
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
INSTITUTO DE COMPUTAÇÃO

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

JOÃO VICTOR PACHECO SOBRAL

ON THE SECURITY OF MULTIVARIATE ENCRYPTION SCHEMES

RIO DE JANEIRO
2022

JOÃO VICTOR PACHECO SOBRAL

ON THE SECURITY OF MULTIVARIATE ENCRYPTION SCHEMES

Trabalho de conclusão de curso de gradua-
ção apresentado ao Departamento de Ciên-
cia da Computação da Universidade Federal
do Rio de Janeiro como parte dos requisitos
para obtenção do grau de Bacharel em Ciên-
cia da Computação.

Orientador: Severino Collier Coutinho

RIO DE JANEIRO
2022

“There is no branch of mathematics, however abstract, which may not someday be
applied to phenomena of the real world."

Nikolai Lobachevsky

RESUMO

A criptografia moderna está em perigo por causa dos computadores quânticos, mesmo
que, limitados por hardware, já existem algoritmos que podem quebrar os esquemas de
chave pública mais utilizados para tráfego de informação. Criptografia multivariável é um
bom candidato para criação de esquemas criptográficos seguros até para computadores
quânticos, pois são baseadas em um problema NP-Difícil. Nesse trabalho, nós explicamos
ataques comuns a criptossistemas multivariáveis além de estudarmos a teoria e implemen-
tação deles.

Palavras-chave: Criptografia Pós-Quântica (PQC); Criptografia de Chave Pública Mul-
tivariável (MPKC); Criptografia de Chave Pública

ABSTRACT

Modern cryptography is endangered by quantum computers because, even though we do
not have good hardware, we already have algorithms to break most public key schemes
that are widely used. Multivariate cryptography is a good candidate to generate quantum
safe cryptography schemes since it is based on a NP-Hard problem even for quantum
computers. We explain common attacks to multivariate cryptosystems and go through
the theory and implementation of them.

Keywords: Post Quantum Cryptography (PQC); Public Key Cryptography; Multivari-
ate Public Key Cryptography (MPKC)

LIST OF FIGURES

Figure 1 – Protocol that let A send messages securely to B 26
Figure 2 – Construction of multivariate trapdoor illustrated 29

LIST OF TABLES

Table 1 – Running time of the algebraic attack on Jiahui Chen et al. cryptosystem
(in bold the authors parameters for 80 and 128 bit security respectively) 39

LIST OF SYMBOLS

γ Greek letter Gama

∆ Greek letter Delta

ϕ Greek letter Phi

∈ Belong

/∈ Does not belong

◦ Map composition

⊕ Direct sum

\ Set subtraction

Ω Greek letter Omega

≺ Well order precedes

∪ Union

∩ Intersection

CONTENTS

1 INTRODUCTION . 11

2 PRELIMINARIES . 12
2.1 RINGS AND FIELDS . 12
2.2 IDEALS AND QUOTIENT RING . 13
2.3 FINITE FIELDS AND EXTENSIONS 14
2.4 FROBENIUS POWERS . 14

3 GROEBNER BASIS . 16
3.1 DEFINITIONS . 16
3.1.1 Euclidean division for multivariate polynomials 17
3.2 THEORY . 18
3.2.1 Dickson’s Lemma . 19
3.2.2 Hilbert’s Basis Theorem . 20
3.2.3 Existence of Groebner basis . 20
3.3 APPLICATIONS . 22
3.3.1 Ideal Equality Problem . 22
3.3.2 Solving Systems of Polynomial Equations 22
3.4 BUCHBERGER’S ALGORITHM . 23

4 MULTIVARIATE PUBLIC KEY CRYPTOGRAPHY 26
4.1 CRYPTOGRAPHY . 26
4.1.1 Public Key Cryptography . 26
4.1.2 Post-Quantum Cryptography . 27
4.2 MULTIVARIATE PUBLIC KEY CRYPTOSYSTEMS 27
4.2.1 Construction . 28
4.3 HIDDEN FIELD EQUATIONS . 29

5 ATTACKS ON MPKC . 31
5.1 RANK ATTACKS . 31
5.1.1 The MinRank problem . 31
5.1.2 Example . 32
5.2 JIAHUI CHEN ET AL. CRYPTOSYSTEM 32
5.2.1 Construction . 33
5.2.2 Algebraic Attack . 36
5.2.3 Experiments and results . 38

6 CONCLUSION . 40

REFERENCES . 41

11

1 INTRODUCTION

Quantum computers are endangering most public key cryptography schemes, there
are already quantum algorithms capable of factoring a big number or solving the discrete
logarithm problem (SHOR, 1999), but due to hardware limitation it is still not feasible.
On the other hand, symmetric encryption schemes are known to be quantum resistant
already, Grover’s algorithm (GROVER, 1996) only reduces the key search by half of the
bits, this means that AES-256 is still practical even for quantum computers.

In the last three decades, multivariate public key cryptography (MPKC) have been
researched because it is considered one main candidate for post quantum cryptography.
Since the first scheme proposed at (MATSUMOTO; IMAI, 1988), most schemes follow a
common construction, the public key P is the composition of three maps P = T ◦ F ◦ S
where S, T are linear maps, F is a Fn → Fm map and F is a finite field. This map F is
called central map and it has n variables and m equations. The central map must have
the property that the system F (x) = y is easily solvable for the ciphertext y.

The main problem discussed in this work is how to build a secure multivariate en-
cryption scheme, ever since the first was launched we currently have no scheme that is
both secure and efficient (IKEMATSU; NAKAMURA, 2022). Even though we don’t have
encryption schemes with those properties, we currently have digital signature schemes
that are based on the same problem.

This work approaches multiple attacks on multivariate schemes that explore the struc-
ture of the central map. We define rank attacks that are based on the rank of the map
when it is translated to matrices and we also see an example and implementation of an
algebraic attack. Not only we describe the attacks but we also show possible variations
and combinations of attacks that could lead to a smaller time complexity.

We aim to describe attacks and variations in order to achieve a better time complexity
for direct and algebraic attacks on multivariate encryption schemes. A big portion of
multivariate attacks uses the Groebner basis algorithm in order to solve a system of
polynomial equations and we will explain all the theory and applications of these methods.

This work has the following structure, Chapter 2 touches the preliminaries, all the basic
theory that we need to know before studying Groebner basis and multivariate schemes.
Chapter 3 will go through the Groebner basis theory, applications and implementation of
algorithms. Chapter 4 talks about the general construction of multivariate schemes and
Chapter 5 describes the attacks on known encryption schemes.

12

2 PRELIMINARIES

These are the fundamentals to understand how some cryptography schemes work.

2.1 RINGS AND FIELDS

A ring is a set that contains two operations, addition (+) and multiplication (∗). A
ring, with an associated set R, must satisfy those conditions and axioms (LANG, 2002):

• Multiplication and addition are associative. Meaning that for all elements a, b and
c in R it satisfy a ∗ (b ∗ c) = (a ∗ b) ∗ c and a+ (b+ c) = (a+ b) + c.

• Addition is commutative. That is, for all a and b in R, a+ b = b+ a holds.

• There are multiplicative and additive identity element. Meaning that if 1 is the
multiplicative identity, 0 the additive identity and a an element in R then 1 ∗ a =

a ∗ 1 = a and 0 + a = a+ 0 = a.

• For each a in R exists an additive inverse. Meaning that, if −a is the inverse of a,
0 is the additive identity then a− a = 0.

• Multiplication distributes over addition. For all a, b, c in R it is true that a∗(b+c) =

(a ∗ b) + (a ∗ c) and (b+ c) ∗ a = (b ∗ a) + (c ∗ a).

As an example, the set of natural numbers N, with the operations addition and mul-
tiplication, does not form a ring since there are no additive inverses, so there is no x such
that x + 3 = 0. All rings covered in this study will be using 0 as the additive identity
element and 1 as the multiplicative identity.

A field is a special kind of commutative ring. In other words it has all the axioms and
conditions of a ring plus the multiplication is also commutative, and all nonzero elements
have an inverse. That is for every x in a field, there is a y such that x ∗ y = 1.

As an example, the set of integers Z, with the default operations, is a ring but not a
field, since the multiplicative inverses are not in the base set. There can be infinite and
finite fields, this study will be focused on finite fields.

A polynomial ring, R[X], is an algebraic structure that allows the representation of
polynomials in a base ring, this means that an element p of this ring is of the form:

p = c0 + c1X + c2X
2 + ...+ cnX

n

where c0, c1, c2, ..., cn are the coefficients of p, all of them are elements of R. X,X2, ..., Xn

are the powers of X, and X is called variable.

13

2.2 IDEALS AND QUOTIENT RING

Let K be any field, an ideal is a subset I ∈ K[x1, ..., xn] satisfying these conditions:

• 0 ∈ I

• If p, g ∈ I, then p+ g ∈ I

• If p ∈ I and h ∈ K[x1, ..., xn], then hp ∈ I

Definition. Let p1, ..., pn ∈ K[x1, ..., xn]. Then

⟨p1, ..., pn⟩ =

{
n∑

i=1

hipi|h1, ..., hn ∈ K[x1, ..., xn]

}
Lemma. We call I = ⟨p1, ..., pn⟩ the ideal generated by p1, ..., pn.
Proof. Since 0 =

∑n
i=1 0 ∗ pi, 0 ∈ I. Suppose that p =

∑n
i=1 fipi and q =

∑n
i=1 gipi,

let h be a polynomial in K[x1, ..., xn]. Then

p+ q =
n∑

i=1

(fi + gi)pi

hp =
n∑

i=1

(hfi)pi

completes the proof. (COX; LITTLE; O’SHEA, 2007, p. 30).
Definition. An ideal I is finitely generated if and only if there is a generator of I

which is finite.
Definition. Let f, g be two polynomials of K[x1, ..., xn] and I an ideal of this same

ring. We say f and g are congruent module I if f − g ∈ I. We denote it as f ≡ g mod I.
Proposition. Let I be an ideal of K[x1, ..., xn]. The congruence modulo I is an

equivalence relation on K[x1, ..., xn].
Proof.

• Reflexive: f − f = 0 ∈ I for every f ∈ K[x1, ..., xn], by the definition of ideal.

• Transivity: Considering f ≡ g ≡ h mod I. Since I is closed under addition, we
have f − h = f − g + g − h ∈ I, therefore f ≡ h mod I.

• Symmetry: Suppose that f ≡ g mod I. Then f − g ∈ I, implying g − f =

(−1)(f − g) ∈ I. Therefore g ≡ f mod I.

Definition. The quotient of K[x1, ..., xn] modulo I, written as K[x1, ..., xn]/I, is the
set of equivalence classes:

K[x1, ..., xn]/I = {[f]|f ∈ K[x1, ..., xn]}.

This quotient is a ring (COX; LITTLE; O’SHEA, 2007, Proposition 5,p.241).

14

2.3 FINITE FIELDS AND EXTENSIONS

A finite field is a field with a finite number of elements. Generally denoted as Fn with
n being the order, that is, the number of elements in the field. We will be considering
only prime finite fields, so in this case n will always be a prime number.

Let’s consider any field F, we say K is a field extension of F if K ⊇ F. K is by definition
an F-vector space with scalar multiplication inherited by the field multiplication, the
dimension of this vector space is called the degree of the extension. Supposing n is the
degree of K, then we can build an isomorphism:

ϕ : K→ Fn

It is easy to see that if F has size p then the size of K is pn. The smallest element c in F
such that c ∗ 1 = 0 is known as characteristic of F and, for a prime field the characteristic
is a prime number q. This means that the field Fq is contained in F, so F is an extension
of Fq. Thus, the number of elements in every finite field is a prime power.

A polynomial p(x) ∈ F[x] is irreducible if it cannot be factored into the product of two
nonconstant polynomials. The quotient ring F/⟨p(x)⟩ will be an extension field K of F of
degree n, in fact all extension fields will have this form. Since p(x) = xn + an−1x

n−1 +

...+ a1x+ a0 = 0 ∈ K, we can rewrite elements of this field as polynomials in terms of x
having degree at most n− 1 because xn = −an−1x

n−1 − ...− a1x− a0 then the following
isomorphism is valid:

ϕ : a0 + a1x
1 + · · ·+ an−1x

n−1 ∈ K 7−→ (a0, a1, . . . , an−1) ∈ Fn

2.4 FROBENIUS POWERS

Following the same definitions as the last section, let’s recall that every finite group
with g elements satisfies xg = d with d being the identity element. We know that F is a
field then all nonzero elements have a multiplicative inverse, thus F∗ is a multiplicative
group and the identity element is 1. For all k ∈ F∗, we can conclude that kqn = k and
kqn−1 = 1 with q being the characteristic of F knowing that qn is the number of elements
in F.

Definition 2.3.1. The Frobenius Transformation is known as the function F →
F defined by k 7→ kq. This function is an Fq-linear transformation, this means that
(ak + z)q = akq + zq for all a ∈ Fq and x, z ∈ F.

Since that Frobenius Transformation X 7→ Xq for X ∈ K is a F-linear transformation,
all polynomials that can be written as below are too.

F(X) =
n−1∑
i=0

aiX
qi (2.1)

15

In fact, this mean that the composition ϕ ◦ F ◦ ϕ−1 : Fn → Fn is F-linear as well. So
we have n degree 1 homogeneous polynomials. Let a = b0 + b1x + ... + bn−1x

n−1 ∈ K if
we raise it to the power qi, we get aq

i
= b0 + b1x

qi + ... + bn−1(x
n−1)q

i , then if we put
everything in matrices we have, for all i from 0 to n− 1:

∆ =

x(0) x(1) · · · x(n−2) x(n−1)

(x(0))q
1

(x(1))q
1 · · · (x(n−2))q

1
(x(n−1))q

1

(x(0))q
2

(x(1))q
2 · · · (x(n−2))q

2
(x(n−1))q

2

...
...

...
(x(0))q

n−1
(x(1))q

n−1 · · · (x(n−2))q
n−1

(x(n−1))q
n−1

a

aq

aq
2

...
aq

n−1

= ∆

b0

b1

b2
...

bn−1

Recalling that ϕ(a) = (b0, ..., bn−1)

T then α = ∆ · ϕ(a). Since ∆ is invertible (LIDL;
NIEDERREITER, 1997), we can do ϕ(a) = ∆−1α. Calling M a matrix representation of
a linear transformation F then F ◦ ϕ(a) = M · ∆−1 · α, this mean that we can rewrite
ϕ(a)−1 ◦F ◦ϕ(a) as a dot product of (x0, x1, ..., xn−1)T and M ·∆−1 ·α. This dot product
can be rewritten as the same equation (2.1).

16

3 GROEBNER BASIS

To better understand the attacks on multivariate cryptography, first it is essential to
know what a Groebner basis is. It is a finite generating set of an ideal that gives us
information about it with some operations. The most important information that we can
get from a Groebner basis is a set of solutions to the polynomial equations formed by an
ideal, this information is pretty much how we break multivariate schemes, depending on
the scheme design. In this chapter we prove the existence, show the usefulness and go
through an algorithm to compute the basis for polynomial rings over a field.

3.1 DEFINITIONS

Let’s define R as a multivariate polynomial ring F[x1, ..., xn] where F is a field. A
monomial is any xa, with a ∈ Nn, that can be rewritten as xa1

1 · xa2
2 · · · x

an−1

n−1 · xan
n and

a1, ..., an ∈ N. Calling M the set of all monomials in R then we can also write any
polynomial in R as:

p =
∑
xa∈M

bax
a

Note that each polynomial written in this form is unique and almost all ba in F are zeros.
To compute the Groebner basis it is necessary to define the order of monomials, a

monomial ordering is any relation < onM that satisfies these three conditions:

• < is a well-order, this means that every non-empty subset ofM has a least element
in this ordering.

• Multiplication respects the ordering, if xa, xb, xc ∈ M then xa < xb =⇒ xa · xc <

xb · xc

• Any two distinct elements ofM are comparable, this means that < is a total order
relation.

The Groebner basis depends on the ordering chosen, as does the complexity of the
algorithm used to compute it. In this work, we will be using only two orderings, which
we will now define.

Definition: Given a ∈ Nn, we define |a| =
∑n

i=1 ai.

• Lexicographic order(lex): a <lex b if and only if the leftmost entry that is not zero
of b− a is positive. This is the alphabetical order, just like the dictionary.

17

• Graded reverse lexicographic order(grevlex): a <grevlex b if and only if |a| < |b| or
|a| = |b| and a <rlex b. This order is useful because it bounds the total degree when
running the division algorithm.

The ordering is necessary to know how to determine the remainder in the polynomial
division algorithm. This algorithm is as simple as the euclidean division algorithm, actu-
ally it is a generalization of it. The following definitions complete the basics to understand
the algorithm, let p =

∑
xa∈M bax

a be a nonzero polynomial in R:

• The exponent of p is exp(p) = max<(a : ba ̸= 0). We fix exp(0) = −∞.

• The support of p is supp(p) = {xa : ba ̸= 0}, that is the variables with a coefficient
different from 0.

• The degree of p is deg(p) =
∑n

i=1 bi where (b1, ..., bn) = exp(p).

• The leading monomial of p is LM(p) = xexp(f).

• The leading coefficient of p is LC(p) = ba with a = exp(p).

• The leading term of p is LT (p) = LC(p)LM(p).

Example: A polynomial with 3 variables and F = R, < being the lex order. Let’s
call p the polynomial:

p = 3 · x2
1x

3
2 + 6 · x1x

2
3 + x2x

4
3

supp(p) = {x2
1x

3
2, x1x

2
3, x2x

4
3} LM(p) = x2

1x
3
2 exp(p) = (2, 3, 0)

LC(p) = 3 LT (p) = 3 · x2
1x

3
2

3.1.1 Euclidean division for multivariate polynomials

Let’s describe a division algorithm for multivariate polynomials over a field.
Theorem 3.1. Let P = (p1, ..., pm) be an ordered m−tuple of nonzero polynomials

in R, and for each i let ai = exp(pi). Then, for every p ∈ R, there exist polynomials
q1, ..., qm, r ∈ R such that

p = q1p1 + ...+ qmpm + r

where

qi ∈
⊕

a∈Ωi−ai

Fxa with Ωi = (ai + Nn) \
i−1⋃
j=1

(aj + Nn)

r ∈
⊕
a∈Ω

Fxa with Ω = Nn \
m⋃
i=1

(ai + Nn)

In addition, exp(p) ≥ (exp(qipi), exp(h)).

18

Proof. Supposing p has a term that is divisible by some LM(pi), let’s take the greatest
of all these terms. With cxaLT (pi), c ̸= 0 ∈ F and a ∈ N, assuming that i is the smallest
index satisfying these conditions, then a + ai ∈ Ωi and a ∈ Ωi − ai. If we apply the
same to p′ = p− cxapi, we will get a polynomial whose leading monomial precedes and is
smaller than cxaLT (pi) and since this term is a maximum, then a term c′xa′LT (p′i) from
p′ is strictly smaller than cxaLT (pi).

Since we fixed a well order, this process will reach to a 0 polynomial and will stop. In
the end we will group all terms to obtain (q1, ..., qm) and r = p− q1p1 − ...− qmpm. This
also proves that we have an algorithm for the division and the algorithm finishes with the
correct answer.

Algorithm 1: Euclidean division for polynomials
Data: p ∈ R, (p1, ..., pm) ∈ (R \ {0})m

Result: (q1, ..., qm) ∈ Rm and r ∈ R
1: q1 ← 0, ..., qm ← 0

2: r ← 0

3: f ← p

4: while f ̸= 0 do
5: i← 1

6: divided← false
7: while i ≤ m and divided = false do
8: if LT (pi) divides LT (f) then
9: qi ← qi + LT (f)/LT (pi)

10: f ← f − (LT (f)/LT (pi))pi

11: divided← true
12: else
13: i← i+ 1

14: if divided = false then
15: r ← r + LT (f)

16: f ← f − LT (f)

The result of this algorithm depends on the order of p, this means that the monomial
order can produce different results. In conclusion the division algorithm does not tell us
that a polynomial lies in the ideal generated by the divisors, the Groebner basis have the
set of divisors that can tell us this.

3.2 THEORY

In this section we go through the theory behind the Groebner basis and prove its
existence. To prove it, we use Dickson’s Lemma.

19

3.2.1 Dickson’s Lemma

A monomial ideal is an ideal of R that is generated by monomials. In other words
I is a monomial ideal if there is A ⊆ M such that I = ⟨A⟩. By convention, the ideal
generated by the empty set is R, therefore is a monomial ideal.

With this definition in mind, now we describe an important property of monomial
ideals, which is the base of the proof of Dickson’s lemma.

Proposition 3.2.0. Let I be a monomial ideal of R. Then a polynomial p lies in I

if and only if supp(p) ⊆ I.
Proof. In fact the monomials of a monomial ideal are theR-multiples of its generators.

In general this does not work for any ideal, just monomial ideals. For example there can
be p ∈ I with terms outside I, that F = R, n = 2 and I = ⟨x1 + x2⟩, then x1 + x2 ∈ I

but x1 /∈ I. This is important because it implies that a monomial ideal is characterized
by the monomials in it.

Our last definition for the lemma is a partial order≺ over Nn as A ≺ B ⇐⇒ ∀i : ai ≤ bi

where A = (a1, ..., an) and B = (b1, ..., bn) ∈ Nn. This definition is consistent with the
division definition we made before, so A ≺ B implies that xA divides xB.

Proposition 3.2.1. Given a subset M ≠ ∅ of Nn there exists A ∈ M such that
A ≺ B for all B ∈M.

Proof. Any nonempty subsetM⊂ Nn that satisfiesM+ Nn =M is determined by
its ≺-minimal elements:

M =
⋃

A≺−min

(A+ Nn)

Lemma 3.2.2. Combinatorial Dickson’s lemma. Let M be a nonempty subset
of Nn thenM has a finite number of ≺-minimal elements.

Proof. This is a proof by induction on n. For n = 1, the result follows the Well-
ordering Principle, now let’s assume that the result is still true for n−1, we need to show
that it holds for n. Let A = (a1, ..., an) ∈ M be a ≺-minimal element of M. Then any
other ≺-minimal element must lie in:

M\ (A+ Nn) =
n⋃

i=1

Ai
a

Ai
a =

ai⋃
a=0

{(c1, . . . , cn) ∈M : ci = a}

Now let’s get another ≺-minimal element B = (b1, ..., bn) ∈ M, let i be such bi < ai

then B is a ≺-minimal element of Ai
bi
. Let πi be the projection from Nn onto Nn−1 that

drops the entry with index i, we need to prove that πi(B) is a ≺-minimal element of
πi(Ai

bi
).

If there is a C = (c1, ..., cn) ∈ Ai
bi
, with πi(C) ≺ πi(B) but πi(C) ̸= πi(B), given

ci < bi, we conclude that C ≺ B but C ̸= B and this is a contradiction because B is

20

a ≺-minimal element of Ai
bi
. By the induction hypothesis, there is a finite number of

≺-minimal elements of Ai
bi

for each i, therefore there is a finite number of ≺-minimal
elements ofM. This concludes the proof.

Lemma 3.2.3. Dickson’s lemma. Let I be a monomial ideal, I = ⟨A⟩ withA ⊆M,
then there is a finite subset B ⊆ A such that I = ⟨B⟩.

Proof. Let’s assume A ̸= ∅ otherwise it would be trivial. Let M = exp{A ∈ Nn :

xA ∈ A} ̸= ∅. By lemma 3.2.2, M has a finite number of ≺-minimal elements, let’s call
them m1, ...,mk. We want to prove that I = ⟨B⟩ where B = {xm1 , ..., xmk} ⊆ A. By the
proposition 3.2.0 we’ve shown that p lies in I if and only if supp(p) ⊆ I, every xA ∈ A lie
in ⟨B⟩. Since A ∈ M then mi ≺ A for some i and xmi divides xA, in conclusion xA ∈ B
finishing the proof.

3.2.2 Hilbert’s Basis Theorem

This theorem is a classical result in commutative algebra, it states that all ideals of
R are finitely generated. We will state the theorem and prove it using Dickson’s Lemma,
which is a particular case of Hilbert’s basis theorem.

Theorem 3.2. Let I be an ideal of R, then I is finitely generated.
Proof. For the case where I = {0} it is trivial. So, first let’s assume I ̸= {0},

defining LM(I) as the set of all leading monomials of the polynomials that are in I,
then ⟨LM(I)⟩ is a monomial ideal. By Dickson’s lemma, there exists g1, ..., gm ∈ I that
⟨LM(I)⟩ = ⟨LM(g1), ..., LM(gm)⟩. If we claim I = ⟨g1, ..., gm⟩ the theorem would be
proved.

We know that I ⊇ ⟨g1, . . . , gm⟩. Let p ∈ I and let’s apply the division algorithm to
divide p by (g1, ..., gm), obtaining b1, ..., bm, r ∈ R such that:

p = b1g1 + ...+ bmgm + r

r = p− b1g1 − ...− bmgm ∈ I

If r ̸= 0 then LM(r) ∈ ⟨LM(g1), ..., LM(gm)⟩ and LM(r) will be divisible by some
LM(gi), this is contradictory to Theorem 3.1, concluding that r = 0. Consequently:

p = b1g1 + ...+ bmgm + 0 ∈ ⟨g1, ..., gm⟩

finishing the proof.

3.2.3 Existence of Groebner basis

In this subsection we will go through the existence and some properties of the Groebner
basis, some types of Groebner basis are unique and we will describe them as well. Firstly
we need some definitions and propositions.

21

Definition. G = {g1, ..., gk} is a Groebner basis of an ideal I of R if

⟨LM(g1), ..., LM(gk)⟩ = ⟨LM(I)⟩

where LM(I) is a set containing all leading monomials of the polynomials in I. Now we
can say that these bases generate the ideal I.

Proposition 3.3. Consider I a nonzero ideal of R, then I has a Groebner basis and
this basis generates I.

Proof. Let’s look at the proof of Hilbert’s Basis theorem, ⟨LM(I)⟩ is finitely generated
by some LM(gi), and gi ∈ I, therefore the Groebner basis exists. If we use the division
algorithm this condition implies that I = ⟨g1, ..., gk⟩, thus the Groebner basis generates
I.

Proposition 3.4. Let {g1, ..., gk} ⊂ I, where I of R. Then G is a Groebner basis if
and only if for all p ∈ I, the reminder of the division of p by (g1, ..., gk) is zero.

Proof. Let’s prove first =⇒ . Assume p = g + r where p ∈ I, g ∈ I r ̸= 0 ∈
I and no monomial r is divisible by any LM(gi). Since r = f − g ∈ I, LM(r) ∈
⟨LM(I)⟩ = ⟨LM(g1, ..., LM(gk)⟩ therefore LM(r) is divisible by some of LM(gi) giving
a contradiction. Since the division algorithm has this same form, the remainder of the
division of p by (g1, ..., gm) is 0.

Now we need to prove ⇐=. Let p ∈ I, now apply the division algorithm, dividing p

by G. Let’s assume that the reminder is zero, then q1, ..., qk ∈ R satisfy the solution of
the algorithm. This implies that exp(p) = max{exp(q1p1), ..., exp(qkpk)} and LM(p) =

LM(qi)LM(pi) for some i, so LM(p) ∈ ⟨LM(g1), ..., LM(gk)⟩. This concludes the proof.
Corollary 3.5. No matter how they are computed, the remainders of the division

algorithm with Groebner bases as divisors are unique.
Proof. Assume that G is a Groebner basis and let p ∈ R. Let’s suppose that r, r′ ∈ R

are the remainders of the division of p by G, then p = g + r, p = g′ + r′ where g, g′ ∈ I

and no monomial of the remainders is divisible by any element of LM(G).
This implies that (r − r′) + (g′ − g) = 0 and r − r′ satisfies the same property. We

know that 0 and g − g′ are in I the previous proposition implies r − r′ = 0 thus r = r′,
finishing the proof.

This corollary implies that the remainder of every polynomial is well-defined modulo
I, so the quotient ring R/I is unique. Even though this is unique, the Groebner basis
itself is not, for example, if G is a Groebner basis of an ideal I, it is clear that G∪ {p} is
a Groebner basis of I for all p ∈ I.

Given an ideal I ofR and G the Groebner basis of this ideal, we say that G is a minimal
Groebner basis if every g ∈ G is monic and for all k ∈ G,LM(k) /∈ ⟨LM(G− {k})⟩. Let
G = {g1, ..., gl} be a minimal Groebner basis of I, and ai = exp(gi) for any i. {a1, ..., al}
is the set of ≺-minimal elements of exp(I). Actually any two minimal Groebner basis
have the same cardinality. Even though the exponents are unique, the basis itself is not.

22

Given an ideal I ofR and G a Groebner basis of I, we say that G is a reduced Groebner
basis if every g ∈ G is monic and for all k ∈ G, no monomial of k lies in ⟨LM(G− {k})⟩

Proposition 3.6. Assume I ̸= 0 is a polynomial ideal, then I has a reduced Groebner
basis that is unique.

Proof. Let G = {g1, ..., gk} be a minimal Groebner basis of I, ai = exp(gi) for each i.
We can assume that a1 ≺ ... ≺ ar. Now let’s replace each gi by its remainder when it is
divided by (g1, ..., gi−1) then, by induction, gi ∈ xai +

⊕
a∈Nn\exp(I);a≺ai

Fxa. This new G is
a reduced Groebner basis. Suppose that {p1, ..., pk} is another reduced Groebner basis of
I, then for all i we have pi−gi ∈ I ∩

(⊕
a∈Nn\exp(I) Fxa

)
= {0}, therefore pi = gi, showing

both the uniqueness and the existence. Algorithm 2 shows how this computation can be
done efficiently.

3.3 APPLICATIONS

The Groebner basis have plenty of applications on computational algebra and algebraic
geometry. We will discuss two applications one of which will be the base of most attacks
to multivariate cryptosystems.

3.3.1 Ideal Equality Problem

This problem is to check if two polynomial ideals I and H of R are equal. One simple
way to solve this is to compute the Groebner basis for each ideal and see if each polynomial
of each basis lies in the other ideal.

Algorithm 2: Reduced Groebner Basis
Require: A as a Groebner basis of ⟨A⟩
Ensure: A as a reduced Groebner basis
1: F ← A, f ← p
2: for g ∈ F do
3: g′ ← remainder on division of g by A
4: A← A \ {g}
5: A← A ∪ {g′}

3.3.2 Solving Systems of Polynomial Equations

This is the most important problem (for cryptography) that we can solve with Gro-
ebner basis. There may be some cases where the polynomial equations do not have a
solution or have many. Just as a naming convention, overdetermined polynomial systems
have no solution, undetermined polynomial systems have infinite solutions, those that
have the same number of variables and equations have a finite number of solutions.

23

When we have a linear system Ax = b, to solve it we need to apply rules that do
not change the solution and change the system to an easier to solve. This means that
the solutions are the same for both bases of the vector space spanned by the expressions,
so changing the basis to a more structured one will help us find a solution. However, in
polynomial equations the vector space spanned by the polynomials is not the only thing
to consider, the ideal will take care of this part. So we are building a correspondence of
Gaussian elimination to Groebner basis algorithms and structured bases will be the basis
itself. In other words, the solutions to (p1 = 0, ..., pn = 0) are the same to (f1 = 0, ..., fk =

0) when ⟨p1, ..., pn⟩ = ⟨f1, ..., fk⟩, so it is sufficient to compute the solutions using any
basis of ⟨p1, ..., pn⟩.

A polynomial system (p1 = 0, ..., pn = 0) is zero-dimensional if it has a finite number
of solutions. Computing solutions of a zero-dimensional system that is also a reduced
Groebner basis is efficient, and this is because the Groebner basis has a triangular form.
Therefore, we can compute the reduced Groebner basis first and then solve the system
generated by the basis polynomials.

Proposition 3.7. Let G = {g1, ..., gk} be the reduced lex Groebner basis of ⟨G⟩. If
the system (g1 = 0, ..., gk = 0) is zero-dimensional, then the following algorithm computes
all solutions of it.

Algorithm 3: Solutions of polynomial system given by (g1 = 0, . . . , gk = 0)

Require: G = {g1, . . . , gk} a reduced Groebner basis of ⟨G⟩
Ensure: S1, the set that describes the solutions to the polynomial system of G = 0

1: Let g be the only polynomial in G ∩ F[xn]

2: Sn ← {a ∈ F : g(a) = 0}
3: for j ← n− 1, n− 2, . . . , 1 do
4: for (aj+1, . . . , an) ∈ Sj+1 do
5: p← gcd({h(xj, aj+1, . . . , an) : h ∈ (G ∩Rj−1) \ Rj})
6: Sj ← Sj ∪ {(a, aj+1, . . . , an) : p(a) = 0}

Note that if 1 ∈ G then it is a trivial case and the solution is ∅.

3.4 BUCHBERGER’S ALGORITHM

In this last section we will describe an algorithm to produce Groebner basis. If we
consider the proposition 3.4, G will be a Groebner basis of I if the remainder when dividing
every polynomial in I by G is zero. I can have an infinite number of polynomials, so this
can be impossible to compute if we run a naive algorithm.

Proposition 3.8. For all i from 2 to k and for each ≺-minimal element γ of

B =

[
i−1⋃
j=1

(aj − ai + Nn)

]⋂
Nn

24

Let G = {g1, ..., gk} ⊂ R be such that the remainder of the division of xγgi by G is
zero. Then G is a Groebner basis of I = ⟨g1, ..., gk⟩.

Proof. Assume that there is a nonzero polynomial p ∈ I with a nonzero remainder
when divided by G. This polynomial can be written as a linear combination of polynomials
of the form xbgi because it is in I. We know that the quotient and the remainder are a
linear combination of the dividend, so there must exist xbgi with a nonzero remainder.

Let’s remember that aj = deg(gj) for each j. If b ∈ ∆i − ai, then the decomposition
xbgi = 0g1 + ... + xbgi + ... + 0gk + 0 satisfies the condition of this theorem and it would
be the output of the division algorithm, hence the polynomial would have no remainder.
Since this is absurd, it follows that b ∈ B. From proposition 3.2.1, there is a ≺-minimal
element γ ∈ B such that γ ≺ b, so we can write

xγgi =
k∑

i=1

qigi

where qi is the quotient, implying that γ + ai = exp(xγgi) = max{exp(qj) + aj} =⇒
exp(qj) + aj ≤ γ + ai when j ≥ i. Then, exp(qj) + aj ∈ (ai +Nn) and this contradicts the
main theorem of the division algorithm.

xbgi has a nonzero remainder and we know that:

xbgi =
k∑

j=1

xb−γqjgj

there must exist i1 ∈ {1, ..., k} such that xb−γqi1gi1 has a nonzero remainder, in the
expansion of xb−γqi1 there is a monomial xb1 with b1 ≤ b − γ + exp(qi1) such that xb1gi1

has nonzero remainder. It follows that, whenever i1 ≥ i, the following is a strict inequality:

b1 + ai1 < b− γ + exp(pi1) + ai1 ≤ b+ ai

If we keep iterating like this, we obtain a sequence (bj, aj) ∈ Nn × {1, ..., k} with
bj+1 + aj+1 ≺ bj + aij as a strict inequality if ij ≤ ij+1. Since ij ∈ {1, ..., k}, there is a
constant subsequence of {ij}, and we can assume that this subsequence is the sequence
itself. The a’s will cancel out in the inequality, hence bj+1 < bj for all j ∈ N and this
concludes the proof because this is absurd, since < is a well order (defined in 3.1). This
result is important because it tells us that we can always find the Groebner basis with a
finite number of polynomials.

A ≺-minimal element of B is a ≺-minimal element of the set {aji : j = 1, ..., i − 1}
where aji = aj − ai, we have:

xaij =
lcm(xai , xaj)

xai
=

xaj

gcd(xai , xaj)

Given two polynomials p, g ∈ R, the S-polynomial of p and g is:

S(p, g) =
xγ

LT (p)
· p− xγ

LT (g)
· g

25

where γ = max{exp(p), exp(g)}, such that xγ = lcm(LM(p), LM(g)).
In the first step of computing the remainder of xajigi, the polynomials S(gi, gj) appears,

therefore it is sufficient for their remainders to be zero in order to obtain a Groebner basis.
Since these S-polynomials are inside I, this is a necessary condition.

Proposition 3.9. G is a Groebner basis of I if and only if for each 1 ≤ i, j ≤ k, the
remainder on division of S(gi, gj) by G is zero.

This proposition defines an algorithm to test if a finite generating set is a Groebner
basis. We can use these criteria to produce basis from finite generating sets by using
algorithm 4. The algorithm begins with a finite basis for an ideal and then adds every
S-polynomial that did not go to zero on division by the basis. If the algorithm finishes
then all S-polynomials leaves zero remainders when divided by the basis, therefore this
proposition assures that the basis is a Groebner basis.

Algorithm 4: Buchberger’s algorithm
Require: P := (p1, . . . , pk) ∈ Rk

Ensure: A Groebner basis G for ⟨p1, . . . , pk⟩ with {p1, . . . , pk} ⊆ G
1: G← P
2: repeat
3: G← G′

4: for each pair l,m, l ̸= m ∈ G′ do
5: S ←remainder on division of S(l,m) by G′

6: if S ̸= 0 then
7: G← G ∪ {S}
8: until G = G′

Proposition 3.10. The Buchberger’s Algorithm finishes in a finite number of steps.
The proof to this proposition can be found at (COX; LITTLE; O’SHEA, 2007, p 91-92).

26

4 MULTIVARIATE PUBLIC KEY CRYPTOGRAPHY

In this chapter we describe some ideas behind Multivariate Public Key Encryption,
we define the general construction idea and give an example of an old construction that
is already obsolete.

4.1 CRYPTOGRAPHY

Before we go through the multivariate part, it is necessary to understand what type of
cryptography we will be doing. Multivariate schemes are good candidates to be quantum
resistant public key cryptography (PKC) algorithms.

4.1.1 Public Key Cryptography

This type of cryptography is defined by a one way trapdoor function γ, in other words
it is a few-to-one function that is easy to compute for whoever is sending the message
and hard to invert by only knowing the function. Another requirement is that whoever
is receiving the message will have a secret key that turns the problem of inverting the
function easy.

Figure 1 – Protocol that let A send messages securely to B

Suppose that we have three people, Ana, Bernardo and Carlos. Ana wants to send
a message m to Bernardo and to solve her problem she needs to evaluate the function
c = γ(m), then she can send c to Bernardo. Since we defined γ as a trapdoor, nobody
else should be able to read it. When Bernardo receives c he can use his secret key to read
m.

In the cryptographic terminology, m is called the plaintext, c is the ciphertext, the
secret that Bernardo needs to decrypt the message is called the Secret Key and the
function γ is the Public Key. Also, when we evaluate the function γ with any plaintext
we call it encryption and when we invert the function we call decryption.

Example. Let’s define the famous RSA as an example. The public key is a modulus
that is the product of two prime numbers p and q, and an exponent e. Note that only
the modulus is public, the primes p and q are not. The private key is d = e−1 mod ϕ(n).

27

The γ function will be the modular exponentiation me = c mod n and its inverse is the
function cd = m mod n.

Note that any entity without d cannot obtain, by any means, the message m, unless
the factorization of n is discovered. Factoring a number is a hard problem, thus γ is
a trapdoor function based on the problem of factoring numbers, if we choose a small
modulus it will be easy to factor, so we must choose one that is huge, usually 2048 bits
long. To better understand how and why RSA really works, please refer to (COUTINHO;
APLICADA, 2005).

4.1.2 Post-Quantum Cryptography

Big companies and governments are investing a lot on researching quantum computers,
and some researchers estimate that in a couple of decades we can build good quantum
computers. Those computers could break most public key cryptography we use today.
Peter Shor developed an algorithm (SHOR, 1999) capable of finding a cycle in a group
in polynomial time, this means that most PKC like RSA, Diffie-Hellman, Elliptic Curve
Cryptography and other systems that use a trapdoor function based in factoring or dis-
crete log are in danger.

Currently, RSA and ECC are widely used in communication, according to Google
(GOOGLE, 2022) 98% of the websites browsed in Chrome are using HTTPS. The TLS
protocol, which HTTPS and most encrypted transport protocols are based, uses PKC for
the key exchange at the beginning of connection.

Since most of those schemes are in danger, it is needed to develop new schemes to
guarantee privacy. NIST proposed a 3 round standardization with a group of researchers,
but currently there are no multivariate encryption algorithms being considered. Most
encryption schemes considered are based on lattices and Goppa codes.

4.2 MULTIVARIATE PUBLIC KEY CRYPTOSYSTEMS

This work is focused on encryption schemes, but this section will describe the general
construction of any cryptosystem based on the problem of solving polynomial equations
over a finite field.

In Chapter 2 we defined F as a finite field with q (prime) elements and K is the
extension field of F of degree n. R≤d is the set of polynomials in F[x1, ..., xn] of degree
at most d, if we fix d = 2 then all polynomials will be quadratic. F : Fn → Fm is called
a regular function if it is given by m multivariate polynomials (all functions Fn → Fm

are regular once we impose xq = x) . Let’s now define the main problem on which will be
based our trapdoor function.

The MQ Problem. Let p1, ..., pn ∈ R be quadratic multivariate polynomials chosen
uniformly at random. Find (a1, ..., an) ∈ Fn that is a root for all pi from 1 to n. There

28

may be no (a1, ..., an) values that satisfy this condition.
To know if a system of multivariate polynomial equations has a solution is NP-Hard

even for quadratic polynomials over F2 (GAREY; JOHNSON, 1990). Since we still don’t
have any quantum algorithm to break these systems in polynomial time, and we do not
expect NP to be P, we can use this problem to build a trapdoor function. However, there
are many NP-Hard problems that, in particular cases, can be solved in polynomial time,
for example the SAT problem (we know a polynomial time algorithm to solve 2-SAT),
but this is not the case for the MQ Problem.

For the multivariate cryptosystems the trapdoor will be a regular function P : Fn →
Fm. Given F : Fn → Fm defined by n quadratic polynomials chosen randomly and given
c in the range of F , it is difficult to find a ∈ Fn such that F (a) = c. To find a we need
to solve the system p1(x) = c1, ..., pn(x) = cn where pi are the polynomials defining F .
Maybe this looks the same problem as the above, but the difference is that we turn the
quadratic polynomials to qi(x) = pi(x)− ci therefore qi is not uniformly random, and the
problem is not the same as the MQ. Even though they are not the same, we will make an
assumption that the problem is as hard as the MQ problem and will use it to build our
trapdoor function with an easy way to invert for those who know the secret key.

In the next subsections, we describe procedures to generate regular functions that are
easy to invert with the secret key. There is no guarantee that these functions are easy to
invert with only the secret, most procedures to generate trapdoors made until today are
either invertible or the functions are not generated randomly.

In general constructions we will not be restricted to quadratic polynomials, in fact we
will be showing a general construction that maps Fn → Fm with m ≥ n and not only this,
the degree of polynomials will be ≥ 2.

4.2.1 Construction

Given a regular function F : Fn → Fm and two linear transformations S : Fm → Fm

and T : Fn → Fn, we define the bipolar construction as P : Fn → Fm = T ◦ F ◦ S. Note
that P is a regular function as well.

Let’s assume F has the property that any equation F (x1, ..., xn) = (c1, ..., cn) where
(c1, ..., cn) ∈ F (Fn) can be solved easily. F cannot be our public key because anyone could
solve it, so we need to create two linear transformations T, S to hide the structure of F .
The main idea is that the function S mixes the variables and T will mix the equations,
Figure 2 illustrates this.

Since P−1 = S−1 ◦ F−1 ◦ T−1, someone can easily invert P (x1, ..., xn) = (c1, ..., cn)

knowing S, F, T . This means that we need to consider them as the secret information and
P is the public information. If someone knows only P then it is like a map factorization,
this problem is hard in general and is close related to the Jacobian conjecture (OLIVEIRA,
2018).

29

Figure 2 – Construction of multivariate trapdoor illustrated

If we choose F as a linear function, then P will be linear as well, this will make the
trapdoor to be easily invertible with Gaussian elimination without having knowledge of
S, F or T . Considering F to be linear would kill our trapdoor, so nobody would choose
it, therefore that is not the only thing we need to think when building a trapdoor.

There are many ideas concerning how a secure F should be built, but many of them
have a high computational power requirement. Another common problem is the public key
size. An encryption scheme needs to be safe and efficient for any system, embedded or not.
A common way to build F ’s is the lifting idea, which consists of using the correspondence
of polynomials to build a trapdoor with P = (P1, ..., Pn) and Pi = Ti ◦Drp(F) ◦ S where
F is a homogeneous polynomial in the polynomial ring of an extension field of F and
Drp(F) = ϕ ◦ F ◦ ϕ−1(x). Let’s recall that ϕ is the same map presented in section 2.4.

4.3 HIDDEN FIELD EQUATIONS

As an example of multivariate encryption scheme we will describe and analyze the
security of the Hidden Field Equations (HFE) cryptosystem. This scheme was proposed
by Patarin (PATARIN, 1996).

Definition. The weight of a polynomial is the number of non-zero coefficients of it.
For example the weight of x2 + y is 2.

Given a weight two low degree polynomial F(X) and a fixed bound B, in other words:

F(X) =
∑

qi+qj≤B

aijX
qi+qj

Depending on B, this function can be inverted easily. Let’s choose S and T as two
secret linear transformations Fn → Fn and build the trapdoor function by computing the
composition P = T ◦ F ◦ S. This is the trapdoor of the HFE cryptosystem.

30

Encryption and Decryption. To make it simpler, the public key will be a set of
multivariate polynomials p1, ..., pn over Fq, the message m will be a vector (x1, ..., xn)

in Fn
q and thus the ciphertext will be the evaluation of each polynomial on m, c =

(p1(x1, ..., xn), p2(x1, ..., xn), ..., pn(x1, ..., xn)) ∈ Fn
q .

The decryption is simple since we know S,F and T (those are the private key). Just
apply the trapdoor to the ciphertext and the result will be the message.

Security of HFE. We can write the polynomial F as:

F(X) =
(
Xq0 Xq1 · · · Xqn−1

)

∗ · · · ∗ 0 · · · 0
...

...

∗ · · · ∗

0 · · · · · · · · ·
...
0 · · · · · · · · · · · · 0

Xq0

Xq1

...
Xqn−1

If we pay attention this looks the representation of a quadratic form for multiple
variables but with Xqi . The top left matrix that is ⌊logq B⌋ × ⌊logq B⌋ will be nonzero
(represented by asterisks). The rank of this matrix will be as low as ⌊logq B⌋, since B is
a small number by construction, then the rank will be small too.

Proposition 4.3.1. (KIPNIS; SHAMIR, 1999) We can model a matrix Pi of
dimensions n × n in F that represents the ith quadratic polynomial of the trapdoor
function. In other words each pi(x) = xTPix, then there are λ1, ..., λn such that the
matrix

∑n
i=1 λiPi has rank ⌊logq B⌋.

This problem is called the MinRank problem and we will be discussing it in the next
chapter. There are several algorithms, that include computing the Groebner basis, which
can solve this problem. Since our rank is low it is an easy problem by computational
means. In general this is a very hard problem, but in our case we know that there is a
solution with small rank.

The main implication of this security analysis is that the trapdoor functions from HFE
will never be considered a regular random function, which implies the attack to always
work. Therefore, this scheme is not viable for a small B. There are several other schemes
that are based on this one and that try not to be vulnerable to the MinRank attack by
changing the rank or the design, so it will not rely on a low rank for the decryption, one
such example is the ZHFE (PORRAS; BAENA; DING, 2014).

31

5 ATTACKS ON MPKC

In this chapter we go through some known attacks on MPKC, we will describe better
how the attack on HFE works and in the end we will show results of a simple implemen-
tation of the attack proposed by Yasuhiko Ikematsu and Shuhei Nakamura to break a
scheme proposed by Jiahui Chen. From now on we will be using the simpler notation of
multiple polynomials rather than the notation with one polynomial on the extension field
of Fq. Those are the most common attacks on multivariate schemes:

• Rank attacks: a set of attacks which explore in particular the rank of the system
of polynomial equations.

• Direct attack: this is simply be able to find pt in P (pt) = ct where P is the public
key and ct is the ciphertext.

• Algebraic attacks: any attack that changes the original polynomial system to an
easier to solve.

5.1 RANK ATTACKS

5.1.1 The MinRank problem

This is a fundamental problem in Linear Algebra of finding a low-rank linear combi-
nation of matrices. The formal definition of this problem is as follows. Let M1, ...,Mm be
matrices in Mk×k(Fq). The MinRank problem MR(m, k, n, r,Fq;M1, ...,Mm) asks us to
find a = (a1, ..., am) ∈ Fm

q such that:

rank

(
m∑
i=1

aiMi

)
≤ r

As stated in (BUSS; FRANDSEN; SHALLIT, 1999, p. 582-586) this problem is NP-
Complete. A good property of this problem is that it can be modeled as a multivariate
quadratic system, here we will describe how to do it but Shamir and Kipnis (KIPNIS;
SHAMIR, 1999) goes way deeper on this modeling since they first proposed it.

Let’s call H the linear combination
∑m

i=1 aiMi. If a is the solution, then H will have
rank at most r and, by the rank-nullity theorem, the dimension of the kernel of H will be
at least n− r. This means that there are at least n− r linear independent vectors in the
kernel of H. Let’s fix those vectors as:

x(1) =
[
1 0 ... 0 x

(1)
1 ... x(1)

r

]T
...

32

x(n−r) =
[
0 0 ... 1 x

(n−r)
1 ... x(n−r)

r

]T
Now we have the following multivariate quadratic system:

(
m∑
i=1

aiMi

)
k×n

1 0 · · · 0

0 1 · · · 0
...

...
0 0 · · · 1

x
(1)
1 x

(2)
1 · · · x

(n−r)
1

...
...

x
(1)
r x

(2)
r · · · x

(n−r)
r

n×(n−r)

= 0k×(n−r)

consisting of k(n− r) equations and r(n− r)+m variables. This can be solved by finding
the Groebner basis, as we commented in 3.3.2.

5.1.2 Example

From Proposition 4.3.1, we know that HFE is vulnerable to this type of attack. Here
we describe an optimized algorithm that uses the solution of this problem to show the
plaintext given the public key and the ciphertext.

1. Let P = (p1(x1, ..., xn), ..., pn(x1, ..., xn)) be the public key and ct = (c1, ..., cn) be
the ciphertext, both are elements of Fq

2. Call E the set of all polynomials such that Ei = pi − ci.

3. Call I = ⟨E, xq
0 − x0, ..., x

q
n − xn⟩. Here we ensure that the zeros of I are in Fq and

not in an extension of Fq, as stated in 2.4 xq = x, this will decrease the running
time of the algorithm.

4. Run a reduced Groebner basis algorithm on I, obtaining G.

5. Run algorithm 3 on G, giving S.

6. One element of S will be the plaintext.

5.2 JIAHUI CHEN ET AL. CRYPTOSYSTEM

In this section it will be described a cryptosystem and an attack to it, as well as tests
with different parameters for the key generation.

33

5.2.1 Construction

Here we describe the construction of Chen et al. encryption (CHEN et al., 2020).
Starting from the general construction, we have F a finite field with q elements, C a
(n+1)×n random matrix with each element ci,j ∈ F and C ′ ∈ Fn×n an invertible matrix
where elements are c′i,j = 2(ci,j − ci+1,j). The trapdoor consists of two random linear
transformations S, T and a regular function F ′ = (f1, ..., fn+1). Each fi is a quadratic
polynomial on n variables:

f1 = (x1 − c1,1)
2 + ...+ (xn − c1,n)

2;

f2 = (x1 − c2,1)
2 + ...+ (xn − c2,n)

2;

...

fn+1 = (x1 − cn+1,1)
2 + ...+ (xn − cn+1,n)

2.

By the multivariate trapdoor function definition, F ′ must be easily invertible thus we
would like to solve these equations for an element y = (y1, ..., yn+1) ∈ Fn+1:

f1(x1, ..., xn) = y1;

f2(x2, ..., xn) = y2;
...

fn+1(x1, ..., xn) = yn+1.

(5.1)

If we take the differences we will have:

fi+1(x1, ..., xn)− fi(x1, ..., xn) = 2(ci,1− ci+1,1)x1+ ...+2(ci,1− ci+1,1)xn+
n∑

k=1

(c2i+1,k− c2i,k)

y2 − y1

...
yn+1 − yn

 = C ′

x1

...
xn+1

∑n
k=1(c

2
2,k − c21,k)
...∑n

k=1(c
2
n+1,k − c2n,k)

 .

Since we have a system of linear equations and C ′ is invertible, this system can be
solved easily. But F ′ is still not our central map, it is just a general idea of the encryption
scheme, so let’s define now the central map. Let a, s and m = n + 1− a + s be positive
integers. Let’s choose s quadratic polynomials uniformly at random (g1, ..., gs) ∈ F each
of them with n variables. Then our central map is F = (f1, ..., fn+1−a, g1, ..., gs), note that
this map is Fn → Fm.

With the central map defined, we can define the public key P = S ◦F ◦T . Our secret
key will be F ′ = (f1, ..., fn+1), S, T and the polynomials (g1, ..., gs). Note that we don’t
really need the random polynomials, but this will make the decryption easier.

34

Code 1 – Key generation implementation
import sys
q,n,a,s = (17 ,59 ,10 ,25)
m = n+1-a+s
FF = GF(q)
R = PolynomialRing(FF , ["x{}".format(i) for i in range(n)])
xs = R.gens()

def keygen ():
while True:

C = random_matrix(FF , n+1, n)
if matrix(FF , [2*C[i]-2*C[i+1] for i in range(n)]).is_invertible ():

break

FC = []
for i in range(n+1):

p = 0
for j in range(n):

p += (xs[j] - C[i][j])^2
FC.append(p)

while True:
S_lin = random_matrix(FF , n, n)
if S_lin.is_invertible ():

break
S_trans = (FF^n).random_element ()
S = (S_lin , S_trans)

while True:
T_lin = random_matrix(FF , m, m)
if T_lin.is_invertible ():

break
T_trans = (FF^m).random_element ()
T = (T_lin , T_trans)

G = []
for i in range(s):

G.append(R.random_element(degree=2, terms=Infinity))
F = FC[:n+1-a] + G

P = S[0]* vector(xs) + S[1]
v = []
for i in range(len(F)):

v.append(F[i](*P))
P = T[0]* vector(v) + T[1]

return (P, (C, G, S, T))

35

Key generation. Code 1. Now we go through the steps to generate a key pair for
the scheme.

1. Set the parameters q, n, a, s and create the algebraic structures, such as F.

2. Generate a random matrix C such that C ′ is invertible.

3. Compute two random linear transformations S, T , this can be done by choosing a
random matrix and checking if it is invertible.

4. Compute F ′ and let F ′
α be a list with the first n + 1 − a polynomials. Compute

G = (g1, ..., gs).

5. F = F ′ ∪G.

6. Compute P = S ◦ F ◦ T

7. Return P as the public key and C,G, S, T as the secret key.

Encryption. The encryption is simply P (x1, ..., xn) for a plaintext x1, ..., xn. Imagine
having a plaintext “Hello World”. Then we need to convert the string to a numeric
representation and convert again to a polynomial in Fn. Sometimes the message is too
big to do this, then we need to separate it into blocks.

Decryption. Code 2. To decrypt the ciphertext ct we do the following, this seems to
be really slow, the authors mentions that the time complexity of decryption is O(qan3)

and analyzing the algorithm below we can conclude something close to this.

1. Compute a vector cv = (
∑n

i=1 c
2
2,i − c21,i, ...,

∑n
i=1 c

2
n+1,i − c2n,i).

2. Compute aux = T−1 ∗ ct.

3. For each element k in Fa:

3.1 Let A to be the first n+ 1− a elements of aux and G = A+ k.

3.2 Compute a vector Gd = (G2 −G1, ..., Gm −Gm−1).

3.3 Compute d = C ′−1(Gd− cv)

3.4 Now we check if all polynomials from G evaluate to the right solution, if that
is true, the decryption is S−1d.

36

Code 2 – Decryption implementation
def decrypt(cipher , sk):

C, G, S, T = sk
C2I = matrix(FF , [2*C[i]-2*C[i+1] for i in range(n)]).inverse ()
cv = []
for i in range(n):

cc = 0
for j in range(n):

cc += C[i+1][j]^2 - C[i][j]^2
cv.append(cc)

cv = vector(cv)
g1 = T[0]. inverse ()*(cipher - T[1])
for g2 in FF^a:

g = vector(list(g1)[:n+1-a]+list(g2))
g_diff = vector ([g[i+1]-g[i] for i in range(len(g) -1)])
d = C2I * (g_diff -cv)
for i,j in zip(G,g1[n+1-a:]):

if i(*d) != j:
break

else:
return S[0]. inverse () * (d - S[1])

With a quick analysis we see that we need to go through all elements in Fa, and for
each of them we need to evaluate all polynomials, therefore the complexity is something
like O(qa(m+ n+ sn2)) = O(qasn2).

5.2.2 Algebraic Attack

In this subsection, we describe the algebraic attack proposed by (IKEMATSU; NA-
KAMURA, 2022). It will reduce the general MQ problem to one that is easier to solve
and show that we need a bigger a value in order to increase the security of this scheme.

Let’s name hi = fi+1 − fi, for each i from 1 to n − a. These polynomials will have
degree one because of the definition of fi and the set {h1, ..., hn−a} is linear independent
because C ′ is invertible.

Result 1. The subspace SpanF = {f1, ..., fn+1−a, g1, ..., gs} is generated by

{h1, ..., hn−a, f1, g1, ..., gs},

hence we have n− a degree one polynomials and s+ 1 quadratic polynomials.
Let SpanP be the subspace generated by {p1, ..., pm}. Since S and T are invertible,

we have SpanP = SpanF ◦ S and, by result 1, SpanP is generated by

{h1 ◦ S, ..., hn−a ◦ S, f1 ◦ S, g1 ◦ S, ..., gs ◦ S},

SpanP is linear independent because S is invertible.

37

This means that we can get a linear independent set of n− a degree one polynomials
and s quadratic polynomials from the public key P . Hence, this system of equations can
be remodeled into an easier one.

Let y = (y1, ..., ym) be the ciphertext. The first thing to do is to find the linear
equations, to do this we have to solve the following system of m variables z1, ..., zm:

m∑
i=1

zi ·Quad(pi) = 0 ⇐⇒
m∑
i=1

zipi has degree 1 (5.2)

Where Quad(pi) is the quadratic part of pi, to find this part we loop through the
polynomial and get the coefficient ci for each term cix

2
i .

Let a1, ..., am be a solution of equation (5.2). Then
∑m

i=1 aipi is a degree one polynomial
and as we saw before the dimension of the space generated by such polynomials is n− a.
This also means that the dimension of the solution space is n− a too.

Let’s choose a basis z(1), ...,z(n−a) ∈ Fn of the solution space that we got from solving
(5.2) then we obtain:

k1(x1, ..., xn) = z
(1)
1 p1 + ...+ z(1)

m pm
...

kn−a(x1, ..., xn) = z
(n−a)
1 p1 + ...+ z(n−a)

m pm

Then SpanP is generated by k1, ..., kn−a and other s+1 polynomials. If we plug into the
direct attack modeling, we will have the following system:

p1 − y1 = 0

...

pm − ym = 0
m∑
i=1

z
(1)
i pi −

m∑
i=1

z
(1)
i yi = 0

...
m∑
i=1

z
(n−a)
i pi −

m∑
i=1

z
(n−a)
i yi = 0

We can solve this system with a Groebner basis algorithm (see Section 3.3.2) and it
will be faster than the direct attack. The full algorithm is below and the implementation
is at Code 3.

1. Given P = (p1, ..., pm) as the public key and d = (d1, ..., dm) the ciphertext.

2. Get the basis z(1), ...,z(n−a), where z(i) = (z
(i)
1 , ..., z

(i)
m) ∈ Fm, of the kernel of the

matrix Fm×n given by the quadratic part of the public key.

38

3. Get the Groebner basis G of the ideal I = ⟨p1 − d1, ..., pm − dm,
∑m

i=1 z
(1)
1 pi −∑m

i=1 z
(1)
i di, ...,

∑m
i=1 z

(n−a)
i pi −

∑m
i=1 z

(n−a)
i di⟩.

4. The reduced Groebner basis G will already give us a valid result, but one can run
algorithm 3 on G to effectively find the plaintext.

Code 3 – Implementation of the algebraic attack
q,n,a,s = (3,59,10 ,25)
m = n+1-a+s
FF = GF(q)
R = PolynomialRing(FF , ["x{}".format(i) for i in range(n)])
xs = R.gens()

get quadratic part of poly
def Quad(p):

return [p.monomial_coefficient(x**2) for x in xs]

quadz = [Quad(p) for p in P]

solve sum(z_i*quad(pi)) = 0
mat = matrix(FF , m, n, lambda i, j: quadz[i][j])
krnl = mat.kernel ()

def decrypt_block(d):
ks = [

sum((z[i] * P[i] for i in range(m))) - sum((z[i] * d[i] for i in
range(m)))

for z in krnl.basis()
]
RI = R.ideal([p - v for p, v in zip(P, d)] + ks)
solve quadratic
solution = RI.groebner_basis ()
ans = []
for term , x in zip(solution , xs):

ans.append(FF(x-term))
return ans

5.2.3 Experiments and results

These are the time that the attack spent and parameters used to generate the key pairs.
The attack runs faster than the decryption algorithm in the general case. All tests were
run on Intel I7 4720 2.6GHz Notebook CPU with SageMath 9.6 (The Sage Developers,
2022), the Groebner basis algorithm was either Buchberger’s using his criteria and F4
with FGLM (specified on table header), we ran 200 times each algorithm and we show
the worst performed test out of 99% of them.

39

Parameters (q,n,a,s) KeyGen + Enc Buchberger F4&FGLM
(3, 59, 10, 25) 6.29s 4.48s 0.42s
(3, 59, 15, 25) 6.29s 200.2s 51.1s
(3, 59, 12, 47) 11.5s 6.58s 0.58s
(3, 83, 12, 27) 62.8s 42.5s 1.81s
(5, 83, 10, 47) 122.3s 21.6s 2.99s
(3, 83, 15, 27) 32.3s 305.2s 127s

Table 1 – Running time of the algebraic attack on Jiahui Chen et al. cryptosystem (in
bold the authors parameters for 80 and 128 bit security respectively)

As we can see on Table 1, the algebraic attack increases the complexity when we
increase the value of a. a ≤ s is always true, because if not the system will be degenerate
and the decryption failure rate would be ≥ 1

q
as the authors stated in (CHEN et al., 2020,

p. 378). Even the most primitive implementation of the Groebner basis finding algorithm
(Buchberger) was able to break the authors parameters in a feasible time and even faster
than the key generation time.

To overcome the algebraic attack it was proposed (in (IKEMATSU; NAKAMURA,
2022)) a fortified parameter (3, 59, 32, 47). Even though the algebraic attack time com-
plexity would be of 80 bits, using this parameter, the direct attack would be valid if we
use a Groebner basis algorithm implementation that is CPU bound instead of a memory
bound.

40

6 CONCLUSION

In this work we implement and describe a set of attacks to multivariate encryption
schemes, not only giving a practical overview but also providing a theoretical base to
understand and modify them.

The results presented tell us that some attacks run better than the decryption and
key creation algorithms. It is also implicit that it is very hard to build secure and efficient
multivariate encryption schemes, in most schemes there is a trade-off between security
and efficiency.

We believe that the scheme proposed by Chen can be broken even for the fortified
parameters proposed by Ikematsu. Since most Groebner basis algorithms implementations
are bounded by RAM, an improvement of the memory usage could lead to a direct attack
on the fortified parameters.

41

REFERENCES

BUSS, J. F.; FRANDSEN, G. S.; SHALLIT, J. O. The computational complexity
of some problems of linear algebra. Journal of Computer and System
Sciences, v. 58, n. 3, p. 572–596, 1999. ISSN 0022-0000. Disponível em: https:
//www.sciencedirect.com/science/article/pii/S0022000098916087.

CHEN, J. et al. A new encryption scheme for multivariate quadratic systems.
Theoretical Computer Science, v. 809, p. 372–383, 2020. ISSN 0304-3975. Disponível
em: https://www.sciencedirect.com/science/article/pii/S0304397520300025.

COUTINHO, S.; APLICADA, I. N. de Matemática Pura e. Números inteiros
e criptografia RSA. IMPA, 2005. (Série de computação de matemática).
ISBN 9788524401244. Disponível em: https://books.google.com.br/books?id=
y9YTYAAACAAJ.

COX, D.; LITTLE, J.; O’SHEA, D. Ideals, varieties, and algorithms. an introduction
to computational algebraic geometry and commutative algebra. 2007. Disponível em:
https://link.springer.com/book/10.1007/978-0-387-35651-8.

GAREY, M. R.; JOHNSON, D. S. Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.
ISBN 0716710455.

GOOGLE. HTTPS encryption on the web. 2022. Disponível em: https:
//transparencyreport.google.com/https/overview.

GROVER, L. K. A fast quantum mechanical algorithm for database search. In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing. New York, NY, USA: Association for Computing Machinery, 1996. (STOC
’96), p. 212–219. ISBN 0897917855.

IKEMATSU, Y.; NAKAMURA, S. Security analysis via algebraic attack against “a
new encryption scheme for multivariate quadratic system”. In: GIRI, D. et al. (Ed.).
Proceedings of the Seventh International Conference on Mathematics and
Computing. Singapore: Springer Singapore, 2022. p. 9–21. ISBN 978-981-16-6890-6.

KIPNIS, A.; SHAMIR, A. Cryptanalysis of the hfe public key cryptosystem by
relinearization. In: CRYPTO. [S.l.: s.n.], 1999.

LANG, S. Algebra. 3. ed. New York: Springer-Verlag, 2002.

LIDL, R.; NIEDERREITER, H. Book. Finite fields / Rudolf Lidl, Harald
Niederreiter ; foreword by P.M. Cohn. 2nd ed.. ed. Cambridge University Press
Cambridge ; New York, 1997. xiv, 755 p. : p. ISBN 0521392314. Disponível em:
http://www.loc.gov/catdir/toc/cam029/96031467.html.

MATSUMOTO, T.; IMAI, H. Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: BARSTOW, D. et al. (Ed.). Advances in
Cryptology — EUROCRYPT ’88. Berlin, Heidelberg: Springer Berlin Heidelberg,
1988. p. 419–453. ISBN 978-3-540-45961-3.

https://www.sciencedirect.com/science/article/pii/S0022000098916087
https://www.sciencedirect.com/science/article/pii/S0022000098916087
https://www.sciencedirect.com/science/article/pii/S0304397520300025
https://books.google.com.br/books?id=y9YTYAAACAAJ
https://books.google.com.br/books?id=y9YTYAAACAAJ
https://link.springer.com/book/10.1007/978-0-387-35651-8
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
http://www.loc.gov/catdir/toc/cam029/96031467.html

42

OLIVEIRA, W. M. F. The jacobian conjecture à la zp. 2018. Disponível em:
http://hdl.handle.net/1843/EABA-AVQES5.

PATARIN, J. Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP):
Two new families of asymmetric algorithms. In: MAURER, U. (Ed.). Advances in
Cryptology—EUROCRYPT 96. [S.l.]: Springer-Verlag, 1996. (Lecture Notes in
Computer Science, v. 1070), p. 33–48.

PORRAS, J.; BAENA, J.; DING, J. Zhfe, a new multivariate public key encryption
scheme. In: . [S.l.: s.n.], 2014. v. 8772, p. 229–245. ISBN 978-3-319-11658-7.

SHOR, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Rev., v. 41, n. 2, p. 303–332 (electronic), 1999. ISSN
0036-1445.

The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.6). [S.l.], 2022. Disponível em: https://www.sagemath.org.

http://hdl.handle.net/1843/EABA-AVQES5
https://www.sagemath.org

	Folha de aprovação
	Epígrafe
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Symbols
	Contents
	Introduction
	Preliminaries
	Rings and Fields
	Ideals and Quotient Ring
	Finite Fields and Extensions
	Frobenius Powers

	Groebner Basis
	Definitions
	Euclidean division for multivariate polynomials

	Theory
	Dickson's Lemma
	Hilbert's Basis Theorem
	Existence of Groebner basis

	Applications
	Ideal Equality Problem
	Solving Systems of Polynomial Equations

	Buchberger's Algorithm

	Multivariate Public Key Cryptography
	Cryptography
	Public Key Cryptography
	Post-Quantum Cryptography

	Multivariate Public Key Cryptosystems
	Construction

	Hidden Field Equations

	Attacks on MPKC
	Rank Attacks
	The MinRank problem
	Example

	Jiahui Chen et al. cryptosystem
	Construction
	Algebraic Attack
	Experiments and results

	Conclusion
	References

