the attack. Other than the traditional
data sharing channels like Wi-Fi and Bluetooth, smartphones
and few smart applications also host data channels like 2D
barcodes scanning, RFID tags etc. Since, these Data Channels
are quite prevalent in CPS, ICT-technology used in smart
cities, these are convenient for the access of info and data
for the users, attackers use these channels quite often to inject
the code and thus, could compromise the privacy and security
of the population in smart cities. The following example shows
how a malicious code can be embedded in 2D barcodes upon
scanning and attacker could access the victim’s location. Since,
attacks through data channels have become obvious, attackers
also use metadata channels and ID channels. In the approach
of using Metadata channels, the attacker might introduce the
malicious code into the metadata fields like title, artist name
etc., of MP3, MP4, and JPEG files and upon downloading
or opening these files, the execution of the malicious code
takes place upon displaying this metadata. The app could also
be attacked using ID channels i.e. by inserting the malicious
code in the place of Wi-Fi or Bluetooth’s name. So, whenever
a person scans for Wi-Fi or nearby Bluetooth connection, the
mere display of the name during the scan could execute the

malicious code in the user’s phone. This type of method
for injection of code is least obvious. And once injected
and executed by the aforementioned methods, the code could
access the system resources with the help of plugins that are
allowed.[23]

In smartphones and other smart devices involving ICT,
along with the interaction with external world, the apps also
interconnect with other apps in the device. This interaction
enables the spreading of the malicious code into other apps
too. If the functions and permissions of the vulnerable app is
limited, the app could also inject the code into more privileged
app thus escalating the access to more vulnerable information
of the victim. These internal channels can be classified into
Content Provider, File System, and Intent. Android apps use
the features of content provider, file system to store data that
could be shared with other apps. Hence, if the malicious app
injects the code into the content provider, it could be easily

injected into other apps that mutually share these resources.
Intent is also used by apps to interact with other apps by
passing data. So, if the malicious code is injected into the
intent, it is also passed with the existing data thus infecting
other apps. Once the device is compromised, it could also act
like an attacking device that tries to inject a duplicate of the
malicious code into other mobile phones through data sharing
like SMS, Bluetooth, sharing media files etc.,[23]

To reduce the number of such attacks and also the number
of victims, such vulnerabilities and malicious codes have to
be detected and such apps have to be sanitized to make them
malicious code free. So, we have chosen a novel approach
built on deep learning application to fulfill the above need.

A. Why Deep Learning?

Deep Learning, a looming field of research in machine
learning, endeavors to learn sophisticated potrayal of data
progressively using deep neural networks. Deep learning could
be supervised, semi-supervised or unsupervised. According to
[24], unsupervised learning is precarious, it creates many false
positives through detection of any type of network anomalies,
hence, critical post processing of the output is required, as
in DarkTrace [25]. The mentioned method does not need
any exemplar datasets since it always learns from progres-
sion of previous data. On the other hand, semi-supervised
learning infers a limited quantity of known correlations, prior
to continuing to the clustering of the obscure data, and for
larger networks, the longer they are active inside a particular
network, its application can take place in network intrusion
detection systems utilizing pre-trained models, that enables in
the improvement of their performance. The training of each
layer of the network is done via unsupervised learning and the
fine tuning of the entire network is carried out in supervised
mechanism [26]. So, in this way, low-hierarchy features help in
the learning of high-hierarchy features and in the end, proper
features could be applied for the classification of patterns.

As stated in the Neural Networks’ Universal Approximation
theorem [27], the models that are deep have better potentiality
than shallow ones to constitute the non-linear functions, en-
abling the achievement of better results on exhaustive training
data. The deep learning framework also assimilates a classifier
and feature extractor into a single framework, that sponta-
neously learns representations of features, thus sparing the
effort for feature design manually.

In deep learning, Artificial Neural Network (ANN) was
put forward initially and accordingly, the development of
deep learning frameworks like CNN and RNN are devel-
oped. A Convolutional Neural Network incorporates multiple
convolutional layers (Conv1d or Conv2d layer) succeeded by
a subsampling layer (pooling) and then associating with a
single or multiple fully connected layers. CNN was selected
owing to its low computational prerequisites for this particular
assignment because it does not need consecutive output for
this particular execution, and the dataset given as an input
is not a single-dimensional. Convolutional Neural Networks
are uncommon feedforward networks with layers having a
diminished parameter set because of the training of filters



5

Fig. 4: Architecture of ConvXSS

that are invariant to translation with a provincially restricted
receptive field. Adding to this, in the research done by authors
of [28], [29] it is shown that Convolutional Neural Nets shows
reasonable constructions and are invertible. These algorithms
are useful as they are better at the efficiency when compared
to the matrix multiplication.

Saying this, we will further move to our next section in
which we will discuss about our proposed model in detailed
manner.

III. PROPOSED FRAMEWORK : CONVXSS

In this section, we propose our model for detection and
explain it in a detailed manner. Along with this, we also
introduce and explain the context-based sanitization where the
malicious code is replaced by sanitized code if any.

The suggested approach is as follows. Initially, we prepro-
cess the data of the input that is the JavaScript code, which
includes steps like decoding, generalization, semantic labelling
of input and then conversion of the input into binary vectors
based on the ASCII values and forming a dataset of 2d matrix
of integers. This dataset is broken down into two data sets
– one for training and the other for testing. The data set
for training is used to train the CNN classifier that we have
proposed for the detection purposes and test data is used to
find out the accuracy. After the accuracy is maximized based
on the change in the layers and epoch values, the model is

used to detect malicious code in the app. If found malicious,
the code is sent for the context-based sanitization to get rid
of the code. The detailed Architecture of the same is given in
Fig. 4.

Given in Fig. 5 is the workflow of the model in which
the order of execution of the steps involved is explained in
a detailed manner. The Start and End states indicates the
beginning and the end of data pre-processing and training and
testing of the model.

The following subsections contain the detailed discussion
of each stage of the above architecture.

A. Data Pre-Processing

In this stage of research, by removing the unnecessary and
redundant data and by decoding the encoded data, the cleaning
of the data was carried out. Both malicious and benign data are
considered and except the blank spaces, each string of the code
is labelled based on the semantics and then converted from text
to binary matrix. Binary vectors are considered instead of the
word vectors as training of word vectors consumes tremendous
amount of time and monotonous due to the massive strings.
[30] To maintain the consistency in the length of each row, the
maximum length of the rows is taken and 0 is appended with
other rows in the dataset . Since the dimension of the resulting
dataset is huge, we perform sparse dimension reduction to



6

Fig. 5: Work Flow of the Model

finalize the dataset required which is going to be trained and
modelled.

The detailed algorithm of the data pre-processing is given
in Algorithm 1.

In algorithm 1, the set of JavaScript codes are taken and
each code is divided into lines and then into words and
depending on the context of the word, each word is either
decoded or generalized and then it is labeled based on its
context. These labeled words are further converted into ASCII
values and then appended into the dataset. Approaches in-
volved in the preprocessing stage like decoding of encoded
data, generalization, semantic labeling of strings etc., will be

further discussed in detailed manner.

1) Decoder: As mentioned in the Cheat Sheet of XSS
Filter Evasion [31], Attackers who inject malicious code try
to sidestep conventional filters or validation techniques by
utilizing encoding strategies like URL Encoding, Unicode
Encoding, Hex Encoding, HTML Entity Encoding , UTF-7
Encoding etc. The following example, which shows HTML
encoding is given:

document.write(”<script onmouseover=”alert(1)”>test
</script>”);



7

The character count of the above string is 64. After HTML
entity coding, it changes into

document.write(&quot;&lt;script on-
mouseover=&quot;alert(1)&quot;&gt;test &lt;/script&
gt;&quot;);

Therefore, the character count of the code after encoding
is 94. HTML n-coding generally consists of HTML decimal
coding and HTML hexadecimal coding. HTML entity has a
coding format such that it consists of symbols such as “& lt;&
quot& gt;”. Regarding HTML decimal coding, the decimal
coding is given by appending ‘& #’ with the ASCII value
of the character for every character. For example, the code is
shown below:

<article draggable=”true” ondragstart=”alert(1)” >test
</article >

The character count of the above code snippet is 63 but
after performing the HTML decimal coding, the above code
transforms into the snippet as mentioned below:

<article draggable=”true” on-
dragstart=”&#97;&#108;&#101;&#114;&#116;&#40;&#
49;&#41;”>test </article >

The new character count for the same code snippet after
decimal coding is 99. Instead if HTML hexadecimal encoding
is used, the code snippet transforms into

<article draggable=”true” on-
dragstart=”&#x61;&#x6c;&#x65;&#x72;&#x74;&#x28;&
#x31;&#x29;&#xa;”>test </article >

whose size is 108. The entire code which used HTML n-
coding and HTML entity coding may result in code injection
attacks.

So, going through many examples like above patterns, a
decoding algorithm is proposed to decode the HTML encoding
and convert the code back into its original form. As the
encoding involves three characters ‘;’,’#’,’&’ along with a
number which is the ASCII value of the character that has
to be present in the place of the encoded region. Therefore, in
the process of decoding, the special characters are ignored and
the number is replaced with the corresponding character and
the string thus formed is returned. Algorithm 2 is the algorithm
for the same.

2) Generalization: In order to reduce the redundant and
unnecessary information like the name of websites etc., the
string of websites, if present are replaced with “http://website”
and then put back into the code.

3) Semantic Labeling of Strings: After the encoded code
is decoded and generalized, the code snippet i.e. the string,
is semantically labeled based on its context with the help
of encoding information provided. This is implemented in

our model for the purpose of boost the training and boost
the speed of detection. Because the role of the well-trained
neural network is to comprehend the character of a particular
symbol or operator. Labeling of the string based on its context
thus accelerate the process of neural network understanding.
The idea of labeling is to transform the original string by
appending the type label to it, which therefore will occur more
often in the dataset, thus enabling the neural network model
to run faster. This approach, quantitatively found to better
than simple binary conversion of strings, need not require any
modifications to CNN as the neural network continue to be
oblivious about the arrangement of the labeled string [30].
This algorithm in which the respective type number based on
the labeling information is appended along with the string is
given below:

4) Conversion of Strings into the Required Input: In this
stage, each character of the string is taken and if uppercase
letter, converted into lower case and ASCII character is gen-
erated and this process is recurrent for each character in the
string and it is stored in the dataset. Then the maximum length
of the row is taken and zeroes are appended in the other rows
to equalize the length of all rows. The algorithm for the same
is mentioned below in algorithm 4:

5) Dimensionality Reduction: As the code for applications
are usually more that the dataset generated is enormous and is
of high dimension. So, conducive to decrease the computation
time of the training of neural network classifier, dimensionality
of the dataset should reduce. Though numerous dimension
reduction techniques such as Factor Analysis, ICA, PCA can
be utilized for diminishing the dimension, Sparse Dimension
Reduction technique was used, considering the sparse dataset.
This reduction technique helps in reducing the raw data of high
dimension to a data of lower dimension by utilizing a sparse
random matrix that enables speedy computation of the data
projected. Components in the matrix that is random are taken
from a distribution over fi1, 0, 1; the probability for elements
1 and -1 is equal to 1

2
√
d

each, meanwhile the probability for
0 is 1− ( 1√

d
), where the raw data’s dimensionality is denoted

by d. [14]

B. Training and Testing of CNN Model for Classification

Presently, in this part of the process, we divided the reduced
dimension data into training and testing data which we used as
an input to train and test our deep learning classifier. We have
used Convolutional Neural Network for deep learning model
as it automatically selects the required features itself and is
efficient in dealing with large number of features.[32] Along
with this, many models like Naı̈ve Bayes, kNN, Random For-
est are also trained and tested for the purpose of comparison. In
this section, we will discuss in detail about the CNN classifier
model and different layers used in the neural network.

The Convolutional Neural Network consists of either a
single or multiple layer of convolutional, succeeded by a
pooling layer and it is connected with a single or multiple
fully connected layers.[33] The convolutional layer is the
elementary unit of Convolutional Neural Network. In the
convolutional layer, each neuron is linked to small set of input



8

Algorithm 1: Data Pre-Processing
Input: Set of JS Codes (Set)
Output: Dataset of Integers (3D array of integers where each 2D array is pre-processed input.)

1 begin
2 Dataset← NULL; // Declaration of Required Variables for further computation.
3 String A← NULL;
4 String [ ] sa← NULL;
5 int k ← 0;
6 for ( S εSet ) {

// Application of the algorithm for each JavaScript Code in the set.
7 String [ ][ MAX]B ← NULL;
8 int i← 0;
9 for ( st εS ) {

// Application of Division of JS code into lines.
10 int m← 0;
11 String st1← StringTokenizer(st, ””);
12 int i← 0;
13 while (st1.hasMoreTokens( )) do

// Conversion of lines into array of words for further computation.
14 sa[ i]← st1.nextToken();
15 i← i+ 1;
16 end while
17 int j ← 0;
18 while (sa[ j]! = ” < script > ”) do

// Avoiding Unnecessary tags for computation.
19 j ++;
20 end while
21 j ++;
22 while (sa[ j]! = ” < /script > ”) do

// Conversion of strings into required format.
23 if (sa[ j].substring(0, 2) == ”&#”) then
24 A← Decode(sa[j]); // Decoding of the Encoded Strings
25 end if
26 else if (sa[ j].substring(0, 7) == ”http : //”) then
27 A← ”http : //website”; // Replaced with shorter string to reduce data.
28 end if
29 else
30 A← sa[ j];
31 end if
32 Label(A);// Semantic labelling of the string using encoding information.
33 B[ l][ m]← Convert(A); // Conversion of the labelled string into required

input.
34 m++;
35 end while
36 Dataset[ k]← B[ l]; // Entry of the converted data into dataset.
37 l ++;
38 k ++;
39 }

40 }
41 Append Zero(Dataset); // Appending zeroes to each row of dataset for consistent

length.
42 Sparse Dimension Reduction(Dataset); // Reduction technique to reduce dimensionality.
43 return Dataset ;

44 end
45



9

Algorithm 2: Decoding of Data
Input: String (The String to be Decoded)
Output: Decoded String after the computation of the

algorithm
1 begin
2 String a, Num← NULL; // Declaration

of the variables for
computation.

3 int[ ]Number ← 0;
4 for ( ch εS ) {
5 if (ch ==′ &′||ch ==′ #′) then

// Taking each character and
ignore if character is ‘&’
or ’#’

6 Ignore ch;
7 end if
8 else if (ch>=’0’&&ch<=’9’) then

// If the character is a
number, then appending it
with the existing string of
numbers.

9 Num.append(ch);
10 end if
11 else if (ch==’;’) then

// If the character reaches
‘;’, the string is
converted to number and put
into the array Num.

12 Ignore ch;
13 Number ← (int)Num;
14 Num ← NULL;
15 end if
16 }
17 for ( n εNumber ) {

// Each number is taken and
converted to its respective
ASCII and appended to form a
string.

18 char c ← n;
19 a.append(c);
20 }
21 return a; // Output is the decoded

string.
22 end

23

neurons and the parameters have learnable filters included in
them and they get extended through the full depth. Finally, the
dot product of the filter’s content and input is evaluated for the
formation of a two dimensional activation map after which the
pooling layer comes into picture. This pooling layer helps in
the subsampling of the output produced by the convolutional
layer. Max pooling is the largely utilized process for the
purpose of pooling. Then the fully connected layer, the layer
whose neurons are connected completely to all the previous
layer’s activation, is used to finally process the output.[34]

Algorithm 3: Labelling of Data
Input: String S, Encoding Information EI

1 begin
2 String A← NULL; // Declaration of a

String for Modification
3 if (EI[0].contains(S)) then

// Labelling based on the
context of the given string.

4 A← ”0”;
5 end if
6 else if (EI[1].contains(S)) then
7 A← ”1”;
8 end if
9 else if (EI[2].contains(S)) then

10 A← ”2”; // Concatenation of a
label based on the context.

11 end if
12 A.append(S); // Appending the existing

string with the label.
13 S ← A;
14 end

The reason to choose CNN among other deep learning clas-
sifiers. Since the performance of CNN for image recognition is
better than the other classifiers where the pixels of image are
converted to numerals and given as an input to the network,
it is better to use it for malicious code recognition as the text
could also be converted into numerals and given as an input
to it. The algorithm for ConvXSS training and testing is as
given in algorithm 5.

C. Context Based Sanitization

After the optimization of the model considering the accu-
racy obtained after the evaluation, ConvXSS is used to detect
the malicious code in most of the apps. At this stage, the
JavaScript code of the app is taken and after the preprocessing
and detection using the CNN classifier, if the code in the app
is detected malicious, we sanitize the code. This is a method
used to replace the untrusted variables present in the app with
the sanitized variables. These variables are sanitized based on
their context, thus the name, context-based sanitization. For
this, we made sure that all the encoded portion is decoded so
that no part of the code could evade the sanitization. For this
algorithm to work, we initially provided the algorithm with
the list of sanitizers and encoding information and then the
code for which the classifier detected as malicious is taken
and each string of the code is taken and based on the context
of the variable provided by the encoding information, if the
context is untrusted, the string is sanitized using the relevant
sanitizer from the list of sanitizers. After the sanitization, the
sanitized string is replaced with the original string.[35] The
algorithm for the same is as mentioned in algorithm 6.



10

Algorithm 4: Conversion of String
Input: String S (The string to be converted into the

required input format)
Output: Integer Array (An array of integers formed

after putting every character’s ASCII value)
1 begin
2 Int[]num← NULL; // Declaration of

Integer Array to store the
output of the algorithm.

3 if (S[0]==”0”) then
4 num.push(0); // Putting the value

of label into the array based
on the context.

5 end if
6 else if (S[0]==”1”) then
7 num.push(1);
8 end if
9 else if (S[0]==”2”) then

10 num.push(2);
11 end if
12 for ( ch εS ) {

// Taking each character of the
string and converting them
into ASCII value

13 num.push(ASCII(ch));// Putting the
ASCII value into the integer
Array.

14 }
15 return num;

16 end

IV. IMPLEMENTATION:

A. Dataset Description
For the training and testing purposes, malicious and benign

code strings are collected and a CSV file is formed using
the above strings. It is made sure that malicious codes taken
contains both regular and encrypted text contents. These codes
are further sent for data pre-processing. The dataset consists
of 105,470 samples, where 31,407 are benign, and 74,063 are
malicious samples.

B. Implementation Details
For the implementation of the model, we used Windows 10,

Intel(R) Core(TM) i7 CPU @ 1.8 GHz, 16 GB RAM. We have
used Kaggle and Google Colab for the training and testing
different models mentioned in this paper. We have used python
language for the coding in which Keras, an API interface of
high-level networks developed with Python, has the advantages
of speed, simplicity, convenience of usage and modularity, has
been chosen on TensorFlow for training and evaluating the
classifier models. After training and testing, we have chosen
the best model as ConvXSS based on the maximum evaluative
measures and minimal loss value obtained after evaluation
using test dataset and comparing the predictions with the given
labels in dataset. As mentioned above, for this process, a

dataset having malicious and benign code together was taken
for drawing comparisons between the different models.After
the collection of the data, the following steps are done for the
experimentation purpose:

1) Data Pre-Processing
2) Identification of the most appropriate count of hidden

layers for the CNN.
3) Maximization of the size of batch with minimization of

the epoch numbers
4) Evaluation of the precision, recall and accuracy of the

model with the testing dataset and inspection of the
models statistically.

For data preprocessing, as mentioned above, we have taken
two csv files containing malicious and benign codes and post
merging, shuffled them to make the training and testing data
set more random. Then, in the aforementioned process we first
extracted the code and after applying the respective decoders
if needed, we took the binary vectors of the ASCII values of
the characters of the string of the codes and then reduced the
dimensions of the dataset to avoid the curse of dimensionality
and thus formed a dataset.

For dividing the dataset into testing and training sub
datasets, and for the evaluation of the model, we used K-fold
cross validation technique. In this technique, the performance
of classifier model is estimated by dividing the original dataset
randomly into k equal sized sub datasets and using k-1 sub
datasets for training and 1 sub dataset for testing. This step is
repeated for k times such that every sub dataset is used exactly
once for testing dataset by the end of k cycles and the model
is estimated by taking the average of all the values obtained
in k cycles. The edge and superiority of this model lies in the
fact that every observation in the dataset is used for testing
and also exactly once. Since the accuracy remains similar for
different folds, the probability of overfitting in this technique
is minimal. For this paper, we have chosen a value of 10 for
the K in this cross validation technique and used and chosen
the average of evaluative measures for each fold in the model
for the final analysis.

For the generation of the model, tuning parameters of
appropriate measures are chosen by using different techniques
of evaluation. For the CNN model, the count of neurons in
the input layer is given by the dataset’s largest item. In the
convolutional neural network, for this particular implementa-
tion, the initial deep layer have to be more extensive than the
input layer, and as the model progresses to next layers, the no
of neurons in each layer is gradually reduced and when the
output layer is reached, it is reduced to one. Though the neural
network’s mathematical model remains same, the training
parameters are changed for purpose of the optimization and
to land at the final framework for ConvXSS. This triangular
pattern of the CNN ensures that the output layer has only one
value.

The epoch value used for our experimentation is 20. Firstly,
we fixed the count of hidden layers and changed the quantity
of filters in the convolutional layer. We chose the count of
hidden layers to be 8 and the initial layer is 1d convolutional
layer followed by a pooling layer (max-pooling), and the
subsequent layers contain 1d convolutional layer with 100



11

Algorithm 5: CNN Classifier
Input: Dataset (The dataset taken after the data pre -processing step is completed)
Output: Accuracy, Precision, Recall

1 begin
2 convnet← input data(shape = [None, SIZE, SIZE, 1], name =′ input′);
3 convnet← conv 1d(convnet,No.ofFeatures, FeatureV ectorSize, activation =′ relu′);
4 convnet← max pool 1d(convnet, FeatureV ectorSize);
5 convent← conv 1d(convnet,No.ofFeatures, FeatureV ectorSize, activation =′ relu′);
6 convnet← max pool 1d(convnet, FeatureV ectorSize);
7 convnet← dropout(dropoutfraction);
8 convnet← flatten();
9 convnet← dense(number, activation =′ relu′);

10 convnet← dense(number, activation =′ sigmoid′);
11 model← tflearn.DNN(convnet, tensorboard dir =′ log′); // Training of the model in which x

is the dataset and y is the corresponding output;
12 model.fit(Training Data(x, y), Parameters);// Training the model created.
13 TP, FP, TN, FN ← NULL // Declaring the variables for true positive, false

positive ,true negative, false negative
14 for ( x,y εTest Data ) {

// Testing the trained model for every value.
15 output← model.predict(x);
16 if (output ==1 && y==1) then
17 TP ++;// Incrementing the respective values based on the output given by

model and the actual output.
18 end if
19 else if (output == 0 && y==1) then
20 FN ++;
21 end if
22 else if (output == 1 && y==0) then
23 FP ++;
24 end if
25 else if (output == 0 && y==0) then
26 TN ++;
27 end if
28 }
29 Accuracy ← ( (TP+TN)

(TP+TN+FP+FN) ) ∗ 100; // Accuracy Calculation based on the values of TN,

TP, FP, FN
30 Precision← ( TP

(TP+FN) ) ∗ 100; // Precision Calculation based on the values TP, FN.

31 Recall← ( TP
(TP+FP ) ) ∗ 100; // Calculation of Recall based on the values TP,FP.

32 return Accuracy, Precision, Recall; // Output values of this algorithm is
Accuracy,Precision and Recall.

33 end

neurons followed by max-pooling layer, a dropout layer have
a dropout value of 0.2, a flatten layer and two dense layers
of which one has 250 neurons while the other -the output
layer has only one. This model will be further referenced as
Model 1. Secondly, we devised a Model 2 in which we didn’t
change the count of hidden layers but changed the quantity
of neurons of the convolutional layer to 200 followed by a
pooling layer and the other layers remained to be same. The
experimental result for the same is shown in table. Thirdly, for
the model referenced as Model 3, the count of hidden layers
are unaltered and the count of neurons of fully connected
layers are changed to 300 retaining the count of neurons in the

rest, i.e, the convolutional layers, max pooling layers, dense
layers same. Subsequently, the number of layers is changed
in the model and the accuracy and precision for these models
are as mentioned in the Table VI. A detailed evaluation of the
above models is discussed in the next section. (various number
of hidden layers spanning from 8 to 10 are used, changing the
values for every iteration.).

C. Experimental Evaluation of ConvXSS

After the training, the testing part is done to calculate the
accuracy, precision and recall of ConvXSS. These performance
evaluation metrics along with others such as the misclassifica-



12

Algorithm 6: Context Based Sanitization
Input: JavaScript Code, List of Sanitizers, Encoding

Information
Output: JS Document (After the sanitization of the

untrusted variables)
1 begin
2 String[ ]U ← NULL // Declaration of a

string for purpose of
modification.

3 for ( line sl εJS ) {
// Taking each line of the code

into consideration
4 for ( S εsl ) {

// Considering each word in
the line taken

5 int l← label integer(S) // Taking
the labelled integer of the
word into account

6 if (l==untrusted num) then
7 U.push(S);// If the context

of the string is
untrusted, the word is
listed

8 Replace(Sanitize(S),S);
// Respective sanitizer
is applied based on
context and replaced.

9 end if
10 }

11 }
12 return JS // After the completion of

sanitization of the variables
and replacement, the code is
returned.

13 end
14

tion rate (Error rate) and AUC curve are calculated using the
True Negative (TN),True Positive (TP), False Positive (FP)
and False Negative (FN). The performance of the proposed
framework is evaluated using the Confusion Matrix, given in
image and tabular form in V and Figure True Negative(TN) is
the count of benign codes rightly classified as benign, True
Positive (TP) is the count of malicious code samples that
are exactly classified as positive. False Positive (FP) is the
inaccurate categorization of benign code samples as malicious
and False Negative (FN) is the inaccurate classification of
malicious code as benign. For the establishment of additional
clarification, Fig. 6, is presented to bring four different cases
as mentioned by [44], where these four cases can represent
the detection models that use artificial intelligence techniques.
The four cases are as follows, Fig.14 (a) represents low recall-
low precision which leads to a high FP and FN, Fig.14 (b)
represents high recall low precision resulting in high Fp rate
and low FN rate, Fig.14(c) represents low recall-high precision
leading to high FN and low FP, or Fig.14 (d) represents

TABLE I: Evaluative Measures of the Model 1 for different
folds

CNN Model 1
Evaluation Accuracy Precision Recall

Fold 1 97.7866352 97.7655231 98.0902314
Fold 2 98.3178437 98.3915687 98.4461665
Fold 3 98.8784015 98.8002300 99.0766644
Fold 4 98.6865461 98.5807896 98.9860237
Fold 5 99.3358970 99.4206965 99.3384838
Fold 6 99.2178321 99.2961645 99.2692828
Fold 7 99.2916226 99.2161274 99.4388402
Fold 8 99.2621064 99.5977521 99.0664184
Fold 9 99.3801713 99.5587468 99.2849290
Fold 10 98.9817083 98.5597790 99.5608091
Average 98.9138764 98.9187378 99.0557849

TABLE II: Evaluative Measures of the Model 4 for different
folds

CNN Model 4
Evaluation Accuracy Precision Recall

Fold 1 98.1260180 97.5709617 98.9482403
Fold 2 98.6719787 98.2957661 99.2230773
Fold 3 99.0112245 98.7218678 99.4124234
Fold 4 99.1292894 99.1511524 99.2326677
Fold 5 99.4539618 99.2863119 99.6968031
Fold 6 99.4096875 99.4052529 99.5128572
Fold 7 99.2325902 99.0502775 99.4949520
Fold 8 99.4982362 99.6524990 99.4398534
Fold 9 99.4687200 99.5321989 99.4774461
Fold 10 99.4982362 99.4248211 99.6431589
Average 99.14999425 99.0091109 99.4081479

high recall-high precision which is the best case scenario,
representing low FP and FN rates as given by our classifier.

Fig. 6: The Four Cases of Model Performance

Precision is the percentage of true positives in the total of
false positive and true positive. Therefore, a low precision
indicates higher percentage of false positives. Accuracy is the
percentage of total true positives and true negatives among all



13

TABLE III: Evaluative measures for models with different Hidden Layers and Number of Neurons

Model No. Number of Hidden Layers Number of Neurons* Overall Accuracy Precision Recall
1 8 100c,0.2dp,100c,fl,250d,1d 98.9138764 98.9187378 99.0557849
2 8 200c,0.2dp,100c,fl,250d,1d 98.8976467 98.8437295 99.102354
3 8 300c,0.2dp,100c,fl,250d,1d 98.6497152 98.5406047 98.9487636
4 10 100c,100c,0.2dp,100c,fl,250d,1d 99.1499942 99.0091109 99.4081479
5 10 200c,100c,0.2dp,100c,fl,250d,1d 99.0791547 99.0867633 99.1955662
6 10 300c,100c,0.2dp,100c,fl,250d,1d 99.0319312 99.0377957 99.1575849

*c: Conv1D + MaxPool1D, dp: Dropout, fl: Flatten, d: Dense

TABLE IV: TP, FP, FN, TN

Actual Mali-
cious Code

Actual Benign
Code

Predicted Mali-
cious Code

True Positive
(TP)

False Positive
(FP)

Predicted Benign
Code

False Negative
(FN)

True Negative
(TN)

the cases given. Recall is the probability of the retrieval of an
accurate item. Putting it in another way, precision calculates
the classifier’s exactness whereas recall can be considered as
the classifier’s completeness. As mentioned above, these are
given by the formulas:
Accuracy = TP+TN

TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

FPR = FP
FP+TN

F − Score = 2∗Precision∗Recall
Precision+TPR

MisclassificationRate = FP+FN
TP+TN+FP+FN

AreaUndertheCurve(AUC) = 1
2 × ( TP

TP+FN + TN
TN+FP )

Fig. 7: Evaluation of Different Models

After the implementation of different of models, the testing
data is used to test the aforementioned models for calculating
the parameters mentioned above. The accuracy, precision,
recall for the model 1,comes out to be 98.92%, 98.92% and
99.06% respectively, with 100 filters in the first convolutional
layer and 100 in the second one. Whereas the accuracy,
precision and recall for the model 2 comes out to be 98.90%,
98.84%, 99.10% respectively, with 200 number of filters in
the convolutional layer keeping the rest same. The accuracy,

precision and the recall for the other models are mentioned
using a bar graph against their respective models in Fig 7.

D. Performance Analysis

From this analysis of different models, we can understand
that the features that might influence the process of opti-
mization include count of neurons in one or more hidden
layers in a neural network, a number of training cycles, size
of the batch of the patterns forwarded from the dataset to
the input of the neural network, quantity of hidden layers,
types of the optimizers. The aforementioned indicators such
as True Positive Rate (TPR) or Recall, F- Score, Precision, and
Overall Accuracy (Acc) are used to assess if a the algorithm
of detection is good or bad. The system could be evaluated as
a better model when the TPR is higher and FPR is lower while
the precision indicates the predictive power of the algorithm.
So going through the evaluative measures mentioned in the
previous table and after evaluating the accuracy, precision,
recall of the different models, we could say that the Model
4 has performed well among all the models as it has better
accuracy, larger precision, greater recall (and smaller FPR).
The accuracy of this Model 4 is far better than the models
mentioned in papers like [14], [30], and thus it forms the
basis of implementing ConvXSS here onwards. A comparative
analysis of our model with models of other papers is in the
Table. V below.

TABLE V: Comparision with Models of other papers

Model
Ac-

curacy
Overall

Preci-
sion Recall

Our Model - ConvXSS 99.42 99.81 99.35
CODDLE - S.
Abaimov and G.
Bianchi [30]

95.7 99.0 91.2

Selvam, M. K. [21] 98.54 98.65 98.40
Wang, Y., Cai, W. D.,
Wei, P. C. [14] 94.82 94.9 94.8

DeepXSS - Fang, Y.,
Li, Y., Liu, L., Huang,
C. [36]

99.5 97.9 98.7

Adaboost - Wang, R.,
Jia, X., Li, Q., Zhang,
S. [37]

94.1 93.9 93.9



14

Also, considering the time for prediction and the pre-
processing time, the average time taken to recognize an
application is far lesser than the time taken for prediction.

Fig. 8: Accuracy vs Fold value

To corroborate our results about Model 4 being optimum,
the Accuracy, Precision and Recall values for the 6 models
were plotted against the Fold value, which was varied from
1 to 10 as mentioned earlier. A comparative analysis is given
via these curves in Fig 8 , 9 and 10.

Fig. 9: Precision vs Fold Value

Fig. 10: Recall vs Fold Value

E. A Comparative study with other models
Along with the CNN models mentioned above, we have

also trained and tested other classifiers for the purpose of
comparison. We have trained and tested models like Naive
Bayes, K-nearest neighbors and Random Forest (RF), SVM.
Naı̈ve Bayes classifiers are simple probabilistic classifiers
that run on the application of Bayes’ theorem with naı̈ve
independent assumptions considered between the features.
They are convenient for any problem of classification. As
the Gaussian Naı̈ve Bayes executes well with data that is
normally distributed , we have chosen it over other Naı̈ve

Bayes models. The other model used widely for classification
problems is the K nearest neighbors (KNN). But it is a
challenge to choose the optimal K value. After comparing
the accuracy, training error rate and validation, we chose the
optimal K which turned out to be 9 after training different
models with different numbers and considered the evaluation
measures for comparison. Random Forest is also chosen by
many for the classification problems as the model constructs
many hierarchical decision trees classifiers taking various sub
samples of data-set for prediction. The tuning parameters for
the decision tree are the tree depth and number of trees.
(SVM, a supervised learning model is associated with learning
algorithms for analyzing data and recognition of patterns).
After training and testing all these models, we have compared
these models with CNN model and the comparison for the
same is given in Fig 11. As we can see in the above bar graph,

Fig. 11: Comparison with other models

CNN provides slightly higher accuracy than other models. All
the CNN models performed better than KNN, Random Forest
and Gaussian Naı̈ve Bayes models out of which Model 4 has
better performance among all the CNN models.

F. Final Evaluation and Performance Statistics
An extended adaptation of Model 4 was trained on our main

dataset, that comprised of about double the number of code
strings as used before to obtain the deisred model - ConvXSS.
We collected 31,407 benign and 74,063 malicious samples
with a total size of about 2 GB. To prevent duplication of
data from multiple data sources, we calculated the MD5 of
each sample to ensure that each sample is unique.The data
extracted consisted of 1,05,470 attack vector code snippets
fed as [Code,Label] pairs to our Model.

For an unbiased sense of proposed model efficiency, the
dataset was split randomly and separately into three parts with
a partition ratio of 60%: 20%: 20% for training, validation, and
testing sets. The training set includes 63,281 samples labeled
as [0: Benign, 1: Malicious], the validation set contains 21,094
samples, and the holdout set consists of 21,095 samples, which
is used only to estimate the effectiveness of the final and fully
trained model. Table I shows the detailed partitions of the
dataset.

The pre-processing steps remained similar to Model 4, with
application of decoders and converting the code strings to the
binary vectors of their ASCII values. Resizing and scaling
this processed data into a 100x100 image like format using
OpenCV led to an ”image” like format, one that was easily
fed into the model.The next step involved using a Keras
data generator for generating multiple cores in real time and



15

TABLE VI: Dataset Subdivisions

DATA

Name Benign Mali-
cious Total

Training Dataset 18,844 44,437 63,281
Validation Dataset 6,281 14,813 21,094
Testing Dataset 6,282 14,813 21,095
Total Dataset 31,407 74,063 1,05,470

feeding it into our deep learning model to keep the process
memory efficient and batch-wise operable. The convolutional
neural network is implemented in Python with Tensor Flow
2.0 and Keras. Since malicious JavaScript detection is a binary
classification task, we use cross-entropy as the loss function,
i.e.

loss = -ylogy’ + (1 - y)log(1 - y’)
where y (0 for benign and 1 for malicious) is the label

of the sample and y’ is the output probability of the sample
being malicious. We adopt Adam as an optimizer, which is
one of the most efficient optimizers at present. The model
architecture involved 3 convolutional layers and 11 layers in
total, and the features include using an Adam optimizer and
a binary cross-entropy loss as the best suited for our use-case
(2 labels).

ConvXSS was trained for 20 epochs post which the loss
curves showed signs of over-fitting. The maximum validation
accuracy achieved for comes out to be comparable with the
state of art papers we have explored. The performance of this
profound model is better than six ML algorithms in Table V.
The proposed model achieved an accuracy rate of 99.42%,
recall rate of about 99.35% and precision value of about
99.81%. Figures 16 and 17 represent the Loss and Accuracy
curves that can help gauge the performance of the proposed
approach. Further, we also studied the effect of the learning
rate versus the loss-function as shown in Fig. 12, and plotted
both the Cross-Entropy and the Classification Error against the
Epochs for which the model was trained and tested. They are
depicted via Figures 13 and 14.

Fig. 12: Learning Rate vs Log Loss

Fig. 15 shows the result of the confusion matrix with a
complete statistical view. We can observe that ConvXSS is at
par with the state of the art for a Deep Learning Classifier.
It also steadies significantly of achieving high precision and
high recall simultaneously.

Fig. 13: Cross Entropy vs Epochs

Fig. 14: Classification Error vs Epochs

G. Evaluation of the Context-Based Sanitization:
After the pre-processing of the data and the evaluation of

ConvXSS post training and testing, we used the model for
detection of malicious code and used context-based sanitiza-
tion if the model detected the code as malicious. For this, the
code is extracted from the application and pre-processed and
sent to the model for the purpose of detection. If the model
classifies the code as malicious , the semi pre-processed code
(the code taken after it is decoded) is taken and is tokenized.
Each token is taken, and the context is determined using the
semantic labeling information used in the semantic labeling
stage of the data pre-processing and also using the features in
Table.VIII. Table.VIII highlights the features that have been
extracted. If the context is untrusted, appropriate sanitizers are
applied to sanitize the variable and replace it with the existing
variable.

For this process, the list of the context-based sanitizers has
been taken from the ESAPI library provided by OWASP which
consists of all the possible sanitizers. Post Sanitization, we put
the sanitized code back in our database for ConvXSS which
tested as benign. This proved that the sanitization technique
has been effective and the model is also detecting the malicious
and benign code effectively.

V. CONCLUSION

One of the important factors smart cities is the security
and the privacy of users living in it. So, as a part of the
issues of security and privacy, we have chosen one of the
key topic of Web Application Security, the detection of the
Cross-Site Scripting. With the XSS Vulnerabilities, looting
user info, and potentially significant security issues happen
in the web applications. In this paper, we studied the potential



16

Fig. 15: Confusion Matrix on the Test Dataset

TABLE VII: The performance of existing learning models with
ConvXSS

Comparison of the Proposed Model
Techniques Accuracy Precision Recall

Random Forest 97.90 98.00 98.00
Naive Bayes 48.20 73.50 48.10
Support Vector Machines 95.80 95.50 95.80
k-Nearest Neighbors 97.30 97.00 97.00
BLSTM [38] 92.01 94.23 93.03
CNN-LSTM [39] 99.30 99.90 99.10
Proposed: ConvXSS 99.42 99.81 99.35

risk by XSS attacks imposed on mobile applications, their
impact on users of ICT and also introduced code injection
attacks which are more hidden. We identified many unique
channels like Barcode, Contacts, File Contents etc., through
which the code could be injected and spread, apart from the
obvious attacks like displaying of code on the URL or on
the screen of the application. After that, we introduced a
COnvXSS, a novel approach for detection of the malicious
code injected that uses Convolutional Neural Networks at
the core of it’s detection mechanism. This approach has its
novelty in the pre-processing stage of semantic labeling of
the input which enabled the reduction of the pre-processing
time as the labeling of each token of the code helps the CNN
model to understand the role of the particular token. In this
model, initially, both malicious and benign code strings are
taken for the dataset and after decoding, generalizing, and
labeling, the code is converted into the binary vectors and
the dataset thus formed is divided into the training, validation
testing datasets which is used to train the CNN model that
we proposed for the detection purposes. The accuracy and
the precision of the model came out to be 99.42% and
99.81% as mentioned in the section of evaluation analysis
above which we proved that is better than the other models
like kNN, Random Forest in the comparative analysis section
using various mathematical models like graphs and relevant
parameter-plots. These evaluative measures proved that the
aforementioned novelty of the model gave better results than
that of the previous models, and even those using BiDirectional
LSTMs[38] and hybrids of CNN-LSTMs[39] as mentioned
in Table V. After the evaluation of the model, we have also

TABLE VIII: Name of Different Features

No. Feature Name No. Feature Name
F0 url size F25 html blur attr

F1 url symbols special F26 html onclick evnt

F2 url script tag F27 html onchnge evnt
F3 url source attr F28 html onerr evnt
F4 url cookies F29 html onfcs evnt
F5 url onmouse evnt F30 html onkeyprss evnt

F6 url keyword number F31 html onkeyup evnt

F7 url cache F32 html onload evnt

F8 url domnum F33 html onmousedwn evnt
F9 html script tag F34 html onmouseup evnt

F10 html embed tag F35 html onmouseovr evnt
F11 html site tag F36 html onsubmit
F12 html frame tag F37 html evilkeynum
F13 html form tag F38 html size
F14 html object tag F39 js file
F15 html style tag F40 js psdprtcl
F16 html data tag F41 js domlction
F17 html image tag F42 js domdoc
F18 html areaoftext tag F43 js prpdata
F19 html bckgrnd attr F44 js prprefrr
F20 html code attr F45 js writemethod
F21 html prfl attr F46 js alertmethod
F22 html source attr F47 js cnfrmmethod
F23 html usemap attr F48 js deffunc
F24 html equivhttp attr F49 js funccall
F25 html blur attr F50 js maxstrlngth

Fig. 16: Loss versus Number of Epochs.

included the Context-Based Sanitization in the paper, in which,
after the code is taken from an application, we sanitized the
malicious part of the code using the list of sanitizers, if the
code is classified as malicious by the model. Some of the
prospective possibilities in which the work could be performed
in the future, are listed out in the following points:

1) ConvXSS could be utilized to build a powerful projec-
tion system for applications in real life for the safety and



17

Fig. 17: Accuracy versus Number of Epochs.

privacy of sustainable smart cities. Though, in actual
implementation in real life situations, there would be
many problems, like insufficient data, disturbances like
noise in data , that makes the traditional ML algorithms
not practical, our model can be used to make a browser
extension or as an app that scans the other downloaded
apps in the background.

2) Crawling the website pages in real-time and drawing out
the JS code in the website page which can be fed into
the model to get notified about the security quotient of
the webpage.

3) In general, all learning-based malicious JavaScript de-
tectors do fail to detect some attacks,such as malicious
scripts not containing any features in the current training
dataset. In this paper,the malicious samples come from a
exhaustive mix of data currently present on the Web. As
previously mentioned, as the innovation and technology
advances in smart cities, innovative attack vector designs
keep coming up with time, and learning-based models
pose a setback in detecting these new attacks. We plan
to continually add new malicious JavaScript samples
in the follow-up study to improve the performance of
ConvXSS, and work on building an end-to-end Deep
Learning based solution for defending Android-based
Web Applications against XSS Attack Vectors.

ACKNOWLEDGEMENTS

The work is partially funded by research grant from Data
Science Council of India.

DECLARATIONS

Funding: This work is economically supported by Data
Security Council of India.
Conflicts of interest/Competing interests: The authors
declare that their is no conflict of interests.
Availability of data and material: N/A
Code availability: Code will be available based on the formal
request to the corresponding author.

REFERENCES

[1] R. Khatoun and S. Zeadally, “Cybersecurity and privacy solutions in
smart cities,” IEEE Communications Magazine, vol. 55, no. 3, pp. 51–
59, 2017.

[2] A. S. Elmaghraby and M. M. Losavio, “Cyber security challenges in
smart cities: Safety, security and privacy,” Journal of advanced research,
vol. 5, no. 4, pp. 491–497, 2014.

[3] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on html5-based mobile apps: Characterization, detection and
mitigation,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp. 66–77.

[4] A. van der Stock, B. Glas, N. Smithline, and T. Gigler, “Owasp top
10-2017 the ten most critical web application security risks,” Creative
Commons, 2017.

[5] J. Liu, K. Li, D. Zhu, J. Han, and K. Li, “Minimizing cost of
scheduling tasks on heterogeneous multicore embedded systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16, no. 2,
pp. 1–25, 2016.

[6] G. Schwenk, A. Bikadorov, T. Krueger, and K. Rieck, “Autonomous
learning for detection of javascript attacks: Vision or reality?” in
Proceedings of the 5th ACM Workshop on Security and Artificial
Intelligence, ser. AISec ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 93–104. [Online]. Available:
https://doi.org/10.1145/2381896.2381911

[7] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and
V. Paxson, “Hulk: Eliciting malicious behavior in browser extensions,”
in 23rd {USENIX} Security Symposium ({USENIX} Security 14), 2014,
pp. 641–654.

[8] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Information
security governance: the art of detecting hidden malware,” in IT security
governance innovations: theory and research. IGI Global, 2013, pp.
293–315.

[9] H.-G. Kim, D. Kim, S.-J. Cho, M. Park, and M. Park, “Efficient detection
of malicious web pages using high-interaction client honeypots.” Journal
of Information Science & Engineering, vol. 28, no. 5, 2012.

[10] Y. Alosefer and O. Rana, “Honeyware: A web-based low interaction
client honeypot,” 2010 Third International Conference on Software
Testing, Verification, and Validation Workshops, pp. 410–417, 2010.

[11] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-
by-download attacks and malicious javascript code,” in Proceedings of
the 19th International Conference on World Wide Web, ser. WWW ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
281–290. [Online]. Available: https://doi.org/10.1145/1772690.1772720

[12] M. Egele, E. Kirda, and C. Kruegel, “Mitigating Drive-by Download
Attacks: Challenges and Open Problems,” in iNetSec Open Research
Problems in Network Security, Zurich, Switzerland, April 2009.

[13] P. Ratanaworabhan, B. Livshits, and B. Zorn, “Nozzle: A defense against
heap-spraying code injection attacks,” in USENIX Security Symposium,
2009.

[14] Y. Wang, W.-d. Cai, and P.-c. Wei, “A deep learning approach for detect-
ing malicious javascript code,” Security and Communication Networks,
vol. 9, no. 11, pp. 1520–1534, 2016.

[15] P. Likarish, E. Jung, and I. Jo, “Obfuscated malicious javascript detection
using classification techniques,” in 2009 4th International Conference
on Malicious and Unwanted Software (MALWARE). IEEE, 2009, pp.
47–54.

[16] S. Rathore, P. K. Sharma, and J. H. Park, “Xssclassifier: An efficient
xss attack detection approach based on machine learning classifier on
snss.” Journal of Information Processing Systems, vol. 13, no. 4, 2017.

[17] F. A. Mereani and J. M. Howe, “Detecting cross-site scripting attacks
using machine learning,” in International Conference on Advanced
Machine Learning Technologies and Applications. Springer, 2018, pp.
200–210.

[18] M. K. Gupta, M. C. Govil, and G. Singh, “Predicting cross-site scripting
(xss) security vulnerabilities in web applications,” in 2015 12th Interna-
tional Joint Conference on Computer Science and Software Engineering
(JCSSE). IEEE, 2015, pp. 162–167.

[19] V. K. Malviya, S. Saurav, and A. Gupta, “On security issues in web
applications through cross site scripting (xss),” in 2013 20th Asia-Pacific
Software Engineering Conference (APSEC), vol. 1. IEEE, 2013, pp.
583–588.

[20] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A
survey,” ACM Computing Surveys (CSUR), vol. 50, no. 4, pp. 1–36,
2017.

https://doi.org/10.1145/2381896.2381911
https://doi.org/10.1145/1772690.1772720


18

[21] M. K. Selvam, “Classification of malicious web code using deep
learning,” Ph.D. dissertation, Dublin, National College of Ireland, 2018.

[22] K. Li, X. Tang, B. Veeravalli, and K. Li, “Scheduling precedence
constrained stochastic tasks on heterogeneous cluster systems,” IEEE
Transactions on computers, vol. 64, no. 1, pp. 191–204, 2013.

[23] X. Xiao, R. Yan, R. Ye, Q. Li, S. Peng, and Y. Jiang, “Detection and
prevention of code injection attacks on html5-based apps,” in 2015 Third
International Conference on Advanced Cloud and Big Data. IEEE,
2015, pp. 254–261.

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[25] “Darktrace.” [Online]. Available: https://www.darktrace.com/en/
resources/

[26] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” Advances in neural information pro-
cessing systems, vol. 19, pp. 153–160, 2006.

[27] N. Le Roux and Y. Bengio, “Deep belief networks are compact universal
approximators,” Neural computation, vol. 22, no. 8, pp. 2192–2207,
2010.

[28] A. C. Gilbert, Y. Zhang, K. Lee, Y. Zhang, and H. Lee, “Towards
understanding the invertibility of convolutional neural networks,” arXiv
preprint arXiv:1705.08664, 2017.

[29] R. Yan, X. Xiao, G. Hu, S. Peng, and Y. Jiang, “New deep learning
method to detect code injection attacks on hybrid applications,” Journal
of Systems and Software, vol. 137, pp. 67–77, 2018.

[30] S. Abaimov and G. Bianchi, “Coddle: Code-injection detection with
deep learning,” IEEE Access, vol. 7, pp. 128 617–128 627, 2019.

[31] X. OWASP, “Filter evasion cheat sheet,” 2017. [Online]. Available:
https://www.owasp.org/index.php/XSS Filter Evasion Cheat Sheet

[32] C. Chen, K. Li, S. G. Teo, X. Zou, K. Li, and Z. Zeng, “Citywide traffic
flow prediction based on multiple gated spatio-temporal convolutional
neural networks,” ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 14, no. 4, pp. 1–23, 2020.

[33] J. Chen, K. Li, K. Bilal, K. Li, S. Y. Philip et al., “A bi-layered parallel
training architecture for large-scale convolutional neural networks,”
IEEE transactions on parallel and distributed systems, vol. 30, no. 5,
pp. 965–976, 2018.

[34] M. Duan, K. Li, and K. Li, “An ensemble cnn2elm for age estimation,”
IEEE Transactions on Information Forensics and Security, vol. 13, no. 3,
pp. 758–772, 2017.

[35] P. Chaudhary and B. Gupta, “A novel framework to alleviate dissemina-
tion of xss worms in online social network (osn) using view segregation,”
Neural Network World, vol. 27, no. 1, p. 5, 2017.

[36] Y. Fang, Y. Li, L. Liu, and C. Huang, “Deepxss: Cross site scripting
detection based on deep learning,” in Proceedings of the 2018 Interna-
tional Conference on Computing and Artificial Intelligence, 2018, pp.
47–51.

[37] R. Wang, X. Jia, Q. Li, and S. Zhang, “Machine learning based cross-site
scripting detection in online social network,” 2014 IEEE Intl Conf on
High Performance Computing and Communications, 2014 IEEE 6th Intl
Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on
Embedded Software and Syst (HPCC,CSS,ICESS), pp. 823–826, 2014.

[38] X. Song, C. Chen, B. Cui, and J. Fu, “Malicious javascript detection
based on bidirectional lstm model,” Applied Sciences, vol. 10,
no. 10, 2020. [Online]. Available: https://www.mdpi.com/2076-3417/
10/10/3440

[39] R. Kadhim and M. Gaata, “A hybrid of cnn and lstm methods for
securing web application against cross-site scripting attack,” Indonesian
Journal of Electrical Engineering and Computer Science, vol. 21, p.
1022, 02 2021.

https://www.darktrace.com/en/resources/
https://www.darktrace.com/en/resources/
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.mdpi.com/2076-3417/10/10/3440
https://www.mdpi.com/2076-3417/10/10/3440

	Introduction
	Other Models and their Limitations/ Related Work:
	About ConvXSS

	Background
	Why Deep Learning?

	Proposed Framework : ConvXSS
	Data Pre-Processing
	Decoder
	Generalization
	Semantic Labeling of Strings
	Conversion of Strings into the Required Input
	Dimensionality Reduction

	Training and Testing of CNN Model for Classification
	Context Based Sanitization

	Implementation:
	Dataset Description
	Implementation Details
	Experimental Evaluation of ConvXSS
	Performance Analysis
	A Comparative study with other models 
	Final Evaluation and Performance Statistics
	Evaluation of the Context-Based Sanitization:

	Conclusion
	References
	Blank Page



