Proceedings of Machine Learning Research 157, 2021 ACML 2021

Language Representations for Generalization in
Reinforcement Learning

Nikolaj Goodger NIKOLAJGOODGER@STUDENTS.FEDERATION.EDU.AU
Peter Vamplew P.VAMPLEW@QFEDERATION.EDU.AU
Cameron Foale C.FOALEQFEDERATION.EDU.AU

Federation University Australia — Mt Helen Campus PO Box 663 Ballarat VIC 3353

Richard Dazeley RICHARD.DAZELEY@DEAKIN.EDU.AU
Deakin University — Locked Bag 20000, Geelong, VIC 3220

Editors: Vineeth N Balasubramanian and Ivor Tsang

Abstract

The choice of state and action representation in Reinforcement Learning (RL) has a signifi-
cant effect on agent performance for the training task. But its relationship with generaliza-
tion to new tasks is under-explored. One approach to improving generalization investigated
here is the use of language as a representation. We compare vector-states and discrete-
actions to language representations. We find the agents using language representations
generalize better and could solve tasks with more entities, new entities, and more complex-
ity than seen in the training task. We attribute this to the compositionality of language.
Keywords: reinforcement learning; generalization; representation selection

1. Introduction

Choosing and learning representations for Markov Decision Processes (MDP)s has long
been a field of active research (Konidaris, 2019; van Seijen et al., 2014; Abel et al., 2018;
Andre and Russell, 2002). However, the choice of representation is often considered from
the perspective of solving the training problem or improving sample efficiency rather than
how well the solution generalizes. Generalization is important because agents that can
generalize better are more robust to changes in their environment and are more likely to be
able to solve tasks they have not explicitly been trained to do.

The motivation for this work is to investigate whether we can build more general agents
using language by comparing generalization for agents using non-language representations
to those using language representations. The choice of language as a representation for
generalization is encouraged by the language features of compositionality and productivity
(Fasold and Connor-Linton, 2014) in that we can produce new meaning by exchanging sub-
expressions and adding new words. This allows us to represent any state or action for which
we have the vocabulary using language.

To compare language to non-language representations, we created a new tidying envi-
ronment which allows for both vector and language-based representations of state, as well
as discrete and language actions. This environment can be configured differently to test
generalization to unseen entities and increased problem size, allowing us to quantitatively
compare generalization between representations.

© 2021 N. Goodger, P. Vamplew, C. Foale & R. Dazeley.

GOODGER VAMPLEW FOALE DAZELEY

The main contributions of this work are:

e A new environment that can be used to test generalization and compare state and
action representations.

e A quantitative comparison of zero-shot task generalization between representations
and empirical evidence that the use of language representations allows trained agents
to generalize better than agents using vector-state and discrete-actions.

e A quantitative comparison of generalization between model architectures using lan-
guage representations showing that sequence to sequence models with extractive ca-
pabilities generalize better than strictly generative models and that a hybrid model
can improve generalization further.

2. Related Work

The use of language as a representation was surveyed in Luketina et al. (2019). In most
applications, except for dialogue agents, the language used is synthetic as opposed to natural
language (Luketina et al., 2019). A synthetic language will have a different distribution to
natural language potentially resulting in large differences between training and test data
(Marzoev et al., 2020). The use of Language in RL can be separated into two groups,
Language-Conditional RL and Language-Assisted RL (Luketina et al., 2019).

Language-conditional RL includes the application of RL to tasks in which language is
a fundamental requirement, such as Dialogue agents, Instruction following, or solving text
games. These problems use language in the action-space, state-space, or both. Text-based
games have been explored using direct state to action encoding (Branavan et al., 2010;
Depristo et al., 2001) and later with deep-learning (Narasimhan et al., 2015; Yuan et al.,
2018). The high difficulty of solving text-based games and lack of appropriate environments
led to the development of the TextWorld Environment (Co6té et al., 2019). This environ-
ment allows agents to selectively focus on solving subsets of the challenges inherent to text
games. Similarly, BabyAI (Chevalier-Boisvert et al., 2019) was developed to evaluate sample
efficiency when an algorithm is provided synthetic language to guide its actions.

Language-Assisted RL applies to problems where language is not required to solve the
problem but is used in a supportive manner to improve performance criteria like sample
efficiency or generalization. This can include injecting domain knowledge by augmenting
state with additional information (Zhong et al., 2019; Narasimhan et al., 2018; Sodhani
et al., 2021), structuring the policy (Jiang et al., 2019; Andreas et al., 2017; Mirchandani
et al., 2021; Cideron et al., 2020) or shaping rewards or defining goals (Goyal et al., 2020,
2019; Hutsebaut-Buysse et al., 2019).

There has been some investigation of the issue of generalization in RL. In Song et al.
(2019); Cobbe et al. (2019) the pattern of using training and test tasks to measure general-
ization was established and it is shown that agents with the same training performance can
have significantly different test performance. This can be mitigated with regularization.

Some investigation of using language to generalize is found in Zhong et al. (2019);
Narasimhan et al. (2018); Sodhani et al. (2021) where domain knowledge is added using
language allowing generalization to new goals and environments. Jiang et al. (2019), uses

LANGUAGE REPRESENTATIONS FOR (GENERALIZATION IN RL

language to define goals for a low-level policy in a hierarchy. A high-level policy generates the
low-level language goals in order to solve high-level goals. Generalization on held-out goals is
tested and found to be greater when using language than a non-compositional representation
suggesting the compositional feature of language allows the model to generalize better. In
Joshi et al. (2020) the generalization properties of neural networks trained on the Travelling
Salesman Problem is tested. While not utilizing language the directed investigation of
generalization properties is informative. It was found that autoregressive decoding provides
a more general inductive bias. This is comparable to the autoregressive inductive bias
inherent to generative language models that can be used for generating language actions.
It is also observed that training on variable size problems improves generalization to larger
problems. In Oh et al. (2017) zero-shot task generalization was used as an evaluation
method of generalization to longer and unseen language instructions.

In Schwartz et al. (2020) visual and semantic state-representations are compared with
Synthetic Language for the Visdoom environment (Wydmuch et al., 2018). The metrics
compared are mean reward by environment interactions and “nuisance” which is defined as
random variables that affect the observed data but not the task being solved. They find
that using language representations can sometimes achieve higher reward but they do not
test generalization to other tasks.

3. Preliminaries

Reinforcement learning To define reinforcement learning (Sutton and Barto, 2018) we
should first consider a Markov Decision Process (MDP) which is defined by a set of states
S, a set of actions A, available from state s, the probabilities of actions P, as a function
of current state s will lead to the next state s, and finally a set of rewards R(s,a). 7 is
the discount rate. The reinforcement learning problem is to find a policy m(a¢|s;) which
maximizes the discounted reward for all timesteps ¢ is defined as:

G =Y Y Riyr (1)
k=0

Proximal Policy Optimization (Schulman et al., 2017) is a policy gradient method that
improves a parameterized policy directly. It switches iteratively between collecting data
and updating the policy with mini-batch gradient descent. Let r; be the reward at time ¢,
Vis,) and V(.) the estimated value for states at timesteps s; and s¢1; respectively. The
generalized advantage (Schulman et al., 2018) for timestep ¢ in range 0 to 7" is given by:

At =6 + (7)\)(5t+1 + .4+ (’y)\)T_H—l(ST_l (2)
where §; = ry + vV (sg41) — V(s¢t)

The probability ratio of the current policy 7(f) and the old policy m(6,4) used for data
collection in the current iteration is defined as:

() = oAatls0) (3)

7.rgold (at | St)

The clipped policy loss L;(0) is defined as:
L(0) = min(r(0) Ay, clip(re(0),1 — €, 1 + €) Ay) (4)

GOODGER VAMPLEW FOALE DAZELEY

where € is a hyperparameter. Finally the value function loss is given by the squared error of
the estimated value V; and the target value V,"*® which is simply the sampled discounted

return.

Ly"(8) = (Vo(se) — V; ™) ()

4. Environment

Consider the task of tidying a messy room; Objects are randomly distributed in a room and
need to be moved to the correct position to be considered tidy. Sometimes the nature of
the objects means that they need to be treated in a specific way. For example, a toy block
can be lifted but tables are too heavy and must be pushed. Sometimes the order in which
objects are moved is determined by other objects. A stack of books on the lid of a box must
be moved to the bookshelf (or at least out of the way) before toys can be put in the box.
Tidy is subjective but using prior knowledge humans can do a reasonable job at tidying a
room they have never seen before, containing objects they have never seen before. If the
room grows in size becoming larger and messier (more scattered objects) it’s still possible
to eventually reach a tidy state by applying the same principle of moving objects to the
correct position one at a time.

The TidyBlock Environment ! presented here is inspired by the task of tidying. In a
given rollout of the environment, there is a variable number of boxes, each uniquely colored.
There is also a variable number of big and small colored blocks distributed among the boxes
with each box having a limited capacity. An action consists of an action verb (lift / push), a
target block (specified by size and color), a source box (specified by color) and a destination
box (specified by color). Actions are valid if the action verb is appropriate for the chosen
block, the chosen block exists in the source box and there is space in the destination box. A
successful action results in a block being moved from one box to another, otherwise nothing
happens. Blocks of different sizes require different action verbs to move them: Large blocks
must be pushed while small blocks must be lifted. Sometimes actions are blocked due to
box capacity. For example, a small block can not be moved to a full box even if it is of
the correct color until another block is moved out of the box. Similarly, big blocks require
twice the space of small blocks so there must be adequate space in the destination box.
Ordering and position of blocks within boxes are not considered when checking if a move
is valid. The environment is solved when all the blocks are moved into boxes of matching
colors which returns a reward of 1. There is a small negative reward of -0.01 for each step
to encourage finding the shortest path to a solution. A visualized example of a successful
rollout is shown in Fig. 1.

The environment always resets to an unsolved yet solvable state. The colors used for
the boxes and blocks can be fixed after resetting or they can be sampled from a set of 48
training colors. There is also a test set of 39 held-out colors used for testing generalization.

Technically the environment is implemented in a vectorized fashion in PyTorch (Paszke
et al., 2019), making it is easy to scale to a very large number of environments on a CPU
or GPU. This was motivated by McCandlish et al. (2018) where it was shown that models
can retain data efficacy while training on large batches to speed up training.

1. https://gitlab.com/ngoodger/tidy-block-env

https://gitlab.com/ngoodger/tidy-block-env

LANGUAGE REPRESENTATIONS FOR GENERALIZATION IN RL

START

CLL It T _IC T R, |
R, | R (EEaw] (W W
e | [Ea Y | e S

Step 1 Step 2 Step 3 Step 4

SOLVED!

EEEE NN |E-l-j T
(M, M| mE B ‘W W I
(. F‘i-ﬂ Col W1

Step 5 Step 6 Step 7 Done

Figure 1: Example environment and solution (Shown visually to improve understanding,
no visual state implemented currently). The lift actions are indicated by the thin
arrows and thick arrow indicates a push action. Ordering does not matter. Box
capacity can not be violated.

4.1. State Representation

There are two primary implementations of state in the environment. An example state of
the environment is visualized in Fig. 2.

Figure 2: Example state visualized. There are 3 boxes of colors red, green, blue and 1 non-
existent box which is included in the state for the generalization tasks. There is
1 big blue block, 1 small blue block, 4 small red blocks and 2 small green blocks
distributed among the 3 existent boxes.

Vector-state representation. This concatenates a box-state vector, a block-size-state
vector, and a block-color vector together. The box-state vector has a color token for each
box and an empty token used if the box is not present. The block size vector has a token
for each position in each box. The values include empty token, big token and a small token
(only one space is used regardless of size which is calculated separately). The block-color-

GOODGER VAMPLEW FOALE DAZELEY

state vector includes a token for each possible space in each box. Again an empty token is
used when no block exists and otherwise, it takes the blocks appropriate color token. The
vector-state with the tokens converted to words for visualization is shown in Fig. 3(a).

"There is an red box.

There is an green box.

There is an blue box.

There is one small red block in the red box.

There is one big blue block in the red box.

Block Sizes { "small’, "big", "empty”, "empty, "small’, "small’, "empty”, "empty”, | There is multiple small green blocks in the green box.
small’, "small®, "small’, "small, "empty", "empty","empty", ‘empty There is multiple small red blocks in the blue box.

There is one small blue block in the red box."

Box colours { "red", "green", "blue", "empty"

"red", "blue", "empty", "empty", "green", "green", "empty", "empty,
Block Colors { "red". "red", "blue", "red, "empty". "empty”, "empty", "empty”

(a) Vector-state Example (b) Language-state Example

Figure 3: Example state representations corresponding to the visualized example in Fig.
2. In this example the environment is configured for a maximum of 4 boxes and
possible 4 blocks per box which is why there are “empty” values in the vector-
state.

Language-state representation. Uses synthetic language in that it conforms to a specific
template. This means learned behavior could not be expected to generalize to natural
language descriptions of the same environment. However, it has the advantage of allowing
us to carefully control variables in the results and deepen our understanding of which parts
of the representation are important. As with the vector-state, the boxes are first described
before their contents. There is an option to omit redundant facts to avoid exhaustively
describing possible states by removing statements like: “There are no red blocks in the
green box.” It can also be configured to shuffle the order of statements. In the case where
there are two or more of a particular block type the token “multiple” replaces “one”. An
example of the language state is shown in Fig. 3(b).

4.2. Action Representation

There are also two action representations:

discrete-action is where every combination of action-verb, block-size, block-color, start-
box-color, end-box-color is mapped to a separate discrete action.

language-action has two versions. The first uses a full template: “{verb} the {block_size}
{block_color} block from the {start_box_color} box to the {end_box_color} box .” and a simple
version where the fixed words are removed: “{verb} {block_size} {block_color} {start_box_color}
{end_box_color}”. The simple version with fewer words was created to limit the action-space
as each word must be sampled from a vocabulary.

5. Experiments

Through this work, we are trying to compare generalization between representations. To
approach this systematically we test zero-shot task generalization. This involves training
using reinforcement learning on a training task and measuring achieved reward on several

LANGUAGE REPRESENTATIONS FOR (GENERALIZATION IN RL

test tasks. This is similar to the use of a training-set and test-set in supervised learning
to evaluate generalization and the same as the approach used in Song et al. (2019); Cobbe
et al. (2019). It allows us to test how well the inductive biases learned during training
work on the new tasks. By performing this comparison we try to answer the following
research questions: 1. How well do vector-state representations generalize in comparison
to language-state representations? 2. How do discrete-action representations compare to
auto-regressive language actions for generalization. 3. How does the model architecture
affect generalization when using language representations? 4. How does the training data
affect generalization? To quantitatively compare generalization we devised a number of
tasks.

One training task and four test tasks are defined:

1. Training task: Maximum of 3 boxes (and 3 colors sampled from the training set).
The boxes contain 4 spaces where blocks can potentially be generated (space-permitting).

2. More Blocks Task: Increases the size of the boxes from 4 to 8. This increases the
number of steps to solve the problem and the size of the state. This change does not
affect the action spaces. Tests the agent’s ability to generalize to a larger version of
the task.

3. More Boxes Task: Adds an additional box and color (sampled from the training
set). The main difference is that there are objects of 4 colors as opposed to just 3 in
the training task. Additional blocks can be generated in the new box increasing the
problem size. The valid action-space will also grow because new colors and boxes will
need to be selected to solve the environment. Tests the agent’s ability to generalize
to a more complex version of the task.

4. New Colors Task: Samples the colors from the test set rather than the training
set. The problem size remains the same but the colors which are used as adjectives to
identify the blocks and boxes are switched to held-out test colors. Tests the agent’s
ability to generalize to unseen entities.

5. Combined Generalization Task: The modifications from all 3 generalization test
tasks are combined in a single task.

During training and testing the states and action spaces are padded with empty tokens to
the maximum size. For example, the vector-state size increases when testing increasing the
number of colors/boxes from 3 to 4 so the model is trained with size 4 states however the
states relating to the 4th box correspond to the empty token throughout training.

Training was run for 3k Proximal Policy Optimization (PPO) algorithm iterations
for all experiments.

5.1. Model Architectures

The state and action representations are tested with five different model architectures.
For all architectures and state representations, the first layer of the model is a randomly
initialized embedding space.

GOODGER VAMPLEW FOALE DAZELEY

1. A Feed-forward network is used to map the vector-state to a discrete-action. This
choice of architecture for use with the vector-state was made because the vector-state
is not inherently ordered like language. It is processed in parallel and finally, output
to a softmax normalized distribution across discrete actions. A similar feed-forward
critic is used to approximate the value function.

2. A Recurrent network using an LSTM (Hochreiter and Schmidhuber, 1997) is used for
the language-state and the discrete-action. A recurrent model was chosen because
the language-state is ordered and this model has a sequential bias. The language-state
is input to the model and the final hidden state is input to a feed-forward network to
define a softmax normalized distribution across discrete actions. A similar recurrent
critic is used to approximate the value function.

3. A sequence to sequence model (Sutskever et al., 2014) with three different heads were
used for the language-state to language-action. These models take the language
state as input and auto-regressively produce a language-action by sampling greedily.
They all use a recurrent critic to approximate the value function:

(a) A generative head which samples a token from the distribution defined by a
softmax of tokens in the synthetic language.

(b) A pointer head (Vinyals et al., 2015) samples a token from the distribution de-
fined by a softmax over the language-state input tokens. This model is extractive
in that it selectively extracts tokens from the input to generate the output. Ad-
ditional tokens required for the language-action but not present in the language-
state are prepended to the language-state so that they can be selected for the
output.

(¢) A hybrid head including both a generative head and a pointer head similar to the
implementation in Gulcehre et al. (2016). It includes an additional feed-forward
network conditioned on the decoder hidden state that defines the distribution
for switching between the generative or pointer heads. In this implementation,
the additional tokens required for the language-action are not prepended to the
state so the model must learn to use the generative head to produce this part of
the action sequence.

5.2. Language-action Constraint

Despite the limited vocabulary, the language action-space is still very large. With 110 words
in the vocabulary and 14 words in the action template the action-space is 4E28. To reduce
the language-action-space to a range similar to the discrete-action-space we mask invalid
actions. For example, when choosing the second word which is block-size, all logits for the
generator head and/or the pointer head representing tokens other than block size are set to
a large negative number before going through softmax normalization preventing sampling.

5.3. Results

The rewards obtained on each task are shown in Fig. 4. These results were obtained using
the Many Sizes training regime (See Appendix. A for details on the training implemen-

LANGUAGE REPRESENTATIONS FOR GENERALIZATION IN RL

1.00
A |
0.751 | "]
°
2 0501
S
0.254
0.001
0 500 1000 1500 2000 2500 3000
step
—— feed_forward_discrete = —— seq2seq_pointer
—— recurrent_discrete —— seg2seq_pointer_generator
—— seqg2seq_generator
(a) Training Task reward
1.004 1.001
0.75 - 0.75 1
E el
0.50 © 1
% % 0.50
T 0251 T 0251
0.00 - 0.00
—-0.25 1+ —-0.25 1+ T T T T T r
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
step step
—— feed_forward_discrete ~—— seq2seq_pointer — feed_forward_discrete —— seq2seq_pointer
—— recurrent_discrete —— seq2seq_pointer_generator — recurrent_discrete —— seq2seq_pointer_generator
—— seg2seq_generator —— seg2seq_generator
(b) More Blocks Task reward (¢) More Boxes Task reward
0.4 A
1.004
0.75 - 0.2 1
e T
2050 g
0.25 1
0.00 -0.24
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
step step
—— feed_forward_discrete = —— seq2seq_pointer —— feed_forward_discrete = —— seq2seq_pointer
—— recurrent_discrete —— seqg2seq_pointer_generator —— recurrent_discrete —— seg2seq_pointer_generator
—— seq2seq_generator —— seqg2seq_generator
(d) New Colors Task reward (e) Combined Task reward

Figure 4: Rewards obtained using the Many Sizes training regime. Runs were repeated 3
times and the shaded area represents one standard deviation.
Middle Left: Increase the maximum generated blocks in each box from 4 to 8.
Middle Right: Number of boxes and colors in the task increased from 3 to 4.
Bottom Left: Colours sampled from unseen test set rather than training set.
Bottom Right: Combination of all 3 test task modifications.

GOODGER VAMPLEW FOALE DAZELEY

tations tested) and the simple language template where language-actions are used. This
approach produced the best results for most architectures although the best result on the
combined generalization was obtained with the Many Colors Many Sizes training regime.
Results using the other training regimes can be seen in Appendix. B. All state and action
representations were able to learn to solve the training task, see Fig. 4(a). However, reward
on test tasks varied significantly between representations and architectures.

Testing generalization for the More Blocks Task in Fig. 4(b) showed that all configura-
tions learned to generalize to different degrees. This can be explained by considering the
state spaces. The vector state-space remains partially consistent with the training data
except that some of the always empty values will now be populated. For the language-state
the only difference is that for this test task it can be larger. Both the discrete and language
action spaces remain the same in that there are no new colors or boxes. The sequence
to sequence generative model worked best. This may be because the pointer architecture
struggled to select the correct output from the larger state. One explanation for the differ-
ence between the recurrent-discrete model and the sequence to sequence model is that the
learned auto-regressive language action generalizes better because the output is composi-
tional and generated over several steps while the discrete-action must be output in a single
step. The feed-forward network using the vector-state and discrete-action reward decreased
with increasing training steps, indicating that the model is overfitting.

Testing generalization to the More Bozes Task shown in Fig. 4(¢) resulted in zero reward
for the recurrent-discrete and feed-forward model using discrete actions. The discrete action-
space requires the use of untrained actions while the language-action can generalize to new
compositions. For the sequence to sequence models, the extractive models outperformed
the generative model. We think this is due to the additional color present in this task.

For the New Colors Task in Fig. 4(d) we see that the feed-forward model using the
vector-state and discrete-action initially learns, however as the number of steps increases
performance drops due to overfitting on the training task. The generative model fails to
improve much in performance which is expected because the new colors required in the
output have not been trained. The recurrent discrete model quickly improves but the mean
reward plateaus. It is surprising that it achieves a reward higher than the generative model
as its output also refers to new actions for this task. The difference may be explained by
the discrete-action-space still using the same range as during training. The actions just
refer to different colors unlike the generative model which must generate untrained tokens.
The pointer network and pointer-generator networks achieve high reward because they have
learned a program that extracts the new color adjective from the input and therefore can
generalize to this task.

Finally on the hardest Combined Task shown in Fig. 4(e) only the language state and
action models with an extractive capability achieved any reward and of those the pointer-
generator achieved the highest reward. This seems to indicate that it has learned to syner-
gize the best features from both the pointer and generative heads of the model.

The experiments used the same hyperparameters for all runs. All details of the imple-
mentation can be seen in the open-source implementation?.

2. https://gitlab.com/ngoodger/tidy-block-generalization-comparison

https://gitlab.com/ngoodger/tidy-block-generalization-comparison

LANGUAGE REPRESENTATIONS FOR (GENERALIZATION IN RL

6. Discussion

Agents using different representations and architectures resulted in similar training reward.
If the motivation of this paper was maximizing training reward on this environment we might
conclude they were equivalent. However, the results show that the achieved reward on the
zero-shot generalization tasks varied significantly between representations and models. We
found that using a language state-space in the recurrent model compared to a vector-state in
the feed-forward model aligned the learned inductive bias such that it prevented overfitting
to the training task. Further, we found that by utilizing a language-state and language-
action space together with extractive models we were able to generalize to new entities,
more complex and larger problems than those used for training.

We believe that the advantage of the language state and action spaces is related to
compositionality. The state is made of sub-expressions that contextualize the information
while in the vector-state the information is only contextualized by its position. Similarly
the language-action is also compositional. The lexical parts of the action can be learned
and then combined in new ways to generate new unique actions, unlike the discrete-action
where every unique action must be trained independently. Additionally, the language-action
is generated auto-regressively so it will be conditioned on the previously generated tokens
in the action-sequence helping to generate valid sequences.

These results indicate that using language as a representation for states and actions
may be a viable approach to build more general agents. Increased generalization is an
attractive feature as it can allow increased robustness to out-of-distribution states and
actions, adaptability to new tasks, or even adaptability to more complex tasks.

It’s important to note that these results are also a function of model architecture and
environment. So we can not be certain that the behavior would generalize to other archi-
tectures or environments without testing them. A limitation of the approach outlined in
this paper is the action constraint on the language model’s action-space, without which this
approach does not find valid actions. It would be interesting to explore whether bootstrap-
ping the model with supervised training data or using other RL techniques could allow for
training sequence to sequence models in an RL context without this constraint.

Acknowledgments

We would like to thank Guillem Orellana for sharing their pointer network implementation®

References

David Abel, Dilip Arumugam, Lucas Lehnert, and Michael Littman. State abstractions for
lifelong reinforcement learning. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 10-19. PMLR, 10-15 Jul 2018. URL http://

proceedings.mlr.press/v80/abell8a.html.

3. https://github.com/Guillem96/pointer-nn-pytorch

http://proceedings.mlr.press/v80/abel18a.html
http://proceedings.mlr.press/v80/abel18a.html
https://github.com/Guillem96/pointer-nn-pytorch

GOODGER VAMPLEW FOALE DAZELEY

David Andre and Stuart J. Russell. State abstraction for programmable reinforcement learn-
ing agents. In Fighteenth National Conference on Artificial Intelligence, page 119-125,
USA, 2002. American Association for Artificial Intelligence. ISBN 0262511290.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning
with policy sketches. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 166—175. PMLR, 06-11 Aug 2017. URL http://proceedings.
mlr.press/v70/andreasl7a.html.

S.R.K. Branavan, Luke Zettlemoyer, and Regina Barzilay. Reading between the lines:
Learning to map high-level instructions to commands. In Proceedings of the 48th An-
nual Meeting of the Association for Computational Linguistics, pages 1268-1277, Up-
psala, Sweden, July 2010. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/P10-1129.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, L. Willems, Chitwan Sa-
haria, T. Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency
of grounded language learning. In ICLR, 2019.

Geoffrey Cideron, Mathieu Seurin, Florian Strub, and Olivier Pietquin. Higher: Improving
instruction following with hindsight generation for experience replay. In 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), pages 225-232, 2020. doi: 10.
1109/SSCI147803.2020.9308603.

Karl Cobbe, Oleg Klimov, Chris Hesse, Tachoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning, 2019.

Marc-Alexandre Coté, Akos Kadar, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery
Fine, James Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay,
and Adam Trischler. Textworld: A learning environment for text-based games. In Tristan
Cazenave, Abdallah Saffidine, and Nathan Sturtevant, editors, Computer Games, pages
41-75, Cham, 2019. Springer International Publishing. ISBN 978-3-030-24337-1.

Mark Depristo, Hughes Hall, and Robert Zubek. Being-in-the-world. 12 2001.

Ralph W. Fasold and Jeff Connor-Linton. An Introduction to Language and Linguistics.
Cambridge University Press, 2 edition, 2014. doi: 10.1017/CB09781107707511.

Prasoon Goyal, Scott Niekum, and Raymond J. Mooney. Using natural language for reward
shaping in reinforcement learning. In Proceedings of the Twenty-Fighth International
Joint Conference on Artificial Intelligence, IJCAI-19, pages 2385-2391. International
Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.
2019/331.

Prasoon Goyal, Scott Niekum, and Raymond J. Mooney. Pixl2r: Guiding reinforcement
learning using natural language by mapping pixels to rewards. In 4th Conference on
Robot Learning (CoRL), November 2020. URL http://www.cs.utexas.edu/users/
ai-labpub-view.php?PubID=127846.

http://proceedings.mlr.press/v70/andreas17a.html
http://proceedings.mlr.press/v70/andreas17a.html
https://www.aclweb.org/anthology/P10-1129
https://www.aclweb.org/anthology/P10-1129
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127846
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127846

LANGUAGE REPRESENTATIONS FOR (GENERALIZATION IN RL

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio. Point-
ing the unknown words. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 140-149, Berlin, Germany,
August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1014.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Fast task-adaptation for tasks
labeled using natural language in reinforcement learning. CoRR, abs/1910.04040, 2019.
URL http://arxiv.org/abs/1910.04040.

YiDing Jiang, Shixiang (Shane) Gu, Kevin P Murphy, and Chelsea Finn. Lan-
guage as an abstraction for hierarchical deep reinforcement learning. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
0af787945872196b42c9f73ead2565c8-Paper . pdf.

Chaitanya K. Joshi, Quentin Cappart, L. Rousseau, T. Laurent, and X. Bresson. Learning
tsp requires rethinking generalization. ArXiv, abs/2006.07054, 2020.

George Konidaris. On the necessity of abstraction. Current Opinion in Behavioral Sci-
ences, 29:1-7, 2019. ISSN 2352-1546. doi: https://doi.org/10.1016/j.cobeha.2018.11.005.
Artificial Intelligence.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Ed-
ward Grefenstette, Shimon Whiteson, and Tim Rocktéschel. A survey of reinforce-
ment learning informed by natural language. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, pages 6309-6317.
International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi:
10.24963 /ijcai.2019/880.

Alana Marzoev, S. Madden, M. Kaashoek, Michael J. Cafarella, and Jacob Andreas. Un-
natural language processing: Bridging the gap between synthetic and natural language
data. ArXiv, abs/2004.13645, 2020.

Sam McCandlish, J. Kaplan, Dario Amodei, and OpenAl Dota Team. An empirical model
of large-batch training. ArXiv, abs/1812.06162, 2018.

Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration through
learned language abstraction. arXiv preprint arXiw:2103.05825, 2021.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for
text-based games using deep reinforcement learning. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, pages 1-11, Lisbon, Portugal,
September 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1001.

http://arxiv.org/abs/1910.04040
https://proceedings.neurips.cc/paper/2019/file/0af787945872196b42c9f73ead2565c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0af787945872196b42c9f73ead2565c8-Paper.pdf

GOODGER VAMPLEW FOALE DAZELEY

Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola. Grounding language for trans-
fer in deep reinforcement learning. J. Artif. Int. Res., 63(1):849-874, September 2018.
ISSN 1076-9757. doi: 10.1613/jair.1.11263.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task gener-
alization with multi-task deep reinforcement learning. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research, pages 2661-2670. PMLR, 06-11
Aug 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 32, pages 8024—
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/
abs/1707.06347.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation, 2018.

Erez Schwartz, Guy Tennenholtz, Chen Tessler, and Shie Mannor. Language is power: Rep-
resenting states using natural language in reinforcement learning. arXiv: Computation
and Language, 2020.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with
context-based representations. ArXiv, abs/2102.06177, 2021.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational
overfitting in reinforcement learning. CoRR, abs/1912.02975, 2019. URL http://arxiv.
org/abs/1912.02975.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, page 3104-3112, Cambridge, MA, USA, 2014.
MIT Press.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018. URL http://incompleteideas.net/book/
the-book-2nd.html.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1912.02975
http://arxiv.org/abs/1912.02975
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

LANGUAGE REPRESENTATIONS FOR (GENERALIZATION IN RL

Harm van Seijen, Shimon Whiteson, and Leon Kester. Efficient abstraction selection in
reinforcement learning. Computational Intelligence, 30(4):657-699, 2014. doi: https:
//doi.org/10.1111/coin.12016.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
29921001£2£04bd3baece84a12e98098f-Paper.pdf.

Marek Wydmuch, Michal Kempka, and Wojciech Jaskowski. Vizdoom competitions: Play-
ing doom from pixels. IEEE Transactions on Games, 2018.

Xingdi (Eric) Yuan, Marc-Alexandre Co6té, Alessandro Sordoni, Romain Laroche,
Remi Tachet des Combes, Matthew Hausknecht, and Adam Trischler. Count-
ing to explore and generalize in text-based games. In ICML 2018, pages 1-
12, June 2018. URL https://www.microsoft.com/en-us/research/publication/
counting-to-explore-and-generalize-in-text-based-games/.

Victor Zhong, Tim Rocktéschel, and Edward Grefenstette. RTFM: Generalising to Novel
Environment Dynamics via Reading. arXiv e-prints, art. arXiv:1910.08210, October 2019.

Appendix A. Training data configuration

The training environment is configured with a maximum of 3 boxes/colors sampled from a
training set. With a possible 4 spaces in each box. A number of different training regimes
within this specification were tested:

1. Fized Colours: Always uses the first 3 colors of the training set so they are consistent
throughout training. Always 3 boxes present.

2. Many Colours: Randomly sample training colors from 20 in the training set so the
model sees different colors in each rollout. Always 3 boxes present.

3. Many Sizes: Always uses the first 3 colors of the training set so they are consistent
throughout training. The number of boxes is varied from 2 to 3 during training.

4. Many Sizes and Colors: Randomly sample training colors from 20 in the training set
so the model sees different colors in each rollout. The number of boxes is varied from
2 to 3 during training.

5. Fized Colors Full Fized State: Same as Fized Colours except that for language-state
the option to omit-redundant facts and shuflle state is turned off.

6. Fized Colors Omit Redundant Facts: Same as Fized Colours except that for language-
state the option to omit-redundant facts is turned off.

7. Fized Colors Shuffle State: Same as Fized Colours except that for language-state the
option to shuffle state is turned off.

https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://www.microsoft.com/en-us/research/publication/counting-to-explore-and-generalize-in-text-based-games/
https://www.microsoft.com/en-us/research/publication/counting-to-explore-and-generalize-in-text-based-games/

GOODGER VAMPLEW FOALE DAZELEY

Appendix B. Training data affect on generalization

Zero-shot generalization reward under different training data regimes compared for the

state-representations and model architectures tested can be seen in Fig. 5.

10
08
08
06 !
06
T o4 ®
g 2 o4
g H
02 02
00 00
-02 -02

0 500 1000 1500 2000 2500 3000

—— many_colours
—— many_sizes
—— many_sizes_and_colours

—— fixed_colours
—— fixed_omit_redundant_facts
—— fixed_shuffle_state

— full_fixed_state

(a) Pointer / More Blocks (b) Pointer / More Boxes (C) Pointer /

Task

0 500 1000 1500 2000 2500 3000

fixed_colours
fixed_omit_redundant_facts
fixed_shuffle_state
full_fixed_state

—— many_colours
—— many_sizes

Task

1.00 02

075 01 Al
® ° Tolbgh?
® 2 ey

] I

H g o0 L

025 i ,

-01 3 i
0.00
-0.25 02
G 500 1000 1500 2000 2500 3000 G 500 1000 1500 2000 2500 3000
— fixed_colours — many_colours Tixed_colours —— many_colours

—— fixed_omit_redundant_facts
—— fixed_shuffle_state
— full_fixed_state

—— many_sizes
~—— many_sizes_and_colours

/ More

(6) Generator
Blocks Task

fixed_omit_redundant_facts
fixed_shuffle_state
full_fixed_state

—— many_sizes
~—— many_sizes_and_colours

(f) Generator Mor

Boxes Task

/

1.00
075
0.50

reward

025
0.00

-025

reward

0 500 1000 1500 2000 2500 3000

—— many_colours
—— many_sizes
—— many_sizes_and_colours

—— fixed_colours
—— fixed_omit_redundant_facts
—— fixed_shufle_state

— full_fixed_state

Pointer-generator:
More Blocks Task

0 500 1000 1500 2000 2500 3000

—— fixed_colours
—— many_colours

—— many_sizes
—— many_sizes_and_colours.

(m) Recurrent-discrete /
More Blocks Task

02
01
g oo
-01
-02
0 500 1000 1500 2000 2500 3000
step
— fixed_colours —— many_sizes

—— many_colours —— many_sizes_and_colours

Blocks Task

0 500 1000 1500 2000 2500 3000

fixed_colours
fixed_omit_redundant facts
fixed_shuffle_state
full_fixed_state

—— many_colours
—— many_sizes

(]) Pointer-generator
More Boxes Task

~—— many_sizes_and_colours

~— many_sizes_and_colours

10
08
06
04

reward

02
00

-02

0 500 1000 1500 2000 2500 3000

many_colours
many_sizes

—— fixed_colours

—— fixed_omit_redundant_facts
—— fixed_shuffle_state

— full_fixed_state

Task

many_sizes_and_colours

0 500 1000 1500 2000 2500 3000

—— fixed_colours

—— fixed_omit_redundant_facts
—— fixed_shuffle_state

— full_fixed_state

—— many_colours
—— many_sizes
~—— many_sizes_and_colours

New Colors (d) Pointer / Combined

Task

005
~0.194
0.00
i H ~0.196
3roos] o HIETTE 3
H it foous
2010 " 8
-0.15 ~0.200
-0.20 -0202
0 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
— fixed_colours — many_colours — fixed_colours — many_colours

—— fixed_omit_redundant_facts
s —— fixed_shufle_state
— full_fixed_state

—— many_sizes

€

~—— many_sizes_and_colours

—— fixed_omit_redundant_facts
—— fixed_shuffle_state
— full_fixed_state

—— many_sizes
~—— many_sizes_and_colours

(g) Generator / New Col- (h) Generator / Combined

ors Task Task
100 04
0.75
® v ® 0.2
g 0.50 %
0.25 0.0
000 o2
o2
T st w000 100 200 00 3000 T st w000 o0 00 00 300
e coours —— many_colours fred colours —— many_colours

—— fixed_omit_redundant facts
—— fixed_shuffle_state
— full fixed_state

—— many_sizes

/ (k) Pointer-generator
New Colors Task

~— many_sizes_and_colours

fixed_omit_redundant_facts
fixed_shuffle_state
full_fixed_state

—— many_sizes
—— many_sizes_and_colours

/ (1

~—

/

Pointer-generator
Combined Task

-0.180 08
~0.197
-0.185 0.6
B o -0.198
§-0190 5 04 s
~0.199
H £ o2 ¢
-0.195 |
" 00 -0.200
-0.200 n
—02 ~0201
0 500 1000 1500 2000 2500 3000 G 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
— fixed_colours — many_sizes — fixed_colours — many_sizes — fixed_colours — many_sizes

—— many_colours —— many_sizes_and_colours

Recurrent-discrete
More Boxes Task

(n)

—— many_colours —— many_sizes_and_colours

/ (0) Recurrent-discrete
New Colors Task

—— many_colours —— many_sizes_and_colours

/

/ (p) Recurrent-discrete
Combined Task

0180 01975
0s
01980
-0.185 06
—0.1985
T 0190 B4 T
H s £ —0.19%
3 13 13
~0195 02 ~0.1995
0.0 —0.2000
-0.200 L b
02005
© 500 1000 1500 2000 2500 3000 9 500 1000 1500 2000 2500 3000 G 00 1000 1500 2000 2500 3000
step step step

— fixed_colours
—— many_colours

— many_sizes
—— many_sizes_and_colours.

Boxes Task

— fixed_colours,
—— many_colours

—— many_sizes
—— many_sizes_and_colours

Colors Task

Figure 5: Test task rewards

—— fixed_colours
—— many_colours

—— many_sizes
—— many_sizes_and_colours.

Feed-forward / More (7’) Feed-forward / More (3) Feed-forward / New (t) Feed-forward / Com-

bined Task

	Introduction
	Related Work
	Preliminaries
	Environment
	State Representation
	Action Representation

	Experiments
	Model Architectures
	Language-action Constraint
	Results

	Discussion
	Training data configuration
	Training data affect on generalization

