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DEEP LEARNING-BASED NEURAL NETWORK
FOR REGIONS OF INTEREST RETRIEVAL IN T2*-WEIGHTED
BRAIN PERFUSION MRI

Abstract. Brain region segmentation is usually the first step for dynamic
susceptibility contrast perfusion analysis. Although manual segmentation is more
accurate, it is a time-consuming and not sufficiently reproducible process. Clinicians
still rely on manual segmentation especially for cases with abnormal brain anatomy,
as removing brain parts or inclusion of non-brain tissues can be a potential source of
falsely high or falsely low values of perfusion parameters. This study proposes an
effective deep learning-based neural network for fully automatic segmentation of
brain from non-brain tissues in T2*-weighted magnetic resonance images with
abnormal brain anatomy. Our neural network architecture combines U-Net and
ResNet with plugged spatial and channel squeeze and excitation attention modules
into the ResNet backbone. The train, validation, and test processes are conducted on
32 three-dimensional volumes of different subjects from the TCGA glioblastoma
multiforme collection. Four performance metrics are used in our experiments: Dice
coefficient, sensitivity, specificity, and accuracy. Quantitative results (i.e., Dice
coefficient of 0.9726 £ 0.004, sensitivity of 0.9514+0.007, specificity of
0.9983+0.001, and accuracy of 0.9864+0.003) reveal that the proposed neural
network architecture is efficient and accurate for brain segmentation. The obtained
results also demonstrate that the training model using the proposed U-Net+ResNet
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architecture of the neural network provides the best Dice coefficient, specificity, and
accuracy metric values compared to current methods under the same hardware
conditions and using the same test dataset of magnetic resonance images of a human
head with abnormal brain anatomy. Moreover, obtained results also indicate that the
proposed U-Net+ResNet architecture of deep learning-based neural network could
be good enough in a clinical setup to reduce the need for time-consuming and non-
reproducible manual segmentation.

Keywords: brain, segmentation, region of interest, deep neural network,
dynamic susceptibility contrast perfusion, magnetic resonance imaging
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HEMPOHHA MEPEKA HA OCHOBI I''TUBOKOI'O HABYAHHSA
JJISI OTPUMAHHA 30H IHTEPECY HA T2*-3BA’KEHUX
MNEP®Y3IMHUX 30BPAXKEHHAX MPT MO3KY

Anotanis. CerMeHTallisi AUISHKA MO3KY 3a3BU4Yail € MEpIIMM KPOKOM B
aHami31l JaHUX AMHAMIYHO-CHPUMHATIMBOI KOHTpacTHOi mep@dysii. Xoua pyuHa
CerMeHTallisl € OUIbII TOYHOM, I1¢ TPYJAOMICTKHH 1 HE BIATBOPIOBAaHUU MPOIIEC.
Knininucru Bce 11e 3aCTOCOBYIOTh PYYHY CErMEHTaIlil0, 0COOJIMBO y BHMaaKax
00poOKM 300paKeHbh 3 aHOMAJILHOIO aHaTOMI€ MO3KYy. Ile 00ymMoBiIeHO THM, 110
BUJIyUYCHHS 3 aHalli3y 4YacTUH 300pakeHb MO3Ky a00 ypaxyBaHHs YaCTUH
300paxkeHb, K1 BIJMOBIIAIOTh HE MO3KOBUM TKaHWHAM, MOXKE OyTH MOTCHI[IHHUM
JOKEPEJIOM XHOHO BUCOKMX a00 XMOHO HU3BKUX 3HAYCHBb IapameTrpiB mepdysii. ¥
IIBOMY JOCIIIKCHHI IPOIOHYEThCA e(PEKTHMBHA HEHPOHHA Mepeka Ha OCHOBI
rIMOOKOro HaBYaHHS I BHUKOHAHHSA IIOBHICTIO aBTOMAaTHYHOI CerMeHTarlll
TUISTHKA  MO3Ky Ha T2*-3Ba)KEHMX MAarHiTHO-PE30HAHCHHUX 300pKEHHAX 3
AHOMAJILHOIO aHATOMIEI0 MO3KY. 3alpONOHOBaHA apXiTEKTypa HEUPOHHOT MEpexi
noeanye U-Net 1 ResNet i3 BOy1o0BaHUMH MOIYJISIMUA IMPOCTOPOBOTO Ta KAaHAIBHOTO
HarHITaHHSI-TIPUTHIYEHHST MeXaH13My yBaru y 0a3oBi ResNet uwactuni Mepexi.
HaBuanHs, Bamigamiss Ta TECTyBaHHS IPYHTYETbCSI Ha  BHUKOPHCTaHHI 32
TPUBUMIPHUX 00’€MiB JaHMX BiJ pi3HUX cyO’ekTiB 13 Konekuii TCGA nmaHux
MYJIBTUQOPMHOI TI100JaCTOMHU. Y HAIIMX EKCIEPUMEHTAX BUKOPUCTOBYIOTHCS
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YOTHUPH METPUKH e(DEKTUBHOCTI cerMeHrarii: koedimienT J[laiica, 4yTIMBICTB,
cnenu@ivHicTh Ta TOYHICTh. KinbkicHi pesynbrat (koedimient [aiica 0,9726 +
0,004, gytausicte 0,9514 £ 0,007, cmenudiunicts 0,9983 + 0,001, TouHICTH
0,9864 + 0,003) nmoka3yroTh, 1110 3aIIPOINIOHOBAaHA apXITEKTypa HEUPOHHOT MEPEXKI1 €
e(EeKTUBHOIO Ta TOYHOIO ISl CErMEHTallll JUITHKA MO3Ky. OTpuMaHi pe3yJbTaTh
TaKOX JIEMOHCTPYIOTh, IO HaBueHa Mojenb 3anpornonoBaHoi U-Net+ResNet
apXITEeKTypu HEHUPOHHOI Mepexi 3abe3reuye HaWKpalll 3Ha4eHHS KoedirieHTta
Hatica, cnenu@igyHOCTI Ta TOYHOCTI MOPIBHSHO /IO 1HIIMX METOIIB 32 TUX CaMHX
YMOB anapaTtHoro 3a0e3nedyeHHs! 1 BUKOPUCTAHHS TOTO CaMOI'o TECTOBOrO Habopy
Mar”iTHO-PE30HAHCHUX 300pa)K€Hb JIIOJICHKOT TOJIOBU 3 aHOMAJIBHOIO aHATOMIEIO
Mo3Ky. Kpim TOro, orpumani pe3ynbTaTH TakKOX BKa3ylOTh Ha Te, IO
sanponioHoBaHa U-Net+ResNet apxitekTypa HEHpOHHOT Mepexki Ha OCHOBI
rIMOOKOTO HaBYaHHS MOXKE OYTH JOCTATHBO XOPOIIOT0, MO0 BUKOPUCTOBYBATHCS B
KJIIHIYHIA [pakTUIl 3 METOK 3MEHIIEHHS NoTped Yy TPYyIOMICTKIH 1
HEBIJITBOPIOBAHIN py4HIiil cerMeHTalli.

KuarouoBi ciioBa: MO30K, CerMeHTallis, 30Ha iHTepecy, HeHpOHHA Mepeka
IMMMOMHHOTO  HABYaHHS, JIWHAMIYHO-CIPUUHATIMBA KOHTpAacTHa Hepdy3is,
MarHiTHO-pe30HaHCHa TOMOrpadis.

Introduction. Segmentation of brain from non-brain tissues, more commonly
known as skull-striping, plays an important role in the analysis of dynamic
susceptibility contrast (DSC) perfusion magnetic resonance (MR) data [1].

The accuracy of brain segmentation directly affects the results of perfusion
parameters assessment, since the presence of wrongly segmented pixels is a
potential source of falsely high or falsely low values of perfusion parameters and
visual artifacts on perfusion maps [2, 3]. Moreover, brain segmentation facilitates
image registration between different MR imaging modalities and between
computed tomography and MR scans [4], it is considered as a crucial step to
differentiate brain tissues and detect brain tumors [5, 6].

Analysis of recent research and publications. To determine the brain
perfusion region in MR images of a human head obtained with DSC perfusion
examination, modern medical analysis software usually provides some tools. Among
the possible options for conducting the segmentation procedure, there may be tools
for manual, semi-automated, and fully automated approaches.

Although manual segmentation gives more accurate results, it is a time-
consuming and not sufficiently reproducible procedure. To obtain accurate results
of brain segmentation, the operator must have sufficient knowledge of the
anatomical structures of the human head visualized in MR images. However, the
results, even those provided by an experienced operator, can suffer from subjective
biases. Also, it is almost impossible to accurately reproduce the results of manual
segmentation due to the subjectivity of human visual perception of MR data.
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Such problems can be overcome by applying an automated approach to the
segmentation procedure. It is also not error-free but makes it possible to reproduce
the results.

Most of the algorithms that allow providing an automated approach to brain
segmentation can be divided into two groups: those that are based on the analysis of
pixel intensity, and those that use some templates [7, 8].

The algorithms that deal with pixel intensity analysis are different approaches
to provide thresholding or clustering of image data. The main drawback of this group
of algorithms is that most images with abnormal brain anatomy do not satisfy the
proposed statistical assumptions.

The algorithms that deal with some templates are based on atlases or use
neural network models. The issue with this group of algorithms is the lack of
templates, i.e., marked atlases or data sets with predefined segments, the so-called
ground truth images, for different age-sex-race-specific patients and different sizes,
densities, and volumes of brain lesions.

To get a brain segment in T2- or T2*-weighted MR images, the result of the
exclusion of non-brain tissues should be accurate. The successful processing of such
pixels is complicated as they are bright in T2- or T2*-weighted compared to
T1-weighted MR images. In some places, it is difficult to clearly define the
boundaries between the brain and the fatty tissue presented between the brain and
the skull. Indeed, it is the main reason for brain segmentation failures in T2- or T2*-
weighted images while applying algorithms developed primarily to process
T1-weighted images [9].

Several algorithms of automated brain segmentation that can process
T1-weighted as well as T2- or T2*-weighted MR images have been proposed [10, 11].
The disadvantage of such algorithms is that they require proper estimation of input
parameters to perform image processing. Also, it should be mentioned that the
quality of segmentation of such algorithms degrades when they are applied to images
with low resolution [5]. Therefore, their usage gives questionable quality as DSC
MR imaging usually provides a low-resolution outcome.

The usage of transformation from T1-weighted to T2-weighted MR images
[12] provides a possibility to apply segmentation algorithms initially developed to
process T1-weighted images. However, this approach can lead to only partial
extraction of studied objects data during the image transformation.

The need to change examination protocols that leads to exam time
increasement prevents the usage of algorithms that utilize information from a
specific imaging technique [9] or pairs of high-resolution T1- and T2-weighted
images [13]).

Applying the strategy to reduce the segmentation area to the approximate
anatomical brain location (AABL) [14] partially improves segmentation by
removing noisy pixels and parts of extracranial soft tissues. However, this strategy
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cannot effectively process cases with lesion locations close to the brain
boundaries [3].

Cases with lesion locations close to the brain boundaries can be processed by
using the CUSUM filter for boundary pixels [15]. Despite that, false activations of
the algorithm iterative movements are observed when pixel intensities on the lesion
edges are similar to pixel intensities of extracranial soft tissues.

BEaST [16] and MONSTR [17] are atlas-based algorithms that use template
information about anatomical structures and can be applied to segment the brain in
T2-/T2*-weighted MR images. As referred algorithms largely depend on the quality
of the registration results with the template, it is problematic for their application to
images with abnormal brain anatomy.

The availability of access to resources for powerful calculations has led to the
development of deep learning algorithms. However, the proposed neural network
architectures for brain segmentation are applicable for processing the MR images of
healthy subjects [18] or with specific abnormal brain anatomy [19].

The aim of the article — is to design and implement the architecture of a
deep neural network, which will be able to segment brain from non-brain tissues
in T2*-weighted MR images of a human head obtained with DSC perfusion
examination. To be applicable for clinical use, automatic segmentation must provide
correct results for images with abnormal brain anatomy. So, the proposed deep
neural network should be efficient for such image processing.

To achieve the aim, in the current study the following tasks have been set:

- to prepare a dataset of T2*-weighted perfusion MR images of a human
head with abnormal anatomy to be used for deep learning purposes,

- to design deep learning-based neural network architecture and
implement it using a deep learning framework,

- to determine the most appropriate hyperparameters for the final model,

- to assess the overall performance of brain segmentation in T2*-
weighted perfusion MR images of a human head with abnormal anatomy using the
proposed deep neural network.

Presenting main material. Deep neural networks have achieved success in a
variety of machine learning application domains. In recent years, experimental
confirmation of deep learning algorithms usage shows its state-of-the-art
performance compared to traditional approaches. In particular, they are extremely
successful in the fields of image processing including medical image segmentation.
Thus, in this study, we use a deep neural network to segment brain from non-brain
tissues because of its advantages.

The proposed approach combines U-Net [20] and ResNet [21] to provide
brain segmentation on T2*-weighted MR images. To get a performance
improvement, we plugged spatial and channel squeeze and excitation attention
modules [22] into the ResNet backbone.
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Dataset and preprocessing.

We considered only T2*-weighted MR images for training and prediction.
The results shown here are whole based upon data generated by the TCGA
Research Network: http://cancergenome.nih.gov/. For our experiments, we use
a subset of raw T2*-weighted DSC perfusion MR images of the TCGA glioblastoma
multiforme collection.

The image processing software program was in-house developed to get
ground truth images and provide some pre-processing steps, including motion
correction, image resizing, and normalization. It is written in C# and uses an open-
source EviIDICOM (http://rexcardan.github.io/Evil-DICOM/) to load medical
images.

Ground truth images were manually marked brain regions by one experienced
radiologist, and confirmed by another radiologist. Ground truth image creation was
performed using the 4™ time-point image, on which signal intensity reached a steady
state.

The 4" time-point image was also used as a reference image against which all
other images were aligned during applying motion correction.

To enable better convergence of the neural network solution, pixel data were
normalized into the range [0-1] for each pixel.

In the experiment, we only used 32 three-dimensional volumes of different
subjects. We applied a train-validation-test split of the dataset with the ratio of
68-12-20 commonly used in other works.

Implementation Details.

The proposed neural network was implemented using Tensorflow 2.9.2
library. We run the algorithm on an NVIDIA Tesla K80 with 12 GB of RAM running
Linux.

To determine the most appropriate hyperparameters, we conducted a grid
search. If we do not provide values of some hyperparameters below, it means that
default values reported in Tensorflow 2.9.2 documentation were used.

The final U-Net + ResNet architecture is depicted in Fig.1.
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The model training was done from scratch by Adam optimizer [23] with the
initial learning rate of 0.00005, B1 = 0.9, 2 = 0.999. If the validation loss value had
not been improved for 10 epochs, the learning rate was divided by 10. As a loss
function for our binary classification task, we selected sparse categorical cross-

entropy.

The epoch number was 100 for the training process. The models were trained
using mini-batches that had a size of 16 images. The training data were shuffled

randomly at the beginning of every epoch.

We used GLOROT uniform initialization [24] to set the initial random values

for all the weights of trained models.
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Fig. 1. The overall architecture of the proposed U-Net+ResNet neural
network for brain segmentation on T2*-weighted MR images. The channel number
Is shown at the top of the box. The x-y size is shown at the lower left edge of the box.
White boxes stand for copied feature maps. The arrows stand for different
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To prevent overestimation and improve the generalizing ability of the model,
data augmentation was applied during the training process. Data augmentation
included random horizontal flipping and random image rotating in the range
of [-15°, +15°] using the scipy.ndimage.rotate function with an order of 3 for spline
interpolation settings [26].

Our network takes 2D images of 128 x 128 as inputs. Each input is a
transversal view. The output of our network is an array with the probabilities of each
category separately specified for each pixel of the input image. Finally, we provide
a 2D array of category indexes of the most likely matching category.

Evaluation measurements.

To overall performance of brain segmentation, we calculated several
evaluation metrics such as Dice coefficient, sensitivity, specificity, and accuracy.
All of them are based on the fact that each image pixel can be assigned to one of the
following categories: false positive (FP), false negative (FN), true positive (TP), and
true negative (TN). FP pixels are defined in the resulting image as brain pixels, but
they are non-brain pixels in the ground truth image. FN pixels are defined in the
resulting image as non-brain pixels, but they are brain pixels in the ground truth
image. TP pixels are defined in the resulting image as brain pixels, and they are brain
pixels in the ground truth image. TN pixels are defined in the resulting image as non-
brain pixels, and they are non-brain pixels in the ground truth image.

The Dice coefficient provides information about the spatial overlap between
segmented and ground truth regions of the brain. This metric value can vary from 0
(no overlap) to 1 (perfect agreement). The value of the Dice coefficient is calculated
as follows:

DC=

2-TP
2-TP+FP+FN’
The sensitivity provides information about the ability to correctly detect
pixels, which belong to the brain segment. This metric value can vary from 0 to 1,
where the higher value indicates a lower level of missed true pixels of the brain
region. It is calculated as follows:

SENS=—1"__
TP +FN

The specificity provides information about the ability to correctly detect
pixels, which belong to the non-brain tissues segment (i.e., skull, extracranial soft
tissues, and a large empty space surrounding the head). This metric value can vary
from O to 1, where the higher value indicates a lower level of missed true pixels of
the non-brain region. It is calculated as follows:

SPEC=— N __
TN +FP
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The accuracy provides information about the rate of the pixels that are
correctly identified with a segmentation algorithm. This metric value can vary
from O (in case of non-agreement) to 1 (in case of complete agreement of the
obtained result and ground truth regions). It is calculated as follows:

TP+ TN
TP+FP+TN+FN

Results and discussion.

To assess the overall performance of brain segmentation using our proposed
neural network architecture, we employed the best model for the test dataset.

We evaluated the performance of our proposed U-Net+ResNet neural network
architecture in comparison to several algorithms for brain segmentation in T2- or
T2*-weighted MR images, including bi-level Otsu-based thresholding [25],
low-intensity pixels extraction in the AABL region [14], CUSUM filter for boundary
pixels [15]. All implementations were optimized to work with T2*-weighted MR
images from the test dataset.

The complete evaluation results for the test dataset are shown in Table 1.

ACC=

Table 1.
Brain segmentation performance comparison, mean + standard
deviation (the best result in a given category is highlighted in bold)

Dice Sensitivity Specificity Accuracy

Bi-level Otsu 0.8698+0.081 | 0.8454+0.076 | 0.9652+0.018 | 0.9342+0.072

Extraction  in | 0.9508+0.014 | 0.9204+0.023 | 0.9830+0.013 | 0.9712+0.019
AABL

CUSUM filter | 0.9586+0.034 | 0.9713+0.046 | 0.9706+0.031 | 0.9781+0.011

U-Net+ResNet | 0.9726+0.004 | 0.9514+0.007 | 0.9983+0.001 | 0.9864+0.003

The trained model using the proposed U-Net+ResNet neural network
architecture offers a Dice coefficient of 0.9726 £ 0.004 on the test dataset with a
total number of 15 testing cases. The high mean and low standard deviation of the
Dice coefficient indicate a competitive and stable performance of brain
segmentation.

CUSUM filter for boundary pixels has higher sensitivity level compared to
the proposed U-Net+ResNet neural network. However, it produces a lot of FP cases.

The visualization of segmentation results is shown in Fig. 2.
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Fig. 2. Representative segmentation results for the brain region above the
eyes: a — original image; b — ground-truth mask; ¢ — bi-level Otsu-based
thresholding; d — low-intensity pixels extraction in the AABL region; e — CUSUM
filter for boundary pixels; f — proposed U-Net+ResNet neural network. Best viewed
in color.

Although the proposed U-Net+ResNet neural network architecture provides
good robustness and reproducibility of brain segmentation, there are still some
limitations. First, training data are limited exclusively to the MR images with
specific abnormal brain anatomy, i.e., glioblastoma multiforme. Second, the source
of original DSC perfusion MR data impacts the segmentation performance due to
different MR imaging scanners and protocols leading to contrast and intensity
variations. To minimize these potential limitations, in future research we plan to
increase more train-validation-test dataset of MR images of a human head obtained
with DSC perfusion examination, and design and implement the advanced
architecture of convolutional deep learning-based neural network for brain
segmentation.

Conclusions. In this work, U-Net+ResNet was designed and implemented to
segment brain from non-brain tissues on T2*-weighted MR-images of a human
head obtained with DSC perfusion examination. The proposed neural network
architecture has plugged spatial and channel squeeze and excitation attention
modules into the ResNet backbone to accurately segment the target object.

The overall performance comparison shows that the training model using the
proposed U-Net+ResNet architecture of the neural network offers the best results in
terms of the Dice coefficient, specificity, and accuracy. The high mean and low
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standard deviation of the mentioned metrics indicate the robustness and
reproducibility of brain segmentation.

In future research, we plan to further improve the architecture of the
convolutional deep learning-based neural network for brain segmentation and
increase more train-validation-test dataset according to different MR imaging
scanners and protocols.
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