

UDC 004.272

S. Telenyk, V. Voinalovych, D. Smakovskyi

WEB-APPLICATION ARCHITECTURE FOR THE KUBERNETES

CLUSTER AT THE GOOGLE CLOUD PLATFORM

WITH HORIZONTAL AUTOMATIC SCALING

Abstract: The article is devoted to the development of the Web application architecture

with the distribution of the application by components into 2 tiers connected by the messaging

system, and using of load balancing by horizontal scaling in the Kubernetes cloud cluster. Queue

length in the message broker is used for scaling as critirea. This approach allows to increase

resource usage efficiency of the system. The relevance of the topic is due to the widespread use of

various web services and web applications. When the load of web applications increases it can

lead to delays or even failure of these services. Therefore, the issues of creating reliable, fault-

tolerant, and scalable systems become extremely important. If the load is greater than the system

or service can withstand, it may result in denial of service or termination of service. Also, the load

can be unevenly distributed to services over a period of time, and therefore, even if the system has

enough resources to withstand high loads, during periods of low load, these resources will not be

used, resulting in problems of inefficient use of resources and overspending. The proposed system

was deployed in the Google Cloud environment. The components of the server part of the Web

application are grouped into 2 tiers. The microlayer components of the first layer analyze HTTP

client requests and transmit messages to the components of the second layer using the Google

Pub-Sub messaging system. It is proposed to make all relatively "difficult" operations on the

components of the second layer. For the numerical experiment, a system was implemented using

an algorithm for horizontal scaling of microservices based on the current number of messages in

the queue. Load testing of the system was performed, which showed that the created system is

capable of processing more than 2 times more requests for the same period of time compared to

the system without scaling.

Keywords: microservices architecture, Kubernetes, horizontal scaling, Google Cloud

Platform, Google Pub-Sub, Spring Boot, Java.

Introduction

The idea of cloud computing came into existence in 1961 [1], when John McCarthy

suggested that someday computer computing would be done using "nationwide utilities." The

ideology of cloud computing has gained popularity since 2007 due to the rapid development

of communication channels and the rapidly growing needs of users. The main benefit of cloud

computing – an application can use only required computer resources.

Cloud computing is usually understood as providing computer resources and

capabilities in the form of an online service for some user. Thus, computing resources are

 S. Telenyk, V. Voinalovych, D. Smakovskyi

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

98

provided to the user in a "pure" form, and the user may not know which computers are

processing his requests or running which operating system it is, etc.

The reasons for the growing popularity of cloud technologies are clear: the possibilities of

their application are very diverse and allow users to save on maintenance and staff, as well as on

infrastructure. Hardware can be greatly simplified when processing data and storing information in

remote data centers. All these problems are almost completely translated to the service provider.

While solving the problem of increasing system load is a major concern, reducing

downtime and eliminating particular failure points are just as important.

When creating reliable information systems, the most common priority is to minimize

downtime and service interruptions. No matter how secure your systems and software are,

there are issues that can cause programs or servers to fail.

Actuality and novelty

During high-load services design and implementation, there are two major issues

involved: scalability and reliability. Most systems have an uneven load over certain intervals

(Fig. 1). The system should be designed in such a way that, even during temporary load

peaks, it will continue to operate reliably.

The purpose of this paper is to describe an Web-application architecture that allows

automatic horizontal scaling in the Kubernetes orchestrator by using queue length

information, for the efficiency increase of computing resources usage in the system.

Figure 1. Request distribution based on time of day

Main part

Consider a Web-application consisting of several services that interact with HTTP.

When the load on a particular component of the system is expected to increase, the system

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

99

can be scaled several times by involving the required number of instances of a particular

service. However, it is not necessary to increase the instances of unloaded components of a

distributed system. But if the load turned out to be higher than expected, the system may not

be able to handle all requests and require additional scaling.

This system does not meet the current requirements for fault tolerance. To improve

resiliency and accessibility, an approach with a queue between microservices services may be used.

This architecture makes it possible to achieve the following:

1. If one service is unavailable, the queue acts as a buffer and stores all received

requests.

2. If the client generates more requests than the service can process, these requests are

stored in the queue.

3. Both services are completely independent of each other.

Scaling allows fulfilling all customer requests during peak times, but there is a

question of timeliness. It is impossible to constantly anticipate system load fluctuations [2], so

system administrator should always follow system metrics and act on time. As a rule, for

reliability, the system works with some excess resources to be able to withstand unpredictable

workloads, but this approach uses the resources of virtual machines and costs extra money

[3]. The usage of queue enables automation of horizontal scaling and thus optimizes costs.

The Kubernetes orchestrator and its Horizontal Pod Autoscaler (HPA) automatic

horizontal scaling mechanism can be used to solve the automation scaling problem [4]. HPA

changes the shape of the Kubernetes workload by automatically increasing or decreasing

number of Pods when configured limit of CPU utilization or some other custom metrics is

reached. Technically, HPA is a controller that is configured by HPA resource objects. HPA is

implemented as a control loop that periodically checks specific metrics against configured

target values and provides an API for implementing system-specific metrics (Fig. 2) [4].

Figure 2. Horizontal scaler diagram

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

100

Each iteration, the controller queries the resource utilization of the resources specified

in the definition of each scaler (Fig. 3) [5]. Then, if the target utilization value is set, the

controller calculates the percentage of resource utilization for each instance of the service and

compares it to the target level, based on which it decides to scale up or down. If a target value

is set in raw format, target value and raw resource metrics value are compared directly.

Figure 3. Diagram of component interaction

for metric collection and storage

The main aim is to determine such a number of replicas that provide the closest

metrics value to the target value. The autoscale algorithm is based on the next formula

By default, Kubernetes supports automatic scaling by per-pod resources such as CPU

utilization or RAM, but these metrics are not always enough. Sometimes other metrics may

need to be used for greater accuracy. Providing this need in Kubernetes 1.6 was added support

for using custom metrics in HPA.

If look deeper into how Kubernetes autoscaling mechanism is designed, appears that

HPA is not the only part of this mechanism. HPA needs to get metrics from the outside and

the component that is responsible for providing metrics to HPA is metrics registry. Metrics

registry is a special part of a cluster where metrics of any kind are provided to clients such as

HPA. API of the metrics registry contains three separate APIs:

● Resource Metrics API;

● Custom Metrics API;

● External Metrics API.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

101

These APIs serve for different purposes:

● Resource Metrics API - provides per-pod metrics (CPU and memory);

● Custom Metrics API - provides custom metrics related to Kubernetes objects;

● External Metrics API - provides custom metrics not related to Kubernetes objects.

Each metric API requires a correspondent metric API server that needs to be

configured to expose specific metrics through the metric API. In addition to the metric API

server, a metrics collector is also required. The purpose of this collector is to collect specific

metrics from sources and provide them to the metric API server (Fig. 4) [6].

Figure 4. Diagram of metrics registry components

Different metric collectors and metric API servers can be used for different metrics

API. For Resource Metric API standard configuration is cAdvisor as a metrics collector and

the Metrics Server as official metric API server. Some of the choices for Custom and

External Metrics API can be Prometheus or Google Cloud Stackdriver as metric collectors

and their own metric API servers.

Queue length is ideally suited to optimize automatic scaling as an indicator of scaling

needs. The more unprocessed messages in the queue, the more new instances of the service

you need to create. If the queue is almost empty, the number of services can be reduced again.

The Architecture for the Web-application with queue length autoscaling is shown at

the Fig 5. The Client sends requests to the server via HTTP. As a queue in the solution Cloud

Pub/Sub service will be used. Controller Pod is a microservice that handles user input,

validates input date, sends HTTP response to client and sends the data to the Subscriber Pod

for processing. So we have very lightweight Controller microservice and Subscriber

microservice which is responsible for the data processing. Controller microservice and

Subscriber are connected with the topic of Google Pub-Sub Message Broker Cloud Service.

Any another messaging service can be used with the metrics adapter for the Horizontal Pod

Autoscaler. HPA takes queue length from the Google Pub-Sub and provides autoscaling for

the Subscriber Microservice Pods.

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

102

Figure 5. The Architecture for the Web-application

with queue length autoscaling

To apply horizontal scaling in Kubernetes, first of all, you need to deploy Custom

Metrics Stackdriver Adapter to grant Google Kubernetes Engine access to the Stackdriver

metrics. For running Custom Metrics Stackdriver Adapter you need to grant a user

permissions to create required authorization roles. After that, you need to deploy the adapter

to a cluster. After setting up an adapter the required metrics can be collected from Pub/Sub by

metric collector provided by Google - Stackdriver, and then these metrics can be obtained by

GKE and by HPA particularly through Stackdriver Adapter. For automatic scaling, the

following parameters were specified:

● The minimum and maximum number of instances

● The metric name for scaling

● The target average value for the scaling metric

● The resource to scale

Figure 6 describes HPA object that is used for the solution.

Figure 6. Setting to scale by metric and target value

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

103

This example specifies the minimum and the maximum number of instances of the

service, as well as the average value of the ―messages‖ metric, depending on which scaling

occurs. After HPA is created, the number of instances of the service should be equal to the

minimum amount that is described in the configuration file. In this case, the minimum amount

is 1. To view the events that led to the scaling, the ―kubectl describe hpa‖ command can be

used. When the load of the system is increasing it is possible to observe the number of

instances of the service has grown. This means that Kubernetes auto-scaling works.

Results

Within this work, the Web-application with proposed architectural approach was built.

That helps to solve the described problem more efficiently. The Web-application consists of

two microservices that interact through HTTP with Web-client and interacts between these

microservices via the queue – Google Pub/Sub. One of the microservices acts as a publisher

– it receives requests from outside the system and sends them to the specific topic in the

Pub/Sub. The second microservice acts as a subscriber – it consumes messages from the

specific topic in Pub/Sub and processes them. For generating load on the publisher service it

was sent 500 requests with a delay of 500 ms for each test case using JMeter. In a first test

case, the system doesn't have an autoscaling mechanism for adjusting the number of the

subscriber service and in a second test case, the autoscaling mechanism is present.

After tests, the following results were obtained. It was compared timestamps when

first and last messages were emitted by the publisher and when first and last messages were

processed by subscriber service (Tab. 1) supposing that for sending and processing requests in

the services relatively short time was spent.

Table 1

Results of the requests processing with and without autoscaling

Without autoscaling With autoscaling

Publisher Subscriber Publisher Subscriber

First request TS

(mm:ss)
00:00 00:05 00:00 00:06

Last request TS

(mm:ss)
05:57 13:11 05:57 06:02

According to the table above the delay between publishing the last message and

processing it by subscriber service in the system without autoscaling was 7 minutes and 14

seconds, while in the system with autoscaling this delay was 5 seconds. Also, the number of

subscriber services was increased as it was configured during the load on the system (Fig. 7).

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

104

Figure 7. Increased number of Pods of the subscriber service

in Kubernetes on Google Cloud Platform

Conclusions

Proposed architectural approach with Horizontal Pod Autoscaler, Message Broker and

at least two tiers of microservices allows to build systems that can dynamically adapt to the

actual current system load. This approach not only improves system stability but also saves

resources on servers, minimizing the number of required resources when load level is

minimal. The use of custom metrics improves the accuracy of auto-scaling and provides a

wide range of options for configuring a distributed system. Based on this, it becomes possible

to manage resources for queues regulation and this will be the topic of future publications.

REFERENCES

1. McCarthy J. Cloud computing implements the idea of utility computing, 2008.

URL: https://computinginthecloud.wordpress.com

/2008/09/25/utility-cloud-computingflashback-to-1961-prof-john-mccarthy/

2. Zharikov E., Telenyk S., Bidyuk P. Adaptive Workload Forecasting in Cloud Data

Centers // Journal of Grid Computing, 2019. URL: https://doi.org/10.1007/s10723-019-

09501-2

3. Telenyk S., Zharikov E., Rolik O. An Integrated Approach to Cloud Data Center

Resource Management // Problems of Infocommunications Science and Technology. 4th

International Scientific-Practical Conference. – IEEE, 2017. – pp. 211-218. DOI:10.1109/

INFOCOMMST.2017.8246382

4. Horizontal Pod Autoscaler. URL: https://kubernetes.io/docs/tasks/run-application/

horizontal-pod-autoscale

5. Prodan S. Component interaction for metric collection and storage. URL:

https://stefanprodan.com/2018/kubernetes-horizontal-pod-autoscaler-prometheus-metrics

6. Weibel. D. How to autoscale apps on Kubernetes with custom metrics — 2019.

URL: https://learnk8s.io/autoscaling-apps-kubernetes

 ISSN 1560-8956

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (39) 2021

105

https://doi.org/10.1007/s10723-019-09501-2
https://doi.org/10.1007/s10723-019-09501-2
https://kubernetes.io/docs/tasks/run-application/
https://learnk8s.io/autoscaling-apps-kubernetes

	+Belous, Krуlov, Anikin 2021
	+EN Стаття Тимошина та Южди
	+IoT_EN
	+Linevych
	+Serverless_EN
	+V. Nikitin, E. Krуlov, Y. Kornaga, V. Anikin edited
	+Yevhenii Vovk
	+Лихоузова
	+Лісовиченко
	+Писаренко Головатенко_
	+Писаренко Кульбака_en
	+Теленик
	+Тимошин
	+Тищенко - Стаття 2021
	Зміст
	УДК
	Про авторів
	Untitled
	Untitled

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20211201145304

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 139; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 34.02 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20211201151928

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1077
 169
 0
 1
 R0
 12.0000

 Odd
 3
 SubDoc
 139

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 34.0157

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 2
 139
 138
 5b9c048a-7f1f-4c3b-8081-9a223a0db7c7
 69

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 3 to page 139; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 34.02 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20211201151937

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1077
 169

 0
 1
 R0
 12.0000

 Even
 3
 SubDoc
 139

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 34.0157

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 3
 139
 137
 5c6d6052-58f8-41d7-bdf1-6f772e769ec4
 68

 1

 HistoryList_V1
 qi2base

