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Introduction 
 

The Mathematica software package is a system of computer algebra designed to 
process mathematical formulas. Other systems of computer algebra include programs 
Maxima, Maple, MuPAD, Reduce. The main task of these programs is to automate 
algebraic transformations and processing of symbolic expressions. The first version of the 
Mathematica package was developed in 1988, version 11.0.1 of the package was released 
in September 2016. 

The computer workshop discusses the main features of the Mathematica system for 
processing data arrays, plotting graphs, solving linear and transcendental equations, 
solving problems of mathematical analysis, data approximation, basics of programming 
and creating a user interface.  
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Lecture № 1. Introduction to Mathematica 
 

The main features of the Mathematica system: 
- integration and differentiation of functions, solution of systems of polynomial 

and trigonometric equations and inequalities, recurrent equations, solution of differential 
equations and partial differential equations, Taylor series, simplification of expressions, 
calculation of limits, finding finite and infinite sums and products, and a number of other 
problems in the symbolic form;  

- polynomial interpolation of functions, calculation of elementary and special 
functions with a given degree of accuracy, calculation of Laplace transformations, 
Fourier transformations, z-transformations;  

- solving problems of linear algebra, number theory and other sections of 
mathematics;  

- presentation of data in graphic format (construction of graphs, parametric curves 
and surfaces, construction of geometric figures, import and export of graphic data in 
raster and vector formats);  

- support for distributed computing (package Parallel Computing Toolkit);  
- the ability to write programs in the built-in procedural-functional programming 

language. 
In addition, the system has a number of standard extension packages (Add-Ons): 
- Algebra – work with polynomials, algebraic inequalities, Hamiltonian algebra, 

etc.;  
- Calculus – symbolic calculations of derivatives, integrals of function boundaries, 

direct and inverse Fourier and Laplace transforms, solution of systems of nonlinear 
equations, realization of invariant methods, solution of differential equations in partial 
derivatives, finding of complete integrals and differential invariants of nonlinear 
equations, Pade approximation, calculation of elliptic integrals and work with vectors;  

- DiscreteMath – calculations in the field of discrete mathematics, combinatorics, 
computational geometry and graph theory, solving recurrent and difference equations, 
operations with integers, etc.;  

- Geometry – functions for performing geometric calculations, creating regular 
rectangles and polyhedra, rotating geometric shapes on a plane and in space;  

- Graphics – construction of graphs of special type, geometric figures and surfaces, 
graphs of parametrically and implicitly given functions, description of functions of 
complex variable, display of orthogonal projections of three-dimensional figures, 
imitation of shadows, means of graphic design;  

- LinearAlgebra – solving problems of linear algebra, additional vector and 
matrix operations, formation of orthogonal vector bases;  

- Miscellaneuos – determination of units of measurement of physical quantities, 
data on chemical elements, physical constants, geographical data, etc.;  

- NumberTheory – functions of number theory; 
- NumericalMath – implementation of numerical methods, approximation of data 

and analytical functions by polynomials, splines, trigonometric series, numerical 
integration and differentiation, solution of differential equations, calculation of roots of 
nonlinear equations; 
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 - Statistics – statistical functions for continuous and discrete distribution functions, 
implementation of linear and nonlinear regression, calculation of parameters of 
distribution functions;  

- Utilities – additional utilities for working with binaries and computer memory, 
language support, working with AutoCAD class systems, etc.. 
 Basics of working with the system 

The interface of the Mathematica system consists of the main menu and data entry 
area - notebook, figure 1. 

 
Figure. 1. Mathematica system interface 

 
The working document of the Mathematica system is a notebook. The notebook 

consists of cells. The easiest way to work with the Mathematica system is interactive. The 
system assigns a cell number to each input and output – In[n] and Out[n] respectively. To 
use the last expression, simply enter «%», to refer to the result recorded in cell number n – 
«%n». To execute the entered command at the end of the line, press Shift+Enter. The result 
of performing mathematical operations on the expressions listed in Listing 1, will be the 
expressions written in the output cells Out[1]-Out[6], Listing 2. 

5^10    Out[1]=  9765625  
4+5    Out[2]=  9 
%+a    Out[3]=  9+a 
%2    Out[4]=  9  
4+5    Out[5]=  9   
9    Out[6]=  9   

   Listing 1    Listing 2 
 The following rules must be followed when entering data: 

- square brackets [] are used to indicate the arguments of functions, even if the 
function has no arguments, such as Random[]; 

- curly brackets are used to create lists, vectors and matrices; 
- round brackets are used in mathematical expressions to prioritize mathematical 

operations; 
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- double square brackets are used to index an item in the list. [[i]] – returns і-th 
element of list, [[i,j]] – returns the j-th element in the line and і. 
 Operational help 

The system Mathematica has a brief reference to the objects used in its environment. 
To display the entire list of objects, enter the command: 

?* 
You can also get help on all objects whose names begin with a certain letter: 
?U* 
To get a brief help on a specific object, you need to enter the command ?Name, for 

example: 
?Abs 
Abs[z] gives the absolute 
value of the real or complex number z. 

 Main menu. The main menu bar has only two lines: 
• with the names of the system and the downloaded file; 
• main menu items. 
To the right and bottom of the edit window are scroll bars with characteristic sliders 

that can be controlled by the mouse. At the bottom at the beginning of the scroll bar there 
is a so-called status bar with information about the current mode of operation (Status bar). 

The main menu of the system (Figure 1) contains the following tabs: 
• File – working with files: creating a new file, selecting an existing file from a 

directory, closing a file, saving the current file, saving a file with a renamed name, printing 
a document, and exiting Windows; 

• Edit – performing basic editing operations (canceling the operation, copying the 
selected parts of the document to the clipboard with their subsequent deletion and without 
it, transferring the selected parts, erasing them); 

• Incert – assign input elements (graphs, matrices, hyperlinks, add file elements to the 
working notebook, select the color of the working cell and number the cells); 

• Format – setting the format for documents; 
• Cell – work with functional cells (combining and disconnecting cells, setting cell 

status, opening and closing); 
• Evaluation – system kernel management and configuration; 
• Palettes – work with palettes of mathematical operators and functions, means of 
input of mathematical symbols and their options; 
• Window – operations with windows and their location; 
• Help – management of the help system. 

Each menu item, when activated, detaches a drop-down submenu containing related 
commands. The names of the executed commands are highlighted in clear, and those that 
are not currently executed - in a characteristic gray blurry font. 

Interface elements, such as the editing window, can be moved with the mouse and 
stretched in different directions. The mouse cursor usually looks like an arrow, but changes 
when you turn on individual parts of the interface elements. For example, when installed 
on the vertical border of the window, it takes the form of two-sided arrows↔ , located 
horizontally. They indicate the possibility of moving this line horizontally. Similarly, you 
can stretch or compress a window by moving it vertically or diagonally. 
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At the beginning of the title lines of the main menu and the editing window there is 
a button with the system logo, which opens a submenu with the following commands: 

• Restore –  restore the size of the interface element; 
• Move – move the interface element; 
• Size – specify the size of the interface element; 
• Collapse – collapse an item in a tag in the Windows taskbar; 
• Expand – expand the interface element; 
• Close – close the interface element. 
This submenu is created by means of the Windows operating system. Also, at the 

end of these lines there are characteristic buttons that repeat the last three commands. They 
are used to control the windows of the corresponding interface elements. 
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Lecture № 2. Wolfram Mathematica and environmental data 
 

Wolfram Language allows programmers to work at a much higher level than ever 
before, using built-in computational intelligence, which relies on a huge depth of 
algorithms and real knowledge, carefully integrated over three decades. Effective for 
creating programs from tiny to very large, which naturally allow widespread use both 
locally and in the cloud, Wolfram Language, based on clear principles and having an 
elegant unified symbolic structure, creates what becomes the most productive 
programming language. in the world, as well as the first true computational language of 
communication between humans and artificial intelligence systems. 

 
 Arithmetic operations 

Operation Arithmetic 
operator 

Abbreviated form Function 

Addition + += Plus[x1, x2,…xn] 
Subtraction - -= - 
Multiplication * *= Times[x1, x2,…xn] 
Division  / /= Divide[x1, x2] 
Exponentiation ^ - - 

 
 Data types 

Type of numbers Marking Example 
Integers Integer 35, -2 
Rational Rational 35/46,  
Real Real 2.18, 3.6*10^-5 
Complex Complex 2+3*I 

  
 Named constants 
 Е – number е; 
 Pi – number π; 
 І – imaginary unit ; 
 Infinity – imaginary infinity +∞, with negative infinity put the sign -; 
Degree – the number of radians in degrees π/180; 
EulerGamma – Euler constant 0,577216; 
GoldenRatio – constant of the golden section  ; 
Catalan – Catalan constant 0.915966. 
To obtain the numerical value of the constant, it is necessary to use the function N[]. 
 N[E] 
 Out[1]=  2.71828 
 If necessary display the value of a number with a given number of characters, use 
the function N[k,n], where k – number, n – the number of characters. 
 N[5/88,10] 
 Out[1]=  0.05681818182  
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Built-in mathematical functions 

 Functions for determining divisors, the least multiple of integers 
Divisors[n] – gives a list of the integers that divide n; 
ExtendedGCD[n,m] – gives the extended greatest common divisor of the integers 
n and m; 
 GCD[n1,n2…] – gives the greatest common divisor of the n1, n2…; 
 LCM[n1,n2…] – gives the least common multiple of the n1, n2… 
Mod[x,y] – gives the remainder on division of  х by у. 
Functions of rounding real numbers 
 Round[x] – gives the integer closest to x; 
 Floor[x] – gives the greatest integer less than or equal to х; 
 Ceiling[x] – gives the smallest integer greater than or equal to х; 
 Quotient[x,y] – returns a rounded integer х/у, less or equal to х/у. 
Calculation of factorials 
Factorial[n] – gives the value of n!; 
Factorial2[n] – gives the value of n!!=n*(n-2)*(n-4)... 
Obtaining prime numbers  
Prime[n] – gives the n-th prime number; 
PrimeРі[n] – gives the number of primes Pi(x) less than or equal to x.  
Elementary functions 
Power and logarithmic functions 

z → Sqrt[z]; 
az → Power[z,a]; 
ze → Exp[z]; 

ln( )z → log[z]; 
log ( )a z → log[a,z]; 

Trigonometric functions 
sin( )z → Sin[z]; 
cos( )z → Cos[z]; 

( )tg z → Tan[z]; 
( )ctg z → Cot[z]; 

csc( )z → Csc[z]; 
( )sec z → Sec[z]. 

Inverse trigonometric functions 
sin( )arc z → ArcSin[z]; 
cos( )arc z → ArcCos[z]; 

( )arcctg z → ArcCot[z]; 
csc( )arc z → ArcCsc[z]; 

( )arcsec z → ArcSec[z]. 
Hyperbolic functions 
sinh( )z → Sinh[z]; 
cosh( )z → Cosh[z]; 
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( )tgh z → Tanh[z]; 
( )ctgh z → Coth[z]; 

csc ( )h z → Csch[z]; 
sec ( )h z → Sech[z]. 

Inverse hyperbolic functions 
sinh( )arc z → ArcSinh[z]; 
cosh( )arc z → ArcCosh[z]; 

( )arcctgh z → ArcCoth[z]; 
csc ( )arc h z → ArcCsch[z]; 
sec ( )arc h z → ArcSech[z]. 

Arithmetic operations with integers and rational numbers 
 The system Mathematica performs calculations with integers and rational numbers 
without errors, as illustrated in Listing 1. 

 
Listing 1 

 
Arithmetic operations with real numbers 

 Real numbers in the system Mathematica are presented in the usual or standart form. 
When representing a number in the usual form, the whole part of the number is separated 
from the fractional part by point: 1.35, 0.24. Thus 0 integers it is possible not to write and 
instead of 0.25 to use marking - .25. Numbers written in this form, call numbers with a 
fixed point.  
 A point at the end of a number is an indication that the number is real. For example, 
the number 131. – real, number 2/5 – є rational, and the number 2./5 – дійсним. 
 When representing a number in standart form, the number is written in the form of 
a mantis with whole and fractional part and order in the form of a number degree: 5.*10^-
3,  3.335*10^-6. You can use a space instead of a multiplication sign. Arithmetic 
operations on real numbers give an approximate result. The Mathematica system operates 
with numbers in a range  . To increase the accuracy of real numbers can be represented in 
rational using the functions: 
 Rationalize[z] –  converts number z to a nearby rational; 
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 Rationalize[z,dz] – converts number z to a nearby rational with accuracy dz. 
 

Arithmetic operations with complex numbers 
 The complex number is represented as follows: 
 Re( ) *Im( )= +z z I z . 
 Functions for performing operations on complex numbers: 
 Abs[z] – gives the absolute value of the complex number z; 
 Arg[z] – gives the argument of the complex number z; 
 Conjugate[z] – gives the complex conjugate of the complex number z; 
 

  Expressions of their transformation and calculation 
Substitutions 

 Substitutions are a mathematical apparatus designed to calculate the functions at 
numerically specified values of the argument. They allow you to tabulate the values of 
functions. The Mathematica system uses the symbol  «/.» 

f(x) /. x->a; 
f(x,у,…) /. {x->a,y->b,…}; 
{f1(x),f2(x),…} /. x->a; 
{f1(x,у,..),f2(x,у,…),…} /. {x->a,y->b,…}; 
f(x) /. x->{x0,x1,…}. 

 Substitution expressions have the following meaning: 
 f(x) /. x->a – substitutes in the expression f(x) the value of х=а. 
 f(x,у,…) /. {x->a,y->b,…} – substitutes in the expression f(x,y,…) the values х=а, 
y=b,… 
 {f1(x),f2(x),…} /. x->a – substitutes in the expressions f1(x), f2(x),… the value х=а. 
 {f1(x,у,..),f2(x,у,…),…} /. {x->a,y->b,…} – substitutes in the expressions 
f1(x,y,…), f2(x,y,…),… the values х=а, y=b,… 
 f(x) /. x->{x0,x1,…} – tabulation of the function f(x). 
 An example of using substitutions is shown in Listing 2. 
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Listing 2 

Convert expressions 
Expression conversion functions: 
Simplify[f] – simplifies the expression f; 
FullSimplify[f] - simplifies the expression f, which contains special functions; 
Expand[f] – expands out products and positive integer powers in f; 
Collect[f,x] – collects together terms involving the same powers of expression f 

matching х; 
TrigExpand[f] – expands out trigonometric functions; 
Factor[f] – factors a polynomial over the integers. 
Examples of using the Simplify function are shown in Listing 3, FullSimplify – in 

Listing 4. 
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Listing 3 

 
Listing 4 

 Function Expand 
 Modifications of the function Expand: 
 Expand[f] – expands out products and positive integer powers in f; 
 ExpandAll[f] – expands out all products and integer powers in any part of the 
expression f; 
 ExpandNumerator[f] - expands out products and powers that appear in the 
numerator of the expression f; 
 ExpandDenominator[f] - expands out products and powers that appear as 
denominators in the expression f; 
 PowerExpand[f] - expands all powers of products and powers of function f; 
 ComplexExpand[f] – expands the expression f assuming that all variables are real; 
 ComplexExpand[f,{x1,x2,…}] - expands the expression f assuming that variables 
matching any of the x are complex ; 
FunctionExpand[f] – tries to expand out special and certain other functions in the 
expression f, when possible reducing compound arguments to simpler ones.   
 Listing 5 shows examples of using modifications of the function Expand[]. 
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Listing 5 

 
Function Collect 

 Modifications of the function Collect: 
 Collect[f,x] – collects together terms involving the same powers of expression f 
matching х; 
 Collect[f,{x1,x2,…}] – collects together terms that involve the same powers of of 
expression f matching х1,х2... 

Listing 6 shows examples of using modifications of the function Collect[]. 
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Listing 6 

Function Factor   
Modifications of the function Factor: 
Factor[f] – factors the function f over the integers; 
FactorList[f] – gives a list of the factors of the function f, together with their 

exponents; 
FactorTerms[f] – pulls out any overall numerical factor in the expression f; 
FactorTermsList[f] – gives a list in which the first element is the overall numerical 

factor in the expression f, and the second element is the polynomial with the overall factor 
removed; 

FactorInteger[f] – gives a list of the prime factors of the integer f, together with their 
exponents. 

Listing 7 shows examples of using modifications of the function Factor[]. 
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Listing 7 

Functions of transformation of trigonometric expressions 
TrigReduce[f] – rewrites products and powers of trigonometric functions in the 
expression f in terms of trigonometric functions with combined arguments.; 
TrigExpand[f] – expands out trigonometric functions in the expression f; 
TrigFactor[f] – factors trigonometric functions in the expression f; 
TrigToExp[f] – converts trigonometric functions to exponentials.; 
ExpToTrig [f] – converts exponentials in expression to trigonometric functions. 
Listing 8 shows examples of using trigonometric expression transformation functions. 
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 Listing 9 
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Lecture № 3. Tables, styles, and graphics 
 

Representation of vectors and matrices in tabular form is possible using the 
functions TableForm and MatrixForm, is as follows: 

TableForm[f] 
Out[n]   // MatrixForm 

where f – name of the vector or matrix; 
     n - the number of the line in which the vector or matrix is located; 
     % - is used if the representation function % / / MatrixForm of the vector or matrix 

in tabular form is located after the vector (matrix). 
You can also create a vector or matrix using a function List: 
List [a, b, с,... ] — creates vector {а,b,с,...}; 
List [{а, b, с,..}, {d, е, f, ..}, {g, h, k, ..}] – creates matrix {{a, b,  с,..},   {d,  e,  f, 

..},   {g,  h,  k, ..}}. 
Listing 1 in tabular form shows the vector f3 and the matrices f4, f5, from Listing 

1, Lecture 1, formed using the functions TableForm and MatrixForm. 
TableForm[f3]     
2 + 3 i     
1- 2 i     
5     
3 +7i     
7     
TableForm[f4]     
1           2         3     
4           7          0     
-5          1          8     
TableForm[f5]     
Sin[X]         e-x 
 x

x
+
+−

1
1

 
Log[x] 5 

1 + 2 i          3 5 Tan[1+x] -8 
4                  a B Cos[x] 2-i 
Out [29]//MatrixForm    








 

rSin[x]    e-x  
 x

x
+
+−

1
1

 
Log[x] 5 









 1+2 i       3   5 Tan[ 1 + x] -8 
4             a     B Cos[x] 2- i 

Listing 1 
 

Creation of vectors and matrices using the Range function 
The Range function is used to create numerical lists and has the following 

modifications: 
Range [nmax] - generates the list {1, 2, ..., nmax }; 
Range [nmin, nmax] - generates the list {nmin, nmax}; 
Range [nmin, nmax, dn] - generates the list from nmin to nmax uses step dn. 
Examples of function realization are shown in Listing 2. 
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Range [7] 
{1,2,3,4,5,6,7} 
Range[4,10] 
{4,5,6,7,8,9,10} 
 
 
 
Range[3,8,0.5] 
{3,3.5,4.,4,5,5.,5.5,6.,6.5,7.,7.5,8.} 

Listing 2 
 

Creation of vectors and matrices using Table functions 
To create vectors and matrices, you can use the Table function, which has the form: 
Table [f,  { nmax }] - generates a list of nmax copies of f; 
Table [f,{1, nmax}] - generates a list of the values of f from 1 to nmax; 
Table [f,   {n,  nmin,  nmax}] — generates a list of the values of f starts with n=nmin 

to nmax; 
Table [f,   {n, nmin, nmax, dn}]— generates a list of the values of f starts with 

n=nmin to nmax  uses steps dn. 
An example of using the Table function is shown in Listing 3. 

Table [Log [х] ,{5}] 
{Log[x] , Log[x] , Log[x] , Log[x] , Log[x] }  
Table[Log[x] ,{x,5}] 
{0,Log[2],Log[3],Log[4] ,Log[5]}  
Table[Log[x] ,{x,5,10}] 
{Log[5] ,Log[6] ,Log[7] ,Log[8] ,Log[9] ,Log[10] }  
Table[Log[x] ,{x,l ,3 ,0 .5}] 
{0,0.405465,0. 693 147,0.9162 91,1.09861}  
Table [i+j ,{1,2 ,4} ,{j ,2,4}] 
{{4,5, 6} ,{5, 6,7}, {6,7,8}} 

Listing 3 
 

Selection elements of vector and matrix 
- The following methods of selecting of elements of vectors and matrices are 

implemented in the Mathematica system: 
- use of double square brackets; 
- use of the Part function; 
- use the Select function. 
Use of double square brackets  
In this case, the expression that separates the elements of the vector or matrix is 

represented as: 
 f [[n]] f [[n1, n2, ...]], 

where f - name of the vector or matrix;  
    n - the selected element;  
    ni - i-th element from the set of selected elements. 
 Examples of element selection are shown in Listing 4 
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f1={2 ,1,4,3,5} 
{2,1,4,3,5} 
f2={ {1,2,3}, {3,5,7}, {2,4,6}} 
{{ 1,2,3} ,{3,5,7}, {2,4,6}}  
f3={а,1,b,2,3,с}  
{а,1,b,2,3,с}  
f4={2,a,Sin[x+y^2] ,b,1} 
{2, a, Sin[x + y^2] , b, 1} 
f1[[4]] 
3 
f2[[2,2]] 
5 
f1 [[{2,3}]] 
{1,4} 
{f2[[1,2]] ,f2[[3,1]]} 
{2,2} 

Listing 4 
 

Output of elements of vectors and matrices is carried out by means of functions 
MatrixForm and TableForm. 

Examples of the use of these output forms are shown in Listing 5. The use of the 
TableAlignments and TableSpacing options to place the vector and matrix on the screen 
in the desired form is shown in Listing 6. 
F={{a,l,4},{b,2,5} ,{с,3,б}} 
{{а, 1,4} ,{b,2,5}, {с,3,5}} 
MatrixForm[F] 

















6      3     с
5      2     b
4      1      a

 

 
 

 

TableForm[F] 
а           1 4 
b           2 5 
с           3 6 

Listing 5 
 
s={ 5,73426813438765,34}  
{5,73426813438755,34}  
TableForm[s, TableAlignments->Left] 
5 
73426S13438765  
34 
TableForm[s, TableAlignments->Center] 

       5 
       73426813438765  

      34 
S1={{1,3,4},{5,1,1} ,{3,2,1}} 
{{1,3,4},{5,1,7},{3,2,1}}  
TableForm[s1] 
1 3 4 
5 1 7 
3 2 1 
TableForm[s1, TableSpacing->{ 1,1}] 



22 

1   3   4 
5   1   7 
3   2   1 
TableForm[s1, TableSpacing->{ 5,2}] 
1      3      4 
 
5      1      7 
 
3      2      1 
TableForm[s1, TableSpacing->{ 2,5}] 
1               3               4 
5               1               7 
3               2               1 

Listing 6 
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Lecture № 4. Operation with vectors and matrices 
 
Vectors and matrices in the Mathematica system are lists. A list is a collection of 

data bounded by curly brackets. The vector is one-dimensional, the matrix is a two-
dimensional list. Elements of vectors and matrices can be real and imaginary numbers, 
functions, mathematical expressions. Listing 1 shows the vectors and matrices of the 
various elements. 

 
Listing 1 

 
Vector and matrix creation is done with the following functions. 
Array [f, n]- generates a list of length n , with elements f [1], f [2],…, f [n]; 
Array [f, n1, n2]- generates a list of length n1, start with element f [n2], and n2 can 

be a number, function, expression; 
Array [f, { n1, n2}] generates an n1 x n2 array of nested lists, with elementsf (n1, 

n2); 
 Array [f, n1, n2, h] - generates a list of length n1, start with element f (n2), uses head 

h. 
Examples of creating vectors using the Array  function are shown in Listing 2. Note 

that these functions allow you to summarize and multiply vector elements using Plus and 
Times functions. 
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Listing 2 

 
Determining the structure of a vector or matrix 
The following functions are used to determine the structure of a vector or matrix: 
VectorQ [V] - gives True if expression V is a vector,  and gives False otherwise; 
MatrixQ [M] - gives True if expression M is a matrix,  and gives False otherwise;  
Length [V] - gives the number of elements in a vector V;  
Length [M] - gives the number of elements in a natrix M;  
MemberQ [V, n] - returns True if an element of V matches n, and False otherwise;  
FreeQ [V, n] - yields True if no subexpression in V matches n, and yields False 

otherwise;  
FreeQ [M, n] - yields True if no subexpression in M matches n, and yields False 

otherwise;  
Dimensions [V] - gives a list of the dimensions of V;  
Dimensions [M] - gives a list of the dimensions of M (the number of rows and the 

number of columns);  
Position [V, n] - gives a list of the positions at which objects matching n appear in 

vector V;  
Count [V, n] - gives the number of elements in V, that match n;  
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TensorRank [V] - gives the rank of  vector V, if V is a tensor;  
TensorRank [M] gives the rank of matrix M, if M is a tensor. 
Transformation and creation of vectors and matrices  
The Mathematica system has rich features for converting and creating new vectors 

and matrices (and lists of any level). The following functions can be used for this 
purpose: 

Drop [V, n] - gives V with its first n elements dropped; 
Drop [V,-n] - gives V with its last n elements dropped; 
Drop [V, {n}] – gives V with its n-th element dropped.; 
Drop [V, {m, n}]- gives V with elements m through n dropped; 
Last [f] - gives the last element in vector (matrix) f; 
Rest [V] - gives vector V with the first element removed; 
Take [V, n]- gives the first n elements of vector V; 
Take [V,-n]- gives the last n elements of vector V; 
Take [V, {m, n}] - gives elements m through n of vector V; 
Append [V, а] - gives vector V with a appended; 
Prepend [V,-а] - gives vector V with a prepended ; 
Іnsert [V, а, n]  - inserts а at position n in V, the position is counted from the start; 
Іnsert [V, а,-n] - inserts а at position n in V, the position is counted from the end; 
Delete [V, n] - deletes the element at position n in vector V; 
{Delete [f, n1], Delete [f, n2], Delete [f, n3], ...} - deletes the elements at positions 

ni in vector (matrix) and creates new vector (matrix). 
Examples of using functions are shown in Listing 3. 
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Listing 3 
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 The creation of new vectors and matrices is also possible by changing the location of 
the vector or matrix, which uses the following functions. 

Flatten [M] - flattens out nested lists; 
Flatten [M, n] - flattens to level n matrix M; 
Sort [f] - sorts the elements of vector (matrix) f into canonical order; 
Reverse [f] - reverses the order of the elements in vector (matrix) f; 
RotateLeft [f] - cycles the elements in vector (matrix) f one position to the left; 
RotateLeft [f, n] - cycles the elements in vector (matrix) f n positions to the left; 
RotateRight [f] – cycles the elements in vector (matrix) f one position to the right; 
RotateRight [f, n] - cycles the elements in vector (matrix) f n position to the right; 
Transpose [M] - transposes the first two levels in matrix M. 

Examples of using functions are shown in Listing 4. 

 
Listing 4 

 
 

Representation of vectors and matrices in tabular form is possible using the 
functions TableForm and MatrixForm, what look like: 

TableForm[f] 
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Out[n]   // MatrixForm 
where f – name of the vector or matrix; 
     n - the number of the line in which the vector or matrix is located; 
     % - is used if the representation function % / / MatrixForm of the vector or matrix in 
tabular form is located after the vector (matrix). 

You can also create a vector or matrix using a function List: 
List [a, b, с,... ] — creates vector {а,b,с,...}; 
List [{а, b, с,..}, {d, е, f, ..}, {g, h, k, ..}] – creates matrix {{a, b,  с,..},   {d,  e,  f, 

..},   {g,  h,  k, ..}}. 
Listing 5 in tabular form shows the vector f3 and the matrices f4, f5, from Listing 

1, formed using the functions TableForm and MatrixForm. 

  
Listing 5 

 
Creation of vectors and matrices using the Range function 
The Range function is used to create numerical lists and has the following 

modifications: 
Range [nmax] - generates the list {1, 2, ..., nmax }; 
Range [nmin, nmax] - generates the list {nmin, nmax}; 
Range [nmin, nmax, dn] - generates the list from nmin to nmax uses step dn. 
Examples of function realization are shown in Listing 6. 
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Listing 6 

 
 

Creation of vectors and matrices using Table functions 
To create vectors and matrices, you can use the Table function, which has the form: 
Table [f,  { nmax }] - generates a list of nmax copies of f; 
Table [f,{1, nmax}] - generates a list of the values of f from 1 to nmax; 
Table [f,   {n,  nmin,  nmax}] — generates a list of the values of f starts with n=nmin to 

nmax; 
Table [f,   {n, nmin, nmax, dn}]— generates a list of the values of f starts with n=nmin 

to nmax  uses steps dn. 
An example of using the Table function is shown in Listing 7. 

 
 Listing 7 

 
Selection elements of vector and matrix  
The following methods of selecting of elements of vectors and matrices are 

implemented in the Mathematica system: 
- use of double square brackets; 
- use of the Part function; 
- use the Select function. 
Use of double square brackets 
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In this case, the expression that separates the elements of the vector or matrix is 
represented as: 

 f [[n]] f [[n1, n2, ...]], 
where f - name of the vector or matrix;  
    n - the selected element;  
    ni - i-th element from the set of selected elements. 
 Examples of element selection are shown in Listing 8. 

  
Listing 8 

 
Select elements of the vector and matrix using the Part function  
The Part function is represented as follows: 
{Part[f, n1], Part[f, n2],...},  

where f – name of vector; 
     ni - і-th element of vector f. 

If you select elements of the matrix using the Part function, this function is 
represented as follow: 

{Part[f, n1, m1], Part[f, n2 , m2],...},  
where ni - і-th row element of matrix;  
    mi - і-th column element of matrix. 
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In the case of selecting elements from complex elements of a vector or matrix, the 
Part function is represented as follows: 

Part[f, n, m, 1],  
where f - name of vector or matrix;  
     n - number element of vector f;  
     m - expression level (m = l in the case of a vector, m = 2 in the case of a matrix);  
     1 - element number in a vector or matrix. 
 Examples of using the Part function are shown in Listing 9. 

 
Listing 9 

 
Output of elements of vectors and matrices is carried out by means of functions 

MatrixForm and TableForm. 
Examples of the use of these output forms are shown in Listing 10. The use of the 

TableAlignments and TableSpacing options to place the vector and matrix on the screen 
in the desired form is shown in Listing 11. 

  
Listing 10 
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Listing 11 
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Combining vectors and matrices 
The combination of vectors and matrices is carried out using the following 

functions: 
Union [F] - gives a sorted version of a list F, in which all duplicated elements have 

been dropped; 
Union [f1, f2, ...] - combines f1, f2 removing repeating elements of vectors and 

matrices; 
Join [f1, f2... ] - combines f1, f2 ... in a single chain (concatenation); 
Complement [f1, f2, ... ] - gives the elements in f that are not in any of the  
f1, f2, ...; 
Intersection [f1, f2, ...] - gives a sorted list of the elements common to all the lists. 
Listing 12 shows examples of using functions. 
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Listing 12 

  
Mathematical operations on vectors and matrices 

 The simplest arithmetic operations on vectors and matrices will be considered in the 
following example. 

Given vectors V1, V2 and matrices Ml, M2: 
V1 = {1, 3, 5, 2, 6, 4}; 
V2 = {2, 7, 5, 8, 1, 3}; 
М1 = {{1, 2, 3}, {6, 5, 4}, {1, 3, 5}}; 
М2 = {{3, 2, 1}, {4, 5, 6}, {5, 3, 1}}. 
Tasks: 
- add, subtract, multiply and divide the vector V1 and the matrix Ml by a number 3; 
- square vector V2 and matrix M2; 
- calculate square root of vector V1 and matrix M1; 
- calculate eV1, sin(V2), ln(M1), cosh(M1).  
The functions that realize mathematical operations are shown in Listing 13. 
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 13 
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Other functions designed to work with vectors and matrices are listed below: 
  
Det [M] - gives the determinant of the square matrix;  
IdentityMatrix [M] - gives the identity matrix: matrix with the diagonal elements 

equal 1, and others elements equals 0;  
Transpose [M] - transposes the first two levels in M;  
Inverse [M] - gives the inverse of a square matrix;  
Tr [M] - finds the trace of the matrix M (sum of the diagonal elements);  
LinearSolve [M, b] - returns the vector of unknowns of the matrix equation  

M * х = b, where M - matrix of coefficients of the system of equations, х - vector of 
unknowns, b - vector of free terms;  

Eigensystem[M] - gives a list of the eigenvalues and eigenvectors of the square 
matrix M;  

Eigenvalues [M] - gives a list of the eigenvalues of the square matrix M;  
Eigenvectors[M] - gives a list of the eigenvectors of the square matrix M;  
PseudoInverse[M] - finds the pseudoinverse of a rectangular matrix M.  
All of the above matrix operations are illustrated in Listing 14. 
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Listing 14 
 

The vector product is realized using the function Dot [V1, V2] or a multiplication 
sign in the form of a point: V1. V2 or Ml. М2, see Listing 15. 

 
Listing 15 
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Lecture № 5. Graphical functions of the Mathematica system 
 

 Two-dimensional graphics 
 Plot function 
 The Plot function allows you to build graphically defined graphs in two-dimensional 
space in a rectangular coordinate system. Several functions can be displayed on one graph. 
By default, the grid is displayed on the screen. 
 Plot function recording format 
 Plot[f,{x,xmin,xmax}]; 
 Plot[{f1,f2,...},{x,xmin,xmax}], 
where f – function, the graph of which is built,  
     fi – і-th function, the graph of which is built, і=1,2,… 
     х – function argument, 
     xmin, xmax – argument change interval х. 

Function Plot options  
 The options of the Plot function are set as follows: 
 Option name -> option value. 
 The main options of the Plot function are: 

- setting the scale along the axis:  
PlotRange -> {ymin,ymax} – sets the y-axis scale from ymin to ymax with 
automatic step selection; 
PlotRange->{{ xmin,xmax}, {ymin,ymax}} - sets the scale on the y-axis from 
ymin to ymax and on the x-axis from xmin to xmax with automatic step selection; 

- definition of the axis name: 
AxesLabel -> {“Tx”, “Ty”} – sets the inscriptions Tx and Ty on the x and y axes, 
respectively; 

- determining the name of the plot:  
PlotLabel -> “T” – sets the name of the plot; 

- choice of graphics style: 
Axes -> None – the schedule is built without axes. 

Examples of using the Plot function. 
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Listing 1 
 
ListPlot function 
Used to plot graphs given as an array of points. 
List format of the ListPlot function 
ListPlot[{y1,y2,…}]; 
ListPlot[{x1,y1},{x2,y2},…}], 

where уі – і-th value of function у(х), 
     хі - і-th the value of the function у(х) argument. 

Purpose of the ListPlot function 
ListPlot[{y1,y2,…}] – plots the point values of the function y (x) with the notation 

of the number of points on the x-axis. 
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ListPlot[{x1,y1},{x2,y2},…}] – plots a list of points with specified x and y 
coordinates. 

The ListPlot function has two options: 
- definition of the axis name: 
AxesLabel -> {“Tx”, “Ty”} – sets the inscriptions Tx and Ty on the x and y axes, 
respectively; 
- determining the size of points: 
PlotStyle -> PointSize [d] - sets the diameter of the point equal to d. 
Example of using the ListPlot function. 

 
Listing 2 

 
Show function 
Used to plot point and analytical graphs in one plane. 
Show recording format 
Show[r1,r2], 

where r1, r2 – are variables used to denote graphs 
Example of using the Show function. 
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Listing 3 

 
Choice of graphic style 

 The PlotStyle option allows you to select the color of the lines and their thickness.  
 PlotStyle option directives 

- line color: 
 PlotStyle ->{GrayLevel[k1],GrayLevel[k2],…}, 
where k1,k2,… - the color codes of the lines in shades of gray of the corresponding 

functions are selected from the range 0..1;  
PlotStyle ->{Hue[c1],Hue[c2],…}, 

where c1,c2,… - tabular color codes of the lines of the corresponding functions, selected 
from the range 0..1; 

PlotStyle ->{RGBColor[r1,g1,b1],Hue[r2,g2,b2],…}, 
where r1,g1,b1… - the brightness of the red, green and blue color components are selected 
from the range 0..1; 

- line thickness:  
 PlotStyle ->Thickness[d] – sets the thickness of the lines of the graph as a fraction 
of its full width; 
 PlotStyle ->AbsoluteThickness[d] – sets the thickness of the graph lines in pixels; 

- dashing style: 
PlotStyle ->Dashing[{d1,d2,… }] – sets the stroke length of the graph lines, where 

di is specified as a fraction of the width of the graph line; 
PlotStyle->AbsoluteDashing[d1] - sets the stroke length of the lines of the graph, 

where di is specified in pixels; 
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- point graph: 
PlotStyle->PointSize[d] – graph in the form of circles with a diameter of d, which 

are measured in fractions of the total width of the graph; 
PlotStyle->AbsolutePointSize[d] – graph in the form of circles with a diameter of 

d, which are measured in pixels. 
Examples of using the PlotStyle function. 
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Listing 4 

  
Graphs of special types 

Graphing functions on a logarithmic scale  
LogPlot [f, {x, xmin, xmax}] - plots a linear-logarithmic graph of the function f with a 
logarithmic scale on the y-axis in the range xmin..xmax. 
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LogLinearPlot[f,{x,xmin,xmax}] – plots a logarithmic-linear graph of the function f with 
a logarithmic scale on the x-axis in the range xmin..xmax. 

 

 
  
LogLogPlot[f,{x,xmin,xmax}] – plots a graph of the function f with a logarithmic scale 
on two axes in the range xmin..xmax. 
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Functions 
LogListPlot[{x1,y1},{x2,y2},…] 
LogLinearListPlot[{x1,y1},{x2,y2},…] 
LogLogListPlot[{x1,y1},{x2,y2},…] 
similar to the previous three and are used to construct scatter plots. 

The function of plotting graphs in the polar coordinate system  
 PolarPlot[f,{t,tmin,tmax}] – plots the position of the end of the vector f when the 
angle t changes from tmin to tmax. 
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 Chart construction function 
 BarChart[{c1,c2,…}] – makes a bar chart with bar lengths. 

 
 
 PieChart[{c1,c2,…}] – makes a pie chart with sector angle proportional to list. 
 The PieChart function uses a number of options, the description of which is 
available with the Options[PieChart] command. 

 
 
 
 
 

 

 Functions of three-dimensional graphics 
Plot3D[f,{x,xmin,xmax},{y,ymin,ymax}] – plots the function f = f (x, y). Plot3D 

options are available with the Options[Plot3D] command. 
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When constructing graphs expressed in 3 arguments, one argument must be expressed in 
others. For example, the graph of the sphere: x2+y2+z2=R2, where R-radius, will be 

converted to 
222 yxRz −−=  

 
 

ParametricPlot3D[{f1,f2,f3},{t1,t1min,t1max},{t2,t2min,t2max}] – plots a three-
dimensional graph of a parametrically given function z(t1, t2) = f(x(t1, t2), y(t1, t2)). 
Plot3D options are available with the Options[ParametricPlot3D] command. 
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Lecture № 6. Possibilities of Mathematica system operation with heterogeneous 
data 

 
 Position of Graphics menu and graphic editor. 

When creating complex laptops in previous versions of Mathematica clearly lacked 
the resources to prepare at least simple drawings and diagrams, which are often 
accompanied by mathematical and scientific calculations. Such drawings and diagrams, of 
course, can be created by programming Mathematica systems, but it requires a lot of time 
and the ability to program graphic tasks well. With this in mind, the developers of 
Mathematica introduced a tool for building simple drawings with the mouse type of the 
well-known graphic editor Paint. Access to it is provided from the new Graphics menu 
item. It contains the following commands: 

• New Graphic - output window for plotting; 
• Drawing Tool - output of the graphic editor window; 
• Graphics Inspector - output of the graphics inspector window; 
• Rendering - output of substitution of rendering operations; 
• Opetations - output of the substitution of additional operations. 
Working with these graphics is simple and obvious. It is illustrated by fig. 1. It 

shows the windows of the drawing, graphic editor and graphics inspector. Note that the 
graphic editor does not have the funds to build an unpainted ellipse, rectangle and polygon. 
However, the installation of colors, these figures are easy to obtain. 

 
Figure 1. 

Use options for painting areas of two-dimensional graphs. 
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Of the new options for the Plot function in Mathematica, the most impressive are 
the options for painting the areas of two-dimensional graphs Filling (Painting) and 
FillingStyle (Painting Style). The first is disabled by default, the second is set to Auto. 

We will demonstrate the result of the Filling option (Fig. 2). On it the Plot function 
builds a graph of the Sin [x] / x function in the interval of change x from -4*Pi to +4*Pi 
with 4 types of painting. They are represented by the values of the  Filling option: Axis 
(painting from each point of the curve to the x-axis), Top (painting the area from the top 
of the graph window to its curve), Bottom (painting from the curve to the bottom of the 
graph window) and 0.5 (painting from the graph line to horizontal with a vertical 
coordinate equal to 0.5). 

 
Рис. 2. 

This option can also be used with the ListPlot[list] function, which builds points 
with coordinates taken from the list. It makes it possible to construct verticals connecting 
the points of the graph with the x axis (Fig. 3). This figure shows how the values of prime 
numbers change from their number. Interestingly, this dependence is close to linear. 
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Figure 3. 

Relief graphics. 
The function of the Mathematica ReliefPlot [array] is used to construct realistic terrain 
graphs, which are given by the coordinates of the points of the array. An example of the 
application of this function is Fig. 8.61, on which it is built 
the relief of the surface given by the mathematical formula i + cos (i3 + j3), where i and j 
change with a discreteness of 0.03 in the range from -4 to 4. The shape of the relief depends 
on the value of the ColorFunction option. 

Another example of using the ReliefPlot function is presented in Fig. 4. Here are 
three arrays of random results of a number of arithmetic operations, including the norms 
of matrices. The obtained three reliefs are largely random and vary from start to start of 
the presented module. 

 
Figure 4 

Fig. 5 builds the relief of the imaginary part of the function sec (i + I * j) 2 for two 
values of the PlotRange option, equal to All і Automatic. It is easy to notice a serious 



53 

change in the nature of the detection of details of the same relief. Of course, an array for 
this function can be created not only by mathematical expressions, but also in any other 
way - for example, by loading arrays of images. Many options of the ReliefPlot function 
allow you to create reliefs with different resolutions, different colors and other features. 

 
Figure 5 

 Three-dimensional objects obtained by rotating curves. 
Three-dimensional graphic objects obtained by rotating curves about an axis are 

quite common. For example, turning the circle at an angle π, you can get the surface of the 
sphere. By changing the boundaries of the angle of rotation, you can build closed or open 
shapes. To construct such surfaces (figures) in Mathematica is a function: 

RevolutionPlot3D[fz,{t,tmin,tmax},...] 
RevolutionPlot3D [{fx,fy,fz},{t,tmin,tmax},...] 
In fig. 6 shows the application of this function to construct the surface of the bagel 

half. The figure looks quite realistic. 

 
Figure 6 

A more funny figure is built using this function, shown in Fig. 7. Here the 
parameters are two changing angles, and a parametric curve is used for rotation. 
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Figure 7 

 An example of using the options of the RevolutionPlot3D function is presented in 
Fig. 8. Here the curve of rotation is given by means of six inequalities taking which 6 
figures are constructed. Unfortunately, as before, the color of the figures is reproduced 
only in shades of gray. 

 
Figure .  
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Lecture № 7. Functions for solving algebraic equations and systems of equations in 
Mathematica 

 
Analytical methods for solving algebraic and transcendental equations 
Solve function 
To solve the equations in analytical form, the Solve function is used, the recording 

format of which is as follows:  
Solve[f,x], 

where f – equation, which is written in any form, 
     х – variable name. 
 The equation symbol "==" is used to write the equation, for example ax2 + bx + c 
== 0. Pay attention that the Solve function does not always form a solution in the most 
compact form, so after using this function sometimes you need to use Simplify, Expand 
or FullSimplify. Examples of using the Solve function are shown in Listing 1. 
 

 
Listing 1 

 
Roots function 
This function is designed to determine the roots of a polynomial, it has the form: 
Roots[f, x],  

where f  – polynomial, the roots of which must be found (can be represented as an 
equation), 
x – polynomial argument. 
 The result of applying the Roots [f, x] function is the real and complex roots of the 
equation ( ) 0f x = . In this case, the solution can be obtained in analytical and numerical 
form. The solution in the analytical form in the general case can be obtained for a 
polynomial not higher than the fourth degree. The solution of ( ) 0f x =  does not exist if ( )f x
– is a polynomial of the fifth and higher degree. However, if the polynomial can be 
factorized, then the function Roots [f, x] will find all the roots of the corresponding 
equation. 

The solutions of the equations in these cases are shown in the examples in Listing 2 
for the equations: 2 0ax bx c+ + = , 4 2 0ax bx c+ + = , 3 0ax b+ = , 5 4 0ax bx cx d+ + + = , 
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( )( )( )( 1)( 1)a x b x x ac x x+ + + + − . Listing 2 shows that in the first three examples, the roots are 
found in analytical form. The fourth example shows a polynomial of the fifth degree, so 
its roots are not found. In the last example the polynomial of the fifth degree is given, thus 
the decision is received in an analytical form. This is because the polynomial ( )f x  can be 
factorized. After that, the polynomial brackets were opened using the Expand function, 
and all its roots were found using the Roots[Out [32], x]  function. Out [32] is the line 
number in which the polynomial is in the open form. 
 

 
Listing 2 

 
If the coefficients of the polynomial are given in the form of numbers, then the 

function Roots [f, x] gives a solution in the form of an exact or approximate value of the 
roots. The exact value of the roots is represented by numbers in a rational form, the 
approximate - in the form of real numbers. Listing 3 shows examples of solving the 
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2 13 / 28 3 /14 0x x+ − = , 7 6 22 3 12 7 5 0x x x x+ − + + = , 10 1 0x − = . Listing 3 
shows that the function determined the exact value of the roots of the first equation, could 
not explicitly find the roots of the second equation and found the roots of the third 
equation, but in an inconvenient form for the user: no roots in complex form. To obtain 
the solution of the second and third equations had to use the command N [%]. 

  

 
Лістинг 3 

 
Applying the Roots [f, x] function to transcendental equations gives an erroneous 

result, so its use is irrational for this type of equation.  
Numerical methods for solving algebraic and transcendental equations 

There are a large number of numerical methods for solving algebraic and 
transcendental equations. The algorithm of any of these methods is a set of conditions for 



58 

choosing the initial approximation, the calculated ratios and signs of the end of the 
computational process. 
The Mathematica system has many built-in functions for solving algebraic and 
transcendental equations in numerical form. The main ones are: NSolve, NRoots, 
FindRoot. Consider in detail these functions and give examples. 

NSolve function 
The NSolve function represends as: 
NSolve[f, x],  

where f  – equation, x – the required unknown. 
The result of this function is the roots of the equation . Roots can be real and 

complex numbers. can solve all equations solved by the Solve function. Its difference is 
only in the form of answers. The rules for using the NSolve function are shown in Listing 
4 when solving the following equations: 3 29 / 4 3 / 4 5 /16 0x x x+ − + = , 2 4 1 0x x− + = , 

2 3 / 1 0xe x− + − = , 
3 1 0ax − = , 5 32 3.2 7.3 14 0x x x+ − − = . 

NRoots function 
The NRoots function represends as: 
NRoots[f, x],  

where f  – equation, x – the required unknown. 
  The result of using this function is the roots of the polynomial ( ) 0f x = . The rules 
for using the NRoots function are shown in Listing 5 when solving the following 
equations: 2 13 / 28 3 /14 0x x+ − = , 7 6 22 3 12 5 0x x x+ − + = , 10 1 0x − = , 2 4 1 0x x− + = . 
Listing 5 shows that the real and complex roots are found in numerical form. An attempt 
to solve the transcendental equation did not succeed - no solution was obtained. 
 FindRoot function 

The FindRoot function represends as: 
FindRoot[f, {x, x0}],  

where f  – equation, x – the required unknown (root (roots) of the equation), x0 – initial 
approximation. 

The FindRoot[f, {x, x0}] finds the root of the equation ( ) 0f x =  from the range of x 
values close to x0. The following method of determining the roots of algebraic and 
transcendental equations using a FindRoot[f, {x, x0}] function is recommended: 

1. Determining the isolation region of the desired root and selecting the value of the 
approximationx0. 

2. Input of the equation ( ) 0f x =  with assigning it a unique name. 
3. Enter the FindRoot[f, {x, x0}] function with the selected value of x0. 
4. Get a solution by pressing <Shift>+<Enter>. 

As an example, the sequence of actions when finding the roots of the equation
3 -9 1 0x x + =  is considered. According to the graph of the function shown in Fig. 1, the 
first approximations for the roots of the function are chosen.  
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Listing 4 (Part 1 from 2) 
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Listing 4 (Part 2 from 2) 
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Listing 5 

 

 
Figure1. Graph of function ( ) 3 9 1xf x x= − +  

 
 Fig. 1 shows that the equation has two roots, the isolation regions of which can be 
the intervals x0 – [0, 1] and x0 – [2.5, 3]. he solution of the equation is shown in Listing 6. 
Care should be taken when choosing the initial approximation, especially in cases where 
the equation contains several roots. It may turn out that when the user-set approximation 
x0 is determined, the wrong root will be determined. In our example, a small change in  x0 
ed to a different solution: at x0=1.9 FindRoot function found the root x =0.258755, , and 
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at x0=2 – х=2.94964. 

 
Listing 6 

 
Methods for solving systems of equations in the system Mathematica 

The Mathematica system has rich possibilities for solving systems of algebraic 
equations. Built-in functions allow solving systems of linear and nonlinear equations in 
analytical and numerical form. Give the opportunity to check the reliability of the results 
quite effectively and in an original way. During operation, the system issues comments 
that allow the user to make decisions about the answers received. The main functions for 
solving systems of equations are: Solve[F,X], Solve[F,X,Y], N[Solve[F,X]], 
FindRoot[F,X]. Consider these functions, describe the technology of their implementation, 
give examples and problems for independent solution. 

Solve[F,X] function 
The Solve[F, X] function allows solving systems of linear and nonlinear equations 

in analytical form. It is represends as follows: 
Solve[{f1,f2,...}, {x1,x2,...}] 

where fi  – i-th equation presented in any form, xi – i-th unknown. 
Equations f1, f2, … an also be represented by a unifying sign &&. Examples of function 
Solve[F,X] representation: 
Solve[{a*x^2+y==b,x+2*y==a+b},{x,y}] 
Solve[a*x^2+y==b&&x+2*y==a+b,{x,y}] 

When entering equations, the multiplication sign (*) can be replaced by pressing the 
<Space> key. When solving practical problems, it is convenient, and in some cases even 
advisable, to enter equations separately from the Solve function, assigning them names, 
which are then entered into the Solve function instead of equations. Example: 
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f1=a*x^2+y==b; f2=x+2*y==a+b 
Solve[{f1, f2},{x,y}] 
or 
Solve[f1&&f2,{x,y}] 
This form of notation simplifies the verification of the solution of the system of equations. 

Systems of equations 
Methods for solving equations:  

1. Entering equations with a unique name, which is specified by the assignment sign 
(=).  

2. Write the function Solve[{f1,f2,...},{x,y,...}] або Solve [f1&&f2&&...,{x,y,...}].  
3. Checking the validity of the solution of the system of equations.  

Examples of solving linear algebraic equations are shown in Listing 7. 
It is necessary to solve the following systems of linear equations: 

1 2 3 1

1 2 3 2

1 2 3 3

;
(2 ) ;

.

x ax bx y
a x x cx y

ax bx cx y

+ − =
 + + + =
 + + =

 
1 2 3

1 2 3

1 2 3

3 4 2 1;
7 2 4;

2 7 3 3.

x x x
x x x

x x x

− + =
 + − = −
 + + =

  
1 2 3

1 2

1 2 3

7 3.5;
1.6 3.7 12;

2 5 7.5.

x x x
x x

x x x

+ − =
− + =
 + + =

 

 
Listing 7 (Part 1 from 2) 
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Code Listing 7 (Part 2 of 2) 

Listing 7 shows that the system solved the first system of equations in analytical 
form, the second - in the form of exact values of the unknowns, presented in rational form. 
The third system of equations is also solved, but the solution is represented as real 
numbers. This is due to the fact that the system of equations has no exact solution. Thus, 
the Solve function can solve systems of equations also in numerical form. The example 
shows that the solution is represented in the form of substitutions: x1->, x2->, x3->. This 
does not make it possible to verify the validity of the solution, as well as to use the values 
of x1, x2, x3 in further calculations. 

To verify the validity of the solution, the user must present the unknown explicitly 
with their name: x1 = -4.31818, x2 = 1.37592, x3 = 1.81327, then use them for their 
intended purpose. You can get the solution explicitly using an expression of the form {x1, 
x2, x3} /., Which is placed before the Solve function: {x1, x2, x3} /. Solve {f1, f2, f3}, 
{x1, x2, x3 }]. Now x1, x2, x3 can be used for its intended purpose, including to verify 
the validity of the solution of the system of equations. 

Systems of nonlinear algebraic equations 
The method of solving systems of nonlinear equations is the same as linear ones. 

This is demonstrated by the example of solving the following systems of nonlinear 
equations: 

2

;
.

x ay b
x by a b
+ =


+ = +

 2 2

;
.

xy a
x y ab

=


+ =
    

A record of the solution and its validation is shown in Listing 8. 
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Code Listing 8 (Part 1 of 2) 
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Code Listing 8 (Part 2 of 2) 

 
Solve function [F, X, Y] 
The Solve function [F, X, Y], as well as the Solve function [F, X], allows to solve 

systems of linear and nonlinear equations in an analytical form, but only with restriction: 
solutions are carried out on variable X and are excluded. for variables Y. For example, the 
function Solve [{x + 2 * ya == 3, 2 * x + y ^ 2 + b == 7}, x, y] will determine X and 
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exclude from the solution Y. Using the function Solve [F, X, Y] is shown in Listing 9 in 
solving the following systems of equations: 

2 1;
7.

ax bxy
xy c

 + =


+ =   

7 3 1;
5 12 3;

2 7.

a b c
a b

a b c

+ + =
− + =
 + + = −

 

The first system is solved with respect to x, the second with respect to a, then with respect 
to a and b. 

 

 



68 

Listing 9 
 

NSolve function [F, X] 
The NSolve function [F, X] allows solving systems of linear and nonlinear equations 

in numerical form. It is recorded as follows: 
Solve [{f1, f2, ...}, {x1, x2, ...}], 

where fi is the i-th equation represented in an arbitrary form, xi is the i-th unknown. 
Equations f1, f2,… can also be represented by the unifying sign &&. The method of 
solving systems of equations using the function NSolve [F, X] is almost no different from 
the technology of solving using the function Solve {F, X}. With its help in Listing 10 the 
following systems of equations are solved: 

1 2 3

1 2 3

1 2 3

2 7 5;
2 5 2;

4 3 7.

x x x
x x x

x x x

+ − =
 − + =
 + + = −   

2

2

2 3 5;
7 7.5.

y x
x y

 + =


+ =  
1 2

2 1

sin 1.3
cos 0.82.

x x
x x
− =

 − = −
 

Listing 10 shows that the NSolve function [F, X] did not solve the last system of 
equations. This is because the system consists of transcendental equations. To solve it, 
methods are needed that are not implemented in the NSolve function [F, X]. 
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Listing 10 

 
FindRoot function [F, {X, x0}] 
The FindRoot function [F, {X, x0}] solves systems of linear and nonlinear equations 

by numerical iteration methods. To implement it, you need to know the initial 
approximations of the unknown. The function looks like: 



70 

FindRoot [{f1, f2, ...}, {x1, x10}, {x2, x20}, ...], 
Where fi is the i-th equation represented in an arbitrary form, xi is the i-th unknown, 
xi0 is the initial approximation of the i-th unknown. 
Equations f1, f2,… can also be represented by the unifying sign &&. 
The technique of solving equation systems using the FindRoot function [F, {X, x0}] 
differs significantly from the technology of solving equations using the NSolve function 
[F, X]. The difference is the need to determine the initial approximations. Examples of 
solving systems of equations by the FindRoot function [F, {X, x0}] are shown in Listing 
11. Listing 11 solves the following systems of equations: 

1 2

2 1

10

20

sin 1.3;
cos 0.82;

1.8;
0.35.

x x
x x

x
x

− =
 − = −
 =
 = −   

2
1 2 1
2 2
1 2

10

20

( 0.2) ;
0.5 2 1;

0.9;
0.5.

tg y y y
y y

y
y

 + =


+ =


=
 =

 

 
Code Listing 11 (Part 1 of 2) 
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Code Listing 11 (Part 2 of 2) 

 
 

Eliminate function [F, x] 
The Eliminate function [F, x] is designed to reduce the number of system equations 

by excluding the specified variables x. It looks like: 
Eliminate [{f1, f2, ...}, {x1, x2,…}], 
where fi is the i-th equation, presented in any form, 
xi is the i-th unknown to be excluded. 
Equations f1, f2, ... can also be represented by the joining sign &&. 
This function transforms the original system of equations so that the number of equations 
and variables is reduced. The limit is one equation with one unknown. An example of 
using the Eliminate function is shown in Listing 12, in which a system of three equations 
is alternately reduced to a system of two equations and then to one equation. 

2 2 2;
7;

2 3 9 1.

x ay z
x y bz

x y z

 + − =
 + − =
 + + =
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Listing 12 

 
Matrix methods for solving systems of linear equations 

The system of linear algebraic equations can be represented as follows: A * X = B, 
where A is a matrix of coefficients, X is a vector of unknowns, B is a vector of free 
members (right parts) of the system of equations. The method of solving equations in the 
Mathematica system is simple and consists of the following: 

1. Introduction of a matrix of coefficients with the assignment of a name, such as A.  
2. Enter a vector of unknowns named X. 
3. Introduction of a vector of free members named B.  
4. Creating the expression z = A. X == B. 
5. Introduction of the Solve function [z, X].  
An example of solving a system of linear equations  

1 2 3

1 2 3

1 3

2 3 7 1;
3 5 7.5;

5 3 2.5,

x x x
x х x

x х

+ − =
− + + =
 + =

 

the matrix method is shown in Listing 13. 
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Listing 13 

 
In addition to the above, there are the following two matrix methods for solving 

systems of algebraic equations in the Mathematica system.  
Method 1. Determination of the vector of unknown X by the formula: X = A-1B.  
The multiplication operation is written by the Dot function, and the matrix 

inversion operation is written by the Inverse function. Then the decision is written as 
follows: 

X: = Dot [Inverse [A], B]  
 Method 2. Using the LinearSolve function.  
The LinearSolve function is written as follows:  
X: = LinearSolve [A, B] 
 Listing 14 shows an example of solving a system of linear equations  

1 1 2 3 1

1 2 3 2

1 2 3 3

2 3 ;
7 ;

,

a x x x b
x cx x b

x x dx b

+ − =
− + + =
 + + =

 

in two ways.  
Special cases of solving systems of equations 
A system of equations can have a number of solutions equal to the number of 

unknowns, such a system is called compatible. If the number of equations is infinitely 
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large, then the system is called compatible and indefinite. If the system has no solution, it 
is called incompatible. 

 
Listing 14 

 
The following two systems of equations demonstrate special cases in solving 

systems of linear equations:  
1 2 3

1 2 3

1 2 3

2 1;
2 4 2 2;
3 2 3 5.

x x x
x x x
x x x

+ − =
 + − =
 + + =   

1 2 3

1 2 3

1 2 3

2 1;
2 4 2 2;
3 6 3 3.

x x x
x x x
x x x

+ − =
 + − =
 + − =

 

Their solution is shown in Listing 15.  
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Listing 15 

 
Listing 15 shows that the first system of equations has a solution: 

1 1
2 3

31 , 1
4 2
x xx x= − = − ,,that is, has an infinite number of solutions (for any value 1x ). The 

system is compatible but uncertain. The second system is also compatible and uncertain, 
having the solution: 3 1 21 2x x x= − + + , substituting values 1 2,x x . Note that in both cases 
the main determinant of the system is zero. 
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Lecture № 8. Functions of mathematical analysis 
  

Calculation of sums and products of series 
 The calculation of the sums of series can be carried out in analytical or numerical 
form. The function is used to calculate the amounts in analytical formSum. The following 
Sum recording formats exist: 

- Sum [fi, {i, imax}]; 
- Sum [fi, {i, imin, imax}]; 
- Sum [fi, {i, imin, imax, ∆i}]; 
- Sum [fi, j, .. {i, imin, imax}, {j, jmin, jmax}], 

where f is the summation element, 
 and, j - summation variables, 
 іmin, imax - summation elements, 
 ∆i is the step of changing the argument and. 
 If it is necessary to calculate the sum of the members of the series represented by 
the analytical function, from 1 to n, you must use the function Sum [fi, {i, imax}]. Listing 
1 shows the use of the function to calculate the series 1 / n, 1 / n2, 1 / n3. 

 
Listing 1. Using the Sum function [fi, {i, imax}] 

 
 Function Sum [fi, {i, imin, imax}] calculates the sum of the values of the function f 
in the range of values of the argument imin ..imax with step 1. When using the function 
Sum [fi, {i, imin, imax, ∆i}] step of changing the argument is given by the parameter ∆i. 
 Function Sum [fi, j, .. {i, imin, imax}, {j, jmin, jmax}] calculates the sum of several 
variables. An example of its use is illustrated in the calculation of the following series:
50 10

2 2

1 1
( )i j

i j
x y

= =
+∑∑ ,, 

0 0 ! !

n m

n m

x y
n m

∞ ∞

= =
∑ ∑ ,, 

3 3

1 1 ! !

n m

n m

x y
n m= =

∑ ∑  shown in Listing 2. 
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Listing 2 

 
Numerical calculation of sums is performed by the NSum function, which has the 

same modifications as the Sum function. 
 The product is calculated similarly to summation. To do this, use the functions: 

- Product - for calculating products in analytical and numerical form; 
- NProduct - to calculate products only in numerical form. 
Calculation of the function boundary 

  Calculating the function boundary in the system Mathematica is done using the 
Limit function. The syntax of its record is as follows: 
 Limit [f (x), x-> x0]. 
 The Limit function has a Direction option. The Direction option indicates the 
direction of approach to the border. Her record has two options: 
 Direction -> +1; 
 Direction -> -1. 
A value of +1 indicates approaching the border on the left side, -1 - on the right side. An 
example of using the Limit function is shown in Listing 3. 

 
Listing 3 

 
Schedule functions in power series 

 To decompose into a power series in the system Mathematica uses the following 
functions: 

Series [f, {x, x0, n}] - decomposes the function f around the point x = x0 using n 
members of the series; 

Series [f (x, y), {x, x0, nx}, {y, y0, ny}] - decomposes the function f into two 
variables x and y around the point (x0, y0) with the number of members nx and ny, 
respectively . 
 Examples of using functions are shown in Listing 4. 
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Listing 4 

 
Calculation of derivative functions 
The calculation of derivatives is carried out using the following functions: 
D [f, x]; 
D [f, {x, n}]; 
D [f, x1, x2,…]; 
Dt [f, x]; 
Dt [f]; 
Derivative [n1, n2, ..] [f] - is a derivative of f [{x1, x2,…}] taken ni times xi. 

Where f is the differentiated function, 
x is the variable of differentiation, 
x1, x2, .. - differentiation variables, 
n is the order of the derivative. 

 
Methods for calculating integrals 
Analytical methods 
The integral in analytical form is calculated using the following built-in functions: 

 - 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 [𝑓𝑓(х), х] - calculates the indefinite integral of the function by the 
argument x;𝑓𝑓( х ) 

- - calculates the definite integral of the function 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 [ 𝑓𝑓( х ) , { х, хн , хк}]  
𝑓𝑓( х ) on the variable with the lower and upper limits of integration. The limits of 
integration can be symbolic variables, numbers and even functions;ххнхк 

-  - Calculates the definite integral of the function of many variables with integration 
limits,,,.𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 [ 𝑓𝑓( х , у, . . . ) , { х , хн, хк } , {у ,𝑦𝑦н  ,𝑦𝑦𝑘𝑘 , . . . }] х , у, . . . хнхк𝑦𝑦н𝑦𝑦к 

Examples of calculating integrals are shown in Listing 5. The following integrals 
are calculated: 

∫ 𝑎𝑎𝑎𝑎−1
𝑏𝑏𝑎𝑎+1

𝑑𝑑𝑑𝑑,∫ 2+𝑎𝑎
𝑎𝑎

𝑏𝑏
𝑎𝑎 𝑑𝑑𝑑𝑑,∫ (1 + 2𝑑𝑑𝑦𝑦 + 4𝑑𝑑2𝑦𝑦2)𝑏𝑏

𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦 . 
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Listing 5 

 
In the previous example, the boundaries of integration were the symbolic variables 

a and b. Listing 6 shows the calculation of the integrals of the same functions in the case 
when the limits of integration are the numbers: = 1, = 5, = 0, = 10.х𝐻𝐻х𝐾𝐾𝑦𝑦𝐻𝐻𝑦𝑦𝐾𝐾 

 
Listing 6 

 
Listing 6 shows that in this case obtained in the form of exact solutions. Numerical 

values of integrals are obtained using the function N (%). 
Numerical Methods  
Calculation of integrals in numerical form is necessary in the following cases: 
- the original is not expressed through elementary functions; 
- subintegral function is given in the form of a table; 
- the analytical expression of the original is too complex. 
As an example, Listing 7 shows the calculations of indefinite and definite integrals 

of functions:. 𝑦𝑦(𝑑𝑑) = 𝑑𝑑
1
𝑥𝑥𝑛𝑛𝑎𝑎и 𝑦𝑦(𝑑𝑑) = 𝑑𝑑20𝑛𝑛−𝑎𝑎 
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Listing 7 

Listing 7 shows that the first integral is not analytically solved, and the second is 
too cumbersome. In these cases, the result of calculating the integrals by numerical 
methods can be obtained using the NIntegrate function. 

The format of the NIntegrate function is as follows: 
NIntegrate(𝑓𝑓(𝑑𝑑), {𝑑𝑑, 𝑑𝑑𝐻𝐻 , 𝑑𝑑𝐾𝐾}),, 

where f (x) is a subintegral function; 
x - argument of subintegral function; 
𝑑𝑑𝐻𝐻 , 𝑑𝑑𝐾𝐾 - lower and upper limits of integration. 
The method of using the NIntegrate function does not differ from the method of calculating 
a definite integral in analytical form.  

 
Calculation of multiple integrals 
The calculation of multiple integrals in the Mathematica system is carried out by 

repeatedly using the Integrate function in analytical integration or NIntegrate in numerical 
integration. Listing 8 shows examples of calculating multiple integrals of a function for 
different variants of integration limits:𝑓𝑓(𝑑𝑑) = 𝑎𝑎−1

𝑎𝑎+1
 

- symbolic variables from a to b; 
- numerical values of integration limits from 0 to 2; 
- the limits of integration given by the functions: ln 2 and.𝑛𝑛1.2 
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Listing 8 

 
Calculation of improper integrals 
The Mathematica system allows you to compute integrals with infinite boundaries. 

The same functions are used as in the case of calculating integrals with finite limits. The 
infinity value is denoted by either the ∞ symbol or the Infinity service constant. Examples 
of calculating improper integrals are given in sheet 9. 
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Listing 9 

 
The following conclusions can be drawn from Listing 9: 
- the solution of the improper integral is obtained in analytical form. To obtain the 

numerical value of the integral, use the command N [%]; 
- the expression of the original function in analytical form can be complex. To 

simplify it, you should use the functions Simplify, Expand, Factor or their prototypes; 
- if the integral does not have an initial, then the result will be the initial expression 

of the integral. 
Tabular integration 
The subintegral function f (x) can be given in the form of a table. This is often 

necessary when conducting experimental research. In such cases, the calculation of the 
integral can be performed by the formulas of rectangles, trapezoids or parabolas. The 
solution can also be obtained by interpolating the function f (x) with its subsequent 
integration. Mathematica after version 6.0 changed the built-in ListIntegrate function to 
the integrated form Integrate [Interpolation []], which has the following features of use: 
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- Integrate[Interpolation;[{𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛}][𝑑𝑑], {𝑑𝑑, 𝑑𝑑1, 𝑑𝑑2}] 
- Integrate[Interpolation;[{𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛}, InterpolationOrder →

𝑘𝑘][𝑑𝑑], {𝑑𝑑, 𝑑𝑑1, 𝑑𝑑2}] 
- Integrate[Interpolation [data] [x], {x, Min [xc], Max [xc]}]; 
The functions use the following notation: 

 - 𝑦𝑦𝑖𝑖 - the value of the function y = f (x) in the - node, 1 = 1, 2, ..., n;𝑑𝑑𝑖𝑖 
- x is the argument of the function y = f (x). 
- x1, x2 - final values of the argument; 
- k is the interpolation order. 
-;data = �{𝑑𝑑1,𝑦𝑦1}, … , {𝑑𝑑𝑛𝑛,𝑦𝑦𝑛𝑛}� 
-;𝑑𝑑𝑐𝑐 = data[[𝐴𝐴𝐴𝐴𝐴𝐴, 1]] 
Using the function for tabular integration, you can skip writing the built-in character 

InterpolationOrder, then the default interpolation order will be k = 3. 
As an example, calculate the value of the integral of the tabular function y = f (x), 

the values of which are given in table. 1. 
Table 1. Tabular representation of the function y = f (x) 

x 1 2 3 4 5 6 7 8 
in 1 8 27 64 125 216 343 512 

 
In this case, the integration step is constant and equal to h = 1. From table. 1 shows that 
the analytical expression of the function has the form y =. Listing10 shows the procedures 
for calculating the integral in the case of specifying a subintegral function in the form of a 
table and in the form of an analytical expression y =.𝑑𝑑3𝑑𝑑3 

 
Listing 10 

 
Solving differential equations in Mathematica 
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Mathematica system allows to solve in analytical and numerical form linear and 
nonlinear differential equations and systems. The solution of differential equations and 
systems is carried out with the help of built-in functions. 

Analytical methods 
Analytical methods for solving differential equations in the Mathematica system are 

implemented using two built-in functions:  
[ [ ] ]
{ } ] [ { }1 2 1 2 1 2

 ,   ,  

 , ,  ... ,   ,   ,  ... ,  , ,  ..

;

{ ..}

DSolve f у х х

DSolve f f y x y x x x      
 

Consider in detail these functions and give examples.  
Function [ [ ] ] ,   ,  DSolve f у х х designed to solve the differential equation f  

regarding the function ( )у x with an argument x . The function gives the general solution of 
the equation with the integrating constants that are denoted [ ]c i .  

The differential equation is represented in an arbitrary form. Example,
' 2 ^ 2 1,  ' 2 ^ 2 1y x y x== − − == − or ' 2 ^ 2 1 0y x− + == . The function allows you to solve 

a differential equation of any order. Here are some examples. The following differential 
equations are given: 

2 2 2' 2 3 1,  ' 2ln 2, ' 3 1.xy x x y x x y e x x−= + − = + − = − + −  
The solution of the equations is shown in Listing 11.  

 
Listing 11 

 
Listing 11 shows that when solving the first equation, it was given the name F and 

entered outside the function. DSolve . When solving the second equation, the latter is 
introduced directly into the function DSolve . When solving the third equation, it is 
presented in a form different from the first two. The example shows that the program found 
a common solution with arbitrary integrating constants, and the solution is reduced to a 
simple integration of the right-hand side of the equations. Function DSolve also allows you 
to solve high-order differential equations, as shown in the following examples:  

2''' 3 2 1,  ''' '( ) 5 ( ) 2 1.y x x y y x y x x= − + = − + −  
The solution is shown in Listing 12.  
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Listing 12 

 
Solution of differential equations under known initial conditions 
The following modification of the DSolve function is used to obtain the solution of 

differential equations under the known initial conditions:  
[ [ ] ]0 ( , ),   ,  DSolve f x x у х х ,, 

where 0( , )f x x  - differential equation in conjunction with the initial conditions; 
( )у x - desired function; 

x - independent variable.  
Consider examples of a separate solution of differential equations using a function

DSolve : 
'( ) 2ln 2y x x x= + −  under the initial condition: (0) 1y = ;  

2''( ) 3 ( ) e 1xy x y x x= − + − at (0) 1, y'(0) 0y = = ; 
''( ) 5 ( ) 1y x y x= − − at (1) y'(1) ''(1) 0y y= = = .  

The solution is shown in Listing 13. 



86 

 
Listing 13 

 
Solution of systems of differential equations in analytical form 
Systems of differential equations in analytical form are also solved using the built-

in function DSolve , which in this case has the form: 
1 2 1 2 [{ , ,...},{ ( ), ( ),...}, ]DSolve f f y x y x x  

where if  - the i-th equation of the system; 
( )iy x  - and the sought-after unknown;  

x - independent variable.  
Examples of using the function DSolve for the case of solving systems of differential 

equations are given below:  
'( ) ( ) ( ) 
'( ) ( ) 3 ( )
'( ) ( ) ( ).

x t y t z t
y t x t z t
z t x t y t

= +
 = +
 = +
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The solution is shown in Listing 14.  

 
Listing 14 

 
Listing 14 shows that the solution is obtained in General, as the initial conditions 

were not specified. 
Subject to the substitution of initial conditions: (0) 1, (0) (0) 0x y z= = =  function 

record DSolve is as follows: 
[{ '[ ] [ ] [ ], '[ ] [ ] [ ], '[ ] [ ] [ ],

[0] 1, [0] [0] 0},{ [ ], [ ], [ ]}, ].
DSolve x t y t z t y t x t z t z t x t y t
x y z x t y t z t t

== + == + = +
= == ==

 

Numerical methods for solving differential equations 
Numerical methods for solving differential equations in the Mathematica system 

are implemented using the following two built-in functions:  
min max [ , [ ],{ , , }]NDSolve f y x x x x  

1 2 1 0 2 0 1 2 min max [{ , ,..., ( ), ( ),...},{ [ ], [ ],...},{ , , }]NDSolve f f y x y x y x y x x x x  
where f - differential equation and initial conditions; 

if  - the i-th equation of the system of differential equations; 
[ ]y x  - desired function; 
[ ]iy x - the i-th desired function of the system of differential equations; 

0( )iy x  - i-th initial condition; 
min max,x x  - minimum and maximum value of the independent variable; 

x  - the argument of the desired function.  
The numerical solution functions of differential equations and systems have the 

StartingStepSize option, which determines the value of the initial integration step.  
Numerical methods are most often used in cases where the equation in analytical 

form is not solved by the system or has no analytical solution. These are most nonlinear 
equations. Next, the built-in functions, methods of their implementation and examples are 
given in detail. 

Function min max [ , [ ],{ , , }]NDSolve f y x x x x  
This function solves the n-th order differential equation by calculating the required 

function y (x) in the range of the independent variable x from minx  to maxx . The solution 
can be obtained in the form of a table or graph. 

The method of solving the problem is shown by the example of the following 
differential equation: 
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'( ) ( ) 1,y t xy x− =  
under initial conditions (0) 1y = . The solution should be obtained in tabular and graphical 
form in the range from 0 to 5 in steps of 0.5. 

The method of solving the differential equation using the NDSolve function consists 
of performing the following operations: 

1. Introduction of the NDSolve function, which in our example has the form:  
[{ '[ ] , [0][ ] 1}, [ ],{ ,0,5}].1NDSolve y x xy x y y x x== ==+  

2. Get the solution by pressing <Shilit> + <Enter> at the same time. The solution 
will be received in the form of a message without displaying the solution itself on the 
screen. 

3. Introduction of the Table function to obtain a solution in tabular form. In our 
example, this function will look like: 

[{ , [292]},{ ,0,5,0.5}].[ ] / .T table x y x Ou x  
Here Out [292] is the 292 line in which the solution of the equation is located. The 

result is a vector represented as a string. 
4. Enter the TableForm function [%] to obtain a solution in the form of a table. The 

result is a function y (x), presented in the form of a table. 
5. Introduction of the function [{ [292]},{ ,0,5}][ ] / .Plot y xx Out . The result is a graph 

of the function. 
The solution of the problem is shown in Listing 15. First, the solution of the equation 

is given in analytical form.  
The following example requires solving a higher order equation: 

2'''( ) 3 ''( ) 2 '( ) ( ) 1,y x x y x xy x y x− − − =  
under initial conditions (1) 1, '(1) ''(1) 0y y y= = = . The solution is obtained in the 

range of strokes 0 to 3 with a step of 0.5 when presenting the solution in tabular form 
and in the range from 0 to 2 - in graphical form. The solution is shown in Listing 16. 
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Listing 15 

 



90 

 
Listing 16 

 
Function 1 2 1 0 2 0 1 2 min max [{ , ,..., ( ), ( ),...},{ [ ], [ ],...},{ , , }]NDSolve f f y x y x y x y x x x x  
This function solves a system of n-th order differential equations by calculating the 

required functions 1 2[ ], [ ],...y x y x in the range of the independent variable x from minx  to 
maxx . The solution can be obtained in the form of tables or graphs. 

The method of using the function is shown in the following example: 
0 1

0 1

2

2

1

0

1

2

( ) 2 ( )
( ) 2.9 ( ) 4 ( )

'( ) 0.

( )

9
'( ) 0.9
'( ) 0. 49 ( ),

p tp p t
p t p t p t
p t

t
p t
p p tt

= −

=

+
−

−=

 +



 

under the following initial conditions: 0 1 2(0) 1, (0) (0) 0p p p= = = . Get the solution in the 
form of tables and graphs. 

In this case, the NDSolve function will look like:  
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NDSolve {{p0 '[t] = - 0.9 p0 [t] + 2p1 [t], p1' [t] = 0.9 p0 [t] -2.9p1 [t] + 4p2 [t], 
p2 '[t] = 0.9p1 [t] -4p2 [t], p0 [0] = 1, p1 [0] = p2 [0] = 0}, {p0 [t], p1 [t], p2 [t]}, {t , 
0, 100}]. 

The solution is shown in Listing 17. The table is presented in the range t from 0 to 
1 in steps of 0.1, and the graph is presented in the range t from 0 to 3.  

 
Listing 17 (Part 1 of 2) 
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Listing 17 (Part 2 of 2) 

 
Mathematica, like any other computer algebra system, is not ideal for solving 

differential equations. The obtained solution rarely coincides with the answer available in 
mathematical reference books. It is not uncommon for a built-in function to give no 
solution or to be erroneous, although the equation is quite simple. Here are some examples. 
Suppose you need to solve the following equations and systems of equations: 

''( ) ( ) ;
''( ) ( ) 4 sin ;

y x y x tgx
y x y x x x

= − +
= − +

 

'( ) '( ) ( ) ;
'( ) '( ) ( ) ( 2);

x t y t tx t t
x t y t y t t t

+ − =
+ + = +

 

3 ( ) '( ) 2 0.z x z x x− =  
The system of equations is solved by analytical and numerical methods under initial 

conditions, (0) 1, (0) 0x y= =  in the range x from -1 to 1.  
The solutions of the equations are shown in Listing 18. 
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Listing 18 

 
Based on the listing, you can make the following comments. The solutions of the 

first and second equations are correct, but do not coincide with the reference data, which 
provide the following answers: 

 
The obtained solutions can be significantly simplified using the Simplify function 

[%].  
The solution of the system of equations is not obtained either by analytical or 

numerical methods, although such a solution exists. 
The answer to the solution of the third equation is interesting - three equivalent 

results. 
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When solving differential equations by numerical methods, unacceptably large 
errors can occur due to methodological errors and errors in choosing the integration step. 
It is always necessary to remember that at computer technologies of the decision of 
differential equations check of reliability of the received results is necessary. 
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Lecture № 9. Computer interpolation technologies in Mathematica environment 
 
Interpolation, accurate in nodes 
In Mathematica, interpolation, accurate in nodes, can be implemented by the 

following methods: 
- universal; 
- using the universal functions InterpolatingPolynomial and Interpolation. 
Universal method 
The universal method requires the solution of systems of algebraic equations, which 

were obtained on the basis of the data of the function, which is presented in the form of a 
table or matrix.𝑦𝑦 = 𝑓𝑓(𝑑𝑑) 

Examples of interpolation by the universal method are given below. 
The function is given in the form of table. 1.𝑦𝑦 = 𝑓𝑓(𝑑𝑑) 

 
Table 1. Function in tabular form𝑦𝑦 = 𝑓𝑓(𝑑𝑑) 

x 1 2 3 4 
y 6.2 4.1 1.9 0.6 

 
It is necessary to solve the interpolation problem, which is exact in nodes if the 

function is a polynomial. Since the number of nodes, the degree of the polynomial must 
not be higher than that is.𝑦𝑦 = 𝜑𝜑(𝑑𝑑)𝑛𝑛 = 4𝑛𝑛 − 1.𝑦𝑦 = 𝑛𝑛0 + 𝑛𝑛1𝑑𝑑 + 𝑛𝑛2𝑑𝑑2 + 𝑛𝑛3𝑑𝑑3 

Let's make a system of equations: 
𝑛𝑛0 + 𝑛𝑛1 ∙ 1 + 𝑛𝑛2 ∙ 12 + 𝑛𝑛3 ∙ 13 = 6,2 
𝑛𝑛0 + 𝑛𝑛1 ∙ 2 + 𝑛𝑛2 ∙ 22 + 𝑛𝑛3 ∙ 23 = 4,1 
𝑛𝑛0 + 𝑛𝑛1 ∙ 3 + 𝑛𝑛2 ∙ 32 + 𝑛𝑛3 ∙ 33 = 1,9 
𝑛𝑛0 + 𝑛𝑛1 ∙ 4 + 𝑛𝑛2 ∙ 42 + 𝑛𝑛3 ∙ 43 = 0,6 

The solution is obtained using the function where the initial system of equations 
(see Listing 1).𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑛𝑛�𝐹𝐹, (𝑛𝑛0,𝑛𝑛1,𝑛𝑛2,𝑛𝑛3)�,𝐹𝐹 − 

 

 
Listing 1 

 
As a result of the received decision the interpolation formula will look: 

𝑦𝑦 = 7,2 − 0.116667𝑑𝑑 − 1,05𝑑𝑑2 + 0,166667𝑑𝑑3. 
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and final value of the argument, the step of the table, if, then it can be 
neglected.𝑓𝑓(𝑑𝑑)𝑑𝑑𝐻𝐻 , 𝑑𝑑𝐾𝐾 −  ℎ − ℎ = 1 

In the previous example, the number of equations and the number of unknowns are 
the same. When solving practical problems, the number of values of the tabulated function 
almost always exceeds the degree of algebraic equations. In such cases, a limited number 
of interpolation nodes have to be selected from the entire range of source data. We 
illustrate this with the example of the tabulated function given in table. 2. 

 
Table 2. Tabulated function 

x 3 6 9 12 15 18 21 24 27 30 
y 26 90 180 300 500 700 1000 1200 1500 2000 

 
Let the interpolation function be a polynomial of degree. The calculation of the 
interpolation polynomial coefficients is shown in Listing 2. As a result of comparing the 
interpolation results with the original data, we can conclude that there is an interpolation 
error at some values of the argument. For a detailed analysis of the error in Fig. 1 constructs 
interpolation and data functions.𝑦𝑦 = 𝑛𝑛0 + 𝑛𝑛1𝑑𝑑 + 𝑛𝑛2𝑑𝑑2𝑑𝑑 
 

 
Listing 2 
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Fig. 1. Graphs of the original function and tabs 

 
Calculate the absolute ε and relative δ RMS interpolation error by the following formulas: 

2

1 100

n

i
i

n y
=

∆
= = ⋅
∑

min

, %εε δ ,,    (1) 

where Δi = y (xi) - φ (xi) is the difference between the values of the tabulated function y 
(xi) and the interpolation function φ (xi), 
n is the number of values of the tabulated function, 
уmin - the minimum value of the function y (x). 
The calculation of absolute and relative values and errors is shown in Listing 3. 
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Listing 3 

 
Function𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈  
To interpolate polynomial functions use a function that has the following 

format:𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛𝐼𝐼𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑦𝑦𝑛𝑛𝑆𝑆𝐼𝐼𝐼𝐼𝑛𝑛𝐴𝐴 
𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛𝐼𝐼𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑦𝑦𝑛𝑛𝑆𝑆𝐼𝐼𝐼𝐼𝑛𝑛𝐴𝐴 [𝑧𝑧, 𝑑𝑑],, 

where𝑧𝑧 −source data matrix, 
𝑑𝑑 −function argument 𝑧𝑧. 
An example of using the function will be demonstrated by the example of the data given 
in table. 3.𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛𝐼𝐼𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑦𝑦𝑛𝑛𝑆𝑆𝐼𝐼𝐼𝐼𝑛𝑛𝐴𝐴 [𝑧𝑧, 𝑑𝑑] 
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Table 3. Tabular data 
X 1 2 3 4 5 
Y 1 8 27 64 125 

 
The method of using the function is shown in Listing 4. According to the listing, the 
interpolation function has the form 𝑦𝑦 = 𝑑𝑑3. The solution is accurate. The function is used 
to simplify the expression Simplify . 
 

Listing 4 
 

Function  𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛i𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑦𝑦𝑛𝑛𝑆𝑆𝐼𝐼i𝑛𝑛𝐴𝐴 [𝑧𝑧, 𝑑𝑑]   solves interpolation problems also 
in the case of non-equidistant nodes. Vector 𝑧𝑧 elements chan be a set of functions   𝑓𝑓𝑓𝑓1(𝑑𝑑), 
𝑓𝑓𝑓𝑓2(𝑑𝑑), …   .   The solution will then be issued as a polynomial with the original expression 
stored 𝑓𝑓𝑓𝑓1(𝑑𝑑), 𝑓𝑓𝑓𝑓2(𝑑𝑑), …, Listing 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Listing 5 
 

Listing 5 
 

The values of the function 𝑧𝑧 are shown in table. 4. 
 

Table 4. The value of the function 
𝑑𝑑 1 2 3 4 
𝑦𝑦 1 𝑠𝑠𝐼𝐼𝐼𝐼𝑛𝑛𝑑𝑑 1/𝑑𝑑 𝑛𝑛−𝑑𝑑 
𝑦𝑦(𝑑𝑑) 1 0,909297 0,333333 0,0183156 
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Function 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛i𝑛𝑛𝑛𝑛[data] 
This function allows you to solve the problem of interpolation over data (data) in 

the range of arguments given by this data. The approximation function is unknown to 
the user. The data are given in the form of a matrix of the function 𝑦𝑦 = 𝑓𝑓(𝑑𝑑) . When you 
enter this function, Mathematica does not issue an interpolation function, but a new 
function: 
𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛i𝑛𝑛𝑛𝑛𝐹𝐹𝑢𝑢𝑛𝑛𝑐𝑐𝑛𝑛i𝑆𝑆𝑛𝑛[{{𝑑𝑑𝐻𝐻, 𝑑𝑑𝐾𝐾}}, < >], 
where 𝑑𝑑𝐻𝐻, 𝑑𝑑𝐾𝐾 − the range of arguments of the interpolation function. 
If yu nov enter the value of the argument from the range 𝑑𝑑𝐻𝐻 − 𝑑𝑑𝐾𝐾, the answer will 
be the value of the function at a given value of the argument. 
Consider the method of using the function by example. Tabular function 𝑦𝑦 = 𝑓𝑓(𝑑𝑑) 
listed in table. 5. It is necessary to determine the value of the function at 𝑑𝑑= 5.8 і 𝑑𝑑 
= 18.5 and verify the validity of the obtained solutions. 
 

Table 5. Function  𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝑑𝑑) in tabular form 
X 2 3 8 12 20 
Y 1 2,5 4,6 3,2 1,6 

 
The solution to the problem is shown in the Listing 6. 

 
Listing 6 

 
According to Listing 6, the function 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐼𝐼𝑆𝑆𝐴𝐴𝑛𝑛𝑛𝑛i𝑆𝑆𝑛𝑛[𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛] interpolates data with the 
exact method in nodes. The results of tabulation are the exact values of the function 
in the interpolation nodes. 

Interpolation by nonlinear functions 
If the interpolation function is nonlinear, then two methods are used to 

determine its coefficients by the exact method in nodes: 
- creation and solution of a system of nonlinear equations; 
linearization of nonlinear interpolation function by coordinate transformation. 

Consider both methods. 
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Way 1. Solving a system of nonlinear equations 

The method of interpolation in this way is to solve systems of nonlinear 
equations. Demonstrate it on the basis of the data given in table. 6. 

Table 6. Function  𝑦𝑦 = 𝑓𝑓(𝑑𝑑) in tabular form 
Х 1 2 3 4 5  6 7 8 
У 7,6 16 33 71 156  341 750 1650 

 
The interpolation function has an analytical expression 𝑦𝑦 = 𝑛𝑛𝑇𝑇𝑑𝑑 + 𝑐𝑐 . It is necessary 
to determine the unknown 𝑛𝑛, 𝑇𝑇, 𝑐𝑐 and the error of the interpolation function. Choose 
the following three coordinates of the function: (1,7.6), (4,71), (7, 750) and make a 
system of equations: 
 

𝑛𝑛𝑇𝑇1 + 𝑐𝑐 = 7,6 
𝑛𝑛𝑇𝑇4 + 𝑐𝑐 = 71 
𝑛𝑛𝑇𝑇7 + 𝑐𝑐 = 750 

We solve this system of nonlinear equations using a function FindRoot according to 
the following initial values of the unknown: 𝑛𝑛 = 2,5, 𝑇𝑇 = 3, 𝑐𝑐 = 1,5 . The solution is 
shown in the Listing 7. 

Listing 7 
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Listing 7 shows that the mathematical model of the object is the following 
interpolation function: 

𝑦𝑦 = 2.96 ∙ 2.2х + 1.07. 
The absolute and relative root mean square errors are calculated according to 
formula (1). The relative error is equal to 10%. 
 

Way 2. Linearization of a nonlinear function 
In Mathematica, approximation by nonlinear functions can be reduced to 

solving linear equations by coordinate transformation. 
The alignment of functions is carried out by converting them into a linear 

function by replacing variables. These transformations are most simply carried out 
under the condition of using power, logarithmic, fractional-linear, exponential 
functions. The technique of interpolation by the method of linearization of nonlinear 
functions is carried out by performing the following actions: 

1. Transformation of the interpolation function into a linear form. 
2. Transformation of the matrix of source data into a matrix of new variables. 
3. Formation of a system of linear equations. 
4. Solving a system of linear equations. 
5. Formation of the interpolation function. 
6. Checking the adequacy of the obtained model. 
Consider the method on the example of the data given in table. 7. 

Table 7. Function  𝑦𝑦 = 𝑓𝑓(𝑑𝑑) in tabular form 
X 1 3 5 7 9 11 13 15 
Y 2,5 7,8 18,7 28,5 39 50 61,7 73,8 

 
It is necessary to find a mathematical model of the object under study, if it is known 
that the interpolation function is an exponential function 𝑦𝑦 = 𝑛𝑛𝑑𝑑𝑇𝑇. The solution of 
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the problem is shown in the Listing 8.

 
 

Listing 8 
 

The first two lines of Listing 8 contain the source data vectors with the name 𝑓𝑓1 and 
𝑓𝑓2. They are followed by the same vectors on a logarithmic scale. To calculate the 
coefficients 𝑛𝑛 and 𝑇𝑇 of a linear function 𝐴𝐴𝑛𝑛𝑦𝑦 = 𝐴𝐴𝑛𝑛𝑛𝑛 + 𝑇𝑇𝐴𝐴𝑛𝑛𝑑𝑑. Coordinates are taken as initial 
data (3,7), (11,50), which on a logarithmic scale matter: (1.09861, 2.05412), (2.3979, 
3.91202). Then the system of equations has the form: 
2.05412 = 𝐴𝐴 ∙ 1.098616𝑇𝑇; 
3.91202 = 𝐴𝐴 ∙ 2.3979𝑇𝑇, 
where 𝐴𝐴 = 𝐴𝐴𝑛𝑛𝑛𝑛 . 

The system is solved by a function S𝑆𝑆𝐴𝐴v𝑛𝑛. As a result of the solution, the following 
values of the coefficients are obtained: 𝑛𝑛 = 0.483096, 𝑇𝑇 = 1.4299. Then 𝑛𝑛 = 𝑛𝑛𝐴𝐴𝐴𝐴 = 1.62109, 
and the interpolation function has the form: 𝑦𝑦 = 1.62𝑑𝑑1.43. The coefficients 𝑛𝑛 and 𝑇𝑇 of the 
interpolation function are rounded to two significant digits after the dot. The adequacy of 
the model is proved by tabulating the interpolation function using the function T𝑛𝑛𝑇𝑇𝐴𝐴𝑛𝑛. 
Comparing the results of tabulation with the original data, we can conclude that the problem 
is solved correctly (the values of the functions are almost the same in the interpolation nodes 
𝑑𝑑 = 3 and 𝑑𝑑 = 11), and the interpolation function is a mathematical model of the object under 
study. In order to compare the results of the two interpolation methods, the problem of 
interpolation of a nonlinear function was solved 𝑦𝑦 = 𝑛𝑛𝑑𝑑𝑇𝑇. The same interpolation nodes were 
selected 𝑑𝑑 = 3 і 𝑑𝑑 = 11 and a system of nonlinear equations is solved by means of a function 
𝐹𝐹i𝑛𝑛𝑑𝑑r𝑆𝑆𝑆𝑆𝑛𝑛 on initial approximations 𝑛𝑛0 = 2,  𝑇𝑇0 = 1. 

The solution looks like this: 
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According to the solution, the coefficients of the interpolation function practically coincide 
in the case of linearization of the equation. 

Interpolation approximated in nodes 
Interpolation, approximated in nodes (approximation), is carried out by the criterion 

of minimum standard error (least squares method). Implemented by the Mathematica system 
using the function  𝐹𝐹i𝑛𝑛 . Function 𝐹𝐹i𝑛𝑛 looks like: 

𝐹𝐹i𝑛𝑛[{{𝑀𝑀}}, {𝑋𝑋𝑋𝑋}, 𝑑𝑑], 
where 𝑀𝑀 - is the matrix of the original data, 
𝑋𝑋𝑋𝑋 - list of basic variables, 
𝑑𝑑 - is the argument of the function. 
Method of interpolation using a function 𝐹𝐹i𝑛𝑛[{{𝑀𝑀}}, {𝑋𝑋𝑋𝑋}, 𝑑𝑑] is implemented by 
performing the following actions: 

1. 1. Introduction of a matrix of initial data with assignment to it of the unique 
name, for example, M. 

2. 2. Introduction of basic variables X. 
3. Enter the function 𝐹𝐹i𝑛𝑛[{{𝑀𝑀}}, {𝑋𝑋𝑋𝑋}, 𝑑𝑑]. 

An example of solving interpolation problems will be shown in the data given in Table 8. 
Table 8. Function in tabular form𝑦𝑦 = 𝑓𝑓(𝑑𝑑) 

x 1  3 4 7 10 
Y 3.5  6.7 4.2 2.8 1.2 

 
It is necessary to find the interpolation function in the basis. In this example, the function 

will look like:𝑛𝑛, 𝑑𝑑, 𝑑𝑑2, 𝑎𝑎
1+𝑎𝑎

, 𝑛𝑛𝑎𝑎𝐹𝐹𝐼𝐼𝑛𝑛 

𝐹𝐹𝐼𝐼𝑛𝑛[�{1,3.5}, {3,6.7}, {4,4.2}, {7,2.8}, {10,1.2}�, �𝑛𝑛, 𝑑𝑑, 𝑑𝑑2,
𝑑𝑑

1 + 𝑑𝑑
,𝐸𝐸𝑑𝑑𝐼𝐼[𝑑𝑑]� , 𝑑𝑑] 

The solution is shown in the Listing 9. 

Listing 9 
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Pade approximation 
The Padé approximation is used to interpolate a function given analytically by 

a fractional-rational function. 
The Pade function has the form: 
𝐼𝐼𝑛𝑛𝑑𝑑𝑛𝑛𝐴𝐴𝐼𝐼𝐼𝐼𝑛𝑛𝑆𝑆xi𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛[𝑓𝑓(𝑑𝑑), {𝑑𝑑, 𝑛𝑛, {𝑛𝑛1, 𝑛𝑛2}}]; 

where 𝑓𝑓 (𝑑𝑑) −function, given in analytical form, 
𝑑𝑑 −argument of the function 𝑓𝑓(𝑑𝑑), 
𝑛𝑛 −point near which the approximation function is valid, 
𝑛𝑛1 −degree of the polynomial of the numerator, 
𝑛𝑛2 −degree of the polynomial of the denominator. 
Perform the Pade approximation of the function 𝑦𝑦 = 𝑠𝑠i𝑛𝑛𝑑𝑑 near 𝑑𝑑 = 0 for 𝑛𝑛1 = 3 and 
𝑛𝑛2 = 4. The approximation procedure in Mathematica is shown in the Listing 10. 

Listing 10 
 

According to Listing 10, the approximation is performed correctly. In the range from 
𝑑𝑑 = −3 to 𝑑𝑑 = 3 the functions coincide. The Padé approximation has no restrictions on the 
form of the original function, as shown in the following example. It is necessary to perform 
a Pade approximation of the function 𝑦𝑦 = 𝑑𝑑𝑛𝑛𝑑𝑑 + 1 near 𝑑𝑑 = 0 for 𝑛𝑛1 = 3 and 𝑛𝑛2 = 4. Make 
sure that the approximation is certain by plotting. The result of the approximation is shown 
in the Listing 11. 
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Listing 11 
 

Spline interpolation 
The spline interpolation implementation function is located in the SplineFit 

subpackage of the NumericalMath package. Cubic spline interpolation provides high 
accuracy of the mathematical model. Before use, you must connect this package with the 
following line: << Splines` або Needs["Splines`"]. The function has the following format: 
SplineFit[F, type], 
Where F is the data presented as a matrix, 
type - type of approximation, by default - approximation by cubic splines (Cubic). 
Approximation with Bezier and CompositeBezier splines is also possible. 

Consider the use of a function on the example of a 
matrix: М=((1,13), (2, 7.4), (3, 2.2), (4, 4.4), (5, 9.5), (6, 16)). 

It is necessary to obtain a mathematical model of the function 𝑦𝑦 = 𝑓𝑓(𝑑𝑑), using cubic 
spline interpolation. Check the reliability of the decision graphically. 

The solution is shown in the Listing 12. 
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Listing 12 

 
Listing 12 shows that the solution is not explicit, ie there is no analytical expression 

for the interpolation function. This is a significant drawback functions SplineFit[F, type]. 
From the graph we can conclude that the interpolation is performed quite accurately.  
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Lecture № 10. Functions of spectral analysis of Mathematica system 
 
The Mathematica system has rich capabilities of spectral analysis and signal 

synthesis. A large number of built-in functions allows you to perform: 
• spectral analysis of signals; 
• harmonic analysis of signals; 
• signal filtering. 
The Fourier transform is performed in the Mathematica system using the following 
functions: 
• FourierTransform [F (t), t, w] - returns the result of the direct Fourier transform of 

the function F (t), represented by the parameter w; 
• InverseFourierTransform [F (w), w, t] - returns the result of the inverse Fourier 

transform of the expression F (w), which is represented by the parameter t; 
• FourierSinTransform [F (t), t, w] - returns the result of the sine Fourier transform 

of the function F (t), represented by the parameter w; 
• FourierCosTransform [F (t), t, w] - returns the result of the cosine Fourier 

transform of the function F (t), represented by the parameter w; 
• FourierTransform [F, {t1, t2,…}, {w1, w2,…}] - returns the result of the direct 

Fourier transform of the function F {t1, t2,…}, which is represented by the 
parameters {w1, w2,…}; 

• InverseFourierTransform [F, {w1, w2,…}, {t1, t2,…}] - returns the result of the 
inverse Fourier transform of the expression F {w1, w2,…}, which is represented by 
the parameters {t1, t2,…}. 
It is necessary to obtain a direct and inverse Fourier transform of the following 

functions: 
( ) tF t teα= ; 

( )2( ) cosF t t bt= ; 

( )2( ) sinF t t at= ; 

( )1 2 1 2( , ) cos ,F t t t t= . 



109 

 
Listing 1 

Listing 1 shows that the transformations are performed correctly, because the inverse 
Fourier transforms coincide with the original functions. 

Spectral analysis based on direct Fourier transform.Direct Fourier transform 
allows to obtain the frequency spectrum of the signal represented by samples of its time 
dependence. This is often the ultimate goal of spectral analysis. 

In fig. 10.1 presents an example of spectral analysis of a simple signal - a triangular 
pulse given by the function If. Then, using the Fourier direct Fourier transform function, 
the vectors of the amplitudes Mg and the phases Ag of the harmonics of this signal are 
explicitly obtained. 
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Fig. 10.1. Example of spectral analysis of a triangular pulse 

 
Here, with the help of ladder-type graphs, the discreteness of the harmonics is 

emphasized, and the spectrograms of the amplitudes and phases of the harmonics of the 
sawtooth pulse are constructed. The symmetrical mapping of the spectral lines relative to 
the eighth harmonic is clearly visible - in our case there were 16 samples of the signal. This 
means that the amplitude and phase of the ninth harmonic are the same as in the seventh 
harmonic, in the tenth - the same as in the sixth, etc. 
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Lecture № 11. Fundamentals of programming in Mathematica 
 
Mathematica as a programming system 
The concept of input system language and implementation language 
Mathematica is able to solve many problems without the use of programming. 

However, all system tools (alphabet, letters, numbers, operators, and special characters) are 
part of a problem-oriented, high-level programming language. According to its capabilities 
in performing mathematical and scientific and technical calculations, this language has 
significant advantages over conventional programming languages - Pascal, C, C ++. 

Mathematica programming language capabilities 
The Mathematica system contains a large number of functions, many of which 

implement mathematical transformations and modern computational methods, both 
numerical and analytical. The Mathematica programming language is a default interpreter 
and is not intended for creating executable files. However, individual expressions can be 
compiled using the Compile function, which is useful when you need to increase the speed 
of calculations. The language of the Mathematica system allows you to implement most 
types of programming: functional, structural, object-oriented, mathematical, logical, 
recursive, etc. 

The core of the Mathematica system has a functional structure. The language of the 
system allows you to break programs into separate modules (blocks), procedures and 
functions with local variables. Object-oriented programming is based on a generalized 
concept of an object. In the Mathematica system, objects can be mathematical expressions, 
input and output data, graphs and drawings, sounds, etc. Three main properties are closely 
connected with the concept of object: encapsulation, inheritance and polyformism. All of 
them are inherent in the objects of the Mathematica system and do not require special tools 
for their implementation. Encapsulation means combining in one object both data and 
methods of their processing. Inheritance means that each object derived from other objects 
inherits their properties. Polyformism - a property that allows you to transfer a number of 

The programming language of Mathematica is specially designed to implement any 
of these approaches to programming, as well as a number of others, such as recurrent 
programming, using which the next step of the calculation is based on the data obtained in 
the previous steps. Possibly recursive programming is when the function in the general case 
repeatedly addresses itself. Mathematica language tools allow you to implement elements 
of visual-oriented programming. Mathematica allows you to create palettes and panels with 
various buttons that allow you to control the program or enter new program objects. 

The structure of the software environment of the Mathematica system 
The structure of the software environment of the Mathematica system can be 

represented as follows, shown in Fig. 1. 

 
Fig. 1. The structure of the software environment of the Mathematica system 
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The FrontEnd interface processor is used to orient the system to a specific machine platform. 
It determines what the user interface of the system looks like. The central place in the 
systems of the Mathematica class is occupied by the machine-independent core of 
mathematical operations - Kernel. It contains a set of operators and functions, rules for 
calculations and transformations of mathematical expressions. The kernel is made compact 
enough for any function to be called from it quickly enough. The Library library and the 
Packages extension set are used to extend the feature set. Extension packages are created in 
Mathematica's own programming language and are the main means of expanding the 
system's capabilities and adapting them to specific classes of user tasks. In addition, the 
systems have a built-in help system - Help. 

 
Implementation of recursive and recurrent algorithms 
An important place in solving many mathematical problems is the implementation of 

recursive and recurrent algorithms. Consider a typical example of the implementation of an 
iterative recurrent algorithm for calculating the square root of the expression f (x) at the 
initial value of x0 = a, according to the following formulas of Newton's method: 
x0 = a and xn = xn-1 - f (xn-1) / f '(xn-1). 
This function can be written as follows: 
newtoniter [f_, x0_, n_]: = Nest [(# - f [#] / f '[#]) &, N [x0], n] 
Then the calculation of the root of the expression ex - 2 with the initial approximation x0 = 
0.5 and the number of iterations n can be organized using the functions Nest [] and NestList 
[], as shown in Listing 1: 

 
Listing 1 

 
In the first case, the last result is returned, and in others - all intermediate. The FixedPoint 
function allows you to perform iterations until the result stops changing (with machine 
accuracy). This is illustrated by the example in Listing 2. 

 
Listing 2 

 
Recursive algorithms use calculations in which the body of the function refers to 

itself. Mathematica allows this possibility. A typical example of this is the calculation of 
the factorial by the formula N! = N * (N-1)! . 
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Fundamentals of procedural programming 
The basis of procedural programming is the concept of procedure as a complete 

software module and typical controls: cycles, conditional and unconditional, etc. Although, 
the programming of Mathematica systems in this case remains functional, because the 
elements of procedural programming are given in the form of functions. However, it is 
possible to use traditional programming tools - conditional expressions, loops, procedures, 
etc. 

Procedures are completely independent software modules, have their own identifier 
and perform some sequence of operations. They can be described in one line using the 
symbol ";" as a delimiter. (semicolon), for example: 
r = (1 + x) ^ 2; r = Expand [r]; r-1 
This procedure returns the following symbolic expression:  
Expand [(1 + x) ^ 2] - 1 

Structure is used to create full-fledged procedures and functionsBlock in two 
versions: 

Block [{x, y, ...}, procedure] - procedure with declaration of the list of local variables 
x, y,… 

Block [{x = x0, y = y0, ...}, procedure] is a procedure with declaration of the list of 
local variables x, y,… with initial values. 

An example of the use of structureBlock is shown in Listing 3: 

 
Listing 3 

 
Note that the variable u used in the body of the base structure is local, and assigning 

it the symbolic expression (1+ x) ^ 2 in the body of the block is ignored outside the block. 
If the variable u has not been defined before use in the function, it remains undefined. And 
if it had some value before (for example, 123456 in our case), then after leaving the 
procedure, it will have this value. 

Organization of cycles 
Cycles of type Do 
Cycles of this type have several modifications: 
- Do [expr, {imax}] - calculates the expression expr imax times. 
- Do [expr, {i, imax}] - calculates the expression expr with the variable and, which 

alternately takes the value from 1 to imax with step 1. 
- Do [expr, {i, imin, imax}] - calculates the expression expr with the variable and, 

which alternately takes values from imin to imax with step 1. 
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- Do [expr, {i, imin, imax, di}] - calculates the expression expr with the variable and, 
which alternately takes values from imin to imax with step di. 

- Do [expr, {i, imin, imax}, {j, jmin, jmax}, ...] - calculates the expression expr using 
a series of nested loops with variables j, i, etc. 

Examples of the organization of the cycle Do and its implementation are shown in 
Listing 4: 

 
Listing 4 

 
The variable i in the body of the loop - the iterator - is local. The entire program with 

the loop is stored in one cell. Listing 5 shows a procedure with a Do loop that calculates the 
nth Fibonacci number: 

 
Listing 5 

 
Note the use of the Module function in this example. It creates a software module 

with local variables (in our case fn1 and fn2), which organizes the recurrent calculation of 
Fibonacci numbers. Listing 6 shows the use of the Do cycle to create a chain fraction: 

 
Listing 6 
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For loops 
Another type of For loop is implemented by the function: 

For [start, test, incr, body] 
In it the variable of a cycle at first is appropriated value start, then cyclically changes from 
this value to value body with a step incr; and so on as long as the test condition is true. 
When the condition becomes false, the cycle ends. The example of Listing 7 shows a simple 
program with a For loop and the result of its execution: 

 
Listing7 

 
The program given above allows to observe change of values of a variable of a cycle 

i and a variable x which receives for each cycle of an increment equal 5 * i. The end of the 
document shows an example of using the Return function [x]. The For loop uses global 
variables, so you need to control their use. 

 
While loops 

 Cycle recording form: 
While [test, expr]. 
In this type of loop, the value of expr is calculated as long as the test condition is true.The 
following is an example of how to organize and use the While loop. 

 
Listing 8 

 
The device of local variables in this type of cycles is not used. 

Directives for interrupting and continuing cycles 
In these types of cycles and in other structures, you can use the following directives-
functions: 

- Abort [] - stops the calculation with the message $ Aborted. 
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- Break [] - exits the body of the loop or the level of nesting of the program 
containing the operator (loops such as Do, For and While or the body of the operator - 
Swith switch). The operator returns a Null value. 

- Continue [] - sets the transition to the next step of the current cycle Do, For 
orWhile. 

- Interrupt [] - interrupts calculations with the ability to resume them using a dialog 
box. 

- Return [] - aborts execution with Null return. 
- Return [expr] - aborts execution with the return of the value of the expression expr. 
 
Conditional expressions and unconditional transitions 
If function 
As in most programming languages, conditional expressions are specified using the 

operator or the If function. The Mathematica system has the following modifications to 
the If function: 

- If [condition, t, f] - returns the result t if the condition condition calculation is true, 
and f if the result is false. 

- If [condition, t, f, u] - returns the result u, if the result of calculating the condition 
condition is neither true nor false. 

Listing 9 shows a description of a procedure with a Do loop, the output of which is 
organized using the If function and the Aborted interrupt directive []: 

 
Listing 9 

 
 A similar example using the Break function in the If function is shown in Listing 10. 
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Listing 10 

 
In this case, no special exit messages are given. 
Functions - switches 
To organize several branches in the system Mathematica use operators - switches 

Which and Switch: 
- Which [test1, value1, test2, value2, ...] - calculates in order each condition testi 

and returns the value valuei of the first condition testi, which was true. 
- Switch [expr, form1, value1, form2, value2, ...] - calculates the value of the 

condition expr, then compares it sequentially with each expression formi and returns the 
value valuei, the first match of the expression formi with the condition expr. 

Examples of using the Which function are shown in Listing 11. 

 
Listing 11 

 
Examples showing the use of the Swhitch function are shown in Listing 12. 

 
Listing 12 

 
Note the last example: if the first parameter is not written correctly, the function 

is repeated. 
Unconditional transitions 

The unconditional transition operator Goto [tag] creates a transition to the 
place of the program marked with the label Label [tag]. Forms Goto [expr] and Label 
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[expr] are also possible, where expr is a specific expression. Using the Goto 
statement is shown in Listing 13. 

 

Listing 13 

Here, with the help of the Goto [start] operator, a loop is organized with the 
transition to the Label [start] label, which is executed while the value of q is less than 
7. The q changes from the initial value 2 with step 2. An interesting feature of the value 
of the computed expression. For example, Goto [2 + 3] translates to Label [5] or even 
Label [1 + 4], as shown in the following example: 

 

Listing 14 



119 

Lecture №12. Anonymous and clean features 
 

 Principlefunctional programming involves the use of only functions when writing. At 
the same time repeated embedding of functions in each other is possible. In some cases, 
especially during symbolic transformations, there is a mutual recursion of functions, 
accompanied by almost unlimited deepening of recursion and increasing complexity of the 
expressions processed by the system. The concept of a function is associated with the 
mandatory return of some value in response to a call to a function. Returning functions to 
some values allows you to use them along with operators to compose mathematical 
expressions. Functions are divided into internal and user-defined functions. 
 User functions 

The process of creating a function in Mathematica is similar to other programming 
languages. For example, the function for reducing x to the power of n could be defined as 
follows: 
powerxn [x, n]: = x ^ n 
However, this feature is inoperable. The reason for this is that in Mathematica the symbols 
x and n are ordinary symbols and cannot accept formal parameters. For implementation it 
is necessary to use variables-samples having after their names underscores. Samples can be 
formal parameters of functions and perceive values of actual parameters. Thus, it would be 
correct to record the user function in the form: 
powerxn [x_, n_]: = x ^ n 

Consider another simple example, which specifies the function scn [x, n], which 
calculates the sum of sine in degree n and cosine in degree n, examples of which are 
shown in Listing 1: 

 
Listing 1 

 
A function can consist of several expressions that are joined by parentheses: 
f [x_]: = (t = (1 + x) ^ 2; t = Expand [t]) 
Variables of the list of parameters, after the name of which is the sign "_", are local in the 
body of the function or procedure with parameters. In their place the actual value of the 
corresponding parameter is substituted. An example illustrating the use of local variables is 
shown in Listing 2: 

 
Listing 2 
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Note that the variable t in the function f is global, which explains the result of the last 
operation. The use of global variables in the body of the function is quite possible, but 
creates a so-called side effect, in this case changes the value of the global variable t. To 
eliminate side effects, it is necessary to use samples and other special ways to create 
functions. 

Function parameters can be lists, provided they can be combined. For example, in the 
powerxn function, Listing 1, suppose you use a list as an x parameter and a variable or 
number shown in Listing 3 as n: 

 
Listing 3 

 
Once created, user functions can be used according to the same rules as built-in functions. 

Clean functions 
Sometimes it may be necessary to use a function only at the time of its creation. This 

function is represented only by an expression without a name, which led to its name. To 
create such an object is a built-in function Function, which is used in the form of: 

- Function [body] - creates a pure function with the body body; 
- Function [{x}, body] - creates a pure function of parameter x with body body; 
- Function [{x1, x2, ...}, body] - creates a pure function of a number of parameters 

x1, x2, ... with body body. 
To calculate the function created in this way, a list of parameters is written in square 

brackets after it. As an example, Listing 4 shows the code of the net subtraction function 
to the degree: 

 
Listing 4 

 
A pure function can be easily converted to a normal user function, as shown in Example 
Listing 5: 

 
Listing 5 

 
Anonymous functions 
The so-called anonymous functions have an extremely compact form of setting 

functions. They have neither a name nor a common definition, they are written in 
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expressions of a special kind. In this expression instead of variables use designations # (for 
one variable), # 1, # 2, ... for a number of variables. End the body of the function with the 
symbol &. If it is necessary to calculate the value of the function, then after writing it in 
square brackets indicate a list of actual parameters. An example of using an anonymous 
function is shown in Listing 6: 

 
Listing 6 

 
With anonymous features, it's easy to create regular user functions – Listing 7: 

 
Listing 7 

 
Superposition of functions 
Functional programming involves the use of superposition of functions. To 

implement it, use the functions: 
- Nest [expr, x, n] - applies an expression (function) to a given argument xn times. 
- NestList [f, x, n] - returns the list of uses of the function f to the specified 

argument xn +1 times. 
- Fold [f, x, list] - returns the next element in FoldList [f, x, list]. 
- FoldList [f, x, {a, b, ...}] - returns {x, f [x, a], f [f [x, a], b], ј}. 
- ComposeList [{f1, f2, ...}, x] - generates a list in the form {x, a [x], a [a [x]], ...}. 
FixedPoint and Cath functions 
In functional programming, instead of the cycles described below, it is possible 

use the following function: 
- FixedPoint [f, expr] - calculates expr and applies the expression f to it until the result 

is repeated. 
- FixedPoint [f, expr, SameTest_> comp] - calculates expr and applies the 

expression f to it until the next two results are true. 
An example of using the FixedPoint feature is shown in Listing 8. 

 
Listing 8 
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The last result 0 is displayed in a separate (numbered) output cell and means the end 
of the process of iterations of division t by 2. A chain fraction using the function Nest can 
be created using the following arguments: 

 
Another function of this kind - Catch []: 
- Catch [expr] - calculates expr, before the first execution of the function Throw 

[value], then returns value. 
- Catch [expr, form] - calculates expr before the first execution of the Throw 

function [value, tag], then returns value. 
- Catch [expr, form, f] - returns f [value, tag] instead of value. 
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Lecture № 13. Graphical objects of the user interface and means of input-output 
 

I / O in Mathematica is organized using the FrontEnd interface processor. 
Additionally, the system implements a number of additional I / O functions: 
- Input [] - stops the system and returns the value of the expression that will be entered in 
the dialog box (used to organize dialog input); 
- Input [comment "] - works similarly to the previous function, additionally displays in the 
dialog box" comment "; 
- InputString [] - reads data and saves it in the form of a character string; 
- InputString ["comment"] - works similarly to the previous function, additionally displays 
in the dialog box "comment" 
- StylePrint [expr] - creates a new cell in the current document with the default style and 
enters the expression expr; 
- StylePrint [expr, "style"] - creates a new cell with style style in the current document and 
enters the expression expr in it; 
- Print [expr] - displays the value of the expression expr, together with the function Input [] 
can be used to organize a dialogue; 
- Print [prompt », expr] - displays a text comment in quotation marks on the display screen, 
followed by the value of the expression expr. 
 These functions are enough to organize the simplest dialogue with the 
program. Listing 1 shows the simplest example of dialogue. In this case, the length of the 
circle is calculated by the value of the radius R. 

 
Listing 1 

 
When the Input [] function is executed, a dialog box appears in the center of the 

screen. The window displays the query, which is specified in quotation marks as a parameter 
of the Input [] function. After entering the desired value (in the general example, the radius 
of the circle), the Input [] function returns the entered value and it is assigned to the variable 
R. After that, the Print [] function displays the calculated value of the circle length with a 
short comment. 

Data output format 
Mathematica implements a number of functions to customize the presentation format. 

The following functions are most often used: 
- - AccountingForm [expr] - displays all the numbers contained in the expression expr, in 

the accounting form of presentation; 
- CForm [expr] - outputs the expression expr in C format; 
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- EngineeringForm [expr] - displays the real numbers of the expression expr in engineering 
form; 

- FortranForm [expr] - displays the expression expr in the form adopted for the language 
Fortran; 

- FullForm [expr] - displays the full form of the expression expr without the use of special 
syntax; 

- InputForm [expr] - displays the expression expr in input form; 
- NumberForm [expr, n] - displays the expression expr in the form of a real number with an 

accuracy of n digits; 
- - OutputForm [expr] - outputs expr in the standard output form of the Mathematica 

system; 
- ScientificForm [expr] - displays the expression expr in scientific format; 
- TeXForm [expr] - displays the expression expr in the form of the TeX language, which is 

focused on the layout of texts with mathematical formulas; 
- TextForm [expr] - displays the expression expr in plain text format; 
- TreeForm [expr] - displays the expression expr showing different levels of expression. 

Listing 2 shows examples of the use of different forms of output. 
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Listing 2 

 
Listing 3 shows a few more examples of using different forms of output. 
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Listing 3 

 
GUI elements 
Mathematica tools allow you to create objects GUI (Graphic User Interface) laptops, 

which makes the latter much clearer and easier to use. 
Single-coordinate sliders 
 Sliders allow you to smoothly or discretely change the value of a particular variable. 

Fig. 1 shows the repetition of three sliders by the Slider function with different variants of 
parameter values, Listing 4. 

Fig. 1 

 
Listing 4 

In the first case (upper slider), the parameter (number 0.8) determines the position of 
its engine. When you move the engine, the value will be returned in the range from 0 to 1. 
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The second slider (in the center) allows you to change the value of the variable x. To make 
the value of a variable dynamically available throughout the notebook, the variable is 
dynamic, to create it use the function Dynamic [x]. Typically, the range of values of the 
variable is from 0 to 1. The third slider allows you to expand the range of values of the slider 
from 0 to 100 in steps of 1. 

Two-coordinate sliders 
To construct surfaces that describe the functions of two variables use two-coordinate sliders. 
They are created by the Slaider2D function, Listing 5. 

Listing 5 

An example of creating a two-coordinate slider is presented in Fig. 2. 

 
Fig. 2. Two-coordinate slider 

 
The engine of such a slider can move the mouse in any direction. The slider returns 

two numeric values depending on the position of the engine. These values can be used to 
calculate the functions of two variables and plot graphs of surfaces, three-dimensional 
figures, parametrically given graphs, etc. 
CheckBox graphical user interface element 

It is often necessary to perform calculations provided that some options are set, for 
which it is convenient to use the CheckBox element, which is created by the CheckBox 
function [], Listing 6. 
Checkbox[x] Checkbox[Dynamic[x]] Checkbox[x,{val1,val2}] 
Checkbox[x,{val1,val2,val3,…}] 

Listing 6 
 

Examples of using the CheckBox [] function are shown in Fig. 3. 
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Fig. 3. CheckBox graphical user interface element 

 
Locator 

A locator is an object that has the shape of a dot in a graphics window and returns 
its coordinates. This object is represented by a painted circle in the middle of the 
intersection, which has a bright dot in the middle. The locator is moved with the mouse. 
To create it, use the function, Listing 7. 
Locator[{x,y}] 
Locator[Dynamic[pos]] 
Locator[{x,y},obj] 
Locator[{x,y},None] 

Listing 7 
 

An example of creating a locator is shown in Fig. 4. 

 

 
Fig. 4 

 
Locators are often used to plot points. 

Mouse control functions 
Sometimes it is necessary to determine the coordinates of the mouse cursor, which 

uses the MousePosition function. An example of its application is shown in Listing 8. 

 

 
Listing 8 
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The coordinates of the mouse are displayed in the format of integers. Adding the 
MousePosition function to the list of parameters of the Dynamic function allows you to 
display the coordinates of the mouse cursor as a list of current coordinates. 

The Opener [x] or Opener [Dynamic [x]] function responds to each mouse click on 
a black triangle. For example, the command {Opener [Dynamic [x]], Dynamic [x]} 
displays a list in the output line: 
{► ,False} 
However, if you click on it, a list will appear 
{▼,True} 

Function Toggler[x] Toggler[Dynamic[x]] Toggler[x,{val1,val2,…}] 
Toggler[x,{val1_>pict1,val2_>pict2,…}] Toggler[x,vlist,dpict] provides the ability to 
respond to repeated mouse clicks.  

Example, 

 
first displays 1. However, after pressing the mouse button 4 times, the characters a, b, c 
and d are displayed. 

 

 
Button with the inscription 
Often some actions must be performed when pressing the button with the 

inscription. To create such a button, use the Button [label, action] function. In the list of 
its parameters indicate the line with the name of the button and the expression that is 
performed when the mouse is activated by the mouse. An example of using the Button 
function to derive the factorial of number 10 is shown in Listing 9. 

 

 
Listing 9 
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Manipulator 
 A manipulator is an object similar to a slider, but has greater functionality and visual 
capabilities. The manipulator is created using the function: Manipulator [x], Manipulator 
[Dynamic [x]], Manipulator [x, {xmin, xmax}], Manipulator [x, {xmin, xmax, dx}]. A 
distinctive feature of the manipulator is a characteristic button in the form of a gray 
rectangle with a "+" in it. When you activate this button with the mouse, a panel with 
slider controls appears under the manipulator slider (see Fig. 5, example above). By means 
of bodies (buttons) of management of the manipulator it is possible to start it and to 
provide automatic movement of the slider engine, it is possible to change the direction 
and speed of movement of the slider, to make its stop. As the slider approaches the start 
and end points, the engine has a characteristic shadow. 

 
Fig. 5. Manipulator 

 
Rotator of the radius vector 
In some cases, for example, when plotting functions in a polar coordinate system, 

you need an object that specifies the angle of rotation of the radius vector. Such an object 
- the angle setter - is specified by the angularSlider [] function. In fig. 6 shows an example 
of the application of this function. 
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Fig. 6. Setting angle of rotation of the radius vector 

 
The task is a graphic object in the form of a circle, inside which is placed a radius 

vector. It can rotate in one direction or another with the mouse, which leads to a change 
in the angle set by the unit. In the example shown in Fig. 6, projections of the end of the 
radius vector on the coordinate axis are constructed. These projections are known to have 
sinusoidal functions. The angle corresponding to the current position of the radius vector 
is indicated by dots on the graphs of sinusoidal functions. 

Drop-down menu 
 The drop-down menu is another widely used object for building a graphical 
interface. It is created by the ActionMenu function [name, {lbl1:> act1, lbl2:> act2,…}]. 
The parameters of the function are a line with an inscription on the button and a list of 
names of menu items and actions performed when activating the corresponding menu 
items. In the example shown in Fig. 7, calculate the values of the factorials 4!, 7! і 10!. 

 
Fig. 7. Example of creating a menu 

 
 
 

Data entry panel 
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The expression input panel is used for interactive input of an arbitrary expression, for 
example, to build its graph. It is entered by the Panel function. 
Panel[expr], Panel[expr,title], Panel[expr,title,pos], 
Panel[expr,{title1,title2,…},{pos1,…}], Panel[]. 

An example of setting the panel to enter an expression and build its graph is 
shown in Fig. 8. 

 
Fig. 8. Example of creating a data entry panel 

 
Note that the default expression (in our case Sin [x]) appears in the input panel, 

which is a parameter of the DynamicModule function inside the list of parameters of the 
Panel function. This expression is used to plot the output. 

Radio buttons and settings menu 
The RadioButton [x, val] function creates a so-called circle radio button. The result 

of the function can be used for software input of an action. Examples of application of the 
radio button are given in Fig. 9. 

 

 

 

 
Fig. 9. RadioButton element 
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Another function in a number of recording formats specifies the construction of the 
settings menu has the following recording formats: SetterBar[x,{val1,val2,…}], 
SetterBar[Dynamic[x],{val1,val2,…}], SetterBar[x,{val1_>lbl1,val2_>lbl2,…}]. An 
example of it is presented in Fig. 10. 

 
Fig. 10. Creating a settings menu with the SetterBar function [] 

 
In this example, it is possible to set the meander frequency by activating one or 

another menu item with a number.. 
Another option for building a settings menu is set by the function: Setter[x, val], 
Setter[Dynamic[x], val], Setter[x, val, label], Setter[x, {val1, val2,…}, label].  
 

Fig. 11 shows an example in which the settings menu buttons provide the setting of 
the corresponding size of the graph of the function sin(x)3. 

 
Fig. 11. Example of using the Setter function [] 

 
Color slider 

 To change the color of GUI objects, it is convenient to use a slider, which is set by 
the following function: ColorSlider[color], ColorSlider[Dynamic[color]], ColorSlider[]. 
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Examples of application of this function are shown in Fig. 12. 

 
Fig.12. Color slider 

 
The color of the first square is the current color. To the left of it is the color selection 

panel. To select a color, simply place the mouse cursor on the desired color of the panel 
and press the left mouse button. The color of the control square will be similar to the 
selected one. 

Starter mechanism 
 The Trigger function simulates the operation of the trigger. It has several forms of 
writing: Trigger[Dynamic[u]], Trigger[Dynamic[u],{umin,umax}], 
Trigger[Dynamic[u],{umin,umax,du}], Trigger[Dynamic[u],{umin,umax},ups]. The 
result of the function shown in Fig. 13, there is a control panel of the starting mechanism. 

 
Fig. 13. The starting mechanism 

 
When you press the start button (large triangle), the value of the dynamic variable 

x begins to change from 0 to 1 within a few seconds. Then this change stops. The panel 
also has buttons to stop variables and return to 0 (Reset). 

 
Functions for marking additional information on graphs 
Function ClickPane[image,func], 

ClickPane[image,{{xmin,ymin},{xmax,ymax}},func] used to indicate a point in the image 
image using the expression func. Most often, the ClickPane function is used to select with 
the mouse cursor a certain place in the image, in which you need to click to place a graphic 
object, such as a point, arrowhead, circle, etc. In fig. 14 shows an example of the use of a 
function to denote the extremum of a sinusoidal function by means of an arrow emanating 
from the inscription "Extremum". 
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Fig. 14. Example of using the ClickPane function [] 

 
Function Tooltip[expr, label] displays the expression expr and replaces it with the 

label if the mouse cursor is set to the expression expr. In fig. 15 shows the simplest 
implementation of this function. 

 
Fig. 15. Example of using the Tooltip function [] 

 
If you hover the mouse cursor over the result displayed in the line, the text text 

"This is the sum of 2 +3!", Which was specified as a label parameter, will be displayed.. 
 In another example, Fig. 16, shows the use of this function to recognize one of two curves 
constructed in one color. 
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Fig. 16. Graphic recognition by Tooltip function [] 

 
To recognize a graph with the Tooltip [] function, you must hover the mouse cursor 

over one of the curves. Fig. 17 shows an example of using the Tooltip [] function to 
determine the exact value of the ordinate of a point graph of a sinusoid when hovering 
over the desired point of the mouse cursor. 

 
Fig. 17. Determining the value of the ordinate of a scatter plot by the Tooltip function [] 

 
Cursor-activated messages 
The function PopupWindow [] provides control over the mouse cursor placed in it 

object. If the cursor is placed on the object, it is modified and a panel with the specified 
message appears. For example, in Fig. 18 object is a circle, which at the time of hovering 
the mouse cursor changes color. Then, after the panel labeled "This is a disk" appears, the 
circle restores color. 

 
Fig. 18. Messages activated by the cursor 
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Display the menu and select its position 
The MenuView function [] provides the creation of menus with drop-down items 

under numbers that correspond to the value of the variable n. In the example of Fig. 19 
calculate the function tan (nx) for different n. 

 
Fig. 19. Example of using the MenuView function [] 

 
Display of menus with attachments and navigation between them 
The TabView function [] displays a menu with attachments that you can switch 

between by left-clicking. An example of the application of this function is shown in Fig. 
20. In this case, an image is created in the object window, which is created by a cellular 
automaton using the CellularAutomaticc [] function with different values of the r (rule) 
parameter. Possible values of r are selected from the list by activating the corresponding 
tab with the mouse. 

 
Fig. 20. Example of using the TabView function [] 

 
Slide menu 
Slide menus are used to create presentations. To create a slide menu, use the 

SlaidMenu [] function. Working with the function is shown in Fig. 21. When activating 
the buttons with triangle images, you can select a symbol from the list. Switching can go 
in any direction, as well as immediately at the beginning or end of the list. 



138 

 
Fig. 21. Example of using the SlaidMenu function [] 

 
Creating windows of interactive dialogue with the user 
Mathematica provides the ability to create dialog boxes based on the GUIKit 

extension package. Fig. 22 shows a call to this packet and a window to demonstrate 
arithmetic operations with two input numbers. To create even such a simple example 
requires a program containing about sixty lines. It is represented by the file Calculator.m. 

 
Fig. 22. Example of using GUIKit 
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Lecture № 14. Rules for writing effective code and debugging programs 
 

Like any software system, Mathematica is designed to automatically process 
information - in our case mathematical. Most often, this processing is reduced to 
calculations and their visualization, such as graphics. 

Information can be represented in a variety of ways: numbers, mathematical 
formulas, text symbols and other elements of information. 

At the level of its input programming language and communication with the user, 
the Mathematica system operates with three main data classes: 

• numerical, representing numbers of different types; 
• symbolic, representing symbols, texts and mathematical expressions (formulas); 
• lists - data in the form of many similar or different types of data.  

Each of these data classes, in turn, has a number of special, more private data types. 

Working with integers 
Mathematica uses integers with different bases and decimal numbers with a floating 

point (they are often called floating point numbers), presented in different notations. Of the 
integers widely used binary numbers with base 2, octal with base 8, decimal with base 10 
and hexadecimal numbers with base 16. The most common are decimal numbers 
(DECIMAL). Each digit of such numbers has a representation given by one of the Arabic 
numerals: 0, 1, 2, 9. Weighting factor of the highest digit relative to the previous one is 
equal to 10. 

The construction is used to calculate numbers with an arbitrary base Basis ^^ 
number. 

The number must be written according to the rules of writing numbers with the 
appropriate basis. For bases greater than 10, the letters a to z are used to denote the values 
of numbers. The most well-known of the numbers with a bit rate of more than 10 are 
hexadecimal numbers (HEX - from the word hexagonal). The digit of such numbers can 
matter: 
HEX 0 1 2 3 4 5 6 7 8 9 a b c d e f 
DECIMAL 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
The senior category has a weighting factor relative to a given category, equal to16. 

Examples of problems of hexadecimal and life numbers: 
16 ^^ 123abcde 
305839326 
2 ^^ 1010111 
87 
A function is used to represent numbers with an arbitrary base n (up to 32) BaseForm 

[expr, n] – returns the expression expr in the form 
BaseForm [87,2] 
10101112 
BaseForm [305839326,16] 
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123abcde16 
 

To obtain lists of numbers of different integers is a function IntegerDigits [n, b, len], 
where n is a number, b is the base, and len is the length of the numerical sequence, 
supplemented by zeros on the left. Parameters b and len may be missing. Examples of 
application of this function are presented below: 

IntegerDigits [1234] 
 {1,2,3,4} 
IntegerDigits [1234,2] 
 {1,0,0,1,1,0,1,0,0,1,0} 
IntegerDigits [10!, 8] 
 {1,5,6,5,7,4,0,0} 
IntegerDigits [10!, 10,12] 
 {0,0,0,0,0,3,6,2,8,8,0,0} 
In fact, the methods used in symbolic mathematics to represent numbers are more 

compact than the simplest, but this does not change the essence of the main thing: the greater 
the number of digits of the number, the more memory is allocated for its storage. Particular 
attention is paid to the compact storage of numbers in the Mathematica system, which has 
reduced several times the memory consumption for storing large numerical arrays and 
reduce the time spent working with them. 

A typical example of working with large-digit integers is the calculation of the 
factorial n! = 1 * 2 * 3 * ... * n (under 0! = 1): 

1000! / 950! 
 287731343120013000702468807306664495322316807860141258 \ 
 460384342116480177434914877476604012266378453263443734 \ 
 579833577037680948110803599360000000000000 
(20! +5!) / 22! 

 20274183401472001
9366672731480064000

 
Note that the "\" sign at the end of the output line of the first example means the 

translation of the following characters to a new line. 
Integer data are integers, such as 1, 2, or 123, that are provided by the system without 

error or bit limit. 
Moreover, arithmetic operations on integers the system also performs without errors and 
without limiting the number of digits: 

+123456789123456789123456789 ^ 2 
 

% / +123456789123456789123456789 

 
100000000000000000000000000000000000000000000000000 + 123 

 
10000000000000000000000000000000000000000000000000-1 
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Rational data are given by the ratio of integers, such as 123/567, and also represent 

the result accurately: 
1000000/3000000 
1
3

 

(124-1) / (455 + 1) 
 41

152
 

Working with real type numbers 
Real numbers can have different forms, for example 123.456, 1.23456 10 ^ 2, 

12345.6 10 ^ 2 і т.д. In the general case, they contain a mantissa with integer and fractional 
part and an order that is entered as the power of 10. As a rule, real numbers in symbolic 
mathematics systems can have a mantissa with any but finite number of characters.. 
The space between the mantissa and the order is equivalent to the multiplication sign *: 

23.456 * 10 ^ 100 
2.3456×10101 
10 ^ -100 
1/100000000000000000000000000000000000000000000000000000000 \ 
00000000000000000000000000000000000000000000 
10. ^ - 100 
1×10-100 
As is customary in most programming languages, the whole part of the mantissa is 

separated from the fractional part by a dot, not a comma. The sign "\" means the translation 
of a line (part of a number). It, by the way, can be used in the input cells. 

Mathematica performs operations on numbers, initially as integers. However, setting 
the punctuation mark means that the number is considered valid. For example, the number 
1 is an integer, but 1. is already a real number. The function is used to represent the 
expression expr in the form of a real number N [expr] or N [expr, number_digits_result] 

1/3 
1
3

 

1./3 
0.333333 
N [1/3] 
0.333333 
N [2 * Pi, 50] 
6.283185307179586476925286766559005768394338 
N [2 * Pi, 500] 
6.283185307179586476925286766559005768394338798750211641949889184615
\6328125724179972560696506842341359642961730265646132941876892191011
6\446345071881625696223490056820540387704221111928924589790986076392
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88\57621951331866892256951296467573566330542403818291297133846920697
220\9086532964267872145204982825474491740132126311763497630418419256
5850\818343072873578518072002266106109764093304276829390388302321886
61145\40731519183906184372234763865223586210237096148924759925499134
703771\5054497824558763660238983 
Real numbers always have some error in representing the results due to their 

inevitable rounding and the existence of the so-called "machine zero" - the smallest number 
that is perceived as zero. 

Mathematica has two system variables that allow you to display the values of the 
maximum and minimum possible values of the numbers with which the system operates: 
$MaxMachineNumber та $ MinMachineNumber. 

Character data and strings 
Symbolic data in the General case can be individual characters (for example, a, b, ..., 

z), strings (strings) and mathematical expressions expr (from expression - expression), 
represented in symbolic form. Character strings are specified by a string of characters in 
quotation marks, such as "Sssss". They can use the following control characters for small 
objects: 

\ n new line (line feed), 
\ t tabulation. 

It is shown in following examples: 
«Hello my friend!» 
Hello my friend! 
«Hello \ nmy \ friend!» 
Hello 
my 
friend! 
«Hello \ tmy \ tfriend!» 
  Hello my friend! 

 
Keep in mind that control characters are not displayed by the printer and are not 

displayed, but only force them to perform their assigned actions. Mathematica has many 
functions for working with strings, which will be described below. 

Both operators and functions are used to write mathematical expressions. Their 
features will be discussed later. In the meantime, let's note some subtleties of the syntax of 
the system used when writing arithmetic operations: 

• the multiplication sign can be replaced by a space; 
• built-in functions start with a capital letter and usually repeat their common 

mathematical notation (except for those whose names have Greek letters - are they 
reproduced in Latin? 

• we letters by the sound of the corresponding Greek letters); 
•  parentheses (...) are used to highlight parts of expressions and prioritize their 

execution; 
• parameters of functions are set in square brackets [...]; 
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• curly braces are used when specifying lists {...}. 
 

Support for multi-core microprocessors 
Currently, the leading manufacturers of microprocessors (Intel, AMD, IBM, etc.) are 

moving to the production of new multicore microprocessors (multicore processors), which 
implement methods of parallel computing, are previously used only in the super? Computers 
(including clusters). Mathematica became the first SCM, in some versions of which for the 
first time provided both Hyper Threading technology and support for the capabilities of the 
latest multi-core processors. These advantages are realized primarily in solving problems in 
linear algebra. In this area, the easiest way to break down computational processes into 
separate parts performed by individual processor cores. 

The interface part of Mathematica is implemented as a separate process, separate from 
the processes of its computing core. This creates a dialog interface even when the multi-core 
processor is under maximum load. Even when using a dual-core Mathematica processor 
provides work on various kernels of the interface module and a computing kernel (kernel). 
As a result, the "reflection" time, traditionally significant for previous versions of 
Mathematica, has been reduced by about 1000 times. 

The figure shows a comparison of computation times in solving the four most 
characteristic problems of linear algebra in SCM Mathematica on a computer. Comparative 
results of matrix calculations in Mathematica for PCs with single-core and 8-core 
microprocessors. 
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Lecture № 15. Mathematica data storage commands 
 

Although Mathematica is focused on mathematical applications, it is quite complete 
with functions for working with strings. They may be needed both for organizing the output 
of text messages (such as labels on graphs) and for organizing text dialogue when 
developing extension packages and system applications. In addition, we must always 
remember that Mathematica is a system of symbolic mathematics, so that the symbolic 
transformation, both purely mathematical and conventional, it, of course, is given a lot of 
attention. 

Many functions for working with strings perform common transformations, 
available in most high-level programming languages. String is an arbitrary string of 
characters enclosed in quotation marks, such as "String". Below are some functions for 
working with strings: 

• StringByteCount ["string"] - returns the full number of bytes used to store 
characters in the string "string"; 

• StringDrop ["string", {m, n}] - returns the string "string", deleting characters 
from m to n; 

• StringJoin ["sl", "s2", ...] or StringJoin [{"s1", "s2", ...}] - forms a string 
containing the concatenation (merging) of the specified strings "s1"; 

• Stringlnsert ["string1", "string2", M] - inserts the string "string2" into the 
string "string1", starting from the position M from the beginning of this string (with a 
negative M the position is subtracted from the end of the specified string); 

• StringLength ["string"] - returns the number of characters in a string; 
• StringReplace ["string", "s1 ->" spl "] or StringReplace [" string ", {" s1 "-> 

"spl", "s2" -> "sp2", ...}] - replaces s1 "with" spi "whenever they appear as a substring" 
string "; 

• StringReverse ["string"] - changes the order of the characters in the string 
"string" to the opposite; 

• StringPosition ["string", "sub"] - returns a list of line items "sub" in the line 
"String"; 

• StringTake ["string", n] - returns a string consisting of the first n characters of 
the string "String"; 

• StringTake ["string", -n] - returns the last n characters of the string "string"; 
• StringTake ["string", {n}] - returns the nth character in the string "string"; 
• StringTake ["string", {m, n}] - returns a string of characters located in 

positions m to n of the string "string". 
These features are well known to programmers working with modern programming 

languages. A large number of additional functions for working with strings can be found in 
the application. The large number of such functions in the programming language of the 
Mathematica system indicates its universal nature and great opportunities in solving even 
seemingly far from mathematics problems. The following are examples of a number of 
string operations. 

In                                                             Out 
 
StringByteCount [ "Hello!"]                                       6 



145 

StringDrop [ "Hello my friend!", 6]                           my friend! 
StringDrop [ "Hello my friend!", -10]                       Hello 
StringDrop [ "Hello my friend!", {7}]                       Hello у friend! 
StringDrop [ "Hello my friend!", {6, 8}]                   Hello friend! 
Stringlnsert [ "Hello friend!", "My", 6]                   Hello my friend! 
StringJoin [ "Hello", "my"] <> "friend!"                Hello my friend! 
StringLength [ "Hello"]                                              5 
StringPosition [ "Hello my friend!", "E"]                {{2, 2}, {13, 13}} 
StringReplace [ "Hilo", "i" -> "el"]                          Hello 
StringReverse [ "Hello!"]!                                          OlleH 
StringTakef "Hello my friend!", 6]                            Hello 
StringTake [ "Hello my friend!", -8]                         friend! 
StringTake [ "Hello my friend!", {7, 9}]                   my 

 
Note a few more features related to working with characters and strings: 

• FromCharacterCode [n] - returns a string consisting of one character with code 
n; 

• FromCharacterCode [{n1, n2, ...}] - returns a string consisting of a sequence of 
characters with codes ni; 

• Characters ["string"] - returns a list of integer codes corresponding to the string 
characters "string"; 

• ToLowerCase ["string"] - produces a string in which all letters are converted to 
lowercase; 

• ToString [expr] - returns a string corresponding to the output form of the 
expression exrr. Options set line width, format type, etc .; 

• ToUpperCase ["string"] - produces a string in which all letters are converted to 
uppercase; 

• Unique [] - creates a new character with a name in the form $ nnn (nnn - a 
unique sequence number); 

• Unique [x] - creates a new character with a name in the form x $ nnn (nnn - a 
unique sequence number); 

• Unique [{x, y, ...}] - creates a list of new characters with unique names; 
• Unique ["xxx"] - creates a new character with a name in the form xxxnnn (nnn 

- a unique sequence number); 
• Unique [name, {attrl, attr2, ...}] - creates a character with the specified attri 

attributes; 
• UpperCaseQ [string] - returns True if all string characters are uppercase 

(uppercase), otherwise returns False. 
The examples below show how to work with these functions. 
In                                                                             Out 
 
ToCharacterCode ["Hello!"]                                                    
{72,101,108,108,111,33} 
FromCharacterCode [{72,101, 108, 108, 111, 33}]                  Hello! 
ToExpression ["2 + 3 * 4"]                                                        14 
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ToLowerCase ["HeLLo!"]                                                        Hello! 
ToUpperCase ["Hello"]                                                             HELLO 
 
Введення (In)                                                                    Виведення (Out) 
 
x: = ToString [2 + 3 * 4] 
 
X                                                                                       14 
Unique []                                                                          $ 1 
Unique [xyz]                                                                    xyz $ 2 
Unique [xyz]                                                                    xyz $ 3 
UpperCaseQ ["Hello"]                                                  False 
UpperCaseQ ["HELLO"]                                            True 

 
Streams and files 

The Mathematica system has advanced tools for working with streams and files. A 
stream is a continuous sequence of data circulating inside a computer. The exchange of 
threads occurs almost continuously, for example, when entering the input stream comes 
from the keyboard to the computer, when printing the data stream comes from the computer 
to the printer through the printer port, etc. 

A file is an ordered data structure that has a name and is stored on any medium, most 
often on a magnetic disk. Files can have different formats and different types of access to 
the information stored on them. The most common document files in the Mathematica 
system are sequential access files and have a text format. 

Serial access means that information from an open file can be read strictly 
sequentially from its beginning to the end indicated by a special label. it resembles reading 
from a tape. The text format means that all data is written as ASCII code. Therefore, you 
can read such a file using any text editor that works with texts in the form of ASCII codes. 

Streams and files have a lot in common: names, a certain structure, the need to open 
before use and close after use. However, if the user encounters the files at the beginning of 
the system (you need to call a file with a demo document or save it, and then call another 
file), then the concept of flow at work the system is almost non-existent, although beyond 
our control, data streams are constantly flowing between the computer and its peripherals. 

Simplified work with files 
Before considering the rather large capabilities of the system to work with files in 

general, we note the simplified method of calling a file using the double character "<<": 
 
<< filename 
 

This command reads the file with the specified filename and stores in the computer's 
memory the definitions contained in it. The file must be specified in full, ie together with 
the extension. The exception is when the file is in the main directory of the system. This 
command is equivalent to a function Get [ "filename", key]. 
 

To write an object (variable, array, list, etc.) in the file are simplified commands: 
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• expr >> filename - passes the value of expr to a file with a given name; 
• exp >>> filename - adds expr to the end of the file with the specified name. 
These commands are essentially abbreviated (and therefore more convenient) 

forms of the following functions: 

• Get ["filename", "key"] - reads a file that is encoded by the Encode function 
using the key "key"; 

• GetContext ["context '"] - loads a file with the specified context; 
• Put [exprl, expr2, ..., "filename"] - writes a sequence of expri expressions to a 

file named filename; 
• PutAppend [expr1, expr2, ..., "filename"] - appends a sequence of expri 

expressions to a file named filename. 
 

Another simplified feature -! !! filename - displays the contents of the file with the 
specified name. 

The following examples show writing a list to a C: \ ma.vat file, reading it, then 
adding another list to the file, and controlling the context of the file: 
 
{{1, 2,3}, {4,5,6}, {a, b, c}} >> C: \ ma.val 
 
<< С: \ ma. val 
 
{{1, 2, 3}, {4, 5, б), {а, b, с}} {d, e, f} >>> C: \ ma.val 
 
<< С: \ mа. val 
 
{D, e, f} 
 
!! З: \ mа.val 
1, 2, 3, 4, 5, б, а, b, з d, e, f 
 

This form of call is especially convenient for calling extension files and system 
applications. The file is specified according to the rules accepted in MS-DOS. Application 
package files have the extension .t. We have already given examples of using the definitions 
contained in the system extension package files. 

There are a number of features for working with files: 
• ReadList ["filename"] - reads all remaining expressions in the file "filename" and 

returns them as a list; 
• ReadList ["filename", type] - reads from the file "filename" objects of the specified 

type type to the end of the file. Returns a list of counted objects; 
• ReadList "" filename ", {typel, type2, ...}] - reads objects of the specified types 

typei to the end of file filename; 
• ReadList ["filename", types, n] - reads only the first n objects of the specified 

types types from the file filename; 
• Save ["filename", x1, x2, ...] - creates a file with the specified filename name, 

which contains the values of variables x1, x2, ...; 
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•! command - executes the specified command of the operating system. 
 

Suppose that a text editor creates a file with the full name C: \ datas.txt in ASCII 
format, containing just six numbers with punctuation, placed in two lines and representing 
an array of 2x3 elements: 
 
1 11.2 34.5 
2. 3.4 56 
 
Then the structure of the file can be judged using the command !! З: \ datas.txt 
 
1 1.2 34.5 2. 3.4 56. 
 

It is easy to see that the file structure corresponds to the structure of the array. 
However, reading the file with the << name command gives the following result: 
 
<< С: \ datas. txt 
 
380.8 
 

The result represents the calculation of the expressions of another line of the file. 
Reading with the ReadList function without an additional argument also gives erroneous 
results: 
 
ReadList [ "З: \ datas.txt"] 
 
{41.4, 380.8} 
 

It is easy to see that the function perceived EVERY line of the file contents as the 
result of multiplying three numbers (a space in Mathematica means multiplication). With 
the additional parameter Number all numbers are read correctly: 
 
ReadList [ "З: \ datas.txt", Number] 
 
{1, 1.2, 34.5, 2., 3.4, 56.} 
 

However, we received a one-dimensional list - the data is simply read line by line. 
Applying an additional parameter in the form {Number, Number} gives the 

following result: 
 
ReadList [ "З: .txt", {Number, Number}] 
 
{{1, 1.2), {34.5, 2.}, {3.4, 56.}} 
 

The correct result can be obtained using the option RecordList-> True. 
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ReadList [ "C: .txt", Number, RecordLists-> True] 
 
{{1, 1.2, 34.5), {2, 3.4, 56.}} 
 

Share Add-On package files use features that allow you to specify the context of the 
files: 

• Needs ["context '", "filename"] - downloads a file if the specified context is not 
in the download list; 

• Needs ["context s"] - downloads a file whose name is determined by the 
ContextToFilename ["context h"] function if the specified context is not in the download 
list. 

Downloading files with their specified contexts avoids conflicts between different 
extension packages used at the same time. 
 

Unified approach 
In the general case, the following functions are used to read data from an arbitrary 

file: 
• OpenRead ["file"] - opens the specified file for reading and returns the 

corresponding object of type InputStream. 
• Read [stream] - reads expressions with the specified input stream and returns it. 
• Read [stream, type] - reads one object of the specified type and returns it. 
• Read [stream, {type1, type2, ...}] - reads and returns a sequence of objects of these 

types. 
As the type of read object can be specified:  
Byte - one byte of data, represented as a whole code, 
Character - a single character, 
Expression - a complete expression of Mathematics, 
Number - integer or real number in exponential format, Real - real number in 
exponential format, 
Record - a sequence of characters separated by a string "\ n", String - a string ending 
with a newline, 
Word is a sequence of characters separated by either the string "\ t" or "". 
The Read function Returns EndOfFile if the end of the file is reached. 
Close [stream] - closes the specified stream. 

The example below reads the first line of a text file and displays it in a laptop cell 
window if the file is not empty: 
 

fileStream = OpenRead [ "З: \ sampleFile.txt"]; 
 
textLine = Read [fileStream, String]; 
 
If [textLine ≠ "EndOfFile", 
 
Print [textLine]; 
 
]; 
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Close [fileStream]; 

 
Using files of other programming languages 

Of the functions for working with files, the following function-directive should be 
especially noted: 

• Splice ["file .mx"] - inserts into files in other programming languages calculated 
expressions of the Mathematica system, which must be written in parentheses of the form 
<* and *>; 

• Splice ["infile", "outfile"] - reads the infile file, interprets the fragments between the 
parentheses <* and *>, and writes the result to the outfile file. 

This feature is especially important when using programs in the programming 
languages C (.me extension), Fortran (.mf extension) and TECH (.mtex extension), for 
formats for which Mathematica has the means to convert expressions (CForm, FortranForm 
and TexForm, respectively). Thus, it is possible to export Mathematica system expressions 
to programs written in these languages. 

Let's explain the application of the Splice directive function. Suppose there is an 
exported program in C, which must calculate the numerical value of some integral, and we 
want to get a formula for this integral by means of the Mathematica system. Suppose it is 
represented by the file demo.me. It can be viewed as follows: 
 
!! demo.me 
 
#include "mdefs.h" 
 
double f (x) 
 
double x; 
 
{ 
 
double y; 
 
у = <* Integrate [Sin [x] ^ 5, x] *>; 
 
return (2 * y- 1); 
 
} 

After performing the function Splice ["demo.me"], the program will be written to 
the file demo.c, in which the expression in parentheses <* ... *> is replaced by the calculated 
value of the integral (in the form CForm). The file will look like this: 
 
!! demo.с 
 
#include "mdefs.h" double f (x) double x; 
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{ 
 
double y; 
 
у = 5 * Cos (x) / 8 + 5 * Cos (3 * x) / 48- Cos (5 * x) / 80; 
 
return (2 * y- 1); 
 
} 
 

Record definitions 
Of the simple functions that provide files with defined definitions, it is also worth 

noting the Save function: 
 
Save [ "filename", symb1, symb2, ...] 
 

It adds symbi character definitions to the filename file (simplified Save forms are 
possible). 
Here is an example of its use: 
 

f [x_] = Sin [x] + y 
 
у + Sin [x] 
 
у = а 
 
а 
Save [ "demol", f] 
 
!! demol 
 
f [x_] = у + Sin [x] 
 
у = а 

 
Other features for working with files 

In general, the tools of the Mathematica system provide the ability to work with 
various files, inherent in MS-DOS, without leaving the system environment. The functions 
related to this group are given in the appendix. These functions are characterized by the fact 
that at the time of execution they do not give a visible effect. Such functions include 
functions for copying directories and files, 
change their names, delete them, etc. They are well known to MS-DOS users and can be run 
from the Mathematica environment. 

Considering the large list of file and current operations, you can involuntarily 
conclude that they are redundant. But here's a simple rule: if you don't want to use these 
features, don't! They are designed for the user, seriously engaged in docking Mathematica 
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systems with other software systems. 
An important place is occupied by functions that provide information about 

directories, files and streams. These include the following functions: 
• Directory [] - returns the current working directory; 
• DirectoryStack [] - returns the contents of the directory stack, which represents 

the sequence of directories used in the current session; 
• $ Display- returns a list of files and channels (pipes- channel or abstract file) 

used by the output function 
$ DisplayFunction by default; 

•  FileByteCount ["filename"] - returns the number of bytes in the file; 
•  FileDate ["filename"] - returns the date and time of the last modification of the 

file as a list; 
•  Filelnformation ["filename"] - returns information about the photo; 
•  FileNames [] - lists all files in the current working directory; 
•  FileNames ["form"] - lists all files in the current working directory whose 

names match the form template; 
•  FileNames [{"forml", "form2", ...}] - lists all files whose names correspond to 

any of the formi templates; 
• FileNames [forms, {"dirl", "dir2", ...}] - lists files with names corresponding to 

forms templates in any of the specified diri directories; 
• FileType ["filename"] - returns the file type: File, Directory or None (if the 

specified file does not exist); 
• $ HomeDirectory - gives the name of the "home" directory of the user; 
• $ Output - gives a list of files and channels in which the standard output of the 

Mathematica system is sent; 
•  ParentDirectory [] - returns the name of the parent directory for the current 

working directory; 
•  ParentDirectory ["dir"] - returns the name of the parent directory for the dir 

directory; 
•  $ Path - gives a list of directories to view when trying to find an external file; 
•  StreamPosition [stream] - returns an integer that indicates the position of the 

current point in the open stream; 
•  Streams [] - returns a list of all streams currently open; 
•  Streams ["name"] - lists only streams with the specified name. 

 
The following examples illustrate the use of most of these fairly simple functions: 

 
Directory [] 
 
C: \ PROGRAM FILES \ WOLFRAM RESEARCH \ MATHEMATICA \ 4.0 
 
DirectoryStack [] 
 
{} / $ Display 
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stdout 
 
FileByteCount [ "C: .val"] 
 
46 
 
FileDatef'C: .val "] 
 
{1999 року, 8, 3, 16, 4, 44} 
 
FileInformation [ "C: .val"] 
 
{File-> C: \ ma.val, FileType-> File, Date -> 3142685084, ByteCount -> 46} 
 
Filenames [] 
 
{Examples, FILES, MATHEMATICA.EXE, MATH.EXE, MATHINSTALLER.EXE, 
MATHKERNEL.EXE} 
 
FileType [ "C: .val"] 
 
File HomeDirectory [] 
 
c: \ $ 0utput 
 
{OutputStream [stdout, 1]} 
 
ParentDirectory [] 
 
З: \ m3 Streams [] 
 
{OutputStream [stdout, 1], 
 
OutputStream [stderr, 2]} 
 

The above reasoning about the redundancy of the set of operations can be applied to 
these functions. 
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Lecture № 16. Interaction of Mathematica system with MatLab program using 
MatLink package 

 
There is a multi-platform package called MATLink for calling the MATLAB 

function directly from Mathematics and organizing the exchange of data and variables 
between the two systems. It makes it easy to call MATLAB functions directly from 
Mathematic and transfer different data from one system to another. 

Installation. First, go to the MATLink home page and follow the instructions. 
The easiest way is to download the archive and unzip it to this folder: 

In [1]: = 

 
Next, follow the instructions for the specific operating system in the section "Link 
with MATLAB" on the main page. 
 
Using MATLink. MATLink can be loaded by calculating the cell with the code: 

In [2]: = 

 
And then run the MATLAB command: 

In [3]: = 

 
This will launch a new process in MATLAB with which Mathematica will be 

able to interact. MEvaluate should be used to use arbitrary MATLAB commands. The 
data will be transmitted as a string. 

In [4]: = 

 
 
Out [4] = 

(* ==>  

ans =  

    16 2 3 13  
     5 11 10 8  
     9 7 6 12  
     4 14 15 1  
 *)  

 

SystemOpen @ FileNameJoin [{$ UserBaseDirectory,"Applications"}] 

Needs ["MATLink`"] 

OpenMATLAB [] 

MEvaluate ["Magic (4)"] 
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To transfer data to MATLAB, you must use MSet:  
 In [5]: = 

 
 

Out [5] = 

(* ==>  

x =  

  
     1 2 3 4 5 6 7 8 9 10  

*)  

 
Use MGet to restore data: 
  In [6]: = 

 
 

Out [6] = 

 
A large number of data types are supported, including liquefied arrays, 

structures, and cells. 
MATLAB functions can be called directly from Mathematica using the 

MFunction function: 
In [7]: = 

 
 

Out [7] = 

 
Construct in Mathematica the surface of the MATLAB logo and add 

manipulator that will adjust the period of oscillation: 
 

MSet [ "x", Range [10]]; MEvaluate [ "x"] 

MGet ["X"] 

(* ==> {1., 2., 3., 4., 5., 6., 7., 8., 9., 10.} *) 

eig [{{1, 2}, {3, 1}}] 

eig = MFunction ["Eig"]; 

(* ==> {{3.44949}, {-1.44949}} *) 
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 In [8]: = 

Manipulate [ 
 

ListPlot3D @ MFunction ["Membrane"] [k], 

{K, 1, 12, 1} 
 

] 
 

Out [8] = 

 
 

Fullerene structure (bucky ball) straight from MATLAB:  
In [9]: = 

 
 

Out [9] = 

It is also easy to display Mathematica data in a separate scalable window for 

AdjacencyGraph @ Round @ MFunction ["Bucky"] [] 
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images used in MATLAB: 
In [9]: = 

mlf = LibraryFunctionLoad [ "demo_numerical", "mandelbrot", {Complex}, Int 

eger]; 
 

mandel = Table [mlf [x + I y], {y, -1.25, 1.25, .002}, {x, -2., 0.5, .002}]; 
 

MFunction ["Image", "Output" -> False] [mandel] 
 

Out [9] = 

 
The following examples illustrate the solution of real problems using MATLink, 

allowing you to use the best qualities of MATLAB and Mathematica. 
Rapid Delaunay triangulation. Mathematica includes the 

DelaunayTriangulation function inside the ComputationalGeometry package (In 
version 10, this package became built into the kernel and is now called DelaunayMesh. 
It is optimized and now its performance is not inferior to MATLAB - ed.), But it works 
very slowly (although it also has its strengths, such as the use of exact arithmetic and 
working with collinear points). This, in turn, leads to the fact that ListDensityPlot works 
very inefficiently (which becomes noticeable when building several thousand points or 
more). Using MATLink, we can use the Delaunay function from MATLAB to calculate 
the Delaunay triangulation of some set of points as follows: 

In [10]: = 

 
 

Since the Mathematica function returns a list of contiguous vertices, we need to 
post-process the result in order to compare with the result from MATLAB'а: 
 
In [11]: = 

delaunay = Composition [Round, MFunction ["Delaunay"]]; 
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Needs ["ComputationalGeometry`"];  

delaunayMma [points_]: =  

 Module [{tr, triples},  

  tr = DelaunayTriangulation [points];  

  triples = Flatten [  

   Function [{v, list},  

    Switch [Length [list],  

     (* Account for nodes with connectivity 2 or less *

)  

     1, {},  

     2, {Flatten [{v, list}]}, _, {v, ##} & @@@ Partiti

on [list, 2, 1, {1, 1}]]  

   ] @@@ tr, 1];  

  Cases [GatherBy [triples, Sort], a_ /; Length [a] ==3 :> A[[1]]]  

 ]  

 

A random set of points usually has a unique Delaunay triangulation, so we will 
need to verify that the systems give the same result. 
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In [12]: = 

 
 

And build a triangulation with: 
 In [13]: = 

trianglesToLines [t_]: = 
 

Union @ Flatten [{{# 1, # 2}, {# 2, # 3}, {# 1, # 3}} & @@ 
 

  Transpose [Sort / @ t], {{1, 3}, {2}}]; 
 

Graphics @ GraphicsComplex [pts, Line @ trianglesToLines @ delaunay [pts]] 

Out [13]: = 

 
However, in addition to the fact that delaunay runs much faster than 

Sort [Sort / @ Delaunay [pts]] === Sort [Sort /@ DelaunayMma [pts]] 

pts = RandomVariate [NormalDistribution [], {100, 2}]; 
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DelaunayTriangulation (especially for large datasets), it is also a faster triangulator that 
is used inside ListDensityPlot. So we can use delaunay from MATLAB to develop our 
own version of listDensityPlot, which runs faster than the built-in function and can also 
handle large data sets as follows: 

In [14]: = 

 
 

listDensityPlot [data_? MatrixQ, opt: OptionsPattern []]: = 

  Module [{in, out, Tri, colfun}, 
 

  tri = delaunay [data [[All, 1;;2]]]; 
 

 

  colfun = OptionValue [ColorFunction]; 
  If[Not@MatchQ [colfun, _Symbol | _Function],Check[Colfun = 
ColorData [colfun], colfun = Automatic]]; 
  If[Colfun === Automatic, colfun = ColorData [ "LakeColors"]]; 
  Graphics [ 
  GraphicsComplex [data [[All, 1;;2]], 
  GraphicsGroup [{EdgeForm [OptionValue [Mesh 
Style]], Polygon[Tri]}], 
  VertexColors -> colfun / @ Rescale [data [[All, 3] 
]] 
  ], 
  Sequence @@ FilterRules [{opt}, Options[Graphics]], Me 
thod -> { "GridLinesInFront" -> True} 
  ] 
  ] 
 

Let's compare the received function with built-in, using thus an array from 30 
000 points: 
 
In [15]: = 

pts = RandomReal [{-1, 1}, {30000, 2}];  

atic, MeshStyle -> None, Frame -> True}; 

Options[ListDensityPlot] = Options[Graphics] ~Join~ {ColorFunction -> Autom 
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values = Sin[3 Sqrt[# 1 ^ 2 + # 2 ^ 2]] & @@@ pts;  

 
In [16]: = 

listDensityPlot [ArrayFlatten [{{pts, List / @ Values}}], Frame -> True] // Absol

uteTiming  

 
Out [16] = 

 

{0.409001, --Graphics--}  

 
In [17]: = 

ListDensityPlot [ArrayFlatten [{{pts, List / @ Values}}]] // AbsoluteTiming  

 
Out [17] = 
 

{12.416587, --Graphics--}  

 
The difference in execution speed turned out to be quite significant (~ 30 times). 

To work with hundreds of thousands of points ListDensityPlot is almost unsuitable, 
while listDensityPlot takes only a few seconds. 

It is also important to note that to measure the speed of MATLink, you must use 
the AbsoluteTiming function, which calculates all the time spent, while Timing 
measures only the time when the CPU was used by the Mathematica core, without 
measuring the time spent by MATLAB. 
 

Audio filtering with signal processing tools (signal processing toolbox). As 
you know, signal processing functionality was missing in Mathematica until the ninth 
version, and is still inferior to MATLAB tools in terms of functionality and ease of use. 
Suppose we have 8 versions of Mathematica, new features are missing and we want to 
perform frequency analysis of some audio file and implement filtering. Here's how to 
do it: 

 
In [18]: = 

{data, Fs} = {# [[1, 1, 1]], # [[1, 2]]} & @ExampleData[{ "Sound","Apollo13Pr 
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oblem"}]; 
 

spectrogram = MFunction["Spectrogram", "Output" -> False]; (*Use MATLAB' 

s spectrogram *) 
 

spectrogram[data, 1000, 0, 1024, fs] 
 

 
Obviously, the frequencies mainly fall within the range below 2.5 kHz, so we 

can develop a MATLAB low-pass filter, as well as make an auxiliary function that will 
return the filtered data: 
 
In [19]: = 

MSet ["Fs", Fs]; 
 

MEvaluate [" 
 

  [Z, p, k] = butter (6, 2.5e3 / fs, 'low'); 
 

  [Sos, g] = zp2sos (z, p, k); 
 

  Hd = dfilt.df2tsos (sos, g); 

"] 
 

filter = MFunction ["Myfilt", "@ (X) filter (Hd, x)"]; 
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Out [19] = 
 
 

 
Now we have prepared everything in order to apply the filtering function to the 

data directly from Mathematica. This example shows how we can fill in the gaps in 
functionality. This way, we can save a lot of time on filter design in Mathematica 
(which is not the easiest task) and many hours on debugging it. The code for the 
Butterworth filter can be taken from anywhere - from a file share or Stack Overflow, 
from fragments of previously written code, or, as in this case, from the example in the 
documentation. Small changes in the parameters according to your needs, and we can 
now work with this material in Mathematica. 

We will process some data by means of our filter and we will construct the 
spectrogram: 

In [19]: = 

filteredData = filter @data;  

spectrogram [filteredData, 1000, 0, 1024, Fs]  

  
We can play both audio files - filtered and original - and compare the difference 

in their sound: 
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In [20]: = 

 

Out [20] = 
 

  

ListPlay[FilteredData, SampleRate -> fs] 

ListPlay[data, SampleRate -> fs] 
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