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Abstract: Intrusion detection in computer networks is of great importance because of its effects on
the different communication and security domains. The detection of network intrusion is a challenge.
Moreover, network intrusion detection remains a challenging task as a massive amount of data is
required to train the state-of-the-art machine learning models to detect network intrusion threats.
Many approaches have already been proposed recently on network intrusion detection. However,
they face critical challenges owing to the continuous increase in new threats that current systems do
not understand. This paper compares multiple techniques to develop a network intrusion detection
system. Optimum features are selected from the dataset based on the correlation between the features.
Furthermore, we propose an AdaBoost-based approach for network intrusion detection based on
these selected features and present its detailed functionality and performance. Unlike most previous
studies, which employ the KDD99 dataset, we used a recent and comprehensive UNSW-NB 15 dataset
for network anomaly detection. This dataset is a collection of network packets exchanged between
hosts. It comprises 49 attributes, including nine types of threats such as DoS, Fuzzers, Exploit, Worm,
shellcode, reconnaissance, generic, and analysis Backdoor. In this study, we employ SVM and MLP
for comparison. Finally, we propose AdaBoost based on the decision tree classifier to classify normal
activity and possible threats. We monitored the network traffic and classified it into either threats
or non-threats. The experimental findings showed that our proposed method effectively detects
different forms of network intrusions on computer networks and achieves an accuracy of 99.3% on
the UNSW-NB15 dataset. The proposed system will be helpful in network security applications and
research domains.

Keywords: AdaBoost; network intrusion; decision tree; SVM; MLP; UNSW-NB15

1. Introduction

Intrusion detection is a method for observing and tracking events on a computer
system. It is used to identify signs of security issues and activities are monitored using
event-based techniques and security information. With the exponential increase in internet-
based facilities, the number of devices for computing and consumers connected to data
networks and computer networks has increased significantly. These devices provide and
serve online services to users and public/private sector organizations. In parallel, there
has been an infinite amount of unauthorized access to online services. Typical services
include protocol-specific attacks (ARP, IP, TCP, UDP, and ICMP), traffic flooding, worms,
and DoS [1]. In protocol-specific attacks, the attacker exploits a specific protocol feature
installed on the target machine. Prevalent protocol attacks include SMURF, SYP, and
authentication server attacks. The ever-increasing attacks demand an effective intrusion
detection system that detects documented forms and learns to detect new forms. The
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intrusion detection system is one of the methods used to address the network security issue.
The imperfectness of existing systems has allowed data mining to make several significant
contributions in the field of intrusion detection.

There are three main types of intrusion detection systems [2–4]:

i Host intrusion detection system (HIDS);
ii Network intrusion detection system (NIDS);
iii Network node intrusion detection system (NNIDS).

The HIDS runs on all the machines in the network and other parts of the enterprise
network. NIDS is deployed and intended to manage those places only where chances of
vulnerability are high. NNIDS is like NIDS [3,4], but it only applies to one host at a time.
Three main approaches are used for intrusion detection:

i Signature-based IDS;
ii Anomaly-based IDS;
iii Hybrid of signature and anomaly-based IDS.

Signature-based IDS focuses on identifying signatures and patterns and matching
those patterns with the well-known signature of misuses. Anomaly-based IDS searches
for forms of unknown signature attacks-based IDS that are hard to detect. Owing to
the exponential growth in malware and attack styles, anomaly-based IDS uses machine
learning approaches to equate trustworthy activity patterns with new behaviors.

Several supervised learning techniques such as decision trees, SVM, and ANNs [5–7] have
been used, but they have a high false-positive ratio for infrequently occurring attacks. This
study demonstrates an AdaBoost-based network intrusion detection system (NIDS) that
takes statistical network flow features to recognize malicious activities to tackle network
attacks. A set of features are extracted from network flow after potential analysis of HTTP,
MQTT, and DNS network packets. For this purpose, we used the source files of the
UNSW-NB15 dataset [8,9].

In the proposed system, firstly, it performs the feature selection from the entire dataset.
Next, we plot a correlation matrix and select features based on their correlation with one
another, and remove some highly correlated features. In this study, we used AdaBoost on a
decision tree classifier to classify the normal traffic and possible threats and obtained an
accuracy of 99.3%.

The key contributions in this study are presented as follows:

i. A feature selection method is proposed based on the correlation matrix calculated
between the features. Features that were highly correlated with one another were
removed as they added no significant difference and only increased the complexity
of the model.

ii. Optimal features are selected from the UNSW NB 15 dataset.
iii. The AdaBoost-based model is proposed, using a decision tree to classify normal

network traffic and network threats.

The rest of the paper is organized as follows. Section 2 describes the background and
literature review. The description of the proposed system is presented in Section 3. The
performance metrics and evaluation protocol are discussed in Section 4. The experimental
results and discussion are presented in Section 5. Section 6 presents the comparison and
Section 7 concludes the paper.

2. Background and Related Work

An intrusion detection system is a technique for tracking network activities between
different entities by estimating their integrity and availability principles [10,11]. Classic
systems consist of data source, preprocessing, and a decision-making method to identify
vulnerability. The first step involves raw data gathered from host traces or network traffic.
The second step covers the construction of features passed to the decision-making method
to identify possible threats [12]. Several studies have been conducted in the past to address
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this challenge. The previous research studies have used KNN, SVM, and ANN models for
network anomaly detection [13–15].

Awais et al. [16] proposed an ANN-based method for detecting network intrusions
with an accuracy of 89.4%. The proposed structure uses a neural network for partitioning
the training data. Each training data sample is used for training a network and a boosting
algorithm to learn an optimized set of weights. This system was evaluated and tested on
KDD99 [17] and UNSW-NB15 datasets. The UNSW-NB15 dataset contains a mixture of
49 input features, with nine attack types and normal network traffic. The details of the
attack types are shown in Table 1, where they are divided into two different categories.
The first category (shown at sr. # 1, Table 1) is for normal network traffic and the second
category (shown at sr. # 2 to 10, Table 1) describes the attack types, which include Analysis,
Backdoor, DoS, Exploits, Fuzzers, Generic, Reconnaissance, Shellcode, and Worms. The
data types and their respective descriptions are shown in Table 2.

Table 1. UNSW-NB 15 dataset categories.

Sr. No. Type Description

1 Normal Natural transaction data.

2 Analysis An attack targets web applications through emails,
ports, or web scripts.

3 Backdoor Using backdoor to secure remote access.
4 DoS Attacks computer memory

5 Exploits An instruction that takes advantage of bugs/errors
caused by unintentional behavior on the network.

6 Fuzzers An attack to crash the system by inputting a lot of
random data.

7 Generic A technique to clash the block-cipher configuration by
using hash functions.

8 Reconnaissance A probe to evade network security controls by collecting
relevant information.

9 Shellcode Code is used to exploit software vulnerabilities.

10 Worms A set of virus codes can add to a computer system or
other programs.

Table 2. Training instances.

Class Normal Intrusion

Training Instances 37,000 45,332
Label 0 1

The categories of the UNSW-NB15 dataset and their descriptions are shown in Table 1,
where one is the normal network traffic and the rest are different types of threats. The
system could face these threats while connected to the internet. In another study [7], the
authors applied a deep convolutional neural network (DCNN) on the NSL-KDD dataset for
the binary classification of anomaly detection. The proposed approach was optimized by
randomized grid search, hyper-parameters’ optimization, and fine-tuning. They obtained
the highest accuracy of 85.22% using DCNN, whereas 82.02% was obtained using the
random tree classifier.

The methodology of network intrusion is either hybrid-based or intrusion-based.
Many researchers have used ensemble-based intrusion detection techniques to propose
enhanced systems for optimizing NIDS. Mustafa et al. [18] proposed a beta mixture model
for anomaly detection. The author computed a normal network profile, calculated the
deviations from that network profile, and considered that as an anomaly. The UNSW-
NB15 dataset was used for performance evaluation using external evaluation metrics. This
technique slightly improved the accuracy of the UNSW-NB15 dataset. In another study [19],
the authors use ANNs for signature-based intrusion detection in IoT devices. They tested
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the approach on various malicious and heterogeneous data, achieving an average accuracy
of 84% with an average false-positive rate of 8%.

Benjamin et al. [20] proposed an ensemble-based intrusion detection technique against
application layer protocols (MQTT, HTTP, and DNS), as shown in Figure 1. The authors
generated the new statistical flow features from the protocols based on their potential
properties. The experimental analysis showed that statistically generated features are
related to normal and suspected activities. Ensemble-based AdaBoost was developed using
naïve Bayes, decision trees, and artificial neural network (ANN). NIMS botnet was used to
detect and evaluate ensemble learning.

Figure 1. TCP/IP model and IoT protocols.

Wei et al. [21] propose an Adaboost-based network intrusion detection system based
on the principle of weak learners. They use naïve Bayes as weak learners and boost the
performance utilizing the weight update ability of the Adaboost. Yuan et al. [22] proposed
a semi-supervised tri-Adaboost-based methodology for network intrusion detection. They
suggest using three distinct weak Adaboost-based classifiers for training their model. The
dimension of the features is reduced using the chi-square methodology.

Sheraz et al. [23] presented an anomaly system based on deep learning. Convolution
neural networks (CNNs), recurrent neural networks (RNNs), and autoencoders structures
are proposed. They also test the conventional IDS based on machine learning and present
an evaluation of their findings. Truong et al. [24] presented an empirical study on the use
of generative adversarial networks (GANs) for network anomaly detection. The authors
consider using multiple datasets and perform extensive experiments to test the robustness
of GANs. A traffic aggregation technique was also developed to extract statistical features.
Dutta et al. [25] propose using DNN consisting of multiple stacked fully connected layers
that present a flow-based system for multiclass anomaly detection. Lecun uniform initial-
ization is used for the initialization of weights. Michal et al. [26] propose a two-stage hybrid
network anomaly detection system. Classical autoencoder (CAE) and DNN are used for
feature engineering and classification. They evaluate the performance of their model using
the UNSW-NB-15 dataset and achieve an accuracy of 91.29%.

Yuan et al. [27] propose an anomaly detection architecture to detect short interval
intrusions using SVM. They train the model using cross-correlation and Kullback–Leibler
(KL) divergence calculated by the data planes and control traffic. Furthermore, they
evaluate the performance of their proposed model based on a realistic internet traffic
dataset. Giacinto and Roli [28] developed a network intrusion system using an automated
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design of classifier systems. Intrusions were detected based on the voting rule method.
The experimental results showed that hybrid classification techniques are effective if each
classifier performs well. Redundant features have little contribution to NIDS. Srilatha
and Johnson [29] focused on examining and finding potential data features for intrusion
detection systems. They aimed to design an optimized and computationally effective NIDS.
Srilatha proposed a hybrid technique involving ensemble-based classifiers. PCA was used
to reduce input dimensions, but has not achieved the expected results in the NIDS domain.
MIT Lincoln laboratory prepared the dataset for the evaluation of the proposed solution.

Arif et al. [30] proposed using Adaboost for an efficient intrusion detection system.
The synthetic minority oversampling technique (SMOTE) is considered for handling the
class imbalance problem, whereas principal component analysis (PCA) and ensemble
feature selection (EFS) are selected for feature selection. Through this technique, they
obtain an accuracy of 81.83% on the CIC IDS 2017 database (University of New Brunswick:
Fredericton, NB, Canada).

From the above literature review, we observed that that previous research uses Ad-
aboost mainly for the weight update property and does not consider the importance of
discriminative features to distinguish the threats from normal network activity. Thus, we
believe in using a complex dataset (UNSW NB 15), (UNSW Canberra: Canberra, Australia)
selecting the most discriminative features, and utilizing AdaBoost as a weight update
model. At the same time, the decision tree is a primary classifier. Decision trees perform ex-
ceptionally well on network data. The weight update in the algorithm is done by Adaboost,
which shows promising results when used in combination with the decision tree.

3. Proposed Method

This study proposes an automatic and efficient network intrusion detection system
based on the Adaboost technique. Firstly, we select the features from the pool of features
from the UNSW-NB15 dataset. For this purpose, we perform a correlation analysis. From
the result of the investigation, we remove those highly correlated features with each other,
as shown in Figure 2. Furthermore, this study presents the techniques to classify network
traffic as normal traffic or threats.

Figure 2. Correlation matrix.

We briefly review ANN, SVM, and Adaboost-based decision trees in our proposed
system. ANN and SVM were used for comparison. Furthermore, the techniques are
described below.



Mathematics 2022, 10, 530 6 of 15

i. Artificial neural network (ANN): The artificial neural network technique is used to
match targets by transforming respective inputs into outputs of each class. The result
depends on the weights learned for each neuron and the activation function to get the
output. Training a successful model requires normal and irregular network data to
train the weights more effectively.

f (I) = τ(∑
j

Wj· Ij) (1)

The model uses an activation function in which Equation (1) represents the input data,
where τ represents the sigmoid activation and wj is the weight corresponding to each input.

ii. Support vector machine (SVM): Support vector machine or SVM is a widely known
classifier used for regression and classification purposes. This study uses SVM for
network intrusion on the UNSW-NB15 data set [14]. SVM provides various ker-
nel functions used to map low dimensional to high dimensional space in an SVM
model. This study used the RBF kernel to obtain the results, as discussed in the next
section [31]. Equation (2) represents the formula for this approach as shown below:

K
(
xi , xj ) = exp

(
γ
∣∣∣∣xi − xj

∣∣∣∣2) (2)

iii. Adaboost: In this study, we proposed the use of a decision tree’s-based Adaboost
model, which uses the basic principles of decision trees as a primary classifier, but, on
top of that, employs Adaboost for the weight updates, hence achieving outstanding
results. Section 3.4 discusses the algorithm for our proposed approach.

3.1. System Architecture

The system diagram of the proposed system is shown in Figure 3. The proposed system
architecture is based on different components used to perform network intrusion detection.

Figure 3. Overall proposed system.
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The UNSW-NB15 dataset is a comprehensive dataset that contains 49 features utilized
in detecting network intrusions. We used a subset of the entire available data. Its training
and testing instances specification is mentioned in Tables 2 and 3, respectively. Data were
divided into training and testing sets. Then, feature selection was applied based on the
correlation matrix. In the next step, we trained our Adaboost model, which used a decision
tree as a classifier using maximum depth = 2 from the pool {2,4,6,8} as the complexity of
the model increased when the depth increased to 4 and the tree tends to overfit for higher
depth values. The algorithm selected was ‘SAMME.R’ because, when tested, the SAMME.R
algorithm converged faster than others, hence utilizing fewer boosting iterations and lower
error rates for the proposed model.

Table 3. Testing instances.

Class Normal Intrusion

Testing Instances 56,000 119,341
Label 0 1

There were 82,332 input samples in the training set and 175,341 samples in the test
set. Decision tree was used as the classifying model, while Adaboost performed the weight
updates. Section 3.4 discusses the algorithm for our proposed approach (Algorithm 1).

3.2. Dataset Description

In this study, we used the UNSW-NB15 dataset for evaluating the performance of
the proposed network intrusion system. Nour et al. [32] examined the complexity of
the UNSW-NB-15 dataset in three aspects and found that the dataset is more complex.
Furthermore, the authors presented that KDD CUP 99, NSLKDD, and KDD 98 do not reflect
modern footprint attacks, whereas the UNSW-NB-15 dataset comprises current synthesized
suspicious network activities. The Australian Center for Cyber Security (ACCS) used IXIA
Perfect Storm to create the raw network packets. Using Argus, Bro-IDS tools, this dataset
contains 49 input features and class labels representing nine different attack types [1,33].
The input features include packet-based features, time features, connection features, and
content features. Packet-based features are based on the payload exchanged between the
hosts. Time features assist the examination of source jitter, destination jitter, source, and
destination inter-packet arrival times. The content features provide the content-related
information, e.g., sequence numbers, mean packet size, and content size of data from
the server. The connection-based features offer general information about the connection,
e.g., number of links calling the same service, number of connections from source, and
number of references to the destination address. The available features contain general
HTTP methods for sending the information and FTP login details.

The attack types are DoS, Fuzzers, Exploit, Worm, shellcode, reconnaissance, generic,
analysis, and backdoor (see description of attacks in Table 1). We computed the values of
the newly created column as 0 for all the normal activities and 1 for the rest of the nine
attack types. CSV files are classified into two network activities as discussed below:

i Normal
ii Intrusions

Network activity is classified as normal if there is no network intrusion. In contrast,
activity is classified as a network attack when someone breaches an internet-based appli-
cation via the port, bypassing the network authentication, accessing the resources with
unauthorized access, and targeting security loopholes. We used a label encoder to convert
the ‘activity’ column into numerical data. The data are divided into two sets, i.e., training
and testing sets. The training set contains 82,332 instances, whereas the testing set consists
of 175,341 records. Previous work on this dataset acknowledges that the data are normally
distributed in the sense that the different types of network traffic are evenly distributed
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between training and testing sets [9]. Tables 2 and 3 describe the class-based distributions
for training and testing data.

Furthermore, feature selection has been applied to select optimum features, as ex-
plained in the next section.

3.3. Feature Selection

Feature selection is a process of selecting discriminative feature variables that con-
tribute most to the target variable. The objective of the feature selection process is to reduce
the computational cost of the model by removing the variables that have no contribution to
the determination of the target variable.

We used p-value and correlation measures for examining the relationship between
input variables and output labels. The p-value is the probability of observation under the
observation. This probability is then used to accept or reject the hypothesis. Equation (3) is
used for computing the p-value as follows:

z =
P̂− P0√
P0 (1−P0)

n

(3)

Here, p̂ is the sample proportion, P0 is the assumed population under the null
hypothesis, and n is the sample size. Then, the p-value can be computed by finding the
corresponding value from z value obtained. We have not achieved the expected results
using the p-value, so we used correlation measures for feature selection.

The correlation coefficient is the statistical measure of finding the strength of the
relationship between two variables using their relative moments. Its value ranges from
+1 to −1.

The correlation coefficient variable of value +1 shows a strong positive correlation
between two variables, whereas −1 represents a strong negative relationship between
two variables. There is no relationship between the two attributes if the value of the
correlation coefficient is zero.

r = ∑(xi − x)(yi − y)√
∑(xi − x)2 ∑(yi − y)2

(4)

In Equation (4), xi are the values of X variable in the sample, x is the mean value of X
variable, yi are the values of Y variables in the sample, and y is the mean value of Y variable.

We computed the correlation matrix of all the variables and eliminated those variables
that do not correlate with the target variable. The correlation matrix for all the input
variables is shown in Figure 2. As shown in Figure 2, there are some input variables where
either they have no correlation with the target variable or they have a strong correlation
with each other. We have removed those variables as well. After analyzing the correlation
matrix, we are removing attack_cat, proto, service, state, id, spkts, dpkts, sloss, dloss, and
ct_dst_src_ltm. The potential features that we are using in the proposed NIDS are shown in
Table 4.

Table 4. Input features for NIDS.

Name Type Description

dur Float Record total duration
sbytes Integer Source to Destination transaction bytes
dbytes Integer Destination to source transaction bytes

sttl Integer Source to destination time to live value
dttl Integer Destination to source time to live value

sload Float Source bits per second
dload Float Destination bits per second
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Table 4. Cont.

Name Type Description

sinpkt Float Source interpacket arrival time (mSec)
dinpkt Float Destination interpacket arrival time

sjit Float Source jitter (mSec)
djit Float Destination jitter (mSec)

swin Integer Source TCP window advertisement value
stcpb Integer Source TCP base sequence number
dtcpb Integer Destination TCP base sequence number
dwin Integer Destination TCP window advertisement value
tcprtt Float TCP connection setup round-trip time

synack Float TCP connection setup time, the time between the
SYN and the SYN_ACK packets.

ackdat Float TCP connection setup time, the time between the
SYN_ACK and the ACK packets.

smean Integer Mean of the packet size transmitted by the src
dmean Integer Mean of the packet size transmitted by the DST

trans_depth Integer Represents the pipelined depth into the connection
of HTTP request/response transaction

response_body_len Integer Actual uncompressed content size of the data
transferred from the server’s HTTP service.

ct_srv_src Integer No. of connections that contain the same service (14)
and source address (1) in 100

st_state_sttl Integer No. for each state
ct_dst_ltm Integer No. of connections of the same destination address

ct_src_dport_ltm Integer No connections of the same source address
ct_src_sport_ltm Integer No of connections of the same destination address

is_ftp_login Binary Session is accessed by user, then 1, else 0
ct_ftp_cmd Integer No of flows that have a command in the FTP session.

ct_flw_http_mthd Integer No. of flows with methods such as Get and Post an
HTTP service.

st_src_ltm Integer No. of connections of the same source address
ct_srv_dst Integer No. of connections of the same destination address

is_sm_ips_ports Integer If the source and destination IP addresses are equal,
then the value 1, else 0

3.4. Adaboost Algorithm Pseudocode

The Adaboost algorithm is an iterative procedure that usually comprises many classi-
fiers [34]. The Adaboost algorithm works in that it first classifies the training input data and
produces the output labels. It then compares the results with the actual output and boosts
the weight if it is wrongly classified. Again, misclassified data are organized with the
boosted weights, the same process is repeated, and the weights are constantly updated [34].

Algorithm 1 AdaBoost Pseudocode

Require : n ≥ 0
wi ← n
for m← 1 to M do

Fit a classi f ier x.(Tm) to the training data using weights wi.
errm ← Σn

1 wi I I(ci 6= Tm(xi))\Σn
1 wi

em ← log(1− errm/errm)
wi = ωi.exp(em · I I(ci 6= Tm(xi)))
Renormalize wi.

C(x)← arg
(
maxk Σm m

1 · I I(Tm(x) = k)
)
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4. Performance Metrics and Evaluation Protocol

In this section, we analyze the performance of our method for two classification
problems (normal traffic vs. threats) using the UNSW-NB15 dataset with a 10-fold cross-
validation technique. The detail about the classes is given in the previous section of our
proposed method.

This section explains the performance evaluation and evaluation matrix used in
the experiments. Then, we discuss the impact of fewer potential features. Finally, the
comparison is shown between SVM, ANN, and Adaboost classification algorithms.

We conducted several experiments to find the effectiveness of the proposed system.
We used TensorFlow with python for the implementation of our proposed model. All
of our assessments were performed on a 64-bit Windows system running GPU-enabled
TensorFlow with a Core i7-10750H (10th Gen), 32 GB RAM, and an NVIDIA GeForce RTX
2070 Super (8 GB) GPU.

We used the UNSW-NB15 dataset (described in Section 3.2) to conduct our assessments.
In NIDS, this dataset is treated as a benchmark. In addition, the use of this dataset helps
draw comparisons with current approaches and studies.

We used the following performance metrics in this study to evaluate the system:

i True Positive (TP)—Attack data correctly classified as an attack.
ii False Positive (FP)—Normal data incorrectly classified as an attack.
iii True Negative (TN)—Normal data correctly classified as normal.
iv False Negative (FN)—Attack data incorrectly classified as normal.

We used different performance metrics to measure the performance of our method.
Accuracy computes the number of accurate classifications out of total samples—Equation (5).

Accuracy =
TP + TN

Total Samples
(5)

The precision computes the number of correct classifications penalized by the number
of incorrect classifications—Equation (6).

Precision =
TP

TP + FP
(6)

The recall computes the number of correct classifications penalized by the missed
entries—Equation (7).

Recall =
TP

TP + FN
(7)

The F-score measures the harmonic mean of precision and recall, which is a derived
effectiveness measurement—Equation (8).

F− Score = 2× Precision × Recall
Precision + Recall

(8)

We trained the models on a massive dataset with no duplication of records for evaluat-
ing the performance and to overcome the overfitting and underfitting problems.

We tested our models by setting various parameters and, based on the results, we
came to the following parameters that give us the best results, as mentioned below:

i SVM technique was adjusted by kernel = ‘RBF, degree = 3, gamma = ‘scale’, and
shrinking = ‘true’; these parameters were selected as they showed the best results.
The rest of the parameters were set to default.

ii Four hidden layers tuned ANN from a combination of {4,6,8} because increasing the
number of hidden layers had no effect on the results, and their sizes were 256, 128, 64,
and 32, respectively. We used ‘relu’ as the activation function and ‘Adam’ as a solver
for weight optimization as they gave optimal results.
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iii The Adaboost classifier was adopted on top of the decision tree classifier with maxi-
mum depth = 2, algorithm = ‘SAMME.R’. Max depth was kept at two as increasing
causes the model to overfit, and the ‘SAMME.R’ algorithm was selected owing to its
faster convergence.

5. Experimental Results and Discussion

In this section, we analyze the performance of our proposed system for the classifi-
cation problem using the UNSW-NB15 dataset. We evaluate the results of SVM, ANN,
and Adaboost on top of the decision tree classifier for a binary classification problem of
network intrusion detection on the UNSW-NB15 dataset. Most of the work done revolves
around the traditional datasets. We focus on the more complex network dataset using
reduced features and apply three algorithms to compare the performance. This research
aims to accurately classify normal network traffic and network threats from suspicious
network activities.

In this paper, we compared various techniques for classifying network data into the
form of threats or non-threats. We tested multiple models, including the use of ANN,
SVM, and finally our proposed technique of Adaboost based on the decision tree classifier.
While ANN uses an activation function to generate outputs, it performs weight updates
at each neuron to improve the results. We achieve an accuracy of 89.54% when we set the
input parameters to four hidden layers, with 256, 128, 64, and 32 hidden sizes; ‘relu’ as the
activation function; and ‘Adam’ as a solver for weight optimization.

In this study, we also used support vector machine (SVM) to classify network in-
trusions. In SVM, we plot each sample point in an n-dimensional hyperplane, and then
we find the maximum distance between the hyperplanes, which differentiate the classes
quite well. We use input parameters, kernel ‘RBF’ with degree = 3, gamma = ‘scale’, and
shrinking = ‘true’, and we achieve an accuracy of 94.7%.

The proposed approach we present in this paper is Adaboost-based decision tree
classification. The proposed method uses decision tree as a classifier, while Adaboost is
used for weight updates. A correlation matrix was computed to find the correlation of
the input features. Depending on the results, we performed feature selection, where we
removed some features on the following bases:

i They are highly correlated with one another.
ii They do not affect the performance of our model.

The parameters we used in our Adaboost model were maximum depth = 2 and
algorithm = ‘SAMME.R’. We achieved an accuracy of 99.3%. Furthermore, the comparison
of the results of the three models is shown in Table 5.

Table 5. Performance (%) of the proposed system using the UNSW-NB15 dataset.

ANN SVM Adaboost

Accuracy 89.54 94.7 99.3
Precision 91.12 97.6 99.7

Recall 93.4 92.07 98.5
F-Score 90.6 95.8 99.95

Figure 4 presents the performance evaluation matrix between the accuracy, precision,
recall, and F-score among the SVM, ANN, and Adaboost-based decision tree classifier models.

Table 5 displays the results of our proposed models for the NIDS problem using the
UNSW-NB15 dataset. When we observe the outcomes of our model, we can see that the
achieved results are overall higher than those of other existing approaches. Our proposed
model achieves the highest accuracy of 99.3%.
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Figure 4. Performance matrix based on different classifiers.

6. Comparison

This section compares the different approaches used to detect network intrusion
anomalies and their datasets. Table 6 presents the detailed overview of some of the tech-
niques used to detect network anomalies using the UNSW-NB15 dataset. Previously,
various datasets were used for network intrusion detection, but none of them were as
comprehensive as UNSW-NB15, as it contains nine different types of attack categories.
Although we are classifying threats and normal traffic in our approach, we obtain a va-
riety of input network features to train the model. ANN (artificial neural network) [22]
has been used on the UNSW-NB15 dataset as a whole and obtained an accuracy of 84%.
Adaboost-based neural network learning [5] has been used where NN (neural network)
serves as a base model and Adaboost is used to achieve an 86.40% classification accuracy.
Wei et al. [35] used an Adaboost algorithm for network intrusion detection. They present a
four-module system: Feature extraction, data labeling, weak classifiers design, and robust
classifier construction. Furthermore, an improved objective function and weight initializa-
tion method is presented to adjust the false positive ratio (FPR) and detection rate (DR). The
authors test their approach on the KDD CUP 99 dataset and obtain a maximum accuracy of
90.88%. Wei et al. [36] also propose an improved Adaboost algorithm that uses decision
stumps as weak classifiers. They offer to combine two weak classifiers for continuous
and categorical features into a robust classifier. They show that their algorithm has low
computational complexity and error rates by experimentation. Their algorithm provides
detection rates between 90.4 and 90.88%. Naseer et al. [7] proposed a deep convolution
neural network (DCNN), which is fine-tuned using randomized search over configuration
space. Furthermore, they test their approach using the NSLKDD dataset. Mabu et al. [37]
presented a novel fuzzy class association rule mining approach using genetic network
programming (GNP) to detect network intrusions. Decision trees and negative selection
algorithms have also been used to detect network intrusions, as illustrated in Table 6. The
highest accuracy of 99.3% is achieved by our proposed model using the Adaboost-based
decision tree classifier models owing to the optimal features selected from the dataset.
These comparisons indicate that our model’s results are excellent compared with other
methods based on Adaboost-based decision tree classifiers.
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Table 6. Comparison with existing work.

No References Technique Dataset Accuracy

1 [19] ANN UNSW-NB15 84%
2 [16] AdaBoost-based neural network learning UNSW-NB15 86.40%
3 [37] GNP KDD cup99 90.26%
4 [38] Negative selection algorithm Constructed a set of receptors 80%
5 [7] DCNN NSLKDD 85.22%
6 [35] AdaBoost KDD cup99 90.4–90.88% DR
7 [39] Decision tree UNSW-NB15 95%
8 [21] Naïve Bayes with Adaboost KDD cup99 84.32% DR
9 [22] Semi-supervised tri-Adaboost KDD cup99 89.05% DR
10 [30] Adaboost CIC IDS 2017 81.83
11 [36] Adaboost KDD CUP 90.4–90.88% DR
12 Our Proposed Method Adaboost-based decision tree classifier UNSW-NB15 99.3%

7. Conclusions and Future Work

In this study, we proposed a feature selection method based on the correlation matrix
among all the features of the UNSW-NB 15 dataset. We also propose an approach for
network intrusion detection based on the selected features using the Adaboost-based
decision tree classifier. Furthermore, we also discussed the issues faced by the current NIDS
(network intrusion detection system) techniques. The proposed method firstly involves
feature selection based on a correlation matrix. We discarded the features that were highly
correlated with other input features and had little effect on the output label. The technique
is based on AdaBoost on top of the decision tree classifier. The proposed method for
network intrusion detection has very high accuracy with the UNSW-NB15 dataset as the
model was trained and tested on the best discriminating features. In comparison with
the previous works, we assessed the abilities of our model based on the dataset used and
demonstrated consistent accuracy in the classification. We have evaluated our proposed
system using different performance metrics, and performed the comparison with the state-
of-the-art techniques to show that the proposed NIDS system performs better than the
existing systems. The proposed NIDS will be helpful in network security applications and
research domains.

Furthermore, this work can be extended to the real world to identify the dynamic
intrusions on live network traffic. An analysis of suitable classifiers can also be performed
to detect and analyze the performance of the classifiers. We intend to perform multiclass
analysis to detect and classify different types of threats based on their categories.
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