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Abstract 

 

Targeted covalent inhibitors (TCI) are compounds that are designed to exert 

their therapeutic effect through the formation of a covalent bond with a biological 

target. In spite of several perceived benefits of pursuing a covalent mechanism of 

action, concerns about off-target reactivity and selectivity remain. The most efficient 

way to accurately characterise covalent reactivity by computational approaches can be 

challenging, and the mechanism of chemical inhibition of high profile drug targets for 

some protein kinases remains an unanswered question. Computational modelling of 

covalent reactivity provides an attractive approach for investigating the determinants 

of reactivity between a covalent inhibitor and its target and can aid in the design of 

safer and more selective covalent drugs. 

  

Simple ligand only reactivity metrics of covalent reactivity including proton 

affinity (PA) and reaction energy calculations were investigated with quantum 

mechanical (QM) methods. However, limitations in the predictive power of these 

methods for pharmaceutical lead-like compounds were identified, which led to a focus 

on reactivity assessments ‘in situ’. A benchmarking study of the most appropriate 

semi-empirical and density functional QM methods confirmed that specific methods 

should be used to accurately model thiol reactivity. 

 

A comprehensive reactivity study was carried out for the covalent inhibitor 

ibrutinib that targets a non-catalytic cysteine residue in Bruton’s tyrosine kinase. 

Constant pH molecular dynamics simulations were used to calculate the pKa of Cys481 

in BTK and identified the neutral thiol group to be the most likely protonation state 

at physiological pH. Combined quantum mechanics/molecular mechanics (QM/MM) 

calculations in combination with umbrella sampling simulations were used to assess 

chemical inhibition pathways in BTK and led to the identification of a novel 

mechanistic pathway in BTK that is distinct from other protein kinases.  
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Chapter 1 

An introduction to covalent inhibitor drug design 

 

1.1 Background 
Covalent inhibitors supress their biological target through the formation of a 

covalent bond.1 This is in contrast to conventional inhibitors that typically associate 

with their target by forming non-covalent, reversible interactions. Covalent 

mechanisms of action are routinely observed in biology, including in post translational 

modifications of proteins2 and in cell signalling processes.3 Covalent inhibitors differ in 

that they are specifically designed to contain a reactive group that is able to form a 

covalent bond with their target. Recently, this has led to interest in actively pursuing 

covalent compounds as pharmaceutical leads and the emergence of targeted covalent 

inhibitor (TCI) design.4  TCIs contain a weakly electrophilic group, often referred to 

as a warhead, that can undergo covalent bond formation with a suitable nucleophilic 

target. The most utilised target is the thiol side chain of cysteine residues, given its 

potent nucleophilicity and low abundance in the proteome.5 However, serine, lysine, 

tyrosine, histidine, arginine and threonine can all be targeted by covalent modifying 

agents, but often present significant challenges compared to cysteine targeting.6,7 

Numerous electrophilic warheads can be incorporated to inhibitor scaffolds, including 

acrylamides, sulfonyl fluorides, haloketones, a-ketoamides, epoxides, alkynyl 

benzoxazines and dihydroquinazolines.8–10 Acrylamides are by far the most common 

cysteine targeting warhead, and are found in several marketed covalent drugs that 

target protein kinases such as osimeritinib, afatanib, ibrutinib and zanubrutinib 

(Figure 1.1).11 
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Figure 1.1 Cysteine targeting covalent inhibitors osimertinib, afatanib, ibrutinib and 
zanubrutinib that are approved for the treatment of various cancers. Osimertinib and afatanib 
target epidermal growth factor receptor (EGFR) kinase, whereas ibrutinib and zanubrutinib 
target Bruton’s tyrosine kinase (BTK). The acrylamide warhead in each drug is highlighted in 
red. 

 

In spite of the renewed interest in TCIs in the last 10 – 15 years, drugs that act 

through a covalent mechanism of action have been around for over 100 years. Aspirin 

is a well-known drug that was marketed in 1888 and is the earliest example of a 

covalent drug. It exerts its biological action through the acetylation of the nucleophilic 

side chain of serine-530 in Prostaglandin endoperoxide synthase-1.12 Halting the 

formation of prostaglandins stops pain signals being transmitted in the body, which 

makes aspirin an effective painkiller. Another milestone in the history of covalent 

inhibitors was the discovery of penicillin in the late 1920s. Penicillin was the first 

effective treatment for bacterial infections as it contains a b-lactam ring. This strained 

four-membered b-lactam ring covalently reacts with serine-36 in bacterial DD-

transpeptidase, which stops bacteria from being able to synthesize cell walls.13  

Omeprazole, a commonly prescribed proton pump inhibitor (PPI) was the first drug 

of its kind to treat acid reflux and peptic ulcers. It works by forming a covalent disulfide 

bond with the sulfhydryl group of H+/K+ ATPase.14 Each of these covalent drugs were 

significant developments for various treatments and were often the first of their kind, 
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meaning previously untreatable conditions could be targeted by these drugs. This 

highlights the importance that covalent drugs have had on the therapeutic landscape 

since their inception. This continues today, but a significant difference between the 

earliest covalent inhibitors and those produced today are that they are designed to 

have a covalent mechanism of action, whereas the mechanism of early covalent 

inhibitors was often discovered retrospectively.15   

 

Modern TCI drugs aim to capitalise on the advantageous properties of covalent 

inhibitors with respect to non-covalent drugs. Many drug candidates fail in clinical 

trials due to toxicity and poor efficacy.16 Covalent inhibitors have the potential to 

overcome these issues as they exhibit many improved pharmacodynamic (PD) 

properties compared to their non-covalent counterparts. Potency, a function of binding 

affinity and target engagement is a desirable drug characteristic that improves drug 

efficacy.17 Non-covalent drugs that form weaker, non-bonded interactions are 

considered to have a maximal possible binding affinity, estimated at around 10 pM in 

a recent study.18 Potency can be increased by increasing molecular size, but this comes 

with the drawback of poor solubility, membrane permeability and metabolic stability.19 

In contrast, the formation of a covalent bond between an inhibitor and its target 

contributes to a strong binding free energy and results in highly potent compounds 

with a modest size that greatly exceed the binding affinity limits of non-covalently 

binding drugs.20 Furthermore, much longer drug-target residence times can be achieved 

with covalent inhibitors, as target occupancy depends on the re-synthesis rate of the 

target rather than the pharmacokinetics (PK) of the drug.21 Optimisation of residence 

times has been reported to be an important and undervalued strategy in drug design, 

particularly for covalent inhibitors.22,23 Reversible covalent inhibitors have been sought 

that have long residence times but minimise the potential for off target effects.22 A 

consequence of high potency and long residence time is the need for lower dosages of a 

drug, which aids in reducing toxicity and the potential for off target effects as lower 

concentrations of the drug are required to produce the same biological affect.11,24 The 
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high potency that can be achieved through covalent bond formation also means that 

binding sites can be targeted that are usually difficult to target with non-covalent 

inhibitors. For example, the shallow and solvent exposed binding pocket in the cysteine 

protease Cathepsin K is often deemed undruggable, but has been successfully targeted 

by covalent inhibitors.25  Drug resistance that arises from mutations of a target’s 

binding pocket poses significant problems in drug discovery as it can dramatically 

reduce the potency of covalent and non-covalent drugs. Covalent inhibitors can 

theoretically overcome resistance mechanisms, provided the nucleophilic amino acid 

target of a covalent inhibitor remains unchanged and covalent bond formation can still 

occur. However, resistance can still be a problem for TCI’s as their mechanism of action 

is heavily dependent on a single amino acid. This is a particular problem in protein 

kinases such as epidermal growth factor receptor (EGFR) and Bruton’s tyrosine kinase 

(BTK), where the C797S mutation in EGFR and the C481S mutation in BTK have 

been documented as sources of resistance in these systems.26,27 Changing the 

mechanism of action can help overcome resistance. For example, advances in treating 

the T970M mutation in EGFR have been made through the development of covalent 

inhibitors that specifically target the mutant kinase over the wild type (WT).28  

 

Although there are numerous advantageous properties that can be profited from 

by pursuing a covalent mechanism of action, in the past there has been a reluctance 

by pharmaceutical companies to design drug candidates that contain reactive 

electrophilic groups that are able to covalently modify their target.29 This is because 

electrophilic compounds can react indiscriminately with off target species, resulting in 

toxicity and safety related issues being associated with these types of compound.1,4,24 

Covalent modification of proteins and enzymes can result in an immune response as 

the covalent adduct is recognised as foreign. This is known as idiosyncratic drug 

toxicity.30 A notable example is the covalent b-lactam antibiotic penicillin, which is 

known to cause an idiosyncratic drug reaction in some members of the population as 

a result of the b-lactam reacting with free amino and thiol groups in the body.31 An 
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additional concern arising from the use of covalent drugs is the toxicity associated with 

non-covalent compounds that are metabolised in the body to form reactive electrophilic 

intermediates.32 Paracetamol, a widely used pain killer, undergoes metabolism by 

cytochrome  P450 enzymes to form the highly reactive N-acetyl-p-benzoquinone imine 

(NAPQI) intermediate that reacts with live proteins and results in hepatotoxicity.32 

However, TCI drugs are specifically designed so that they are selective for their target 

(through optimisation of non-covalent binding interactions) and contain only weakly 

electrophilic warheads that are designed to react with a specific target nucleophile in 

contrast to drug metabolites that are have high levels of intrinsic reactivity.1 These 

factors help TCI drugs to have an improved safety profile over reactive electrophiles 

that can irreversibly bind with biological macromolecules in an unselective fashion.33  

Safety concerns surrounding covalent inhibitors has led to them being reserved for 

scenarios where there is a strong medical need, for example if there are no appropriate 

treatments currently available or the biological target is difficult to inhibit with 

conventional strategies. This has resulted in an immense effort to produce covalent 

therapeutics that target protein kinases as they play a vital role in many disease 

processes including cancer. The ATP binding pocket of protein kinases is well 

conserved across the protein kinome, presenting a significant challenge to developing 

selective non-covalent inhibitors to target specific kinases.  

 

Careful design principles must be employed in TCI design to minimise the 

potential for off target effects and alleviate toxicity concerns. Care must be taken as 

there are subtle differences between covalent and non-covalent drugs that must be 

taken into account. A commonly used measure of a reversible drug’s potency is the 

half maximal inhibitory concentration (IC50).34 This refers to the equilibrium 

concentration of an inhibitor that is required to achieve 50% blockade of the biological 

target. However, covalent inhibitors exhibit non-equilibrium binding as covalent bond 

formation means the inhibitor does not have to compete with endogenous ligands.15,35 

As a result, covalent inhibitor IC50 values are time dependant and are unsuitable 
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potency metrics. A more robust measure of the potency of a covalent inhibitor is to 

assess the kinact/Ki ratio (Scheme 1), and is the recommended measure for assessing 

the potency of covalent inhibitors.1,4,35,36 Ki is an inhibitory equilibrium constant and 

is a measure of the reversible, non-covalent association of a covalent inhibitor with its 

target. The inactivation rate, kinact, is a kinetic first order rate constant that defines 

the rate of covalent bond formation. Experimental determination of the kinact/Ki ratio 

is more difficult than performing IC50 measurements, so there is a tendency for IC50 

values to still be used to rank the potency of covalent inhibitors.35 In addition, the 

interplay between PD and PK can be difficult to predict for covalent inhibitors.37 PD, 

defined as the effect a drug has on the body, is usually dependent on the PK (the 

kinetics of absorption, distribution, metabolism and excretion of the drug) for a 

conventional non-covalent inhibitor. The PD effect of a given covalent inhibitor is also 

dependent on the resynthesis rate of the protein target, as the inhibitor will remain 

bound to its target even after any free drug is excreted from the body.35 This is a 

desirable characteristic for covalent inhibitors, as a rapid clearance of a covalent drug 

will reduce the potential for off-target effects.37 On the other hand, if the excretion 

rate of a covalent drug is too high, for example through reaction with glutathione, it 

can result in reduced drug availability.38 Careful consideration of PD and PK 

properties are therefore required in the design of covalent inhibitors, especially when 

optimising electrophilic warhead reactivity.  

 

 

 

 

Scheme 1.1. Process of inhibition of a covalent inhibitor with its enzyme target. In the first 
step, the inhibitor reversibly binds with its target to form a non-covalent complex. The binding 
affinity for this process is denoted by Ki. If the lifetime of the non-covalent complex is 
sufficiently long, a reaction occurs between the inhibitor and its target to form the covalently 
bound E-I complex. The rate of covalent complex formation is given by kinact.   

 

E + I E · I E - I
Ki kinact
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1.2 Computational approaches to TCI design 
Several computational and experimental tools are available to aid in the design 

of covalent inhibitors. Activity based protein profiling (ABPP) is a powerful 

experimental technique that has been used in the identification of biological targets 

that could be amenable to covalent targeting inhibitors.24,39 ABPP uses a covalent 

probe that contains a reactive electrophilic warhead that is designed to react with 

nucleophilic sites in proteins.40 It is attached to a tag molecule, often a fluorescent 

compound or biotin, that enables identification of the protein target.41 This technique 

can be specific to a particular enzyme class such as serine hydrolases,42 cysteine 

proteases43 and protein kinases44 through the incorporation of a binding group that 

increases selectivity for a target.24 Experimental approaches are also used to determine 

covalent reactivity, with the most common method being the glutathione reactivity 

assay (Section 1.2.2). In addition to experimental approaches, computational methods 

have been used successfully in covalent drug design. Computational tools are routinely 

used in drug design but are often developed for the design of non-covalent drugs.45 

However, the nature of covalent bond formation between an inhibitor and its target 

makes computational approaches that incorporate quantum mechanics particularly 

useful in covalent inhibitor design as chemical change can be modelled at the atomistic 

level.46 Molecular modelling methods can be used to calculate binding affinities and 

reactivity rates of covalent drugs with their target through the calculation of Ki and 

Kinact. The following will provide a summary of some of the state-of-the-art 

computational techniques used for Ki and kinact calculations in the context of covalently 

binding inhibitors.  

 

1.2.1 Covalent docking and free energy calculations   

Docking methods are widely used in the field of computer aided drug design 

(CADD) and enable huge libraries of compounds to be virtually docked against a 

protein or enzyme target. Alternative binding poses can be evaluated and are ranked 
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by docking scores that predict the binding affinity of the docked compound with its 

target. Most molecular docking programs are designed to predict binding poses and 

affinities of non-covalent ligands, but the resurgence of interest in covalent drug design 

has led to the development of several docking programs specifically for covalent 

docking including AutoDock4,47 CovDock,48 GOLD,49 and ICM-Pro.50  A recent study 

found that these six programs were successful in predicting binding poses within 2.0 Å 

of the experimental bind pose in up to 60% of cases, and that higher success rates were 

found for Michael acceptor warheads.51 No docking program performs significantly 

better than others for all protein targets however, which has led to the development 

of protocols for choosing the most appropriate covalent docking tool for the required 

task based upon precision, generality and robustness.52  

 

Free energy calculations also provide a means to assess the binding free energy 

of covalent drugs. Free energy perturbation (FEP) is a well-established technique for 

ranking the binding affinity of non-covalent ligands and is the gold standard used in 

the pharmaceutical industry. However, FEP uses molecular mechanics (MM) force 

fields (FF) which do not allow for chemical change. The use of FEP to rank the binding 

affinity of covalent compounds is therefore limited to optimisation of the non-covalent 

interactions in a drug discovery project but can still be useful. Modification to a typical 

FEP protocol, for example by adapting the thermodynamic cycle to include covalent 

interactions, has seen success in predicating the non-covalent binding affinity of 9 a-

ketoamide inhibitors of calpain cysteine protease, where a correlation coefficient of 

R2=0.70 between experimental and predicted binding free energies was observed.53  

FEP was also found to outperform other approaches in predicting the potency of 10 

covalent nitrile inhibitors of human cathepsin-L.54 Both covalent docking and free 

energy methods such as FEP are evidently useful tools in covalent drug design and can 

give reasonable estimates of Ki, the non-covalent binding affinity of a covalent drug 

(Scheme 1.1). However, these methods are unable to provide estimates of covalent 

reactivity.  
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1.2.2 QM methods: warhead reactivity 

Quantum mechanics (QM) methods have been used extensively to predict 

covalent warhead reactivity. Computational models that aim to predict the reactivity 

of covalent warheads with cysteine typically rely on estimating GSH t1/2. This is the 

half-life of the reaction of an electrophilic compound with glutathione (GSH). The 

glutathione reactivity assay (GSH t1/2) is a widely used model for predicting drug 

toxicity in the pharmaceutical industry, but also serves as a convenient way of 

comparing warhead reactivity of covalent inhibitors with cysteine. In a typical kinetic 

glutathione assay the reactivity of a covalent warhead is measured in solution with an 

excess of glutathione to approximate pseudo first order kinetics.55 The concentration 

of the covalent warhead is reduced as the reaction proceeds and this can be tracked by 

NMR measurements or liquid chromatography coupled with mass spectrometry.6,56 

The rate constants can then be determined by plotting the natural log of the warhead 

concentration against time. An early example of predicting GSH t1/2 reactivity used 

QM transition state (TS) calculations on a series of 22 a, b-unsaturated compounds 

with methylthiolate (a computational surrogate for GSH).57 A strong correlation 

(r2=0.90) was observed between predicted and experimental kinetic rate constants 

(kGSH) of GSH adduct formation. In addition, Mulliner et al. used TS calculations to 

predict kGSH of 35 a, b-unsaturated compounds with methylthiolate and found a strong 

correlation (r2=0.96) between their calculated kGSH values and experimental GSH 

reactivity data.58 A similar quantum chemical protocol was employed by Flanagan et 

al. to predict the reactivity rates of 16 acrylamide containing electrophiles with methyl 

thiolate.56 The calculated kinetic reaction barrier (DG‡) was strongly correlated 

(R2=0.92) to the experimental GSH reactivity rate (GSH t1/2). As a result of using 

computationally intensive QM TS calculations for GSH t1/2 predictions, the reactivity 

of only a relatively small numbers of compounds can be compared. This limits the 

utility of these QM approaches to small data sets, and the comparison of structurally 

similar compounds. As a result, the reactivity predictions cannot reliably be generalised 

to compounds with diverse chemical functionality. Furthermore, it can be difficult to 
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locate TSs for thiol addition reactions using QM methods due to the flat nature of the 

potential energy surface surrounding the TS.59 To address this, Lonsdale et al. used 

reaction energies (DEreact, the difference in energy between reactant and covalent 

adduct states) as a reactivity metric for GSH reactivity.60 DEreact values of a diverse 

set 46 electrophilic compounds that contained different reactive warheads were 

calculated at the M06-2X/6-31+G(d,p) level. A reasonable correlation of R2=0.69 was 

observed between predicted reaction energy and experimental GSH t1/2. The authors 

cited potential errors in the computational methodology and conformational effects as 

possible explanations.  

 

Proton affinity (PA) calculations are an additional reactivity metric that can 

be used to predict covalent warhead reactivity that avoid the use of computationally 

intensive QM TS optimisations. PA calculations have been shown to be a good 

predictor of thiol elimination rates by Krishnan et al., who found a strong correlation 

between the calculated PA of a set of  eight acrylonitrile based inhibitors and the 

elimination rate (log k) from  b-mercaptoethanol (BME).61 However, as detailed in 

Chapter 2 of this thesis, a thorough investigation in to the use of PA calculations as a 

predictor for covalent warhead reactivity found significant limitations in the 

approach.62 More recently, the electrophilicity index has been investigated as a 

covalent warhead reactivity metric.63 When combined with a machine learning model 

named BIreactive, a reasonable correlation (R2=0.85) between activation energy 

(predicted by BIreactive) and the experimental GSH reactivity was observed for 

acrylamide compounds.64 The predictive power of the model was reduced when used 

for compounds that contain a chloroacetamide warhead (R2=0.69).  

 

1.2.3 Cysteine reactivity 

Computational models have also been used to assess the reactivity of the thiol 

group of cysteine residues that are targeted by covalent warheads. The predominant 
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strategy is to estimate the pKa of the cystine thiol in question as the thiol acidity 

indicates how readily the thiol group can lose a proton to form the more nucleophilic 

thiolate anion.65 For a detailed discussion of the methods employed to predict cysteine 

reactivity, see Chapter 3 of this thesis. The most robust and widely used methods are 

molecular mechanical FF methods such as constant pH molecular dynamics (CpHMD) 

simulations and thermodynamic integration (TI).66 An explicit solvent all atom replica 

exchange approach was found to outperform simpler implicit solvent empirical pKa 

prediction models including PROPKA, MCCE and H++ when the pKas of 18 cysteine 

residues were assed with these methods.65 Explicit solvent CpHMD simulations are 

able to account for the coupling of protonation states from titratable amino acid side 

chains in the vicinity of the cysteine residue, and have seen reasonable success in 

predicting cystine pKa values. However, they can struggle to predict acidic shifted pKa 

values, as demonstrated in a recent investigation of the protonation state in cystine 

proteases.67 An implicit solvent continuous CpHMD implementation developed by 

Jana Shen et al. has successfully predicted the pKas of cystine residues with acidic 

shifted pKas.68 Machine learning models have also been developed for cysteine 

reactivity predictions. Zhang et al. built a supported vector machine (SVM) learning 

model to predict cysteine pKa values with an AUC accuracy of 0.73, using descriptors 

that included reactivity, binding affinity of ligands, position and amino acid sequence.69 

Specific sequence based cysteine pKa prediction models help to improve accuracy, with 

one sequence based machine learning model that has been reported  with a  high 

accuracy (98%) and precision (95%) for predicting cysteine reactivity.70 In spite of the 

accuracy afforded by many of the aforementioned computational cysteine pKa 

prediction tools, further investigation is needed as a result of the complex nature of 

accurately modelling sulfur. This is especially important for FF methods including TI 

and CpHMD as the parameters used to describe the bonded and non-bonded 

interactions can sometimes be a poor description of sulfur chemistry. For example, the 

AMBER FF uses the same non bonded van der Waals parameters to describe a sulfur 

atom in a cysteine thiol and the sulfur of a negatively charged cysteine thiolate anion.71 
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The result is a poor description of the hydration structure of sulfur containing species 

in the AMBER FF. This can translate to inaccurate pKa predictions, given the close 

relationship between sulfur hydration number and cysteine pKa.   

 

1.2.4 QM/MM mechanistic modelling  

When QM methods are combined with MM methods, mechanistic modelling 

and reactivity predictions can be carried out in situ, and reactivity assessments for an 

inhibitor, or series of inhibitors can be made when bound to its protein target.72 QM 

approaches are widely used for mechanistic modelling of enzymatic reactions73 and 

have been useful in modelling the reaction mechanisms of covalent inhibitors with their 

target protein.74–76 In a typical QM/MM reaction simulation, the system of interest is 

partitioned into two subsections, one that is treated with MM methods and one that 

is treated with QM methods.77,78 Several approaches can be used when covalent bonds 

cross the boundary between the QM and MM regions, with one of the most popular 

being the link atom method.79 This is especially important for modelling covalent 

inhibitors, as the reactive electrophilic warhead of the inhibitor must be included in 

the QM region, in addition to the amino acid side chain of the nucleophilic amino acid 

residue that is targeted by the inhibitor. One way of evaluating the total energy in 

combined QM/MM methods is to use an additive approach, as shown in Equation 1.1. 

Here, the total QM/MM energy is a sum of the energy of the QM region (EQM), the 

energy of the MM region (EMM) and the interaction energy between the QM and MM 

regions (EQM/MM).80  

 

Equation 1.1 Additive QM/MM energy expression. 

 𝐸!"! = 𝐸#$ + 𝐸$$ + 𝐸#$/$$  

 

The use of QM/MM methods for modelling covalent inhibitors are discussed 

extensively in Chapter 5 of this thesis, but some notable examples will briefly be 
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highlighted here. The majority of covalent inhibitor QM/MM studies are performed 

on protein kinase and cysteine protease targets, where a cysteine residue is the target 

of covalent modification in both cases. In cysteine proteases, the cysteine operates in 

a catalytic dyad with a nearby histidine residue to cleave peptide bonds. Understanding 

the molecular mechanism of this peptide bond cleavage is essential to design covalent 

inhibitors that can irreversibly inactivate the cysteine protease and are essential in 

viral replication. The global pandemic of 2019/2020 caused by the Sars-CoV-2 

coronavirus has highlighted the vital importance of the development of new antiviral 

drugs that target cysteine proteases.81 A QM/MM mechanistic study was able to 

determine the molecular mechanism of proteolysis in the SARS-CoV-2 main protease 

(Mpro).76 QM/MM protocols have also been used to study covalent inhibitors that 

target rhodesain, cruzain and cathepsin L cysteine proteases.72,82,83 Another high-

profile disease area that has benefit from mechanistic QM/MM studies is in the 

development of anti-cancer drugs. EGFR is one example of a receptor tyrosine kinase, 

where overexpression of this transmembrane protein has been linked to diseases such 

as Alzheimer’s and a variety of tumours.84  Several covalent inhibitors of EGFR have 

been approved for the treatment of lung cancer such as osimertinib and afatanib.85 A 

QM/MM modelling study of the mechanism of inhibition EGFR by N-(4-

anilinoquinazolin-6-yl) acrylamide was carried out and found that the rate limiting 

step was S-C bond formation and highlighted the importance of an active site aspartate 

residue that participates in the inhibition mechanism.74 At the time of writing, a 

mechanistic QM/MM study was submitted to ChemRxiv of a cyano-acrylamide 

inhibitor that targets BTK.86 This study modelled an ionic mechanism for the 

inhibition of the active site cysteine residue and compliments the detailed reactivity 

study in Chapter 5 of this work that examines multiple mechanistic pathways for BTK 

inhibition by covalent drug ibrutinib. It highlights that reaction mechanisms of 

covalent drugs can change when subtle differences are made to the reactive warhead.  
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1.3 Covalent inhibitors of protein kinases 
Many of the aforementioned examples of covalent inhibitors are compounds that 

target protein kinases. Protein kinases carry out phosphorylation of other proteins by 

transferring a phosphate group from adenosine triphosphate (ATP) and covalently 

attaching it to serine, threonine or tyrosine. There are approximately 500 protein 

kinases that make up 2% of human genes, making protein phosphorylation an essential 

component in all areas of human physiology.87 The major functions of protein kinases 

are in the regulation of cell signalling pathways. Many diseases are linked to the 

overexpression or misregulation of protein kinases, making them important drug 

targets in drug discovery.88 However, the high degree of structural similarity observed 

between protein kinase families means selective targeting of a particular protein kinase 

presents a significant challenge.89 The proposed advantages of using targeted covalent 

inhibitors in drug discovery (increased selectivity, potency and ability to overcome 

resistance mechanisms)1,4 make them ideal candidates for targeting protein kinases. 

Several covalent drugs that target protein kinases have been approved for the 

treatment of cancer, where there is often an unmet medical need for such therapeutics 

and resistance to current anti-cancer drugs can routinely occur.90,91 BTK, a non-

receptor tyrosine kinase, was chosen as the target for this work. The first covalent 

inhibitor targeting BTK was co-developed by Pharmacyclics and Johnson and 

Johnson,92 the parent company of Janssen Pharmaceuticals who sponsored this work. 

BTK has not been studied as extensively as related kinase EGFR, which has been the 

focus of several computational modelling studies.74,93–96 This could in part be due the 

complex chemistry and questions surrounding the mechanism of covalent modification 

of the cysteine residue C481 in BTK. BTK therefore represents an important and 

interesting target to study, and where increased understanding of the covalent binding 

of electrophiles to this target will be important for the design of new covalent drugs.  
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1.3.1 Bruton’s tyrosine kinase (BTK) 

BTK belongs to the TEC family of non-receptor tyrosine protein kinases. The 

other four members of this family are bone marrow expressed kinase (BMX), 

interleukin-2-inducible T cell kinase (ITK), resting lymphocyte kinase (RLK) and 

tyrosine kinase expressed in hepatocellular carcinoma (TEC).97 There are five protein 

interaction domains in BTK: a pleckstrin homology (PH) domain; a TEC homology 

(TH) domain, two SRC homology (SH) domains SH1 and SH2; and a kinase domain 

that possesses enzymatic activity (Figure 1.2A).98 The focus of this work is on the 

kinase domain, as it is in the ATP binding site of the kinase domain where ibrutinib 

binds to BTK. There are several structures of the BTK kinase domain that are 

deposited in the protein data bank (PDB). Two structures in particular are used in 

this work, as they show an ibrutinib analogue non-covalently bound to the ATP 

binding site in BTK (PDB 5P9I)99 and ibrutinib covalently bound to C481 in BTK 

(PDB 5P9J).99 These structures show typical kinase structure consisting of a b-sheet 

dominated N-lobe and a-helical C-lobe (Figure 1.2B). The activation loop (A-loop) 

controls substrate binding and connects each lobe.100  

 

BTK plays an important function in several cell signalling pathways that are 

vital for normal B cell development. In addition, increased activity of BTK has been 

linked to its role in the survival and proliferation of tumours in B cell malignancies 

such as various types of leukaemia.98 BTK is therefore a promising drug target and 

several BTK inhibitors have been developed as a result. The only approved drugs that 

target BTK are covalent kinase inhibitors that irreversibly bind to a cysteine residue, 

C481, situated on the edge of the ATP binding pocket. Ibrutinib has been approved 

for the treatment of mantle cell lymphoma, chronic lymphocytic leukaemia and 

Waldenström’s macroglobulinemia.101 It contains an electrophilic acrylamide group 

that forms a covalent bond with C481.102 Acalabrutinib contains a butynamide 

warhead and is approved for the treatment of mantle cell lymphoma in patients who 

have previously been treated with one other therapy and was designed to be a more 
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selective covalent BTK inhibitor than ibrutinib.103 Zanubrutinib is another acrylamide 

containing covalent BTK inhibitor used for the treatment of MCL.104 However, there 

are reports of resistance to these drugs as a result of a C481S mutation in the BTK 

kinase domain.27 Non-covalent inhibitors have been investigated that target either the 

ATP binding pocket or the SH2/3 domain of BTK and work by stabilising an inactive 

kinase conformation and thus inhibiting its function.102,105 However, no such inhibitors 

have yet been approved to target BTK although some are in clinical trials.106 It is 

evident that there is a strong clinical need for improved BTK inhibitors, and further 

investigation into the mechanism of action of covalent drugs that target BTK are 

required to help in discovery and design of future therapies that can target BTK.  

 
Figure 1.2 The kinase domain in BTK from crystal structure 5P9J.99 The characteristic N 
and C lobes of the kinase are highlighted, in addition to the C-helix, P-loop and A-loop which 
all perform vital roles in the functioning of BTK. The ATP binding site is also highlighted as 
this is the site that covalent inhibitors such as ibrutinib and zanubrutinib bind to BTK. 
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1.3.2 BTK inhibitor modelling studies 

There are only a handful of computational studies that have been carried out 

on BTK to investigate its suitability as a drug target. A combined molecular docking 

and MD study was performed on a series of 2,5-diaminopyrimidine covalent inhibitors 

of BTK.107 Important hydrogen bonding sites between gatekeeper residues Thr474, 

Met477 and active site residues Leu408 and Arg525 and the inhibitors were identified 

as important components of the binding potency. Only transient hydrogen bonds 

between C481 and the inhibitor structures were observed early on in the MD 

simulations. These interactions were confirmed by a separate, but similar study that 

used a combination of MD and virtual screening to investigate BTK inhibitors.108 This 

study also used density functional theory calculations to assess the HOMO-LUMO gap 

of five of the most potent inhibitors predicted from docking studies as a way of 

assessing reactivity. However, similar frontier orbital energies were observed for each 

compound. More recently, extensive MD simulations totalling over 1 millisecond were 

used in combination with Markov state modelling to identify the accessible 

conformational states in the BTK kinase domain.100 Several new potentially druggable 

sites were identified, and the interconversion between conformational states was found 

to be modulated by the protonation state of an aspartate residue (Asp539).  
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Figure 1.3 (A) Active site of EGFR kinase from crystal structure 5YU9109 showing the 
cysteine residue target by covalent inhibitors (C797) and the i+3 aspartate residue (D800) 
that is reported to act as a catalytic base in EGFR. (B) Active site of BTK from crystal 
structure 5P9J showing the C481 cysteine residue targeted by covalent inhibitors and the i+3 
asparagine residue (N484). 

 

The molecular mechanism of BTK inhibition by ibrutinib and related 

electrophile containing drugs is currently unknown. Modelling studies of covalent 

modification by an acrylamide inhibitor have been carried out for EGFR, which 

identified an active site aspartate residue (Asp800) was crucial for the formation of the 

covalently bound EGFR-drug complex as it acts as a catalytic base to deprotonate the 

cysteine thiol prior nucleophilic attack. 74 However, there is no equivalent aspartate in 

the analogous i+3 position in BTK,110 which instead contains an asparagine residue 

(Figure 1.3), which raises questions about the precise mechanism of inhibition in BTK. 

At the time of writing, a preprint was published that investigated the covalent binding 

of a reversible cyanoacrylamide inhibitor to BTK.86 However, the study did not address 

the question of how the C481 thiol is deprotonated and only modelled a single ionic 

mechanism for covalent modification. Knowledge of the mechanistic pathway and 

reactivity determinants in this important drug target would aid in the design of future 

covalent inhibitors of BTK and could even shed light on resistance mechanisms.  

 

1.4 Aims 
The main aims of this work are twofold: 

 

Firstly, to establish appropriate computational methods for understanding and 

predicting covalent reactivity. An important aspect of this is to investigate which 

quantum mechanical methods are capable of accurately modelling sulfur containing 

compounds by testing a range of semi empirical and density functional methods and 

comparing these to high level QM methods. In addition, the most suitable techniques 

for modelling different aspects of covalent reactivity will be assessed. These include 
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approaches for modelling covalent warhead reactivity using ligand-based methodologies 

and assessing cysteine reactivity in a protein environment.  

 

Secondly, to establish the mechanisms of covalent modifications of cysteine 

residues in protein kinases so that meaningful reactivity predictions can be made for a 

series of covalently binding inhibitors. In order to achieve this goal, enhanced sampling 

methods will be used in conjunction with QM/MM methods to elucidate the 

mechanism of covalent binding of the covalent drug ibrutinib to its protein target 

BTK. Once the mechanism is known for this important drug target, the rate 

determining step can be modelled with the most appropriate QM methods and 

reactivity predictions can be made that will allow those in the drug design community 

to tune covalent reactivity.  
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Chapter 2 

Limitations of ligand-only approaches for predicting the 

reactivity of covalent inhibitors 

 

 

The work presented in this chapter is a publication entitled “Limitations of 

Ligand-Only Approaches for predicting the Reactivity of Covalent Inhibitors”, and was 

published in The Journal of Chemical Information and Modeling on 9th September 

2019.62 All calculations were set up and run by myself, with the exception of the DEreact 

values (Figure 2.7) that were set up by myself, but run by Gary Tresadern of Janssen 

Pharmaceuticals due to computer resource limitations in Bristol at the time. I am the 

first author and performed the data analysis and wrote the manuscript with assistance 

from Gary Tresadern, and the other authors approved the manuscript before 

submission. The additional information contained in the supporting information can 

be found in Appendix 1.  

  

2.1 Abstract 
Covalent inhibition has undergone a resurgence and is an important modern-

day drug design and chemical biology approach. To avoid off-target interactions, and 

to fine tune reactivity, the ability to accurately predict reactivity is vitally important 

for the design and development of safer and more effective covalent drugs. Several 

ligand-only metrics have been proposed that promise quick and simple ways of 

determining covalent reactivity. In particular, we examine proton affinity and reaction 

energies calculated with the density functional B3LYP-D3/6-311+G(d,p)//B3LYP-

D3/6-31G(d) method to assess the reactivity of a series of a,b-unsaturated carbonyl 

compounds that form covalent adducts with cysteine. We demonstrate that, whilst 

these metrics correlate well with experiment for a diverse range of covalent fragments, 
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these approaches fail for predicting the reactivity of drug-like compounds. We conclude 

that ligand-only metrics such as proton affinity and reaction energies do not capture 

determinants of reactivity in situ and fail to account for important factors such as 

conformation, solvation and intramolecular interactions. 

2.2 Introduction 
Predicting covalent reactivity is an important goal in targeted covalent inhibitor 

(TCI) design. In contrast to conventional reversible inhibitors, TCIs form a covalent 

attachment with their target, resulting in several advantageous properties. These 

include increased potency, selectivity, and residence time all leading to distinct 

pharmacodynamic properties.1 The half-life of the covalent complex (which may be 

long, compared with the clearance of the free TCI and synthesis rate of the target 

protein) can offer pharmacokinetic advantages. Efficacy can be extended beyond what 

would be expected due to the half-life of the free drug alone in plasma. There are now 

several recently marketed covalent kinase inhibitors, for example (Figure 2.1).111 

However, toxicity concerns are an important consideration when pursuing a covalent 

mechanism of action in drug design, owing to the intrinsic reactivity of TCIs.24 In 

addition, clearance and cross-reactivity/selectivity can be problematic.4 A typical 

approach is the addition of a reactive covalent warhead onto a potent reversible 

inhibitor of the target, in the expectation that selectivity will be improved by the 

optimized fit of the reversible molecule for the particular protein target.112 Covalent 

warheads can target various amino acids including cysteine, serine, tyrosine and 

lysine.113 Amongst these, acrylamides are often used to target cysteine residues; 

acrylamide reactivity can be modulated via the amine and β-carbon substituents of the 

motif.9  

 

As the field of TCIs has blossomed over recent years, some model/simplified 

experimental and computational approaches have been proposed to assist in predicting 

optimal reactivity. Experimental approaches have been used to estimate the general 

reactivity of covalent fragments with sulfur-containing species representing cysteine, 
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typically glutathione (GSH).114 This is often reported as GSH t1/2, the half-life of the 

reaction of a covalent compound with glutathione. The GSH trapping assessment is 

readily accessible within drug discovery due to its legacy as a model for reactive 

toxicity, particularly of metabolites.115 Therefore, such data is relatively easy to 

generate compared to protein binding reactivity or kinetics and serves as a convenient 

metric for comparing warhead reactivity with cysteine in TCI design.55  

 

 
Figure 2.1 Recently approved acrylamide containing covalent kinase inhibitors111 and 
alternative covalent warheads. Ibrutinib targets BTK and is used as a treatment for multiple 
B cell cancers. Afatinib and osimertinib both target EGFR and are treatments for non-small 
cell lung carcinoma. 

 

With regard to computational chemistry methods, modelling the reaction in the 

protein-ligand complex with QM/MM methods has shown success74,83,116–118 but 

remains complex and relatively time-consuming for drug discovery. Instead, one 

approach has been to reduce the covalent reaction between acrylamides and their 

protein target to a simple ligand-only reactivity metric. Ligand-only methods have 

shown some success in predicting reactivity trends for small covalent fragments.61,93,119 

Examples of these methods include using calculated proton affinity (PA), reaction 
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energies (DEreact), kinetic barrier heights (DG‡), electrophilicity index and NMR 

chemical shifts to predict covalent reactivity. Recent work from Houk et al. elaborated 

the full reaction mechanism for a small set of a,b-unsaturated carbonyl compounds 

illustrating that both kinetics and thermodynamics are important determinants of 

covalent reactivity of Michael acceptors with methyl thiolate.120 Complementary to 

this, Lonsdale et al used density functional theory (DFT) to calculate reaction energies 

of a diverse set of covalent fragments. Whilst they set out calculating some QM 

transition state (TS) barriers, most of their work focused on calculating the energy 

difference between reactants and adduct equivalent to species 1 and 5 (DEreact in Figure 

2.2). They found these to correlate well with GSH reactivity (R2=0.69).119 

Furthermore, Flanagan et al found that calculated reaction barrier heights (DG‡) 

correlate strongly with GSH reactivity (R2=0.92).56 DG‡ is the energy difference 

between species 1 and the transition state in Figure 2.2, and reflects the overall 

reactivity rate (GSH t1/2) of the reaction. PA provides an estimation of the free energy 

difference between the covalent-thiol adduct and its corresponding conjugate base (4 

and 5 respectively, DGPA in Figure 2.2). Krishnan et al found that PA values correlate 

well with b-elimination rates of covalent fragments from sulfur containing species, 

which vary based on the acidity of the a-carbon adjacent to the carbonyl group of the 

acrylamide.61 More recently, the electrophilicity index, derived from QM calculations 

has been shown to correlate well with experimental data. However, the authors note 

the difficulty in reactivity prediction using this method for larger compounds and non-

terminal acrylamides.63  
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Figure 2.2 A schematic view of thiol addition to a generic a,b-unsaturated carbonyl 
compound. The energy profile highlights the chemical species commonly used in ligand-only 
reactivity metrics: reaction energy (DEreact), reaction barrier height (DG‡) and proton affinity 
(DGPA). 

 

Proton affinities and reaction energies (DEreact) are particularly attractive 

reactivity metrics, as their computational prediction is relatively straightforward from 

quantum mechanical (QM) calculations.121  PA and DEreact are reactivity metrics that 

provide insight into the thermodynamic stability of the reaction. Although the TS is 

not explicitly used, PA and DEreact calculations give a good approximation to overall 

experimental reactivity as the enolate intermediate 4 that results from thio-Michael 

addition between cysteine and an acrylamide (Figure 2.2) is close in energy and 

geometry to the TS.119 When considering an appropriate computational protocol to 

predict reactivity for drug molecules, the ability to consistently and reliably generate 
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results for various input molecules is crucial because such an approach needs to be 

applicable to libraries of hundreds of analogues. The automated QM calculation of 

transition states presents a challenge because of the difficulty to reach geometrical 

convergence for saddle point structures whereas calculating PA and DEreact is more 

straightforward. However, new tools for TS searches are emerging and have been 

applied to thio-Michael reactivity, although the authors note the difficulty due to the 

typically flat nature of the potential energy surface (PES) around the TS.122 In 

addition, it is difficult to accurately represent solvation changes with continuum 

solvation models, particularly for reactions involving charged intermediates, although 

good results can be achieved with explicit treatment of solvent.123  

 

Our aim here is to investigate if two common ligand-only reactivity metrics, PA 

and DEreact, can accurately and reliably be used to predict biologically relevant covalent 

reactivity. We use a large number of compounds ranging from small covalent 

fragments, to large drug-like molecules to demonstrate how the simple ligand-only 

reactivity trends based on PA and DEreact compare favourably with GSH reactivity for 

similar small fragments but break down for larger drug like molecules. 

 

2.3 Methods 
A previous study used QM calculations to calculate proton affinities with the 

B3LYP functional and the 6-311+G(d) basis set.61 Here we use a modified protocol, 

appropriate for proton affinity calculations of larger compounds. We performed gas 

phase geometry optimizations at the B3LYP-D3/6-31G(d) level of theory, followed by 

single point energies in solution using B3LYP-D3/6-311+G(d,p) level of theory. This 

has been shown to be sufficient for the calculation of proton affinity values for simple 

organic molecules of this type.61,124,125 The inclusion of dispersion corrections to B3LYP 

has been recommended in QM calculations80, particularly when modelling cysteine 

reactivity.126 Although B3LYP has known limitations in modelling reactivity46,77,127,128, 

it provides an acceptable balance of accuracy and speed in this context for predicting 
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relative reactivities. We have also tested the M06-2X functional, but found it made no 

appreciable difference to the results (Appendix 1, A1.4). We included solvation by 

using the Poisson-Boltzmann Finite (PBF) element implicit water solvation model 

using a probe radius of 1.4 Å,129,130 which has been shown to reproduce experimental 

solvation energies for anionic species with good accuracy.131 All QM calculations were 

performed with Jaguar v8.5-13.132  

 

For larger, drug-like molecules, conformational sampling becomes important. 

An assessment of the variation of PA with respect to the conformation of each molecule 

was performed. Six representative molecules were chosen. A conformational search was 

performed on each using the Macromodel tool in Maestro v2018-3.133 The mixed 

torsional/low-mode sampling approach was used with default settings (maximum 

number of steps of 1000, 100 steps per rotatable bond and minimum and maximum 

distances for a low mode move of 3.0 and 6.0 Å respectively), using water as a solvent. 

An energy window of 5 kcal/mol was applied to discard higher energy conformations. 

This search resulted in over 2100 conformations for the 6 molecules combined. Two 

distinct conformations per molecule were extracted: the lowest energy conformation; 

and the next lowest energy with a root mean square deviation (RMSD) > 2.0 Å with 

respect to the first. This RMSD cut-off is typically used to distinguish structurally 

different conformations of drug-like molecules. These conformations were submitted to 

QM minimization at the B3LYP-D3/6-311+G(d,p) level of theory again using the PBF 

solvation model. All outputs were submitted to frequency calculations to confirm 

stationary points as minima, and to obtain zero-point energy for thermal and entropic 

corrections. These two minima were then used as inputs for the PA calculations as 

described above. PAs were calculated according to Figure 2.2. This involved calculating 

the difference in energy of the two states, 4 and 5 to obtain DGPA. These DGPA values 

were then normalized relative to the most acidic compound within each data set, 

providing what we refer to as DDGPA (kcal mol-1). Reaction energy (DEreact) values 

were calculated by taking the difference in energy between states 1 and 5. Since we 
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already had optimized structures for state 5, state 1 was generated simply by breaking 

the S-C bond to minimize towards the local reactant energy minimum. Geometry 

optimization was performed at the B3LYP-D3/6-31G(d) level in the gas phase, 

followed by single point energy calculations in aqueous solution at the B3LYP-D3/6-

311+G(d,p) level of theory. 

2.4 Results 
An online search was performed to identify data sets that contained small 

molecule compounds bearing acrylamide functionality and associated GSH reactivity 

data. The fragments identified had a molecular weight range of 133 to 271 g mol-1, 

and between 1 and 6 rotatable bonds. Using the method outlined above, we calculated 

proton affinity values for three data sets containing a total of 37 unique compounds. 

For each data set, a plot of the relative proton affinity (DDGPA) against the GSH 

reactivity rate (log k) reveals a strong correlation: data set 1: R2=0.79; data set 2: 

R2=0.90; and data set 3: R2=0.75 (Figure 2.3). A more negative DDGPA value 

corresponds to a more acidic compound and as expected these acidic compounds also 

have a faster GSH reactivity rate. 

 

 
Figure 2.3 Plot of GSH reactivity vs relative proton affinity (DDGPA) for data set 1,56 R2=0.79 
turquoise squares, data set 2,93 R2=0.90 magenta circles, data set 3,134 R2=0.75 blue triangles. 
Representative structures from each data set are shown. There is a positive correlation 
observed between  DDGPA and log kGSH for each data set. More acidic compounds (represented 
by a more positive DDGPA value) have faster experimental reactivity rates. 

 

Data set 1 Data set 2 Data set 3
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To test our approach for larger, more conformationally complex compounds, we 

performed a literature search for data sets that contained ‘drug-like’ compounds, 

bearing structural similarity to already approved covalent drugs on the market that 

also had published GSH reactivity data. The compounds had higher MW and increased 

flexibility, MW in the range 352 to 659 g mol-1, and number of rotatable bonds from 

6 to 13. We retrieved three data sets that contained 6, 11, and 9 compounds 

respectively (Table A1, Appendix 1). The first data set was based on a combination of 

anilinoquinoline and anilinoquinazoline EGFR inhibitors93, the second on a series of 

bis-anilino-pyrimidine EGFR inhibitors93 and the third were based on the chemical 

scaffold of pyrazolopyrimidine BTK inhibitors containing an inverted cyanoacrylamide 

warhead.22 

 

For these larger molecules, conformational sampling could be important. 

Therefore, we performed a test for the conformational dependence of PA. We took the 

6 compounds from data set 4, and identified the lowest energy conformation, and also 

the next lowest energy but structurally different conformation (>2 Å RMSD to the 

first, see methods) for each molecule. These conformations were then used to calculate 

the PA. The different conformations show significantly different PAs. Figure 2.4 shows 

there are large variations between the DDGPA calculated for the two alternative low 

energy conformations of each molecule. There are some examples such as compound 

15 (Figure 2.4) where the PA for the two different conformations varies by as much as 

9.3 kcal mol-1, whereas others are closer. In addition, we calculated a Boltzmann 

weighted DDGPA value for all compounds in data set 4, averaged over 4 low energy 

conformers per molecule (Appendix 1, A1.2). However, we find that there is no 

significant improvement in correlation between PA and experimental reactivity when 

using this approach (Figure A1, Appendix 1).  



 29 

 
Figure 2.4 (A) Plot of DDGPA vs log(kGSH) for the two conformers of each compound from 
data set 4, each pair of conformers for the same molecule is represented by different shape 
labels. (B) Structures of the lowest energy conformer and alternative low energy conformer 
with RMSD > 2 Å for compound 15. Hydrogen atoms are omitted for clarity. These conformers 
exhibit a large variation in calculated DDGPA, caused by a rotation of the acrylamide side 
chain. 

 

The strong conformational dependence of the PA suggested that it would not 

be an ideal metric for large compounds. We investigated this by performing PA 

calculations using the method outlined above for all the compounds in these new data 

sets, but only using the lowest energy conformation. This involved a total of 25 unique 

drug-like compounds across the three data sets. For each data set, the plot of the 

relative proton affinity (DDGPA) against the GSH reactivity rate (log k) revealed no 

correlation: data set 1: R2=0.12; data set 2: R2=0.00; and data set 3: R2=0.14 (Figure 

2.5). 

A
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Figure 2.5 Plots of GSH reactivity vs relative proton affinity (DDGPA) for (A) data set 4,93 
R2=0.12, (B) data set 5,93 R2=0.00 (C) data set 6,22 R2=0.14. (D) Representative structures 
from each data set. There is no correlation observed between  DDGPA and log kGSH for each 
data set. More acidic compounds (represented by a more positive DDGPA value) would be 
expected to have faster experimental reactivity rates, but this is not observed by the large 
molecules in these sets. 

 

As shown in Figure 2.3, the calculated PA for small fragments appears to be 

predictive for reactivity with GSH. Therefore, we examined it as a surrogate for 

predicting the reactivity of the larger molecules. We chose all the molecules from data 

set 4 and converted these to small fragments, so that only the core scaffold from the 

parent structure remained but each fragment was unique (Figure 2.6). These fragments 

are analogous to the types of compounds we studied in data sets 1-3. This approach is 

similar to the truncation algorithm used by Palazzesi et al,63 but we had to modify the 

approach slightly to avoid duplication of fragments. The calculated PAs for the lowest 

energy conformation of the full molecules and the fragments are shown in Table 2.1. 

The results suggest that the fragment calculations are less predictive for the reactivity 

of larger molecules and do not correlate with experiment. For instance, the most 

reactive molecule identified from experiment (F22) was predicted to be the least 

A B

C D

Data set 4 Data set 5 Data set 6
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reactive based on the fragment DDGPA calculation. Thus, even for the simpler case of 

GSH compared with protein reactivity, additional parameters beyond the local atomic 

and electronic environment are important. 

 

Table 2.1 Calculated DDGPA values at the B3LYP-D3/6-311+G(d,p)// B3LYP-D3/6-
31G(d) level for fragments and the corresponding parent compound, and experimental 
reactivity ranking. The predicted relative rank order from calculations is shown in parentheses. 
aExperimental ranking is based on most reactive being assigned ranking of 1, and least reactive 
a ranking of 6. 

Fragment Fragment DDGPA ‘Parent’ DDGPA Experimental rankinga 

F15 
 

-11.6 (4) -4.3 (3) 4 

F18 -7.0 (5) 0.0 (6) 6 

F19 -15.2 (1) -5.4 (2) 2 

F20 -13.2 (3) -3.3 (5) 5 

F21 -13.3 (2) -10.0 (1) 3 

F22 0.0 (6) -3.3 (4) 1 
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Figure 2.6 Fragments of drug-like compounds from data set 4 used here to calculate fragment DDGPA values. 

 

We also investigated how calculated DEreact values, a commonly used alternative 

computational reactivity metric, correlate with the experimental reactivity. DEreact 

values were calculated for all 68 compounds from data sets 1-6 (see methods). 

Generally, a poor correlation between DEreact and experimental GSH reactivity was 

observed (Figure 2.7). Across all the data sets, DDGPA generally performed better as a 

reactivity metric than calculated DEreact values, although neither did as well as would 

be needed for a drug discovery lead optimization setting. In short, four of the six data 

sets of close analogues showed no appreciable correlation (R2 < 0.5). 
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Figure 2.7 Plot of GSH reactivity vs reaction energy, DEreact for data set 1, R2=0.05 turquoise 
squares; data set 2, R2=0.68 magenta circles; data set 3, R2=0.33 blue triangles; data set 4, 
R2=0.09 green triangles; data set 5, R2=0.50 orange diamonds; data set 6, R2=0.00 black 
pentagons. 

 

2.5 Discussion 

The calculation of PA values for small covalent fragments bearing a,b-

unsaturated functionality initially appears to be a promising covalent reactivity metric. 

For compounds of this type, we observe that increased acidity at the a-carbon of the 

acrylamide group correlates with faster GSH reactivity rates, as expected. This reflects 

the stability of the enolate intermediate (compound 4 in Figure 2.2) in the covalent 

thio-Michael reaction mechanism, which leads to faster reaction. The resulting plots 

show that DDGPA values correlate strongly with experimental GSH reactivity for small 

fragment compounds. The results are similar to previously published work61 that found 

proton affinity to correlate with b-elimination rates with R2=0.96. 

 

For the larger and more complex compounds, no correlation is observed between 

DDGPA values and GSH reactivity. To understand this result, we investigated the effect 
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of conformational differences in our protocol by examining in detail the 6 compounds 

in data set 4. Two sources of potential error were identified, the first being that 

different input conformations significantly impact the calculated PA for each 

compound. The difference in PA between conformer pairs obtained from the 

conformational search (see Methods) can be as large as 9.3 kcal mol-1 (compound 15, 

data set 4, Figure 2.4A and 2.5). In this particular case, there was a rotation of the 

substituted acrylamide-thiol adduct leading to an additional NH-N interaction in one 

of the conformers that was not present in the other (Figure 2.4B). The second source 

of possible error resulted from the difference in conformation between the neutral and 

ionized species. After a geometry optimization, conformational changes in the ionized 

species were often observed, arising due to the change in hybridization (sp3 to sp2) of 

the alpha-carbon upon deprotonation causing a change in intramolecular interactions. 

Rotations of flexible groups attached to aromatic rings and movements of the 

acrylamide-thiol adduct were also observed, suggesting the ionized species were 

optimized to alternate local minima from the neutral species. We used more stringent 

convergence criteria during our optimizations in order to address this, however, it did 

not significantly change the results (Figure A2, Appendix 1). These sources of error 

result in an overestimation of the calculated PA, suggesting an inaccurate comparison 

of the relative change in energy associated with proton affinity with the inclusion of 

conflicting conformational effects, and therefore explain the lack of correlation between 

PA and experimental reactivity. 

 

An additional factor that could lead to errors in the calculation of DDGPA values 

is the contribution to the free energy from low energy vibrational modes. These low 

energy modes are particularly important for the large, flexible compounds in data set 

4, 5 and 6, and are difficult to calculate accurately and can therefore lead to errors in 

the free energy calculation.135 To investigate the affects that these modes have on our 

free energy values, we used the Quasi Harmonic Oscillator (QHO) approximation136 to 

scale all frequencies under 100 cm–1 up to 100 cm–1 (Table A2, Appendix 1). These 
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calculations were performed using GoodVibes, a Python script from the Paton lab.137 

Whilst some small changes to the DGPA values were observed, we conclude that these 

changes are small and do not significantly improve the correlation between DDGPA and 

experimental GSH reactivity, therefore offering no improvement to the predictive 

power of ligand-only methods for the larger molecules. 

 

The DEreact calculations also showed generally poor correlation with GSH 

reactivity. This is in contrast to previous work by Lonsdale and colleagues who 

reported a correlation of R2=0.69. Their study combined diverse molecules and 

warheads.119 DEreact values may offer reasonable reactivity prediction for compounds 

that differ greatly in reactivity, but will generally not predict reactivity within a 

chemical series, as shown by our results. It is also likely that reaction energy 

calculations are also more susceptible to conformational effects than DDGPA, due to 

the greater variability in geometry optimization of methyl thiolate relative to the 

reactive warhead.  

 

Although previous studies have reported success in using a fragment based 

approach to improve correlation between ligand-only reactivity metrics and 

experimental reactivity,63 we do not find it useful in the context of PA. Inspection of 

the experimental data and molecular structures casts further doubt on using a fragment 

approach to predict the reactivity of larger molecules. For instance, compounds 16 

(data set 5)93 and 20 (data set 4)93 all contain essentially the same fragment (a 

dimethylamine substituted phenylacrylamide group), but their experimental reactivity 

differs by approximately 1.3 log units (Figure 2.8). This variation in reactivity 

highlights that modifications to compounds distal from the site of reaction can have a 

significant impact on reactivity (conformational effects will also contribute).  



 36 

 
Figure 2.8 Four compounds that contain the same dimethylamine substituted 
phenylacrylamide fragment (highlighted in red) but have a wide range of experimental GSH 
reactivity, covering 1.3 log units.93 

 

All other factors being equal, the change in reactivity caused by a small 

structural modification may be captured by PA calculations. Indeed, there could be 

scenarios in lead optimization where analogues are so similar that this method delivers 

results that translate into useful design prioritization. PA and reaction energies seem 

to be attractive reactivity metrics due to their simplicity. For PA, only geometry 

optimizations of the covalent thiol adduct and its conjugate base are required, negating 

the need to control the position of methyl thiolate during transition state searches and 

calculations of reaction energies. However, we see here that, for many common 

modifications in the medicinal chemistry data sets, further effects are at play. The 

calculation of PA, reaction energies and reaction barrier heights all require careful 

consideration of conformational variations in each compound as it is important to 

ensure that differences in the energy calculation do not arise from competing 

conformational effects. Lonsdale et al. found that the calculation of reaction energy 

barriers through transition state optimizations to be particularly challenging for large 

‘drug like’ compounds and opted to calculate reaction energies instead.119 
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For biological reactivity, PA calculations require careful consideration that 

input geometries represent local minima corresponding to the noncovalently or 

covalently bound conformation, as opposed to global energy minima adopted in 

solution.138 Reactivity of covalent fragments with GSH in solution is likely to be less 

constrained, but still dominated by a small number of conformations. Although 

conformational searches and low energy conformers were selected for our calculations, 

it is possible that these low energy conformers are not representative of the 

conformations that react with GSH in solution. Even Boltzmann weighted PA values, 

averaged over 4 low energy conformers that would be expected to dominate reactivity 

did not improve reactivity predictions (Appendix 1, Figure A1). In the protein 

environment it is easy to envisage that the reaction proceeds from the bound 

conformation of the ligand placed optimally for reactivity with the cysteine in the 

protein pocket. Replicating these reactive conformations is difficult to achieve for PA 

calculations and in part explains the lack of predictive ability of ligand-only approaches 

and indicates the need for treatment of biological reactivity in situ in biological targets. 

 

2.6 Conclusions 
In summary, calculated proton affinity values can serve as a useful reactivity 

metric for small molecule fragment compounds. However, we find proton affinity to be 

a poor reactivity metric for larger, ‘drug-like’ compounds. Calculated reaction energies 

are generally worse as a reactivity metric than proton affinities for both fragments and 

drug-like compounds. Our work shows that ligand-only approaches such as the 

calculation of reaction energies, barrier heights and proton affinity values are 

insufficient for reliable covalent reactivity prediction. These methods oversimplify 

covalent determinants of reactivity, and do not account for factors that will affect the 

reactivity of a covalent drug ‘in-situ’ (e.g. effects of the environment within a protein 

target). Calculated PA and reactivity are conformation dependent; experimental 

studies of ligand-only reactivity may also be confounded by conformational effects. 
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More detailed methods are needed to predict reactivity of covalent drugs in a protein 

environment, which include the (e.g. electrostatic) effects of the environment, the 

bound conformation and solvation of the covalent inhibitor in the target site; such 

methods, capable of modelling reactivity within proteins, including combined QM/MM 

techniques.139,140  
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Chapter 3 

Investigating cysteine reactivity with classical 

Molecular Dynamics and Constant pH Molecular 

Dynamics Simulations 

 

3.1 Introduction 
Non-catalytic cysteine (Cys) residues in protein kinases are typically targeted by 

covalent kinase inhibitors owing to potential gains in selectivity.141 This is because Cys 

residues are found in relatively low abundance in the proteome compared to the other 

amino acids and possess a nucleophilic thiol side chain.142 The thiol side chain in Cys 

residues can be deprotonated to form a negatively charged thiolate, which is generally 

regarded to be the more reactive form of Cys.143 The tendency of the thiol group to 

lose a proton can be used as a measure of Cys reactivity and is quantified by measuring 

or predicting the pKa of the desired Cys residue. Cys pKa and reactivity is determined 

by numerous factors including steric and electronic factors of the surrounding protein 

environment, how well solvated the Cys residue is and the stability of the thiolate 

anion.144 The pKa of a Cys residue free in solution has been measured as 8.6 from 

potentiometric titration experiments.145 The pKa of non-catalytic Cys residues in 

proteins can range between 7.4 to 9.1,146 and some catalytic Cys residues have reported 

pKas as low as 2.147 The lower the pKa, the more reactive the Cys is because the 

increase in probability of a deprotonated Cys. The large shifts in Cys pKa makes it 

challenging to accurately characterise, although there are a number of computational 

and experimental methods available. 

 

Methods to experimentally determine Cys pKa are not the focus of this work, but 

they serve as essential comparisons for any computational pKa prediction model. 

Accurate determination of amino acid side chain pKas in protein environments by 
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experiment is extremely difficult but can be achieved through the use of spectroscopic 

methods by measuring reaction rates of the thiol and NMR spectroscopy.148 

Computational pKa prediction methods use a thermodynamic cycle to calculate the 

deprotonation energy of the amino acid side chain in solution, and then use this to 

evaluate the acid dissociation constant (Ka) and subsequently the pKa.149 The simplest 

methods are based on implicit solvation models and include environmental electrostatic 

effects from numerical solutions of the Poisson-Boltzmann equation.149 Examples 

include the H++150 and MCCE151 methods. Arguably the most popular method for 

the rapid prediction of titratable groups in proteins is the empirical PROPKA model.152 

This uses a number of scoring functions and descriptors to capture the electrostatic 

environment that are parameterised on a large number of experimental pKas.153 

Although these methods can have a high level of accuracy, they are usually 

parametrised specifically for aspartate (Asp) and glutamate (Glu) residues. The 

performance for Cys residues is usually worse, as shown in a study from Awoonor-

Williams et al..66 They took a test set of 18 Cys residues from protein kinases where 

an experimental pKa and crystal structure were available. Several pKa prediction 

methods were tested, including PROPKA, H++ and MCCE. These were compared 

with a replica exchange thermodynamic integration (RETI) approach using the 

CHARMM36 and AMBER ff99SB-ILDNP force fields. The electrostatic and empirical 

models (PROPKA, H++ and MCCE) were found to perform poorly in comparison to 

explicit solvent models with RMSDs of 3.4-4.7 for electrostatic and empirical models 

compared to 2.4-3.2 for explicit solvent models.66 Variations in the force field (FF) 

used was also important, with the CHARMM FF performing better than the AMBER 

FF. The major limitations of these methods are the use of approximate implicit 

solvation models to describe the surrounding environment, and that they only provide 

a pKa estimate on static structures. Proteins are highly dynamic, and both solvation 

and conformation can have a large impact on pKa values.  
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More robust pKa prediction methods that account for protein dynamics involve 

FF methods such as molecular dynamics (MD) simulations. In classical MD 

simulations, the potential energy (PE) of the system is described by a FF. The general 

form of the AMBER FF is shown in Equation 3.1.154 

 

Equation 3.1. PE function in the AMBER FF.154  
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The PE function shown in Equation 3.1 is comprised of all the bond stretching, 

angle bending, dihedral torsions, non-bonded attractive and repulsive (Lennard-Jones) 

and electrostatic coulombic interaction terms that are present in the system of interest. 

To track how the PE evolves with time as atoms move in a classical system, the 

equations embodied by Newtons second law of motion (F=ma) are integrated. The PE 

is linked to the forces through the relation in Equation 3.2.155  

 

Equation 3.2 Newton’s second law of motion as a function of PE (V) and distance (R).155  

 

To run an MD simulation, the initial position of the atoms of the system are 

chosen (usually from a protein crystal structure), and initial velocities are assigned 

randomly from a Boltzmann distribution. The PE is then calculated according to 

Equation 3.1, and Newton’s equations are then used to predict new positions and 

velocities after a short time interval, dT. The energy and gradient at the new positions 

can be evaluated, and these are used to predict new velocities and acceleration 

vectors.155 The whole process is then repeated for each MD step. The parameters 

required by Equation 3.1 are defined in an FF and specified for protein atoms, water 

 𝐹 = −
𝜕𝑉
𝜕𝑅 
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molecules and small organic molecules. The protonation states of all ionisable residues 

must be assigned during system set up, with a common program used to predict these 

being PROPKA. The protonation states are then fixed for the duration of the 

simulation.156 This is a poor description of the protonation state of certain amino acid 

side chains, particularly if the pKa of the amino acid side chain is close to the pH at 

which the protonation states were determined. Although classical MD simulations do 

not provide a means to directly calculate pKa values of titratable residues, snapshots 

from MD simulations can be used as input for empirical implicit solvent models such 

as PROPKA to estimate how the pKa changes over the course of a trajectory.157  

 

A more robust method for examining protonation state distributions from MD 

simulations is to use constant pH molecular dynamics (CpHMD) simulations. Several 

implementations of the CpHMD method exist, including a continuous protonation 

state model,158,159 a discrete protonation state model160 and a non-equilibrium 

molecular dynamics/Monte Carlo (ne-MD/MC) model.161 The discrete protonation 

state model developed by Mongan et al. for the AMBER force field will be discussed 

briefly as it is the model used in this work. In discrete protonation state CpHMD 

simulations, the MD simulation is run at a fixed pH value, and the protonation states 

of titratable residues are allowed to change over the course of the simulation. The 

transition free energy (FE) of the protonation state change is evaluated in implicit 

solvent according to a Monte-Carlo (MC) energy criterion (Equation 3.3).160  

 

Equation 3.3 Calculation of the transition FE between protonation states in the discrete 
protonation state CpHMD method in AMBER.160  

 Δ𝐺 = 𝑘&𝑇-𝑝𝐻 − 𝑝𝐾',)*+1 ln 10 + ∆𝐺*,*- − ∆𝐺*,*-,)*+  

 

 

If the transition FE is calculated below a certain threshold value, the 

protonation change is allowed, and MD is continued with the new protonation state. 

MD can be carried out in both implicit160 and explicit162 solvent, although the 
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protonation state change is always carried out in implicit solvent. In explicit solvent 

CpHMD, MD is propagated as usual, and if a protonation state change is accepted, a 

solvent relaxation step follows and the MD run is continued.162 Based on the 

distribution of protonation states sampled for a given residue, the most likely 

protonation state can be estimated at the chosen simulation pH. If CpHMD simulations 

are run at a range of pH values, a titration curve can be produced to give an accurate 

pKa estimate for a particular residue. There are also replica exchange (RE) versions of 

CpHMD simulations that can be run in implicit or explicit solvent where exchanges 

are made between different pH replicas. CpHMD coupled with pH replica exchange 

dynamics (pH-REMD), will hereafter be abbreviated as CpHREMD. These simulations 

have been reported to improve sampling of the protonation state distribution and aid 

in convergence of CpHMD simulations.162 When tested on Hen Egg White Lysosome 

(HEWL), CpHREMD simulations predicted more accurate pKa values for Asp, Glu 

and histidine (His) residues when compared to implicit solvent models (root-mean-

square-error (RMSE) of 0.92 and 1.32 for explicit and implicit solvent respectively). 

Unfortunately, HEWL does not contain any Cys residues so benchmarks for the 

performance of CpHMD for prediction of Cys pKas is sparse. The CpHREMD method 

accurately reproduces the pKa of a model Cys compound and a Cys containing 

pentapeptide.162  

 

Due to the resurgence of interest in targeting Cys residues by covalent 

inhibitors, several studies have assessed the accuracy of CpHMD methods for 

predicting Cys reactivity. The first study, by Awoonor-Williams et al. used two 

different implementations of CpHMD and compared the results to a RETI approach.65 

The first CpHMD implementation they tested is the discrete protonation state CpHMD 

method implemented in AMBER that uses the replica exchange technique in explicit 

solvent.162 The other implementation is a ne-MD/MC approach and is implemented in 

NAMD.163 The Cys pKa of EGFR kinase and JAK3 kinase were computed using each 

implementation. The Cys797 in EGFR was calculated as 13.5 and 11.5 from the 



 44 

CpHREMD and ne-MD/MC methods respectively. For JAK3 kinase, the Cys909 pKa 

was 12.7 and 11.1 from CpHREMD and ne-MD/MC. These results compare well with 

the RETI results, which found pKas of 13.0 and 11.1 for the Cys residues in EGFR 

and JAK3 kinase.65 For JAK3 kinase, the ne-MD/MC method is closest to the TI 

method, but for EGFR the CpHREMD method is in closest agreement with TI results. 

Overall, the results are in reasonable agreement given the different implementations of 

CpHMD and different force fields used by each technique. In spite of the consistency 

between the CpHMD and RETI methods, the scarcity of experimental Cys pKas in 

protein kinases makes a detailed assessment of the accuracy of these methods difficult. 

There is no experimental pKa estimate for JAK3 kinase. The experimental EGFR 

Cys797 pKa of 5.5 reported by Truong et al.164 significantly deviates from the higher 

pKa estimates from all of the computational models. A study by Liedl et al. examined 

Cys pKa in papain, a cystine protease using CpHMD simulations.67 This study was 

unable to reproduce the acidic-shifted Cys25 pKa in papain of 3.3. Their CpHMD 

simulations employed various implicit solvent CpHMD methods available within 

AMBER, including a new continuous CpHMD method implemented by Jana Shen.165 

The continuous CpHMD model assigns a continuous titration coordinate to each 

titratable residue that describes the titration behaviour of a fictitious particle.158 The 

implementation in AMBER uses a slightly modified Born radius for sulfur of 2.0 Å 

compared with the original value of 1.8 Å and the GB-Neck2166 implicit solvent 

model.167 This method improved the pKa prediction of Cys25 in papain with a 

predicted pKa of 9.8.67 This compares to a pKa estimate of 14 by the implicit solvent 

CpHMD method using the GB-OBC168 solvent model.67 However, all methods failed 

to predict the acidic pKa shift for Cys in this cysteine protease, and the authors note 

that no improvement was observed by using CpHREMD in implicit solvent.67 There 

appears to be a tendency of the computational pKa prediction methods to predict Cys 

pKas that are higher than expected. The solvent model used to assess protonation state 

changes is clearly important, as are the parameters used to describe the sulfur in the 

thiol group of the Cys residue.  
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The aim of this chapter is to investigate the reactivity of the Cys residue, C481, 

in Bruton’s tyrosine kinase (BTK) using classical MD and CpHMD simulations, 

specifically the explicit solvent CpHREMD method in AMBER.162 Classical MD 

simulations will enable the conformational dynamics of C481 in BTK to be examined, 

along with its interaction with the covalent inhibitor ibrutinib. This will reveal any 

potential reactive conformations that will be important starting points for Chapter 5, 

where a detailed reactivity study between C481 and ibrutinib is presented. CpHREMD 

simulations will give an indication of the likely protonation state of C481 and will help 

to inform its reactivity. Although there is no experimental pKa estimate of C481, the 

results can be compared with other studies that have used computational techniques 

to predict pKas of Cys residues in other protein kinases. Any deviations from expected 

behaviour can be explored, with a particular focus on the parameters that are used to 

describe sulfur in a Cys thiol and thiolate in the AMBER force field. The surrounding 

protein environment can have a marked effect on Cys pKa, depending on the properties 

of surrounding amino acid residues.39 For kinases in particular, the residue that 

occupies the i+3 position relative to the Cys is particularly important.110 Most i+3 

residues in kinases are either Asp or asparagine (Asn). A more acidic Asp in the i+3 

position has the effect of shifting the Cys pKa to higher values than its solution value 

of 8.6.145 For example, the pKa of Cys797 in EGFR with an i+3 Asp was estimated to 

be 11.1.65 Conversely, BTK contains an Asn residue in the i+3 position. Due to its 

neutral side chain pKa of C481 is more acidic and calculated to be 10.4 in the same 

study.65 This would make the C481 thiol side chain neutral at physiological pH. This 

is at odds with many studies that assume the starting point of covalent modification 

of Cys is the thiolate anion. The combination of classical MD and CpHMD simulations 

will hopefully be able to explain the intrinsic Cys reactivity in BTK.  
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3.2 Methods 
Structural coordinates of the covalently bound BTK/ibrutinib complex were 

taken from PDB 5P9I.99 Hydrogens atoms were added in situ using the protein 

preparation wizard in Maestro,133 where PROPKA3.1152,153 was used to assign 

protonation states of titratable amino acid side chains and optimise the hydrogen 

bonding network. For the non-covalently bound ibrutinib inhibitor, RESP charges were 

generated using the RedServer,169 and any missing FF parameters were generated using 

antechamber, distributed the AMBER2018 package. The Solvate program, developed 

by H. Grubmuller and V. Groll, was used to solvate the system by creating a solvation 

shell of 5 Å of TIP3P water around the protein using 8 gaussians. The AmberTools 

program tleap was then used to create a truncated octahedral box of solvent around 

the system with a padding of 5 Å and a closeness of 0.75. Na+ and Cl– ions were added 

to create a salt concentration of 0.1 M.170 

 

The system was then subject to minimisation, then heating from 0 to 293.15 K 

over 75 ps with a weak 5 kcal mol–1 restraint on backbone CA atoms using Langevin 

dynamics and a collision frequency of 5 ps–1. Equilibration was then performed in the 

NPT ensemble, using Langevin dynamics and a Monte Carlo barostat to maintain the 

pressure at 1.01325 bar with a pressure relaxation time of 1 ps. The weak backbone 

restraints were gradually released during this equilibration phase. 

 

The equilibrated structure was used as an input for classical MD simulations and 

CpHMD simulations. For the classical MD simulations, 500 ns of production MD in 

the NPT ensemble was run according to the same pressure and regulation settings as 

the equilibration phase. The CpHMD simulations were run in the NVT ensemble, and 

8 pH replicas were chosen to span the pH range 9.0 – 16.0 in steps of 1.0 pH unit. For 

each pH replica, 100 ns of pH-REMD were run, resulting in a total simulation time of 

800 ns. Protonation state changes were attempted every 200 fs, and 100 steps of solvent 

relaxation dynamics was performed after each successful protonation state change. The 
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cphstats program distributed in AMBER 18 was used to analyse the simulations, 

including determination of protonation state statistics for C481.170 The pKa of C481 

was calculated by fitting CpHMD simulation data to the Hill equation (Equation 3.4). 

 

Equation 3.4 The Hill equation used to calculate pKa from CpHMD simulation data. 

 𝑓. =
1

1 + 10/(12'314)
  

 

From Equation 3.4, fd corresponds to the deprotonated fraction of the residue of 

interest and n is the hill coefficient. When the ionisable residue of interest does not 

interact with other ionisable residues, n = 1 and the titration curve is described by the 

Henderson-Hasslebalch equation.171 However, for interacting residues n ¹ 1 and this 

can indicate cooperativity or poor sampling in CpHMD simulations.162   

 

3.3 Results and discussion 

3.3.1 Classical MD simulations 

Visual inspection of the 500ns classical molecular dynamics simulation of BTK 

with ibrutinib non-covalently bound in the ATP binding pocket shows that C481 

predominately adopts a conformation where it does not interact with the acrylamide 

group of ibrutinib (Figure 3.1(B)). Very occasionally however, the Cys residue 

undergoes a small conformational change and does form a weak interaction with 

ibrutinib (Figure 3.1(A)). The difference in both of these conformations is best 

characterised by a dihedral angle, defined by the N, CA, CB and S atoms of the Cys 

residue. Throughout the simulation, the dihedral angle is centred around a value of 

approximately 175° (Figure 3.3A) when C481 is oriented away from ibrutinib. 

Although it is not immediately obvious from Figure 3.3A, the C481 thiol group does 

change orientation and interact with the inhibitor, causing a dihedral angle shift to 

approximately 60° (Figure 3.1B). However, this conformation is rarely sampled in the 
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MD simulation and is observed only 0.03% of the time so is not visible in the histogram 

plot in Figure 3.5A, which shows the distribution of this dihedral angle.   

 

 
Figure 3.1 Representative structures of the BTK active site from classical MD simulations 
showing a reactive C481 thiol conformation (A) and an unreactive C481 thiol conformation 
(B). 

 

When C481 is oriented away from the inhibitor, the distances between the sulfur 

atom of the Cys thiol and the b-carbon in the acrylamide group of ibrutinib are quite 

large. The histogram in Figure 3.5B shows that the S-C distance is centred around a 

value of approximately 6.5 Å throughout the MD trajectory. Conversely, in the few 

frames where C481 rotates and points towards the inhibitor, the S-C distance reduces 

to approximately 4 Å. The variation in S-C distance is largely dominated by the 

orientation of C481, and not the flexibility of ibrutinib, as the acrylamide warhead is 

maintained in position by a hydrogen bond between the acrylamide carbonyl oxygen 

atom and the backbone N-H of C481 (Figure 3.1). The S-C distance is important for 

covalent modification as it defines the reaction coordinate for the S-C bond formation 

step in a thio-Michael addition reaction. The large S-C distances and orientation of 

C481 observed throughout the MD trajectory indicate that the Cys mostly adopts an 

unreactive conformation. This is supported by the observed changes in Cys orientation 
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characterised by the dihedral angle (Figure 3.3) in the MD trajectory and also crystal 

structures of the non-covalently bound and covalently bound forms of ibrutinib. In the 

crystal structure of an ibrutinib analogue (PDB 5P9I)99 that is non-covalently bound 

in the ATP binding pocket of BTK, the C481 dihedral angle measures 173°, indicative 

of the unreactive conformation observed during MD simulations. In addition, the 

crystal structure of ibrutinib covalently bound to C481 (PDB 5P9J)99 shows that the 

dihedral angle is 62°, the same angle observed in MD simulations where the Cys thiol 

is oriented directly towards the inhibitor. The orientation of the Cys is therefore likely 

to be a crucial factor in the reactivity of C481 with covalent warheads, as it needs to 

be oriented towards the inhibitor for the reaction to occur.  

 

 
Figure 3.2 Representative structures of the BTK active site from classical MD simulations 
showing reactive Cys thiolate conformation (A) and an unreactive Cys thiolate conformation 
(B). 

 

There is also the possibility that the Cys thiolate is actually the reactive species, 

instead of the thiol group. This depends largely on the Cys pKa, which is investigated 

in subsequent sections of this chapter. To see if the Cys thiolate adopts similar reactive 

and unreactive conformations to the thiol, 500 ns of MD was performed on the non-

covalently bound BTK/ibrutinib system where C481 was modelled as a negatively 
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charged Cys thiolate. This is how several reactive Cys are modelled, especially in 

cysteine proteases.72,83,172 MD simulations of the Cys thiolate using standard AMBER 

FF parameters show that, like the Cys thiol, the Cys thiolate also adopts a reactive 

and unreactive conformation as defined by the Cys dihedral angle. (Figure 3.2). In the 

unreactive conformation, the thiolate points away from the inhibitor and towards the 

same pocket as the thiol group, forming interactions with backbone N-H groups of 

nearby residues. In the reactive conformation, the thiolate points in the direction of 

the inhibitor, and interacts with the i+3 Asn residue, N484, and 3 water molecules.  

 

 
Figure 3.3 Histograms showing the distribution of dihedral angle (A) and S-C distance (B) 
for the C481 thiol, and the distribution of dihedral angle (C) and S-C distance (D) for the 
C481 thiolate. 

 

However, when C481 adopts this orientation, the hydrogen bond that holds the 

inhibitor in place breaks and the inhibitor moves away from C481 (Figure 3.2). This 

could be the result of electrostatic repulsion between the anionic thiolate and the 

acrylamide group in ibrutinib, or steric bulk of the water molecules that move into the 

pocket to stabilise the thiolate. This suggests that when the thiolate is oriented towards 



 51 

the inhibitor it is not actually a reactive conformation after all. However, this could be 

an artefact of the classical force field that would not allow any changes in polarisation 

or electronics that may be induced by the thiolate-inhibitor interaction.  

 

 
Figure 3.4 Active site of BTK showing the most stable conformations adopted by the Cys 
thiol (A) and Cys thiolate (B) over the course of a 500 ns MD simulation. 

 

The C481 thiolate explores a greater number of conformations than the C481 

thiol, as shown by the additional cluster in the dihedral angle around 300°. This 

corresponds to a conformation where the thiolate group points towards the inhibitor, 

but towards the piperidine ring rather than the acrylamide group. At dihedral angles 

of 300° the inhibitor also moves away from C481, resulting in large S-C distances of 

approximately 6 Å due to the presence of water molecules stabilising the thiolate. The 

S-C distance sampled by the thiolate is on average slightly shorter than the thiol 

distance (Figure 3.3). These slightly shorter S-C distances appear when the thiolate is 

oriented away from the inhibitor however, making it unlikely that the thiolate is the 

reactive state of C481 in BTK. A closer look at the C481 conformations that are 

predominately observed in MD simulations reveals why the C481 is rarely observed to 

adopt a reactive conformation, where the thiol group is oriented towards the inhibitor. 

The pocket that C481 interacts with is comprised of a number of residues that both 
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the Cys thiol and thiolate can interact with.  The Cys thiol donates hydrogen bonds 

to the backbone carbonyl oxygen atoms of Ala525, Arg526 and Cys527. It also accepts 

a hydrogen bond from the backbone N-H of Leu482 (Figure 3.4A). This means the 

thiol is stabilised in this conformation by four hydrogen bonding interactions, as 

opposed to only two when the thiol is oriented towards the inhibitor. For the thiolate, 

the Cys changes position slightly in the pocket so that it can interact with the backbone 

N-H groups of Leu483 and N484, the amide side chain of N484 and three water 

molecules. When the thiolate is oriented towards ibrutinib however, two of the 

hydrogen bonds to the backbone N-H groups break, so it is only stabilised by four 

hydrogen bonding interactions instead of six. 

 

Table 3.1 Amount of time that reactive distances are observed between C481 and possible 
proton acceptor sites in BTK. 

 % of frames thiol % of frames thiolate 

Optimal Cys orientation 0.03 0.72 

S-C distance < 4.0  0.01 0.02 

SH----O=C distance < 4.0 0.09 0.07 

SH----ASN484 distance < 4.0 0.03 60.78 

 

The classical MD simulations of the C481 thiol and thiolate both indicate that 

the principal conformation adopted by C481 is unreactive, as it points away from the 

inhibitor. This is illustrated by the distribution of the Cys dihedral angle and the S-C 

distances over the MD trajectory (Figure 3.3).  However, there is also a proton transfer 

step prior to S-C bond formation. It is unclear if any neighbouring residues act as a 

proton acceptor for C481 in BTK, analogous to the i+3 Asp residue in EGFR kinase.74 

Potential proton acceptors in the vicinity of C481 include the amide side chain of N484, 

the acrylamide group of ibrutinib itself and a water molecule. Simple distances between 

relevant atoms (Table 1 and Figure 3.5) show that interactions between the thiol and 

possible proton acceptor sites do not routinely form over the course of the MD 

trajectory. The thiolate forms regular interactions with the amide side chain of an 
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N484, but this is in a stabilising capacity and is unlikely to be in a proton acceptor 

role. Asn has been reported to act as a proton shuttle, but only when in a basic imine 

resonance form that can be stabilised by a metal ion.173  

 

 

Figure 3.5 Histograms showing the distribution of distances between C481 and possible 
proton acceptors. Ibrutinib carbonyl oxygen atom and thiol group (A), amide side chain of 
N484 and thiol group (B), Ibrutinib carbonyl oxygen atom and thiolate sulfur (C), amide side 
chain of N484 and thiolate sulfur (D). 

 

The interaction between the C481 thiol/thiolate side chain and water is clearly 

important. Although the C481 residue is situated on the edge of the ATP binding 

pocket which appears to be exposed to the bulk solvent, the hydration number 

calculated along the MD trajectory shows the thiol is quite poorly solvated when 

ibrutinib is bound, with an average hydration number of 3.2. This is quite low when 

compared with other kinases, where hydration numbers have been found to range from 

3 to 6.65 C481 is situated in a small pocket and, when the inhibitor is bound, is 

effectively shielded from water (Figure 3.1), thus helping to explain the low hydration 
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number. The thiolate appears to be better solvated than the thiol in MD simulations, 

with an average hydration number of 3.4.  

 

 
Figure 3.6 RDFs for the thiol S---HOH interaction (A), thiol S---OH2 interaction (B), thiolate 
S---HOH interaction (C), and thiolate S---OH2 interaction (D). 

 

Water molecules clearly play an important role in stabilising the negatively 

charged thiolate and were observed to move towards the pocket to stabilise the thiolate 

and even displaced the acrylamide group of ibrutinib in some cases (Figures 3.2 and 

3.4). The average hydration numbers calculated by counting the water molecules no 

further than 3.5 Å away from the C481 thiol group agree reasonably well with the 

radial distribution functions (RDF) calculated for the Cys thiol and thiolate along the 

MD trajectory (Figure 3.6). The RDF for the thiol group shows an initial solvation 

shell centred approximately 3.5 Å away from the sulfur atom. The corresponding 

integration trace estimates this solvation shell to be comprised of 2.5 water molecules 

for the S---OH2 interaction. For the thiolate, the first solvation shell is centred 

approximately 3 Å away from the S– anion and is comprised of 3.2 water molecules. 
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RDFs are expected to tend toward 1 at large distances (r). This is observed in the 

RDFs presented in Figure 3.6, but only at very large distances of approximately 30 Å 

because of the presence of the protein. Cys residues with lower hydration numbers are 

typically associated with higher pKa values, although other factors including the 

electrostatic environment surrounding the Cys are also important. It might be expected 

that C481 has a relatively high pKa due to its low hydration number. Cys pKa cannot 

be measured by classical MD simulations, and so constant pH Molecular Dynamics 

(CpHMD) simulation must be used. 

 

3.3.2 CpHMD 

To characterise C481 pKa, CpHREMD simulations were carried out in explicit 

solvent. Initially, CpHREMD simulations were run at 8 pH replica values ranging 

between 5.0 and 12.0. Because the pH of a free Cys residue in solution is reported to 

be 8.6, the pH replica range was chosen to centre around this value. The pH of C481 

in BTK was predicted to be higher than expected at 13.0. As a pH replica of 13 was 

not explicitly sampled in the CpHREMD simulations, the simulations were repeated 

at pH replicas ranging between 9.0 and 16.0. This time, a pH of 13.2 was predicted for 

C481 by CpHREMD simulations in explicit solvent (Figure 3.7). Examination of the 

RMSD, based on  a-carbons only for each pH replica, shows that the BTK kinase 

domain appears to be relatively stable, even at high pH values (Figure 3.8). Slightly 

larger RMSD values are observed at higher pH (especially at a pH of 16.0), indicating 

larger deviations from the crystal structure, which is to be expected due to the 

significant deviation from physiological pH. The overall stability of  BTK across the 

pH range is evident from the similarity of the histogram plots and is consistent with 

experimental studies that have shown kinases retain their secondary and tertiary 

structure at pH values much higher than physiological pH.174 The convergence of the 

CpHREMD simulations at each pH replica were assessed by plotting the cumulative 

average of the protonated fraction of C481 over the course of the 50 ns MD trajectories 
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(Figure 3.8), a convergence metric previously used for CpHMD simulations.171 These 

plots indicate that there is little variation in the protonation state of C481 after 50 ns 

of sampling has been performed and that the simulations are therefore well converged. 

This amount of sampling  is consistent with a previous study that used CpHREMD to 

measure Cys pKas in EGFR and JAK3 kinase.65 

 

 
Figure 3.7 Titration curve of C481 in BTK from CpHREMD, with 50ns of MD performed 
per pH replica. The C481 pKa was calculated using the Hill equation (Equation 3.4), resulting 
in a pKa estimate for C481 of 13.2 and a Hill coefficient of 0.96. 

 

Sampling issues are unlikely to be the cause of the unexpectedly high C481 pKa 

prediction. Benchmarking of CpHREMD on a model Cys residue in solution, and the 

pentapeptide chain Ala-Cys-Phe-Cys-Ala shows that CpHREMD is capable of 

reproducing experimental pKas of Cys in these environments.162 There appears to be 

an issue with calculating pH shifts from the reference compound in protein-like 

environments such as protein kinases. This has been noted in a recent study, where 

CpHMD simulations were used to determine Cys pKa in the cysteine protease, 

papain.67 Cysteine proteases are interesting, as the Cys pKa shift is acidic in nature, 
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and experimental pKa estimates give a Cys25 pKa of 3.3.175 The aforementioned study 

calculated the pKa of this residue to be 14.0 using the CpHREMD protocol used in 

this work. The predicted Cys pKa is very close to the value predicted for C481 in BTK 

and very far from the experimental pKa (3.3). The authors of the study also tested the 

GBNeck-2 solvent model with the discrete CpHMD implementation in implicit solvent, 

and found an improved pKa estimate of 8.5, much closer to the model compound pKa. 

In addition, the continuous CpHMD method in implicit solvent method was tested, 

which has been reported to perform well for Cys pKa estimates, particularly for acidic-

shifted Cys pKas.68 However, the continuous CpHMD method was unable to 

successfully predict an acidic shifted pKa for Cys25 in papain, and instead predicted a 

pKa of 9.8.67 These results suggest that the solvent model, and Born radii used in the 

CpHMD simulations are important for accurately predicting Cys pKa.   

 

 
Figure 3.8 Histograms of  a-carbon RMSD at each pH replica (left hand plot) and cumulative 
average of the protonated fraction of C481 across the 50 ns trajectory at each replica (right 
hand plot). The RMSD plot suggests the kinase domain structure is remarkably stable at high 
pH, and the cumulative average of the protonated fraction shows suggests that the simulations 
are well converged after 50 ns of simulation time.    
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Table 3.2 Modified LJ parameters for thiolate (S–) in the AMBER FF. Parameter sets 1-5 
were generated using linear regression on current AMBER parameters and an estimated upper 
limit parameter set 4. 

Parameter set  e (kcal mol–1) R0 (Å) 

GAFF176 0.2500 2.0000 

GAFF2176 0.2824 1.9825 

AMBER FF14SB177 0.2500 2.0000 

1 0.3836 2.2232 

2 0.3773 2.2268 

3 0.4022 2.2150 

4 0.38975 2.2209 

5 0.4500 2.2500 

 

To improve predictions of Cys pKa estimates from CpHMD methods, the 

underlying FF parameters used to describe a Cys residue were investigated in more 

detail, with a specific focus on the non-bonded Lennard-Jones (LJ) parameters. One 

potential source of error in the CpHMD method is the use of the same van der Waals 

(vdW) parameters for both a thiol and thiolate sulfur atom when calculating transition 

FEs between protonation states for a given amino acid residue. Although this does not 

seem to be a problem for the majority of titratable amino acids, as accurate pKas are 

routinely predicted for systems containing Asp, Glu, His and tyrosine (Tyr) residues, 

Cys pKas are generally much harder to predict. However, accurate FF parameters are 

especially important for Cys given the large change in vdW radius between a thiol and 

a negatively charged thiolate anion. In the AMBER FF, exactly the same vdW radius 

is used for sulfur in a thiol group and a thiolate anion.71 This is a poor description of 

a sulfur anion and inaccurate LJ parameters will impact upon the correct description 

of sulfur-water interactions in proteins. This in turn will affect CpHMD simulation in 

explicit solvent and could contribute to the overestimate of Cys pKa that is 

characteristic of this method. Different LJ parameters (Table 2) for thiolate in the 

AMBER FF were tested to examine the effect of thiolate radius and well depth on the 
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thiolate-water interactions in classical MD simulations of methyl thiol in explicit 

solvent (Figure 3.9).   

 

 

 
Figure 3.9 Radial distribution functions for methyl thiolate with varying sulfur LJ parameters 
(Table 2). The RDFs are calculated from 50 ns of classical MD simulations of methylthiolate 
in explicit solvent using the TIP3P water model.  The QM/MM data has been extracted from 
Figure 2 in ref 70 for comparison.71 

 

The radial distribution function calculated at the QM/MM level for thiolate in 

water has been reported by Awoonor-Williams et al.71 and shows a broad first peak at 

distances of 2.3 Å and peak intensity of approximately 3.1 for the S–---HOH interaction. 

This corresponds to the first solvation shell surrounding thiolate and comprises six 

water molecules for methyl thiolate in water.71 The second shell shows a slight splitting 

into two peaks and is the result of the second solvation sphere being made up of both 

QM and MM waters. The S–----OH2 interaction gives a peak at 3.2 Å and peak 

intensity of 3.3. In comparison, the RDF produced using AMBER FF parameters 

underestimates the both the distance and strength of the S–----HOH interaction.71 An 

upper limit parameter set of e = 0.45 kcal mol–1 and R0 = 2.25 Å  for sigma and epsilon 

were estimated initially. After comparing the standard AMBER GAFF and GAFF2 
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parameters and parameter set 5, it appeared that the relationship between the modified 

parameters and the change in RDF followed an approximately linear relationship. A 

simple linear regression model was then used to further optimise the parameters, both 

for the S---OH2 and S---HOH interaction. Modified parameter set 3 (Table 2) gives the 

closest agreement with the QM/MM RDF for the S---HOH interaction previously 

reported Awoonor-Williams et al..71 The peak intensity and centre of the first peak is 

now much closer to the QM/MM values  compared with the original AMBER FF14SB 

thiol parameters. The second solvation shell is still poorly described by the parameters 

when compared to the QM/MM results, however. This could partly be attributed to 

the split in the second solvation shell from the QM/MM simulations as it is comprised 

of a mixture of QM and MM waters. Another explanation is the FF used to describe 

the MM water interactions. The RDFs in Figure 3.9 make use of the TIP3P water 

model to describe interactions in the explicit solvent in the MD simulations of methyl 

thiolate that were used to produce the RDFs. The TIP3P water model can accurately 

reproduce certain characteristics of liquid water, including the density and heat of 

vaporisation at 25ºC and 1 atm.178 However, it struggles to predict a second solvation 

shell in RDFs for liquid water.179 Other water models have been developed that include 

additional interaction points (sites) with examples that include TIP4P and 

TIP5P.180,181 There are also variations to three-site models that add  polarization 

correction (SPC/E) and use different bonded parameters such as alternative HOH 

angles of 109.5 degrees (SPC).182 As the four-site TIP4P model is able to reproduce 

the second solvation shell observed in liquid water and is compatible with the AMBER 

FF14SB it was tested in conjunction with the newly derived parameter set 3 for thiolate 

(Figure 3.10).  
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Figure 3.10 RDFs for methyl thiolate comparing the TIP3P water model with the TIP4P 
water model. The same P3 LJ parameter set were used in both cases (Table 2). The RDFs are 
calculated from 50 ns of classical MD simulations of methyl thiolate in explicit solvent using 
the TIP3P and TIP4P water model. The QM/MM data has been extracted from Figure 2 in 
ref 70 for comparison.71 

 

When the MD simulations and RDFs are reproduced using the TIP4P water 

model, a negligible difference in the RDF is observed when the TIP3P model is used 

compared with the TIP4P model. Although there is a slightly more pronounced peak 

in the second solvation shell with TIP4P for the S–----HOH interaction, it is more 

similar in shape and height to the TIP3P RDF compared to the QM/MM RDF. The 

results in Figure 3.10 suggest there is no significant advantage of using the TIP4P 

water model and, given that it is more computationally intensive than TIP3P, it was 

not considered further.178 Unfortunately, the improved thiolate LJ parameters cannot 

be used in the current implementation of CpHMD, as only partial charges are allowed 

to change when the transition FEs between protonation states are calculated. To use 

the improved LJ parameter set for CpHMD in AMBER, rewriting of the AMBER 

source code would be required, in addition to extensive testing.  
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The neglect of changing the vdW parameters between protonation states when 

calculating transition FEs is significant and has been estimated to contribute up to 

20% of the transition FE (the largest contribution arises from the electrostatic 

component).183 Underestimating the thiolate vdW radius will lead to an overestimation 

of the  DGelec component (Equation 3), which in turn will lead to an increase in the 

transition FE. An artificially high transition FE will lead to fewer protonation state 

changes being accepted which will ultimately result in a pKa estimate that is too high. 

Part of this problem can be addressed by modifying the effective Born radius for a 

given element, used in the calculation of the electrostatic Generalised Born (GB) 

solvent contribution to DGelec. This has shown promise for improving the pKa 

predictions of Asp and Glu residues in CpHMD simulations. An overestimation of the 

effective oxygen radius due to the inclusion of dummy protons in carboxylate residues 

has contributed to inaccurate pKa shifts.184 Modification of the carboxylate effective 

radii from 1.4 to 1.3A has improved CpHMD predictions for Asp and Glu amino 

acids.184 The effect of modifying the effective Born radius of sulfur has improved pKa 

predictions for Cys residues in the continuous CpHMD implementation in AMBER by 

Harris et al..68 They report an RMSE for their method of 0.95, using continuous 

CpHREMD in implicit solvent and increasing the effective Born radius for sulfur from 

its default value of 1.8 Å to 2.0 Å. The use of accurate effective radii is particularly 

important when simulations are performed in implicit solvent models.185 Unfortunately, 

the continuous CpHMD method in implicit solvent was not tested on the protein kinase 

BTK, as the continuous CpHMD method was published and implemented in AMBER 

after the results presented in this chapter were completed.68 Although altering the 

effective Born radius for anionic sulfur in a Cys thiolate has led to improved pKa 

predictions for Cys in the continuous CpHMD method,167 discussions with the 

developers of the discrete CpHMD method in AMBER highlighted doubts that this 

alone would address the issues in predicting accurate Cys pKas. Although allowing the 

LJ parameters to change between neutral and deprotonated Cys is likely to improve 

pKa predictions for Cys,183 it is a significant amount of work that requires modification 
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of the underlying AMBER code and may occur in the future in collaboration with the 

developers.  

 

The modified vdW parameters were tested in classical MD simulations of 

ibrutinib non-covalently bound to the kinase domain in BTK, and the effect of 

increased vdW radius for thiolate was examined by comparing the RDFs (Figure 3.11) 

and sulfur hydration number for the modified and unmodified parameters. There is 

very little change in hydration number between the parameter sets, calculated by 

counting the nearest number of water molecules within a distance of 3.5 Å over the 

trajectory. Average hydration numbers of 3.2 and 3.1 for the standard and modified 

parameters were observed respectively, which are in excellent agreement with the 

computed RDFs. 

 

 
Figure 3.11 RDFs showing the hydration structure around deprotonated C481 in BTK from 
classical MD simulations using standard AMBER FF14SB LJ parameters (purple) and 
modified parameters (green) to describe the vdW interaction of the Cys thiolate. 

 

The RDFs for the S-HOH thiolate interaction show that the peak in g(r) that 

corresponds to the first solvation shell around the thiolate is shifted to slightly larger 

distances for the modified thiol parameter set as expected. The integration trace 

indicated a small reduction in the number of waters in the first solvation shell, with 

3.2 with standard parameters and 3.1 with modified parameters. The peak in the RDF 

is shifted to larger distances (r, (Å)) when modified parameters are used. This is 

expected as a larger thiolate radius will result in a slightly weaker hydrogen bond to 
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water molecules. Overall, there are only subtle differences evident in the MD 

simulations that use the standard and modified parameters for sulfur in a Cys thiolate. 

It appears that the increased vdW radius for the thiolate does have a small effect on 

the interactions of sulfur. This is a promising result and could be useful in CpHMD 

simulations if the transition FEs between protonation states are calculated with 

separate vdW parameter sets for sulfur. The current implementation of CpHMD 

method does not allow for this but increases in the effective sulfur radius have seen 

promising results so far.  

 

3.4 Conclusions 
Classical MD simulations and CpHMD simulations have highlighted some of the 

challenges in accurately modelling sulfur reactivity. The chemistry of sulfur is complex, 

owing to its size, electronegativity and large variations in the pKa of the thiol group. 

Capturing these complexities in simple MM forcefields is difficult, and the work 

presented in this Chapter has highlighted some of these issues. One major problem is 

the LJ parameters that are used to describe sulfur. The AMBER FF uses the same 

vdW parameters for sulfur in a neutral thiol group and an anionic thiolate group. This 

is clearly an oversimplification and it has an impact on the length, and therefore 

strength, of interactions that the sulfur atom can form with neighbouring residues and 

water molecules. This is of particular significance in CpHMD simulations, where the 

transition FE between the thiol and thiolate is calculated to estimate the distribution 

of protonation states during an MD simulation. If the interaction strength is 

overestimated for the thiolate because the vdW radius is underestimated, the transition 

FE will be overestimated. The result is a predicted pKa that is higher than expected, 

as fewer protonation state attempts are accepted in the CpHMD framework. Although 

the charges for thiol and thiolate are different in the AMBER FF and are allowed to 

change, they are still fixed values and do not fully capture the large polarizability of 

sulfur. The simulations presented in this chapter support the hypothesis that the 

current implementation of CpHMD in AMBER favours an alkaline shifted Cys pKa. 
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The modified LJ parameters provide a possible way to address this shortcoming and 

could be incorporated in future CpHMD simulations.  

 

In spite of the observed limitations in the AMBER FF for sulfur, a number of 

important reactivity determinants of the C481 residue in BTK have been discovered. 

It appears unlikely that the pKa of C481 is sufficiently low enough for the Cys residue 

to exist as a thiolate. The consequence of this is the need for a proton acceptor in the 

vicinity of C481. The suitable candidates include water, the i+3 asparagine (although 

this is unlikely) and the inhibitor itself. The classical MD simulations show that the 

Cys mainly adopts an unreactive conformation throughout the trajectory, and rarely 

interacts with any of the proton acceptors mentioned. Instead, C481 predominantly 

interacts with the backbone carbonyl oxygen atoms of Ala525, Arg526 and Cys527. 

Although there are few reactive conformations, they serve as a useful starting point 

for exploring reactivity in more detail in Chapter 5. The observation of some reactive 

conformations is encouraging and suggests that any FE penalty for forming a reactive 

conformation is low. It is difficult to give an estimate of this energy cost without 

performing additional simulations, such as umbrella sampling on the Cys dihedral 

angle. Nevertheless, the orientation of C481 in BTK appears to be crucial to its 

reactivity. 

 

3.5 Suggestions for further work 
The work carried out in this Chapter has clearly shown that there are limitations 

of using CpHMD simulations to predict Cys pKa, and thus reactivity. For the discrete 

protonation state CpHMD model implemented in AMBER, the FF14SB parameters 

used to describe sulfur interactions have been identified as a potential source of error. 

In particular, the non-bonded LJ parameters for sulfur in a Cys thiol group are the 

same as the LJ parameters for sulfur in a Cys thiolate group. An improved LJ 

parameter set for a Cys thiolate was optimised in this work by investigating the effect 

that changing the LJ parameters had on the resulting RDF of methyl thiolate in 
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classical MD simulations. These parameters could be further modified and improved 

by ensuring they can reproduce other chemical properties such as density, heats of 

vaporization and hydration energies, which are common measures of vdW parameter 

accuracy.186 The discrete protonation state implementation of CpHMD in AMBER 

does not allow the LJ parameters to be varied when the transition FE between 

protonation states is calculated. Rewriting the AMBER CpHMD code to allow changes 

of vdW parameters would allow the modified thiolate parameters developed in this 

work to be used for Cys thiolate in CpHMD simulations. It is likely this is a large 

amount of work but could be done in collaboration with the developers of the AMBER 

CpHMD code. The result of such a collaboration would hopefully lead to improvements 

in pKa predictions for Cys containing biomolecules. Extensive testing of the modified 

thiolate parameters would be required in combination with the discrete CpHMD 

method. This could be achieved by calculating pKa values for Cys residues in proteins 

that span a wide pH range and checking that the predictions from the discrete CpHMD 

model in combination with improved LJ thiolate parameters can accurately reproduce 

the experimental pKa values. If the results are satisfactory, the method can be used to 

predict the C481 pKa in BTK, for which there is currently not an experimentally known 

pKa value.  
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Chapter 4 

Evaluation of methods and convergence testing for 

modelling thio-Michael reactivity in biological systems 

 

The aim of this chapter is to provide a robust and detailed benchmarking study 

for modelling thiol addition reactions with quantum chemical methods. Several 

molecular modelling techniques are used to investigate mechanisms of thiol addition 

including 1D potential energy scans, transition state (TS) optimisations in combination 

with intrinsic reaction coordinate (IRC) calculations, and umbrella sampling 

simulations. Several levels of quantum mechanical (QM) theory are tested that range 

from semi-empirical methods, density functional methods and post Hartree-Fock (HF) 

methods to assess which methods give the most accurate results when compared with 

higher levels of theory. This is essential for modelling biological thiol reactivity in-situ, 

as producing a free energy (FE) surface with density functional methods are 

impractical and too costly for modelling thiol reactivity in enzyme targets. Convergence 

tests are carried out for the weighted histogram analysis method (WHAM) for 

generating FE surfaces in biomolecular systems to ensure adequate sampling has been 

carried and accurate FE estimates are obtained. These results form the basis of a 

computational protocol tested and applied later in this work, that can be used to 

reliably and practically model thiol reactivity in biologically relevant systems that have 

applications in drug design.  

 

Some of the work contained within this Chapter has formed the basis of a 

manuscript that was published in RSC Chemical Science on 28th January 2020 as a 

just accepted manuscript.187  
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4.1 Introduction 

Conjugate addition, also known as thio-Michael addition of thiols to a, b-

unsaturated compounds is well described in the literature.188–192 Sulfur containing 

nucleophiles are described as ‘soft’ nucleophiles as a result of their high 

polarizability.193 As a result, sulfur nucleophiles tend to preferentially react with soft 

electrophiles such as a, b-unsaturated compounds through conjugate, or 1,4-addition, 

reactions.194 This is usually attributed to optimal orbital overlap between the LUMO 

of the b-carbon of the electrophile and the HOMO of the sulfur nucleophile, and  is in 

contrast to direct addition where reactivity is dominated by electrostatic factors.195  

The mechanism of thio-Michael addition is usually assumed to proceed in a three-step 

base catalysed process.120,190,195–197 First, deprotonation of the thiol group occurs and 

results in the formation of a thiolate anion. A conjugate addition reaction then occurs 

between the sulfur atom of the negatively charged thiolate anion and the b-carbon of 

the  a,  b-unsaturated carbonyl compound. The resulting carbanion (enolate) 

intermediate is then re-protonated to form the thioether product (Figure 4.1). Other 

mechanisms have been proposed, including a nucleophile catalysed mechanism, 

whereby the thiol group undergoes conjugate addition with an a, b-unsaturated 

compound to form the carbanion intermediate in the absence of an external base.190 

The precise mechanism by which thiol-Michael addition occurs depends on the reaction 

conditions, pKa of the thiol group, solvation and nature of the electrophile.190  

 

Computational modelling has been used to investigate the thiol-Michael 

addition reaction. One of the first modelling studies was performed in 1995, in which 

Thomas et al. used QM calculations to investigate the addition of sulfur and oxygen 

nucleophiles to acrolein, the first mechanistic step in the reaction of thymidylate 

synthase.198 Restricted HF theory and Moller-Plesset (MP) methods were used to 

model the addition of bisulfide and methylthiolate to acrolein, and found stable 

intermediates corresponding to the carbanion in both cases.  
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Figure 4.1 Two possible thio-Michael addition mechanisms.199 In pathway A, thiol 
deprotonation is followed by nucleophilic attack, resulting in an enolate (or carbanion) 
intermediate.120 The final step is re-protonation of the enolate intermediate and formation of 
a thio-ether adduct. In pathway B, nucleophilic attack results in an oxyanion that forms an 
enol intermediate when protonated. Keto-enol tautomerisation yields the keto product.199 

 

Since the emergence of density functional theory (DFT), which includes electron 

correlation with little extra computational cost compared to HF theory, more recent 

studies of thio-Michael addition have generally used DFT rather than the HF and post-

HF methods used by Thomas et al. Some of these studies have modelled the reaction 

mechanism using a base-catalysed route. For example, Carlqvist et al. modelled the 

thiol addition reaction of acrolein and methane thiol in a two-step process at the 

B3LYP/6-31+G(d) level.200 Their model aimed to replicate the reaction that takes 

place in the active site of the enzyme Candida antarctica lipase-B. Three proximal 

active site residues were included in their computational cluster model including the 

base that is proposed to deprotonate the cysteine thiol (histidine), and two additional 

residues that are assumed to form important hydrogen bonding interactions with the 
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acrolein substrate along the reaction path (glutamine and threonine). A transition state 

(TS) corresponding to the simultaneous proton transfer and nucleophilic attack step 

was found, as well as a TS corresponding to the re-protonation of the enolate 

intermediate. This intermediate linking both TSs was found to be the most stable 

structure along the reaction path. This was attributed to the large stabilisation of the 

oxyanion hole through hydrogen bonding interactions with glycine and threonine 

residues, and from charged interactions from the positively charged imidazole group of 

the histidine base. A further study carried out by Paasche et al. in 2010 used 

computational modelling of the thiol-Michael addition reactions between a number of 

substituted a, b-unsaturated compounds with methyl thiolate.199 This work compared 

a number of reaction pathways for the addition reaction, including the typical base 

catalysed route (Figure 4.1) and the possibility of protonation of the enolate occurring 

at the carbonyl oxygen and subsequent ketonisation or tautomerization steps to form 

the keto product of the reaction. The potential energy surfaces produced by successive 

geometry optimisations at the BLYP/TZVP level along the proton transfer and 

nucleophilic attack reaction coordinates for acrolein and methyl thiolate revealed no 

stable enolate intermediate, but instead spontaneous protonation of the carbonyl 

oxygen occurred to form an enol product (Figure 4.1, Pathway B). The calculations 

predicted that a keto-enol tautomerisation step is unlikely, due to the high energy of 

the enol intermediate. Interestingly, substituted a, b-unsaturated compounds were 

found to react via subtly different mechanisms depending on the electrophile.199 Other 

studies have also used different mechanisms to model thiol-Michael addition, including 

an acid-catalysed route58 and a water-mediated proton transfer from the thiol to the 

carbonyl oxygen of the inhibitor.201 Both of these studies used the B3LYP density 

functional to model the reaction. 

 

There appears to be a significant variation in the way thiol-Michael addition 

reactions are modelled computationally as different studies have predicted different 

mechanisms. These variations could arise from the mechanistic pathway assumed to 
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operate in each case as a result of the specific system studied, for example whether the 

reaction takes place in solution or in a protein environment. It could also be the result 

of using different computational techniques to model the mechanism, and/or the 

limitations of certain DFT functionals. Engels et al.199 used an ammonia molecule and 

ammonium ion to mimic the behaviour of the acid/base catalyst that deprotonates the 

thiol and re-protonates the enolate intermediate. The optimal placing of these species 

so that facile proton transfer can occur is an oversimplification, especially if the 

reactivity of conjugate thiol addition is designed to mimic reactivity in a protein, as 

was the intention of the study. The conformations of catalytic acid/base residues are 

important determinates of reactivity in these environments.202 Furthermore, a simple 

1D reaction coordinate where the distance between the proton and its acceptor site is 

varied is a poor description of the complete proton transfer because it neglects the 

dynamics and bond cleavage in the donor group. The Carlqvist et al. study200 predicted 

the enolate intermediate to be the most stable species along the reaction path, making 

the overall reaction slightly endothermic. Although this was argued to be the result of 

extra stabilisation of the oxyanion hole by nearby charged residues and hydrogen 

bonding interactions, it could also be the result of the density functional used. In fact, 

all of the aforementioned studies use B3LYP to model the reaction, with no 

justification for its use other than it being a good compromise between speed and 

accuracy.199 No benchmarking against other density functionals was carried out in that 

work, despite the well documented limitations of B3LYP as a result of delocalisation 

error203 and its tendency to underestimate barrier heights for reactions in simple 

organic systems compared to other popular density functional methods.204  

 

Delocalisation error has previously been reported to cause problems in the 

calculation of charge transfer reactions,205 dissociation of radical complexes,206 the 

calculation of reaction barriers207 and other scenarios where complexes are formed with 

fractional charges.208 It has recently been recognised as a particular issue for the 

calculation of stable complexes in thio-Michael addition reactions due to the diffuse 



 72 

electron density of the thiolate anion and enolate intermediate formed in the reaction. 

Smith et al. have investigated this effect by modelling the sulfur-carbon bond formation 

step in the addition of methyl thiolate and substituted variants of methyl vinyl 

ketone.127 They examined several density functional methods including pure 

functionals, hybrid functionals and range-separated hybrid functionals. Potential 

energy (PE) scans of the S-C distance showed that only the range-separated hybrid 

functionals predicted a stable enolate intermediate, whereas hybrid functionals such as 

B3LYP gave a flat PE profile, with no stable intermediate. This helps to explain why 

multiple mechanisms of thiol-Michael addition have been reported using B3LYP, and 

therefore casts some doubt on their validity. The investigation into alkene substituent 

effects by Smith et al. also confirms why the Carlqvist et al. study did find an enolate 

intermediate despite using B3LYP.   

 

The interest in using a, b-unsaturated compounds as covalent inhibitors of 

cysteine containing targets has grown in recent years. Specifically, acrylamide 

warheads have been extensively studied as potential drug compounds.9,209–211 Reliable 

modelling of this type of reactivity requires the use of a density functional that can 

accurately predict the energetics of the reaction, including the enolate intermediate 

formed during thio-Michael addition (Figure 4.1). The aim of this work was to validate 

and build upon the findings of Smith et al. to investigate the most appropriate density 

functional method for accurately modelling acrylamide (rather than methyl vinyl 

ketone) reactivity with methyl thiolate. Given that modelling thiol-Michael reactivity 

in an enzyme environment is the ultimate goal of this work, in addition to testing 

density functional methods, a number of semi-empirical methods were also examined. 

Despite advances in computing power, modelling thio-Michael reactivity in large 

systems with QM/MM molecular dynamics and DFT QM methods on a reasonable 

time scale can be prohibitive.76 Semi-empirical approaches are therefore often used as 

the QM method when modelling reactivity in large biological systems.73,77,212  

 



 73 

4.2 Methods 
Here, five density functional methods were tested, including B3LYP213–215, 

CAM-B3LYP216, M06-2X217, wB97X-D218 and LC-wPBE219,220. The four semi-empirical 

methods tested were AM1221, PM3222, PM6223 and SCC-DFTB (also known as 

DFTB2).224 Improved DFTB3225 energies were also calculated by carrying out single 

point energy calculations at the DFTB3 level on DFTB2 geometries (denoted 

DFTB3//DFTB2). Results for these methods were compared against MP2 optimised 

geometries. The correlation consistent aug-cc-pVTZ226,227 basis set was employed for 

all calculations. Relaxed PE scans were performed in the gas phase with Gaussian16228 

for all the above mentioned density functionals and semi-empirical methods, where the 

S-C distance between the b-carbon of acrylamide and the sulfur atom in methyl thiolate 

was varied in steps of 0.1 Å between distances of 1.6 and 3.0 Å. To investigate reaction 

pathways for thiol addition, IRC calculations were carried out starting from optimised 

transition state structures at different levels of QM theory in Gaussian16. Transition 

state structures were obtained from performing a transition state search using the 

quadratic synchronous transit (QST) approach implemented in Gaussian16.228  

 

The umbrella sampling simulations were carried out in AMBER18.170 The full 

details of the molecular dynamics simulation settings can be found in Chapter 3, 

Section 3.2 of this thesis. For the umbrella sampling, 2D FE surfaces were produced 

where the first reaction coordinate (RC1) corresponded to a proton transfer from the 

thiol group to the carbonyl oxygen atom of the inhibitor (d[HC481-Oibrutinib] – d[Sibrutinib-

Hibrutinib]). The second reaction coordinate (RC2) corresponded to the variation of the 

S-C distance (d[SC481-Cbibrutinib]). In each RC window, up to 25 ps of sampling was 

performed, with the first 5 ps regarded as equilibration and subsequently discarded for 

analysis. Convergence was then assessed after 4, 8, 12, 16 and 20 ps of sampling. 

Harmonic biasing potentials of 100 kcal mol–1 Å2 and 200 kcal mol–1 Å2 were 

investigated to maintain the umbrella sampling restraints in reach RC window. 
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WHAM229,230 was used to analyse the umbrella sampling simulations and produce the 

FE surfaces.  

 

4.3 Benchmarking thiol addition with 1D potential energy 
scans 

The results for S-C bond formation between methyl thiolate and acrylamide, 

resulting in an enolate intermediate are consistent with Smith et al.127 For the density 

functional methods, a stable enolate intermediate is predicted for five out of the six 

functionals tested, with only B3LYP failing to predict a stable carbanion species 

(Figure 4.2). Table 1 contains the predicted S-C bond length corresponding to the 

enolate intermediate for each density functional, and shows they range from 1.86 to 

1.91 Å. This is in good agreement with S-C bond lengths found in computational 

reactivity modelling studies of sulfur reactivity that include high level CCSD(T)//MP2 

calculations.127,231 The density functional wB97X-D gives the closest agreement with 

the high level MP2/aug-cc-pVTZ geometries, which is also in closest agreement to the 

experimental value and suggests that benchmarking against this method is accurate 

and appropriate in this case.  

 

The reason for the apparent absence of a stable enolate intermediate for the 

B3LYP functional is attributed to delocalisation error.203 This error is caused by 

electron-electron repulsion in the Coulomb functional127 and leads to the artificial 

lowering of the energies of delocalised systems. In theory, this effect should be mitigated 

by the exchange-correlation functional. However, due to the inexact nature of this 

functional, incomplete cancellation of the Coulomb energy and the correlation energy 

results in the overstabilisation of states with delocalised electrons.232 This effect has 

been characterised by the curvature of the energy as a function of fractional 

charge.233,234 The exact relationship between these quantities should be linear235, but 

for many DFT functionals, including B3LYP, this is not the case. Rowley et al. 

demonstrated that for thio-Michael addition, the addition of an electron to methyl 
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vinyl ketone exhibits a significantly curved relationship between fractional charge and 

energy for B3LYP.127 For the range-separated functional wB97X-D, however, the 

relationship was linear. 

 

 
Figure 4.2 PE scan of the nucleophilic attack step in the thiol-Michael addition between 
methyl thiolate and acrylamide at the DFT/aug-cc-pVTZ level. The post HF method MP2 is 
shown for comparison. All the methods tested show a stable enolate intermediate, apart from 
B3LYP/aug-cc-pVTZ. 

 

Delocalisation error has been addressed via the introduction of range-separated 

hybrid functionals.236 These functionals use a standard error function to split the 

Coulomb operator r12–1 into two parts, a long-range part and a short-range part 

(Equation 4.1).237 Different exchange functionals are then used for each part to remove 

the delocalisation error. A standard approach is for a density exchange functional to 

be used for the short-range part, and HF exchange to be used for the long-range part.238 

The w parameter is used to decide when to switch between the partitioned coulomb 

operator, and often contains empirical parameters.239 The inclusion of a range 

correction in the Coulomb functional explains why the wB97X-D, CAM-B3LYP and 
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LC-wPBE density functionals all predict a stable enolate intermediate (Figure 4.2), as 

they are all examples of range corrected functionals. The hybrid functionals PBE0 and 

M06-2X also predict stable enolate intermediates on account of the high exact exchange 

component in these functionals.217,240  The functional that gives the closest agreement 

to MP2 for the PE profiles in Figure 4.2 is wB97X-D, in good agreement with previous 

work.127,231 Therefore, this density functional was chosen to model thiol-Michael 

addition in the remainder of this thesis.  

 

Table 4.1 Predicted S-C bond length of the enolate intermediate formed from the addition of 
methyl thiolate and acrylamide. 

QM method S-C distance (Å) 

MP2 1.90 

wB97X-D 1.91 

PBE0 1.88 

LC-wPBE 1.86 

M06-2X 1.90 

CAM-B3LYP 1.91 

B3LYP N/A  

AM1 1.88 

PM3 1.91 

PM6 1.91 

DFTB2 2.45 

 

 

Equation 4.1 Partitioning of the Coulomb operator into short- and long-range parts in range-
separated functionals.239 

 1
𝑟67

=
1 − [𝛼 + 𝛽	𝑒𝑟𝑓(𝜔𝑟67)]

𝑟67
+
[𝛼 + 𝛽	𝑒𝑟𝑓(𝜔𝑟67)]

𝑟67
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For the semi-empirical methods, the PE scans along the S-C reaction coordinate 

exhibit different behaviour to the DFT and MP2 methods. Semi-empirical methods 

employ a number of approximations in their formalism to reduce computational cost. 

However, this is often at the detriment of accuracy. Nevertheless, semi-empirical QM 

methods are still widely used and are routinely applied to problems involving large 

numbers of atoms. The assumptions and approximations made in semi empirical 

methods depend on the type of method they descend from. However, most use a 

minimal set of basis functions, only explicitly treat the valence electrons and ignore 

the core electrons.241 The main assumption in these methods is the Zero Differential 

Overlap (ZDO) approximation, which ignores three and four centre two-electron 

coulomb repulsion integrals.242  For AM1, PM3, PM6 and PM7, it is perhaps no 

surprise that all these methods predict a stable enolate intermediate (Figure 4.3), given 

that they are all based on the HF method. Although the major assumption in these 

models is the ZDO approximation, they still inherit some exact exchange from HF. In 

addition, the exchange-correlation behaviour is somewhat accounted for in the many 

empirical parameters used in these methods, which are typically derived from 

experiment.243 PM6 is in closest agreement to the MP2 PE profile, consistent with 

other reports that have also found this method to perform well for modelling thiol 

reactivity.231 The SCC-DFTB (also known as DFTB2) and DFTB3 methods are based 

on density functional theory and share many approximations with the ZDO methods 

including consideration of valence electrons only, use of a minimal basis set and 

neglection of 3 and 4 centre integrals. The remaining two-electron integrals are then 

parameterised against all electron DFT calculations, rather than experiment.243 

Additional second-order charge correction terms can be added, resulting in DFTB2.224 

If third-order charge corrections terms are used, the resulting model is known as 

DFTB3.225 Both DFTB2 and DFTB3 perform poorly for the S-C bond formation step, 

exhibiting very broad energy minima at an S-C distance of approximately 2.5 Å that 

do not correspond to the expected enolate intermediate.  
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Figure 4.3 PE scans of the nucleophilic attack step in thiol-Michael addition between methyl 
thiolate and acrylamide computed using semi-empirical QM methods. The post HF method 
MP2 is shown for comparison. AM1, PM3 and PM6 show minima corresponding to a stable 
enolate intermediate, but DFTB3 and DFTB3 show very broad surfaces with no potential 
energy minimum for the enolate intermediate. 

 

The poor performance of DFTB energies is well documented, even in the latest 

3-OB parameter set that was designed specifically to improve upon the energetics of 

sulfur and phosphorus containing compounds.244 This parameterisation study notes the 

energies predicted for sulfur compounds can be inaccurate, but the geometries are much 

more accurate. To test this, single point energy calculations were carried out using the 

wB97X-D functional in combination with the aug-cc-pVTZ basis set on geometries 

obtained from optimisations at the DFTB2 and PM6 level (denoted wB97X-D/aug-cc-

pVTZ//DFTB2 and wB97X-D/aug-cc-pVTZ//PM6, Figure 4.4). The results show 

that the potential energy curve for S-C bond formation at the wB97X-D/aug-cc-

pVTZ//DFTB2 level is similar to the wB97X-D/aug-cc-pVTZ energy curve. This 

indicates that the geometries predicted by DFTB methods are reliable and are suitable 
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input for single point energy calculations with higher levels of theory. This efficient 

approach delivers results consistent with the higher level DFT methods and can 

therefore be used in modelling thiol-Michael addition reactions. For wB97X-D/aug-cc-

pVTZ//PM6, the single point energies suggest the PM6 geometries are in poor 

agreement with wB97X-D/aug-cc-pVTZ geometries, mainly as a result of the observed 

isomerisation of the acrylamide group observed at large S-C distances.  

 

Most of the semi-empirical methods show erratic energetics at S-C distances of 

approximately 2.7 Å or greater (Figure 4.3). Inspection of the geometries reveals that 

these unexpected energy changes are the result of spontaneous cis/trans isomerisation 

of the olefin group in acrylamide. These conformational changes do not spontaneously 

occur in the higher level DFT and MP2 PE scans, and so are likely to be an artefact 

of the semi-empirical QM family. The barrier to this cis/trans isomerism of acrylamide 

has been estimated at the MP2/aug-cc-pVTZ level to be 4.2 kcal mol–1.245 Although 

the cis isomer is predicted to be more stable by 1.0 kcal mol–1, as the barrier is so low 

this isomerisation can occur easily. It is likely that the semi-empirical methods 

underestimate this barrier and explains why this spontaneous isomerisation is observed. 

However, in a recent study that examined the best methods to use to model thiol 

addition, 1D PE scans of S-C bond formation was carried out for a number of covalent 

warheads. Acrylamide was just one compound looked at in the study, and, although 

the results are consistent with the scans presented in Figure 4.2, the study did not 

observe any inconsistencies in geometry at S-C bond lengths greater than 2.7 Å. This 

could be the result of initial starting conformations of methyl thiolate and acrylamide, 

but as this study did not provide any coordinates of optimised structures at the semi-

empirical QM level it is difficult to be certain. However, our geometries at the 

MP2/aug-cc-PVTZ do agree with the structures reported by Awoonor-Williams et 

al.231 In addition, coordinates of the optimised geometries reported by Lonsdale et 

al.,119 who examined methods of characterising covalent warhead reactivity at the M06-

2X/6-311+G(d,p) level are in good agreement with the optimised structures found in 
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this work, at the same level of theory. All of the reported structures show the 

importance of the methyl thiolate group being situated above the double bond of 

acrylamide.  

 

 
Figure 4.4 PE scans of the nucleophilic attack step in thiol-Michael addition between methyl 
thiolate and acrylamide computed with wB97X-D/aug-cc-pVTZ on DFTB2 and PM6 
geometries. These PE scans show that the energies calculated with DFTB3 are not accurate, 
but the geometries predicted by this method are reliable as the single point energies calculated 
at the wB97X-D/aug-cc-pVTZ//DFTB2 level are in close agreement with the wB97X-D/aug-
cc-pVTZ/aug-cc-pVTZ profile. The wB97X-D/aug-cc-pVTZ//PM6 profile shows that the 
PM6 geometries are in poor agreement with the wB97X-D geometries, particularly for large S-
C distances. 

 

The results of the 1D PE scans for methyl thiolate and acrylamide indicate that 

the most appropriate DFT functional to use for modelling thiol reactivity is wB97X-

D. This is supported by other reports where methods of modelling thiol addition have 

been studied.127,231 The semi-empirical method that performs best, and is in closest 

agreement with MP2, is PM6. The performance of PM6 is also supported by other 
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studies231, however the density functional tight binding methods DFBT2 and DFTB3 

are also popular choices for modelling thiol addition in protein environments.74,246,247  

 

4.4 Benchmarking thiol addition by investigating alternative 
mechanisms 

A range of different QM methods were also used to explore the pathways of 

thio-Michael addition when mechanisms that differ from the generally accepted 

mechanism that proceeds through an enolate or carbanion intermediate (Figure 

4.1).120,127 Thio-Michael addition can follow alternative pathways in some systems 

depending on the nature of the electrophile and the environment surrounding the 

reaction centre.199 The possibility of a concerted mechanism, where direct proton 

transfer occurs from the thiol group to the acrylamide group, was investigated.  

 
 

Figure 4.5 Alternative mechanisms for thiol-Michael addition that do not proceed through 
an enolate intermediate.201 Instead, water acts as a proton shuttle to form an enol (pathway 
1) that undergoes a solvent assisted tautomerisation to the keto product. The second step in 
pathway 1 shows the water assisted proton transfer directly to the keto product. 
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Testing multiple different QM methods for a concerted type mechanism of thiol 

addition is important to test whether there is consistency between the geometries, and 

therefore the pathway, for different QM methods. This will be especially important 

when investigating reactivity in a protein environment (Chapter 5).  In order to test 

for a concerted mechanism, a model system was built that comprised of methyl thiol 

and acrylamide. Two pathways are possible if a direct proton transfer from the thiol 

to the acrylamide is assumed to take place. One possibility is where the proton transfers 

directly to the a-carbon of the acrylamide group, and the other involves proton transfer 

from the thiol to the carbonyl group of the inhibitor. (Figure 4.5).  

 
Figure 4.6 IRC calculations with different QM methods for the pathway 2 mechanism in 
which the thiol proton transfers directly to the a-carbon of acrylamide. The wB97X-D/aug-cc-
pVTZ pathway predicts a very high barrier, consistent with this reaction being forbidden 
according to the Woodward-Hoffman rules for pericyclic reactions.248 DFTB2 energies are in 
close agreement with the DFT level, whereas both AM1 and PM6 significantly underestimate 
the reaction barrier. 

 

To investigate how these mechanistic pathways differ in both energy and 

geometry, transition state optimisations were carried out in Gaussian16228 on an initial 
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approximation of the TS structure. This was followed by an IRC calculation to produce 

an estimate of the pathways that link the reactant, TS and product of both mechanistic 

pathways. The reaction coordinates corresponding to the S-C bond formation and the 

proton transfer were extracted from each pathway and plotted to assess the dependence 

of the pathway on the QM method used to model the reaction. Plots of the energy and 

pathway for the mechanism in which the thiol proton is transferred to the a-carbon 

are shown in Figure 4.6 and Figure 4.7.  

 

 
Figure 4.7 Nucleophilic attack and proton transfer distances along the reaction path predicted 
by IRC calculations at different QM methods for the pathway 2 mechanism where the thiol 
proton transfers directly to the a-carbon of acrylamide. The locations of TSs for each method 
are shown as circles on each pathway. The semi-empirical pathways are generally in poor 
agreement with the wB97X-D/aug-cc-pVTZ pathway that suggests an asynchronous concerted 
mechanism where the proton transfer occurs slightly before S-C bond formation. The AM1 and 
PM6 pathways seem to underestimate the S-C barrier and predict the S-C bond formation 
step to happen before PT occurs. 

 

For pathway 2 (Figures 4.6 and 4.7), only a handful of QM methods were tested 

as a result of the very high energy barrier predicted for the reaction. 1D PE scans were 
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carried out at the wB97X-D/aug-cc-pVTZ level. Three semi-empirical methods were 

tested in order to see how comparable the energies and geometries were in comparison 

with wB97X-D. The wB97X-D/aug-cc-pVTZ profile gives a very high energy barrier 

of 44.86 kcal mol–1 for this mechanistic pathway. The high barrier is in agreement with 

the work of Awoonor-Williams et al., who predicted a barrier of 62.5 kcal mol–1 for 

this reaction between MVK and methyl thiol at the CCSD(T)/aug-cc-pVTZ//wB97X-

D/aug-cc-pVTZ level of theory.231 The high barrier is the result of the reaction being 

forbidden by symmetry rules.231 For a 4p electron pericyclic reaction, optimal orbital 

overlap only occurs if the reaction occurs in a conrotatory manner (orbitals rotate in 

the same direction).248 However, for direct thiol addition, the reaction proceeds in a 

disrotatory manner (orbitals rotate in opposite directions), so it is not thermally 

allowed. The DFTB2 energies are in close agreement with the wB97X-D/aug-cc-pVTZ 

PE profile. This is surprising, considering the relatively poor performance of this semi-

empirical method for the 1D PE scans (Figure 4.3) that describe the reaction between 

methyl thiolate and acrylamide. This apparent discrepancy could be the result of 

modelling a different reaction that does not result in a carbanion intermediate, which 

is known to be poorly described by the DFT functional that SCC-DFTB is 

parameterised on. The reaction pathway plot shows that AM1 and PM6 predict 

qualitatively different reaction paths for the reaction, where S-C bond formation occurs 

before transfer of the thiol proton. The result is pronounced differences in the TS 

structures, which could have an impact on reactivity and the energetics. However, this 

mechanism is not a feasible pathway given the high barrier to reaction and that it 

breaks orbital symmetry rules. Nevertheless, neither AM1 nor PM6 should be used to 

model thiol reactivity on account of the prediction of reaction pathways that differ 

from more accurate density functional methods. 

 

The energy and reaction pathway plots for the first step of pathway 1 (Figures 

4.8 and 4.9), where the thiol proton is transferred to the carbonyl carbon, show a 

different trend. It is clear from Figure 4.8 that the barrier to this reaction is much 
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lower than the barrier for pathway 2. Therefore, additional QM methods were tested 

that have already been shown to perform well for modelling thiol addition in the PES 

scans for methyl thiolate and acrylamide.   

 
Figure 4.8 IRC calculations at different QM levels for the pathway 1 mechanism where the 
thiol proton transfers to the carbonyl oxygen of acrylamide to form an enol. The MP2 IRC has 
a barrier of 25 kcal mol–1. The wB97X-D and CAM-B3LYP methods are in good agreement, 
with barriers around 23 kcal mol–1, whereas M06-2X performs slightly worse by predicting a 
barrier of 19 kcal mol–1. Nevertheless, the results indicate that this is a feasible reaction 
pathway compared to pathway 2. The semi-empirical methods generally underestimate this 
reaction barrier compared to higher level methods. 

 

All of the density functional methods give PE barriers between 19 and 23 kcal 

mol–1. These all underestimate the barrier when compared with MP2, which predicts 

a PE barrier of 25 kcal mol–1 for this reaction. The semi empirical methods AM1, PM3, 

PM6, PM7 and DFTB2 all predict substantially different barriers for this reaction, 

ranging between 6 kcal mol–1 (PM6) and 18 kcal mol–1 (AM1). DFTB2 massively 

underestimates the barrier (11 kcal mol–1) compared with the density functional 

methods and MP2. Although the energetics of this reaction may be described poorly 

by the semi-empirical methods, the geometries along the pathway are described well, 
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particularly for DFTB2 (Figure 4.4). AM1 also gives a reasonable description of the 

geometries along the pathway when compared with the density functional methods, 

that all predict the proton transfer to occur prior to nucleophilic attack. In other words, 

the TS, and therefore the rate-limiting step, appears to correspond to proton transfer, 

rather than C-S bond formation. The PM3, PM6 and PM7 methods all predict a 

completely different order of reactive events, with the C-S bond formation occurring 

prior to nucleophilic attack.  

 

 
Figure 4.9 Nucleophilic attack and proton transfer reaction coordinates along the reaction 
path predicted by IRC calculations at different QM methods for the pathway 1 mechanism 
where the thiol proton transfers to the carbonyl oxygen of acrylamide to form an enol. The 
location of TSs for each method are shown as circles on each pathway. Again, the semi 
empirical pathways are generally in poor agreement with the higher-level pathways, with the 
exception of DFTB2. DFTB2 predicts a concerted reaction pathway in good agreement with 
the higher-level methods tested, in particular MP2. AM1 and PM6 underestimate the S-C 
barrier and predict this step to happen before proton transfer occurs. 

 

The preference of semi-empirical methods predicting sequential rather than 

concerted reaction mechanisms has been observed before in a similar computational 

study of the catalytic mechanism of hairpin ribosome, where semi-empirical and DFT 
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QM/MM reaction pathways were compared.249 This is in contrast with the higher-level 

methods, and experimental pH dependence studies that suggest the thiolate, rather 

than the thiol is the reactive species in reactions between Michael acceptors and thiol 

containing peptides in solution.250,251 Correct descriptions of the energetics and 

geometries along the reaction path are important, so both of these factors should be 

taken into account when selecting the most appropriate method to model thiol 

reactivity. 

 

4.5 Benchmarking thiol addition in protein environments with 
umbrella sampling  

The goal of this work is to model thiol-Michael reactivity in protein 

environments, specifically in the enzyme Bruton’s tyrosine kinase (BTK) as it contains 

a cysteine residue that can be targeted by covalent inhibitors.  Although thio-Michael 

reaction mechanisms have been reported for cysteine proteases76,252,253 and protein 

kinases,74,211 the mechanisms have invoked an active site residue to function as a 

catalytic base to assist in the initial deprotonation of the thiol group and subsequent 

re-protonation of the enolate intermediate following nucleophilic attack. In BTK, there 

is no obvious candidate to carry out this catalytic role and so it is important to consider 

mechanistic pathways that do not require an external base. In order to investigate 

different mechanistic pathways in situ, QM/MM umbrella sampling MD simulations 

can be carried out.80 The remainder of this chapter explains, tests and validates the 

protocol (including the convergence of calculated FEs) used to carry out the 

mechanistic studies in BTK described in later chapters.  

 

Umbrella sampling is a popular enhanced sampling technique used in 

combination with molecular dynamics simulations to obtain FE changes between two 

different thermodynamic states in a biochemical process.254 Given that reactive events 

such as bond breaking and forming are associated with significant energy barriers, they 

are not usually observable on the timescale of a typical MD trajectory. Umbrella 
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sampling overcomes this problem by forcing the simulation along a particular reaction 

coordinate using a biasing potential. Harmonic biasing potentials are often used as a 

result of their simplicity. The reaction coordinate is typically chosen to be a distance, 

angle or dihedral angle and is divided into a series of windows. The biasing potential 

restrains the simulation to sample a distribution of values around each reaction 

coordinate value. If sufficient sampling is achieved, the ensemble average reaches the 

limit where all of phase space has effectively been sampled: the system is ergodic. At 

this limit, one can approximate the ensemble average to be equal to the time average 

for infinite sampling of a particular reaction coordinate. This means that by counting 

the number of times the reaction coordinate is sampled in a given interval for a given 

amount of time, the FE change associated with the reaction coordinate in question can 

be estimated according to Equation 4.2.255 

 

Equation 4.2 FE change in reaction coordinate window 𝒊 as a function of the reaction 
coordinate, 𝝃.255 

 𝐴8(𝜉) = −𝑘&𝑇 ln𝑃89(𝜉) − 𝜔8(𝜉) + 𝐹8	 

 

 

𝐴8(𝜉) is the FE in window 𝑖 as a function of the reaction coordinate. 𝐴8(𝜉) corresponds 

to the Helmhotz FE if the umbrella sampling simulations are carried out in the NVT 

ensemble, and the Gibbs FE if the simulations are carried out in the NPT ensemble. 

𝑃89(𝜉) is the biased probability distribution in window 𝑖 as a function of the reaction 

coordinate, 𝜔8(𝜉) is the bias potential in window 𝑖, and 𝐹8 	is the FE shift in window 𝑖 

and is dependent on the FE, as shown by Equation 4.3.255  

 

Equation 4.3. FE shift in reaction coordinate window 𝒊 as a function of the reaction 
coordinate, 𝝃.255 

 
𝐹8 = −𝑘&𝑇 ln FG𝑒3
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The FE shift 𝐹8 is dependent on the unknown FE 𝐴8(𝜉), so 𝐹8 cannot be obtained 

directly by sampling from molecular dynamics simulations. Instead, equations 2 and 3 

can be solved iteratively until self-consistency is achieved. This is the basis of the 

Weighted Histogram Analysis Method (WHAM), which aims to minimise the 

uncertainty of the unbiased probability distribution.229  Code required to analyse 

umbrella sampling simulations using the WHAM method is readily available and one 

notable example is distributed by the Grossfield research group230  and works 

seamlessly with umbrella sampling outputs from the AMBER suite of programs.170 

Another method that that can be used for analysis of umbrella sampling simulations 

is Umbrella Integration (UI).256 Instead of averaging the unbiased probability 

distribution in the WHAM method, UI averages the mean force because this does not 

depend on the FE shift, 𝐹8. Kastner et al. report that UI can be advantageous compared 

with WHAM as it converges more efficiently and reduces the statistical error in the 

FE from MD simulations as the iterative procedure used in WHAM is avoided.257 

 

Umbrella sampling provides a simple way to predict FE changes by carrying 

out molecular dynamics simulations on biomolecular systems, and as a result has been 

used extensively to predict FE reaction barriers,258 ligand binding/unbinding free 

energies259,260 and conformational effects in enzyme catalysed reactions.261,262 It has 

also been used to explore mechanistic pathways in thiol containing systems, 

particularly in protein kinases and cysteine proteases. Cysteine proteases are enzymes 

that cleave peptides, and the catalytic mechanism is a thiol addition where the first 

step is thiol deprotonation usually by a proximal histidine residue. The His/Cys pair 

is referred to as a catalytic dyad. Nucleophilic attack occurs on the carbonyl carbon of 

the peptide substrate to form a thioester. This thioester bond is then hydrolysed by a 

water molecule. Cysteine proteases are promising drug targets due to their roles in 

many disease processes. Arafet et al. used umbrella sampling simulations and the semi-

empirical dispersion corrected AM1-d model to investigate the catalytic mechanism of 

cruzain cysteine protease.252 They found the mechanism to proceed via a stepwise 



 90 

acylation step, where a negatively charged thiolate attacks the carbonyl carbon of a 

peptide bond. This is proceeded by a concerted deacylation step where a positively 

charged histidine activates a nearby water molecule to attack the peptide and form 

the final products. In a follow up study by the same group, an additional reaction 

pathway was found using AM1-d energies corrected at the M06-2X/6-31+G(d,p) 

level.263 In this new pathway, the reaction was found to proceed via a neutral 

cysteine/histidine catalytic dyad, rather than the charged Cys–/His+ ion pair reported 

in the previous study. Reaction mechanisms of epoxy ketone inhibitors264, dipeptidyl 

nitroalkanes82 and dipeptidyl nitrile inhibitors253 of cysteine proteases have also been 

carried out using semi-empirical methods including AM1-d and PM6, starting from the 

Cys–/His+ ion pair, rather than neutral thiol and histidine. More recently, there has 

been a huge amount of interest in the mechanism of cysteine proteases of the SARS-

Cov-2 virus due to the global health pandemic. The catalytic mechanism of the SARS-

Cov-2 main protease (Mpro) has been modelled with umbrella sampling using semi-

empirical AM1-d energies corrected at the M06-2X/6-31+G(d,p) level. Unlike other 

cysteine proteases, no stable Cys–/His+ ion par was predicted at this level of theory, 

and instead the stable species was predicted to be a thiohemiketal intermediate.76 

However, another study did find a stable intermediate for the Cys–/His+ ion pair of 

the SARS-Cov-2 main protease at the B3LYP-D3/6-31+G(d) level.265 This could be a 

result of the limitations of B3LYP for modelling thiol reactivity as already explored in 

this work (Section 4.3), and in previous studies,127,231 or the different method used to 

explore the FE surface for this reaction. It is clear that there are still some doubts 

about how the thiol addition mechanism proceeds in cysteine proteases, including 

which parts are step wise or concerted, and whether a charged or neutral catalytic 

Cys/His ion pair is the reactive species. This highlights the importance of 

benchmarking QM methods and of testing convergence in umbrella sampling 

simulations for thiol addition to ensure the methods used give accurate and reliable 

energetics and structures for the system of interest.  
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Thiol addition of covalent inhibitors to protein kinases has also been modelled 

using umbrella sampling techniques. The addition mechanism of an acrylamide 

inhibitor of Epidermal Growth Factor Receptor (EGFR) kinase has been modelled 

with QM/MM umbrella sampling at the DFTB2 level.74 The mechanism of thiol 

addition in kinases broadly follows the mechanism depicted in Figure 4.1, where thiol 

deprotonation is followed by a nucleophilic attack step and then re-protonation of the 

resulting enolate intermediate. An aspartate residue, D800, situated near to the 

reactive cysteine (C797) was found to deprotonate the cysteine thiol group prior to 

covalent bond formation with the acrylamide inhibitor. The protonated aspartate then 

acts as a general acid to re-protonate the enolate intermediate. Further investigations 

using QM/MM techniques on an EGFR mutant (L718Q) that developed resistance to 

the lung cancer drug osimertinib revealed that the mutation does not affect the 

energetics of C797 alkylation, but instead stabilises a non-reactive conformation of the 

drug in the EGFR binding site.211 Both of these studies employ the semi-empirical 

DFTB2 Hamiltonian that has been shown to predict poor energetics for thiol-Michael 

addition reactions. However, the results reported in this chapter regarding DFTB 

methods suggest that the geometries, and in some cases even the energetics along the 

reaction path, predicted by this method are consistent with range-separated DFT 

functionals (Figure 4.4). Furthermore, the umbrella sampling method calculates FEs 

based upon a probability distribution of sampled values along a particular reaction 

coordinate, and the geometries are therefore a vitally important aspect of calculating 

accurate FEs from umbrella sampling simulations. In spite of the warnings against the 

use of DFTB for modelling thiol reactivity,231 the results reported in this chapter 

suggest it is an accurate method to use for modelling thiol addition when used in 

combination with umbrella sampling simulations.   

 

Testing convergence in umbrella sampling is non-trivial, and there are several 

factors that should be analysed in order to check that convergence has been reached. 

The vast majority of publications that use umbrella sampling to investigate biological 
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processes such as conformational changes, reactive events and binding/unbinding 

events often fail to provide detail on how the convergence of their simulations was 

assessed. However, the generally accepted protocol is to check the convergence of the 

WHAM equations, the overlap between the histograms of reaction coordinate sampling 

in neighbouring umbrella sampling windows and the dependence of the FE as a 

function of the amount of sampling carried out in each reaction coordinate window. 

Convergence tests of umbrella sampling simulations for thio-Michael addition were 

carried out by defining a 2D reaction coordinate corresponding to proton transfer and 

nucleophilic attack. The mechanistic pathway followed for thio-Michael addition in 

these convergence tests is discussed in more detail in Chapter 5 of this thesis. The 

reaction coordinates were chosen to include important steps in the mechanism, 

including proton transfer from the thiol to from the more reactive thiolate species and 

nucleophilic attack between the thiolate and acrylamide inhibitor.  

 

Table 4.2 Effects of tolerance value on FE from WHAM analysis. FEs from WHAM analysis 
using increasingly stringent convergence tolerance criteria. Beyond tolerances of 1 × 𝟏𝟎!𝟖, the 
FE barrier has converged to approximately 18.37 kcal mol–1. 

Tolerance value Free energy (kcal mol–1) 

1 × 1037 18.99 

1 × 103C 18.69 

1 × 103D 18.38 

1 × 103E 18.37 

1 × 1036F 18.37 

1 × 1036G 18.37 

 

Equations 2 and 3 must be solved self-consistently in order to obtain the FE in 

each umbrella sampling window along the predefined reaction coordinate. Testing the 

convergence of the WHAM equations is one important component of ensuring the FE 

and the resulting potential of mean force (PMF), or FE profile/surface, has 

converged.266 The implementation of WHAM distributed by the Grossfield lab230 uses 
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a convergence tolerance or ‘tol’ keyword in the input to measure the convergence of 

the WHAM equations. If the value of 𝐹8 changes by a number less than the value of 

tol, the simulation has reached convergence. Values of tol such as 1 × 103H are 

recommended in the WHAM documentation.230 The dependence of the FE on different 

values of tol can be seen in Table 2. Using a tol value of greater than 1 × 103E suggests 

that the FE has converged in the TS window in a 2-dimensional FE surface of thio-

Michael addition.  

 

 
Figure 4.10 Umbrella sampling histograms along the proton transfer and nucleophilic attack 
(S-C formation) reaction coordinates after 2 ps of sampling in combination with a biasing 
potential of 100 kcal mol–1 Å2 in each umbrella sampling window. The histograms indicate 
poor sampling, particularly for the nucleophilic attack reaction coordinate where there is poor 
histogram overlap at S-C distances of approximately 2.5 Å and the histograms are not uniform 
in shape or height.   

 

The WHAM approach uses umbrella sampling histograms that count the 

number of times the reaction coordinate is sampled in a particular umbrella sampling 

window.229,267 The histogram shape and overlap are another important test of 

convergence in umbrella sampling simulations, as it shows whether sufficient sampling 
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along the reaction coordinate of interest has been achieved. If there is not enough 

overlap between the histograms of neighbouring umbrella sampling windows, this can 

lead to inaccuracies in the resulting FE curve from the biased umbrella sampling 

simulations. Choosing a suitable biasing potential and spacing between each umbrella 

sampling window sampled is essential for generating smooth FE curves. If a weak 

biasing potential is used, adequate sampling may not be achieved in the high energy 

regions of the PMF (Figure 4.10). However, if strong biasing potentials are used, 

adequate sampling of high energy regions may be achieved to the detriment of good 

overlap between neighbouring histograms. In these scenarios, additional simulations at 

smaller intervals along the reaction coordinate must be carried out to ensure sufficient 

overlap is achieved between neighbouring histograms.  

 

A biasing potential, or force constant of 100 kcal mol–1 Å2 in combination with 

2 ps of sampling was initially used for both the proton transfer and nucleophilic attack 

reaction coordinates. However, inspection of the histograms along the proton transfer 

RC (sampled from -3.0 to 0.5 Å in steps of 0.1 Å) and the nucleophilic attack RC 

(sampled from 1.8 to 3.5 Å in steps of 0.1 Å) showed that there was relatively poor 

histogram overlap in the nucleophilic attack reaction coordinate (Figure 4.10). At S-C 

distances of approximately 2.5 Å, there is particularly poor overlap between 

neighbouring histograms which could lead to an overestimation of the FE in this region. 

The midpoints of the histograms are also not always centred over their respective 

reaction coordinate values, indicating that the biasing potential is indeed too low. This 

is particularly evident at S-C values around 2.3 Å as this corresponds to the TS of S-

C bond formation. In addition, the histograms along the S-C reaction coordinate are 

not uniform in size, another indication that there is not enough sampling in each 

window. The harmonic restraint is not sufficient for some umbrella sampling windows 

to sample close to their constrained reaction coordinate distance, and instead drift to 

lower or higher values. The proton transfer reaction coordinate histograms exhibit 

much better overlap and are a more uniform shape and size. This is not surprising, 
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given that the S-C reaction coordinate corresponds to the movement of the heavier 

sulfur and carbon atoms, compared to the proton transfer reaction coordinate. 

Increasing the biasing potential to 200 kcal mol–1 Å2 and increasing the amount of 

sampling in each umbrella sampling window to 20 ps successfully improved the 

sampling in the high energy regions, whilst maintaining good overlap between 

neighbouring histograms along the entire reaction coordinate.  

 

 
 

Figure 4.11 Umbrella sampling histograms along the proton transfer and nucleophilic attack 
(S-C formation) reaction coordinates after 16 and 20 ps of sampling in combination with a 
biasing potential of 200 kcal mol–1 Å2 in each RC window. The histograms indicate good 
sampling of both reaction coordinates after 16 ps as there is good histogram overlap between 
neighbouring reaction coordinate values and the histograms are of uniform shape and height.   

 

In Figure 4.11, the histograms along the S-C and PT reaction coordinates have 

been plotted after 20 ps of sampling per window has been performed and after 16 ps 

of sampling per window (80% of the data). For both 16 ps and 20 ps of sampling, the 

histograms along both reaction coordinates show good overlap, and are of a uniform 
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shape and height. The difference in height of the histograms between 20 ps and 16 ps 

simulations is due to the increase in sampling. The histograms show that the sampling 

and overlap is good enough at 16 ps when used in combination of a biasing potential 

of 200 kcal mol–1 Å2. for the simulations to be well converged in terms of the amount 

of sampling in each umbrella sampling window.  

 

There is now confidence that convergence of the WHAM equations has been 

achieved, and that a sufficient amount of sampling in combination with an appropriate 

biasing potential has led to umbrella sampling histograms that show good overlap and 

uniform shapes. The final test for convergence in umbrella sampling simulations is how 

the energy changes with the different amounts of sampling.  

 

 
Figure 4.12 The difference in FE when comparing the FE surfaces produces from 20 ps and 
16 ps sampling. Changes in FE are low for the whole surface and are consistently below 0.4 
kcal mol–1. The largest differences are those in the high energy regions of the FE surface, at S-
C distances of 1.8 Å and proton transfer distances of 1.6 Å. 
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WHAM analysis was performed on simulation data from umbrella sampling 

along nucleophilic attack and proton transfer reaction coordinates that describe thio-

Michael addition. The difference in FE was calculated between the FE surface from 20 

ps of sampling and FE surface from 16 ps of sampling. This difference was plotted as 

a colour map (Figure 4.12) for the full FE surface. It is evident that the FE change 

between 20 ps and 16 ps is less than 0.40 kcal mol–1 across the surface. The energy 

change for the majority of umbrella sampling windows is actually much lower, 

approximately 0.10 kcal mol–1 for large areas of the surface. The area with the biggest 

changes in energy between 16 ps and 20 ps of sampling (approximately 0.3 kcal mol–

1) is the bottom right-hand corner of the surface. This area corresponds to a very high 

energy region on the FE surface where the S-C bond has formed prior to proton 

transfer. The minimum energy path for this reaction suggests the reaction proceeds in 

a stepwise manner, where the proton transfer occurs prior to nucleophilic attack. 

Energy changes along this path are more important and are generally lower than 0.25 

kcal mol–1. This is well below the 1.00 kcal mol–1 normally quoted for chemical 

accuracy, so the energies along the path are well converged after 20 ps of sampling.  

 

The barrier heights predicted from WHAM analysis at various levels of sampling 

also show very little change, even after 4 ps of sampling (Table 4.3). However, the 

pathway changed slightly and did not remain constant until after 8 ps of sampling per 

window, at which point the energy converged to 18.30 kcal mol–1. The number of 

additional erroneous energy minima on the surface also decreased as the amount of 

sampling increased. Although the energies and histograms suggest that sampling seems 

to have converged after only 8 ps, it is unlikely that performing additional sampling in 

each umbrella sampling window will be detrimental. In fact, the majority of umbrella 

sampling studies that investigate thiol addition use between 10 ps72 and 50 ps211 of 

production sampling per window, with biasing potentials ranging from 100 kcal mol–1 

Å2 211 to nearly 600 kcal mol–1 Å2 263. It is also customary to carry out an equilibration 

in each window, where the data collected during this period is not included in the 
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WHAM analysis. As most studies do not provide detailed information on how 

convergence was checked, it is difficult to know how much sampling is appropriate. 

The analysis presented in Figures 4.11 and 4.12 showed that after 20 ps of sampling 

with a biasing potential of 200 kcal mol–1 Å2 and a 5 ps equilibration time in each 

umbrella sampling window, the FE is well converged. Running an extra 10 ps of 

sampling along the predicted minimum energy path helps to maintain sensible 

geometries and guarantee that no high energy and unrealistic structures are sampled.  

 

Table 4.3 Change in barrier height with increased sampling per reaction coordinate window 
in QM/MM umbrella sampling simulations. As sampling increases, the barrier height 
converges. 

Amount of sampling per window (ps) Barrier Height (kcal mol–1) 

4 18.6 

8 18.3 

12 18.4 

16 18.3 

20 18.4 

 

4.6 Conclusions 
The extensive benchmarking performed in this chapter for the modelling of thio-

Michael addition reactions has allowed the definition of a robust, practical protocol for 

modelling sulfur reactivity in biological systems. Stepwise 1D PE scans of S-C bond 

formation and 2D concerted IRC calculations involving a proton transfer step were 

carried out with several density functional and semi-empirical methods. These reaction 

pathways were compared with high level MP2 geometries and energies. Limitations 

with the popular density functional B3LYP were found: they result from a 

delocalisation error causing a flat PE profile and no energy minimum for the enolate 

intermediate following S-C formation.127 These limitations can be overcome by using 

range separated density functionals, of which wB97X-D was found to perform 
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particularly well. Of the semi-empirical methods tested, AM1, PM3 and PM6 predict 

a stable enolate intermediate. However, all of these methods do not predict the correct 

energies and geometries at large S-C distances due to spontaneous cis/trans 

isomerisation of the olefinic bond in acrylamide. The popular density functional tight 

binding methods DFTB2 and DFTB3 performed poorly in predicting accurate 

energetics for S-C bond formation. In spite of this, the geometries predicted by these 

methods are presumably close to those that would be seen with wB97X-D because the 

resulting single point energy calculations with this DFT method using the DFTB3 

geometries led to very similar energetics to the full DFT method alone. On the other 

hand, PM6 performs rather poorly for predicting accurate energies and geometries, 

despite being recommended for modelling sulfur reactivity by some studies. This holds 

true for the 1D PE scans of S-C formation, and 2D IRC scans of S-C bond formation 

and proton transfer. This is a particularly important finding, as semi-empirical methods 

are routinely used to model sulfur reactivity in enzymatic reactions using the umbrella 

sampling technique. Currently, there appears to be no general consensus on the best 

semi-empirical quantum method to use for investigating sulfur reactivity, with PM6, 

AM1 and DFTB methods all being used to model reactions of cysteine proteases and 

protein kinases in the literature. By convergence testing for thiol addition of acrylamide 

containing compounds to a cysteine thiol, an accurate QM/MM protocol has been 

established that yields converged FEs. Testing the convergence of the WHAM 

equations, scrutinising histogram overlap across a FE surface, and inspecting the 

change in FE as a function of sampling led to the following protocol: 5 ps of 

equilibration in each umbrella sampling window, which is discarded for analysis, 

followed by 20 ps of production sampling with an umbrella biasing potential of 200 

kcal mol–1 Å2. The semi-empirical method DFTB3 is used to describe the QM part of 

the system. A further 10 ps of sampling along the minimum FE path is then carried 

out to increase the sampling in this region for 2D FE surfaces. As this protocol has 

been shown to give accurate FEs and is computationally feasible in terms of time 
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required, it was chosen to explore alternative reaction mechanisms for the addition of 

covalent inhibitor ibrutinib to its protein target BTK in Chapter 5 of this thesis.  

 

4.7 Suggestions for further work 
The testing of different semi-empirical and density functional QM methods in 

this chapter has shown that no semi-empirical method can accurately reproduce the 

correct energetics and structures in thiol addition reactions. Although the semi-

empirical tight binding DFTB2/3 methods result in geometries and pathways for thiol 

addition that are in good agreement with range-corrected density functional methods, 

there is clearly room for improvement. A new semi-empirical method based upon the 

self-consistent density functional tight binding scheme, named GFN-xTB was recently 

published by Grimme et al.268 This method performs slightly better than DFTB3-D3 

for cysteine conformational energies from the CYCONF269 benchmarking set. An 

extension of  GFN-xTB, called GFN2-xTB was recently released, which is a more 

robust and physically sound method than GFN-xTB due to the native inclusion of 

electrostatic interactions and exchange correlations effects, amongst other 

differences.270  GFN2-xTB has been shown to perform well for a range of molecular 

properties including structures, noncovalent interaction energies and even barrier 

heights, despite not being parameterised for this purpose. As a result of the novelty of 

the GFN-xTB and GFN2-xTB  methods, there are only a handful of examples in the 

literature of its use in QM/MM simulations,271,272 and no direct test of its applicability 

for modelling sulfur reactivity. An extension of this work is therefore the inclusion of 

GFN2-xTB in the benchmarking of methods for sulfur reactivity. It has the potential 

to provide superior molecular properties to currently available semi-empirical methods 

at a fraction of the computational cost of density functional methods. This is useful in 

a drug design context, where molecular properties of large numbers of compounds can 

be compared in lead optimisation scenarios.  
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The analysis and combination of data from umbrella sampling simulations and 

generation of FE profiles presents another opportunity for further work. Alternative 

methods for analysing umbrella sampling simulations other than WHAM are available, 

including an extension of WHAM known as the dynamic histogram analysis method 

(DHAM).273 DHAM overcomes the erroneous FE predictions made by WHAM if 

insufficient equilibration has been performed in each umbrella sampling window by 

using a Markov state model to obtain the FE along the reaction coordinate. The use 

of a Markov state model provides the user with kinetic data that can be used to assess 

the convergence in each reaction coordinate window. DHAM has been reported to give 

accurate FE estimates in scenarios where WHAM fails,274 and so could be compared 

with WHAM for obtaining FE simulations from modelling thiol addition reactions with 

QM/MM methods. As already mentioned in section 4.5, umbrella integration is another 

method that can be used for analysing biased molecular dynamics simulations.255 The 

method can reduce the statistical error when compared with WHAM256 and would be 

another method that can be compared with WHAM to generate FEs from umbrella 

sampling simulations. A potential limitation of using umbrella integration and DHAM 

however, is the accessibility and implementation of each method in the proposed 

QM/MM protocol. Improvements to the umbrella sampling technique could also be 

explored with the use of replica exchange umbrella sampling (REUS). In REUS, replica 

exchange attempts are made between different umbrella sampling potentials.275 This 

allows extensive sampling of conformational space to be performed compared with 

conventional umbrella sampling and can therefore help to improve convergence in 

umbrella sampling simulations.276  

 

Finally, alternative embedding schemes could be investigated for improving the 

accuracy in QM/MM reaction simulations. The work contained within this chapter has 

demonstrated that there is a large variation in the accuracy of barrier heights that are 

predicted for modelling thiol addition reactions when using density functional and 

semi-empirical QM methods. The projector embedding approach, where a 
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wavefunction method is embedded within a density functional method, has been 

proposed as a robust way to remove the functional dependence on barrier height in 

QM/MM simulations.128 By embedding correlated ab initio methods in DFT to model 

the Claisen rearrangement of chorismite to prephenate in chorismate mutase, the 

variation in barrier heights was reduced from 13 kcal mol–1 to 0.3 kcal mol–1 compared 

to using DFT alone.277 Alternatively, embedded mean field theory (EMFT) could be 

explored as an embedding approach. In EMFT, one density functional method can be 

embedded within another.278 The potential advantage of this embedding scheme in 

QM/MM reactivity simulations is that the QM region could be portioned into two 

subsections, one that’s treated with a higher level DFT method and one that’s treated 

with a lower-level DFT method. Furthermore, the partition between each density 

functional can cross multiple and  polar bonds without compromising on accuracy.279 

For the reaction between BTK and ibrutinib this would be advantageous as a higher-

level density functional such as wB97X-D could be used to treat a small subset of 

reactive atoms within the QM region, such as the thiol side chain of C481 and the 

reactive atoms in the acrylamide group of ibrutinib. The remainder of ibrutinib can 

then be treated with a lower-level method such as LDA with a minimal basis set. This 

has the potential to result in gains in speed to be made over pure DFT QM/MM, 

whilst retaining the accuracy of wB97X-D.  
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Chapter 5  

Investigation of the mechanism of covalent inhibition of 

Bruton’s tyrosine kinase by ibrutinib using QM/MM 

calculations 

 

Some of the work contained within this Chapter has formed the basis of a 

manuscript that was published in RSC Chemical Science on 28th January 2021 as a 

just accepted manuscript.187  

5.1 Introduction 
Covalent inhibition is an active area of drug discovery research because of the 

advantages of pursuing a covalent mechanism of action compared with conventional 

non-covalent reversible binding. These include complete target blockage, increased 

selectivity and duration of action.1,4,35 Recent years have seen the approval of several 

new marketed covalent drugs targeting protein kinases, owing to their essential roles 

in protein phosphorylation and cell signalling processes.17,210 Bruton’s tyrosine kinase 

(BTK) is a particularly attractive drug target for blood cancers and autoimmune 

diseases due to its function in signal transduction in the B-cell antigen receptor (BCR) 

pathway.280,281 Ibrutinib, acalabrutinib  and zanubrutinib are drugs that are approved 

for the treatment of B-cell cancers including mantle cell lymphoma (MCL) and chronic 

lymphocytic leukaemia (CLL).282 Each drug contains an electrophilic Michael acceptor 

warhead that covalently modify a cysteine residue (C481) in the kinase domain of BTK 

(Figure 5.1). Utilising warheads of this type to target poorly conserved cysteine 

residues is a common technique to develop covalent inhibitors in drug discovery.9 

Despite the massive investments made to discover and develop these drugs,  the 

detailed mechanism of covalent binding to BTK is unknown. Understanding the precise 

mechanism will help in the design of improved covalent drugs targeting BTK, and 
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other covalent drug targets. Furthermore, the ability to rationally tune covalent 

reactivity could lead to safer, reversible covalent drugs that have fewer side effects.6,119  

 
Figure 5.1 Covalent kinase inhibitors ibrutinib, zanubrutinib and acalabrutinib that target 
the protein kinase BTK and are approved for the treatment of various B-cell cancers. Ibrutinib 
and zanubrutinib contain an electrophilic acrylamide warhead, whereas acalabrutinib contains 
a butynamide warhead. The electrophilic warhead in each drug is highlighted in red. 

 

The addition of a Michael acceptor warhead, such as an acrylamide group, to a 

thiol side chain is typically modelled in three steps. First, deprotonation of the cysteine 

thiol occurs to form a thiolate anion, followed by nucleophilic attack of the thiolate on 

the electrophile to form an enolate intermediate, and finally re-protonation of the 

enolate to form a covalent thiol-adduct.127 Krenske et al. used quantum mechanics 

(QM) calculations to study the fundamentals of this addition reaction. They used small 

molecules containing the electrophilic warhead and a simplified methyl thiolate 

cysteine-mimic. The calculations were performed in a continuum solvent and using 

density-functional theory (DFT). They found the rate determining step to be carbon-

sulfur bond formation, with a barrier of 14 kcal mol–1 for the addition of methyl 

acrylate to methyl thiol.120 Sulfur reactivity has also been studied in proteins using 

combined Quantum Mechanics/Molecular Mechanics (QM/MM) methods. Effort has 

focused on cysteine proteases and protein kinases, given their function in disease 

processes. The reaction between several covalent nitrile inhibitors and the cysteine 

protease rhodesain has been investigated using QM/MM simulations at the semi-
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empirical PM6 level.72 The protocol was found to be a useful predictor of reversible 

covalent binding affinity and was in good agreement with experimental data. The 

mechanism of covalent modification of C797 by an acrylamide warhead in epidermal 

growth factor receptor (EGFR) kinase has been elucidated by QM/MM modelling at 

the self-consistent-charge density-functional-based tight-binding (SCC-DFTB) 

level.74,116 These results identified an active site aspartate residue, D800, in the i+3 

position relative to C797 that acts as a catalytic base to deprotonate the cysteine thiol. 

Desolvation of the thiolate anion prior to nucleophilic attack was found to be an 

important reactivity determinant.  

 

The ATP binding pocket where ibrutinib binds in BTK contains an asparagine 

(Asn) residue, N484, rather than an aspartate (Asp) or equivalent proton acceptor in 

the important i+3 position (Figure 5.2).  When comparing kinases with cysteine at the 

same position as C481, different pKa-modifying amino acids are to be found at the i+3 

position, with the majority being either Asp or Asn.110 It is understood the surrounding 

hydrophobic microenvironment can lead to a less reactive and therefore higher cysteine 

pKa.39 The acidic pKa of a free cysteine thiol in solution is 8.6.283 A nearby more acidic 

i+3 sidechain such as Asp leads to an upshift in cysteine pKa. The pKa of C797 in 

EGFR (which contains an i+3 Asp residue), was estimated to be 11.1 pKa units in a 

recent study.65 Due to its hydrogen bonding capability and neutral sidechain, the same 

study has shown the i+3 Asn in BTK results in a slightly more acidic Cys pKa of 10.4, 

yet it would still be majority neutral at physiological pH. Unfortunately, there are very 

few experimentally measured protein cysteine pKa’s and no reported experimental pKa 

for C481 in BTK. A pKa value of 5.5 has been measured for C797 in EGFR from 

titration experiments.164 Although this is a lower pKa than otherwise expected given 

the acidic microenvironment surrounding C797 in EGFR, the stable thiolate has been 

ascribed to the stabilising effect of the dipole created by the residues comprising the 

a-helix on which C797 resides.164  Some doubt has been cast on this value from the 

molecular modelling community as the MM forcefields should partially account for the 
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stabilising a-helix dipole.65 Clearly there is a substantial difference in cysteine pKa 

prediction between calculation and experiment that warrants further investigation. 

The topic of cysteine thiol pKa is covered extensively in Chapter 3 of this thesis, where 

the pKa of the C481 thiol side chain was calculated to be 13.2 using explicit solvent 

constant pH molecular dynamics simulations. The fact still remains that the i+3 

asparagine in BTK is likely to lead to an upshift in cysteine pKa compared with solution 

and that there is unlikely to be a significant proportion of thiolate at physiological pH. 

Although Asn performs a catalytic role in some enzymes, for example in GTPase 

activation18 and in some protein splicing reactions19,20, the amide side chain of Asn is 

only weakly basic and is therefore unlikely to perform a proton accepting role analogous 

to the Asp in EGFR. It has been shown that Asn is capable of performing such a role, 

but only in imine form when it is bound to a metal ion.173 There are no metal ions, or 

other residues in the vicinity of Asn in BTK to allow the formation of a basic imine 

that could then act as a base to participate in covalent modification.  

 

 
Figure 5.2 Binding mode of ibrutinib in the active site of BTK. The acrylamide warhead is 
positioned in close proximity to C481, but with an asparagine in the i+3 position rather than 
an aspartate residue as in EGFR, it is unclear what the precise mechanism of covalent 
inhibition is in BTK. 

 

The absence of a proximal acidic/basic residue and the high pKa of C481 

suggests ionisation is unlikely. This leaves the opportunity for a direct attack 

mechanism between Michael acceptor warheads and the C481 thiol side chain in BTK, 

of which there are 4 possible pathways. One possible pathway (Mechanism 1, Figure 
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5.3) is the direct transfer of the thiol proton to the α-carbon of the acrylamide warhead 

to afford the covalently bound keto adduct in a single step. Alternatively, this pathway 

could occur in a solvent assisted manner where the thiol proton transfers to the α-

carbon of the inhibitor via a nearby water molecule (Mechanism 2, Figure 5.3). A 

multi-step mechanism is also possible, whereby the thiol proton transfers to the 

carbonyl oxygen atom of the acrylamide inhibitor to form an enol intermediate 

(Mechanism 3, Figure 5.3). This could also occur in a solvent assisted pathway, where 

a water molecule acts as a proton shuttle, analogous to the Asp residue in EGFR 

(Mechanism 4, Figure 5.3). Mechanisms 3 and 4 are then proceeded by a 

tautomerisation step to yield the keto product, which is likely to be solvent assisted as 

direct keto-enol tautomerisation pathways are generally higher in energy than water 

assisted pathways.284 To determine the reaction mechanism of covalent addition of 

ibrutinib to BTK, all four pathways were studied in detail with  a QM/MM umbrella 

sampling protocol, which is outlined below.  

 

 
Figure 5.3 Possible covalent inhibition pathways in BTK in the absence of an appropriate 
amino acid reside that can deprotonate the cystine thiol. Mechanism 1 has been previously 
studied for a model system comprising methylvinyl ketone,231 and Mechanism 3 has been 
studied in the covalent binding of microcystins to cysteine residues.201  
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5.2 Methods 
A QM/MM umbrella sampling protocol was used to explore mechanisms 1-4 

(Figure 5.3) in the kinase domain of BTK. The justification for the umbrella sampling 

protocol used in this mechanistic study is explained in detail in Chapter 4 of this thesis, 

and full details of the system set-up and molecular dynamics settings can be found in 

Chapter 3, Section 3.2. The structural coordinates of the covalently bound 

BTK/ibrutinib complex were taken from PDB 5P9J,99 and the mechanistic pathways 

were followed in the reverse direction. All energies are quoted assuming the reaction 

between BTK and ibrutnib proceeds in the forwards direction.   For some of the reverse 

pathways, difficulty with obtaining a productive reaction pathway was encountered 

and so, in these rare cases, the reaction was investigated in the forwards direction 

starting from the reactant complex (ibrutinib non-covalently bound to BTK. 

Structural coordinates were taken from PDB 5P9I,99 and the same procedure outlined 

in Chapter 3, Section 3.2 was used to set up and carry out the classical MD simulations. 

The reactant complex snapshots for the reaction simulations were selected based on 

the definition of a reactive conformation. This conformation included an S-C distance 

that was below 3.5 Å and a cysteine orientation where the S-H group pointed towards 

the inhibitor. Optimal cysteine orientation was characterized by a dihedral angle 

between the N, CA, CB and S atoms of C481 between 20° and 120° For the pathways 

involving solvent assistance, snapshots containing a water molecule in close proximity 

to the covalent warhead was also required.  

 

Briefly, the umbrella sampling protocol consisted of generating a full free energy 

(FE) surface at the DFTB3 level with 25ps of sampling per umbrella sampling window 

to get an approximate minimum energy pathway (MEP) for the reaction. The first 5 

ps of sampling was discarded as equilibration. A further 10 ps of sampling, giving a 

total of 30 ps, was carried out along the MEP. Some of the FE surfaces presented were 

intended to be exploratory surfaces, and so less sampling was performed. This has been 

indicated in the appropriate places in the following sections. 
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5.3 Results  

5.3.1 Mechanism 1: direct thiol addition and covalent keto product 
formation 

One mechanistic possibility for addition of a Michael acceptor warhead to C481 

in BTK is a direct addition where the thiol proton transfers directly to the  a-carbon 

of the Michael acceptor warhead (Figure 5.3, Mechanism 1). We investigated this 

pathway according to the computational procedure outlined above to produce a FE 

surface for the reaction (Figure 5.4) starting from the covalently bound BTK/ibrutinib 

complex. Reaction coordinate (RC) 1  was defined as the proton transfer of the thiol 

hydrogen atom to the  a-carbon of the inhibitor (d[HC481-Caibrutinib] – d[SC481-HC481]) 

and RC2 represents the sulfur-carbon bond distance between the thiol group and the 

b-carbon of the inhibitor (d[SC481-Cbibrutinib]). The minimum energy pathway suggests 

a concerted reaction between the proton transfer and nucleophilic attack reaction 

coordinates, with a reaction barrier of 47.7 kcal mol–1, and a covalent complex energy 

of 6.4 kcal mol–1 higher than the unbound state.  

 

The energetics and geometries of this pathway are consistent with gas phase TS 

optimisation and IRC calculations carried out in the gas phase on a model system, 

based upon truncating the QM region defined in the umbrella sampling simulations. 

This reaction is an example of an electrocyclic reaction, a type of pericyclic reaction 

where one pi-bond is converted to a sigma-bond by passing through a cyclic transition 

state.285 According to the generalized Woodward-Hoffman selection rules for pericyclic 

reactions,248 this is an example of a reaction consisting of 4p electrons and requires the 

reaction to proceed through conrotation to give optimal orbital overlap if it is thermally 

allowed. However, this reaction actually proceeds in a disrotatory fashion and is 

therefore thermally forbidden and thus explains the high reaction barrier. 
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Figure 5.4 FE surface produced at the DFTB3 level, with 30 ps of sampling per window 
along the MEP for the direct addition of ibrutinib to C481 in BTK. The high reaction barrier 
of 47.7 kcal mol–1 is consistent with the reaction being thermally forbidden. 

 

A recent study from Awoonor-Williams et al. who looked at this direct addition 

mechanism for thiol addition also found a high barrier of 65.2 kcal mol–1 for the reaction 

at the CCSD(T)/aug‐cc‐pVTZ//ωB97X‐D/aug‐cc‐pVTZ level of theory consistent 

with the reaction being thermally forbidden.231 Furthermore, the proton has to travel 

a large distance of approximately 4 Å in the starting snapshots analysed, indicating a 

sub-optimal geometry that hinders this reaction taking place, as well as inefficient 

orbital overlap. As a result, this mechanism is highly unlikely to be operative for thiol 

addition between ibrutinib and C481 in BTK and was not investigated further.  
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Figure 5.5 (A) Approximate transition state, taken from the final frame of the highest energy 
reaction coordinate window (RC1 = 2.6 Å, RC2 = 0.6 Å) along the reaction pathway of 
Mechanism 1. (B) Representative snapshot of the covalently bound BTK/ibrutinib keto 
product (EP) from Mechanism 1. The geometry around the newly formed S-C bond differs 
from the crystal geometry (PDB 5P9J,99 shown in transparent green), and results in a high 
energy product state. 

 

5.3.2 Mechanism 2: solvent assisted thiol addition and covalent keto 
product formation 

A solvent assisted pathway where the C481 thiol proton transfers to the  a-

carbon of the acrylamide warhead of ibrutinib (Figure 5.3, Mechanism 2) is potentially 

a more feasible pathway than the direct addition (Mechanism 1) discussed in Section 

5.3.1. This is based on the assumption that the thiol proton has less distance to travel 

to the  a-carbon of the acrylamide group in ibrutinib if it can be assisted via a water 

molecule, and the reaction would not have to proceed via a strained four-membered 

ring transition state, as is the case for Mechanism 1. Instead, Mechanism 2 would 

proceed through a more stable pseudo six-membered ring transition state to result in 

the covalently bound keto product. To investigate Mechanism 2, a 2D QM/MM FE 

surface for the reaction was produced. The first reaction coordinate described the 

proton transfer from ibrutinib to water and S-C formation as a linear combination of 

three distances. There are, therefore, six atoms that define this reaction coordinate 
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(d[Owat-Hibrutinib] – d[Caibrutinib-Hibrutinib] – d[SC481-Caibrutinib]). The second reaction 

coordinate was chosen to describe the proton transfer between the thiol group in C481 

and a nearby water molecule (d[SC481-Hwat] – [Owat-Hwat]).  

 

 
Figure 5.6 (A) Approximate FE profile for Mechanism 2, where solvent assisted thiol addition 
occurs to result in the keto product. The approximate FE barrier is 39.0 kcal mol–1 and 2 ps 
of sampling was carried out in reach umbrella sampling window. (B) Approximate transition 
state for Mechanism 2. The structure is the final frame from the highest energy reaction 
coordinate window along the reaction path. 

 

The transformation of the covalently bound BTK/ibrutinib adduct to the non-

covalently bound reactant state described by Mechanism 2 did not result in a 

productive reaction pathway. Only a pathway along the approximate diagonal of the 

FE surface resulted in the expected reaction pathway. When the remainder of the FE 

surface was sampled with QM/MM umbrella sampling, several spurious proton 

transfers occurred. Some of these additional proton transfers resulted in the formation 

of the enol product, where a proton transfer from the developing hydronium ion to the 

carbonyl oxygen of the inhibitor was observed.  Simulations with harmonic restraints 

added to the system to stop these unwanted proton transfers from occurring still 

resulted in the formation of the enol product or led to fragmentation of the inhibitor. 

The additional proton transfers are not explicitly sampled in the generation of the FE 
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surface, and so the energetics of these additional processes are not captured, and the 

full FE surface has therefore not been shown. The approximate FE barrier can be 

estimated from the approximate diagonal pathway that assumes a purely concerted 

reaction path for this reaction and is 39.0 kcal mol–1 (Figure 5.6).   

 

The difficulty in producing a productive reaction pathway could be the result 

of the limitations of using a simple linear combination of multiple distances for such a 

complex reaction coordinate that involves the cleavage of two bonds and the formation 

of two bonds. A significant finding from the investigation into Mechanism 2 is that 

there appears to be a strong preference for the reaction to proceed via an enol 

intermediate. The developing negative charge that forms in the acrylamide group as 

the S-C bond forms is more likely to be centered on the carbonyl oxygen than the a-

carbon of the inhibitor, owing to the greater electronegativity of the oxygen atom.  

This has the effect of attracting the proton of the water molecule to the carbonyl 

oxygen instead of the a-carbon.  Furthermore, visual inspection of the geometry of the 

TS (Figure 5.6) shows that the distorted 6-membered ring that forms in the TS is 

strained, likely resulting in the high barrier for the reaction.  

 

A stepwise variant of the pathway described by Mechanism 2 is possible, where 

the thiol proton transfers from the sulfur atom of C481 to a nearby water molecule to 

form H3O+ and a negatively charged thiolate anion. This would result in a 

hydronium/thiolate ion pair analogous to cysteine thiolate/His+ ion pair that make 

up the catalytic dyad in cysteine proteases.263,264 Although a proton transfer of the 

thiol proton to a nearby water molecule was attempted, the instability of the H3O+ 

resulted in the transfer of a proton from the H3O+ to the carbonyl oxygen atom of the 

inhibitor. The apparent lack of a stable ion pair is not that surprising for BTK. 

Although stable Cys-S-/His-NH+ ion pairs are routinely observed in reactions 

catalyzed by cysteine proteases,  these enzymes have evolved to promote reactivity of 

the cysteine residue based on their neighboring sidechains. This is of course a different 
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scenario to BTK reactivity, where an exogenous drug molecule targets a non-catalytic 

cysteine residue. In a more similar scenario, although not an ion pair, a stable Cys-S–

/Asp-COOH pair was discovered for EGFR kinase that was predicted to be more stable 

than the Cys-SH/Asp-COO– pair. The likely difference between the EGFR system and 

BTK is the increased stability of the neutral carboxylate compared with the hydronium 

ion in the BTK system, and the geometric and entropic restraint of a proximal 

sidechain compared to solvent. Inspection of the reaction center and its immediate 

microenvironment suggests that there is no opportunity for stabilisation of the 

thiolate/hydronium ion pair. The edge of the ATP binding pocket where C481 is 

situated in BTK is reasonably solvent exposed. Whilst the i+3 N484 residue is close 

enough to provide some stabilisation of the ion pair, the amide side chain of N484 

cannot get close enough to the thiolate as it is hindered by the b-carbon of the inhibitor 

and thus does not provide any stabilisation of the TS in Mechanism 2 (Figure 5.6). 

The results of the investigation of Mechanism 2 indicate that solvent assisted thiol 

addition and keto product formation is an unlikely pathway for covalent alkylation of 

C481. This is indicated by the high reaction barrier of 39.0 kcal mol–1 for the 

approximate minimum energy pathway and the apparent preference for the reaction 

to proceed via a more stable pathway resulting in an enol intermediate.  

5.3.3 Mechanism 3: direct thiol addition and enol product formation 

The possibility of the reaction mechanism of BTK inhibition by ibrutinib 

occuring via a direct proton transfer from the C481 thiol group to the carbonyl oxygen 

atom in ibrutinib to result in an enol intermediate (Figure 5.3, Mechanism 3) was 

explored with a 2D FE surface. The first reaction coordinate defined the proton transfer 

from the thiol side chain of C481 directly to the carbonyl oxygen atom in ibrutinib 

(d[HC481-Oibrutinib] – d[Sibrutinib-Hibrutinib]), and the second reaction coordinate defined 

the nucleophilic attack step (d[SC481-Caibrutinib]).  The FE surface (Figure 5.7) for this 

reaction indicates that the carbon-sulfur bond formation and proton transfer steps 

proceed in a stepwise fashion, with the reaction proceeding via an intermediate that 
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corresponds to stable ion pair formed between the negatively charged cysteine thiolate 

and the protonated oxygen in the acrylamide warhead (EI1, Figure 5.3). The barrier 

to the initial PT step and formation of the EI1 reaction intermediate is 4.6 kcal mol–

1, and EI1 lies 2.0 kcal mol–1 higher in energy than the reactant complex. Unrestrained 

classical MD of EI1 confirms that it does not collapse and remains stable after removal 

of the umbrella sampling restraints. The overall reaction barrier is 17.6 kcal mol–1, 

corresponding to a product-like TS that is formed during carbon-sulfur bond formation, 

and after the initial PT has occurred. This is consistent with other studies that have 

predicted the rate limiting step in thiol addition to correspond to S-C formation.74,120  

The enol product lies 15.0 kcal mol–1 higher in energy than the non-covalent 

BTK/ibrutinib reactant complex (ES, Figure 5.7).  

 

 
Figure 5.7 FE surface of the S-C bond formation step and the solvent assisted tautomerisation 
step at the DFTB3/MM level, with 10 ps of sampling in each umbrella sampling window. The 
reaction proceeds in a stepwise fashion, through a reaction intermediate EI1.  The barrier for 
the proton transfer step (TS1) is 4.6 kcal mol–1 and the barrier to S-C bond formation (TS2) 
is 17.6 kcal mol–1. 
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Gas phase modelling of the reaction between methyl thiolate and 1-(piperidin-

1-yl)prop-2-en-1-one (Chapter 4, Figure 4.8) indicates a synchronous reaction pathway 

between the proton transfer and S-C bond formation steps, with no stable minimum 

corresponding to a protonated carbonyl oxygen. However, this charged intermediate is 

unlikely to be stable in the gas phase, as a crucial component of its stability is a 

hydrogen bonding interaction that forms between the negatively charged C481 thiolate 

and the amide side chain of the i+3 asparagine residue, N484. Even when the reaction 

is carried out in BTK, a stable intermediate corresponding to EI1 is not observed if 

the C481-S–/Asn-NH2 does not form. (Figures 5.8 and 5.9). The formation of the C481-

S–/Asn-NH2 interaction is dependent on the orientation of the N484 residue. When 

QM/MM reaction simulations starting from the reactant state are performed for 

Mechanism 3, the N484 residue is oriented away from C481 and the C481-S–/Asn-NH2 

interaction does not form and no stable intermediate is predicted as a result. However, 

when the reaction is investigated in the reverse direction, the N484 residue is oriented 

towards the C481 residue, thus allowing an interaction to form with the thiolate of 

C481 (Figure 5.8). 

 

 
Figure 5.8 (A) Approximate TS from DFTB3/MM umbrella sampling simulations showing 
the stabilizing interaction between the amide side chain of N484 and the cysteine thiolate of 
C481 that results in a stable intermediate (EI1). (B) Approximate TS from DFTB3/MM 
umbrella sampling simulations showing the absence of the stabilizing N484 interaction which 
does not lead to a stable EI1 intermediate. 
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In order to confirm that the formation of the C481-S–/Asn-NH2 interaction is 

dependent on the orientation of the amide side chain of N484 rather than the QM 

method used, FE surfaces were produced at the DFTB3/MM and wB97X-D/6-

31G(d)/MM levels of theory. The starting points for both simulations were a single 

snapshot where the N484 was oriented away from C481 and the reaction was modelled 

in the forwards direction (from ES to EI2). Comparison of the FESs produced at the 

DFTB3/MM and wB97X-D/6-31G(d)/MM levels of theory reveals that no stable EI1 

intermediate is predicted by either method (Figure 5.9) and no C481-S–/Asn-NH2 

interactions were observed on examination of the reaction trajectories. The barrier to 

enol formation is 23.9 and 29.2 kcal mol–1 for DFTB and wB97X-D respectively. The 

reaction barriers are in good agreement with the same reaction carried out in the 

reverse direction (EI2 to ES, DG‡=17.6 kcal mol–1), when the N484 interaction with 

C482 results in a reactive intermediate, EI1. The presence of the C481-S–/Asn-NH2 

interaction clearly provides a small amount of transition state stabilization and results 

in a lower barrier.  

 

 
Figure 5.9 FE surfaces for the forwards reaction between C481 and the acrylamide warhead 
of covalent drug ibrutinib at the DFTB3/MM level (A) and wB97X-D/6-31G(d)/MM (B) with 
2 ps of sampling in each reaction coordinate window. The barrier heights for the reaction are 
23.9 kcal mol–1 and 29.2 kcal mol–1 for the DFTB/MM and wB97X-D/6-31G(d) surfaces 
respectively. DFTB3 underestimates the reaction barrier by approximately 5 kcal mol–1 
compared to wB97X-D/6-31G(d). 
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The FE surfaces presented in Figure 5.9 also highlight how similar the reaction 

pathways are at the DFTB3/MM and wB97X-D/6-31G(d)/MM levels of theory, 

consistent with the benchmarking calculations performed in Chapter 4 of this thesis 

and confirm the suitability for investigating mechanistic pathways in BTK. 

Furthermore, it shows that DFTB3 underestimates the reaction barrier by 

approximately 5 kcal mol–1 with respect to wB97X-D/6-31G(d).  

 

 
Figure 5.10 Summary of the FE of intermediates and TSs along the pathway of Mechanism 
3, when calculated as a series of 1-D stepwise reaction coordinates at the DFTB3/MM level 
from umbrella sampling simulations where 30 ps of sampling was caried out in each umbrella 
sampling window. Reaction progress describes the covalent reaction from the non-covalently 
bound BTK/ibrutinib complex (E-S) to the covalently bound enol intermediate (EI2).  

 

The FE surfaces for Mechanism 3 predict a reasonably high energy barrier to 

reaction, and a high energy content of the enol intermediate EI2 for the reaction with 

respect to ES. This is the case regardless of whether the C481-S–/Asn-NH2 interaction 

forms or not.  When the reaction is modelled in a stepwise manner, the energies of the 

transition states and intermediates along the pathway are reduced significantly (Figure 
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5.10). Removal of the umbrella sampling restraints for the S-C step when the proton 

transfer from the thiol to the carbonyl oxygen of the inhibitor takes place affords a 

modest reduction of 1.5 kcal mol–1 in the FE penalty required to form EI1 from ES. 

However, a significant reduction in the barrier to S-C formation is observed when the 

umbrella sampling restraints for the proton transfer are released. This allows for greater 

flexibility in the acrylamide group during S-C formation, including a rotation around 

the acrylamide Ccarbonyl-Ca bond as S-C formation occurs that results in an E 

configuration in the newly formed enolic double bond in EI2 (Figure 5.11). This is in 

contrast to the concerted mechanism that results in a higher energy Z configuration 

around the enolic double bond in the TS corresponding to S-C formation (Figure 

5.8(B)) and the resulting EI2 intermediate.  The more favorable geometries adopted 

by ibrutinib and the thiol side chain of C481 in the stepwise pathway result in the 

barrier of the S-C formation step being dramatically reduced from to 17.6 to 2.6 kcal 

mol–1, and the energy of the enol intermediate EI2 being reduced from 15.0 to 0.7 kcal 

mol–1. This makes Mechanism 3 the lowest energy pathway to enol product formation, 

and the most feasible reaction mechanism considered so far for the covalent 

modification of C481 by ibrutinib.  

 

 
Figure 5.11 Approximate transition state and intermediate structures taken from 
DFTB3/MM MD simulations along the reaction path of Mechanism 3, when modelled with a 
stepwise reaction coordinate. 

 

 



 120 

5.3.4 Mechanism 4: solvent assisted thiol addition and enol product 
formation  

Initially, a FE surface for Mechanism 4 (thiol addition where the thiol proton 

transfers to the acrylamide carbonyl via a water molecule and S-C formation to form 

an enol product (Figure 5.3, Mechanism 4)) was modelled on a 2D FE surface. The 

first reaction coordinate consisted of varying the S-C distance that describes 

nucleophilic attack (d[SC481-Caibrutinib]), and the second reaction coordinate defined the 

simultaneous proton transfer from the thiol to a water, and a second proton transfer 

from the water to the carbonyl carbon ((d[Oibrutinib-H1wat] - d[H1wat-Owat] - d[SC481-

H2wat] + d[Owat-H2wat])). This FE surface (Figure 5.12) suggested that the reaction 

was stepwise due to the presence of an intermediate (EI1) corresponding to protonation 

of the carbonyl oxygen atom of the inhibitor prior to S-C formation. This is consistent 

with the stepwise pathway modelled for Mechanism 3 that also found the same E11 

intermediate.  

 

 
Figure 5.12 FE surface to show thiol addition to C481 for Mechanism 4, with 10 ps of 
sampling performed in each umbrella sampling window along the MEP. RC1 is solvent assisted 
proton transfer from thiol to carbonyl oxygen in the acrylamide group of ibrutinib and RC2 is 
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S-C formation. Presence of a shallow energy minimum indicates a two-step reaction. The 
overall reaction barrier corresponds to proton transfer and is 16.0 kcal mol–1. 

 

The barrier corresponding to the first step (proton transfer and formation of the 

charged intermediate) was calculated to be 16.0 kcal mol–1, and the barrier to the 

second step (S-C bond formation) was calculated to be 14.8 kcal mol–1 at the 

DFTB3/MM level of theory. After discovering that the stepwise pathway for 

Mechanism 3 led to a lower energy reaction pathway, a similar procedure was used to 

investigate the solvent assisted proton transfer. The starting structure selected was the 

final MD snapshot corresponding to EI1 from Mechanism 3. This consisted of 

generating a 2D surface investigating each proton transfer step (Figure 5.13). PT1 

corresponds to the proton transfer of the proton from the thiol group of C481 to a 

nearby water molecule situated in the cleft between the thiol group and the carbonyl 

group of the inhibitor and PT2 corresponds to the transfer of a proton from the same 

water molecule to the carbonyl oxygen atom of ibrutinib.  

 

 
Figure 5.13 FE surface for the solvent assisted proton transfer from C481 in BTK to the 
carbonyl oxygen atom of the covalent inhibitor ibrutinib at the DFTB3/MM level. In each 
reaction coordinate window 30 ps of sampling was performed along the MEP, and the barrier 
to the proton transfer was 8.3 kcal mol–1. 
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The MEP for the solvent assisted proton transfer process is concerted, with a 

FE barrier of 8.3 kcal mol–1 (Figure 5.13). This is significantly lower than the barrier 

reported for this step when modelled in combination with S-C bond formation 

(DG‡=16.0 kcal mol–1, Figure 5.9). This barrier is consistent with a previous study that 

calculated the barrier of solvent assisted deprotonation of a thiol to be 10.6 kcal mol–

1 in 1,3-dihydroimidazole-2-thione at the MP2/6–311++G(d,p)//M06-2X/6–31+G(d)) 

level.286  The slightly higher barrier to proton transfer in Figure 5.12 compared with 

modelling the reaction as a stepwise process (Figure 5.13) is the result of an 

approximate diagonal pathway being followed between both of the PT reaction 

coordinates, rather than the true MEP for the reaction.  

 

The FE barrier to the solvent assisted proton transfer step is slightly higher 

than the direct pathway (Mechanism 3) when water is not involved in the reaction. 

This is due to the high entropic cost of forming the transition state that requires the 

optimal positioning of a water molecule, the thiol side chain of C481 and the acrylamide 

warhead of ibrutinib. This makes the water assisted proton transfer pathway less likely 

to occur along the reaction pathway to enol formation than the direct pathway 

investigated for this step in Mechanism 3. Solvent assisted mechanisms have been 

observed in previous reactivity studies involving sulfur.287 A solvent assisted reaction 

pathway resulting in enol formation was found to be the most likely mechanism of 

covalent bond formation between a cysteine residue in a protein phosphatase enzyme 

and an the a,b-unsaturated moiety of a microcystin.201 Although several pathways 

were considered, the pathway involving water was found to be lower in energy and 

resulted in thermodynamically more stable products when potential energy scans, IRC 

calculations and transition state optimisations were used to investigate reactivity using 

the B3LYP density functional in combination with the 6-31G(d) basis set. The solvent 

assisted enol formation was found to occur in a single step with a barrier of 21.9 kcal 

mol–1, rather than the two-step mechanism modelled in this work. This is likely to be 

the result of the cluster model used in the microcystin study that contained just 35 
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atoms comprising the thiol side chain of a cysteine residue and the reactive part of the 

microcystin. Any potential additional stabilisation from the enzyme environment was 

therefore neglected. For the reaction between BTK and ibrutinib, stabilisation of the 

negatively charged thiolate ion is achieved through hydrogen bonding interactions with 

the amide side chain of the i+3 Asn residue. Although the Asn residue does not directly 

participate as a proton acceptor in the reaction, it clearly has an essential role in 

providing stabilisation to the TS structures and intermediates along the reaction 

pathway in BTK.  

5.3.5 Solvent assisted tautomerisation  

Out of the four pathways considered for covalent modification of C481 in BTK 

by the acrylamide containing inhibitor ibrutinib, the most viable pathways are the two 

that proceed via an enol intermediate. A tautomerisation step must occur to complete 

this pathway and form the keto product, which is the thermodynamic driving force for 

the reaction. Tautomerisation steps (also referred to as ketonisation steps in the 

literature) are ubiquitous in many chemical reactions, especially in biochemical systems 

and have been extensively studied with computational chemistry techniques.288–291 In 

general, intramolecular keto-enol tautomerisation reactions are higher in energy than 

the equivalent reaction when assisted by a water molecule.284,292 A previous 

investigation by Paasche et al. found that keto-enol tautomerisation in the context of 

thio-Michael addition is a high energy process and therefore is unlikely to be a viable 

mechanistic pathway in thiol addition reactions.199 Unfortunately this study has led 

other investigations of thiol reactivity to discount tautomerisation pathways as a 

feasible possibility.74 However, Paasche et al. only considered the keto-enol 

tautomerisation step to proceed through a high energy enol cation intermediate or 

enolate intermediate, and neglected the possibility of assistance from solvent. The 

authors also note that a ketonisation step is possible if catalysed by an efficient water 

bridge, but they conclude that this is unlikely in an enzyme active site due to water 

inaccessibility.199  However, it is feasible for a solvent assisted tautomerisation to occur 
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in BTK, due to the solvent exposed nature of the edge of the ATP binding pocket in 

BTK where the reactive C481 resides.  

 
Figure 5.14 Gas phase IRC calculations of the solvent assisted proton transfer in a model 
BTK/ibrutinib system consisting of 35 atoms that comprise of methyl thiol, a water molecule 
and the acrylamide warhead and linker group of ibrutinib. The IRC calculations suggest that 
there is a low barrier to reaction (9.7 kcal mol–1 at the wB97X-D/6-31G(d) level) and that 
DFTB3 overestimates the reaction barrier by 5.8 kcal mol–1. 

 

The feasibility of a solvent assisted keto-enol tautomerisation step occurring for 

ibrutinib covalently bound to C481 in BTK was initially investigated using transition 

state optimisations followed by IRC calculations in Gaussian16228 on a model system 

consisting of 35 atoms. The model comprised of 2-(methylthio)-1-(piperidin-1-yl)ethan-

1-one and a single explicit water molecule to mimic ibrutinib bound to a cysteine 

residue in BTK. A guess TS geometry was built and optimised with a water molecule 

situated in an optimal position between the carbonyl oxygen atom and the hydrogen 

attached to the a-carbon of the acrylamide group in the gas phase (Figure 5.14).  The 

resulting structure was checked for a single imaginary frequency corresponding to the 

reaction coordinate, and then an IRC calculation was performed to follow the reaction 
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path in both directions to the enol and keto structures. Semi-empirical DFTB2 and 

the wB97X-D/6-31G(d) density functional were compared as benchmarking 

calculations performed in Chapter 4 of this thesis suggested that both of these methods 

performed well for modelling sulfur reactivity.  

 

The results suggest that a solvent assisted tautomerisation is energetically 

favorable for the formation of the keto product from the enol product at both levels of 

theory in the gas phase. The keto product is -23.5 kcal mol–1 and -36.5 kcal mol–1 lower 

in energy than the enol product for DFTB2 and wB97X-D respectively, highlighting 

that the formation of the covalently bound keto product is a strong thermodynamic 

driving force for the reaction. The barrier to keto-enol tautomerisation in this model 

system is 15.5 kcal mol–1 and 9.7 kcal mol–1 for DFTB2 and wB97X-D/6-31G(d), 

showing that this is clearly a feasible reaction. There is reasonable agreement between 

the semi-empirical and DFT levels of theory, with DFTB2 actually overestimating the 

barrier compared with wB97X-D/6-31G(d) by 5.8 kcal mol–1. Inspection of the reaction 

pathway reveals that there are no major discrepancies in geometry between both levels 

of theory and so the higher barrier predicted by DFTB3 is simply due to error in the 

DFTB2 energies.244 The barrier heights and relative stabilities of the enol and keto 

states are in good agreement with a study that has investigated ketonisation pathways 

in 4-(m-Chlorobenzylamino)-3-Phenyl-4,5-Dihydro-1H-1,2,4-Triazol-5-One at high 

levels of QM theory (MP2/6-311++G(d,p)).284 These results are encouraging, but do 

not help to answer the question of whether this tautomerisation step can occur in the 

kinase domain of BTK as geometric constraints and the electrostatic environment in 

the active site could alter the likelihood of this step occurring.  

 

QM/MM umbrella sampling simulations were used to assess the likelihood of a 

solvent assisted keto-enol tautomerisation pathway taking place in BTK. The initial 

geometries were taken from classical molecular dynamics simulations of ibrutinib 

covalently bound to C481 in BTK. The crystal structure (PDB ID: 5P9J)99 contains a 
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water molecule positioned just above the carbonyl oxygen atom (d[Oibrutinib-Owat] = 

2.9 Å) and the a-carbon (d[Owat-Caibrutinib] = 3.6 Å) of the acrylamide group in 

ibrutinib. Analysis of a 500ns MD trajectory of ibrutinib covalently bound to BTK to 

find optimally positioned water molecules for the tautomerisation step showed that a 

water bridge between the carbonyl oxygen and Ca in ibrutinib was ideally placed in 7 

% of frames. Optimal water placement was defined by simple d[Oibrutinib-Owat] and 

d[Owat-Caibrutinib] distances below 3.5 Å. A suitable snapshot was selected, and two 

reaction coordinates were chosen to describe the transformation from the keto product 

to the enol intermediate. These were the transfer of a proton from the a-carbon of the 

inhibitor to a water molecule (PT1: d[Owat-Hibrutinib] - d[Caibrutinib-Hibrutninb]) and the 

transfer of a proton from a water molecule to the carbonyl oxygen atom of the inhibitor 

and formation (PT2: d[Oibrutinib-Hwat] - d[Owat-Hwat]).  

 

 
Figure 5.15 (A) FE surface of the solvent assisted keto-enol tautomerisation step in BTK 
with ibrutinib covalently bound to C481. The barrier to this process is 10.5 kcal mol–1 at the 
DFTB3 level when 30 ps of sampling is carried out in each umbrella sampling window along 
the MEP. (B) Approximate transition state of keto-enol tautomerisation (proton transfer 1 = 
–0.6 Å, proton transfer 2 = –1.0 Å).  

 

The FE surface (Figure 5.15) produced at the DFTB3/MM level for this keto 

enol tautomerisation step has a barrier of 10.8 kcal mol–1 to from the covalently bound 
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keto product (EP, Figure 5.15). The covalent keto adduct is 35.1 kcal mol–1 lower in 

energy than the enol adduct. This is in good agreement with the energetics calculated 

for this step at the same level of theory and at the wB97X-D/6-31G(d) level for the 

model BTK/ibrutinib system (Figure 5.14). The TS for the solvent assisted keto-enol 

tautomerisation step (Figure 5.15(B)) close in structure to EI2 and corresponds to the 

transfer of a proton from water to the Ca carbon of ibrutinib. 

 

The results indicate that a solvent assisted keto-enol tautomerisation step is a 

feasible event in BTK, when ibrutinib is bound in the ATP binding pocket. The 

reasonably solvent exposed nature of C481 and the region of space around the 

acrylamide warhead of ibrutinib mean that there is ample space for a water molecule 

to sit that can then assist in a keto-enol tautomerisation step. A water molecule is only 

ideally placed to perform this role in a relatively small 7 % of frames from the 500 ns 

MD trajectory analysed. This is when a water molecule is less than 3.5 Å from the 

carbonyl oxygen and  a-carbon of the inhibitor based on to d[Oibrutinib-Owat] and d[Owat-

Caibrutinib] distances. However, this of course corresponds to the keto structure and 

carrying out the reaction in the reverse direction. The carbonyl oxygen is well solvated 

throughout the MD trajectory and has a water molecule in close proximity (less than 

or equal to 3.0 Å) in 73 % of frames. The enol is likely to be just as well solvated, 

making a solvent assisted proton transfer to form the keto product a facile process 

given the high degree of solvent interaction and low reaction barrier. A water molecule 

is observed in an optimal position to allow solvent assisted tautomerisation, as shown 

in EI2 of Figure 5.11.  

 

5.4 Comparisons with experimental kinetic measurements 
Studies of the inhibition kinetics of ibrutinib and BTK exist that estimate for the 

inactivation rate (kinact)  of BTK by ibrutinib to be 0.0116 s–1  and 0.0266 s–1. 90,293 

Using transition state theory, these rates correspond to DG ‡ values of 20.0 kcal mol–1 
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and 19.6 kcal mol–1 respectively. The barrier to the keto enol tautomerisation step of 

10.8 kcal mol–1 makes this the rate limiting step in the covalent inhibition of BTK by 

ibrutinib. Although this is clearly an underestimate of the experimental barrier of 19.6 

kcal mol–1, the comparison of full FE surfaces for thiol addition in BTK at the DFTB3 

and wB97X-D/6-31G(d) levels of theory show that DFTB3 underestimates the barrier 

by approximately 5 kcal mol–1 compared to wB97X-D. This is consistent with other 

studies that have found DFTB3 to underestimate reaction barriers.244,294,295 

Furthermore, the reaction simulations were started from MD snapshots where the C481 

thiol and acrylamide group in ibrutinib were optimally positioned for the reaction to 

occur. The reaction barriers reported are therefore likely to underestimate the 

experimental kinetics as they neglect any conformational FE penalty required for the 

system to adopt a reactive conformation. Although reactive conformations were 

observed to be rare events in classical molecular dynamics simulations, they do form 

occasionally and so the barrier to forming a reactive conformation is likely to be low. 

Nevertheless, the extensive benchmarking of the DFTB3 method performed in Chapter 

4 show that DFTB3 is able to reproduce reaction pathways for thiol addition that 

closely resemble those predicted from density functional methods (wB97X-D) and post 

Hartree-Fock methods (MP2). DFTB3 therefore represents an excellent choice for 

comparing reaction pathways for thiol addition as it provides a good balance between 

accuracy and speed.  

 

Experimental inactivation kinetics also provide some support of the direct 

proton transfer mechanism (Mechansim 3) presented in this work. There are ten 

kinases that contain a cysteine residue in the same position as BTK.296 Of these, TEC 

kinase is one example that contains an i+3 asparagine residue analogous to BTK. 

Ibrutinib exhibits very similar inactivation kinetics with TEC and BTK.90 Comparison 

of the experimental kinetics of ibrutinib against kinases that contain an i+3 aspartate 

residue, such as EGFR and ITK, shows a very different kinetic profile. Experimental 

inactivation kinetic measurements (kinact/Ki) for these kinases show an increase of two-
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to-three orders of magnitude in the selectivity towards ibrutinib.297 This indicates that 

an alternative mechanism of action could be occurring in kinases with different i+3 

residues. Covalent binding of ibrutinib to kinases that contain i+3 aspartate residues 

are likely to proceed via a base catalysed mechanism, where proton transfer occurs via 

the aspartate residue. In contrast, kinases containing an i+3 asparagine result in much 

higher kinact/Ki values297 and could support the mechanistic pathway presented for 

BTK where a direct proton transfer to the inhibitor occurs. Although S-C formation 

is the rate-limiting step in kinases with an i+3 aspartate,74 the presence of an 

asparagine in BTK changes the environment around the cysteine and results in a 

different mechanistic pathway where S-C bond formation is no longer the rate limiting 

step. 

 

5.5 Conclusions 
The four mechanistic pathways explored are summarized in Figure 5.16 and 

indicate that the most probable mechanism for covalent modification of C481 by 

inhibitors containing an acrylamide warhead is a direct proton transfer from the thiol 

group to the carbonyl oxygen atom of the acrylamide group followed by a solvent 

assistant tautomerisation to form the covalently bound keto product of the reaction. 

This pathway was found to be lower in energy than the equivalent pathway that does 

involve assistance by a water molecule to form the enol intermediate, and pathways 

where the reaction occurs without going via an enol intermediate but instead 

proceeding directly to the keto product (Figure 5.14). The preferred pathway occurs 

in three steps. In the first step, the thiol proton transfers to the carbonyl oxygen atom 

via a water molecule with a barrier of 8.3 kcal mol–1. In the second step, nucleophilic 

attack occurs from the newly formed thiolate anion on to the  b-carbon of the 

acrylamide group to from an enol intermediate with a barrier of 5.2 kcal mol–1. The 

enol intermediate then tautomerises to the keto product, where the barrier is reduced 

to 10.8 kcal mol–1 by the assistance of a nearby water molecule. 
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Figure 5.16 Comparison of the four mechanistic pathways examined in this work, showing 
the FE of the transition states and minimum energy structures along each pathway relative to 
the reactant, ES. The lowest energy pathway consists of a solvent assisted proton transfer 
step, followed by S-C formation and then a final solvent assisted keto-enol tautomerisation 
step to form the covalently bound keto product formed from the reaction between ibrutinib 
and the thiol side chain of C481 in BTK. 

 

The rate limiting step in the most likely mechanistic pathway is the solvent 

assisted keto-enol tautomerisation step with a FE barrier of 10.5 kcal mol–1. Although 

the experimental barrier is underestimated by 9.1 kcal mol–1, this is expected, as the 

use of the semi-empirical DFTB3 Hamiltonian was demonstrated to underestimate the 

barrier to thiol addition by approximately 5 kcal mol–1 (Figure 5.9). In spite of this, 

the reaction pathways generated by DFTB3 are robust and are in close agreement to 

pathways predicted at the wB97X-D/6-31G(d) level of theory (Figure 5.9). The 

QM/MM reaction simulations also highlight the importance of performing reactivity 

studies of this type in a protein environment, owing to the crucial interaction formed 

between the cysteine thiolate and amide side chain of the neighboring i+3 N484 

residue, that stabilises the transition states and reaction intermediates along the 

reaction pathway. The identification of a suitable proton acceptor of the thiol proton 
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is also a significant result, given that the amino acid residues surrounding C481 are 

not appropriate candidates. This is particularly important given the upshifted pKa of 

C481 in BTK. This upshifted pKa has been calculated as 10.4 using thermodynamic 

integration,65 and as 13.2 from constant pH MD simulations in Chapter 3 of this thesis. 

The upshift in pKa means that the C481 thiol group will not be ionized at physiological 

pH, and a suitable proton acceptor is therefore required for reaction with a covalent 

inhibitor. 

 

Understanding the precise mechanism by which C481 in BTK is covalently 

modified by acrylamide warheads will help in the design of safer, and more selective 

covalent drugs. There are currently no other studies that have investigated the 

covalent mechanism of action of ibrutinib against its target BTK at the atomistic level, 

and insights from this work can help rationally tune the covalent reactivity of 

acrylamide (and potentially other) covalent inhibitors of BTK. The mechanistic 

pathways explored in this work highlight the importance of inhibitor conformation, 

thiol conformation and pKa, and the hydration of the binding site. Water plays an 

essential role in assisting the keto-enol tautomerisation step in the reaction so will also 

influence the thiol pKa and therefore its intrinsic reactivity. The use of substituted 

acrylamides with hydrophobic or hydrophilic groups could be employed as a strategy 

to attenuate or enhance reactivity. Substituted acrylamides with appropriate electron 

withdrawing or donating substituents could be used to subtly tune the electrophilicity 

of the b-carbon of the acrylamide to enhance its interaction with the sulfur. The 

conformation of the warhead and its position relative to the thiol group is also another 

avenue for altering reactivity. The linker group that is used to attach the warhead to 

the main drug scaffold could be changed by adding or reducing flexibility. This could 

allow the warhead to adopt a more reactive conformation by allowing it to get closer 

to the acrylamide prior to reaction. However, of the little kinetic data available for 

covalent BTK inhibitors, changes in the linker and even warhead show that these have 

little effect on the reported inactivation rates for five covalent BTK inhibitors (Table 
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1).  For example, tirabrutinib contains a butynamide warhead and different linker 

group to ibrutinib, but the FE of inactivation differs by only 0.6 kcal mol–1. This raises 

the possibility that reactivity is largely dominated by the protein itself, in particular 

the orientation and pKa of the cysteine residue. Consideration of both cysteine 

reactivity and warhead reactivity will therefore be important for the design of covalent 

inhibitors.  

 

Table 5.1 Five covalent BTK inhibitors and corresponding inactivation rates.293 The FE of 
activation DG‡ values are calculated using transition state theory and are shown for 
comparison. 

Inhibitor BTK inactivation rate, kinact  

(s–1) 

FE of inactivation, DG‡ 

(kcal mol–1) 

Ibrutinib 2.66 x 10-2 19.6 

Acalabrutinib 5.59 x 10-3 20.5 

Zanabrutinib 3.33 x 10-2 19.5 

Spebrutinib 1.36 x 10-2 20.0 

Tirabrutinib 9.72 x 10-2 20.2 

 

5.6 Suggestions for further work 
The four mechanisms investigated for the covalent inhibition of BTK by ibrutinib 

were investigated using the semi-empirical QM method DFTB3. The suitability of 

using this QM method was explored extensively in Chapter 4 of this thesis, and some 

additional comparisons in this chapter have demonstrated that the reaction pathways 

produced by DFTB3 are in excellent agreement with the wB97X-D density functional. 

However, the energies predicted by DFTB3 are likely to underestimate the barrier to 

thiol addition (Figure 5.9), and this presents an opportunity to further improve upon 

the work in this chapter. The umbrella sampling simulations for each step of the lowest 

energy pathway (Mechanism 3) should be repeated using a higher level of QM theory 

for thiol addition such as wB97X-D/6-31G(d). As a result of the computational cost of 

performing QM/MM MD at this higher level of theory, the amount of sampling 
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performed in each reaction coordinate window will be limited compared to DFTB3. 

See Chapter 4, Section 4.7 for a discussion on how this can be improved. The aim of 

this would be to obtain more accurate barrier heights for the reaction pathway that 

agree with experimental reaction kinetics. This would enable alternative inhibitors to 

be modelled with QM/MM methods and the barrier heights for the rate determining 

step to be calculated. These could then be compared amongst a set of covalent 

inhibitors and allow their reactivity towards C481 in BTK to be ranked. The effect 

that modifications to the drug scaffold, particularly around the reactive warhead, have 

on the rate of reactivity could also be investigated. The ability to rank and predict the 

reactivity of covalently binding inhibitors would be an incredibly useful tool in 

computer aided drug design.72  

 

Another opportunity for future work is the use of an alternative reaction path 

finding method. Several problems were encountered with the QM/MM umbrella 

sampling protocol used in this work, on occasions where accurate MEPs could not be 

obtained for the mechanistic pathways investigated for BTK inhibition by ibrutinib. 

Some of the problems encountered were in the high energy regions of the FE surface, 

where side reactions were often observed that conflicted with the sampled reaction 

coordinates. In addition, the use of a simple linear combination of distances to describe 

complex reaction coordinates involving the formation and cleavage of several bonds 

can be problematic.298 To overcome both of these issues, a combination of the string 

method299,300 and a path collective variable301 can be used. The advantage of the string 

method is that it first optimizes the MEP between the reactant and product state, and 

then umbrella sampling can be performed along the pre-defined path.302 This means a 

full FE surface does not need to be produced with umbrella sampling, which can be 

costly as the number of reaction coordinates increases. The use of a path collective 

variable to describe the transformation from reactants to products is advantageous as 

a combination of multiple distances, angles or dihedrals are able to more accurately 

describe the MEP.303 Furthermore, the string method means that multiple reaction 
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paths can be considered on the same FE surface, further reducing the computational 

cost.302 Employing the adaptive string method304 to investigate the reaction of ibrutinib 

in BTK would complement the current work by providing another estimate of the 

MEP, which would hopefully be in agreement with the current path. It would also 

provide a more accurate path and transition state structures for further analysis.  

 

Finally, the covalent inactivation by ibrutinib of other kinases that contain an 

i+3 Asp residue such as EGFR could be modelled. It would be interesting to test if 

the direct mechanism presented in this chapter was the preferred pathway in EGFR 

given the change in i+3 residue from Asn to Asp, or whether a base catalyzed 

mechanism74 would operate instead. This could then be compared to experimental 

inactivation kinetic data that suggest a different mechanism of action could be taking 

place in kinases with i+3 Asn residues compared to kinases with i+3 Asp residues due 

to differences in kinact/Ki measurements.297 An experimental kinetic study of BTK 

mutants could also support the mechanism presented in this chapter. For example, if 

a library of N484 mutants was generated and the rate of inactivation of each mutant 

measured, this could support the role of Asn in the mechanism.  
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Appendix 1  

 

The following is the supporting information from the publication in Chapter 2.  

 

Table A1  Structures, PA (DDG), DE and log(kGSH) values for all compounds studied in 
Chapter 2.  
 
Compound 

ID 

SMILES Structure PA, 

DDG 

(kcal 

mol–1) 

Reaction 

energy, 

DE (kcal 

mol–1) 

log(kGSH) 

Data set 1 

6 O=C(C=C)

Nc1ccccn1 

 

0.00 2.75 -1.05 

7 N#Cc1cccc(

NC(C=C)=

O)c1 
 

-0.55 4.64 -1.59 

8 O[C@@H]1C

CN(C(C=C)

=O)C1 
 

-1.10 5.11 -1.82 

26 Clc1cccc(NC

(C=C)=O)c

1 

 
 

-2.69 4.67 -1.89 

27 O=C(C=C)

Nc1ccccc1 

 

-2.32 9.02 -2.14 

28 COc1cccc(N

C(C=C)=O)

c1 
 

-6.33 7.76 -2.48 

29 CN(C(C=C)

=O)c1ccccc1 

 

-2.96 1.01 -2.54 

NN
H

O

N
N
H

O

OHN

O

ClN
H

O

N
H

O

ON
H

O

N

O
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30 CNC(/C=C

/C(F)(F)F)

=O 
 

-5.37 9.02 -2.59 

31 COc1ccc(NC

(C=C)=O)c

c1 
 

-10.29 7.65 -2.85 

32 O=C(C=C)

NCc1ccccc1 

 

-7.56 7.82 -3.10 

33 CNC(C=C)

=O 

 

-10.09 -3.05 -3.15 

34 COc1cc(CN

C(C=C)=O)

ccc1 

 

-8.61 11.94 -3.40 

35 O=C(C=C)

N1CCCCC1 

 

-7.24 7.78 -2.40 

Data set 2 

9 C=CC(Nc1c

cc(N)cc1)=

O 
 

-5.99 -20.07 -2.51 

10 C=CC(Nc1c

c(F)ccc1)=O 

 

-4.41 -20.32 -2.11 

11 C=CC(Nc1c

cc(C)cc1)=O 

 

-5.81 -20.52 -2.23 

36 C=CC(Nc1c

cc(F)cc1)=O 

 

0.00 -20.62 -1.17 

37 C=CC(Nc1c

(C)cccc1)=O 

 

-2.83 -20.40 -1.76 

N
H

O

F
F

F

O

N
H

O

N
H

O

N
H

O

O
N
H

O

N

O

O

N
H
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O

N
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F

O
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O

N
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F

O

N
H



 137 

38 C=CC(Nc1c

cccc1C#N)

=O 

 

-5.23 -20.19 -2.16 

39 C=CC(Nc1c

cc(C#N)cc1

)=O 

 

-1.33 -20.62 -1.12 

Data set 3 

12 C=CC(Nc1c

cc(Cl)cc1)=

O 
 

-5.99 -20.58 -1.6 

13 C=CC(Nc1c

cc(c2ccccc2)

cc1)=O 

 

-5.33 -20.43 -1.71 

14 C=CC(Nc1c

c([N+]([O-

])=O)ccc1)=

O  

-4.47 -20.79 -1.04 

40 C=CC(Nc1c

(F)cccc1)=O 

 

-3.77 -20.45 -1.68 

41 C=CC(Nc1c

(Cl)cccc1)=

O 
 

-5.10 -20.79 -1.32 

42 C=CC(Nc1c

c(C)ccc1)=O 

 

-8.39 -20.32 -1.97 

43 C=CC(Nc1c

c(C(F)(F)F)

ccc1)=O 

 

-5.77 -20.37 -1.43 

44 C=CC(Nc1c

(C(F)(F)F)c

ccc1)=O 

 

-3.36 -21.09 -1.44 

O

N
H

N

O

N
H

N

O

N
H
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45 C=CC(Nc1c

cc(C(F)(F)F

)cc1)=O 

 

-4.11 -20.50 -1.23 

46 C=CC(Nc1c

c(c2ccccc2)c

cc1)=O 

 

-7.04 -20.56 -1.65 

47 C=CC(Nc1c

(c2ccccc2)cc

cc1)=O 

 

-6.77 -20.62 -1.98 

48 C=CC(Nc1c

c(C(OC)=O

)ccc1)=O 

 

-6.28 -20.44 -1.7 

49 C=CC(Nc1c

(C(OC)=O)

cccc1)=O 

 

-4.95 -20.58 -1.11 

50 C=CC(Nc1c

cc(C(OC)=

O)cc1)=O 

 

-4.37 -20.58 -1 

51 C=CC(Nc1c

(OC)cccc1)=

O 

 

-7.41 -20.40 -1.92 

52 C=CC(Nc1c

c(SC)ccc1)=

O 
 

-5.75 -20.46 -1.58 

53 C=CC(Nc1c

(SC)cccc1)=

O 

 

-5.66 -20.54 -1.5 

54 C=CC(Nc1c

cc(SC)cc1)=

O 
 

-5.32 -20.23 -1.77 
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N
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F
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55 C=CC(Nc1c

c(N(C)C)ccc

1)=O 
 

-5.28 -20.29 -1.82 

56 C=CC(Nc1c

(N(C)C)cccc

1)=O 

 

-7.59 -20.45 -1.55 

57 C=CC(Nc1c

cc(N(C)C)cc

1)=O 

 

-9.01 -20.18 -2.03 

58 C=CC(Nc1c

([N+]([O-

])=O)cccc1)

=O  

0.00 -20.65 -0.416 

59 C=CC(Nc1c

cc([N+]([O-

])=O)cc1)=

O 
 

-1.22 -20.80 -0.534 

Data set 4 

15 O=C(/C=C

/CN(C)C)N

C1=CC2=C

(NC3=CC=

C(F)C(Cl)=

C3)C(C#N)

=CN=C2C

=C1OCC 

 

-4.33 -19.88 -1.09 

18 O=C(C=C)

NC1=CC2=

C(NC3=CC

=C(F)C(Cl)

=C3)N=CN

=C2C=C1O

CCCN4CCO

CC4 

 

0.00 -24.43 -0.96 
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H N
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19 COC1=CC2

=NC=NC(N

C3=CC=C(

F)C(Cl)=C3

)=C2C=C1

NC(/C=C/

CN4CCCCC

4)=O 
 

-5.41 -20.00 -1.29 

20 O=C(/C=C

/CN(C)C)N

C1=CC2=C

(NC3=CC=

C(F)C(Cl)=

C3)N=CN=

C2C=C1OC

4COCC4 

 

-3.26 -22.50 -1 

21 O=C(/C=C

/CN(C)C)N

C1=CC2=C

(NC3=CC=

C(OCC4=N

C=CC=C4)

C(Cl)=C3)C

(C#N)=CN

=C2C=C1O

CC 

 

-10.03 -21.64 -1.21 

22 O=C(C=C)

NC1=CC2=

C(NC3=CC(

C)=CC=C3)

N=CN=C2C

=C1 
 

-3.31 -22.53 -1.49 

Data set 5 

16 COC(C=CC

(NC(/C=C/

CN(C)C)=O

)=C1)=C1N

C2=NC=C(

Cl)C(C3=C
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C=C43)=N2 

 

-13.41 -17.05 -2.25 

N

N

NH
NH

O

O

F

Cl

N

N

N

NH
NH

O

O

F

Cl

O

N

N

NH
NH

O

O

O

Cl N

N N

N

N

NH
NH O

N

N

NH

N
H O

HN O

N

Cl



 141 

23 COC(C=CC

(NC(/C=C/

CN(C)C)=O

)=C1)=C1N

C2=NC=C(

Cl)C(C3=C4

N(C=CC=C

4)N=C3)=N

2  

-2.92 -20.19 -2.15 

24 CC(C=N1)

=C(C2=C3

N(C=CC=C

3)N=C2)N=

C1NC4=CC

(NC(/C=C/

CN(C)C)=O

)=CC=C4O

C  

0.00 -16.35 -1.84 

25 COC(C=CC

(NC(/C=C/

CN(C)C)=O

)=C1)=C1N

C2=NC=C(

Cl)C(C3=C

N=C4N3C=

CC=C4C)=

N2  

-2.60 -18.84 -2.8 

60 COC(C=CC

(NC(/C=C/

CN(C)C)=O

)=C1)=C1N

C2=NC=CC

(C3=C4N(C

=CC=C4)N

=C3)=N2 

 

-1.33 -18.43 -2.24 
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61 COC(C=CC

(NC(/C=C/

CN(C)C)=O

)=C1)=C1N

C2=NC=C(

C)C(C3=C4

N(C=CC=C

4)N=C3)=N

2  

-2.72 -20.17 -2.28 

62 COC(C=CC

(NC(C=C)=

O)=C1)=C1

NC2=NC=C

(Cl)C(C3=C

N=C4N3C=

CC=C4)=N

2 

 

-1.95 -19.67 -2.16 

63 COC(C=C(

CN(C)C)C(

NC(C=C)=

O)=C1)=C1

NC2=NC=C

(Cl)C(C3=C

N=C4N3C=

CC=C4)=N

2 

 

-5.68 -25.67 -1.42 

64 COC(C=CC

(NC(/C=C/

CN(C)C)=O

)=C1)=C1N

C2=NC=C(

C#N)C(C3

=C4N(C=C

C=C4)N=C

3)=N2  

-0.79 -19.32 -2.22 

65 ClC1=CN=

C(NC2=NN

(C)C(NC(C

=C)=O)=C

2)N=C1C3=

C4N(C=CC

=C4)N=C3 
 

-0.25 -22.43 -1.11 
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66 COC(C=CC

(NC(C1=CC

N(C)CC1)=

O)=C2)=C2

NC3=NC=C

(Cl)C(C4=C

5N(C=CC=

C5)N=C4)=

N3  

-0.82 -8.65 -2.9 

Data set 6 

17 O=C(/C(C

#N)=C/C)

N(C1)CCCC

1N2C3=CC

=CC(N)=C

3C(C4=CC

=C(OC5=C

C=CC=C5)

C=C4)=N2  

-12.81 -16.82 -1.96 

67 O=C(/C(C

#N)=C/C(

C)C)N(C1)C

CCC1N2C3

=CC=CC(N

)=C3C(C4=

CC=C(OC5

=CC=CC=

C5)C=C4)=

N2 
 

-9.28 -14.16 -2.30 

68 O=C(/C(C

#N)=C/C(

C)(C)C)N(C

1)CCCC1N2

C3=CC=CC

(N)=C3C(C

4=CC=C(O

C5=CC=CC

=C5)C=C4)

=N2 

 

0.00 -15.34 -1.34 
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69 O=C(/C(C

#N)=C/C1

CC1)N(CCC

2)[C@H]2CN

3C4=CC=C

C(N)=C4C(

C5=C(F)C=

C(OC6=CC

=CC=C6)C

=C5)=N3  

-18.58 -21.09 -2.30 

70 O=C(C=C)

N(CCC1)[C

@H]1CN2C3

=CC=CC(N

)=C3C(C4=

C(F)C=C(O

C5=CC=CC

=C5)C=C4)

=N2 

 

-18.30 -14.59 -1.53 

71 O=C(/C(C

#N)=C/C1

CC1)N(CCC

2)[C@@H]2C

N3C4=CC=

CC(N)=C4C

(C5=C(F)C

=C(OC6=C

C=CC=C6)

C=C5)=N3 

 

-8.90 -9.35 -1.92 
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72 O=C(/C(C

#N)=C/C(

N1CCOCC1

)(C)C)N(CC

C2)[C@@H]2

CN3C4=CC

=CC(N)=C

4C(C5=C(F

)C=C(OC6

=CC=CC=

C6)C=C5)=

N3 

 

-10.38 -9.66 -2.22 

73 O=C(/C(C

#N)=C/C(

N(C1COC1)

C)(C)C)N(C

CC2)[C@@H

]2CN3C4=C

C=CC(N)=

C4C(C5=C(

F)C=C(OC6

=CC=CC=

C6)C=C5)=

N3 

 

-0.85 -12.37 -0.39 

 

 

 

A1.1 Boltzmann averaging of DDGPA values from multiple low 
energy conformers  

We have calculated a Boltzmann averaged DDGPA from 4 low energy conformers 

of each compound in data set 4 according to the following equation.305 
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Table A2. DGPA values and Boltzmann weighted average for compounds 15, 18, 19, 20, 21 and 
22 from data set 4.  
 Compound DGPA kcal mol–1  

 15 18 19 20 21 22 

Conformer 

1 -317.69 -311.12 -312.42 -314.93 -316.26 -301.09 

Conformer 

2 -318.96 -313.17 -312.42 -311.84 -317.42 -300.10 

Conformer 

3 -316.12 -313.25 -314.58 -316.64 -316.26 -311.07 

Conformer 

4 -318.34 -314.52 -314.58 -303.44 -324.32 -311.07 

Boltzmann 

weighted 

average -318.36 -313.82 -314.18 -315.85 -323.49 -310.65 

 

 

 

We observe no improvement in correlation between DDGPA and log kGSH when 

using Boltzmann averaged DDGPA values for data set 4 compounds. Interestingly, a 

different compound is predicted to be the most acidic compound compared to the data 

presented in Figure 2.5, highlighting the strong conformational dependence of PA. 

 

 
Figure A1. Plot of Boltzmann averaged DDGPA for data set 4 compounds vs log kGSH. R2=0.09 
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A1.2 Effects of using alternative optimisation strategies 
We investigated the effect of using different optimisation strategies on 

alternative low energy conformers due to the poor correlation observed between DDGPA 

and log kGSH for compounds from datasets 4, 5 and 6. We used a procedure nearly 

identical to the methodology reported in the methods section, but used Gaussian09306 

with tighter convergence criteria, and in some cases the UltraFine (pruned 99,590) 

integration grid if imaginary frequencies were observed. 

 

 

 
Figure A2. Plots of GSH reactivity vs relative proton affinity (DDGPA) for (A) data set 4, 
r2=0.09, (B) data set 5, r2=0.00 (C) data set 6, r2=0.41. 
 

The correlation between DDGPA and log kGSH is very similar to the correlation 

reported in Figure 2.5 for data set 4 and 5, giving no correlation for two of the three 

datasets. A slightly improved correlation of R2=0.41 is observed for data set 6, but it 
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still does not have any predictive utility in drug design, and there is clearly no good 

prediction of the rank order whatsoever, shown by the low Spearman correlation of 

0.399 Although a more rigorous optimisation protocol was used, we still conclude that 

ligand only methods are not sufficient to accurately predict covalent reactivity ‘in situ’.  

 

A1.3 Effect of using an alternative DFT functional for PA 
calculation  

 
Figure A3. Plot of DDGPA for data set 6 compounds vs log kGSH using the M06-2X density 
functional. R2=0.41 
 

Recent reports have recommended that the M06-2X density functional should 

be used when modelling sulfur reactivity.231 In particular, the use of the B3LYP density 

functional has been found to be problematic, as it fails to accurately predict long range 

behaviour due to errors in the exchange part of the density functional.127 To ensure 

that this didn’t affect our protocol for calculating DDGPA, we took all the compounds 

in data set 6 and calculated DDGPA at the M06-2X-D3/6-311+G(d,p)//M06-2X-D3/6-

31G(d) level in Gaussian09, revision D.01306 (analogous to our original procedure, see 

methods, but using the M06-2X functional in place of B3LYP and using Gaussian 

instead of Jaguar). We find that the correlation between DDGPA and experimental 

reactivity to be identical when comparing B3LYP and M06-2X (R2=0.41 and R2=0.41 

respectively). We conclude that the choice of density functional has very little impact 

on calculated PA, and so we have chosen to use the B3LYP density functional for our 

calculations as they have shown to work well for PA calculations.125 

-3

-2.5

-2

-1.5

-1

-0.5

 0

-30 -25 -20 -15 -10 -5  0

Lo
g 

k G
S

H

66G PA (kcal mol-1) 



 149 

 

A1.4 Quasi Harmonic Oscillator approximation 
For the large and flexible drug-like molecules in data sets 4, 5 and 6, we have 

used the quasi harmonic oscillator approximation136 to correct the calculated DGPA 

values. For these larger molecules, the contribution of low energy vibrational modes to 

the free energy can be increasingly important.135 Using the program GoodVibes137, we 

have calculated the corrected free energy using the Truhlar quasi harmonic oscillator 

approximation136 with a frequency cut off of 100 cm–1. We find that QHO free energy 

corrections do not deviate significantly from the uncorrected values (Table S2), with 

average % changes of 0.46, 0.41 and 0.17 for data sets 4, 5 and 6 respectively.  

 

Table A3. Uncorrected, and QHO corrected DGPA values for data set 4, 5 and 6.  
 Compound DGPA  

(kcal mol–1) 

QHO corrected 

DGPA (kcal mol–1) 

Percentage 

change (%) 

Data set 4 15 -317.6889 -319.5106 0.57 

18 -311.1235 -310.6240 0.16 

19 -312.4187 -313.9925 0.50 

20 -314.9329 -318.4469 1.12 

21 -316.2598 -317.3812 0.35 

22 -301.0936 -300.9662 0.04 

Data set 5 16 -320.7416 -321.1275 0.12 

23 -318.1141 -320.5526 0.77 

24 -321.9279 -323.3718 0.45 

25 -318.5897 -321.1763 0.81 

60 -320.8936 -323.2831 0.74 

61 -318.9190 -321.1466 0.70 

62 -299.8828 -300.8579 0.33 

63 -299.4848 -300.2768 0.26 

64 -303.4588 -305.0338 0.52 

65 -313.1765 -311.5826 0.51 
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66 -297.2508 -298.2297 0.33 

Data set 6 17 -296.52912 -296.52912 0.06 

67 -295.28391 -295.28391 0.01 

68 -298.71231 -298.71231 0.44 

69 -316.74201 -316.74201 0.11 

70 -299.29751 -299.29751 0.33 

71 -298.22322 -298.22322 0.03 

72 -303.47687 -303.47687 0.27 

73 -288.25334 -288.25334 0.11 
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