
1

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL TECHNICAL UNIVERSITY OF UKRAINE
“IGOR SIKORSKY KYIV POLYTECHNIC INSTITUTE”

BASICS OF
WOLFRAM

MATHEMATICA
LECTURE NOTES

Tutorial

Recommended by Methodical council of “Igor Sikorsky Kyiv Polytechnic Institute”
as a tutorial for bachelors

according to the educational program “Electronic components and systems”
specialty 171 Electronics

Compiler: K. S. Klen

Electronic online educational publicat ion

Kyiv
“Igor Sikorsky Kyiv Polytechnic Institute”

2022

2

Reviewer Naida S.A., doctor of technical sciences, professor
“Igor Sikorsky Kyiv Polytechnic Institute”

Responsible editor Yamnenko Y.S., doctor of technical sciences, professor

The stamp was provided by Methodical council of Igor Sikorsky Kyiv Polytechnic Institute
(protocol № 3 from 01.12.2022)

at request of the Academic council of the faculty
(protocol № 09/2022-2 from 26.09.2022)

In the preparation of bachelors in the specialty 171 Electronics, the educational program «Electronic
Systems», one of the important disciplines that is a component of the training cycle is the discipline «Basics of
Wolfram Mathematica». The purpose of developing a computer workshop is to give students a thorough knowledge
of the basic constants, operators and functions of Mathematica, the rules of compiling programs and the purpose
of Mathematica extension packages. As a result of studying the material of the computer workshop, the student
should gain the ability to do engineering calculations; use visualization tools, user interface and graphing; to make
calculation programs.The lecture notes contains theoretical information and tasks for up to 16 lectures and a list of
recommended literature.

Register № 22/23-146. Volume 7,5 author's sheet

National technical university of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”

Peremohy Ave., 37, Kyiv, 03056
https://kpi.ua

Certificate of inclusion in the State Register of publishers, manufacturers

and distributors of publishing products DK № 5354 dated 25.05.2017

 Igor Sikorsky Kyiv Polytechnic Institute, 2022

https://kpi.ua/

3

CONTENT

Introduction……………………………………………………………………………….
3

Lecture №1. Introduction to Mathematica ... 4
Lecture №2. Wolfram Mathematica and environmental data .. 8
Lecture №3. Tables, styles, and graphics ... 18
Lecture №4. Operation with vectors and matrices ... 22
Lecture №5. Graphical functions of the Mathematica system ... 38
Lecture №6. Possibilities of Mathematica system operation with heterogeneous data ... 49
Lecture №7. Functions for solving algebraic equations and systems of equations in
Mathematica .. 54
Lecture №8. Functions of mathematical analysis ... 75
Lecture №9. Computer interpolation technologies in Mathematica 96
Lecture №10. Spectral analysis functions of the Mathematica system 108
Lecture №11. Fundamentals of programming in Mathematica 111
Lecture №12. Anonymous and clean functions ... 119
Lecture №13. Graphical user interface objects and I/O tools 123
Lecture №14. Rules for writing effective code and debugging programs 139
Lecture №15. Mathematica system read-save commands ... 144
Lecture №16. Mathematica system interaction with MatLab program using MatLink
package ... 154
Literature…………………..……………………………………………... ………165

4

Introduction

The Mathematica software package is a system of computer algebra designed to
process mathematical formulas. Other systems of computer algebra include programs
Maxima, Maple, MuPAD, Reduce. The main task of these programs is to automate
algebraic transformations and processing of symbolic expressions. The first version of the
Mathematica package was developed in 1988, version 11.0.1 of the package was released
in September 2016.

The computer workshop discusses the main features of the Mathematica system for
processing data arrays, plotting graphs, solving linear and transcendental equations,
solving problems of mathematical analysis, data approximation, basics of programming
and creating a user interface.

5

Lecture № 1. Introduction to Mathematica

The main features of the Mathematica system:
- integration and differentiation of functions, solution of systems of polynomial

and trigonometric equations and inequalities, recurrent equations, solution of differential
equations and partial differential equations, Taylor series, simplification of expressions,
calculation of limits, finding finite and infinite sums and products, and a number of other
problems in the symbolic form;

- polynomial interpolation of functions, calculation of elementary and special
functions with a given degree of accuracy, calculation of Laplace transformations,
Fourier transformations, z-transformations;

- solving problems of linear algebra, number theory and other sections of
mathematics;

- presentation of data in graphic format (construction of graphs, parametric curves
and surfaces, construction of geometric figures, import and export of graphic data in
raster and vector formats);

- support for distributed computing (package Parallel Computing Toolkit);
- the ability to write programs in the built-in procedural-functional programming

language.
In addition, the system has a number of standard extension packages (Add-Ons):
- Algebra – work with polynomials, algebraic inequalities, Hamiltonian algebra,

etc.;
- Calculus – symbolic calculations of derivatives, integrals of function boundaries,

direct and inverse Fourier and Laplace transforms, solution of systems of nonlinear
equations, realization of invariant methods, solution of differential equations in partial
derivatives, finding of complete integrals and differential invariants of nonlinear
equations, Pade approximation, calculation of elliptic integrals and work with vectors;

- DiscreteMath – calculations in the field of discrete mathematics, combinatorics,
computational geometry and graph theory, solving recurrent and difference equations,
operations with integers, etc.;

- Geometry – functions for performing geometric calculations, creating regular
rectangles and polyhedra, rotating geometric shapes on a plane and in space;

- Graphics – construction of graphs of special type, geometric figures and surfaces,
graphs of parametrically and implicitly given functions, description of functions of
complex variable, display of orthogonal projections of three-dimensional figures,
imitation of shadows, means of graphic design;

- LinearAlgebra – solving problems of linear algebra, additional vector and
matrix operations, formation of orthogonal vector bases;

- Miscellaneuos – determination of units of measurement of physical quantities,
data on chemical elements, physical constants, geographical data, etc.;

- NumberTheory – functions of number theory;
- NumericalMath – implementation of numerical methods, approximation of data

and analytical functions by polynomials, splines, trigonometric series, numerical
integration and differentiation, solution of differential equations, calculation of roots of
nonlinear equations;

6

 - Statistics – statistical functions for continuous and discrete distribution functions,
implementation of linear and nonlinear regression, calculation of parameters of
distribution functions;

- Utilities – additional utilities for working with binaries and computer memory,
language support, working with AutoCAD class systems, etc..
 Basics of working with the system

The interface of the Mathematica system consists of the main menu and data entry
area - notebook, figure 1.

Figure. 1. Mathematica system interface

The working document of the Mathematica system is a notebook. The notebook

consists of cells. The easiest way to work with the Mathematica system is interactive. The
system assigns a cell number to each input and output – In[n] and Out[n] respectively. To
use the last expression, simply enter «%», to refer to the result recorded in cell number n –
«%n». To execute the entered command at the end of the line, press Shift+Enter. The result
of performing mathematical operations on the expressions listed in Listing 1, will be the
expressions written in the output cells Out[1]-Out[6], Listing 2.

5^10 Out[1]= 9765625
4+5 Out[2]= 9
%+a Out[3]= 9+a
%2 Out[4]= 9
4+5 Out[5]= 9
9 Out[6]= 9

 Listing 1 Listing 2
 The following rules must be followed when entering data:

- square brackets [] are used to indicate the arguments of functions, even if the
function has no arguments, such as Random[];

- curly brackets are used to create lists, vectors and matrices;
- round brackets are used in mathematical expressions to prioritize mathematical

operations;

7

- double square brackets are used to index an item in the list. [[i]] – returns і-th
element of list, [[i,j]] – returns the j-th element in the line and і.
 Operational help

The system Mathematica has a brief reference to the objects used in its environment.
To display the entire list of objects, enter the command:

?*
You can also get help on all objects whose names begin with a certain letter:
?U*
To get a brief help on a specific object, you need to enter the command ?Name, for

example:
?Abs
Abs[z] gives the absolute
value of the real or complex number z.

 Main menu. The main menu bar has only two lines:
• with the names of the system and the downloaded file;
• main menu items.
To the right and bottom of the edit window are scroll bars with characteristic sliders

that can be controlled by the mouse. At the bottom at the beginning of the scroll bar there
is a so-called status bar with information about the current mode of operation (Status bar).

The main menu of the system (Figure 1) contains the following tabs:
• File – working with files: creating a new file, selecting an existing file from a

directory, closing a file, saving the current file, saving a file with a renamed name, printing
a document, and exiting Windows;

• Edit – performing basic editing operations (canceling the operation, copying the
selected parts of the document to the clipboard with their subsequent deletion and without
it, transferring the selected parts, erasing them);

• Incert – assign input elements (graphs, matrices, hyperlinks, add file elements to the
working notebook, select the color of the working cell and number the cells);

• Format – setting the format for documents;
• Cell – work with functional cells (combining and disconnecting cells, setting cell

status, opening and closing);
• Evaluation – system kernel management and configuration;
• Palettes – work with palettes of mathematical operators and functions, means of
input of mathematical symbols and their options;
• Window – operations with windows and their location;
• Help – management of the help system.

Each menu item, when activated, detaches a drop-down submenu containing related
commands. The names of the executed commands are highlighted in clear, and those that
are not currently executed - in a characteristic gray blurry font.

Interface elements, such as the editing window, can be moved with the mouse and
stretched in different directions. The mouse cursor usually looks like an arrow, but changes
when you turn on individual parts of the interface elements. For example, when installed
on the vertical border of the window, it takes the form of two-sided arrows↔ , located
horizontally. They indicate the possibility of moving this line horizontally. Similarly, you
can stretch or compress a window by moving it vertically or diagonally.

8

At the beginning of the title lines of the main menu and the editing window there is
a button with the system logo, which opens a submenu with the following commands:

• Restore – restore the size of the interface element;
• Move – move the interface element;
• Size – specify the size of the interface element;
• Collapse – collapse an item in a tag in the Windows taskbar;
• Expand – expand the interface element;
• Close – close the interface element.
This submenu is created by means of the Windows operating system. Also, at the

end of these lines there are characteristic buttons that repeat the last three commands. They
are used to control the windows of the corresponding interface elements.

9

Lecture № 2. Wolfram Mathematica and environmental data

Wolfram Language allows programmers to work at a much higher level than ever
before, using built-in computational intelligence, which relies on a huge depth of
algorithms and real knowledge, carefully integrated over three decades. Effective for
creating programs from tiny to very large, which naturally allow widespread use both
locally and in the cloud, Wolfram Language, based on clear principles and having an
elegant unified symbolic structure, creates what becomes the most productive
programming language. in the world, as well as the first true computational language of
communication between humans and artificial intelligence systems.

 Arithmetic operations

Operation Arithmetic
operator

Abbreviated form Function

Addition + += Plus[x1, x2,…xn]
Subtraction - -= -
Multiplication * *= Times[x1, x2,…xn]
Division / /= Divide[x1, x2]
Exponentiation ^ - -

 Data types

Type of numbers Marking Example
Integers Integer 35, -2
Rational Rational 35/46,
Real Real 2.18, 3.6*10^-5
Complex Complex 2+3*I

 Named constants
 Е – number е;
 Pi – number π;
 І – imaginary unit ;
 Infinity – imaginary infinity +∞, with negative infinity put the sign -;
Degree – the number of radians in degrees π/180;
EulerGamma – Euler constant 0,577216;
GoldenRatio – constant of the golden section ;
Catalan – Catalan constant 0.915966.
To obtain the numerical value of the constant, it is necessary to use the function N[].
 N[E]
 Out[1]= 2.71828
 If necessary display the value of a number with a given number of characters, use
the function N[k,n], where k – number, n – the number of characters.
 N[5/88,10]
 Out[1]= 0.05681818182

10

Built-in mathematical functions

 Functions for determining divisors, the least multiple of integers
Divisors[n] – gives a list of the integers that divide n;
ExtendedGCD[n,m] – gives the extended greatest common divisor of the integers
n and m;
 GCD[n1,n2…] – gives the greatest common divisor of the n1, n2…;
 LCM[n1,n2…] – gives the least common multiple of the n1, n2…
Mod[x,y] – gives the remainder on division of х by у.
Functions of rounding real numbers
 Round[x] – gives the integer closest to x;
 Floor[x] – gives the greatest integer less than or equal to х;
 Ceiling[x] – gives the smallest integer greater than or equal to х;
 Quotient[x,y] – returns a rounded integer х/у, less or equal to х/у.
Calculation of factorials
Factorial[n] – gives the value of n!;
Factorial2[n] – gives the value of n!!=n*(n-2)*(n-4)...
Obtaining prime numbers
Prime[n] – gives the n-th prime number;
PrimeРі[n] – gives the number of primes Pi(x) less than or equal to x.
Elementary functions
Power and logarithmic functions

z → Sqrt[z];
az → Power[z,a];
ze → Exp[z];

ln()z → log[z];
log ()a z → log[a,z];

Trigonometric functions
sin()z → Sin[z];
cos()z → Cos[z];

()tg z → Tan[z];
()ctg z → Cot[z];

csc()z → Csc[z];
()sec z → Sec[z].

Inverse trigonometric functions
sin()arc z → ArcSin[z];
cos()arc z → ArcCos[z];

()arcctg z → ArcCot[z];
csc()arc z → ArcCsc[z];

()arcsec z → ArcSec[z].
Hyperbolic functions
sinh()z → Sinh[z];
cosh()z → Cosh[z];

11

()tgh z → Tanh[z];
()ctgh z → Coth[z];

csc ()h z → Csch[z];
sec ()h z → Sech[z].

Inverse hyperbolic functions
sinh()arc z → ArcSinh[z];
cosh()arc z → ArcCosh[z];

()arcctgh z → ArcCoth[z];
csc ()arc h z → ArcCsch[z];
sec ()arc h z → ArcSech[z].

Arithmetic operations with integers and rational numbers
 The system Mathematica performs calculations with integers and rational numbers
without errors, as illustrated in Listing 1.

Listing 1

Arithmetic operations with real numbers

 Real numbers in the system Mathematica are presented in the usual or standart form.
When representing a number in the usual form, the whole part of the number is separated
from the fractional part by point: 1.35, 0.24. Thus 0 integers it is possible not to write and
instead of 0.25 to use marking - .25. Numbers written in this form, call numbers with a
fixed point.
 A point at the end of a number is an indication that the number is real. For example,
the number 131. – real, number 2/5 – є rational, and the number 2./5 – дійсним.
 When representing a number in standart form, the number is written in the form of
a mantis with whole and fractional part and order in the form of a number degree: 5.*10^-
3, 3.335*10^-6. You can use a space instead of a multiplication sign. Arithmetic
operations on real numbers give an approximate result. The Mathematica system operates
with numbers in a range . To increase the accuracy of real numbers can be represented in
rational using the functions:
 Rationalize[z] – converts number z to a nearby rational;

12

 Rationalize[z,dz] – converts number z to a nearby rational with accuracy dz.

Arithmetic operations with complex numbers
 The complex number is represented as follows:
 Re() *Im()= +z z I z .
 Functions for performing operations on complex numbers:
 Abs[z] – gives the absolute value of the complex number z;
 Arg[z] – gives the argument of the complex number z;
 Conjugate[z] – gives the complex conjugate of the complex number z;

 Expressions of their transformation and calculation
Substitutions

 Substitutions are a mathematical apparatus designed to calculate the functions at
numerically specified values of the argument. They allow you to tabulate the values of
functions. The Mathematica system uses the symbol «/.»

f(x) /. x->a;
f(x,у,…) /. {x->a,y->b,…};
{f1(x),f2(x),…} /. x->a;
{f1(x,у,..),f2(x,у,…),…} /. {x->a,y->b,…};
f(x) /. x->{x0,x1,…}.

 Substitution expressions have the following meaning:
 f(x) /. x->a – substitutes in the expression f(x) the value of х=а.
 f(x,у,…) /. {x->a,y->b,…} – substitutes in the expression f(x,y,…) the values х=а,
y=b,…
 {f1(x),f2(x),…} /. x->a – substitutes in the expressions f1(x), f2(x),… the value х=а.
 {f1(x,у,..),f2(x,у,…),…} /. {x->a,y->b,…} – substitutes in the expressions
f1(x,y,…), f2(x,y,…),… the values х=а, y=b,…
 f(x) /. x->{x0,x1,…} – tabulation of the function f(x).
 An example of using substitutions is shown in Listing 2.

13

Listing 2

Convert expressions
Expression conversion functions:
Simplify[f] – simplifies the expression f;
FullSimplify[f] - simplifies the expression f, which contains special functions;
Expand[f] – expands out products and positive integer powers in f;
Collect[f,x] – collects together terms involving the same powers of expression f

matching х;
TrigExpand[f] – expands out trigonometric functions;
Factor[f] – factors a polynomial over the integers.
Examples of using the Simplify function are shown in Listing 3, FullSimplify – in

Listing 4.

14

Listing 3

Listing 4

 Function Expand
 Modifications of the function Expand:
 Expand[f] – expands out products and positive integer powers in f;
 ExpandAll[f] – expands out all products and integer powers in any part of the
expression f;
 ExpandNumerator[f] - expands out products and powers that appear in the
numerator of the expression f;
 ExpandDenominator[f] - expands out products and powers that appear as
denominators in the expression f;
 PowerExpand[f] - expands all powers of products and powers of function f;
 ComplexExpand[f] – expands the expression f assuming that all variables are real;
 ComplexExpand[f,{x1,x2,…}] - expands the expression f assuming that variables
matching any of the x are complex ;
FunctionExpand[f] – tries to expand out special and certain other functions in the
expression f, when possible reducing compound arguments to simpler ones.
 Listing 5 shows examples of using modifications of the function Expand[].

15

Listing 5

Function Collect

 Modifications of the function Collect:
 Collect[f,x] – collects together terms involving the same powers of expression f
matching х;
 Collect[f,{x1,x2,…}] – collects together terms that involve the same powers of of
expression f matching х1,х2...

Listing 6 shows examples of using modifications of the function Collect[].

16

Listing 6

Function Factor
Modifications of the function Factor:
Factor[f] – factors the function f over the integers;
FactorList[f] – gives a list of the factors of the function f, together with their

exponents;
FactorTerms[f] – pulls out any overall numerical factor in the expression f;
FactorTermsList[f] – gives a list in which the first element is the overall numerical

factor in the expression f, and the second element is the polynomial with the overall factor
removed;

FactorInteger[f] – gives a list of the prime factors of the integer f, together with their
exponents.

Listing 7 shows examples of using modifications of the function Factor[].

17

Listing 7

Functions of transformation of trigonometric expressions
TrigReduce[f] – rewrites products and powers of trigonometric functions in the
expression f in terms of trigonometric functions with combined arguments.;
TrigExpand[f] – expands out trigonometric functions in the expression f;
TrigFactor[f] – factors trigonometric functions in the expression f;
TrigToExp[f] – converts trigonometric functions to exponentials.;
ExpToTrig [f] – converts exponentials in expression to trigonometric functions.
Listing 8 shows examples of using trigonometric expression transformation functions.

18

 Listing 9

19

Lecture № 3. Tables, styles, and graphics

Representation of vectors and matrices in tabular form is possible using the
functions TableForm and MatrixForm, is as follows:

TableForm[f]
Out[n] // MatrixForm

where f – name of the vector or matrix;
 n - the number of the line in which the vector or matrix is located;
 % - is used if the representation function % / / MatrixForm of the vector or matrix

in tabular form is located after the vector (matrix).
You can also create a vector or matrix using a function List:
List [a, b, с,...] — creates vector {а,b,с,...};
List [{а, b, с,..}, {d, е, f, ..}, {g, h, k, ..}] – creates matrix {{a, b, с,..}, {d, e, f,

..}, {g, h, k, ..}}.
Listing 1 in tabular form shows the vector f3 and the matrices f4, f5, from Listing

1, Lecture 1, formed using the functions TableForm and MatrixForm.
TableForm[f3]
2 + 3 i
1- 2 i
5
3 +7i
7
TableForm[f4]
1 2 3
4 7 0
-5 1 8
TableForm[f5]
Sin[X] e-x
 x

x
+
+−

1
1

Log[x] 5

1 + 2 i 3 5 Tan[1+x] -8
4 a B Cos[x] 2-i
Out [29]//MatrixForm

rSin[x] e-x
 x

x
+
+−

1
1

Log[x] 5

 1+2 i 3 5 Tan[1 + x] -8
4 a B Cos[x] 2- i

Listing 1

Creation of vectors and matrices using the Range function
The Range function is used to create numerical lists and has the following

modifications:
Range [nmax] - generates the list {1, 2, ..., nmax };
Range [nmin, nmax] - generates the list {nmin, nmax};
Range [nmin, nmax, dn] - generates the list from nmin to nmax uses step dn.
Examples of function realization are shown in Listing 2.

20

Range [7]
{1,2,3,4,5,6,7}
Range[4,10]
{4,5,6,7,8,9,10}

Range[3,8,0.5]
{3,3.5,4.,4,5,5.,5.5,6.,6.5,7.,7.5,8.}

Listing 2

Creation of vectors and matrices using Table functions
To create vectors and matrices, you can use the Table function, which has the form:
Table [f, { nmax }] - generates a list of nmax copies of f;
Table [f,{1, nmax}] - generates a list of the values of f from 1 to nmax;
Table [f, {n, nmin, nmax}] — generates a list of the values of f starts with n=nmin

to nmax;
Table [f, {n, nmin, nmax, dn}]— generates a list of the values of f starts with

n=nmin to nmax uses steps dn.
An example of using the Table function is shown in Listing 3.

Table [Log [х] ,{5}]
{Log[x] , Log[x] , Log[x] , Log[x] , Log[x] }
Table[Log[x] ,{x,5}]
{0,Log[2],Log[3],Log[4] ,Log[5]}
Table[Log[x] ,{x,5,10}]
{Log[5] ,Log[6] ,Log[7] ,Log[8] ,Log[9] ,Log[10] }
Table[Log[x] ,{x,l ,3 ,0 .5}]
{0,0.405465,0. 693 147,0.9162 91,1.09861}
Table [i+j ,{1,2 ,4} ,{j ,2,4}]
{{4,5, 6} ,{5, 6,7}, {6,7,8}}

Listing 3

Selection elements of vector and matrix
- The following methods of selecting of elements of vectors and matrices are

implemented in the Mathematica system:
- use of double square brackets;
- use of the Part function;
- use the Select function.
Use of double square brackets
In this case, the expression that separates the elements of the vector or matrix is

represented as:
 f [[n]] f [[n1, n2, ...]],

where f - name of the vector or matrix;
 n - the selected element;
 ni - i-th element from the set of selected elements.
 Examples of element selection are shown in Listing 4

21

f1={2 ,1,4,3,5}
{2,1,4,3,5}
f2={ {1,2,3}, {3,5,7}, {2,4,6}}
{{ 1,2,3} ,{3,5,7}, {2,4,6}}
f3={а,1,b,2,3,с}
{а,1,b,2,3,с}
f4={2,a,Sin[x+y^2] ,b,1}
{2, a, Sin[x + y^2] , b, 1}
f1[[4]]
3
f2[[2,2]]
5
f1 [[{2,3}]]
{1,4}
{f2[[1,2]] ,f2[[3,1]]}
{2,2}

Listing 4

Output of elements of vectors and matrices is carried out by means of functions
MatrixForm and TableForm.

Examples of the use of these output forms are shown in Listing 5. The use of the
TableAlignments and TableSpacing options to place the vector and matrix on the screen
in the desired form is shown in Listing 6.
F={{a,l,4},{b,2,5} ,{с,3,б}}
{{а, 1,4} ,{b,2,5}, {с,3,5}}
MatrixForm[F]

6 3 с
5 2 b
4 1 a

TableForm[F]
а 1 4
b 2 5
с 3 6

Listing 5

s={ 5,73426813438765,34}
{5,73426813438755,34}
TableForm[s, TableAlignments->Left]
5
73426S13438765
34
TableForm[s, TableAlignments->Center]

 5
 73426813438765

 34
S1={{1,3,4},{5,1,1} ,{3,2,1}}
{{1,3,4},{5,1,7},{3,2,1}}
TableForm[s1]
1 3 4
5 1 7
3 2 1
TableForm[s1, TableSpacing->{ 1,1}]

22

1 3 4
5 1 7
3 2 1
TableForm[s1, TableSpacing->{ 5,2}]
1 3 4

5 1 7

3 2 1
TableForm[s1, TableSpacing->{ 2,5}]
1 3 4
5 1 7
3 2 1

Listing 6

23

Lecture № 4. Operation with vectors and matrices

Vectors and matrices in the Mathematica system are lists. A list is a collection of

data bounded by curly brackets. The vector is one-dimensional, the matrix is a two-
dimensional list. Elements of vectors and matrices can be real and imaginary numbers,
functions, mathematical expressions. Listing 1 shows the vectors and matrices of the
various elements.

Listing 1

Vector and matrix creation is done with the following functions.
Array [f, n]- generates a list of length n , with elements f [1], f [2],…, f [n];
Array [f, n1, n2]- generates a list of length n1, start with element f [n2], and n2 can

be a number, function, expression;
Array [f, { n1, n2}] generates an n1 x n2 array of nested lists, with elementsf (n1,

n2);
 Array [f, n1, n2, h] - generates a list of length n1, start with element f (n2), uses head

h.
Examples of creating vectors using the Array function are shown in Listing 2. Note

that these functions allow you to summarize and multiply vector elements using Plus and
Times functions.

24

Listing 2

Determining the structure of a vector or matrix
The following functions are used to determine the structure of a vector or matrix:
VectorQ [V] - gives True if expression V is a vector, and gives False otherwise;
MatrixQ [M] - gives True if expression M is a matrix, and gives False otherwise;
Length [V] - gives the number of elements in a vector V;
Length [M] - gives the number of elements in a natrix M;
MemberQ [V, n] - returns True if an element of V matches n, and False otherwise;
FreeQ [V, n] - yields True if no subexpression in V matches n, and yields False

otherwise;
FreeQ [M, n] - yields True if no subexpression in M matches n, and yields False

otherwise;
Dimensions [V] - gives a list of the dimensions of V;
Dimensions [M] - gives a list of the dimensions of M (the number of rows and the

number of columns);
Position [V, n] - gives a list of the positions at which objects matching n appear in

vector V;
Count [V, n] - gives the number of elements in V, that match n;

25

TensorRank [V] - gives the rank of vector V, if V is a tensor;
TensorRank [M] gives the rank of matrix M, if M is a tensor.
Transformation and creation of vectors and matrices
The Mathematica system has rich features for converting and creating new vectors

and matrices (and lists of any level). The following functions can be used for this
purpose:

Drop [V, n] - gives V with its first n elements dropped;
Drop [V,-n] - gives V with its last n elements dropped;
Drop [V, {n}] – gives V with its n-th element dropped.;
Drop [V, {m, n}]- gives V with elements m through n dropped;
Last [f] - gives the last element in vector (matrix) f;
Rest [V] - gives vector V with the first element removed;
Take [V, n]- gives the first n elements of vector V;
Take [V,-n]- gives the last n elements of vector V;
Take [V, {m, n}] - gives elements m through n of vector V;
Append [V, а] - gives vector V with a appended;
Prepend [V,-а] - gives vector V with a prepended ;
Іnsert [V, а, n] - inserts а at position n in V, the position is counted from the start;
Іnsert [V, а,-n] - inserts а at position n in V, the position is counted from the end;
Delete [V, n] - deletes the element at position n in vector V;
{Delete [f, n1], Delete [f, n2], Delete [f, n3], ...} - deletes the elements at positions

ni in vector (matrix) and creates new vector (matrix).
Examples of using functions are shown in Listing 3.

26

Listing 3

27

 The creation of new vectors and matrices is also possible by changing the location of
the vector or matrix, which uses the following functions.

Flatten [M] - flattens out nested lists;
Flatten [M, n] - flattens to level n matrix M;
Sort [f] - sorts the elements of vector (matrix) f into canonical order;
Reverse [f] - reverses the order of the elements in vector (matrix) f;
RotateLeft [f] - cycles the elements in vector (matrix) f one position to the left;
RotateLeft [f, n] - cycles the elements in vector (matrix) f n positions to the left;
RotateRight [f] – cycles the elements in vector (matrix) f one position to the right;
RotateRight [f, n] - cycles the elements in vector (matrix) f n position to the right;
Transpose [M] - transposes the first two levels in matrix M.

Examples of using functions are shown in Listing 4.

Listing 4

Representation of vectors and matrices in tabular form is possible using the
functions TableForm and MatrixForm, what look like:

TableForm[f]

28

Out[n] // MatrixForm
where f – name of the vector or matrix;
 n - the number of the line in which the vector or matrix is located;
 % - is used if the representation function % / / MatrixForm of the vector or matrix in
tabular form is located after the vector (matrix).

You can also create a vector or matrix using a function List:
List [a, b, с,...] — creates vector {а,b,с,...};
List [{а, b, с,..}, {d, е, f, ..}, {g, h, k, ..}] – creates matrix {{a, b, с,..}, {d, e, f,

..}, {g, h, k, ..}}.
Listing 5 in tabular form shows the vector f3 and the matrices f4, f5, from Listing

1, formed using the functions TableForm and MatrixForm.

Listing 5

Creation of vectors and matrices using the Range function
The Range function is used to create numerical lists and has the following

modifications:
Range [nmax] - generates the list {1, 2, ..., nmax };
Range [nmin, nmax] - generates the list {nmin, nmax};
Range [nmin, nmax, dn] - generates the list from nmin to nmax uses step dn.
Examples of function realization are shown in Listing 6.

29

Listing 6

Creation of vectors and matrices using Table functions
To create vectors and matrices, you can use the Table function, which has the form:
Table [f, { nmax }] - generates a list of nmax copies of f;
Table [f,{1, nmax}] - generates a list of the values of f from 1 to nmax;
Table [f, {n, nmin, nmax}] — generates a list of the values of f starts with n=nmin to

nmax;
Table [f, {n, nmin, nmax, dn}]— generates a list of the values of f starts with n=nmin

to nmax uses steps dn.
An example of using the Table function is shown in Listing 7.

 Listing 7

Selection elements of vector and matrix
The following methods of selecting of elements of vectors and matrices are

implemented in the Mathematica system:
- use of double square brackets;
- use of the Part function;
- use the Select function.
Use of double square brackets

30

In this case, the expression that separates the elements of the vector or matrix is
represented as:

 f [[n]] f [[n1, n2, ...]],
where f - name of the vector or matrix;
 n - the selected element;
 ni - i-th element from the set of selected elements.
 Examples of element selection are shown in Listing 8.

Listing 8

Select elements of the vector and matrix using the Part function
The Part function is represented as follows:
{Part[f, n1], Part[f, n2],...},

where f – name of vector;
 ni - і-th element of vector f.

If you select elements of the matrix using the Part function, this function is
represented as follow:

{Part[f, n1, m1], Part[f, n2 , m2],...},
where ni - і-th row element of matrix;
 mi - і-th column element of matrix.

31

In the case of selecting elements from complex elements of a vector or matrix, the
Part function is represented as follows:

Part[f, n, m, 1],
where f - name of vector or matrix;
 n - number element of vector f;
 m - expression level (m = l in the case of a vector, m = 2 in the case of a matrix);
 1 - element number in a vector or matrix.
 Examples of using the Part function are shown in Listing 9.

Listing 9

Output of elements of vectors and matrices is carried out by means of functions

MatrixForm and TableForm.
Examples of the use of these output forms are shown in Listing 10. The use of the

TableAlignments and TableSpacing options to place the vector and matrix on the screen
in the desired form is shown in Listing 11.

Listing 10

32

Listing 11

33

Combining vectors and matrices
The combination of vectors and matrices is carried out using the following

functions:
Union [F] - gives a sorted version of a list F, in which all duplicated elements have

been dropped;
Union [f1, f2, ...] - combines f1, f2 removing repeating elements of vectors and

matrices;
Join [f1, f2...] - combines f1, f2 ... in a single chain (concatenation);
Complement [f1, f2, ...] - gives the elements in f that are not in any of the
f1, f2, ...;
Intersection [f1, f2, ...] - gives a sorted list of the elements common to all the lists.
Listing 12 shows examples of using functions.

34

Listing 12

Mathematical operations on vectors and matrices

 The simplest arithmetic operations on vectors and matrices will be considered in the
following example.

Given vectors V1, V2 and matrices Ml, M2:
V1 = {1, 3, 5, 2, 6, 4};
V2 = {2, 7, 5, 8, 1, 3};
М1 = {{1, 2, 3}, {6, 5, 4}, {1, 3, 5}};
М2 = {{3, 2, 1}, {4, 5, 6}, {5, 3, 1}}.
Tasks:
- add, subtract, multiply and divide the vector V1 and the matrix Ml by a number 3;
- square vector V2 and matrix M2;
- calculate square root of vector V1 and matrix M1;
- calculate eV1, sin(V2), ln(M1), cosh(M1).
The functions that realize mathematical operations are shown in Listing 13.

35

 13

36

Other functions designed to work with vectors and matrices are listed below:

Det [M] - gives the determinant of the square matrix;
IdentityMatrix [M] - gives the identity matrix: matrix with the diagonal elements

equal 1, and others elements equals 0;
Transpose [M] - transposes the first two levels in M;
Inverse [M] - gives the inverse of a square matrix;
Tr [M] - finds the trace of the matrix M (sum of the diagonal elements);
LinearSolve [M, b] - returns the vector of unknowns of the matrix equation

M * х = b, where M - matrix of coefficients of the system of equations, х - vector of
unknowns, b - vector of free terms;

Eigensystem[M] - gives a list of the eigenvalues and eigenvectors of the square
matrix M;

Eigenvalues [M] - gives a list of the eigenvalues of the square matrix M;
Eigenvectors[M] - gives a list of the eigenvectors of the square matrix M;
PseudoInverse[M] - finds the pseudoinverse of a rectangular matrix M.
All of the above matrix operations are illustrated in Listing 14.

37

38

Listing 14

The vector product is realized using the function Dot [V1, V2] or a multiplication
sign in the form of a point: V1. V2 or Ml. М2, see Listing 15.

Listing 15

39

Lecture № 5. Graphical functions of the Mathematica system

 Two-dimensional graphics
 Plot function
 The Plot function allows you to build graphically defined graphs in two-dimensional
space in a rectangular coordinate system. Several functions can be displayed on one graph.
By default, the grid is displayed on the screen.
 Plot function recording format
 Plot[f,{x,xmin,xmax}];
 Plot[{f1,f2,...},{x,xmin,xmax}],
where f – function, the graph of which is built,
 fi – і-th function, the graph of which is built, і=1,2,…
 х – function argument,
 xmin, xmax – argument change interval х.

Function Plot options
 The options of the Plot function are set as follows:
 Option name -> option value.
 The main options of the Plot function are:

- setting the scale along the axis:
PlotRange -> {ymin,ymax} – sets the y-axis scale from ymin to ymax with
automatic step selection;
PlotRange->{{ xmin,xmax}, {ymin,ymax}} - sets the scale on the y-axis from
ymin to ymax and on the x-axis from xmin to xmax with automatic step selection;

- definition of the axis name:
AxesLabel -> {“Tx”, “Ty”} – sets the inscriptions Tx and Ty on the x and y axes,
respectively;

- determining the name of the plot:
PlotLabel -> “T” – sets the name of the plot;

- choice of graphics style:
Axes -> None – the schedule is built without axes.

Examples of using the Plot function.

40

Listing 1

ListPlot function
Used to plot graphs given as an array of points.
List format of the ListPlot function
ListPlot[{y1,y2,…}];
ListPlot[{x1,y1},{x2,y2},…}],

where уі – і-th value of function у(х),
 хі - і-th the value of the function у(х) argument.

Purpose of the ListPlot function
ListPlot[{y1,y2,…}] – plots the point values of the function y (x) with the notation

of the number of points on the x-axis.

41

ListPlot[{x1,y1},{x2,y2},…}] – plots a list of points with specified x and y
coordinates.

The ListPlot function has two options:
- definition of the axis name:
AxesLabel -> {“Tx”, “Ty”} – sets the inscriptions Tx and Ty on the x and y axes,
respectively;
- determining the size of points:
PlotStyle -> PointSize [d] - sets the diameter of the point equal to d.
Example of using the ListPlot function.

Listing 2

Show function
Used to plot point and analytical graphs in one plane.
Show recording format
Show[r1,r2],

where r1, r2 – are variables used to denote graphs
Example of using the Show function.

42

Listing 3

Choice of graphic style

 The PlotStyle option allows you to select the color of the lines and their thickness.
 PlotStyle option directives

- line color:
 PlotStyle ->{GrayLevel[k1],GrayLevel[k2],…},
where k1,k2,… - the color codes of the lines in shades of gray of the corresponding

functions are selected from the range 0..1;
PlotStyle ->{Hue[c1],Hue[c2],…},

where c1,c2,… - tabular color codes of the lines of the corresponding functions, selected
from the range 0..1;

PlotStyle ->{RGBColor[r1,g1,b1],Hue[r2,g2,b2],…},
where r1,g1,b1… - the brightness of the red, green and blue color components are selected
from the range 0..1;

- line thickness:
 PlotStyle ->Thickness[d] – sets the thickness of the lines of the graph as a fraction
of its full width;
 PlotStyle ->AbsoluteThickness[d] – sets the thickness of the graph lines in pixels;

- dashing style:
PlotStyle ->Dashing[{d1,d2,… }] – sets the stroke length of the graph lines, where

di is specified as a fraction of the width of the graph line;
PlotStyle->AbsoluteDashing[d1] - sets the stroke length of the lines of the graph,

where di is specified in pixels;

43

- point graph:
PlotStyle->PointSize[d] – graph in the form of circles with a diameter of d, which

are measured in fractions of the total width of the graph;
PlotStyle->AbsolutePointSize[d] – graph in the form of circles with a diameter of

d, which are measured in pixels.
Examples of using the PlotStyle function.

44

Listing 4

Graphs of special types

Graphing functions on a logarithmic scale
LogPlot [f, {x, xmin, xmax}] - plots a linear-logarithmic graph of the function f with a
logarithmic scale on the y-axis in the range xmin..xmax.

45

LogLinearPlot[f,{x,xmin,xmax}] – plots a logarithmic-linear graph of the function f with
a logarithmic scale on the x-axis in the range xmin..xmax.

LogLogPlot[f,{x,xmin,xmax}] – plots a graph of the function f with a logarithmic scale
on two axes in the range xmin..xmax.

46

Functions
LogListPlot[{x1,y1},{x2,y2},…]
LogLinearListPlot[{x1,y1},{x2,y2},…]
LogLogListPlot[{x1,y1},{x2,y2},…]
similar to the previous three and are used to construct scatter plots.

The function of plotting graphs in the polar coordinate system
 PolarPlot[f,{t,tmin,tmax}] – plots the position of the end of the vector f when the
angle t changes from tmin to tmax.

47

 Chart construction function
 BarChart[{c1,c2,…}] – makes a bar chart with bar lengths.

 PieChart[{c1,c2,…}] – makes a pie chart with sector angle proportional to list.
 The PieChart function uses a number of options, the description of which is
available with the Options[PieChart] command.

 Functions of three-dimensional graphics
Plot3D[f,{x,xmin,xmax},{y,ymin,ymax}] – plots the function f = f (x, y). Plot3D

options are available with the Options[Plot3D] command.

48

When constructing graphs expressed in 3 arguments, one argument must be expressed in
others. For example, the graph of the sphere: x2+y2+z2=R2, where R-radius, will be

converted to
222 yxRz −−=

ParametricPlot3D[{f1,f2,f3},{t1,t1min,t1max},{t2,t2min,t2max}] – plots a three-
dimensional graph of a parametrically given function z(t1, t2) = f(x(t1, t2), y(t1, t2)).
Plot3D options are available with the Options[ParametricPlot3D] command.

49

50

Lecture № 6. Possibilities of Mathematica system operation with heterogeneous
data

 Position of Graphics menu and graphic editor.

When creating complex laptops in previous versions of Mathematica clearly lacked
the resources to prepare at least simple drawings and diagrams, which are often
accompanied by mathematical and scientific calculations. Such drawings and diagrams, of
course, can be created by programming Mathematica systems, but it requires a lot of time
and the ability to program graphic tasks well. With this in mind, the developers of
Mathematica introduced a tool for building simple drawings with the mouse type of the
well-known graphic editor Paint. Access to it is provided from the new Graphics menu
item. It contains the following commands:

• New Graphic - output window for plotting;
• Drawing Tool - output of the graphic editor window;
• Graphics Inspector - output of the graphics inspector window;
• Rendering - output of substitution of rendering operations;
• Opetations - output of the substitution of additional operations.
Working with these graphics is simple and obvious. It is illustrated by fig. 1. It

shows the windows of the drawing, graphic editor and graphics inspector. Note that the
graphic editor does not have the funds to build an unpainted ellipse, rectangle and polygon.
However, the installation of colors, these figures are easy to obtain.

Figure 1.

Use options for painting areas of two-dimensional graphs.

51

Of the new options for the Plot function in Mathematica, the most impressive are
the options for painting the areas of two-dimensional graphs Filling (Painting) and
FillingStyle (Painting Style). The first is disabled by default, the second is set to Auto.

We will demonstrate the result of the Filling option (Fig. 2). On it the Plot function
builds a graph of the Sin [x] / x function in the interval of change x from -4*Pi to +4*Pi
with 4 types of painting. They are represented by the values of the Filling option: Axis
(painting from each point of the curve to the x-axis), Top (painting the area from the top
of the graph window to its curve), Bottom (painting from the curve to the bottom of the
graph window) and 0.5 (painting from the graph line to horizontal with a vertical
coordinate equal to 0.5).

Рис. 2.

This option can also be used with the ListPlot[list] function, which builds points
with coordinates taken from the list. It makes it possible to construct verticals connecting
the points of the graph with the x axis (Fig. 3). This figure shows how the values of prime
numbers change from their number. Interestingly, this dependence is close to linear.

52

Figure 3.

Relief graphics.
The function of the Mathematica ReliefPlot [array] is used to construct realistic terrain
graphs, which are given by the coordinates of the points of the array. An example of the
application of this function is Fig. 8.61, on which it is built
the relief of the surface given by the mathematical formula i + cos (i3 + j3), where i and j
change with a discreteness of 0.03 in the range from -4 to 4. The shape of the relief depends
on the value of the ColorFunction option.

Another example of using the ReliefPlot function is presented in Fig. 4. Here are
three arrays of random results of a number of arithmetic operations, including the norms
of matrices. The obtained three reliefs are largely random and vary from start to start of
the presented module.

Figure 4

Fig. 5 builds the relief of the imaginary part of the function sec (i + I * j) 2 for two
values of the PlotRange option, equal to All і Automatic. It is easy to notice a serious

53

change in the nature of the detection of details of the same relief. Of course, an array for
this function can be created not only by mathematical expressions, but also in any other
way - for example, by loading arrays of images. Many options of the ReliefPlot function
allow you to create reliefs with different resolutions, different colors and other features.

Figure 5

 Three-dimensional objects obtained by rotating curves.
Three-dimensional graphic objects obtained by rotating curves about an axis are

quite common. For example, turning the circle at an angle π, you can get the surface of the
sphere. By changing the boundaries of the angle of rotation, you can build closed or open
shapes. To construct such surfaces (figures) in Mathematica is a function:

RevolutionPlot3D[fz,{t,tmin,tmax},...]
RevolutionPlot3D [{fx,fy,fz},{t,tmin,tmax},...]
In fig. 6 shows the application of this function to construct the surface of the bagel

half. The figure looks quite realistic.

Figure 6

A more funny figure is built using this function, shown in Fig. 7. Here the
parameters are two changing angles, and a parametric curve is used for rotation.

54

Figure 7

 An example of using the options of the RevolutionPlot3D function is presented in
Fig. 8. Here the curve of rotation is given by means of six inequalities taking which 6
figures are constructed. Unfortunately, as before, the color of the figures is reproduced
only in shades of gray.

Figure .

55

Lecture № 7. Functions for solving algebraic equations and systems of equations in
Mathematica

Analytical methods for solving algebraic and transcendental equations
Solve function
To solve the equations in analytical form, the Solve function is used, the recording

format of which is as follows:
Solve[f,x],

where f – equation, which is written in any form,
 х – variable name.
 The equation symbol "==" is used to write the equation, for example ax2 + bx + c
== 0. Pay attention that the Solve function does not always form a solution in the most
compact form, so after using this function sometimes you need to use Simplify, Expand
or FullSimplify. Examples of using the Solve function are shown in Listing 1.

Listing 1

Roots function
This function is designed to determine the roots of a polynomial, it has the form:
Roots[f, x],

where f – polynomial, the roots of which must be found (can be represented as an
equation),
x – polynomial argument.
 The result of applying the Roots [f, x] function is the real and complex roots of the
equation () 0f x = . In this case, the solution can be obtained in analytical and numerical
form. The solution in the analytical form in the general case can be obtained for a
polynomial not higher than the fourth degree. The solution of () 0f x = does not exist if ()f x
– is a polynomial of the fifth and higher degree. However, if the polynomial can be
factorized, then the function Roots [f, x] will find all the roots of the corresponding
equation.

The solutions of the equations in these cases are shown in the examples in Listing 2
for the equations: 2 0ax bx c+ + = , 4 2 0ax bx c+ + = , 3 0ax b+ = , 5 4 0ax bx cx d+ + + = ,

56

()()()(1)(1)a x b x x ac x x+ + + + − . Listing 2 shows that in the first three examples, the roots are
found in analytical form. The fourth example shows a polynomial of the fifth degree, so
its roots are not found. In the last example the polynomial of the fifth degree is given, thus
the decision is received in an analytical form. This is because the polynomial ()f x can be
factorized. After that, the polynomial brackets were opened using the Expand function,
and all its roots were found using the Roots[Out [32], x] function. Out [32] is the line
number in which the polynomial is in the open form.

Listing 2

If the coefficients of the polynomial are given in the form of numbers, then the

function Roots [f, x] gives a solution in the form of an exact or approximate value of the
roots. The exact value of the roots is represented by numbers in a rational form, the
approximate - in the form of real numbers. Listing 3 shows examples of solving the

57

2 13 / 28 3 /14 0x x+ − = , 7 6 22 3 12 7 5 0x x x x+ − + + = , 10 1 0x − = . Listing 3
shows that the function determined the exact value of the roots of the first equation, could
not explicitly find the roots of the second equation and found the roots of the third
equation, but in an inconvenient form for the user: no roots in complex form. To obtain
the solution of the second and third equations had to use the command N [%].

Лістинг 3

Applying the Roots [f, x] function to transcendental equations gives an erroneous

result, so its use is irrational for this type of equation.
Numerical methods for solving algebraic and transcendental equations

There are a large number of numerical methods for solving algebraic and
transcendental equations. The algorithm of any of these methods is a set of conditions for

58

choosing the initial approximation, the calculated ratios and signs of the end of the
computational process.
The Mathematica system has many built-in functions for solving algebraic and
transcendental equations in numerical form. The main ones are: NSolve, NRoots,
FindRoot. Consider in detail these functions and give examples.

NSolve function
The NSolve function represends as:
NSolve[f, x],

where f – equation, x – the required unknown.
The result of this function is the roots of the equation . Roots can be real and

complex numbers. can solve all equations solved by the Solve function. Its difference is
only in the form of answers. The rules for using the NSolve function are shown in Listing
4 when solving the following equations: 3 29 / 4 3 / 4 5 /16 0x x x+ − + = , 2 4 1 0x x− + = ,

2 3 / 1 0xe x− + − = ,
3 1 0ax − = , 5 32 3.2 7.3 14 0x x x+ − − = .

NRoots function
The NRoots function represends as:
NRoots[f, x],

where f – equation, x – the required unknown.
 The result of using this function is the roots of the polynomial () 0f x = . The rules
for using the NRoots function are shown in Listing 5 when solving the following
equations: 2 13 / 28 3 /14 0x x+ − = , 7 6 22 3 12 5 0x x x+ − + = , 10 1 0x − = , 2 4 1 0x x− + = .
Listing 5 shows that the real and complex roots are found in numerical form. An attempt
to solve the transcendental equation did not succeed - no solution was obtained.
 FindRoot function

The FindRoot function represends as:
FindRoot[f, {x, x0}],

where f – equation, x – the required unknown (root (roots) of the equation), x0 – initial
approximation.

The FindRoot[f, {x, x0}] finds the root of the equation () 0f x = from the range of x
values close to x0. The following method of determining the roots of algebraic and
transcendental equations using a FindRoot[f, {x, x0}] function is recommended:

1. Determining the isolation region of the desired root and selecting the value of the
approximationx0.

2. Input of the equation () 0f x = with assigning it a unique name.
3. Enter the FindRoot[f, {x, x0}] function with the selected value of x0.
4. Get a solution by pressing <Shift>+<Enter>.

As an example, the sequence of actions when finding the roots of the equation
3 -9 1 0x x + = is considered. According to the graph of the function shown in Fig. 1, the
first approximations for the roots of the function are chosen.

59

Listing 4 (Part 1 from 2)

60

Listing 4 (Part 2 from 2)

61

Listing 5

Figure1. Graph of function () 3 9 1xf x x= − +

 Fig. 1 shows that the equation has two roots, the isolation regions of which can be
the intervals x0 – [0, 1] and x0 – [2.5, 3]. he solution of the equation is shown in Listing 6.
Care should be taken when choosing the initial approximation, especially in cases where
the equation contains several roots. It may turn out that when the user-set approximation
x0 is determined, the wrong root will be determined. In our example, a small change in x0
ed to a different solution: at x0=1.9 FindRoot function found the root x =0.258755, , and

62

at x0=2 – х=2.94964.

Listing 6

Methods for solving systems of equations in the system Mathematica

The Mathematica system has rich possibilities for solving systems of algebraic
equations. Built-in functions allow solving systems of linear and nonlinear equations in
analytical and numerical form. Give the opportunity to check the reliability of the results
quite effectively and in an original way. During operation, the system issues comments
that allow the user to make decisions about the answers received. The main functions for
solving systems of equations are: Solve[F,X], Solve[F,X,Y], N[Solve[F,X]],
FindRoot[F,X]. Consider these functions, describe the technology of their implementation,
give examples and problems for independent solution.

Solve[F,X] function
The Solve[F, X] function allows solving systems of linear and nonlinear equations

in analytical form. It is represends as follows:
Solve[{f1,f2,...}, {x1,x2,...}]

where fi – i-th equation presented in any form, xi – i-th unknown.
Equations f1, f2, … an also be represented by a unifying sign &&. Examples of function
Solve[F,X] representation:
Solve[{a*x^2+y==b,x+2*y==a+b},{x,y}]
Solve[a*x^2+y==b&&x+2*y==a+b,{x,y}]

When entering equations, the multiplication sign (*) can be replaced by pressing the
<Space> key. When solving practical problems, it is convenient, and in some cases even
advisable, to enter equations separately from the Solve function, assigning them names,
which are then entered into the Solve function instead of equations. Example:

63

f1=a*x^2+y==b; f2=x+2*y==a+b
Solve[{f1, f2},{x,y}]
or
Solve[f1&&f2,{x,y}]
This form of notation simplifies the verification of the solution of the system of equations.

Systems of equations
Methods for solving equations:

1. Entering equations with a unique name, which is specified by the assignment sign
(=).

2. Write the function Solve[{f1,f2,...},{x,y,...}] або Solve [f1&&f2&&...,{x,y,...}].
3. Checking the validity of the solution of the system of equations.

Examples of solving linear algebraic equations are shown in Listing 7.
It is necessary to solve the following systems of linear equations:

1 2 3 1

1 2 3 2

1 2 3 3

;
(2) ;

.

x ax bx y
a x x cx y

ax bx cx y

+ − =
 + + + =
 + + =

1 2 3

1 2 3

1 2 3

3 4 2 1;
7 2 4;

2 7 3 3.

x x x
x x x

x x x

− + =
 + − = −
 + + =

1 2 3

1 2

1 2 3

7 3.5;
1.6 3.7 12;

2 5 7.5.

x x x
x x

x x x

+ − =
− + =
 + + =

Listing 7 (Part 1 from 2)

64

Code Listing 7 (Part 2 of 2)

Listing 7 shows that the system solved the first system of equations in analytical
form, the second - in the form of exact values of the unknowns, presented in rational form.
The third system of equations is also solved, but the solution is represented as real
numbers. This is due to the fact that the system of equations has no exact solution. Thus,
the Solve function can solve systems of equations also in numerical form. The example
shows that the solution is represented in the form of substitutions: x1->, x2->, x3->. This
does not make it possible to verify the validity of the solution, as well as to use the values
of x1, x2, x3 in further calculations.

To verify the validity of the solution, the user must present the unknown explicitly
with their name: x1 = -4.31818, x2 = 1.37592, x3 = 1.81327, then use them for their
intended purpose. You can get the solution explicitly using an expression of the form {x1,
x2, x3} /., Which is placed before the Solve function: {x1, x2, x3} /. Solve {f1, f2, f3},
{x1, x2, x3 }]. Now x1, x2, x3 can be used for its intended purpose, including to verify
the validity of the solution of the system of equations.

Systems of nonlinear algebraic equations
The method of solving systems of nonlinear equations is the same as linear ones.

This is demonstrated by the example of solving the following systems of nonlinear
equations:

2

;
.

x ay b
x by a b
+ =

+ = +

 2 2

;
.

xy a
x y ab

=

+ =

A record of the solution and its validation is shown in Listing 8.

65

Code Listing 8 (Part 1 of 2)

66

Code Listing 8 (Part 2 of 2)

Solve function [F, X, Y]
The Solve function [F, X, Y], as well as the Solve function [F, X], allows to solve

systems of linear and nonlinear equations in an analytical form, but only with restriction:
solutions are carried out on variable X and are excluded. for variables Y. For example, the
function Solve [{x + 2 * ya == 3, 2 * x + y ^ 2 + b == 7}, x, y] will determine X and

67

exclude from the solution Y. Using the function Solve [F, X, Y] is shown in Listing 9 in
solving the following systems of equations:

2 1;
7.

ax bxy
xy c

 + =

+ =

7 3 1;
5 12 3;

2 7.

a b c
a b

a b c

+ + =
− + =
 + + = −

The first system is solved with respect to x, the second with respect to a, then with respect
to a and b.

68

Listing 9

NSolve function [F, X]
The NSolve function [F, X] allows solving systems of linear and nonlinear equations

in numerical form. It is recorded as follows:
Solve [{f1, f2, ...}, {x1, x2, ...}],

where fi is the i-th equation represented in an arbitrary form, xi is the i-th unknown.
Equations f1, f2,… can also be represented by the unifying sign &&. The method of
solving systems of equations using the function NSolve [F, X] is almost no different from
the technology of solving using the function Solve {F, X}. With its help in Listing 10 the
following systems of equations are solved:

1 2 3

1 2 3

1 2 3

2 7 5;
2 5 2;

4 3 7.

x x x
x x x

x x x

+ − =
 − + =
 + + = −

2

2

2 3 5;
7 7.5.

y x
x y

 + =

+ =
1 2

2 1

sin 1.3
cos 0.82.

x x
x x
− =

 − = −

Listing 10 shows that the NSolve function [F, X] did not solve the last system of
equations. This is because the system consists of transcendental equations. To solve it,
methods are needed that are not implemented in the NSolve function [F, X].

69

Listing 10

FindRoot function [F, {X, x0}]
The FindRoot function [F, {X, x0}] solves systems of linear and nonlinear equations

by numerical iteration methods. To implement it, you need to know the initial
approximations of the unknown. The function looks like:

70

FindRoot [{f1, f2, ...}, {x1, x10}, {x2, x20}, ...],
Where fi is the i-th equation represented in an arbitrary form, xi is the i-th unknown,
xi0 is the initial approximation of the i-th unknown.
Equations f1, f2,… can also be represented by the unifying sign &&.
The technique of solving equation systems using the FindRoot function [F, {X, x0}]
differs significantly from the technology of solving equations using the NSolve function
[F, X]. The difference is the need to determine the initial approximations. Examples of
solving systems of equations by the FindRoot function [F, {X, x0}] are shown in Listing
11. Listing 11 solves the following systems of equations:

1 2

2 1

10

20

sin 1.3;
cos 0.82;

1.8;
0.35.

x x
x x

x
x

− =
 − = −
 =
 = −

2
1 2 1
2 2
1 2

10

20

(0.2) ;
0.5 2 1;

0.9;
0.5.

tg y y y
y y

y
y

 + =

+ =

=
 =

Code Listing 11 (Part 1 of 2)

71

Code Listing 11 (Part 2 of 2)

Eliminate function [F, x]
The Eliminate function [F, x] is designed to reduce the number of system equations

by excluding the specified variables x. It looks like:
Eliminate [{f1, f2, ...}, {x1, x2,…}],
where fi is the i-th equation, presented in any form,
xi is the i-th unknown to be excluded.
Equations f1, f2, ... can also be represented by the joining sign &&.
This function transforms the original system of equations so that the number of equations
and variables is reduced. The limit is one equation with one unknown. An example of
using the Eliminate function is shown in Listing 12, in which a system of three equations
is alternately reduced to a system of two equations and then to one equation.

2 2 2;
7;

2 3 9 1.

x ay z
x y bz

x y z

 + − =
 + − =
 + + =

72

Listing 12

Matrix methods for solving systems of linear equations

The system of linear algebraic equations can be represented as follows: A * X = B,
where A is a matrix of coefficients, X is a vector of unknowns, B is a vector of free
members (right parts) of the system of equations. The method of solving equations in the
Mathematica system is simple and consists of the following:

1. Introduction of a matrix of coefficients with the assignment of a name, such as A.
2. Enter a vector of unknowns named X.
3. Introduction of a vector of free members named B.
4. Creating the expression z = A. X == B.
5. Introduction of the Solve function [z, X].
An example of solving a system of linear equations

1 2 3

1 2 3

1 3

2 3 7 1;
3 5 7.5;

5 3 2.5,

x x x
x х x

x х

+ − =
− + + =
 + =

the matrix method is shown in Listing 13.

73

Listing 13

In addition to the above, there are the following two matrix methods for solving

systems of algebraic equations in the Mathematica system.
Method 1. Determination of the vector of unknown X by the formula: X = A-1B.
The multiplication operation is written by the Dot function, and the matrix

inversion operation is written by the Inverse function. Then the decision is written as
follows:

X: = Dot [Inverse [A], B]
 Method 2. Using the LinearSolve function.
The LinearSolve function is written as follows:
X: = LinearSolve [A, B]
 Listing 14 shows an example of solving a system of linear equations

1 1 2 3 1

1 2 3 2

1 2 3 3

2 3 ;
7 ;

,

a x x x b
x cx x b

x x dx b

+ − =
− + + =
 + + =

in two ways.
Special cases of solving systems of equations
A system of equations can have a number of solutions equal to the number of

unknowns, such a system is called compatible. If the number of equations is infinitely

74

large, then the system is called compatible and indefinite. If the system has no solution, it
is called incompatible.

Listing 14

The following two systems of equations demonstrate special cases in solving

systems of linear equations:
1 2 3

1 2 3

1 2 3

2 1;
2 4 2 2;
3 2 3 5.

x x x
x x x
x x x

+ − =
 + − =
 + + =

1 2 3

1 2 3

1 2 3

2 1;
2 4 2 2;
3 6 3 3.

x x x
x x x
x x x

+ − =
 + − =
 + − =

Their solution is shown in Listing 15.

75

Listing 15

Listing 15 shows that the first system of equations has a solution:

1 1
2 3

31 , 1
4 2
x xx x= − = − ,,that is, has an infinite number of solutions (for any value 1x). The

system is compatible but uncertain. The second system is also compatible and uncertain,
having the solution: 3 1 21 2x x x= − + + , substituting values 1 2,x x . Note that in both cases
the main determinant of the system is zero.

76

Lecture № 8. Functions of mathematical analysis

Calculation of sums and products of series
 The calculation of the sums of series can be carried out in analytical or numerical
form. The function is used to calculate the amounts in analytical formSum. The following
Sum recording formats exist:

- Sum [fi, {i, imax}];
- Sum [fi, {i, imin, imax}];
- Sum [fi, {i, imin, imax, ∆i}];
- Sum [fi, j, .. {i, imin, imax}, {j, jmin, jmax}],

where f is the summation element,
 and, j - summation variables,
 іmin, imax - summation elements,
 ∆i is the step of changing the argument and.
 If it is necessary to calculate the sum of the members of the series represented by
the analytical function, from 1 to n, you must use the function Sum [fi, {i, imax}]. Listing
1 shows the use of the function to calculate the series 1 / n, 1 / n2, 1 / n3.

Listing 1. Using the Sum function [fi, {i, imax}]

 Function Sum [fi, {i, imin, imax}] calculates the sum of the values of the function f
in the range of values of the argument imin ..imax with step 1. When using the function
Sum [fi, {i, imin, imax, ∆i}] step of changing the argument is given by the parameter ∆i.
 Function Sum [fi, j, .. {i, imin, imax}, {j, jmin, jmax}] calculates the sum of several
variables. An example of its use is illustrated in the calculation of the following series:
50 10

2 2

1 1
()i j

i j
x y

= =
+∑∑ ,,

0 0 ! !

n m

n m

x y
n m

∞ ∞

= =
∑ ∑ ,,

3 3

1 1 ! !

n m

n m

x y
n m= =

∑ ∑ shown in Listing 2.

77

Listing 2

Numerical calculation of sums is performed by the NSum function, which has the

same modifications as the Sum function.
 The product is calculated similarly to summation. To do this, use the functions:

- Product - for calculating products in analytical and numerical form;
- NProduct - to calculate products only in numerical form.
Calculation of the function boundary

 Calculating the function boundary in the system Mathematica is done using the
Limit function. The syntax of its record is as follows:
 Limit [f (x), x-> x0].
 The Limit function has a Direction option. The Direction option indicates the
direction of approach to the border. Her record has two options:
 Direction -> +1;
 Direction -> -1.
A value of +1 indicates approaching the border on the left side, -1 - on the right side. An
example of using the Limit function is shown in Listing 3.

Listing 3

Schedule functions in power series

 To decompose into a power series in the system Mathematica uses the following
functions:

Series [f, {x, x0, n}] - decomposes the function f around the point x = x0 using n
members of the series;

Series [f (x, y), {x, x0, nx}, {y, y0, ny}] - decomposes the function f into two
variables x and y around the point (x0, y0) with the number of members nx and ny,
respectively .
 Examples of using functions are shown in Listing 4.

78

Listing 4

Calculation of derivative functions
The calculation of derivatives is carried out using the following functions:
D [f, x];
D [f, {x, n}];
D [f, x1, x2,…];
Dt [f, x];
Dt [f];
Derivative [n1, n2, ..] [f] - is a derivative of f [{x1, x2,…}] taken ni times xi.

Where f is the differentiated function,
x is the variable of differentiation,
x1, x2, .. - differentiation variables,
n is the order of the derivative.

Methods for calculating integrals
Analytical methods
The integral in analytical form is calculated using the following built-in functions:

 - 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 [𝑓𝑓(х), х] - calculates the indefinite integral of the function by the
argument x;𝑓𝑓(х)

- - calculates the definite integral of the function 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 [𝑓𝑓(х) , { х, хн , хк}]
𝑓𝑓(х) on the variable with the lower and upper limits of integration. The limits of
integration can be symbolic variables, numbers and even functions;ххнхк

- - Calculates the definite integral of the function of many variables with integration
limits,,,.𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 [𝑓𝑓(х , у, . . .) , { х , хн, хк } , {у ,𝑦𝑦н ,𝑦𝑦𝑘𝑘 , . . . }] х , у, . . . хнхк𝑦𝑦н𝑦𝑦к

Examples of calculating integrals are shown in Listing 5. The following integrals
are calculated:

∫ 𝑎𝑎𝑎𝑎−1
𝑏𝑏𝑎𝑎+1

𝑑𝑑𝑑𝑑,∫ 2+𝑎𝑎
𝑎𝑎

𝑏𝑏
𝑎𝑎 𝑑𝑑𝑑𝑑,∫ (1 + 2𝑑𝑑𝑦𝑦 + 4𝑑𝑑2𝑦𝑦2)𝑏𝑏

𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦 .

79

Listing 5

In the previous example, the boundaries of integration were the symbolic variables

a and b. Listing 6 shows the calculation of the integrals of the same functions in the case
when the limits of integration are the numbers: = 1, = 5, = 0, = 10.х𝐻𝐻х𝐾𝐾𝑦𝑦𝐻𝐻𝑦𝑦𝐾𝐾

Listing 6

Listing 6 shows that in this case obtained in the form of exact solutions. Numerical

values of integrals are obtained using the function N (%).
Numerical Methods
Calculation of integrals in numerical form is necessary in the following cases:
- the original is not expressed through elementary functions;
- subintegral function is given in the form of a table;
- the analytical expression of the original is too complex.
As an example, Listing 7 shows the calculations of indefinite and definite integrals

of functions:. 𝑦𝑦(𝑑𝑑) = 𝑑𝑑
1
𝑥𝑥𝑛𝑛𝑎𝑎и 𝑦𝑦(𝑑𝑑) = 𝑑𝑑20𝑛𝑛−𝑎𝑎

80

Listing 7

Listing 7 shows that the first integral is not analytically solved, and the second is
too cumbersome. In these cases, the result of calculating the integrals by numerical
methods can be obtained using the NIntegrate function.

The format of the NIntegrate function is as follows:
NIntegrate(𝑓𝑓(𝑑𝑑), {𝑑𝑑, 𝑑𝑑𝐻𝐻 , 𝑑𝑑𝐾𝐾}),,

where f (x) is a subintegral function;
x - argument of subintegral function;
𝑑𝑑𝐻𝐻 , 𝑑𝑑𝐾𝐾 - lower and upper limits of integration.
The method of using the NIntegrate function does not differ from the method of calculating
a definite integral in analytical form.

Calculation of multiple integrals
The calculation of multiple integrals in the Mathematica system is carried out by

repeatedly using the Integrate function in analytical integration or NIntegrate in numerical
integration. Listing 8 shows examples of calculating multiple integrals of a function for
different variants of integration limits:𝑓𝑓(𝑑𝑑) = 𝑎𝑎−1

𝑎𝑎+1

- symbolic variables from a to b;
- numerical values of integration limits from 0 to 2;
- the limits of integration given by the functions: ln 2 and.𝑛𝑛1.2

81

Listing 8

Calculation of improper integrals
The Mathematica system allows you to compute integrals with infinite boundaries.

The same functions are used as in the case of calculating integrals with finite limits. The
infinity value is denoted by either the ∞ symbol or the Infinity service constant. Examples
of calculating improper integrals are given in sheet 9.

82

Listing 9

The following conclusions can be drawn from Listing 9:
- the solution of the improper integral is obtained in analytical form. To obtain the

numerical value of the integral, use the command N [%];
- the expression of the original function in analytical form can be complex. To

simplify it, you should use the functions Simplify, Expand, Factor or their prototypes;
- if the integral does not have an initial, then the result will be the initial expression

of the integral.
Tabular integration
The subintegral function f (x) can be given in the form of a table. This is often

necessary when conducting experimental research. In such cases, the calculation of the
integral can be performed by the formulas of rectangles, trapezoids or parabolas. The
solution can also be obtained by interpolating the function f (x) with its subsequent
integration. Mathematica after version 6.0 changed the built-in ListIntegrate function to
the integrated form Integrate [Interpolation []], which has the following features of use:

83

- Integrate[Interpolation;[{𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛}][𝑑𝑑], {𝑑𝑑, 𝑑𝑑1, 𝑑𝑑2}]
- Integrate[Interpolation;[{𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛}, InterpolationOrder →

𝑘𝑘][𝑑𝑑], {𝑑𝑑, 𝑑𝑑1, 𝑑𝑑2}]
- Integrate[Interpolation [data] [x], {x, Min [xc], Max [xc]}];
The functions use the following notation:

 - 𝑦𝑦𝑖𝑖 - the value of the function y = f (x) in the - node, 1 = 1, 2, ..., n;𝑑𝑑𝑖𝑖
- x is the argument of the function y = f (x).
- x1, x2 - final values of the argument;
- k is the interpolation order.
-;data = �{𝑑𝑑1,𝑦𝑦1}, … , {𝑑𝑑𝑛𝑛,𝑦𝑦𝑛𝑛}�
-;𝑑𝑑𝑐𝑐 = data[[𝐴𝐴𝐴𝐴𝐴𝐴, 1]]
Using the function for tabular integration, you can skip writing the built-in character

InterpolationOrder, then the default interpolation order will be k = 3.
As an example, calculate the value of the integral of the tabular function y = f (x),

the values of which are given in table. 1.
Table 1. Tabular representation of the function y = f (x)

x 1 2 3 4 5 6 7 8
in 1 8 27 64 125 216 343 512

In this case, the integration step is constant and equal to h = 1. From table. 1 shows that
the analytical expression of the function has the form y =. Listing10 shows the procedures
for calculating the integral in the case of specifying a subintegral function in the form of a
table and in the form of an analytical expression y =.𝑑𝑑3𝑑𝑑3

Listing 10

Solving differential equations in Mathematica

84

Mathematica system allows to solve in analytical and numerical form linear and
nonlinear differential equations and systems. The solution of differential equations and
systems is carried out with the help of built-in functions.

Analytical methods
Analytical methods for solving differential equations in the Mathematica system are

implemented using two built-in functions:
[[]]
{ }] [{ }1 2 1 2 1 2

 , ,

 , , ... , , , ... , , , ..

;

{ ..}

DSolve f у х х

DSolve f f y x y x x x

Consider in detail these functions and give examples.
Function [[]] , , DSolve f у х х designed to solve the differential equation f

regarding the function ()у x with an argument x . The function gives the general solution of
the equation with the integrating constants that are denoted []c i .

The differential equation is represented in an arbitrary form. Example,
' 2 ^ 2 1, ' 2 ^ 2 1y x y x== − − == − or ' 2 ^ 2 1 0y x− + == . The function allows you to solve

a differential equation of any order. Here are some examples. The following differential
equations are given:

2 2 2' 2 3 1, ' 2ln 2, ' 3 1.xy x x y x x y e x x−= + − = + − = − + −
The solution of the equations is shown in Listing 11.

Listing 11

Listing 11 shows that when solving the first equation, it was given the name F and

entered outside the function. DSolve . When solving the second equation, the latter is
introduced directly into the function DSolve . When solving the third equation, it is
presented in a form different from the first two. The example shows that the program found
a common solution with arbitrary integrating constants, and the solution is reduced to a
simple integration of the right-hand side of the equations. Function DSolve also allows you
to solve high-order differential equations, as shown in the following examples:

2''' 3 2 1, ''' '() 5 () 2 1.y x x y y x y x x= − + = − + −
The solution is shown in Listing 12.

85

Listing 12

Solution of differential equations under known initial conditions
The following modification of the DSolve function is used to obtain the solution of

differential equations under the known initial conditions:
[[]]0 (,), , DSolve f x x у х х ,,

where 0(,)f x x - differential equation in conjunction with the initial conditions;
()у x - desired function;

x - independent variable.
Consider examples of a separate solution of differential equations using a function

DSolve :
'() 2ln 2y x x x= + − under the initial condition: (0) 1y = ;

2''() 3 () e 1xy x y x x= − + − at (0) 1, y'(0) 0y = = ;
''() 5 () 1y x y x= − − at (1) y'(1) ''(1) 0y y= = = .

The solution is shown in Listing 13.

86

Listing 13

Solution of systems of differential equations in analytical form
Systems of differential equations in analytical form are also solved using the built-

in function DSolve , which in this case has the form:
1 2 1 2 [{ , ,...},{ (), (),...},]DSolve f f y x y x x

where if - the i-th equation of the system;
()iy x - and the sought-after unknown;

x - independent variable.
Examples of using the function DSolve for the case of solving systems of differential

equations are given below:
'() () ()
'() () 3 ()
'() () ().

x t y t z t
y t x t z t
z t x t y t

= +
 = +
 = +

87

The solution is shown in Listing 14.

Listing 14

Listing 14 shows that the solution is obtained in General, as the initial conditions

were not specified.
Subject to the substitution of initial conditions: (0) 1, (0) (0) 0x y z= = = function

record DSolve is as follows:
[{ '[] [] [], '[] [] [], '[] [] [],

[0] 1, [0] [0] 0},{ [], [], []},].
DSolve x t y t z t y t x t z t z t x t y t
x y z x t y t z t t

== + == + = +
= == ==

Numerical methods for solving differential equations
Numerical methods for solving differential equations in the Mathematica system

are implemented using the following two built-in functions:
min max [, [],{ , , }]NDSolve f y x x x x

1 2 1 0 2 0 1 2 min max [{ , ,..., (), (),...},{ [], [],...},{ , , }]NDSolve f f y x y x y x y x x x x
where f - differential equation and initial conditions;

if - the i-th equation of the system of differential equations;
[]y x - desired function;
[]iy x - the i-th desired function of the system of differential equations;

0()iy x - i-th initial condition;
min max,x x - minimum and maximum value of the independent variable;

x - the argument of the desired function.
The numerical solution functions of differential equations and systems have the

StartingStepSize option, which determines the value of the initial integration step.
Numerical methods are most often used in cases where the equation in analytical

form is not solved by the system or has no analytical solution. These are most nonlinear
equations. Next, the built-in functions, methods of their implementation and examples are
given in detail.

Function min max [, [],{ , , }]NDSolve f y x x x x
This function solves the n-th order differential equation by calculating the required

function y (x) in the range of the independent variable x from minx to maxx . The solution
can be obtained in the form of a table or graph.

The method of solving the problem is shown by the example of the following
differential equation:

88

'() () 1,y t xy x− =
under initial conditions (0) 1y = . The solution should be obtained in tabular and graphical
form in the range from 0 to 5 in steps of 0.5.

The method of solving the differential equation using the NDSolve function consists
of performing the following operations:

1. Introduction of the NDSolve function, which in our example has the form:
[{ '[] , [0][] 1}, [],{ ,0,5}].1NDSolve y x xy x y y x x== ==+

2. Get the solution by pressing <Shilit> + <Enter> at the same time. The solution
will be received in the form of a message without displaying the solution itself on the
screen.

3. Introduction of the Table function to obtain a solution in tabular form. In our
example, this function will look like:

[{ , [292]},{ ,0,5,0.5}].[] / .T table x y x Ou x
Here Out [292] is the 292 line in which the solution of the equation is located. The

result is a vector represented as a string.
4. Enter the TableForm function [%] to obtain a solution in the form of a table. The

result is a function y (x), presented in the form of a table.
5. Introduction of the function [{ [292]},{ ,0,5}][] / .Plot y xx Out . The result is a graph

of the function.
The solution of the problem is shown in Listing 15. First, the solution of the equation

is given in analytical form.
The following example requires solving a higher order equation:

2'''() 3 ''() 2 '() () 1,y x x y x xy x y x− − − =
under initial conditions (1) 1, '(1) ''(1) 0y y y= = = . The solution is obtained in the

range of strokes 0 to 3 with a step of 0.5 when presenting the solution in tabular form
and in the range from 0 to 2 - in graphical form. The solution is shown in Listing 16.

89

Listing 15

90

Listing 16

Function 1 2 1 0 2 0 1 2 min max [{ , ,..., (), (),...},{ [], [],...},{ , , }]NDSolve f f y x y x y x y x x x x
This function solves a system of n-th order differential equations by calculating the

required functions 1 2[], [],...y x y x in the range of the independent variable x from minx to
maxx . The solution can be obtained in the form of tables or graphs.

The method of using the function is shown in the following example:
0 1

0 1

2

2

1

0

1

2

() 2 ()
() 2.9 () 4 ()

'() 0.

()

9
'() 0.9
'() 0. 49 (),

p tp p t
p t p t p t
p t

t
p t
p p tt

= −

=

+
−

−=

 +

under the following initial conditions: 0 1 2(0) 1, (0) (0) 0p p p= = = . Get the solution in the
form of tables and graphs.

In this case, the NDSolve function will look like:

91

NDSolve {{p0 '[t] = - 0.9 p0 [t] + 2p1 [t], p1' [t] = 0.9 p0 [t] -2.9p1 [t] + 4p2 [t],
p2 '[t] = 0.9p1 [t] -4p2 [t], p0 [0] = 1, p1 [0] = p2 [0] = 0}, {p0 [t], p1 [t], p2 [t]}, {t ,
0, 100}].

The solution is shown in Listing 17. The table is presented in the range t from 0 to
1 in steps of 0.1, and the graph is presented in the range t from 0 to 3.

Listing 17 (Part 1 of 2)

92

Listing 17 (Part 2 of 2)

Mathematica, like any other computer algebra system, is not ideal for solving

differential equations. The obtained solution rarely coincides with the answer available in
mathematical reference books. It is not uncommon for a built-in function to give no
solution or to be erroneous, although the equation is quite simple. Here are some examples.
Suppose you need to solve the following equations and systems of equations:

''() () ;
''() () 4 sin ;

y x y x tgx
y x y x x x

= − +
= − +

'() '() () ;
'() '() () (2);

x t y t tx t t
x t y t y t t t

+ − =
+ + = +

3 () '() 2 0.z x z x x− =
The system of equations is solved by analytical and numerical methods under initial

conditions, (0) 1, (0) 0x y= = in the range x from -1 to 1.
The solutions of the equations are shown in Listing 18.

93

Listing 18

Based on the listing, you can make the following comments. The solutions of the

first and second equations are correct, but do not coincide with the reference data, which
provide the following answers:

The obtained solutions can be significantly simplified using the Simplify function

[%].
The solution of the system of equations is not obtained either by analytical or

numerical methods, although such a solution exists.
The answer to the solution of the third equation is interesting - three equivalent

results.

94

When solving differential equations by numerical methods, unacceptably large
errors can occur due to methodological errors and errors in choosing the integration step.
It is always necessary to remember that at computer technologies of the decision of
differential equations check of reliability of the received results is necessary.

95

Lecture № 9. Computer interpolation technologies in Mathematica environment

Interpolation, accurate in nodes
In Mathematica, interpolation, accurate in nodes, can be implemented by the

following methods:
- universal;
- using the universal functions InterpolatingPolynomial and Interpolation.
Universal method
The universal method requires the solution of systems of algebraic equations, which

were obtained on the basis of the data of the function, which is presented in the form of a
table or matrix.𝑦𝑦 = 𝑓𝑓(𝑑𝑑)

Examples of interpolation by the universal method are given below.
The function is given in the form of table. 1.𝑦𝑦 = 𝑓𝑓(𝑑𝑑)

Table 1. Function in tabular form𝑦𝑦 = 𝑓𝑓(𝑑𝑑)

x 1 2 3 4
y 6.2 4.1 1.9 0.6

It is necessary to solve the interpolation problem, which is exact in nodes if the

function is a polynomial. Since the number of nodes, the degree of the polynomial must
not be higher than that is.𝑦𝑦 = 𝜑𝜑(𝑑𝑑)𝑛𝑛 = 4𝑛𝑛 − 1.𝑦𝑦 = 𝑛𝑛0 + 𝑛𝑛1𝑑𝑑 + 𝑛𝑛2𝑑𝑑2 + 𝑛𝑛3𝑑𝑑3

Let's make a system of equations:
𝑛𝑛0 + 𝑛𝑛1 ∙ 1 + 𝑛𝑛2 ∙ 12 + 𝑛𝑛3 ∙ 13 = 6,2
𝑛𝑛0 + 𝑛𝑛1 ∙ 2 + 𝑛𝑛2 ∙ 22 + 𝑛𝑛3 ∙ 23 = 4,1
𝑛𝑛0 + 𝑛𝑛1 ∙ 3 + 𝑛𝑛2 ∙ 32 + 𝑛𝑛3 ∙ 33 = 1,9
𝑛𝑛0 + 𝑛𝑛1 ∙ 4 + 𝑛𝑛2 ∙ 42 + 𝑛𝑛3 ∙ 43 = 0,6

The solution is obtained using the function where the initial system of equations
(see Listing 1).𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑛𝑛�𝐹𝐹, (𝑛𝑛0,𝑛𝑛1,𝑛𝑛2,𝑛𝑛3)�,𝐹𝐹 −

Listing 1

As a result of the received decision the interpolation formula will look:

𝑦𝑦 = 7,2 − 0.116667𝑑𝑑 − 1,05𝑑𝑑2 + 0,166667𝑑𝑑3.

96

and final value of the argument, the step of the table, if, then it can be
neglected.𝑓𝑓(𝑑𝑑)𝑑𝑑𝐻𝐻 , 𝑑𝑑𝐾𝐾 − ℎ − ℎ = 1

In the previous example, the number of equations and the number of unknowns are
the same. When solving practical problems, the number of values of the tabulated function
almost always exceeds the degree of algebraic equations. In such cases, a limited number
of interpolation nodes have to be selected from the entire range of source data. We
illustrate this with the example of the tabulated function given in table. 2.

Table 2. Tabulated function

x 3 6 9 12 15 18 21 24 27 30
y 26 90 180 300 500 700 1000 1200 1500 2000

Let the interpolation function be a polynomial of degree. The calculation of the
interpolation polynomial coefficients is shown in Listing 2. As a result of comparing the
interpolation results with the original data, we can conclude that there is an interpolation
error at some values of the argument. For a detailed analysis of the error in Fig. 1 constructs
interpolation and data functions.𝑦𝑦 = 𝑛𝑛0 + 𝑛𝑛1𝑑𝑑 + 𝑛𝑛2𝑑𝑑2𝑑𝑑

Listing 2

97

Fig. 1. Graphs of the original function and tabs

Calculate the absolute ε and relative δ RMS interpolation error by the following formulas:

2

1 100

n

i
i

n y
=

∆
= = ⋅
∑

min

, %εε δ ,, (1)

where Δi = y (xi) - φ (xi) is the difference between the values of the tabulated function y
(xi) and the interpolation function φ (xi),
n is the number of values of the tabulated function,
уmin - the minimum value of the function y (x).
The calculation of absolute and relative values and errors is shown in Listing 3.

98

Listing 3

Function𝐈𝐈
To interpolate polynomial functions use a function that has the following

format:𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛𝐼𝐼𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑦𝑦𝑛𝑛𝑆𝑆𝐼𝐼𝐼𝐼𝑛𝑛𝐴𝐴
𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛𝐼𝐼𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑦𝑦𝑛𝑛𝑆𝑆𝐼𝐼𝐼𝐼𝑛𝑛𝐴𝐴 [𝑧𝑧, 𝑑𝑑],,

where𝑧𝑧 −source data matrix,
𝑑𝑑 −function argument 𝑧𝑧.
An example of using the function will be demonstrated by the example of the data given
in table. 3.𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛𝐼𝐼𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑦𝑦𝑛𝑛𝑆𝑆𝐼𝐼𝐼𝐼𝑛𝑛𝐴𝐴 [𝑧𝑧, 𝑑𝑑]

99

Table 3. Tabular data
X 1 2 3 4 5
Y 1 8 27 64 125

The method of using the function is shown in Listing 4. According to the listing, the
interpolation function has the form 𝑦𝑦 = 𝑑𝑑3. The solution is accurate. The function is used
to simplify the expression Simplify .

Listing 4

Function 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛i𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑦𝑦𝑛𝑛𝑆𝑆𝐼𝐼i𝑛𝑛𝐴𝐴 [𝑧𝑧, 𝑑𝑑] solves interpolation problems also
in the case of non-equidistant nodes. Vector 𝑧𝑧 elements chan be a set of functions 𝑓𝑓𝑓𝑓1(𝑑𝑑),
𝑓𝑓𝑓𝑓2(𝑑𝑑), … . The solution will then be issued as a polynomial with the original expression
stored 𝑓𝑓𝑓𝑓1(𝑑𝑑), 𝑓𝑓𝑓𝑓2(𝑑𝑑), …, Listing 5.

Listing 5

Listing 5

The values of the function 𝑧𝑧 are shown in table. 4.

Table 4. The value of the function
𝑑𝑑 1 2 3 4
𝑦𝑦 1 𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑑𝑑 1/𝑑𝑑 𝑛𝑛−𝑑𝑑
𝑦𝑦(𝑑𝑑) 1 0,909297 0,333333 0,0183156

100

Function 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛i𝑛𝑛𝑛𝑛[data]
This function allows you to solve the problem of interpolation over data (data) in

the range of arguments given by this data. The approximation function is unknown to
the user. The data are given in the form of a matrix of the function 𝑦𝑦 = 𝑓𝑓(𝑑𝑑) . When you
enter this function, Mathematica does not issue an interpolation function, but a new
function:
𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛i𝑛𝑛𝑛𝑛𝐹𝐹𝑢𝑢𝑛𝑛𝑐𝑐𝑛𝑛i𝑆𝑆𝑛𝑛[{{𝑑𝑑𝐻𝐻, 𝑑𝑑𝐾𝐾}}, < >],
where 𝑑𝑑𝐻𝐻, 𝑑𝑑𝐾𝐾 − the range of arguments of the interpolation function.
If yu nov enter the value of the argument from the range 𝑑𝑑𝐻𝐻 − 𝑑𝑑𝐾𝐾, the answer will
be the value of the function at a given value of the argument.
Consider the method of using the function by example. Tabular function 𝑦𝑦 = 𝑓𝑓(𝑑𝑑)
listed in table. 5. It is necessary to determine the value of the function at 𝑑𝑑= 5.8 і 𝑑𝑑
= 18.5 and verify the validity of the obtained solutions.

Table 5. Function 𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝑑𝑑) in tabular form
X 2 3 8 12 20
Y 1 2,5 4,6 3,2 1,6

The solution to the problem is shown in the Listing 6.

Listing 6

According to Listing 6, the function 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛i𝑆𝑆𝑛𝑛[𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛] interpolates data with the
exact method in nodes. The results of tabulation are the exact values of the function
in the interpolation nodes.

Interpolation by nonlinear functions
If the interpolation function is nonlinear, then two methods are used to

determine its coefficients by the exact method in nodes:
- creation and solution of a system of nonlinear equations;
linearization of nonlinear interpolation function by coordinate transformation.

Consider both methods.

101

Way 1. Solving a system of nonlinear equations

The method of interpolation in this way is to solve systems of nonlinear
equations. Demonstrate it on the basis of the data given in table. 6.

Table 6. Function 𝑦𝑦 = 𝑓𝑓(𝑑𝑑) in tabular form
Х 1 2 3 4 5 6 7 8
У 7,6 16 33 71 156 341 750 1650

The interpolation function has an analytical expression 𝑦𝑦 = 𝑛𝑛𝑇𝑇𝑑𝑑 + 𝑐𝑐 . It is necessary
to determine the unknown 𝑛𝑛, 𝑇𝑇, 𝑐𝑐 and the error of the interpolation function. Choose
the following three coordinates of the function: (1,7.6), (4,71), (7, 750) and make a
system of equations:

𝑛𝑛𝑇𝑇1 + 𝑐𝑐 = 7,6
𝑛𝑛𝑇𝑇4 + 𝑐𝑐 = 71
𝑛𝑛𝑇𝑇7 + 𝑐𝑐 = 750

We solve this system of nonlinear equations using a function FindRoot according to
the following initial values of the unknown: 𝑛𝑛 = 2,5, 𝑇𝑇 = 3, 𝑐𝑐 = 1,5 . The solution is
shown in the Listing 7.

Listing 7

102

Listing 7 shows that the mathematical model of the object is the following
interpolation function:

𝑦𝑦 = 2.96 ∙ 2.2х + 1.07.
The absolute and relative root mean square errors are calculated according to
formula (1). The relative error is equal to 10%.

Way 2. Linearization of a nonlinear function
In Mathematica, approximation by nonlinear functions can be reduced to

solving linear equations by coordinate transformation.
The alignment of functions is carried out by converting them into a linear

function by replacing variables. These transformations are most simply carried out
under the condition of using power, logarithmic, fractional-linear, exponential
functions. The technique of interpolation by the method of linearization of nonlinear
functions is carried out by performing the following actions:

1. Transformation of the interpolation function into a linear form.
2. Transformation of the matrix of source data into a matrix of new variables.
3. Formation of a system of linear equations.
4. Solving a system of linear equations.
5. Formation of the interpolation function.
6. Checking the adequacy of the obtained model.
Consider the method on the example of the data given in table. 7.

Table 7. Function 𝑦𝑦 = 𝑓𝑓(𝑑𝑑) in tabular form
X 1 3 5 7 9 11 13 15
Y 2,5 7,8 18,7 28,5 39 50 61,7 73,8

It is necessary to find a mathematical model of the object under study, if it is known
that the interpolation function is an exponential function 𝑦𝑦 = 𝑛𝑛𝑑𝑑𝑇𝑇. The solution of

103

the problem is shown in the Listing 8.

Listing 8

The first two lines of Listing 8 contain the source data vectors with the name 𝑓𝑓1 and
𝑓𝑓2. They are followed by the same vectors on a logarithmic scale. To calculate the
coefficients 𝑛𝑛 and 𝑇𝑇 of a linear function 𝐴𝐴𝑛𝑛𝑦𝑦 = 𝐴𝐴𝑛𝑛𝑛𝑛 + 𝑇𝑇𝐴𝐴𝑛𝑛𝑑𝑑. Coordinates are taken as initial
data (3,7), (11,50), which on a logarithmic scale matter: (1.09861, 2.05412), (2.3979,
3.91202). Then the system of equations has the form:
2.05412 = 𝐴𝐴 ∙ 1.098616𝑇𝑇;
3.91202 = 𝐴𝐴 ∙ 2.3979𝑇𝑇,
where 𝐴𝐴 = 𝐴𝐴𝑛𝑛𝑛𝑛 .

The system is solved by a function S𝑆𝑆𝐴𝐴v𝑛𝑛. As a result of the solution, the following
values of the coefficients are obtained: 𝑛𝑛 = 0.483096, 𝑇𝑇 = 1.4299. Then 𝑛𝑛 = 𝑛𝑛𝐴𝐴𝐴𝐴 = 1.62109,
and the interpolation function has the form: 𝑦𝑦 = 1.62𝑑𝑑1.43. The coefficients 𝑛𝑛 and 𝑇𝑇 of the
interpolation function are rounded to two significant digits after the dot. The adequacy of
the model is proved by tabulating the interpolation function using the function T𝑛𝑛𝑇𝑇𝐴𝐴𝑛𝑛.
Comparing the results of tabulation with the original data, we can conclude that the problem
is solved correctly (the values of the functions are almost the same in the interpolation nodes
𝑑𝑑 = 3 and 𝑑𝑑 = 11), and the interpolation function is a mathematical model of the object under
study. In order to compare the results of the two interpolation methods, the problem of
interpolation of a nonlinear function was solved 𝑦𝑦 = 𝑛𝑛𝑑𝑑𝑇𝑇. The same interpolation nodes were
selected 𝑑𝑑 = 3 і 𝑑𝑑 = 11 and a system of nonlinear equations is solved by means of a function
𝐹𝐹i𝑛𝑛𝑑𝑑r𝑆𝑆𝑆𝑆𝑛𝑛 on initial approximations 𝑛𝑛0 = 2, 𝑇𝑇0 = 1.

The solution looks like this:

104

According to the solution, the coefficients of the interpolation function practically coincide
in the case of linearization of the equation.

Interpolation approximated in nodes
Interpolation, approximated in nodes (approximation), is carried out by the criterion

of minimum standard error (least squares method). Implemented by the Mathematica system
using the function 𝐹𝐹i𝑛𝑛 . Function 𝐹𝐹i𝑛𝑛 looks like:

𝐹𝐹i𝑛𝑛[{{𝑀𝑀}}, {𝑋𝑋𝑋𝑋}, 𝑑𝑑],
where 𝑀𝑀 - is the matrix of the original data,
𝑋𝑋𝑋𝑋 - list of basic variables,
𝑑𝑑 - is the argument of the function.
Method of interpolation using a function 𝐹𝐹i𝑛𝑛[{{𝑀𝑀}}, {𝑋𝑋𝑋𝑋}, 𝑑𝑑] is implemented by
performing the following actions:

1. 1. Introduction of a matrix of initial data with assignment to it of the unique
name, for example, M.

2. 2. Introduction of basic variables X.
3. Enter the function 𝐹𝐹i𝑛𝑛[{{𝑀𝑀}}, {𝑋𝑋𝑋𝑋}, 𝑑𝑑].

An example of solving interpolation problems will be shown in the data given in Table 8.
Table 8. Function in tabular form𝑦𝑦 = 𝑓𝑓(𝑑𝑑)

x 1 3 4 7 10
Y 3.5 6.7 4.2 2.8 1.2

It is necessary to find the interpolation function in the basis. In this example, the function

will look like:𝑛𝑛, 𝑑𝑑, 𝑑𝑑2, 𝑎𝑎
1+𝑎𝑎

, 𝑛𝑛𝑎𝑎𝐹𝐹𝐼𝐼𝑛𝑛

𝐹𝐹𝐼𝐼𝑛𝑛[�{1,3.5}, {3,6.7}, {4,4.2}, {7,2.8}, {10,1.2}�, �𝑛𝑛, 𝑑𝑑, 𝑑𝑑2,
𝑑𝑑

1 + 𝑑𝑑
,𝐸𝐸𝑑𝑑𝐼𝐼[𝑑𝑑]� , 𝑑𝑑]

The solution is shown in the Listing 9.

Listing 9

105

Pade approximation
The Padé approximation is used to interpolate a function given analytically by

a fractional-rational function.
The Pade function has the form:
𝐼𝐼𝑛𝑛𝑑𝑑𝑛𝑛𝐴𝐴𝐼𝐼𝐼𝐼𝑛𝑛𝑆𝑆xi𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛[𝑓𝑓(𝑑𝑑), {𝑑𝑑, 𝑛𝑛, {𝑛𝑛1, 𝑛𝑛2}}];

where 𝑓𝑓 (𝑑𝑑) −function, given in analytical form,
𝑑𝑑 −argument of the function 𝑓𝑓(𝑑𝑑),
𝑛𝑛 −point near which the approximation function is valid,
𝑛𝑛1 −degree of the polynomial of the numerator,
𝑛𝑛2 −degree of the polynomial of the denominator.
Perform the Pade approximation of the function 𝑦𝑦 = 𝑠𝑠i𝑛𝑛𝑑𝑑 near 𝑑𝑑 = 0 for 𝑛𝑛1 = 3 and
𝑛𝑛2 = 4. The approximation procedure in Mathematica is shown in the Listing 10.

Listing 10

According to Listing 10, the approximation is performed correctly. In the range from
𝑑𝑑 = −3 to 𝑑𝑑 = 3 the functions coincide. The Padé approximation has no restrictions on the
form of the original function, as shown in the following example. It is necessary to perform
a Pade approximation of the function 𝑦𝑦 = 𝑑𝑑𝑛𝑛𝑑𝑑 + 1 near 𝑑𝑑 = 0 for 𝑛𝑛1 = 3 and 𝑛𝑛2 = 4. Make
sure that the approximation is certain by plotting. The result of the approximation is shown
in the Listing 11.

106

Listing 11

Spline interpolation
The spline interpolation implementation function is located in the SplineFit

subpackage of the NumericalMath package. Cubic spline interpolation provides high
accuracy of the mathematical model. Before use, you must connect this package with the
following line: << Splines` або Needs["Splines`"]. The function has the following format:
SplineFit[F, type],
Where F is the data presented as a matrix,
type - type of approximation, by default - approximation by cubic splines (Cubic).
Approximation with Bezier and CompositeBezier splines is also possible.

Consider the use of a function on the example of a
matrix: М=((1,13), (2, 7.4), (3, 2.2), (4, 4.4), (5, 9.5), (6, 16)).

It is necessary to obtain a mathematical model of the function 𝑦𝑦 = 𝑓𝑓(𝑑𝑑), using cubic
spline interpolation. Check the reliability of the decision graphically.

The solution is shown in the Listing 12.

107

Listing 12

Listing 12 shows that the solution is not explicit, ie there is no analytical expression

for the interpolation function. This is a significant drawback functions SplineFit[F, type].
From the graph we can conclude that the interpolation is performed quite accurately.

108

Lecture № 10. Functions of spectral analysis of Mathematica system

The Mathematica system has rich capabilities of spectral analysis and signal

synthesis. A large number of built-in functions allows you to perform:
• spectral analysis of signals;
• harmonic analysis of signals;
• signal filtering.
The Fourier transform is performed in the Mathematica system using the following
functions:
• FourierTransform [F (t), t, w] - returns the result of the direct Fourier transform of

the function F (t), represented by the parameter w;
• InverseFourierTransform [F (w), w, t] - returns the result of the inverse Fourier

transform of the expression F (w), which is represented by the parameter t;
• FourierSinTransform [F (t), t, w] - returns the result of the sine Fourier transform

of the function F (t), represented by the parameter w;
• FourierCosTransform [F (t), t, w] - returns the result of the cosine Fourier

transform of the function F (t), represented by the parameter w;
• FourierTransform [F, {t1, t2,…}, {w1, w2,…}] - returns the result of the direct

Fourier transform of the function F {t1, t2,…}, which is represented by the
parameters {w1, w2,…};

• InverseFourierTransform [F, {w1, w2,…}, {t1, t2,…}] - returns the result of the
inverse Fourier transform of the expression F {w1, w2,…}, which is represented by
the parameters {t1, t2,…}.
It is necessary to obtain a direct and inverse Fourier transform of the following

functions:
() tF t teα= ;

()2() cosF t t bt= ;

()2() sinF t t at= ;

()1 2 1 2(,) cos ,F t t t t= .

109

Listing 1

Listing 1 shows that the transformations are performed correctly, because the inverse
Fourier transforms coincide with the original functions.

Spectral analysis based on direct Fourier transform.Direct Fourier transform
allows to obtain the frequency spectrum of the signal represented by samples of its time
dependence. This is often the ultimate goal of spectral analysis.

In fig. 10.1 presents an example of spectral analysis of a simple signal - a triangular
pulse given by the function If. Then, using the Fourier direct Fourier transform function,
the vectors of the amplitudes Mg and the phases Ag of the harmonics of this signal are
explicitly obtained.

110

Fig. 10.1. Example of spectral analysis of a triangular pulse

Here, with the help of ladder-type graphs, the discreteness of the harmonics is

emphasized, and the spectrograms of the amplitudes and phases of the harmonics of the
sawtooth pulse are constructed. The symmetrical mapping of the spectral lines relative to
the eighth harmonic is clearly visible - in our case there were 16 samples of the signal. This
means that the amplitude and phase of the ninth harmonic are the same as in the seventh
harmonic, in the tenth - the same as in the sixth, etc.

111

Lecture № 11. Fundamentals of programming in Mathematica

Mathematica as a programming system
The concept of input system language and implementation language
Mathematica is able to solve many problems without the use of programming.

However, all system tools (alphabet, letters, numbers, operators, and special characters) are
part of a problem-oriented, high-level programming language. According to its capabilities
in performing mathematical and scientific and technical calculations, this language has
significant advantages over conventional programming languages - Pascal, C, C ++.

Mathematica programming language capabilities
The Mathematica system contains a large number of functions, many of which

implement mathematical transformations and modern computational methods, both
numerical and analytical. The Mathematica programming language is a default interpreter
and is not intended for creating executable files. However, individual expressions can be
compiled using the Compile function, which is useful when you need to increase the speed
of calculations. The language of the Mathematica system allows you to implement most
types of programming: functional, structural, object-oriented, mathematical, logical,
recursive, etc.

The core of the Mathematica system has a functional structure. The language of the
system allows you to break programs into separate modules (blocks), procedures and
functions with local variables. Object-oriented programming is based on a generalized
concept of an object. In the Mathematica system, objects can be mathematical expressions,
input and output data, graphs and drawings, sounds, etc. Three main properties are closely
connected with the concept of object: encapsulation, inheritance and polyformism. All of
them are inherent in the objects of the Mathematica system and do not require special tools
for their implementation. Encapsulation means combining in one object both data and
methods of their processing. Inheritance means that each object derived from other objects
inherits their properties. Polyformism - a property that allows you to transfer a number of

The programming language of Mathematica is specially designed to implement any
of these approaches to programming, as well as a number of others, such as recurrent
programming, using which the next step of the calculation is based on the data obtained in
the previous steps. Possibly recursive programming is when the function in the general case
repeatedly addresses itself. Mathematica language tools allow you to implement elements
of visual-oriented programming. Mathematica allows you to create palettes and panels with
various buttons that allow you to control the program or enter new program objects.

The structure of the software environment of the Mathematica system
The structure of the software environment of the Mathematica system can be

represented as follows, shown in Fig. 1.

Fig. 1. The structure of the software environment of the Mathematica system

112

The FrontEnd interface processor is used to orient the system to a specific machine platform.
It determines what the user interface of the system looks like. The central place in the
systems of the Mathematica class is occupied by the machine-independent core of
mathematical operations - Kernel. It contains a set of operators and functions, rules for
calculations and transformations of mathematical expressions. The kernel is made compact
enough for any function to be called from it quickly enough. The Library library and the
Packages extension set are used to extend the feature set. Extension packages are created in
Mathematica's own programming language and are the main means of expanding the
system's capabilities and adapting them to specific classes of user tasks. In addition, the
systems have a built-in help system - Help.

Implementation of recursive and recurrent algorithms
An important place in solving many mathematical problems is the implementation of

recursive and recurrent algorithms. Consider a typical example of the implementation of an
iterative recurrent algorithm for calculating the square root of the expression f (x) at the
initial value of x0 = a, according to the following formulas of Newton's method:
x0 = a and xn = xn-1 - f (xn-1) / f '(xn-1).
This function can be written as follows:
newtoniter [f_, x0_, n_]: = Nest [(# - f [#] / f '[#]) &, N [x0], n]
Then the calculation of the root of the expression ex - 2 with the initial approximation x0 =
0.5 and the number of iterations n can be organized using the functions Nest [] and NestList
[], as shown in Listing 1:

Listing 1

In the first case, the last result is returned, and in others - all intermediate. The FixedPoint
function allows you to perform iterations until the result stops changing (with machine
accuracy). This is illustrated by the example in Listing 2.

Listing 2

Recursive algorithms use calculations in which the body of the function refers to

itself. Mathematica allows this possibility. A typical example of this is the calculation of
the factorial by the formula N! = N * (N-1)! .

113

Fundamentals of procedural programming
The basis of procedural programming is the concept of procedure as a complete

software module and typical controls: cycles, conditional and unconditional, etc. Although,
the programming of Mathematica systems in this case remains functional, because the
elements of procedural programming are given in the form of functions. However, it is
possible to use traditional programming tools - conditional expressions, loops, procedures,
etc.

Procedures are completely independent software modules, have their own identifier
and perform some sequence of operations. They can be described in one line using the
symbol ";" as a delimiter. (semicolon), for example:
r = (1 + x) ^ 2; r = Expand [r]; r-1
This procedure returns the following symbolic expression:
Expand [(1 + x) ^ 2] - 1

Structure is used to create full-fledged procedures and functionsBlock in two
versions:

Block [{x, y, ...}, procedure] - procedure with declaration of the list of local variables
x, y,…

Block [{x = x0, y = y0, ...}, procedure] is a procedure with declaration of the list of
local variables x, y,… with initial values.

An example of the use of structureBlock is shown in Listing 3:

Listing 3

Note that the variable u used in the body of the base structure is local, and assigning

it the symbolic expression (1+ x) ^ 2 in the body of the block is ignored outside the block.
If the variable u has not been defined before use in the function, it remains undefined. And
if it had some value before (for example, 123456 in our case), then after leaving the
procedure, it will have this value.

Organization of cycles
Cycles of type Do
Cycles of this type have several modifications:
- Do [expr, {imax}] - calculates the expression expr imax times.
- Do [expr, {i, imax}] - calculates the expression expr with the variable and, which

alternately takes the value from 1 to imax with step 1.
- Do [expr, {i, imin, imax}] - calculates the expression expr with the variable and,

which alternately takes values from imin to imax with step 1.

114

- Do [expr, {i, imin, imax, di}] - calculates the expression expr with the variable and,
which alternately takes values from imin to imax with step di.

- Do [expr, {i, imin, imax}, {j, jmin, jmax}, ...] - calculates the expression expr using
a series of nested loops with variables j, i, etc.

Examples of the organization of the cycle Do and its implementation are shown in
Listing 4:

Listing 4

The variable i in the body of the loop - the iterator - is local. The entire program with

the loop is stored in one cell. Listing 5 shows a procedure with a Do loop that calculates the
nth Fibonacci number:

Listing 5

Note the use of the Module function in this example. It creates a software module

with local variables (in our case fn1 and fn2), which organizes the recurrent calculation of
Fibonacci numbers. Listing 6 shows the use of the Do cycle to create a chain fraction:

Listing 6

115

For loops
Another type of For loop is implemented by the function:

For [start, test, incr, body]
In it the variable of a cycle at first is appropriated value start, then cyclically changes from
this value to value body with a step incr; and so on as long as the test condition is true.
When the condition becomes false, the cycle ends. The example of Listing 7 shows a simple
program with a For loop and the result of its execution:

Listing7

The program given above allows to observe change of values of a variable of a cycle

i and a variable x which receives for each cycle of an increment equal 5 * i. The end of the
document shows an example of using the Return function [x]. The For loop uses global
variables, so you need to control their use.

While loops

 Cycle recording form:
While [test, expr].
In this type of loop, the value of expr is calculated as long as the test condition is true.The
following is an example of how to organize and use the While loop.

Listing 8

The device of local variables in this type of cycles is not used.

Directives for interrupting and continuing cycles
In these types of cycles and in other structures, you can use the following directives-
functions:

- Abort [] - stops the calculation with the message $ Aborted.

116

- Break [] - exits the body of the loop or the level of nesting of the program
containing the operator (loops such as Do, For and While or the body of the operator -
Swith switch). The operator returns a Null value.

- Continue [] - sets the transition to the next step of the current cycle Do, For
orWhile.

- Interrupt [] - interrupts calculations with the ability to resume them using a dialog
box.

- Return [] - aborts execution with Null return.
- Return [expr] - aborts execution with the return of the value of the expression expr.

Conditional expressions and unconditional transitions
If function
As in most programming languages, conditional expressions are specified using the

operator or the If function. The Mathematica system has the following modifications to
the If function:

- If [condition, t, f] - returns the result t if the condition condition calculation is true,
and f if the result is false.

- If [condition, t, f, u] - returns the result u, if the result of calculating the condition
condition is neither true nor false.

Listing 9 shows a description of a procedure with a Do loop, the output of which is
organized using the If function and the Aborted interrupt directive []:

Listing 9

 A similar example using the Break function in the If function is shown in Listing 10.

117

Listing 10

In this case, no special exit messages are given.
Functions - switches
To organize several branches in the system Mathematica use operators - switches

Which and Switch:
- Which [test1, value1, test2, value2, ...] - calculates in order each condition testi

and returns the value valuei of the first condition testi, which was true.
- Switch [expr, form1, value1, form2, value2, ...] - calculates the value of the

condition expr, then compares it sequentially with each expression formi and returns the
value valuei, the first match of the expression formi with the condition expr.

Examples of using the Which function are shown in Listing 11.

Listing 11

Examples showing the use of the Swhitch function are shown in Listing 12.

Listing 12

Note the last example: if the first parameter is not written correctly, the function

is repeated.
Unconditional transitions

The unconditional transition operator Goto [tag] creates a transition to the
place of the program marked with the label Label [tag]. Forms Goto [expr] and Label

118

[expr] are also possible, where expr is a specific expression. Using the Goto
statement is shown in Listing 13.

Listing 13

Here, with the help of the Goto [start] operator, a loop is organized with the
transition to the Label [start] label, which is executed while the value of q is less than
7. The q changes from the initial value 2 with step 2. An interesting feature of the value
of the computed expression. For example, Goto [2 + 3] translates to Label [5] or even
Label [1 + 4], as shown in the following example:

Listing 14

119

Lecture №12. Anonymous and clean features

 Principlefunctional programming involves the use of only functions when writing. At
the same time repeated embedding of functions in each other is possible. In some cases,
especially during symbolic transformations, there is a mutual recursion of functions,
accompanied by almost unlimited deepening of recursion and increasing complexity of the
expressions processed by the system. The concept of a function is associated with the
mandatory return of some value in response to a call to a function. Returning functions to
some values allows you to use them along with operators to compose mathematical
expressions. Functions are divided into internal and user-defined functions.
 User functions

The process of creating a function in Mathematica is similar to other programming
languages. For example, the function for reducing x to the power of n could be defined as
follows:
powerxn [x, n]: = x ^ n
However, this feature is inoperable. The reason for this is that in Mathematica the symbols
x and n are ordinary symbols and cannot accept formal parameters. For implementation it
is necessary to use variables-samples having after their names underscores. Samples can be
formal parameters of functions and perceive values of actual parameters. Thus, it would be
correct to record the user function in the form:
powerxn [x_, n_]: = x ^ n

Consider another simple example, which specifies the function scn [x, n], which
calculates the sum of sine in degree n and cosine in degree n, examples of which are
shown in Listing 1:

Listing 1

A function can consist of several expressions that are joined by parentheses:
f [x_]: = (t = (1 + x) ^ 2; t = Expand [t])
Variables of the list of parameters, after the name of which is the sign "_", are local in the
body of the function or procedure with parameters. In their place the actual value of the
corresponding parameter is substituted. An example illustrating the use of local variables is
shown in Listing 2:

Listing 2

120

Note that the variable t in the function f is global, which explains the result of the last
operation. The use of global variables in the body of the function is quite possible, but
creates a so-called side effect, in this case changes the value of the global variable t. To
eliminate side effects, it is necessary to use samples and other special ways to create
functions.

Function parameters can be lists, provided they can be combined. For example, in the
powerxn function, Listing 1, suppose you use a list as an x parameter and a variable or
number shown in Listing 3 as n:

Listing 3

Once created, user functions can be used according to the same rules as built-in functions.

Clean functions
Sometimes it may be necessary to use a function only at the time of its creation. This

function is represented only by an expression without a name, which led to its name. To
create such an object is a built-in function Function, which is used in the form of:

- Function [body] - creates a pure function with the body body;
- Function [{x}, body] - creates a pure function of parameter x with body body;
- Function [{x1, x2, ...}, body] - creates a pure function of a number of parameters

x1, x2, ... with body body.
To calculate the function created in this way, a list of parameters is written in square

brackets after it. As an example, Listing 4 shows the code of the net subtraction function
to the degree:

Listing 4

A pure function can be easily converted to a normal user function, as shown in Example
Listing 5:

Listing 5

Anonymous functions
The so-called anonymous functions have an extremely compact form of setting

functions. They have neither a name nor a common definition, they are written in

121

expressions of a special kind. In this expression instead of variables use designations # (for
one variable), # 1, # 2, ... for a number of variables. End the body of the function with the
symbol &. If it is necessary to calculate the value of the function, then after writing it in
square brackets indicate a list of actual parameters. An example of using an anonymous
function is shown in Listing 6:

Listing 6

With anonymous features, it's easy to create regular user functions – Listing 7:

Listing 7

Superposition of functions
Functional programming involves the use of superposition of functions. To

implement it, use the functions:
- Nest [expr, x, n] - applies an expression (function) to a given argument xn times.
- NestList [f, x, n] - returns the list of uses of the function f to the specified

argument xn +1 times.
- Fold [f, x, list] - returns the next element in FoldList [f, x, list].
- FoldList [f, x, {a, b, ...}] - returns {x, f [x, a], f [f [x, a], b], ј}.
- ComposeList [{f1, f2, ...}, x] - generates a list in the form {x, a [x], a [a [x]], ...}.
FixedPoint and Cath functions
In functional programming, instead of the cycles described below, it is possible

use the following function:
- FixedPoint [f, expr] - calculates expr and applies the expression f to it until the result

is repeated.
- FixedPoint [f, expr, SameTest_> comp] - calculates expr and applies the

expression f to it until the next two results are true.
An example of using the FixedPoint feature is shown in Listing 8.

Listing 8

122

The last result 0 is displayed in a separate (numbered) output cell and means the end
of the process of iterations of division t by 2. A chain fraction using the function Nest can
be created using the following arguments:

Another function of this kind - Catch []:
- Catch [expr] - calculates expr, before the first execution of the function Throw

[value], then returns value.
- Catch [expr, form] - calculates expr before the first execution of the Throw

function [value, tag], then returns value.
- Catch [expr, form, f] - returns f [value, tag] instead of value.

123

Lecture № 13. Graphical objects of the user interface and means of input-output

I / O in Mathematica is organized using the FrontEnd interface processor.
Additionally, the system implements a number of additional I / O functions:
- Input [] - stops the system and returns the value of the expression that will be entered in
the dialog box (used to organize dialog input);
- Input [comment "] - works similarly to the previous function, additionally displays in the
dialog box" comment ";
- InputString [] - reads data and saves it in the form of a character string;
- InputString ["comment"] - works similarly to the previous function, additionally displays
in the dialog box "comment"
- StylePrint [expr] - creates a new cell in the current document with the default style and
enters the expression expr;
- StylePrint [expr, "style"] - creates a new cell with style style in the current document and
enters the expression expr in it;
- Print [expr] - displays the value of the expression expr, together with the function Input []
can be used to organize a dialogue;
- Print [prompt », expr] - displays a text comment in quotation marks on the display screen,
followed by the value of the expression expr.
 These functions are enough to organize the simplest dialogue with the
program. Listing 1 shows the simplest example of dialogue. In this case, the length of the
circle is calculated by the value of the radius R.

Listing 1

When the Input [] function is executed, a dialog box appears in the center of the

screen. The window displays the query, which is specified in quotation marks as a parameter
of the Input [] function. After entering the desired value (in the general example, the radius
of the circle), the Input [] function returns the entered value and it is assigned to the variable
R. After that, the Print [] function displays the calculated value of the circle length with a
short comment.

Data output format
Mathematica implements a number of functions to customize the presentation format.

The following functions are most often used:
- - AccountingForm [expr] - displays all the numbers contained in the expression expr, in

the accounting form of presentation;
- CForm [expr] - outputs the expression expr in C format;

124

- EngineeringForm [expr] - displays the real numbers of the expression expr in engineering
form;

- FortranForm [expr] - displays the expression expr in the form adopted for the language
Fortran;

- FullForm [expr] - displays the full form of the expression expr without the use of special
syntax;

- InputForm [expr] - displays the expression expr in input form;
- NumberForm [expr, n] - displays the expression expr in the form of a real number with an

accuracy of n digits;
- - OutputForm [expr] - outputs expr in the standard output form of the Mathematica

system;
- ScientificForm [expr] - displays the expression expr in scientific format;
- TeXForm [expr] - displays the expression expr in the form of the TeX language, which is

focused on the layout of texts with mathematical formulas;
- TextForm [expr] - displays the expression expr in plain text format;
- TreeForm [expr] - displays the expression expr showing different levels of expression.

Listing 2 shows examples of the use of different forms of output.

125

Listing 2

Listing 3 shows a few more examples of using different forms of output.

126

Listing 3

GUI elements
Mathematica tools allow you to create objects GUI (Graphic User Interface) laptops,

which makes the latter much clearer and easier to use.
Single-coordinate sliders
 Sliders allow you to smoothly or discretely change the value of a particular variable.

Fig. 1 shows the repetition of three sliders by the Slider function with different variants of
parameter values, Listing 4.

Fig. 1

Listing 4

In the first case (upper slider), the parameter (number 0.8) determines the position of
its engine. When you move the engine, the value will be returned in the range from 0 to 1.

127

The second slider (in the center) allows you to change the value of the variable x. To make
the value of a variable dynamically available throughout the notebook, the variable is
dynamic, to create it use the function Dynamic [x]. Typically, the range of values of the
variable is from 0 to 1. The third slider allows you to expand the range of values of the slider
from 0 to 100 in steps of 1.

Two-coordinate sliders
To construct surfaces that describe the functions of two variables use two-coordinate sliders.
They are created by the Slaider2D function, Listing 5.

Listing 5

An example of creating a two-coordinate slider is presented in Fig. 2.

Fig. 2. Two-coordinate slider

The engine of such a slider can move the mouse in any direction. The slider returns

two numeric values depending on the position of the engine. These values can be used to
calculate the functions of two variables and plot graphs of surfaces, three-dimensional
figures, parametrically given graphs, etc.
CheckBox graphical user interface element

It is often necessary to perform calculations provided that some options are set, for
which it is convenient to use the CheckBox element, which is created by the CheckBox
function [], Listing 6.
Checkbox[x] Checkbox[Dynamic[x]] Checkbox[x,{val1,val2}]
Checkbox[x,{val1,val2,val3,…}]

Listing 6

Examples of using the CheckBox [] function are shown in Fig. 3.

128

Fig. 3. CheckBox graphical user interface element

Locator

A locator is an object that has the shape of a dot in a graphics window and returns
its coordinates. This object is represented by a painted circle in the middle of the
intersection, which has a bright dot in the middle. The locator is moved with the mouse.
To create it, use the function, Listing 7.
Locator[{x,y}]
Locator[Dynamic[pos]]
Locator[{x,y},obj]
Locator[{x,y},None]

Listing 7

An example of creating a locator is shown in Fig. 4.

Fig. 4

Locators are often used to plot points.

Mouse control functions
Sometimes it is necessary to determine the coordinates of the mouse cursor, which

uses the MousePosition function. An example of its application is shown in Listing 8.

Listing 8

129

The coordinates of the mouse are displayed in the format of integers. Adding the
MousePosition function to the list of parameters of the Dynamic function allows you to
display the coordinates of the mouse cursor as a list of current coordinates.

The Opener [x] or Opener [Dynamic [x]] function responds to each mouse click on
a black triangle. For example, the command {Opener [Dynamic [x]], Dynamic [x]}
displays a list in the output line:
{► ,False}
However, if you click on it, a list will appear
{▼,True}

Function Toggler[x] Toggler[Dynamic[x]] Toggler[x,{val1,val2,…}]
Toggler[x,{val1_>pict1,val2_>pict2,…}] Toggler[x,vlist,dpict] provides the ability to
respond to repeated mouse clicks.

Example,

first displays 1. However, after pressing the mouse button 4 times, the characters a, b, c
and d are displayed.

Button with the inscription
Often some actions must be performed when pressing the button with the

inscription. To create such a button, use the Button [label, action] function. In the list of
its parameters indicate the line with the name of the button and the expression that is
performed when the mouse is activated by the mouse. An example of using the Button
function to derive the factorial of number 10 is shown in Listing 9.

Listing 9

130

Manipulator
 A manipulator is an object similar to a slider, but has greater functionality and visual
capabilities. The manipulator is created using the function: Manipulator [x], Manipulator
[Dynamic [x]], Manipulator [x, {xmin, xmax}], Manipulator [x, {xmin, xmax, dx}]. A
distinctive feature of the manipulator is a characteristic button in the form of a gray
rectangle with a "+" in it. When you activate this button with the mouse, a panel with
slider controls appears under the manipulator slider (see Fig. 5, example above). By means
of bodies (buttons) of management of the manipulator it is possible to start it and to
provide automatic movement of the slider engine, it is possible to change the direction
and speed of movement of the slider, to make its stop. As the slider approaches the start
and end points, the engine has a characteristic shadow.

Fig. 5. Manipulator

Rotator of the radius vector
In some cases, for example, when plotting functions in a polar coordinate system,

you need an object that specifies the angle of rotation of the radius vector. Such an object
- the angle setter - is specified by the angularSlider [] function. In fig. 6 shows an example
of the application of this function.

131

Fig. 6. Setting angle of rotation of the radius vector

The task is a graphic object in the form of a circle, inside which is placed a radius

vector. It can rotate in one direction or another with the mouse, which leads to a change
in the angle set by the unit. In the example shown in Fig. 6, projections of the end of the
radius vector on the coordinate axis are constructed. These projections are known to have
sinusoidal functions. The angle corresponding to the current position of the radius vector
is indicated by dots on the graphs of sinusoidal functions.

Drop-down menu
 The drop-down menu is another widely used object for building a graphical
interface. It is created by the ActionMenu function [name, {lbl1:> act1, lbl2:> act2,…}].
The parameters of the function are a line with an inscription on the button and a list of
names of menu items and actions performed when activating the corresponding menu
items. In the example shown in Fig. 7, calculate the values of the factorials 4!, 7! і 10!.

Fig. 7. Example of creating a menu

Data entry panel

132

The expression input panel is used for interactive input of an arbitrary expression, for
example, to build its graph. It is entered by the Panel function.
Panel[expr], Panel[expr,title], Panel[expr,title,pos],
Panel[expr,{title1,title2,…},{pos1,…}], Panel[].

An example of setting the panel to enter an expression and build its graph is
shown in Fig. 8.

Fig. 8. Example of creating a data entry panel

Note that the default expression (in our case Sin [x]) appears in the input panel,

which is a parameter of the DynamicModule function inside the list of parameters of the
Panel function. This expression is used to plot the output.

Radio buttons and settings menu
The RadioButton [x, val] function creates a so-called circle radio button. The result

of the function can be used for software input of an action. Examples of application of the
radio button are given in Fig. 9.

Fig. 9. RadioButton element

133

Another function in a number of recording formats specifies the construction of the
settings menu has the following recording formats: SetterBar[x,{val1,val2,…}],
SetterBar[Dynamic[x],{val1,val2,…}], SetterBar[x,{val1_>lbl1,val2_>lbl2,…}]. An
example of it is presented in Fig. 10.

Fig. 10. Creating a settings menu with the SetterBar function []

In this example, it is possible to set the meander frequency by activating one or

another menu item with a number..
Another option for building a settings menu is set by the function: Setter[x, val],
Setter[Dynamic[x], val], Setter[x, val, label], Setter[x, {val1, val2,…}, label].

Fig. 11 shows an example in which the settings menu buttons provide the setting of
the corresponding size of the graph of the function sin(x)3.

Fig. 11. Example of using the Setter function []

Color slider

 To change the color of GUI objects, it is convenient to use a slider, which is set by
the following function: ColorSlider[color], ColorSlider[Dynamic[color]], ColorSlider[].

134

Examples of application of this function are shown in Fig. 12.

Fig.12. Color slider

The color of the first square is the current color. To the left of it is the color selection

panel. To select a color, simply place the mouse cursor on the desired color of the panel
and press the left mouse button. The color of the control square will be similar to the
selected one.

Starter mechanism
 The Trigger function simulates the operation of the trigger. It has several forms of
writing: Trigger[Dynamic[u]], Trigger[Dynamic[u],{umin,umax}],
Trigger[Dynamic[u],{umin,umax,du}], Trigger[Dynamic[u],{umin,umax},ups]. The
result of the function shown in Fig. 13, there is a control panel of the starting mechanism.

Fig. 13. The starting mechanism

When you press the start button (large triangle), the value of the dynamic variable

x begins to change from 0 to 1 within a few seconds. Then this change stops. The panel
also has buttons to stop variables and return to 0 (Reset).

Functions for marking additional information on graphs
Function ClickPane[image,func],

ClickPane[image,{{xmin,ymin},{xmax,ymax}},func] used to indicate a point in the image
image using the expression func. Most often, the ClickPane function is used to select with
the mouse cursor a certain place in the image, in which you need to click to place a graphic
object, such as a point, arrowhead, circle, etc. In fig. 14 shows an example of the use of a
function to denote the extremum of a sinusoidal function by means of an arrow emanating
from the inscription "Extremum".

135

Fig. 14. Example of using the ClickPane function []

Function Tooltip[expr, label] displays the expression expr and replaces it with the

label if the mouse cursor is set to the expression expr. In fig. 15 shows the simplest
implementation of this function.

Fig. 15. Example of using the Tooltip function []

If you hover the mouse cursor over the result displayed in the line, the text text

"This is the sum of 2 +3!", Which was specified as a label parameter, will be displayed..
 In another example, Fig. 16, shows the use of this function to recognize one of two curves
constructed in one color.

136

Fig. 16. Graphic recognition by Tooltip function []

To recognize a graph with the Tooltip [] function, you must hover the mouse cursor

over one of the curves. Fig. 17 shows an example of using the Tooltip [] function to
determine the exact value of the ordinate of a point graph of a sinusoid when hovering
over the desired point of the mouse cursor.

Fig. 17. Determining the value of the ordinate of a scatter plot by the Tooltip function []

Cursor-activated messages
The function PopupWindow [] provides control over the mouse cursor placed in it

object. If the cursor is placed on the object, it is modified and a panel with the specified
message appears. For example, in Fig. 18 object is a circle, which at the time of hovering
the mouse cursor changes color. Then, after the panel labeled "This is a disk" appears, the
circle restores color.

Fig. 18. Messages activated by the cursor

137

Display the menu and select its position
The MenuView function [] provides the creation of menus with drop-down items

under numbers that correspond to the value of the variable n. In the example of Fig. 19
calculate the function tan (nx) for different n.

Fig. 19. Example of using the MenuView function []

Display of menus with attachments and navigation between them
The TabView function [] displays a menu with attachments that you can switch

between by left-clicking. An example of the application of this function is shown in Fig.
20. In this case, an image is created in the object window, which is created by a cellular
automaton using the CellularAutomaticc [] function with different values of the r (rule)
parameter. Possible values of r are selected from the list by activating the corresponding
tab with the mouse.

Fig. 20. Example of using the TabView function []

Slide menu
Slide menus are used to create presentations. To create a slide menu, use the

SlaidMenu [] function. Working with the function is shown in Fig. 21. When activating
the buttons with triangle images, you can select a symbol from the list. Switching can go
in any direction, as well as immediately at the beginning or end of the list.

138

Fig. 21. Example of using the SlaidMenu function []

Creating windows of interactive dialogue with the user
Mathematica provides the ability to create dialog boxes based on the GUIKit

extension package. Fig. 22 shows a call to this packet and a window to demonstrate
arithmetic operations with two input numbers. To create even such a simple example
requires a program containing about sixty lines. It is represented by the file Calculator.m.

Fig. 22. Example of using GUIKit

139

Lecture № 14. Rules for writing effective code and debugging programs

Like any software system, Mathematica is designed to automatically process
information - in our case mathematical. Most often, this processing is reduced to
calculations and their visualization, such as graphics.

Information can be represented in a variety of ways: numbers, mathematical
formulas, text symbols and other elements of information.

At the level of its input programming language and communication with the user,
the Mathematica system operates with three main data classes:

• numerical, representing numbers of different types;
• symbolic, representing symbols, texts and mathematical expressions (formulas);
• lists - data in the form of many similar or different types of data.

Each of these data classes, in turn, has a number of special, more private data types.

Working with integers
Mathematica uses integers with different bases and decimal numbers with a floating

point (they are often called floating point numbers), presented in different notations. Of the
integers widely used binary numbers with base 2, octal with base 8, decimal with base 10
and hexadecimal numbers with base 16. The most common are decimal numbers
(DECIMAL). Each digit of such numbers has a representation given by one of the Arabic
numerals: 0, 1, 2, 9. Weighting factor of the highest digit relative to the previous one is
equal to 10.

The construction is used to calculate numbers with an arbitrary base Basis ^^
number.

The number must be written according to the rules of writing numbers with the
appropriate basis. For bases greater than 10, the letters a to z are used to denote the values
of numbers. The most well-known of the numbers with a bit rate of more than 10 are
hexadecimal numbers (HEX - from the word hexagonal). The digit of such numbers can
matter:
HEX 0 1 2 3 4 5 6 7 8 9 a b c d e f
DECIMAL 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
The senior category has a weighting factor relative to a given category, equal to16.

Examples of problems of hexadecimal and life numbers:
16 ^^ 123abcde
305839326
2 ^^ 1010111
87
A function is used to represent numbers with an arbitrary base n (up to 32) BaseForm

[expr, n] – returns the expression expr in the form
BaseForm [87,2]
10101112
BaseForm [305839326,16]

140

123abcde16

To obtain lists of numbers of different integers is a function IntegerDigits [n, b, len],
where n is a number, b is the base, and len is the length of the numerical sequence,
supplemented by zeros on the left. Parameters b and len may be missing. Examples of
application of this function are presented below:

IntegerDigits [1234]
 {1,2,3,4}
IntegerDigits [1234,2]
 {1,0,0,1,1,0,1,0,0,1,0}
IntegerDigits [10!, 8]
 {1,5,6,5,7,4,0,0}
IntegerDigits [10!, 10,12]
 {0,0,0,0,0,3,6,2,8,8,0,0}
In fact, the methods used in symbolic mathematics to represent numbers are more

compact than the simplest, but this does not change the essence of the main thing: the greater
the number of digits of the number, the more memory is allocated for its storage. Particular
attention is paid to the compact storage of numbers in the Mathematica system, which has
reduced several times the memory consumption for storing large numerical arrays and
reduce the time spent working with them.

A typical example of working with large-digit integers is the calculation of the
factorial n! = 1 * 2 * 3 * ... * n (under 0! = 1):

1000! / 950!
 287731343120013000702468807306664495322316807860141258 \
 460384342116480177434914877476604012266378453263443734 \
 579833577037680948110803599360000000000000
(20! +5!) / 22!

 20274183401472001
9366672731480064000

Note that the "\" sign at the end of the output line of the first example means the

translation of the following characters to a new line.
Integer data are integers, such as 1, 2, or 123, that are provided by the system without

error or bit limit.
Moreover, arithmetic operations on integers the system also performs without errors and
without limiting the number of digits:

+123456789123456789123456789 ^ 2

% / +123456789123456789123456789

100 + 123

1000-1

141

Rational data are given by the ratio of integers, such as 123/567, and also represent

the result accurately:
1000000/3000000
1
3

(124-1) / (455 + 1)
 41

152

Working with real type numbers
Real numbers can have different forms, for example 123.456, 1.23456 10 ^ 2,

12345.6 10 ^ 2 і т.д. In the general case, they contain a mantissa with integer and fractional
part and an order that is entered as the power of 10. As a rule, real numbers in symbolic
mathematics systems can have a mantissa with any but finite number of characters..
The space between the mantissa and the order is equivalent to the multiplication sign *:

23.456 * 10 ^ 100
2.3456×10101
10 ^ -100
1/100 \
00
10. ^ - 100
1×10-100
As is customary in most programming languages, the whole part of the mantissa is

separated from the fractional part by a dot, not a comma. The sign "\" means the translation
of a line (part of a number). It, by the way, can be used in the input cells.

Mathematica performs operations on numbers, initially as integers. However, setting
the punctuation mark means that the number is considered valid. For example, the number
1 is an integer, but 1. is already a real number. The function is used to represent the
expression expr in the form of a real number N [expr] or N [expr, number_digits_result]

1/3
1
3

1./3
0.333333
N [1/3]
0.333333
N [2 * Pi, 50]
6.283185307179586476925286766559005768394338
N [2 * Pi, 500]
6.283185307179586476925286766559005768394338798750211641949889184615
\6328125724179972560696506842341359642961730265646132941876892191011
6\446345071881625696223490056820540387704221111928924589790986076392

142

88\57621951331866892256951296467573566330542403818291297133846920697
220\9086532964267872145204982825474491740132126311763497630418419256
5850\818343072873578518072002266106109764093304276829390388302321886
61145\40731519183906184372234763865223586210237096148924759925499134
703771\5054497824558763660238983
Real numbers always have some error in representing the results due to their

inevitable rounding and the existence of the so-called "machine zero" - the smallest number
that is perceived as zero.

Mathematica has two system variables that allow you to display the values of the
maximum and minimum possible values of the numbers with which the system operates:
$MaxMachineNumber та $ MinMachineNumber.

Character data and strings
Symbolic data in the General case can be individual characters (for example, a, b, ...,

z), strings (strings) and mathematical expressions expr (from expression - expression),
represented in symbolic form. Character strings are specified by a string of characters in
quotation marks, such as "Sssss". They can use the following control characters for small
objects:

\ n new line (line feed),
\ t tabulation.

It is shown in following examples:
«Hello my friend!»
Hello my friend!
«Hello \ nmy \ friend!»
Hello
my
friend!
«Hello \ tmy \ tfriend!»
 Hello my friend!

Keep in mind that control characters are not displayed by the printer and are not

displayed, but only force them to perform their assigned actions. Mathematica has many
functions for working with strings, which will be described below.

Both operators and functions are used to write mathematical expressions. Their
features will be discussed later. In the meantime, let's note some subtleties of the syntax of
the system used when writing arithmetic operations:

• the multiplication sign can be replaced by a space;
• built-in functions start with a capital letter and usually repeat their common

mathematical notation (except for those whose names have Greek letters - are they
reproduced in Latin?

• we letters by the sound of the corresponding Greek letters);
• parentheses (...) are used to highlight parts of expressions and prioritize their

execution;
• parameters of functions are set in square brackets [...];

143

• curly braces are used when specifying lists {...}.

Support for multi-core microprocessors
Currently, the leading manufacturers of microprocessors (Intel, AMD, IBM, etc.) are

moving to the production of new multicore microprocessors (multicore processors), which
implement methods of parallel computing, are previously used only in the super? Computers
(including clusters). Mathematica became the first SCM, in some versions of which for the
first time provided both Hyper Threading technology and support for the capabilities of the
latest multi-core processors. These advantages are realized primarily in solving problems in
linear algebra. In this area, the easiest way to break down computational processes into
separate parts performed by individual processor cores.

The interface part of Mathematica is implemented as a separate process, separate from
the processes of its computing core. This creates a dialog interface even when the multi-core
processor is under maximum load. Even when using a dual-core Mathematica processor
provides work on various kernels of the interface module and a computing kernel (kernel).
As a result, the "reflection" time, traditionally significant for previous versions of
Mathematica, has been reduced by about 1000 times.

The figure shows a comparison of computation times in solving the four most
characteristic problems of linear algebra in SCM Mathematica on a computer. Comparative
results of matrix calculations in Mathematica for PCs with single-core and 8-core
microprocessors.

144

Lecture № 15. Mathematica data storage commands

Although Mathematica is focused on mathematical applications, it is quite complete
with functions for working with strings. They may be needed both for organizing the output
of text messages (such as labels on graphs) and for organizing text dialogue when
developing extension packages and system applications. In addition, we must always
remember that Mathematica is a system of symbolic mathematics, so that the symbolic
transformation, both purely mathematical and conventional, it, of course, is given a lot of
attention.

Many functions for working with strings perform common transformations,
available in most high-level programming languages. String is an arbitrary string of
characters enclosed in quotation marks, such as "String". Below are some functions for
working with strings:

• StringByteCount ["string"] - returns the full number of bytes used to store
characters in the string "string";

• StringDrop ["string", {m, n}] - returns the string "string", deleting characters
from m to n;

• StringJoin ["sl", "s2", ...] or StringJoin [{"s1", "s2", ...}] - forms a string
containing the concatenation (merging) of the specified strings "s1";

• Stringlnsert ["string1", "string2", M] - inserts the string "string2" into the
string "string1", starting from the position M from the beginning of this string (with a
negative M the position is subtracted from the end of the specified string);

• StringLength ["string"] - returns the number of characters in a string;
• StringReplace ["string", "s1 ->" spl "] or StringReplace [" string ", {" s1 "->

"spl", "s2" -> "sp2", ...}] - replaces s1 "with" spi "whenever they appear as a substring"
string ";

• StringReverse ["string"] - changes the order of the characters in the string
"string" to the opposite;

• StringPosition ["string", "sub"] - returns a list of line items "sub" in the line
"String";

• StringTake ["string", n] - returns a string consisting of the first n characters of
the string "String";

• StringTake ["string", -n] - returns the last n characters of the string "string";
• StringTake ["string", {n}] - returns the nth character in the string "string";
• StringTake ["string", {m, n}] - returns a string of characters located in

positions m to n of the string "string".
These features are well known to programmers working with modern programming

languages. A large number of additional functions for working with strings can be found in
the application. The large number of such functions in the programming language of the
Mathematica system indicates its universal nature and great opportunities in solving even
seemingly far from mathematics problems. The following are examples of a number of
string operations.

In Out

StringByteCount ["Hello!"] 6

145

StringDrop ["Hello my friend!", 6] my friend!
StringDrop ["Hello my friend!", -10] Hello
StringDrop ["Hello my friend!", {7}] Hello у friend!
StringDrop ["Hello my friend!", {6, 8}] Hello friend!
Stringlnsert ["Hello friend!", "My", 6] Hello my friend!
StringJoin ["Hello", "my"] <> "friend!" Hello my friend!
StringLength ["Hello"] 5
StringPosition ["Hello my friend!", "E"] {{2, 2}, {13, 13}}
StringReplace ["Hilo", "i" -> "el"] Hello
StringReverse ["Hello!"]! OlleH
StringTakef "Hello my friend!", 6] Hello
StringTake ["Hello my friend!", -8] friend!
StringTake ["Hello my friend!", {7, 9}] my

Note a few more features related to working with characters and strings:

• FromCharacterCode [n] - returns a string consisting of one character with code
n;

• FromCharacterCode [{n1, n2, ...}] - returns a string consisting of a sequence of
characters with codes ni;

• Characters ["string"] - returns a list of integer codes corresponding to the string
characters "string";

• ToLowerCase ["string"] - produces a string in which all letters are converted to
lowercase;

• ToString [expr] - returns a string corresponding to the output form of the
expression exrr. Options set line width, format type, etc .;

• ToUpperCase ["string"] - produces a string in which all letters are converted to
uppercase;

• Unique [] - creates a new character with a name in the form $ nnn (nnn - a
unique sequence number);

• Unique [x] - creates a new character with a name in the form x $ nnn (nnn - a
unique sequence number);

• Unique [{x, y, ...}] - creates a list of new characters with unique names;
• Unique ["xxx"] - creates a new character with a name in the form xxxnnn (nnn

- a unique sequence number);
• Unique [name, {attrl, attr2, ...}] - creates a character with the specified attri

attributes;
• UpperCaseQ [string] - returns True if all string characters are uppercase

(uppercase), otherwise returns False.
The examples below show how to work with these functions.
In Out

ToCharacterCode ["Hello!"]
{72,101,108,108,111,33}
FromCharacterCode [{72,101, 108, 108, 111, 33}] Hello!
ToExpression ["2 + 3 * 4"] 14

146

ToLowerCase ["HeLLo!"] Hello!
ToUpperCase ["Hello"] HELLO

Введення (In) Виведення (Out)

x: = ToString [2 + 3 * 4]

X 14
Unique [] $ 1
Unique [xyz] xyz $ 2
Unique [xyz] xyz $ 3
UpperCaseQ ["Hello"] False
UpperCaseQ ["HELLO"] True

Streams and files

The Mathematica system has advanced tools for working with streams and files. A
stream is a continuous sequence of data circulating inside a computer. The exchange of
threads occurs almost continuously, for example, when entering the input stream comes
from the keyboard to the computer, when printing the data stream comes from the computer
to the printer through the printer port, etc.

A file is an ordered data structure that has a name and is stored on any medium, most
often on a magnetic disk. Files can have different formats and different types of access to
the information stored on them. The most common document files in the Mathematica
system are sequential access files and have a text format.

Serial access means that information from an open file can be read strictly
sequentially from its beginning to the end indicated by a special label. it resembles reading
from a tape. The text format means that all data is written as ASCII code. Therefore, you
can read such a file using any text editor that works with texts in the form of ASCII codes.

Streams and files have a lot in common: names, a certain structure, the need to open
before use and close after use. However, if the user encounters the files at the beginning of
the system (you need to call a file with a demo document or save it, and then call another
file), then the concept of flow at work the system is almost non-existent, although beyond
our control, data streams are constantly flowing between the computer and its peripherals.

Simplified work with files
Before considering the rather large capabilities of the system to work with files in

general, we note the simplified method of calling a file using the double character "<<":

<< filename

This command reads the file with the specified filename and stores in the computer's
memory the definitions contained in it. The file must be specified in full, ie together with
the extension. The exception is when the file is in the main directory of the system. This
command is equivalent to a function Get ["filename", key].

To write an object (variable, array, list, etc.) in the file are simplified commands:

147

• expr >> filename - passes the value of expr to a file with a given name;
• exp >>> filename - adds expr to the end of the file with the specified name.
These commands are essentially abbreviated (and therefore more convenient)

forms of the following functions:

• Get ["filename", "key"] - reads a file that is encoded by the Encode function
using the key "key";

• GetContext ["context '"] - loads a file with the specified context;
• Put [exprl, expr2, ..., "filename"] - writes a sequence of expri expressions to a

file named filename;
• PutAppend [expr1, expr2, ..., "filename"] - appends a sequence of expri

expressions to a file named filename.

Another simplified feature -! !! filename - displays the contents of the file with the
specified name.

The following examples show writing a list to a C: \ ma.vat file, reading it, then
adding another list to the file, and controlling the context of the file:

{{1, 2,3}, {4,5,6}, {a, b, c}} >> C: \ ma.val

<< С: \ ma. val

{{1, 2, 3}, {4, 5, б), {а, b, с}} {d, e, f} >>> C: \ ma.val

<< С: \ mа. val

{D, e, f}

!! З: \ mа.val
1, 2, 3, 4, 5, б, а, b, з d, e, f

This form of call is especially convenient for calling extension files and system
applications. The file is specified according to the rules accepted in MS-DOS. Application
package files have the extension .t. We have already given examples of using the definitions
contained in the system extension package files.

There are a number of features for working with files:
• ReadList ["filename"] - reads all remaining expressions in the file "filename" and

returns them as a list;
• ReadList ["filename", type] - reads from the file "filename" objects of the specified

type type to the end of the file. Returns a list of counted objects;
• ReadList "" filename ", {typel, type2, ...}] - reads objects of the specified types

typei to the end of file filename;
• ReadList ["filename", types, n] - reads only the first n objects of the specified

types types from the file filename;
• Save ["filename", x1, x2, ...] - creates a file with the specified filename name,

which contains the values of variables x1, x2, ...;

148

•! command - executes the specified command of the operating system.

Suppose that a text editor creates a file with the full name C: \ datas.txt in ASCII
format, containing just six numbers with punctuation, placed in two lines and representing
an array of 2x3 elements:

1 11.2 34.5
2. 3.4 56

Then the structure of the file can be judged using the command !! З: \ datas.txt

1 1.2 34.5 2. 3.4 56.

It is easy to see that the file structure corresponds to the structure of the array.
However, reading the file with the << name command gives the following result:

<< С: \ datas. txt

380.8

The result represents the calculation of the expressions of another line of the file.
Reading with the ReadList function without an additional argument also gives erroneous
results:

ReadList ["З: \ datas.txt"]

{41.4, 380.8}

It is easy to see that the function perceived EVERY line of the file contents as the
result of multiplying three numbers (a space in Mathematica means multiplication). With
the additional parameter Number all numbers are read correctly:

ReadList ["З: \ datas.txt", Number]

{1, 1.2, 34.5, 2., 3.4, 56.}

However, we received a one-dimensional list - the data is simply read line by line.
Applying an additional parameter in the form {Number, Number} gives the

following result:

ReadList ["З: .txt", {Number, Number}]

{{1, 1.2), {34.5, 2.}, {3.4, 56.}}

The correct result can be obtained using the option RecordList-> True.

149

ReadList ["C: .txt", Number, RecordLists-> True]

{{1, 1.2, 34.5), {2, 3.4, 56.}}

Share Add-On package files use features that allow you to specify the context of the
files:

• Needs ["context '", "filename"] - downloads a file if the specified context is not
in the download list;

• Needs ["context s"] - downloads a file whose name is determined by the
ContextToFilename ["context h"] function if the specified context is not in the download
list.

Downloading files with their specified contexts avoids conflicts between different
extension packages used at the same time.

Unified approach
In the general case, the following functions are used to read data from an arbitrary

file:
• OpenRead ["file"] - opens the specified file for reading and returns the

corresponding object of type InputStream.
• Read [stream] - reads expressions with the specified input stream and returns it.
• Read [stream, type] - reads one object of the specified type and returns it.
• Read [stream, {type1, type2, ...}] - reads and returns a sequence of objects of these

types.
As the type of read object can be specified:
Byte - one byte of data, represented as a whole code,
Character - a single character,
Expression - a complete expression of Mathematics,
Number - integer or real number in exponential format, Real - real number in
exponential format,
Record - a sequence of characters separated by a string "\ n", String - a string ending
with a newline,
Word is a sequence of characters separated by either the string "\ t" or "".
The Read function Returns EndOfFile if the end of the file is reached.
Close [stream] - closes the specified stream.

The example below reads the first line of a text file and displays it in a laptop cell
window if the file is not empty:

fileStream = OpenRead ["З: \ sampleFile.txt"];

textLine = Read [fileStream, String];

If [textLine ≠ "EndOfFile",

Print [textLine];

];

150

Close [fileStream];

Using files of other programming languages

Of the functions for working with files, the following function-directive should be
especially noted:

• Splice ["file .mx"] - inserts into files in other programming languages calculated
expressions of the Mathematica system, which must be written in parentheses of the form
<* and *>;

• Splice ["infile", "outfile"] - reads the infile file, interprets the fragments between the
parentheses <* and *>, and writes the result to the outfile file.

This feature is especially important when using programs in the programming
languages C (.me extension), Fortran (.mf extension) and TECH (.mtex extension), for
formats for which Mathematica has the means to convert expressions (CForm, FortranForm
and TexForm, respectively). Thus, it is possible to export Mathematica system expressions
to programs written in these languages.

Let's explain the application of the Splice directive function. Suppose there is an
exported program in C, which must calculate the numerical value of some integral, and we
want to get a formula for this integral by means of the Mathematica system. Suppose it is
represented by the file demo.me. It can be viewed as follows:

!! demo.me

#include "mdefs.h"

double f (x)

double x;

{

double y;

у = <* Integrate [Sin [x] ^ 5, x] *>;

return (2 * y- 1);

}

After performing the function Splice ["demo.me"], the program will be written to
the file demo.c, in which the expression in parentheses <* ... *> is replaced by the calculated
value of the integral (in the form CForm). The file will look like this:

!! demo.с

#include "mdefs.h" double f (x) double x;

151

{

double y;

у = 5 * Cos (x) / 8 + 5 * Cos (3 * x) / 48- Cos (5 * x) / 80;

return (2 * y- 1);

}

Record definitions
Of the simple functions that provide files with defined definitions, it is also worth

noting the Save function:

Save ["filename", symb1, symb2, ...]

It adds symbi character definitions to the filename file (simplified Save forms are
possible).
Here is an example of its use:

f [x_] = Sin [x] + y

у + Sin [x]

у = а

а
Save ["demol", f]

!! demol

f [x_] = у + Sin [x]

у = а

Other features for working with files

In general, the tools of the Mathematica system provide the ability to work with
various files, inherent in MS-DOS, without leaving the system environment. The functions
related to this group are given in the appendix. These functions are characterized by the fact
that at the time of execution they do not give a visible effect. Such functions include
functions for copying directories and files,
change their names, delete them, etc. They are well known to MS-DOS users and can be run
from the Mathematica environment.

Considering the large list of file and current operations, you can involuntarily
conclude that they are redundant. But here's a simple rule: if you don't want to use these
features, don't! They are designed for the user, seriously engaged in docking Mathematica

152

systems with other software systems.
An important place is occupied by functions that provide information about

directories, files and streams. These include the following functions:
• Directory [] - returns the current working directory;
• DirectoryStack [] - returns the contents of the directory stack, which represents

the sequence of directories used in the current session;
• $ Display- returns a list of files and channels (pipes- channel or abstract file)

used by the output function
$ DisplayFunction by default;

• FileByteCount ["filename"] - returns the number of bytes in the file;
• FileDate ["filename"] - returns the date and time of the last modification of the

file as a list;
• Filelnformation ["filename"] - returns information about the photo;
• FileNames [] - lists all files in the current working directory;
• FileNames ["form"] - lists all files in the current working directory whose

names match the form template;
• FileNames [{"forml", "form2", ...}] - lists all files whose names correspond to

any of the formi templates;
• FileNames [forms, {"dirl", "dir2", ...}] - lists files with names corresponding to

forms templates in any of the specified diri directories;
• FileType ["filename"] - returns the file type: File, Directory or None (if the

specified file does not exist);
• $ HomeDirectory - gives the name of the "home" directory of the user;
• $ Output - gives a list of files and channels in which the standard output of the

Mathematica system is sent;
• ParentDirectory [] - returns the name of the parent directory for the current

working directory;
• ParentDirectory ["dir"] - returns the name of the parent directory for the dir

directory;
• $ Path - gives a list of directories to view when trying to find an external file;
• StreamPosition [stream] - returns an integer that indicates the position of the

current point in the open stream;
• Streams [] - returns a list of all streams currently open;
• Streams ["name"] - lists only streams with the specified name.

The following examples illustrate the use of most of these fairly simple functions:

Directory []

C: \ PROGRAM FILES \ WOLFRAM RESEARCH \ MATHEMATICA \ 4.0

DirectoryStack []

{} / $ Display

153

stdout

FileByteCount ["C: .val"]

46

FileDatef'C: .val "]

{1999 року, 8, 3, 16, 4, 44}

FileInformation ["C: .val"]

{File-> C: \ ma.val, FileType-> File, Date -> 3142685084, ByteCount -> 46}

Filenames []

{Examples, FILES, MATHEMATICA.EXE, MATH.EXE, MATHINSTALLER.EXE,
MATHKERNEL.EXE}

FileType ["C: .val"]

File HomeDirectory []

c: \ $ 0utput

{OutputStream [stdout, 1]}

ParentDirectory []

З: \ m3 Streams []

{OutputStream [stdout, 1],

OutputStream [stderr, 2]}

The above reasoning about the redundancy of the set of operations can be applied to
these functions.

154

Lecture № 16. Interaction of Mathematica system with MatLab program using
MatLink package

There is a multi-platform package called MATLink for calling the MATLAB

function directly from Mathematics and organizing the exchange of data and variables
between the two systems. It makes it easy to call MATLAB functions directly from
Mathematic and transfer different data from one system to another.

Installation. First, go to the MATLink home page and follow the instructions.
The easiest way is to download the archive and unzip it to this folder:

In [1]: =

Next, follow the instructions for the specific operating system in the section "Link
with MATLAB" on the main page.

Using MATLink. MATLink can be loaded by calculating the cell with the code:

In [2]: =

And then run the MATLAB command:

In [3]: =

This will launch a new process in MATLAB with which Mathematica will be

able to interact. MEvaluate should be used to use arbitrary MATLAB commands. The
data will be transmitted as a string.

In [4]: =

Out [4] =

(* ==>

ans =

 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1
 *)

SystemOpen @ FileNameJoin [{$ UserBaseDirectory,"Applications"}]

Needs ["MATLink`"]

OpenMATLAB []

MEvaluate ["Magic (4)"]

155

To transfer data to MATLAB, you must use MSet:
 In [5]: =

Out [5] =

(* ==>

x =

 1 2 3 4 5 6 7 8 9 10

*)

Use MGet to restore data:
 In [6]: =

Out [6] =

A large number of data types are supported, including liquefied arrays,

structures, and cells.
MATLAB functions can be called directly from Mathematica using the

MFunction function:
In [7]: =

Out [7] =

Construct in Mathematica the surface of the MATLAB logo and add

manipulator that will adjust the period of oscillation:

MSet ["x", Range [10]]; MEvaluate ["x"]

MGet ["X"]

(* ==> {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.} *)

eig [{{1, 2}, {3, 1}}]

eig = MFunction ["Eig"];

(* ==> {{3.44949}, {-1.44949}} *)

156

 In [8]: =

Manipulate [

ListPlot3D @ MFunction ["Membrane"] [k],

{K, 1, 12, 1}

]

Out [8] =

Fullerene structure (bucky ball) straight from MATLAB:
In [9]: =

Out [9] =

It is also easy to display Mathematica data in a separate scalable window for

AdjacencyGraph @ Round @ MFunction ["Bucky"] []

157

images used in MATLAB:
In [9]: =

mlf = LibraryFunctionLoad ["demo_numerical", "mandelbrot", {Complex}, Int

eger];

mandel = Table [mlf [x + I y], {y, -1.25, 1.25, .002}, {x, -2., 0.5, .002}];

MFunction ["Image", "Output" -> False] [mandel]

Out [9] =

The following examples illustrate the solution of real problems using MATLink,

allowing you to use the best qualities of MATLAB and Mathematica.
Rapid Delaunay triangulation. Mathematica includes the

DelaunayTriangulation function inside the ComputationalGeometry package (In
version 10, this package became built into the kernel and is now called DelaunayMesh.
It is optimized and now its performance is not inferior to MATLAB - ed.), But it works
very slowly (although it also has its strengths, such as the use of exact arithmetic and
working with collinear points). This, in turn, leads to the fact that ListDensityPlot works
very inefficiently (which becomes noticeable when building several thousand points or
more). Using MATLink, we can use the Delaunay function from MATLAB to calculate
the Delaunay triangulation of some set of points as follows:

In [10]: =

Since the Mathematica function returns a list of contiguous vertices, we need to
post-process the result in order to compare with the result from MATLAB'а:

In [11]: =

delaunay = Composition [Round, MFunction ["Delaunay"]];

158

Needs ["ComputationalGeometry`"];

delaunayMma [points_]: =

 Module [{tr, triples},

 tr = DelaunayTriangulation [points];

 triples = Flatten [

 Function [{v, list},

 Switch [Length [list],

 (* Account for nodes with connectivity 2 or less *

)

 1, {},

 2, {Flatten [{v, list}]}, _, {v, ##} & @@@ Partiti

on [list, 2, 1, {1, 1}]]

] @@@ tr, 1];

 Cases [GatherBy [triples, Sort], a_ /; Length [a] ==3 :> A[[1]]]

]

A random set of points usually has a unique Delaunay triangulation, so we will
need to verify that the systems give the same result.

159

In [12]: =

And build a triangulation with:
 In [13]: =

trianglesToLines [t_]: =

Union @ Flatten [{{# 1, # 2}, {# 2, # 3}, {# 1, # 3}} & @@

 Transpose [Sort / @ t], {{1, 3}, {2}}];

Graphics @ GraphicsComplex [pts, Line @ trianglesToLines @ delaunay [pts]]

Out [13]: =

However, in addition to the fact that delaunay runs much faster than

Sort [Sort / @ Delaunay [pts]] === Sort [Sort /@ DelaunayMma [pts]]

pts = RandomVariate [NormalDistribution [], {100, 2}];

160

DelaunayTriangulation (especially for large datasets), it is also a faster triangulator that
is used inside ListDensityPlot. So we can use delaunay from MATLAB to develop our
own version of listDensityPlot, which runs faster than the built-in function and can also
handle large data sets as follows:

In [14]: =

listDensityPlot [data_? MatrixQ, opt: OptionsPattern []]: =

 Module [{in, out, Tri, colfun},

 tri = delaunay [data [[All, 1;;2]]];

 colfun = OptionValue [ColorFunction];
 If[Not@MatchQ [colfun, _Symbol | _Function],Check[Colfun =
ColorData [colfun], colfun = Automatic]];
 If[Colfun === Automatic, colfun = ColorData ["LakeColors"]];
 Graphics [
 GraphicsComplex [data [[All, 1;;2]],
 GraphicsGroup [{EdgeForm [OptionValue [Mesh
Style]], Polygon[Tri]}],
 VertexColors -> colfun / @ Rescale [data [[All, 3]
]]
],
 Sequence @@ FilterRules [{opt}, Options[Graphics]], Me
thod -> { "GridLinesInFront" -> True}
]
]

Let's compare the received function with built-in, using thus an array from 30
000 points:

In [15]: =

pts = RandomReal [{-1, 1}, {30000, 2}];

atic, MeshStyle -> None, Frame -> True};

Options[ListDensityPlot] = Options[Graphics] ~Join~ {ColorFunction -> Autom

161

values = Sin[3 Sqrt[# 1 ^ 2 + # 2 ^ 2]] & @@@ pts;

In [16]: =

listDensityPlot [ArrayFlatten [{{pts, List / @ Values}}], Frame -> True] // Absol

uteTiming

Out [16] =

{0.409001, --Graphics--}

In [17]: =

ListDensityPlot [ArrayFlatten [{{pts, List / @ Values}}]] // AbsoluteTiming

Out [17] =

{12.416587, --Graphics--}

The difference in execution speed turned out to be quite significant (~ 30 times).

To work with hundreds of thousands of points ListDensityPlot is almost unsuitable,
while listDensityPlot takes only a few seconds.

It is also important to note that to measure the speed of MATLink, you must use
the AbsoluteTiming function, which calculates all the time spent, while Timing
measures only the time when the CPU was used by the Mathematica core, without
measuring the time spent by MATLAB.

Audio filtering with signal processing tools (signal processing toolbox). As
you know, signal processing functionality was missing in Mathematica until the ninth
version, and is still inferior to MATLAB tools in terms of functionality and ease of use.
Suppose we have 8 versions of Mathematica, new features are missing and we want to
perform frequency analysis of some audio file and implement filtering. Here's how to
do it:

In [18]: =

{data, Fs} = {# [[1, 1, 1]], # [[1, 2]]} & @ExampleData[{ "Sound","Apollo13Pr

162

oblem"}];

spectrogram = MFunction["Spectrogram", "Output" -> False]; (*Use MATLAB'

s spectrogram *)

spectrogram[data, 1000, 0, 1024, fs]

Obviously, the frequencies mainly fall within the range below 2.5 kHz, so we

can develop a MATLAB low-pass filter, as well as make an auxiliary function that will
return the filtered data:

In [19]: =

MSet ["Fs", Fs];

MEvaluate ["

 [Z, p, k] = butter (6, 2.5e3 / fs, 'low');

 [Sos, g] = zp2sos (z, p, k);

 Hd = dfilt.df2tsos (sos, g);

"]

filter = MFunction ["Myfilt", "@ (X) filter (Hd, x)"];

163

Out [19] =

Now we have prepared everything in order to apply the filtering function to the

data directly from Mathematica. This example shows how we can fill in the gaps in
functionality. This way, we can save a lot of time on filter design in Mathematica
(which is not the easiest task) and many hours on debugging it. The code for the
Butterworth filter can be taken from anywhere - from a file share or Stack Overflow,
from fragments of previously written code, or, as in this case, from the example in the
documentation. Small changes in the parameters according to your needs, and we can
now work with this material in Mathematica.

We will process some data by means of our filter and we will construct the
spectrogram:

In [19]: =

filteredData = filter @data;

spectrogram [filteredData, 1000, 0, 1024, Fs]

We can play both audio files - filtered and original - and compare the difference

in their sound:

164

In [20]: =

Out [20] =

ListPlay[FilteredData, SampleRate -> fs]

ListPlay[data, SampleRate -> fs]

165

Literature

1. Mathematica 5. Tutorial. System of symbolic, graphic and numerical
calculations / Shmidsky J.K. - Dialectics 2004 - 592 p.

2. Chen K., Jiblin P., Irving A. Matlab in mathematical research: Per. from
English - M .: Mir, 2001.346 p.

3. Differential Equations with Mathematica, Third Edition / Brian R. Hunt,
Ronald L. Lipsman, John E. Osborn, Donald A. Outing, Jonathan Rosenberg - 2009
John Wiley & Sons, 271 pp.

4. A Physicist's Guide to Mathematica, Second Edition / Patrick T. Tam –
2008 Academic Pres, 728 pp.

5. Computer Solutions in Physics: With Applications in Astrophysics,
Biophysics, Differential Equations, and Engineering / Steve VanWyk - World
Scientific 2008 - 282 pp.

6. Mathematica by Example, Fourth Edition / Martha L. Abell, James P.
Braselton Publisher: Academic Press 2008 - 576 pp.

7. Mathematica DeMYSTiFied / Jim Hoste - McGraw-Hill Professional 2008
– 320 pp.

8. Mathematica Navigator: Mathematics, Statistics and Graphics, Third
Edition / Heikki Ruskeepaa Academic Press 2009 - 1136 pp.

