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Abstract
A folklore conjecture in quantum computing is that the acceptance probability of a quantum
query algorithm can be approximated by a classical decision tree, with only a polynomial increase
in the number of queries. Motivated by this conjecture, Aaronson and Ambainis (Theory of
Computing, 2014) conjectured that this should hold more generally for any bounded function
computed by a low degree polynomial.

In this work we prove two new results towards establishing this conjecture: first, that any such
polynomial has a small fractional certificate complexity; and second, that many inputs have a small
sensitive block. We show that these would imply the Aaronson and Ambainis conjecture, assuming
a conjectured extension of Talagrand’s concentration inequality.

On the technical side, many classical techniques used in the analysis of Boolean functions seem
to fail when applied to bounded functions. Here, we develop a new technique, based on a mix of
combinatorics, analysis and geometry, and which in part extends a recent technique of Knop et al.
(STOC 2021) to bounded functions.
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1 Introduction

Aaronson and Ambainis [2] popularized the conjecture that quantum query algorithms can be
approximated by classical query algorithms, on most inputs, with only a polynomial increase
in the number of queries. This captures the informal belief that quantum algorithms can only
achieve exponential speedup on highly structured inputs. Moreover, since the acceptance
probability of quantum query algorithms can be computed by low degree polynomials, they
conjectured that this holds more generally for any bounded function computed by a low
degree polynomial.

A bit more formally, let f : {0, 1}n → [0, 1] be a function which computes for each input
x the acceptance probability of a quantum query algorithm. If the quantum algorithm makes
at most q queries, then Beals et al. [7] showed that f is computed by a real polynomial
of degree at most d = 2q. Aaronson and Ambainis conjectured that any such f can be
approximated by a shallow decision tree.

▶ Conjecture 1 (Aaronson-Ambainis (AA) conjecture [2]). Let f : {0, 1}n → [0, 1] be computed
by a degree d polynomial, and let ε > 0. Then there exists a decision tree T of depth
poly(d, 1/ε), such that

Ex∈{0,1}n [|f(x) − T (x)|] ≤ ε.
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The AA conjecture is known to be true for Boolean functions. Specificially, the seminal
work of Nisan and Szegedy [17] showed that for every Boolean function f : {0, 1}n → {0, 1},
its decision tree complexity and its polynomial degree are equivalent, up to polynomial
factors. However, their proof technique does not extend to bounded functions. In fact, many
techniques used to study Boolean functions seem to fail when attempting to extend them to
bounded functions.

We prove two new results in this paper, which we view as stepping stones towards a
better understanding of bounded low degree polynomials:
1. In a bounded low degree polynomial, all inputs have a small fractional certificate com-

plexity.
2. In a bounded low degree polynomial of large variance, many inputs have a small sensitive

block.
We note that the first result holds for all inputs, whereas the AA conjecture only claims that
f(x) ≈ T (x) for most inputs, and as such the two are incomparable; and that the second
result is a direct corollary of the AA conjecture, as it trivially holds for decision trees. We
show that it also follows from bounding the fractional certificate complexity.

1.1 Our results
We start with defining the above notions more precisely. Let f : {0, 1}n → [0, 1] be a bounded
function, let x ∈ {0, 1}n be an input, and ε > 0 be a tolerance parameter. The ε-certificate
complexity of f at x is the minimal size of a set I ⊂ [n], such that any input y which agrees
with x on I satisfies |f(y) − f(x)| ≤ ε. The ε-fractional certificate complexity1 is its linear
relaxation, where we replace a set I with a distribution π over [n], and require that any y

that is close to x under π satisfies |f(y) − f(x)| ≤ ε (see Section 2 for formal definitions).
It is known that for Boolean functions, certificate complexity and fractional certificate

complexity are equivalent, up to polynomial factors [1, 19, 3]. However, for bounded functions
they are not. Consider for example the linear function f(x) = (x1 + . . . + xn)/n. For any
constant ε, its ε-certificate complexity is Ω(n). In contrast, its ε-fractional certificate
complexity is O(1).

Motivated by this example, we explore the connections between fractional certificate
complexity (which as we will see, is equivalent to fractional block sensitivity) and polynomial
degree for bounded functions. Our first result is a bound on the ε-fractional certificate
complexity that is polynomial in the degree d, tolerance parameter ε and logarithmic in the
number of variables n.

▶ Theorem 2 (Informal version of Theorem 13). Let f : {0, 1}n → [0, 1] be computed by a
degree d polynomial, and let ε > 0. The ε-fractional certificate complexity of f is at most
poly(d, 1/ε, log n).

Next, we show that bounded functions with a small fractional certificate complexity and
large variance have an interesting property - many inputs have small sensitive blocks.

▶ Theorem 3 (Informal version of Theorem 27). Let f : {0, 1}n → [0, 1], ε > 0 and assume
Var[f ] = Ω(ε). Then for at least an ε-fraction of inputs x ∈ {0, 1}n, there is a block B ⊂ [n]
of size |B| ≤ r such that

|f(x) − f(x ⊕ B)| ≥ ε,

where r is polynomial in the ε-fractional certificate complexity of f and in log(1/ε).

1 A similar notion called randomized certificate complexity was introduced by Aaronson [1].
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The proof of Theorem 3 follows from a new connection between fractional certificate com-
plexity, convex geometry and concentration of measure (specifically, Talagrand’s concentration
inequality [20]).

Combining Theorem 2 and Theorem 3 gives the following corollary, that shows that for
low degree bounded polynomials with large variance, many points have a small sensitive
block.

▶ Corollary 4. Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial, let ε > 0, and
assume Var[f ] = Ω(ε). Then for at least an ε-fraction of inputs x ∈ {0, 1}n, there is a block
B ⊂ [n] of size |B| ≤ r such that

|f(x) − f(x ⊕ B)| ≥ ε,

where r = poly(d, 1/ε, log n).

Finally, we give a new conjecture that would imply the AA conjecture given our results.
Talagrand’s concentration inequality [20] states that if X, Y ⊂ {0, 1}n are large sets, then
most points in X are close in L2 norm to the convex hull of Y . We examine what happens if
we replace the L2 norm with the L∞ norm, and make the following conjecture: if X, Y do
not have influential variables, then most points in X are close to the convex hull of Y also in
the L∞ norm. We show that this conjecture, if true, when combined with Theorem 2 implies
the AA conjecture. For details see Section 5.

1.2 Related works
The notions of block sensitivity and certificate complexity are extensively used in Boolean
function analysis, namely, when the output of the function f takes Boolean values. Motivated
by the study of quantum query algorithms, which is naturally captured by a bounded
function, Aaronson [1] introduced the notion of randomized certificate complexity, which is
very close to fractional certificate complexity. Tal [19] introduced the notions of fractional
block-sensitivity and fractional certificate complexity (which are LP duals). Fractional
block-sensitivity has been used to show a tight connection between the zero-error randomized
decision tree complexity and two-sided bounded error randomized decision tree complexity [13].
Subsequent works [10, 3, 4, 12] studied fractional certificate complexity and fractional block-
sensitivity, motivated by various applications in Boolean function analysis and communication
complexity.

However, to the best of our knowledge, all these works focused only on Boolean functions.
In particular, they showed that fractional certificate complexity and certificate complexity
are polynomially related for Boolean functions. As we already discussed, this property is
false for bounded functions. Motivated by studying quantum query algorithms, e.g., the AA
conjecture, we study the fractional certificate complexity for bounded functions.

Previous works on Aaronson-Ambainis conjecture

Besides its importance in quantum computing, the AA conjecture is also a very intriguing
problem in the area of Boolean function analysis. This conjecture is known to be true for
Boolean functions [15, 18]. For bounded functions, a weaker bound with an exponential
dependence on the degree instead of polynomial, can be proved using hyper-contractive
inequalities [8]. Montanaro [16] proved a special case of the conjecture for block-multilinear
forms where all the coefficients have the same magnitude. Recently, Bansal, Sinha and de
Wolf [6] confirmed this conjecture in the case of functions with completely bounded degree-d
block-multilinear form.

ITCS 2023
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Paper organization

We define complexity measures for bounded functions in Section 2. We prove Theorem 2
in Section 3 and Theorem 3 in Section 4. Section 5 is devoted to a conjecture extending
Talagrand’s inequality to the L∞ norm.

2 Complexity measures of bounded functions

We introduce classic complexity measures of Boolean functions, as well as their linear
relaxations, generalized to bounded functions.

Let f : {0, 1}n → [0, 1] be a bounded function, x ∈ {0, 1}n an input, and let ε > 0 be a
tolerance parameter. Given a block B we denote by x ⊕ B the input obtained by flipping the
bits in x corresponding to B. A block B is called ε-sensitive for x if |f(x ⊕ B) − f(x)| ≥ ε.
The family of ε-sensitive blocks for x is defined as

Sε(f, x) = {B ⊂ [n] : |f(x ⊕ B) − f(x)| ≥ ε} .

▶ Definition 5 (ε-block sensitivity). The ε-block sensitivity of f at x, denoted BSε(f, x), is
the maximal number of pairwise disjoint blocks B1, . . . , Bk ∈ Sε(f, x).

▶ Definition 6 (ε-certificate complexity). The ε-certificate complexity of f at x, denoted
Cε(f, x), is the minimal size of a set I ⊂ [n] that intersects all blocks B ∈ Sε(f, x). Equival-
ently:

∀y ∈ {0, 1}n : yI = xI ⇒ |f(y) − f(x)| < ε.

We next define the linear relaxations of block sensitivity and certificate complexity, called
fractional block sensitivity and fractional certificate complexity. These notion were introduced
by Tal [19] in the context of Boolean functions. A similar notion to fractional certificate
complexity, called randomized certificate, was introduced earlier by Aaronson [1].

▶ Definition 7 (ε-fractional block sensitivity). The ε-fractional block sensitivity of f at x,
denoted FBSε(f, x), is the maximal k such that there exists a distribution ν over Sε(f, x)
that satisfies

∀i ∈ [n] : Pr
B∼ν

[i ∈ B] ≤ 1/k.

▶ Definition 8 (ε-fractional certificate complexity). The ε-fractional certificate complexity of
f at x, denoted FCε(f, x), is the minimal k such that there exists a distribution π over [n]
that satisfies:

∀B ∈ Sε(f, x) : Pr
i∼π

[i ∈ B] ≥ 1/k.

In other words:

∀y ∈ {0, 1}n :
(

Pr
i∼π

[yi ̸= xi] < 1/k
)

⇒ |f(y) − f(x)| ≤ ε.

▶ Example 9. Let f(x) = (x1 + · · · + xn)/n. Fix an input x ∈ {0, 1}n and ε > 0. Let
y ∈ {0, 1}n such that |f(x) − f(y)| ≥ ε. This implies that the Hamming distance between
x, y is at least εn, and hence Pri∼π[xi ≠ yi] ≥ ε, where π is the uniform distribution over [n].
This implies that FCε(f, x) ≤ 1/ε, which in particular is independent of n.
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The following lemma is the classic connection between matchings, covers and their linear
relaxations, when specialized to our setting. See [19] for a proof in the special case of block
sensitivity, certificate complexity and their fractional relaxations (the proof in [19] is for
Boolean functions, but it works equally well in our context).

▶ Lemma 10. BSε(f, x) ≤ FBSε(f, x) = FCε(f, x) ≤ Cε(f, x).

We need one more definition of block sensitivity where we do not specify the tolerance ε.

▶ Definition 11 (Block sensitivity). The block sensitivity of f at x, denoted BS(f, x), is
defined as

BS(f, x) = max
B1,...,Bk

k∑
i=1

|f(x) − f(x ⊕ Bi)|,

where the maximum is over all collections of pairwise disjoint blocks.

▷ Claim 12. BS(f, x) ≥ ε · BSε(f, x) for any ε > 0.

For any complexity measure C (such as Cε,BSε, etc), we define C(f) = maxx C(f, x).

2.1 Our results
With the definitions out of the way, we can now formally state our first theorem.

▶ Theorem 13. Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial. Then for any
ε > 0,

FBSε(f) = FCε(f) ≤ O

(
d8 log16 n

ε4

)
.

It is known that bounded low degree polynomials have bounded block sensitivity. This
was first shown by Backurs and Bavarian [5] and then sharpened by Filmus, Hatami, Keller,
and Lifshitz [9].

▶ Lemma 14 ([9]). Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial. Then
BS(f) = O(d2).

Theorem 13 follows by combining Lemma 14 with the following theorem, which is our
main technical contribution in this context. It upper bounds the integrality gap of block
sensitivity for any bounded function (not necessarily computed by a low degree polynomial).
A similar result for total Boolean functions is known [1, 19, 3], but their techniques do
not seem to migrate well to the setting of bounded functions. Instead, we take a different
approach, adapting ideas from [12] to the setting of bounded functions.

▶ Theorem 15 (Upper bounding the integrality gap for block sensitivity). Let f : {0, 1}n → [0, 1]
and set B = max(BS(f), 1). Then for every ε > 0,

FBSε(f) ≤ O

(
B4 log16 n

ε4

)
.

We note that we did not attempt to optimize the exponents appearing in Theorem 13
and Theorem 15.

ITCS 2023
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3 Upper bounding the integrality gap of block sensitivity

We prove Theorem 15 in this section. Before doing so, it would be convenient to recast the
definitions of fractional block sensitivity and fractional certificates in a more systematic way.

3.1 Smoothness and fractional cover
▶ Definition 16 (Smooth distribution). Let p ∈ (0, 1). A distribution D over {0, 1}n is
p-smooth if it satisfies Prx∼D[xi = 1] ≤ p for all i ∈ [n].

▶ Definition 17 (Smooth probability). Let S ⊂ {0, 1}n. We denote by psmooth(S) the minimal
p, such that there exists a p-smooth distribution D supported on S.

▶ Definition 18 (Cover probability). Let S ⊂ {0, 1}n. We denote by pcover(S) the maximal p,
such that there exists a distribution π over [n] satisfying Pri∼π[xi = 1] ≥ p for all x ∈ S.

Recall the definition of Sε(f, x) = {B ⊂ [n] : |f(x ⊕ B) − f(x)| ≥ ε}. We can recast the
definitions of fractional block sensitivity and fractional certificates as

FBSε(f, x) = 1/psmooth(Sε(f, x)), FCε(f, x) = pcover(Sε(f, x)).

We next prove a number of useful claims about psmooth and pcover.

▷ Claim 19. psmooth(S) = pcover(S) for any S ⊂ {0, 1}n.

Proof. This is the classic LP duality between fractional matching and fractional covers in
hypergraphs (see for example [14]). ◁

Let p(S) := psmooth(S) = pcover(S). Note that if 0n ∈ S then p(S) = 0.

▷ Claim 20. Let S ⊂ {0, 1}n \ {0}n. Then p(S) ≥ 1/n.

Proof. Let π be the uniform distribution over [n]. As 0n /∈ S we have Pr[xi = 1] ≥ 1/n for
all x ∈ S. Thus p(S) = pcover(S) ≥ 1/n. ◁

▷ Claim 21. Let S ⊂ {0, 1}n with p(S) = p. Let D be a q-smooth distribution over {0, 1}n

where q < p. Then

Pr
x∼D

[x ∈ S] ≤ q/p.

Proof. Let α = Prx∼D[x ∈ S]. Let D′ be the distribution of x ∼ D conditioned on x ∈ S,
namely D′(x) = 0 if x /∈ S, and D′(x) = D(x)/α if x ∈ S. Note that D′ is (q/α)-smooth and
supported on S, and hence q/α ≥ p. ◁

We identify {0, 1}n with subsets of [n]. In particular, given x, y ∈ {0, 1}n we identify
x ∪ y, x ∩ y and x \ y with the usual definition for sets (union, intersection, set difference).

▷ Claim 22. Let D be a p-smooth distribution over {0, 1}n. For k ≥ 1, define a distribution
D′ by the following sampling process: sample y1, . . . , yk ∼ D independently and output

z =
⋃
i ̸=j

yi ∩ yj .

Then D′ is (pk)2-smooth

Proof. This follows from the definition of smoothness. For any coordinate ℓ ∈ [n] we have

Pr
z∼D′

[zℓ = 1] ≤
∑
i̸=j

Pr
yi∼D

[(yi)ℓ = 1] Pr
yj∼D

[(yj)ℓ = 1] ≤ (pk)2. ◁
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3.2 Bounding the integrality gap
We now turn to prove Theorem 15. It will be convenient to allow to mildly change ε.
The following is our main technical lemma in this section. To simplify notations, we set
Bε(f) = max(BSε(f), 1) throughout the section.

▶ Lemma 23. Let f : {0, 1}n → [0, 1] and ε ∈ (0, 1). Then there exists 1 ≤ t ≤ log4 n such
that

FBSε(f) ≤ FBSε/t(f) ≤ O
(
Bε/t(f)4)

.

Combining Lemma 23 with the bound BSδ(f) ≤ BS(f)/δ given by Claim 12 implies
Theorem 15. We prove Lemma 23 in the remainder of this subsection. The following lemma
is an adaptation of [12, Lemma 3.2] to bounded functions.

▶ Lemma 24. Let f : {0, 1}n → [0, 1] and ε ∈ (0, 1/3). Then

FBS3ε(f)√
FBSε(f)

≤ O (Bε(f)) .

Proof. Let FBS3ε(f) = 1/p and FBSε(f) = 1/q. Note that 0 ≤ q ≤ p ≤ 1. We may assume
that q ≥ 4p2, otherwise the claim is trivial. Let x ∈ {0, 1}n so that FBS3ε(f) = FBS3ε(f, x).
Let S = S3ε(f, x), and let D be a p-smooth distribution supported on S. Let k to be
determined later, and sample y1, . . . , yk ∼ D independently. Define

e =
⋃
i ̸=j

(yi ∩ yj) .

Finally, let zi = yi \ e. Observe that z1, . . . , zk are pairwise disjoint.
Observe that Claim 22 implies that e is (pk)2-smooth and set δ = (pk)2/q. Let S0 =

Sε(f, x) and note that by assumption p(S0) ≥ q. Claim 21 implies that Pr[e ∈ S0] ≤ δ, or in
other words

Pr[|f(x) − f(x ⊕ e)| ≥ ε] ≤ δ. (1)

Next, fix i ∈ [k] and also fix yi for a moment. Define

ei =
⋃

j ̸=j′,j,j′ ̸=i

(yj ∩ yj′) \ yi.

Applying Claim 22 again we get that ei is also (pk)2-smooth. Let Si = Sε(f, x ⊕ yi), which
again satisfies p(Si) ≥ q. Applying Claim 21 again gives

Pr
{yj}j ̸=i

[|f(x ⊕ yi) − f(x ⊕ yi ⊕ ei)| ≥ ε] ≤ δ.

Note that yi ⊕ ei = yi ∨ ei = yi ∨ e = zi ⊕ e. Averaging also over yi gives

Pr[|f(x ⊕ yi) − f(x ⊕ zi ⊕ e)| ≥ ε] ≤ δ. (2)

Next, since each yi ∼ D is supported on S3ε(f, x), we have |f(x) − f(x ⊕ yi)| ≥ 3ε with
probability one. Combining this with Equations (1) and (2), and setting w = x ⊕ e, gives

Pr[|f(w) − f(w ⊕ zi)| ≥ ε] ≥ 1 − 2δ. (3)

Recall that δ = (pk)2/q. We choose k = Ω(√q/p) so that δ ≤ 1/4. Let I = {i ∈ [k] :
|f(w) − f(w ⊕ zi)| ≥ 2ε}. We have E[|I|] ≥ (1 − 2δ)k ≥ k/2. By averaging, there exists a
choice of y1, . . . , yk so that |I| ≥ k/2. Fix such a choice, and note that it gives

BSε(f) ≥ BSε(f, w) ≥ k/2. ◀

ITCS 2023
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▷ Claim 25. Fix ε ∈ (0, 1/3) and assume FBSε(f) ≥ 2. Then there exists 1 ≤ t ≤ log4 n so
that

FBSε/t(f) ≤
(
FBS3ε/t(f)

)4/3
.

Proof. Shorthand h(i) = FBSε/3i(f) for i ≥ 0. Let m ≥ 0 be maximal so that for every
i ∈ [m] it holds that h(i) ≥ (h(i − 1))4/3. This implies that h(m) ≥ 2(4/3)m . On the
other hand, Claim 20 implies FBSδ(f) ≤ n for any δ > 0, and hence h(m) ≤ n. Thus
(4/3)m ≤ log n and hence 3m ≤ (log n)log4/3(3) ≤ log4 n. The claim holds for t = 3m. ◁

We now prove Lemma 23.

Proof of Lemma 23. If FBSε(f) ≤ 2 we are done. Otherwise, apply Claim 25 to get
1 ≤ t ≤ log4 n so that FBSε/t(f) ≤

(
FBS3ε/t(f)

)4/3. Set ε′ = ε/t, where rearranging the
terms gives

FBS3ε′(f)√
FBSε′(f)

≥ FBSε′(f)1/4.

Applying Lemma 24 for ε′ gives

FBS3ε′(f)√
FBSε′(f)

≤ O (Bε′(f)) .

To conclude the proof note that FBSε(f) ≤ FBSε′(f) since ε′ ≤ ε. ◀

4 Small block sensitivity

A corollary of the AA conjecture is that for low degree bounded functions with a large
variance, many inputs have a small sensitive block (as this holds for decision trees). We show
that this also follows from having small fractional certificate complexity.

▶ Definition 26 (Small block sensitivity). Let f : {0, 1}n → [0, 1]. A point x ∈ {0, 1}n is
called (r, ε)-sensitive if there exists a block B of size |B| ≤ r such that

|f(x) − f(x ⊕ B)| ≥ ε.

If no such block exists, we say that x is (r, ε)-insensitive.

▶ Theorem 27. Let f : {0, 1}n → [0, 1] and ε > 0, and assume Var[f ] ≥ Ω(ε). Then at least
an ε-fraction of the points x ∈ {0, 1}n are (r, ε)-sensitive for r = O

(
FCε(f)2 · log(1/ε)

)
.

The first step towards the proof of Theorem 27 is to connect fractional certificate
complexity to convex geometry. Let x ∈ {0, 1}n, Y ⊂ {0, 1}n. We denote by conv(Y ) the
convex hull of Y in [0, 1]n. Given a set K ⊂ [0, 1]n and x ∈ {0, 1}n, define their Lp distance as

dp(x, K) = min
y∈K

∥x − y∥p.

We will restrict our attention to two norms: L2 and L∞. We first connect the L∞ norm to
fractional certificate complexity.

▶ Lemma 28. Let f : {0, 1}n → [0, 1], x ∈ {0, 1}n, ε > 0 and Y = {y ∈ {0, 1}n :
|f(x) − f(y)| ≥ ε}. Then

d∞(x, conv(Y )) ≥ 1
FCε(f, x) .
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Proof. Assume FCε(f, x) = k. This means there is a distribution π over [n], such that for
all y ∈ Y ,

Pr
i∼π

[xi ̸= yi] ≥ 1/k.

Let si = (−1)xi . We can rewrite this condition as

Ei∼π[si(yi − xi)] ≥ 1/k.

Let y∗ ∈ conv(Y ) be the point closest to x in L∞. Then by linearity of expectation we have
that

Ei∼π[si(y∗
i − xi)] ≥ 1/k.

Let p = ∥x − y∗∥∞ = d∞(x, conv(Y )), so that |y∗
i − xi| ≤ p for all i. Then we must have

p ≥ 1/k. ◀

We next connect the L2 norm and the L∞ norm via small block sensitivity.

▶ Lemma 29. Let f : {0, 1}n → [0, 1], x ∈ {0, 1}n, t ≥ f(x) and ε > 0. Define

Y = {y ∈ {0, 1}n : f(y) ≥ t + ε}

and

Z = {z ∈ {0, 1}n : f(z) ≥ t + 2ε and z is (r, ε)-insensitive}.

Then

d2(x, conv(Z)) ≥ d∞(x, conv(Y )) ·
√

r.

Proof. Let p = d∞(x, conv(Y )). Let Br(Z) denote the Hamming ball of radius r around Z:

Br(Z) = {z ⊕ B : z ∈ Z, B ⊂ [n], |B| ≤ r}.

Observe first that Br(Z) ⊂ Y . To see that, take z ∈ Z and |B| ≤ r. We need to show that
z ⊕ B ∈ Y . Since by assumption z is (r, ε)-insensitive, we have f(z ⊕ B) ≥ f(z) − ε ≥ t + ε

and hence z ⊕ B ∈ Y .
For each 0 ≤ ℓ ≤ r let z(ℓ) ∈ conv(Bℓ(Z)) be the closest point to x in L2. The proof will

follow by showing that for all 0 ≤ ℓ ≤ r − 1:

∥x − z(ℓ)∥2
2 ≥ p2 + ∥x − z(ℓ+1)∥2

2, (4)

as this implies

d2(x, conv(Z))2 = ∥x − z(0)∥2
2 ≥ p2r.

We next prove Equation (4). Fix ℓ and consider z(ℓ). Since z(ℓ) ∈ conv(Bℓ(Z)) ⊂ conv(Y ),
we must have ∥x − z(ℓ)∥∞ ≥ d∞(x, conv(Y )) = p. Let i ∈ [n] be a coordinate for which
|xi − z

(ℓ)
i | ≥ p. Define w(ℓ) ∈ [0, 1]n as follows: w

(ℓ)
i = xi and w

(ℓ)
j = z

(ℓ)
j for j ̸= i. Then

∥x − z(ℓ)∥2
2 ≥ p2 + ∥x − w(ℓ)∥2

2.

To conclude the proof, note that as z(ℓ) ∈ conv(Bℓ(Z)) and w(ℓ) differs from z(ℓ) in at most
one coordinate, then w(ℓ) ∈ conv(Bℓ+1(Z)). This implies that ∥x − z(ℓ+1)∥2 ≤ ∥x − w(ℓ)∥2
which completes the proof. ◀
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We would need the following simple claim, showing that a bounded random variable
which does not deviate much from its expectation, must have a small variance.

▷ Claim 30. Let X be a random variable taking values in [0, 1]. Assume that for some
a, b > 0 we have

Pr[X ≥ E[X] + a] ≤ b.

Then

Var[X] ≤ 2(a + b).

Proof. Let Y = X − E[X] so that Y takes values in [−1, 1] and E[Y ] = 0. We have

0 = E[Y ] = E[max(Y, 0)] − E[max(−Y, 0)].

Therefore, E[max(Y, 0)] = E[max(−Y, 0)]. By assumption, Pr[Y ≥ a] ≤ b and hence

E[max(Y, 0)] ≤ a + b

which implies

E[max(−Y, 0)] ≤ a + b.

Thus

Var[X] = E[Y 2] ≤ E[|Y |] = E[max(Y, 0)] + E[max(−Y, 0)] ≤ 2(a + b). ◀

The final piece we need is Talagrand’s concentration inequality [20].

▶ Theorem 31 (Talagrand [20]). Let X, Y ⊂ {0, 1}n. Assume that for all x ∈ X,

d2(x, conv(Y )) ≥ λ.

Then

|X||Y |
22n

≤ exp(−λ2/4).

We now prove Theorem 27.

Proof of Theorem 27. Let t be the average value of {f(x) : x ∈ {0, 1}n}. Define

X = {x ∈ {0, 1}n : f(x) ≤ t},

Y = {y ∈ {0, 1}n : f(y) ≥ t + ε},

Z = {z ∈ {0, 1}n : f(z) ≥ t + 2ε},

W = {w ∈ {0, 1}n : f(w) ≥ t + 2ε and w is (r, ε)-insensitive}.

The assumption Var[f ] ≥ Ω(ε) implies by Claim 30 that |X|, |Y |, |Z| ≥ 2ε2n. We will soon
show that |W | ≤ ε2n. This will conclude the proof as all points in Z \ W are (r, ε)-sensitive,
and there are at least |Z| − |W | ≥ ε2n such points.

Let k = FCε(f). Lemma 28 gives that for all x ∈ X,

d∞(x, conv(Y )) ≥ 1
k

.
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Lemma 29 then gives that

d2(x, conv(W )) ≥
√

r

k
.

Applying Talagrand’s inequality (Theorem 31) to X, W then gives

|X||W |
22n

≤ exp(−r/4k2).

Choosing r = O(k2 log(1/ε)), and recalling that |X| ≥ ε2n, gives that |W | ≤ ε2n. This
concludes the proof. ◀

5 Conjectured extension of Talagrand’s inequality to the infinity norm

In this section we present a potential (but somewhat speculative) direction towards the
Aaronson-Ambainis conjecture, based on a conjectured extension of Talagrand’s inequality
to the L∞ norm.

Before doing so, it would be convenient for us to recast the AA conjecture in a more
amenable way. Similar to the equivalent formulation of the AA conjecture of f having an
influential variable, we consider the version of an influential small coalition.

▶ Conjecture 32 (AA conjecture: equivalent formulation). Let f : {0, 1}n → [0, 1] be computed
by a degree d polynomial, and let ε > 0. Then there is a set B ⊂ [n] of size |B| ≤ poly(d, 1/ε)
and an assignment b ∈ {0, 1}B such that Var[f(x)|xB = b] ≤ ε.

▷ Claim 33. Conjecture 1 and Conjecture 32 are equivalent.

Proof. It is clear that Conjecture 32 follows from Conjecture 1, by considering a leaf in the
decision tree approximating f . The reverse direction also holds by standard techniques:
querying the variables in the block B reduces the average block sensitivity for the function.
For more details, see for example [11, Lemma 6.1], where although their full proof is wrong,
this specific lemma is correct and gives the details for this procedure. ◁

Next, recall Talagrand’s inequality (Theorem 31), and consider replacing the distance
from L2 to L∞. What would change? First, the distance can be at most 1. Second, even
if X, Y are dense sets, their structure plays a part. Consider the following two motivating
examples.

▶ Example 34 (Subcubes). Let X = {x : x1 = 0}, Y = {x : x1 = 1}. Then |X| = |Y | = 2n−1

and d∞(x, conv(Y )) = 1 for all x ∈ X.

▶ Example 35 (Hamming balls). Let X = {x : |x| ≤ n/2 −
√

n}, Y = {x : |x| ≥ n/2 +
√

n}
where |x| denotes the Hamming weight of x. Then |X| = |Y | = Ω(2n) and d∞(x, conv(Y )) =
O(1/

√
n) for x on the boundary of X (namely, x with hamming weight |x| = n/2 −

√
n).

We conjecture that the main difference between these two examples is that, in the first
example X, Y have a variable with large influence, whereas in the second example all variables
have influence O(1/

√
n). We conjecture that this is a general phenomenon.

▶ Definition 36. Let X ⊂ {0, 1}n. The i-th influence of X is the probability that a random
element in X moves outside X when the i-th bit is flipped:

Infi[X] = Pr
x∈X

[x ⊕ ei /∈ X].

The maximal influence of X is Inf∞[x] = maxi Infi[X].
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▶ Conjecture 37 (Talagrand for L∞). Let X, Y ⊂ {0, 1}n. Assume that Inf∞[X], Inf∞[Y ] ≤ τ .
Then there exists x ∈ X such that

d∞(x, conv(Y )) ≤ poly(τ).

We show that Conjecture 37 also implies the AA conjecture.

▷ Claim 38. Conjecture 37 implies Conjecture 32.

Proof. Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial, and Var[f ] ≥ Ω(ε).
Let t be the average value of {f(x) : x ∈ {0, 1}n}. For α ∈ [ε, 2ε] to be determined soon,
define

X = {x : f(x) ≤ t − α}, Y = {x : f(x) ≥ t + α}.

The assumption that Var[f ] ≥ Ω(ε) implies by Claim 30 that |X|, |Y | ≥ ε2n. Combines
Lemma 28 and Theorem 13, it gives that for all x ∈ X, d∞(x, conv(Y )) ≥ p where p−1 =
poly(d, 1/ε, log n). Conjecture 37 then implies that either Inf∞[X] > τ or Inf∞[Y ] > τ where
τ−1 = poly(d, 1/ε, log n).

Assume without loss of generality that Inf∞[X] > τ . This means that there is an index
i ∈ [n] such that Infi[X] > τ . In other words, the linear threshold function sign(f(x) − t + α)
has an influential variable xi. We will now show that by a careful choice of α, this implies that
xi is also an influential variable for f . This in turn is sufficient to prove the AA conjecture.

Let β > 0 to be determined later (where we will have β−1 = poly(d, 1/ε, log n)). Say that
a value α is good if Prx∈{0,1}n [0 ≤ f(x) − t + α ≤ β] ≤ ετ/2. Note that if α is good, then we
get

Ex∈{0,1}n [|f(x ⊕ ei) − f(x)|]
≥ε · Ex∈X [|f(x ⊕ ei) − f(x)|]
≥εβ · Pr

x∈X
[f(x ⊕ ei) > t − α + β]

=εβ

(
Pr

x∈X
[f(x ⊕ ei) > t − α] − Pr

x∈X
[0 ≤ f(x) − t + α ≤ β]

)
≥εβ (Infi[X] − τ/2)
≥εβτ/2.

This implies that xi is an influential variable in f , with influence poly(d, 1/ε, log(n))−1, as
conjectured.

To conclude, we need to show that a good value of α exists. Assume not; then for
every α ∈ [ε, 2ε], we have at least a ετ/2 mass of {f(x) : x ∈ {0, 1}n} lying in the interval
[t−α, t−α+β]. This of course is impossible if we set β small enough, concretely β = O(τε2).

◁
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