
The Step Complexity of Multidimensional
Approximate Agreement
Hagit Attiya !

Department of Computer Science, Technion, Israel

Faith Ellen !

Department of Computer Science, University of Toronto, Canada

Abstract
Approximate agreement allows a set of n processes to obtain outputs that are within a specified
distance ϵ > 0 of one another and within the convex hull of the inputs.

When the inputs are real numbers, there is a wait-free shared-memory approximate agreement
algorithm [16] whose step complexity is in O(n log(S/ϵ)), where S, the spread of the inputs, is
the maximal distance between inputs. There is another wait-free algorithm [17] that avoids the
dependence on n and achieves O(log(M/ϵ)) step complexity where M , the magnitude of the inputs,
is the absolute value of the maximal input.

This paper considers whether it is possible to obtain an approximate agreement algorithm whose
step complexity depends on neither n nor the magnitude of the inputs, which can be much larger
than their spread. On the negative side, we prove that Ω

(
min

{
log M

log log M
,

√
log n

log log n

})
is a lower bound

on the step complexity of approximate agreement, even when the inputs are real numbers. On
the positive side, we prove that a polylogarithmic dependence on n and S/ϵ can be achieved, by
presenting an approximate agreement algorithm with O(log n(log n + log(S/ϵ))) step complexity.
Our algorithm works for multidimensional domains. The step complexity can be further restricted
to be in O(min{log n(log n + log(S/ϵ)), log(M/ϵ)}) when the inputs are real numbers.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms; Theory of
computation → Distributed algorithms

Keywords and phrases approximate agreement, conflict detection, shared memory, wait-freedom,
step complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2022.6

Funding Hagit Attiya: Supported by the Israel Science Foundation (grants 380/18 and 1425/22).
Faith Ellen: Supported by the Natural Science and Engineering Research Council of Canada (grant
RGPIN-2020-04178).

Acknowledgements We thank Sasho Nikolov for useful discussion. We also appreciate the helpful
comments of the anonymous reviewers.

1 Introduction

Approximate agreement allows a set of n processes, each starting with an input from a domain,
to obtain outputs (in the same domain) that are close to each other and in the convex hull
of the inputs. A parameter ϵ represents an upper bound on how close the outputs are.
Originally, Dolev, Lynch, Pinter, Stark and Weihl [7] considered the one-dimensional case,
where the domain is R, the real numbers, and motivated the problem by clock synchronization
and the stabilization of inputs from sensors. More recently, Mendes, Herlihy, Vaidya, and
Garg [14, 15, 18] considered multidimensional approximate agreement, also called approximate
vector consensus, where the domain of inputs and outputs is Rk, for some integer k ≥ 2. The
multidimensional variant was motivated by distributed algorithms for optimization problems.

© Hagit Attiya and Faith Ellen;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Principles of Distributed Systems (OPODIS 2022).
Editors: Eshcar Hillel, Roberto Palmieri, and Etienne Rivière; Article No. 6; pp. 6:1–6:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hagit@cs.technion.ac.il
https://orcid.org/0000-0002-8017-6457
mailto:faith@cs.toronto.edu
https://orcid.org/0000-0003-4473-931X
https://doi.org/10.4230/LIPIcs.OPODIS.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 The Step Complexity of Multidimensional Approximate Agreement

Wait-free shared-memory algorithms to reach approximate agreement for asynchronous
processes that may fail by crashing are evaluated by their (individual) step complexity, that
is, the maximum number of reads and writes to shared memory a process performs until it
obtains an output. There is a wait-free one-dimensional approximate agreement algorithm
with O(log(S/ϵ)) iterations due to Moran [16], where S, the spread of the inputs, is the
maximum distance between any two inputs. Each iteration requires one update and one scan
of an atomic snapshot object [2]. Using Attiya and Rachman’s implementation of a snapshot
object from single-writer registers [6], this leads to O(n log n log(S/ϵ)) step complexity and,
using Inoue, Masuzawa, Chen, and Tokura’s implementation from multi-writer registers [13],
this leads to O(n log(S/ϵ)) step complexity.

A simple argument shows that Ω(n) is a lower bound on the step complexity of approximate
agreement using single-writer registers [4]. The dependence on n can be avoided by using
multi-writer registers: An algorithm by Schenk [17] for inputs in R achieves O(log(M/ϵ))
step complexity, where M , the magnitude of the inputs, is the largest of the absolute values
of the inputs.

The spread, S, of a set of inputs is at most twice its magnitude, M , but the magnitude
might be significantly larger than the spread. This raises the challenge, addressed in this
paper, of obtaining a wait-free approximate agreement algorithm whose step complexity
depends on S, but not on n or M . If the same upper and lower bounds on the domain of the
input values are known to all processes, then the bounded version of Schenk’s algorithm has
O(log(R/ϵ)) step complexity, where R is the difference between these two bounds. However,
R can also be much larger than the spread of the inputs.

This paper provides both negative and positive answers. On the negative side, we prove

that Ω
(

min
{

log M
log log M ,

√
log n

log log n

})
is a lower bound on the step complexity of approximate

agreement, even using multi-writer registers. Thus, for values of M that are larger than n

(actually, even for M ∈ 2Ω(
√

log n)), step complexity that depends on n cannot be avoided.
This lower bound is proved by reduction from the conflict detection problem [3]. We also prove
a lower bound of 1

2 log√
2+1(S/ϵ) on the step complexity of multidimensional approximate

agreement using multi-writer registers. This extends and improves Herlihy’s lower bound for
one-dimensional approximate agreement among two or more processes using single-writer
registers [11]. Related lower bounds were proved by Attiya, Lynch and Shavit [5] and Hoest
and Shavit [12]. Ellen, Gelashvili, and Zhu [8] gave a lower bound on the number of registers
needed to solve approximate agreement from a lower bound on its wait-free step complexity.

On the positive side, we prove that a polylogarithmic dependence on n can be achieved,
by presenting a multidimensional approximate agreement algorithm with O(log n(log n +
log(S/ϵ))) step complexity. The algorithm repeatedly solves two group approximate agreement:
combining one group of processes whose values are close together with another such group
to form a larger group whose values can be slightly further apart. Two group approximate
agreement is solved with a variant of approximate agreement, where processes may know
slightly different domains for their inputs. A key step is showing how to solve this subproblem
using Schenk’s approximate agreement algorithm for inputs in [0,1].

In the one-dimensional case, we can run Schenk’s algorithm in parallel with our new
algorithm to achieve the best of both algorithms: an approximate agreement algorithm whose
step complexity is O(min{log n(log n + log(S/ϵ)), log(M/ϵ)}).

The one-dimensional problem was initially studied in message-passing systems [7]. Many
different approximate agreement algorithms were subsequently developed for these models.
Most of these algorithms are asynchronous and tolerate Byzantine failures. A good example
is an approximate agreement algorithm that tolerates f Byzantine failures, when n > 3f [1].

H. Attiya and F. Ellen 6:3

This algorithm works in O(log(S/ϵ)) (asynchronous) rounds. In each round, each process
obtains information from n− f processes. In the shared-memory model, this would translate
into an algorithm with O(n log(S/ϵ)) step complexity.

Multidimensional approximate agreement was previously studied only in message-passing
systems. The first algorithm for this problem in Rd uses O(d log(dS/ϵ)) rounds [15]. Later,
dependency on d was eliminated: there is an algorithm by Függer and Nowak [9] that uses
O(log(S/ϵ)) rounds. As with one-dimensional approximate agreement, this would translate
into O(n log(S/ϵ)) step complexity. Results of Függer, Nowak and Schwarz [10] imply a lower
bound of Ω(log(S/ϵ)) on the number of rounds for solving multidimensional approximate
agreement among two processes. Note that, like all prior lower bounds, their lower bound
does not depend on the magnitude of the inputs, but only on their spread.

2 Model

We consider a system where n deterministic asynchronous processes, p0, . . . , pn−1, commu-
nicate by reading and writing to shared multi-reader, multi-writer registers. In this model,
all processes can read from and write to all registers. A configuration consists of the state
of every process and the value of every shared register. In an initial configuration, each
process starts in an initial state, which includes its input value, and all registers contain an
initial value. Each process can be modelled as a deterministic state machine, specifying an
algorithm that the process follows until it outputs a value.

Two configurations C and C ′ are indistinguishable to process pi if pi has the same state
and all shared registers have the same values in both configurations.

A process pi is active in configuration C if process pi has not yet output a value. In this
case, configuration Cpi is the configuration reached from C when pi performs the next step
of its algorithm.

A schedule is a (finite or infinite) sequence of processes, specifying the order in which
processes take steps. A non-empty schedule σ = pi1pi2 · · · is applicable to a configuration C

if process pi1 is active in C and, for every prefix pi1 · · · pik
of σ of length k ≥ 2, process pik

is active in configuration Ck−1 = Cpi1 · · · pik−1 . Suppose σ is a schedule that is applicable
to configuration C. If σ has length k, then C, pi1 , C1, . . . , pik

, Ck is the execution from C

induced by σ, where Ck = Cpi1 · · · pik
. If σ is an infinite schedule, then C, pi1 , C1, . . . is the

execution from C induced by σ. The solo execution of process pi from C is the execution
induced by the longest schedule containing only process pi that is applicable to C.

We assume each process pi starts with an input value xi ∈ Rd and, after performing some
number of steps according to its algorithm, produces an output value yi ∈ Rd. An algorithm
(or, more precisely, an algorithm for each process) solves multidimensional approximate
agreement with parameter ϵ if (a) the distance between output values is at most ϵ, and (b)
the output values are in the convex hull of the input values. An algorithm is wait-free if it
ensures that every process that does not crash terminates within a finite number of its own
steps.

The (individual) step complexity of an algorithm is the maximum number of steps taken
by any one process in any possible execution of the algorithm.

3 A Multidimensional Approximate Agreement Algorithm

In our multidimensional approximate agreement algorithm, described in Section 3.4, processes
repeatedly solve instances with increasing values of the accuracy parameter among increasingly

OPODIS 2022

6:4 The Step Complexity of Multidimensional Approximate Agreement

many processes, using their output from one instance as their input to the next instance. The
algorithm begins by solving instances among pairs of of processes. This produces groups of
(two) processes whose inputs are close to one another. These groups are repeatedly combined,
two at a time, in a tree-like manner, creating larger groups whose inputs can be slightly
further apart.

The subproblem of combining two groups (where, in each group, the inputs are close
together) is a restricted version of multidimensional approximate agreement, which we call two
group approximate agreement. In Section 3.3, we show how to solve two group approximate
agreement using another variant of multidimensional approximate agreement, which we call
approximate agreement with domain uncertainty. This problem is defined in Section 3.2.
There, we reduce it to a variant of approximate agreement for inputs in [0, 1], which was
introduced and efficiently solved by Schenk [17] and is described in Section 3.1.

3.1 Schenk’s Algorithm
Schenk’s wait-free approximate agreement algorithm r-agree(x, ϵ) [17] assumes that each
process pi has an input xi ∈ [0, 1] and all processes have a common accuracy parameter ϵ > 0.
It ensures that each non-faulty process outputs a value yi such that min{x1, . . . , xn} ≤ yi ≤
max{x1, . . . , xn} and all outputs are within distance ϵ of one another.

When ϵ = 1/2, r-agree uses two single-bit multi-writer registers, which are both initially
0. Processes with inputs in the interval [0,1/2] write 1 to one of these registers and processes
with inputs in the interval [1/2,1] write 1 to the other register. Processes with input 1/2
output 1/2. A process with any other input reads the register it didn’t write to and, if it
sees 1, it also outputs 1/2. Otherwise it outputs its input. All outputs will lie in the interval
of size 1/2 corresponding to the register that is written to first.

When ϵ = 1/4, the same approach can be applied to this interval, using the outputs
as inputs, to obtain new outputs in a subinterval of size 1/4. The only difficulty is that
processes with output 1/2, which is on the boundary between both intervals [0,1/2] and
[1/2,1], don’t know which interval this is. The solution is for these processes to participate
in the subproblems for both these intervals. In at least one of these two subproblems, it
will output 1/2, so it can use its output from the other subproblem. When ϵ = 1/2k, where
k > 1, this is done k times, each time reducing the size of the interval containing the inputs
by a factor of 2. More generally, this is done ⌈log2(1/ϵ)⌉ times.

A useful generalization of approximate agreement is to allow each process pi to have
a different value ϵi > 0 for its accuracy parameter. For this problem, which is called
ϵ-unknown approximate agreement, all non-faulty processes must output a value within
distance max{ϵ1, . . . , ϵn} of each other. As in approximate agreement, each output must lie
between the smallest and largest inputs. This problem can also be solved using r-agree with
O(log(max{1/ϵ1, . . . , 1/ϵn})) step complexity.

Schenk used ϵ-unknown approximate agreement to solve approximate agreement for any
real valued inputs x1, . . . , xn with O(log(max{|x1|, . . . , |xn|}/ϵ)) step complexity: First, each
process pi finds a value ri such that (1) the interval [−ri, ri] contains at least one of the
original inputs and (2) these values differ from one another by at most a factor of 2. Then
the processes solve this bounded version of approximate agreement by mapping their inputs
to [0, 1] and solving approximate agreement within this interval using accuracy parameters
that can differ by at most a factor of 2.

H. Attiya and F. Ellen 6:5

3.2 Approximate Agreement with Domain Uncertainty
We consider a closely related problem, approximate agreement with domain uncertainty. In
this problem, each process pi has two points ui, vi ∈ Rk and a point xi ∈ Rk on the line
segment between them, expressed as xi = ui + ti(vi − ui), where ti ∈ [0, 1]. We call this
line segment the domain for process pi. The domains of all processes are assumed to be
close to one another. Specifically, there exists a constant δ > 0 known to all processes such
that ||ui − uj || ≤ δ and ||vi − vj || ≤ δ for all processes pi and pj . Each process pi that does
not crash must produce an output yi = ui + t′

i(vi − ui) on the line between ui and vi such
that min{t1, . . . , tn} ≤ t′

i ≤ max{t1, . . . , tn} and the difference between any two outputs is
at most ϵ, which is known to all processes.

Algorithm 1 solves approximate agreement with domain uncertainty for ϵ ≥ 5δ. If the
size of the domain of process pi is small, then it simply sets yi = xi. Otherwise, it uses
r-agree to solve approximate agreement with input ti and uses the result t′

i to determine its
output yi = ui + t′

i(vi − ui).

Algorithm 1 Code for a process with inputs u, v ∈ Rk, t ∈ [0, 1], and parameters ϵ and δ.

ApproxAgreeDU(u, v, t, ϵ, δ)
1: s← ||v − u||
2: if s ≤ 2δ then return u + t(v − u)
3: ϵ′ ← ϵ/5s

4: t′ ← r-agree(t, ϵ′)
5: return u + t′(v − u)

Consider an execution where process pi calls ApproxAgreeDU(ui, vi, ti, ϵ, δ) with ti ∈ [0, 1]
for 1 ≤ i ≤ n. If pi outputs yi = ui + ti(vi − ui) ∈ Rk on line 2, then ti lies between
min{t1, . . . , tn} and max{t1, . . . , tn} and yi is a point on the line segment between ui and
vi. If pi outputs the point yi = ui + t′

i(vi − ui) ∈ Rk on line 5, then t′
i is the value output

by r-agree on line 4. The specifications of ϵ-unknown approximate agreement ensure that
0 ≤ min{t1, . . . , tn} ≤ t′

i ≤ max{t1, . . . , tn} ≤ 1, so yi is a point on the line segment between
ui and vi.

To prove that ApproxAgreeDU is correct, it remains to show that all outputs are within
ϵ of one another.

▶ Lemma 1. For 1 ≤ i, j ≤ n, if process pi outputs yi = ui + t′
i(vi − ui) and process pj

outputs yj = uj + t′
j(vj − uj), then ||yi − yj || ≤ ϵ.

Proof. For 1 ≤ i ≤ n, let si = ||ui − vi|| be the size of the domain of process pi. Since
||ui−uj || ≤ δ and ||vi− vj || ≤ δ, it follows from the triangle inequality that si = ||ui− vi|| =
||ui − uj + uj − vj + vj − vi|| ≤ ||ui − uj ||+ ||uj − vj ||+ ||vj − vi|| ≤ 2δ + sj . By the triangle
inequality,

||yi − yj || = ||ui + t′
i(vi − ui)− uj − t′

j(vj − uj)||
= ||ui − uj + t′

ivi − t′
ivj + t′

ivj − t′
jvj + t′

juj − t′
iuj + t′

iuj − t′
iui||

≤ ||ui − uj ||+ t′
i · ||vi − vj ||+ |t′

i − t′
j | · ||vj − uj ||+ t′

i · ||uj − ui||
≤ δ + 1 · δ + |t′

i − t′
j | · ||vj − uj ||+ 1 · δ

= 3δ + |t′
i − t′

j | · sj .

OPODIS 2022

6:6 The Step Complexity of Multidimensional Approximate Agreement

Let I ⊆ {1, . . . , n} be the set of identifiers of processes that perform line 4 and let
s′ = min{sm | m ∈ I}. Note that, by the test on line 2, if I ̸= ϕ, then s′ > 2δ. Hence
sm ≤ s′ + 2δ < 2s′ for all m ∈ I. For each m ∈ I, let ϵ′

m = ϵ/5sm, so max{ϵ′
m | m ∈ I} =

max{ϵ/5sm | m ∈ I} = ϵ/5 min{sm | m ∈ I} = ϵ/5s′.
First consider the case when i, j ∈ I. From the specifications of ϵ-unknown approximate

agreement, |t′
i − t′

j | ≤ max{ϵ′
m | m ∈ I} = ϵ/5s′. Then ||yi − yj || ≤ 3δ + |t′

i − t′
j | · sj ≤

3ϵ/5 + (ϵ/5s′) · 2s′ = ϵ.
Otherwise, without loss of generality, suppose j ̸∈ I. Then sj ≤ 2δ and ||yi − yj || ≤

3δ + |t′
i − t′

j | · sj ≤ 3δ + 1 · 2δ = 5δ = ϵ. ◀

If t1 = · · · = tn = t, then each nonfaulty process pi outputs ui + t(vi − ui) since
t = min{t1, . . . , tn} ≤ t′

i ≤ max{t1, . . . , tn} = t. In particular, if t = 0, then each nonfaulty
process outputs its first argument and, if t = 1, then each nonfaulty process outputs its
second argument.

3.3 Two Group Approximate Agreement
The two group approximate agreement problem is a restricted version of the approximate
agreement problem in which the processes are divided into two groups, 0 and 1, such that,
within each group, the inputs of the processes are guaranteed to be points in Rk that are
within distance ϵ/5 of one another. We will use ApproxAgreeDU (Algorithm 1) to solve this
problem.

TwoGroupApproxAgree (Algorithm 2) uses two arrays of multi-writer registers A[0..1]
and B[0..1], each with two components. The components of A are initially ⊥ and can store
any point in Rk. The components of B are single bits and are initially 0. Only processes in
group g write to component g of these arrays.

As in Schenk’s approximate agreement algorithm, each process writes to one register
(A[g], where g is the group to which it belongs) and reads from the other register (A[1− g]).
If a process in group g sees that A[1− g] has not yet been written to, it informs the processes
in group 1− g of this fact by writing 1 into B[g] and reads from A[1− g] again. If it sees
that A[1− g] has still not been written to, the process outputs its input.

Otherwise, the process participates in an instance of ApproxAgreeDU, using its input as
one endpoint of its domain and the point it read as the other endpoint. The endpoints are
ordered so that an input from group 0 is the first endpoint and an input from group 1 is the
second point. Then the preconditions ensure that the domains of all processes are close to
one another.

If a process in group g saw that A[1− g] was first written to between its first and second
reads, it uses its input for two group approximate agreement as its input point in this domain.
However, if the process saw that A[1− g] had been written to before its first read, it checks
the bit B[1− g]. If it is 0, processes in the other group will participate in the instance of
ApproxAgreeDU and the process also uses its input for two group approximate agreement
as its input point in this domain. If it is 1, some processes in the other group may simply
output their inputs. In this case, the process uses the other endpoint of its domain as its
input point.

Consider an execution where TwoGroupApproxAgree(gi, xi, ϵ) is called by process pi in
group gi ∈ {0, 1}, for 1 ≤ i ≤ n. Furthermore, suppose ||xi − xj || ≤ ϵ/5 for every pair of
processes pi and pj that are in the same group.

H. Attiya and F. Ellen 6:7

Algorithm 2 Code for a process in group Gg with input x.

TwoGroupApproxAgree(g, x, ϵ)
1: a[g]← x

2: A[g]← write(a[g])
3: a[1− g]← read(A[1− g])
4: if a[1− g] = ⊥ then
5: B[g]← write(1)
6: a[1− g]← read(A[1− g])
7: if a[1− g] = ⊥ then
8: return x

9: else
10: return ApproxAgreeDU(a[0], a[1], g, ϵ, ϵ/5)
11: else
12: b← read(B[1− g])
13: if b = 0 then
14: return ApproxAgreeDU(a[0], a[1], g, ϵ, ϵ/5)
15: else
16: return ApproxAgreeDU(a[0], a[1], 1− g, ϵ, ϵ/5)

▶ Observation 2. The value 1 is written to most one component of B.

Proof. Suppose the first step of the execution is by a process in group 1− g. Then when
any process from group g performs line 3, it does not see ⊥ in A[1− g] and, hence, it does
not write 1 to B[g] on line 5. ◀

Next, we show that the outputs are within the convex hull of the inputs.

▶ Lemma 3. If process pi outputs yi, then yi is in the convex hull of {x1, . . . , xn}.

Proof. If process pi returns yi = xi on line 8, the claim is true since xi is in the convex hull
of {x1, . . . , xn}. Otherwise, yi is the point returned by ApproxAgreeDU(ai[0], ai[1], ti, ϵ, ϵ/5),
where ti ∈ {0, 1}, gi is the group to which pi belongs, ai[gi] = xi, and ai[1− gi] ̸= ⊥ is the
value it read from A[1− gi] on line 3 or 6.

The only points written to A[1 − gi] are elements of {x1, . . . , xn}, so ai[1 − gi] ∈
{x1, . . . , xn}. From the specifications of ApproxAgreeDU, yi is on the line segment between
ai[0] and ai[1]. Hence yi is in the convex hull of {x1, . . . , xn}. ◀

Finally, we show that all the outputs are sufficiently close to one another.

▶ Lemma 4. Suppose that the inputs to all processes in group g are within ϵ/5 of one another,
for all g ∈ {0, 1}. For 1 ≤ i, j ≤ n, if process pi outputs the point yi and process pj outputs
the point yj, then ||yi − yj || ≤ ϵ.

Proof. First consider the processes that return on lines 10, 14, or 16. Each such process pi

returns the result from ApproxAgreeDU(ai[0], ai[1], ti, ϵ, ϵ/5), where ti ∈ {0, 1}. Note that
ai[gi] is the input of a process in group gi and only processes in group 1−gi write to A[1−gi].
Hence ai[0] is the input of a process in group 0 and ai[1] is the input of a process in group 1.
Since the inputs of all processes in the same group are within ϵ/5 of one another, Lemma 1
implies that all these output points differ from one another by at most ϵ.

Now suppose that some process in group g returns its input on line 8. Since this process
returns on line 8 only after writing 1 to B[g], Observation 2 implies that no process writes 1
to B[g − 1]. This implies that no processes in group 1− g return on line 8.

OPODIS 2022

6:8 The Step Complexity of Multidimensional Approximate Agreement

Let C be the configuration immediately following the first write to B[g]. Any process
that returns on line 8 read ⊥ from A[1− g] on line 6 following its write to B[g]. Thus, the
first write to A[1− g] occurs after configuration C. Let C ′ be the configuration immediately
following the first write to A[1− g]. Note that the first step of every process in group g is a
write to A[g], so A[g] ̸= ⊥ in configuration C and all subsequent configurations. Thus, each
process pj in group 1−g reads aj [g] ̸= ⊥ from A[g] on line 3 and reads 1 from B[g] on line 12.
Hence, it will call ApproxAgreeDU(aj [0], aj [1], g, ϵ, ϵ/5) on line 16 with aj [1− g] = xj .

Each process pi in group g that returns on line 10 performs its read of A[1 − g] on
line 3 prior to C ′ and its read on line 6 after C ′. Each process pi in group g that returns
on line 14 performs its read of A[1 − g] on line 3 after C ′. In either case, it will call
ApproxAgreeDU(ai[0], ai[1], g, ϵ, ϵ/5) with ai[g] = xi.

Hence, in all calls to ApproxAgreeDU, the first argument is an input of a process in group
0, the second argument is an input of a process in group 1, and the third argument is g ∈ {0, 1}.
Every process pi that returns on line 10, 14, or 16 outputs ai[0] + g(ai[1] − ai[0]) = ai[g],
which is an input of a process in group g. If process pi returns on line 8, it is in group g and
it returns its own input. By assumption, the inputs of all processes in group g differ from one
another by at most ϵ/5. Hence, all outputs differ from one another by at most ϵ/5 < ϵ. ◀

Note that, if there are only two processes, then TwoGroupApproxAgree can be used
to solve approximate agreement with O(log(S/ϵ)) step complexity using 1-bit multiwriter
registers plus two single-writer registers to which the processes write their inputs.

3.4 Putting the Pieces Together
We can construct an algorithm for approximate agreement in Rk, where the accuracy
parameter ϵ is known by all processes and each process has no information about the inputs
of the other processes. The step complexity of our algorithm depends on (log n and) the
spread, the maximum distance between any two inputs, rather than the input with the largest
magnitude, as in Schenk’s algorithm. The idea is to use a binary tree of height ⌈log2 n⌉, with
one leaf for each process and with a separate instance of two group approximate agreement
at every other node. The accuracy parameter is ϵ at the root and ϵ/5d at internal nodes of
depth d. Each process pi traverses a path from its leaf to the root, using its input xi as its
input to the first instance of two group approximate agreement and, for each subsequent
instance, using its output from the previous instance as its input. If its leaf is in the left
subtree of a node, a process will be in group 0 of the instance of two group approximate
agreement at the node and, if its leaf is in the right subtree, it will be in group 1.

We show that the input requirements for each instance of two group approximate agreement
is satisfied.

▶ Lemma 5. For 0 ≤ d < ⌈log2 n⌉, for each instance of two group approximate agreement
at each node of depth d and in each group, the inputs of the processes are within distance
ϵ/5d+1 of one another.

Proof. First, consider any node with a leaf as a child. Since the group corresponding to that
child consists of only one process, the inputs of the processes in this group are all equal to
one another and, hence, within distance 0 of one another.

Now consider any node which has at least one child that is not a leaf and assume the
claim is true for those children. Let d be the depth of the node, so its children are at depth
d + 1. For each child that is not a leaf and for each group of that child, the inputs in the
group are within distance ϵ/5d+2 of one another. By Lemma 4, the outputs of the instance

H. Attiya and F. Ellen 6:9

at this child are within distance ϵ/5d+1 of one another. Hence the inputs to the instance
at the node from the group corresponding to this child are within distance ϵ/5d+1 of one
another. ◀

▶ Theorem 6. The algorithm described above solves ϵ-unknown approximate agreement with
O(log n(log n + log(S/ϵ)) step complexity among n processes, where S is the spread of the
inputs.

Proof. By Lemma 5, for the instance of two group approximate agreement at the root, the
inputs in each group are within distance ϵ/5 of one another. By Lemma 4, the outputs of
the instance at the root and, hence, the algorithm are within distance ϵ of one another.

By Lemma 3, the outputs of any instance of two group approximate agreement are in the
convex hull of its inputs. Thus, it follows by induction that the outputs of the algorithm are
in the convex hull of {x1, . . . , xn}.

Each process participates in at most one instance of two group approximate agreement at
depth d for 0 ≤ d < ⌈log2 n⌉. Since the inputs to this instance are all within the convex hull
of {x1, . . . , xn}, they are within distance S of one another. At level d, the accuracy parameter
for TwoGroupApproxAgree is ϵ/5d. It involves at most one call to ApproxAgreeDU with
accuracy parameter ϵ/5d, which, in turn, involves at most one call to r-agree with accuracy
parameter at least ϵ/5d+1S. Each such call to r-agree takes O(log(S5d+1/ϵ) = O(d+log(S/ϵ))
steps. Thus, the total step complexity is O(log n(log n + log(S/ϵ)). ◀

The step complexity of Schenk’s algorithm for domain R depends only on the magnitude
of the inputs, whereas the step complexity of our algorithm depends on the spread of the
inputs and the number of processes. To get the best of both worlds with domain R, one
can run Schenk’s algorithm and our algorithm in parallel, both with accuracy parameter
ϵ/5. Specifically, a separate part of shared memory is used for each algorithm and each
process alternately performs steps of the two algorithms. If a process first completes Schenk’s
algorithm with output y, then it performs TwoGroupApproxAgree(0,y,ϵ). If it first completes
our algorithm with output y, then it performs TwoGroupApproxAgree(1,y,ϵ). In either case,
it returns the output it obtains from TwoGroupApproxAgree.

Note that, from the output specifications of Schenk’s algorithm and our algorithm, in
each group, all processes have inputs that are within distance ϵ/5 of one another. Hence,
from the output specifications of TwoGroupApproxAgree, all outputs will be within distance
ϵ of one another. Since all three algorithms satisfy validity, the resulting algorithm also
satisfies validity.

4 Lower bound on the Step Complexity as a Function of the
Magnitude and the Number of Processes

In the conflict detection problem, each process pi has an input xi ∈ {1, . . . , m}. If a process
doesn’t crash, it must output either true or false. If two processes have different input values
and neither crashes, at least one of them returns true, indicating that there is a conflict. If
all processes have the same input value, they must all output false, indicating no conflict.
Aspnes and Ellen [3] proved that the step complexity of this problem when implemented

using only registers is Ω
(

min
{

log m
log log m ,

√
log n

log log n

})
, where n is the number of processes.

There is a simple reduction from conflict detection to approximate agreement, where each
process has an input in {1, . . . , m} and ϵ = 1/2. Specifically, given inputs xi ∈ {1, . . . , m}, the
processes perform approximate agreement to determine outputs yi. If yi = xi, then process

OPODIS 2022

6:10 The Step Complexity of Multidimensional Approximate Agreement

pi outputs false and, if yi ̸= xi, then process pi outputs true. If all the inputs have the same
value, then, by validity, all the yi’s have this value and all processes output false, as required.
However, if xi ̸= xj , then either yi ̸= xi or yj ̸= xj , since |yi − yj | ≤ ϵ < 1 ≤ |xi − xj |. In
this case, either pi outputs true or pj outputs true, as required. It follows that the step
complexity of approximate agreement among n processes with inputs in {1, . . . , m} and

ϵ = 1/2 is Ω
(

min
{

log m
log log m ,

√
log n

log log n

})
.

5 Lower Bound on the Step Complexity as a Function of the Spread

Consider a wait-free algorithm for approximate agreement. For any reachable configuration
C and any process pi active in C, let mi(C) denote the value that process pi outputs in its
solo execution starting from configuration C. If pi has already decided in configuration C,
then mi(C) denotes the value that pi decided.

▶ Observation 7. If pi is active in C, then mi(C) = mi(Cpi).

▶ Observation 8. If C and C ′ are indistinguishable to process pi, then mi(C) = mi(C ′).

Herlihy [11] proved a lower bound for approximate agreement among 2 or more processes
that communicate using single-writer registers. We present a corrected version of his proof,
together with an extension to multi-writer registers. We begin with a technical lemma.

▶ Lemma 9. If processes p0 and p1 are active in configuration C, then there exists σ ∈
{p0, p1, p0p1, p1p0} such that ||m0(Cσ)−m1(Cσ)|| ≥ (

√
2− 1)|σ|||m0(C)−m1(C)||.

Proof. We consider different cases depending on the operations p0 and p1 are poised to
perform.

If p0 is poised to perform a read, then configurations C and Cp0 are indistinguishable to
p1, so, by Observation 8, m1(Cp0) = m1(C). By Observation 7, m0(Cp0) = m0(C). Thus
||m0(Cp0)−m1(Cp0)|| = ||m0(C)−m1(C)|| ≥ (

√
2− 1)1||m0(C)−m1(C)||.

Similarly, if p1 is poised to perform a read, then ||m0(Cp1) −m1(Cp1)|| = ||m0(C) −
m1(C)|| ≥ (

√
2− 1)1||m0(C)−m1(C)||.

If p0 and p1 are poised to perform writes to the same location, then Cp0p1 and Cp1 are
indistinguishable to process p1, so Observation 8 implies that m1(Cp0p1) = m1(Cp1). By
Observation 7, m1(Cp0p1) = m1(Cp0) and m1(Cp1) = m1(C). Thus m1(Cp0) = m1(C).
However, by Observation 7, m0(Cp0) = m0(C). Hence, we get ||m0(Cp0) −m1(Cp0)|| =
||m0(C)−m1(C)|| ≥ (

√
2− 1)1||m0(C)−m1(C)||.

If p0 and p1 are poised to perform writes to different locations, then Cp0p1 = Cp1p0. By
the triangle inequality,

||m0(C) − m1(C)|| = ||m0(C) − m1(Cp0) + m1(Cp0) − m0(Cp1) + m0(Cp1) − m1(C)||
≤ ||m0(C) − m1(Cp0)|| + ||m1(Cp0) − m0(Cp1)|| + ||m0(Cp1) − m1(C)||.

Since (
√

2− 1) + (
√

2− 1) + (
√

2− 1)2 = 1, it follows that either

||m0(C)−m1(Cp0)|| ≥ (
√

2− 1)||m0(C)−m1(C)||,

||m0(Cp1)−m1(C)|| ≥ (
√

2− 1)||m0(C)−m1(C)||, or

||m1(Cp0)−m0(Cp1)|| ≥ (
√

2− 1)2||m0(C)−m1(C)||

In the first case, m0(Cp0) = m0(C) by Observation 7, so ||m0(Cp0) − m1(Cp0)|| ≥
(
√

2− 1)1||m0(C)−m1(C)||.
Similarly, in the second case, ||m0(Cp1)−m1(Cp1)|| ≥ (

√
2− 1)1||m0(C)−m1(C)||.

H. Attiya and F. Ellen 6:11

In the third case, by Observation 7, m0(Cp1p0) = m0(Cp1) and m1(Cp0p1) = m1(Cp0).
Since Cp1p0 = Cp0p1, it follows that ||m0(Cp1p0)−m1(Cp1p0)|| = ||m1(Cp0)−m0(Cp1)|| ≥
(
√

2− 1)2||m0(C)−m1(C)||. ◀

▶ Theorem 10. Any approximate agreement algorithm for two or more processes and accuracy
ϵ has step complexity at least 1

2 log√
2+1(S/ϵ), where S is the spread of the inputs.

Proof. Consider an initial configuration C0 in which process p0 has input x0, process p1 has
input x1, and S = ||x0 − x1||. Suppose an adversary schedules steps of processes p0 and
p1 by repeatedly choosing schedules that satisfy Lemma 9 until both have output values.
Let σ′ be the resulting schedule, let C ′ = Cσ′, and let t = |σ|. Then ||m0(C ′)−m1(C ′)|| ≥
(
√

2 − 1)t||m0(C0) −m1(C0)||. To satisfy agreement, ||m0(C ′) −m1(C ′)|| ≤ ϵ. To satisfy
validity, m0(C0) = x0 and m1(C0) = x1, so ||m0(C0) −m1(C0)|| = ||x0 − x1|| = S. Hence
t ≥ log1/(

√
2−1)(S/ϵ). This is equal to log√

2+1(S/ϵ), since 1/(
√

2− 1) =
√

2 + 1. There are
only two processes taking steps, so at least one of them must take at least t/2 steps. ◀

6 Conclusion

This paper studies wait-free multidimensional approximate agreement in the shared memory
model, using only read and write operations. The step complexities of our algorithms have
poly-logarithmic dependency on S/ϵ and n, where S is the maximum distance between inputs,
ϵ is a parameter bounding the distance between outputs, and n is the number of processes.

There is still a gap between our upper and lower bounds, and it would be interesting to
bring them closer together. In particular, it might be possible to increase the lower bound
for the conflict detection problem.

Another possible avenue for future research is to explore whether our ideas can be applied
in other models, in particular, to obtain approximate agreement algorithms for asynchronous
message-passing systems.

References
1 Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approximate

agreement. In Proceedings of the 8th International Conference On Principles Of Distributed
Systems (OPODIS), pages 229–239, 2004.

2 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic
snapshots of shared memory. Journal of the ACM, 40(4):873–890, 1993.

3 James Aspnes and Faith Ellen. Tight bounds for adopt-commit objects. Theory of Computing
Systems, 55(3):451–474, 2014.

4 Hagit Attiya and Faith Ellen. Impossibility Results for Distributed Computing. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2014.

5 Hagit Attiya, Nancy Lynch, and Nir Shavit. Are wait-free algorithms fast? Journal of the
ACM, 41(4):725–763, 1994.

6 Hagit Attiya and Ophir Rachman. Atomic snapshots in o(n log n) operations. SIAM Journal
on Computing, 27(2):319–340, 1998.

7 Danny Dolev, Nancy Lynch, Shlomit Pinter, Eugene Stark, and William Weihl. Reaching
approximate agreement in the presence of faults. Journal of the ACM, 33(3):499–516, 1986.

8 Faith Ellen, Rati Gelashvili, and Leqi Zhu. Revisionist simulations: A new approach to proving
space lower bounds. In Proceedings of the 37th ACM Symposium on Principles of Distributed
Computing (PODC), pages 61–70, 2018.

9 Matthias Függer and Thomas Nowak. Fast multidimensional asymptotic and approximate
consensus. In Proceedings of the 32nd International Symposium on DIStributed Computing
(DISC), pages 27:1–27:16, 2018.

OPODIS 2022

6:12 The Step Complexity of Multidimensional Approximate Agreement

10 Matthias Függer, Thomas Nowak, and Manfred Schwarz. Tight bounds for asymptotic and
approximate consensus. Journal of the ACM, 68(6):46:1–46:35, 2021.

11 Maurice Herlihy. Impossibility results for asynchronous PRAM. In Proceedings of the 3rd
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 327–336,
1991.

12 Gunnar Hoest and Nir Shavit. Toward a topological characterization of asynchronous com-
plexity. SIAM Journal on Computing, 36(2):457–497, 2006.

13 Michiko Inoue, Toshimitsu Masuzawa, Wei Chen, and Nobuki Tokura. Linear-time snapshot
using multi-writer multi-reader registers. In Proceedings of the 8th International Workshop on
Distributed Algorithms (WDAG), pages 130–140, 1994.

14 Hammurabi Mendes and Maurice Herlihy. Multidimensional approximate agreement in
Byzantine asynchronous systems. In Proceedings of the 45th Annual ACM Symposium on
Theory of Computing (STOC), pages 391–400, 2013.

15 Hammurabi Mendes, Maurice Herlihy, Nitin Vaidya, and Vijay K. Garg. Multidimensional
agreement in Byzantine systems. Distributed Computing, 28(6):423–441, 2015.

16 Shlomo Moran. Using approximate agreement to obtain complete disagreement: The output
structure of input-free asynchronous computations. In Proceedings of the 3rd Israel Symposium
on the Theory of Computing and Systems (ISTCS), pages 251–257, 1995.

17 Eric Schenk. Faster approximate agreement with multi-writer registers. In Proceedings of the
36th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 714–723,
1995.

18 Nitin H. Vaidya and Vijay K. Garg. Byzantine vector consensus in complete graphs. In
Proceedings of the 32nd Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 65–73, 2013.

	1 Introduction
	2 Model
	3 A Multidimensional Approximate Agreement Algorithm
	3.1 Schenk's Algorithm
	3.2 Approximate Agreement with Domain Uncertainty
	3.3 Two Group Approximate Agreement
	3.4 Putting the Pieces Together

	4 Lower bound on the Step Complexity as a Function of the Magnitude and the Number of Processes
	5 Lower Bound on the Step Complexity as a Function of the Spread
	6 Conclusion

