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Abstract
A polynomial-stretch pseudorandom generator (PPRG) in NC0 (i.e., constant parallel time) is one of
the most important cryptographic primitives, especially for constructing highly efficient cryptography
and indistinguishability obfuscation. The celebrated work (Applebaum, Ishai, and Kushilevitz, SIAM
Journal on Computing, 2006) on randomized encodings yields the characterization of sublinear-
stretch pseudorandom generators in NC0 by the existence of logspace-computable one-way functions,
but characterizing PPRGs in NC0 seems out of reach at present. Therefore, it is natural to ask
which sort of hardness notion is essential for constructing PPRGs in NC0. Particularly, to the best
of our knowledge, all the previously known candidates for PPRGs in NC0 follow only one framework
based on Goldreich’s one-way function.

In this paper, we present a new learning-theoretic characterization for PPRGs in NC0 and related
classes. Specifically, we consider the average-case hardness of learning for well-studied classes in
parameterized settings, where the number of samples is restricted to fixed-parameter tractable
(FPT), and show that the following are equivalent:

The existence of (a collection of) PPRGs in NC0.
The average-case hardness of learning sparse F2-polynomials on a sparse example distribution
and an NC0-samplable target distribution (i.e., a distribution on target functions).
The average-case hardness of learning Fourier-sparse functions on a sparse example distribution
and an NC0-samplable target distribution.
The average-case hardness of learning constant-depth parity decision trees on a sparse example
distribution and an NC0-samplable target distribution.

Furthermore, we characterize a (single) PPRG in ⊕-NC0 by the average-case hardness of learning
constant-degree F2-polynomials on a uniform example distribution with FPT samples. Based on
our results, we propose new candidates for PPRGs in NC0 and related classes under a hardness
assumption on a natural learning problem. An important property of PPRGs in NC0 constructed in
our framework is that the output bits are computed by various predicates; thus, it seems to resist
an attack that depends on a specific property of one fixed predicate.

Conceptually, the main contribution of this study is to formalize a theory of FPT dualization of
concept classes, which yields a meta-theorem for the first result. For the second result on PPRGs in
⊕-NC0, we use a different technique of pseudorandom F2-polynomials.
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1 Introduction

A dichotomy between learning and cryptography is one of the central topics in theoretical
computer science. An implication from cryptography to hardness of learning has already been
studied in the pioneering work by Valiant [60], who observed that the existence of a secure
cryptographic primitive implies the hardness of learning polynomial-size circuits (P/poly).
Many follow-up studies further showed the hardness of learning more restricted classes such
as AC0 under several cryptographic or deeply related assumptions [39, 40, 3, 11, 23, 24, 18,
59, 25]. The opposite implication from hardness of learning to cryptography is relatively less
understood and first studied by Impagliazzo and Levin [33] and Blum, Furst, Kearns, and
Lipton [14]. Particularly, Blum, Furst, Kearns, and Lipton [14] formulated the average-case
hardness of PAC learning and presented constructions of several cryptographic primitives
based on the average-case hardness of learning. These early studies characterized a central
cryptographic primitive called a one-way function (OWF) by the average-case hardness of
learning P/poly. The dichotomy between learning and cryptography has been further studied
over decades in various settings [47, 50, 55, 44, 45].

In general, the complexity for computing cryptographic primitives is deeply related to
the complexity of a concept class for learning (i.e., a class of target functions learners try to
learn). This observation leads us to study the dichotomy between learning and cryptography
in low complexity classes. One motivation of this is highly efficient cryptography based on
the hardness assumption of learning simple classes, as mentioned by Blum, Furst, Kearns,
and Lipton [14]. This direction is successful in certain fields; e.g., several candidates for a
cryptographic primitive called a weak pseudorandom function were proposed in low complexity
based on the hardness of learning problems for which no efficient algorithm is known at
present [1, 17]. Another motivation is identifying the capability of efficient learning based on
well-established arguments in cryptography. This direction has also been demonstrated for
decades in studies on cryptographic hardness of learning (e.g.,[39, 40, 11, 25]).

In this work, we study a dichotomy between learning and polynomial-stretch pseudoran-
dom generators (PPRGs) computable in constant-depth circuits (i.e., NC0), where a PPRG is
a fundamental cryptographic primitive stretching a given n-bit random seed into an n1+Θ(1)-
bit pseudorandom string that is indistinguishable from a truly random string by efficient
adversaries. This research question is strongly motivated by both sides of constructing highly
efficient cryptography and identifying the capability of efficient learning. Below, we explain
further backgrounds.

From the perspective of cryptography. A PPRG in NC0 is one of the most studied primitives
in parallel cryptography (cf. [22, 9]) because of its remarkable applications, such as highly
efficient cryptography [34] and a recent breakthrough on indistinguishability obfuscation
(iO) based on well-founded assumptions [37, 38]. Despite its importance, to the best of
our knowledge, the only known framework for constructing PPRGs in NC0 is one based
on Goldreich’s OWF [30]. For example, the celebrated work by Applebaum, Ishai, and
Kushilevitz [5] on randomized encodings only yields the characterization of sublinear-stretch
PRGs in NC0, but characterizing PPRGs in NC0 seems out of reach at present. Therefore, it
is natural to inquire into a new candidate for PPRGs in NC0 and a characterization result
through the lens of the dichotomy between learning and cryptography.

Strictly speaking, we mainly discuss a generator defined as a collection of PPRGs, where
the generator has a public index randomly and efficiently (but not in NC0) selected in the
preprocessing (cf. [29, Section 2.4.2]). This relaxed setting is standard, especially when
we discuss a PPRG in NC0 (cf. [9, Remark 1.1]), and such relaxation does not affect the
applications mentioned above.
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From the perspective of computational learning theory. An ultimate goal in computational
learning theory is to identify the simplest concept class that is not efficiently learnable under
a plausible hardness assumption. Many hardness results of learning in the current frontline
are related to PPRGs in NC0. Applebaum, Barak, and Wigderson [10] proved the hardness
of learning O(log n)-junta functions under the existence of PPRGs in NC0 with an additional
assumption on input-output connections. Applebaum and Raykov [11] and Daniely and
Vardi [25] proved the hardness of learning for central classes such as depth-3 AC0 circuits and
ω(1)-term DNF formulas under assumptions related to polynomial-stretch Goldreich’s PRG,
which is a special case where the output bits are computed by one fixed predicate. Oliveira,
Santhanam, and Tell [51] proved that a security of polynomial-stretch Goldreich’s PRG
implies the impossibility of improving parameters of natural properties for simple classes such
as DNF-XOR circuits under a plausible assumptions on the existence of suitable expanders,
where a natural property is a notion deeply related to learning [18, 19].

Since the equivalence between pseudorandomness and unpredictability follows from the
well-known result by Yao [61], a reader might expect a correspondence between PPRG in NC0

and hardness of learning NC0. However, this intuition seems incorrect because while a PPRG
in NC0 is conjectured to exist, learning NC0 (i.e., functions with constant locality) is trivially
feasible by applying Occam’s razor [15]. In this sense, there seems to exist a gap between
pseudorandomness and hardness of learning when we consider considerably low complexity
classes such as NC0. Nevertheless, can we obtain some learning-theoretic characterization for
a collection of PPRG in NC0? In this work, we provide an affirmative answer to this question.

1.1 Our Learning Model
We introduce the learning model mainly discussed in this work, which is a natural variant of
the PAC learning model. For the formal definition, see the full paper.

We consider a distribution-specific average-case learning model, introduced by Blum,
Furst, Kearns, and Lipton [14]. In this model, an unknown Boolean-valued target function
f (contained in some concept class C ) is selected according to a known target distribution,
and a learner is given samples of the form (x, f(x)), where x is called an example and
selected identically and independently according to a known example distribution. After
learning with the samples, the learner tries to guess a value of f(x) for an additionally given
input x (called a challenge) selected according to the same example distribution with good
probability; specifically, with probability at least 1/2 + γ (we refer to γ as an advantage)
over the choices of randomness for the learner, samples, and a target function. We define
the sample complexity as the number of samples the learner requires. We say that a class
C is not learnable with respect to some class (e.g., polynomial-time samplable) of example
distributions and target distributions in this distribution-specific model if there exist an
example distribution and a target distribution in the class such that C is not learnable under
these example and target distributions.

A new perspective in this paper is to consider parameterized complexity of learning
for a parameterized concept class and parameterized classes of example distributions and
target distributions. We remark that parameterized learnability has been discussed in
certain previous studies (e.g. [12]). The main difference from the previous formulation is the
separate consideration of time complexity and sample complexity. In this paper, we only
consider fixed-parameter tractability on sample complexity, and the time complexity can be
arbitrary polynomial depending on parameters (or sub-exponential functions). Specifically,
for parameters k1, . . . , kc on a concept class C and classes of example distributions and target
distributions, we say that C is learnable with (k1, . . . , kc)-FPT samples if C is learnable
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with f(k1, . . . , kc) · nΘ(1) samples, where f is some computable function. Our learning model
captures a (natural) situation in which collecting labeled data is more expensive than using
computational resources. This formulation also provides a new perspective on parameterized
complexity of learning; e.g., PAC learning k-junta (i.e., functions depending on only k

coordinates of the input) is known to be W[2]-hard [12], but feasible with FPT samples
(with k2k · nΘ(1) samples and in O(nk) time) by Occam’s razor [15]. By contrast, it can be
shown that learning degree-d F2-polynomials is infeasible even in this setting based on the
VC theory (cf. [58]).1

We define the sparsity of a distribution as the maximum Hamming weight of samples.

▶ Definition 1. For c ∈ N, we say that a family D = {Dn}n∈N of distributions on {0, 1}∗ is
c-sparse if Prx←Dn [wt(x) ≤ c] ≥ 1 − negl(n), where wt(x) represents the Hamming weight of
x, and negl(n) represents some negligible function, i.e., for any polynomial p(n), it holds that
negl(n) < 1/p(n) for any sufficiently large n ∈ N.

1.2 Our Results
As a main result, we show that a collection of PPRGs in NC0 is characterized by the
learnability of various central classes with FPT samples with respect to a sparse example
distribution and an NC0-samplable target distribution.

▶ Theorem 2 (informal). The following are equivalent:
1. There exists a collection of (infinitely-often secure2) PPRGs in NC0.
2. c-sparse F2-polynomials are not polynomial-time learnable on average with respect to a

target distribution samplable by a depth-d NC0 circuit and a samplable distribution on
c′-sparse example distributions with (c, c′, d)-FPT samples.

3. c-Fourier-sparse functions are not polynomial-time learnable on average with respect to
a target distribution samplable by a depth-d NC0 circuit and a samplable distribution on
c′-sparse example distributions with (c, c′, d)-FPT samples.

4. For any f ∈ {OR}∪{MODm : m ∈ N\{1}}, degree-d f -decision trees are not polynomial-
time learnable on average with respect to a target distribution samplable by a depth-d′ NC0

circuit and a samplable distribution on c-sparse example distributions with (d, c, d′)-FPT
samples.

Informally, Theorem 2 yields a new dichotomy between highly efficient pseudorandom
generators and sample-efficient heuristics for learning with sparse data. Below we argue that
the learning settings of Theorem 2 are natural.

Concept classes. For the formal descriptions of each parameterized concept class, see the
full paper. Here, we remark that the sparsity of F2-polynomials and Fourier representations
is one of the most important complexities of Boolean functions (cf. [48]). The fourth item
above concerns the extensions of decision trees, containing the well-studied class of parity

1 In the full paper, we show that learning degree-d F2-polynomials with FPT samples is infeasible even in
the average-case setting over uniformly random degree-d F2-polynomials.

2 In this paper, we mainly discuss the relationships between learnability for all example sizes and PPRGs
with infinitely often security (i.e., the security holds for infinitely many seed lengths). Note that the
same results hold for generators with sufficiently large security (i.e., the security holds for any sufficiently
large seed length) by considering the learnability on infinitely many example sizes.
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decision trees3(e.g. [41]). Although OR decision trees have received relatively less research
attention compared with the other concepts, learning OR decision trees with sparse data
seems to be a natural setting where the decision is made by a few queries about whether
some unusual features are observed. Interestingly, our result shows that the average-case
learnability for these various concepts becomes equivalent when data are sparse through the
existence of a collection of PPRGs in NC0.

Example distributions. We remark two points. First, we consider a distribution of example
distributions (i.e., average cases on example distributions), where the example distribution is
selected at the initialization step (see the full paper for the formal description). Note that
this captures more general settings of learning than the previous distribution-specific setting
in [14]; e.g., our framework captures a distribution determined by some hidden random
parameter. From the perspective of cryptography, the hardness assumption on a distribution
of example distributions is weaker than ones in distribution-specific settings. Second, we
consider learning on sparse example distributions. Such a learning framework naturally
captures learning on data with rarely observed features, such as symptoms of patients.

Target distributions. We consider NC0-samplable distributions as target distributions, and
this is a natural assumption in average-case complexity theory in learning; e.g., the uniform
distribution over functions in C is often regarded as a projection of random strings onto
the binary representations for functions in C (e.g., random DNFs), and almost all target
distributions considered in previous studies on average-case learning are NC0-samplable [36,
56, 57, 35, 2].

We also remark that Theorem 2 holds even in super-polynomial regimes; e.g., sub-
exponential-time average-case hardness of learning with FPT samples corresponds to a
collection of PPRGs secure against sub-exponential-time adversaries (where the loss of security
is only polynomial). Note that super-polynomial security is applied for the construction
of iO based on well-founded assumptions [37, 38]. Particularly, Jain, Lin, and Sahai [37]
assumed (i) the hardness of learning problems LWE and LPN, (ii) the existence of a collection
of PPRGs in NC0, and (iii) the Diffie-Hellman-style assumption (i.e., SXDH). Our result
characterizes assumption (ii) based on the hardness of learning and, along with their work,
opens an interesting research direction: Is the well-founded hardness assumption of learning
sufficient for constructing iO (i.e., Obfustopia)?

Next, we present several related results on the hardness of learning and PPRGs in relaxed
complexity classes, which are obtained by relaxing some conditions in Theorem 2.

On removing sparsity conditions. Although Theorem 2 shows one characterization of
a collection of PPRGs in NC0 by learnability with sparse data, the sparsity is somewhat
restrictive, and there exist a large amount of non-sparse data in the real world. As a second
result, we show that learnability with non-sparse data for the classes in Theorem 2 still
characterizes a collection of PPRGs in superclasses of NC0.

3 In fact, the equivalence between constant-depth parity decision trees and constant-Fourier-sparse
functions follows from the work by Kushilevitz and Mansour [41]. However, it is unclear whether these
learning settings are equivalent when we restrict the target distributions to NC0-samplable because the
transformation between these representations may be infeasible in NC0.

ITCS 2023
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▶ Theorem 3 (informal). The following hold:
1. There exists a collection of PPRGs in O(1)-sparse F2-polynomials iff c-sparse F2-

polynomials are not polynomial-time learnable on average with respect to a target distri-
bution samplable by a c′-sparse F2-polynomial and a samplable distribution on example
distributions with (c, c′)-FPT samples.

2. There exists a collection of PPRGs in O(1)-Fourier-sparse functions iff c-Fourier sparse
functions are not polynomial-time learnable on average with respect to a target distribution
samplable by a c′-Fourier sparse functions and a samplable distribution on example
distributions with (c, c′)-FPT samples.

The generators above still have good parallelism in the sense that each output bit is
computable by a constant number of parallel and simple computations (i.e., logical AND or
logical XOR).

On obtaining a single PPRG. The theorems above hold only in the case of a collection
of PPRGs, and the learning-theoretic characterization of a single PPRG is currently open.
Although a collection of PPRGs is standard in parallel cryptography, a single parallel PPRG
is still a natural and desirable primitive because it does not require the additional public
random strings.

As a third result, we show that if we allow NC0 circuits to have one top-most XOR-
gate with unbounded fan-in, where the other types of gates (i.e., NOT, OR, and AND)
have bounded fan-in (we denote this class4 by ⊕-NC0), then a single PPRG in ⊕-NC0 is
characterized by the hardness of learning constant-degree F2-polynomials on the uniform
example distribution.

▶ Theorem 4 (informal). For any polynomial r(n), the following are equivalent:
1. There exists a PPRG in ⊕-NC0.
2. Degree-d F2-polynomials are not polynomial-time learnable on average with respect to

a uniform example distribution and a target distribution samplable by a degree-d′ F2-
polynomial using r(n)-bit random seeds with (d, d′)-FPT samples.

We remark several points. First, in the theorem above, the length of the seeds for selecting
a target function is also fixed to some polynomial r(n) independent of the parameters
(i.e., degree of F2-polynomials). This restriction is essential for the result because if we
remove this restriction, then unlearnability with FPT samples holds unconditionally even
for time-unbounded learners (the formal proof can be found in the full version). Second,
the average-case hardness of learning on the uniform example distribution is equivalent to
weak pseudorandom functions (WPRFs), where a WPRF is an efficiently samplable family
of functions indistinguishable from a random function on inputs passively selected uniformly
at random [46]. Thus, Theorem 4 can also be regarded as the equivalence between PPRG
and WPRF within the class ⊕-NC0.

Finally, we show that if we consider a general case of samplable distributions of example
distributions (instead of the uniform example distribution), then the dichotomy in Theorem 4
is extended to a collection of PPRGs in ⊕-NC0. In other words, we can characterize the
difference between a single PPRG and a collection of PPRGs in ⊕-NC0 by the difference in
the generality of example distributions on the hardness of learning.

4 It is not hard to verify that ⊕-NC0 is indeed equivalent to NC0[⊕] (i.e., a class of NC0 circuits with
XOR-gates with unbounded fan-in) and a class of constant-degree F2-polynomials.
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▶ Theorem 5 (informal). For any polynomial r(n), the following are equivalent:
1. There exists a collection of PPRGs in ⊕-NC0.
2. Degree-d F2-polynomials are not polynomial-time learnable on average with respect to a

target distribution samplable by a degree-d′ F2-polynomial using r(n)-bit random seeds
and a samplable distribution on example distributions with (d, d′)-FPT samples.

Note that Theorems 3–5 also hold in super-polynomial regimes with polynomial security
loss.

Theorems 2–5 indicate that by selecting a parameterized example distribution and a
parameterized target distribution arbitrarily and by assuming the hardness of learning with
FPT samples, we can construct a secure parallel PPRG. Conversely, if we believe in PPRGs
in the correspondence class, then such a hard-to-learn parameterized setting must exist.
However, we remark that Theorems 2–5 are general results on the dichotomy between the
hardness of learning and parallelly computable PPRGs, and they do not explicitly specify
the distributions with respect to which learning is hard on average with FPT samples.

Here, we propose a natural learning task, learning random parity decision trees, whose
hardness does not contradict our current knowledge.

▶ Definition 6 (Learning random parity decision trees). Let D = {Dn}n∈N be an arbitrary
example distribution, where Dn is a distribution on {0, 1}n for each n ∈ N. For any d ∈ N and
m : N → N, we define a problem of learning random depth-d parity decision trees (d-LRPDT)
on D with m(n) samples as follows:

Input: samples {(x(i), T (x(i)))}i∈{1,...,m(n)} and a challenge xc, where
x(1), . . . , x(m(n)), xc ∈ {0, 1}n are selected according to Dn, and T is a ran-
dom parity decision tree of depth d and size 2d in which each query at internal nodes
is ⊕i∈Sxi for a uniformly random subset S ⊆ {1, . . . , n} (selected independently for
each node) and each leaf is labeled by a uniformly random value in {0, 1} (selected
independently for each leaf).
Output: T (xc)

For any polynomial m(n) and p(n), we say that d-LRPDT is (m(n), 1/p(n))-hard on D if
no randomized polynomial-time algorithm solves d-LRPDT on D with m(n) samples with
probability at least 1/2 + 1/p(n), i.e., for any randomized polynomial-time algorithm A and
sufficiently large n ∈ N,

Pr
A,Dn,T

[
A
(

(x(1), T (x(1))), . . . , (x(m(n)), T (x(m(n)))), xc

)
= T (xc)

]
<

1
2 + 1

p(n) .

By Theorem 2, if d-LRPDT is hard with FPT samples on some parametrized sparse
example distribution, then a collection of PPRGs exists in NC0. By inspecting our proof,
we show that the sample complexity can be made as small as n1+ϵ for an arbitrarily small
constant ϵ > 0.

▶ Corollary 7. Let ϵ ∈ (0, 1) be an arbitrary constant. Suppose that there exist d ∈ N and an
example distribution D such that d-LRPDT is hard on D with n1+ϵ samples5. Then, we can
construct parallel PPRGs according to the complexity of D as follows:

If D is O(1)-sparse and samplable, then a collection of PPRGs in NC0 exists.
If D is the uniform distribution, then a PPRG in ⊕-NC0 exists.
If D is samplable, then a collection of PPRGs in ⊕-NC0 exists.

The first and third items hold even for samplable distributions on example distributions.

5 For the requirement for the advantage of learning, see the full version.
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For instance, as a natural candidate for O(1)-sparse example distributions, we propose the
uniform distribution over binary strings of Hamming weight c ∈ N.

▶ Corollary 8. If there exist c, d ∈ N and ϵ ∈ (0, 1) such that d-LRPDT is hard on the
uniform example distribution over binary strings of Hamming weight c with n1+ϵ samples,
then a collection of PPRGs in NC0 exists.

We remark that it is consistent with our knowledge that d-LRPDT cannot be solved. Depth-d
parity decision trees are exactly learnable by the Goldreich–Levin algorithm when additional
query access to the target function (i.e., membership query) is available [32, 41]. However, it
is a central open question whether the membership query is necessary, and d-LRPDT is a
natural test case for this question. An efficient learner for random log-depth decision trees
was developed by Jackson and Servedio [36], but it is unclear whether this algorithm can be
extended to the case of random parity decision trees. From Corollary 7, we propose further
learning-theoretic and cryptographic analysis of the hardness of learning parity decision trees
as a future research direction. Particularly, one important property of the PPRGs constructed
in Corollary 7 is that the output bits are computed by various predicates. Therefore, they
seem to resist an attack that depends on a specific property of one fixed predicate, even in
the setting in Corollary 8.

1.3 Related Work
Applebaum, Barak, and Wigderson [10] proved the hardness of learning O(log n)-junta
functions under the existence of PRGs in NC0 with an additional assumption that (roughly
speaking) a small subset of output bits can be embedded indistinguishably with good local
expansion. Applebaum and Raykov [11] proved the hardness of learning depth-3 AC0 circuits
under the assumption related to polynomial-stretch Goldreich’s PRGs, which matches the
unconditional upper bound presented in [42]. We remark that their assumption is reducible
to a more reliable assumption on Goldreich’s OWFs due to the search-to-decision reduction
developed in [9, 11], where they essentially use the structures of Goldreich’s OWFs. Daniely
and Vardi [25] showed the hardness of learning ω(1)-term DNF formulas and related classes
on a product example distribution by assuming Goldreich’s PRG for arbitrary polynomial
stretch. We remark that our results are incomparable with these previous studies. We assume
the existence of the more general cryptographic primitive (i.e., a collection of PPRGs in
NC0) to show the hardness of learning other simple and central classes. This generalization
weakens the hardness result to a more general class of example distributions instead of
product distributions compared with [25], while we can also obtain the opposite direction
from the hardness of learning to cryptography. The result of [51] on natural properties
also differs in the learning setting, particularly natural properties essentially correspond to
learning with membership queries on the uniform example distribution [18].

Blum, Furst, Kearns, and Lipton [14] constructed OWFs, PRGs, and private-key encryp-
tion schemes based on the average-case hardness of learning. To construct PPRGs by using
their technique, we need to assume a stronger hardness assumption on learning with member-
ship queries. The use of membership queries was removed by Naor and Reingold [46], and we
apply the same technique to show one direction in Theorem 4. Note that the complexity of
these PPRGs depends on the complexity of evaluating concept classes. Thus, this approach
does not seem to yield a PPRG in NC0 because if a concept class has the evaluation performed
in NC0, then such a class is trivially learnable. The followup studies [47, 50, 55, 44, 45]
discussed relationships between cryptography and hardness of learning in P and P/poly.
Other studies (e.g. [53]) developed various cryptographic schemes based on the hardness of
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learning linear functions with noise, but it is not clear whether PPRGs in NC0 are obtained
as a consequence of these studies. LRPDT is regarded as a related problem in which we
learn parity with noise determined by a constant number of other parities, and it is indeed
reducible to learning parity with noise in the case of a uniform example distribution [26].

With regard to parallel cryptography, the constructions of PRGs in NC0 were presented
by Applebaum, Ishai, and Kushilevitz [5] (sublinear-stretch) and Applebaum, Ishai, and
Kushilevitz [6] (linear-stretch). Recently, Ren and Santhanam [54] and Liu and Pass [43]
characterized the existence of OWF in NC0 based on the average-case meta-complexity notion,
which only yields sublinear-stretch PRGs in NC0, and PPRGs in NC0 seem out of reach at
present. Some candidates for a collection of PPRGs in NC0 were studied by Cook, Etesami,
Miller, and Trevisan [20], Bogdanov and Qiao [16], Applebaum, Bogdanov, and Rosen [4],
Applebaum [9], O’Donnell and Witmer [49], Applebaum and Lovett [8], and Couteau, Dupin,
Méaux, Rossi, and Rotella[21] based on the framework of Goldreich’s OWF [30]. This type of
generator is natural but somewhat restrictive in the sense that all output bits are computed
by the same predicate fixed in advance. One advantage of the previous framework is that
the security of the generator can be based on a hardness notion of one-wayness, which is
more reliable than pseudorandomness [9].6 By contrast, an advantage of the framework
proposed in this study is that the output bits of the resulting generator are computed by
various predicates; thus, it seems to resist an attack that depends on a specific property of
one fixed predicate.

We will introduce a key notion of FPT dualization with the junta-sparse condition
in Section 2, and it seems conceptually related to the analysis of Boolean functions on
Hamming balls and slices (i.e., substrings of fixed Hamming weight). Particularly, Filmus
and Ihringer [28] and Filmus [27] proved that every constant-degree polynomial on a slice
is also O(1)-junta on the same slice. By contrast, our result can also be rephrased as that
every sparse polynomial on a Hamming ball is a dual of O(1)-junta.

2 Techniques

In this section, we present an overview of key notions and proof sketches of the main results.

2.1 Proof Techniques for Theorems 2 and 3
The key notion to show Theorems 2 and 3 is the dualization of concept classes, which
was explicitly discussed independently by Applebaum, Barak, and Wigderson [10] and
Vadhan [59] and applied (implicitly or explicitly) in recent studies on the hardness of
learning [24, 23, 44, 45, 25]. Informally, the dualization of a concept class C consists of two
mappings from examples to target functions in C and from target functions in C to examples
satisfying the following condition. If an example x (resp. a target function f ∈ C ) is mapped
to a target function x∗ ∈ C (resp. an example f∗) by these mappings, then the value of
x∗(f∗) is equal to f(x). We refer to this x∗ (resp. f∗) as a dual of x (resp. f) and use the
superscript ∗ to represent duals.

First, we observe that the dualization of a concept class C provides a relationship between
a collection of PRGs and learnability for C . On the one hand, if there exists a collection G

of PRGs in C , then we can construct a sample set of size m from the pseudorandom string

6 In terms of learning, the difference between one-wayness and pseudorandomness is similar to the
difference between proper learning and improper learning. In general, proper learning is often harder
than improper learning (cf. [52]).
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y = G(x) of length m (where x is a random seed) as {(G∗i , yi)}i∈[m], where Gi ∈ C represents
the function computing the i-th bit of G, and G∗i is its dual. Notice that x∗(G∗i ) = Gi(x) = yi

for each i ∈ [m]. Therefore, if we consider this x∗ as a target function for learning C and
the uniform distribution over the samples as the example distribution, any feasible learner
cannot distinguish these labels from random labels unless the learner looks at almost all
samples in the set. On the other hand, we can obtain a collection of PRGs from the
problem of learning C by translating a sample set {(x(i), f(x(i)))}i∈[m] (where f is a target
function) into a generator G(f∗) = (x(1))∗(f∗)◦· · ·◦ (x(m))∗(f∗). By the equivalence between
pseudorandomness and unpredictability [61], if learning C is hard even with non-negligible
advantage, then the value of G(f∗) = f(x(1)) ◦ · · · ◦ f(x(m)) must be pseudorandom. If we
assume that the target distribution is samplable in a complexity class C ′ and regard the seed
to the sampler as a random seed to G, then we can implement this G in C ◦ C ′.

At a high level, we will use the argument above to show Theorems 2 and 3. However,
there are the obstacles. First, the argument from PRG to the hardness of learning only
yields hardness of learning with a fixed sample complexity depending on the stretch of the
PRG. Second, more importantly, NC0 cannot be dualized. Intuitively, for an NC0-computable
f : {0, 1}n → {0, 1} (i.e., f depends on only O(1) coordinates) and input x ∈ {0, 1}n, the
value of f(x) depends on Ω(log n)-bit information of f , such as relevant coordinates. Thus, we
cannot regard f(x) as a function depending on only O(1)-bit information in a representation
of f . In the full paper, we formally show the impossibility of the dualization of NC0 based on
the lower bound on communication complexity. Below we present how we deal with these
two obstacles.

FPT Dualization

We deal with the first obstacle by assuming polynomial-stretch PRGs. The merit of a
PPRG is that we can amplify the stretch of a PRG to an arbitrary polynomial within NC0

by applying the original generator constant times based on the GGM construction [31].
After applying the original generator computable by a depth-d circuit c times, the depth
of the generator increases up to cd, whereas c affects the exponent of the stretch of the
PRG. Intuitively, this observation leads to the hardness of learning with FPT samples for a
parameter involved in the depth.

To apply the dualization technique above in the parameterized setting, we extend the
notion of dualization to the parameterized setting as follows. For any parameterized concept
class C , we use a subscript and superscript to refer to an input size and a parameter,
respectively.

▶ Definition 9 (FPT dualizable). Let C k be a parameterized concept class. We say that
C is fixed-parameter tractably (FPT) dualizable if there exist a polynomial pdual : N → N,
computable functions f1, f2 : N → N, and polynomial-time computable mappings g : N ×
{0, 1}∗ → C and h : N × C → {0, 1}∗ such that for any k, n ∈ N, x ∈ {0, 1}n, and f ∈ C k

n ,
the following hold: (i) g(k, x) ∈ C

f2(k)
f1(k)·pdual(n), (ii) h(k, f) ∈ {0, 1}f1(k)·pdual(n), and (iii)

(g(k, x))(h(k, f)) = f(x).

We use the notation x∗(k) or x∗ (resp. f∗(k) or f∗) to refer to g(k, x) (resp. h(k, f)) in the
definition above; e.g., the third condition above can be written as x∗(f∗) = f(x) for each f

and x.
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Junta-Sparse Condition
At a high level, the idea to overcome the second obstacle is applying the dualization of
superclasses of NC0 and focusing on its substructure, i.e., the correspondence between NC0

and a subset of strings, particularly in our case, sparse strings. To formalize this idea, we
introduce a key condition of FPT dualization named the junta-sparse condition, which serves
as dualization of NC0 partially in the actual dualization of the superclass. Intuitively, the
junta-sparse condition claims that (i) any O(1)-junta function (i.e., a function that depends
on only O(1) coordinates) is contained in the concept class, and (ii) O(1)-junta functions
and strings of constant Hamming weight get interchanged by the FPT dualization. The
condition is formally stated as follows:

▶ Definition 10 (junta-sparse condition). Let C k be an FPT dualizable class. We say that C

satisfies the junta-sparse condition if the following hold:
1. There exist computable functions g, h : N → N such that for any k ∈ N and any k-junta f ,

it holds that f ∈ C g(k) and wt(f∗) ≤ h(k).
2. There exists a computable function g : N × N → N such that for any c, k ∈ N and any

x ∈ {0, 1}∗ with wt(x) ≤ c, it holds that x∗(k) is g(c, k)-junta.

For instance, we show a class of c-sparse F2-polynomials is FPT dualizable and satisfies
the junta-sparse condition. Fix n, c ∈ N with c ≤ 2n arbitrarily. Let f : {0, 1}n → {0, 1} be an
F2-polynomial of sparsity c, i.e., f is written as f(x) = M1(x)+ . . .+Mc(x) (under operations
of F2), where M1, . . . , Ms are monomials. Then, we define the dual of f (i.e., h(c, f) in
Definition 9) as the following c(n + 1)-bit string f∗ indexed by {0, 1, . . . , n} × {1, . . . , c}:

f∗(i,j) =
{

1l(xi ∈ Mj) if i ̸= 0
1l(Mj ≡ 1) if i = 0

For each input x ∈ {0, 1}n, we also define the dual of x (i.e., g(c, x) in Definition 9) as the
following function x∗ : Fc(n+1)

2 → F2:

x∗(f∗) =
∑

j∈{1,...,c}

∏
i:xi=1

f∗(i,j) +
∑

j∈{1,...,c}

f∗(0,j).

Then, we can verify the correctness of the FPT dualization as follows:

x∗(f∗) =
∑

j∈{1,...,c}

∏
i:xi=1

f∗(i,j) +
∑

j∈{1,...,c}

f∗(0,j)

=
∑

j∈{1,...,c}

( ∏
i:xi=1

1l(xi ∈ Mj) + 1l(Mj ≡ 1)
)

=
∑

j∈{1,...,c}

Mj(x)

= f(x).

In addition, we can easily verify the junta-sparse condition as follows. Any k-junta function
f is represented as an F2-polynomial of degree k and sparsity 2k. By the construction of
f∗, the Hamming weight of the dual of any F2-polynomial of degree k and sparsity 2k is at
most 2k · k. In addition, for any input x ∈ {0, 1}n to a c-sparse F2-polynomial, the dual of x

depends on only c · wt(x) + c coordinates by the construction of x∗.

ITCS 2023



70:12 Learning Versus Pseudorandom Generators in Constant Parallel Time

Meta-Theorem

The proof of Theorem 2 consists of the following two parts. As the first step, we prove
meta-theorem which shows that if a parameterized concept class C is FPT dualizable by
mappings computable in NC0 and it satisfies the junta-sparse condition, then the existence
of a collection of PPRGs in NC0 corresponds to the average-case hardness of learning C with
FPT samples with respect to (a samplable distribution of) sparse example distributions and
an NC0-samplable target distribution7. Note that verifying the condition in the meta-theorem
(i.e., dualization with the junta-sparse condition) is purely a puzzle-like problem involved
in representation for Boolean functions and directly related to neither learning theory nor
cryptography, as seen in the case of c-sparse F2-polynomials. Namely, if you can solve the
puzzle for some concept class C , then it automatically implies the equivalence between the
existence of a collection of PPRGs in NC0 and the average-case hardness of learning C with
sparse data based on our meta-theorem. As the second step to show Theorem 2, we solve
this puzzle, i.e., demonstrate that concept classes in Theorem 2 (i.e., c-sparse F2-polynomials,
c-Fourier-sparse functions, and depth-d {OR,Modm}-decision trees) are FPT dualizable by
NC0-computable mappings and satisfy the junta-sparse condition.

We show the outline of the proof of the meta-theorem based on the argument mentioned
at the beginning of this subsection.

A collection of PPRGs in NC0 ⇒ hardness of learning: Suppose that there exists a
collection G of PPRGs. For contradiction, we assume that there exists an efficient learner
L for C that requires only FPT samples. We amplify the stretch of G by the GGM
construction [31] within NC0, let G′ be the amplified generator, and construct the sample
set S from the duals of G′ and a pseudorandom string y = G′(x). Since G′ is computable
in NC0, each function computing each bit of G′ is O(1)-junta. Thus, by the junta-sparse
condition, the Hamming weight of each example is bounded above by a constant (depending
on the depth of G′). In addition, since the mappings in FPT dualization are computable
in NC0, the target distribution of the dual of the random seed x is NC0-samplable. Thus,
the learning problem on the uniform distribution over the samples in S is a valid setting for
L. Let c be the number of applications of G to construct G′. Then, the sample complexity
of L increases in the sense of FPT for c, whereas c affects the exponent of the stretch of
G′. Therefore, for a sufficiently large c ∈ N, the learner L cannot read a large fraction of S.
Thus, L can predict some bit in G′(x) from other bits, and this contradicts that G is PRG.

Hardness of learning ⇒ a collection of PPRGs in NC0: Suppose that learning C is hard
on average with FPT samples. Since the target distribution is NC0-samplable, each bit of
the representation of C depends on only constant bits of a random seed. By the technical
assumption (in footnote 7) on the FPT upper bound on the length of the representation
of C , we can assume that the length of the seed for the target distribution is bounded
above by some FPT function. Using the hardness assumption for a sample complexity
m(n) polynomially larger than the upper bound on the length of the seed, we construct
the collection G of PRGs by taking duals of examples. Remember that the input size of
G is the length of the seed for the target distribution, and the output size is m(n). Thus,
G has polynomial-stretch. In addition, the Hamming weight of the examples is constant
except with negligible probability by the hardness assumption. Thus, by the sparse-junta
condition, each bit of G is O(1)-junta, and G is implemented in NC0. Technically, when we

7 Strictly speaking, we also need a technical assumption that the length of the binary representation for
C is bounded above by some FPT function.
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consider the advantage in learning, this argument only yields a collection of PPRGs with a
fixed indistinguishable parameter. We can convert such a collection of weak PPRGs into a
collection of standard PPRGs (with a negligible indistinguishable parameter) by applying
the technique by Applebaum and Kachlon [7].

Theorem 3 is shown based on the following observation: If a concept class C is FPT
dualizable and closed under the composition (where the junta-sparse condition is no longer
needed), the above argument yields the equivalence between a collection of PPRGs in C and
the average-case hardness of learning C with FPT samples.

2.2 Proof Techniques for Theorem 4
Theorem 4 shows the equivalence between the existence of a (single) PPRG in ⊕-NC0 and
the average-case hardness of learning constant-degree F2-polynomials with FPT samples
with respect to a uniform example distribution and a target distribution samplable by a
constant-degree F2-polynomial. In fact, ⊕-NC0 is equivalent to the class of constant-degree
F2-polynomials because (i) any constant-degree F2-polynomial is implemented by a ⊕-NC0

circuit that first computes monomials in parallel and takes the summation of them by
the top-most XOR gate, and (ii) any ⊕-NC0 circuit is implemented by a constant-degree
F2-polynomial by expressing each sub-circuit connected to the top-most XOR-gate as a
constant-degree F2-polynomial (note that the top-most XOR-gate does not increase the
degree of the resulting F2-polynomial). Therefore, we only need to establish the relationship
between a PPRG and learnability within the class of constant-degree F2-polynomials.

Before presenting the idea, we briefly explain why we cannot apply the dualization tech-
niques in Section 2.1 directly to show Theorem 4. In fact, the class of degree-d F2-polynomials
is simply dualizable as follows: for any degree-d F2-polynomial f(x) =

∑
S:|S|≤d fS

∏
i∈S xi,

where fS represents the coefficient of f on
∏

i∈S xi, we regard the coefficients of f as the
input and the value of

∏
i∈S xi as a coefficient on the monomial fS for each subset S, i.e.,

the dual of x is a degree-1 F2-polynomial taking the coefficients of f as the input. An issue
is that this dualization is no longer FPT in the sense that each n-input degree-d polynomial
is converted into a string of length

∑d
i=1
(

n
i

)
= Θ(nd). If we apply this dualization in the

argument in Section 2.1, then a parameter affects the exponent of the sample complexity of
learners, and this causes several problems: e.g., in the direction from PPRG to the hardness
of learning, we cannot prepare a sufficient number of samples using the GGM construction so
that the learner cannot read the entire sample set. In addition, the argument in Section 2.1
yields only a collection of PPRGs.

An alternative to show the direction from a PPRG to hardness of learning is to construct
an F2-polynomial pseudorandomly. As a preliminary observation, if we select a polynomial f

uniformly at random from all n-input F2-polynomials of degree d, then for m = 1
2
∑d

i=1
(

n
i

)
inputs x(1), . . . , x(m) ∈ {0, 1}n selected uniformly at random, we can show that the distri-
bution of f(x(1)), . . . , f(x(m)) is statistically close to an m-tuple of random bits even when
x(1), . . . , x(m) are given. In the formal proof, we verify this by applying the results obtained
by Ben-Eliezer, Hod, and Lovett [13]. For now, we assume this. Then, we observe that even
if we select a degree-d F2-polynomial f by a pseudorandom string generated by a PPRG,
the labels of the sample set {(x(i), f(x(i)))} must be computationally indistinguishable from
random labels. By the equivalence of pseudorandomness and unpredictability [61], such a
pseudorandom F2-polynomial f must be unpredictable.

Based on the argument above, we can create a hard learning problem with FPT samples
based on a PPRG G, as follows. For contradiction, we assume that there exists an efficient
learner L that requires only FPT samples. Then, we use the GGM construction to amplify
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the stretch of G, let G′ denote the amplified PRG, and select a pseudorandom F2-polynomial
using G′. Remember that the number c of applications of G affects the exponent of the
stretch of G′. Thus, for each d ∈ N, we can select a sufficiently large c such that a degree-d
pseudorandom F2-polynomial can be selected by G′. Note that G′ is still computable by
an F2-polynomial of degree dc. We regard this G′ as a sampling algorithm for selecting a
target function in degree-d F2-polynomials. For the degree-d pseudorandom F2-polynomial,
we can retrieve 1

2
∑d

i=1
(

n
i

)
= Θ(nd) samples that are hard to predict. By contrast, each

d determines c and the degree of the sampling algorithm for the target distribution; thus,
d affects the required number of samples only in the FPT sense. Therefore, by taking a
sufficiently large d, we can prepare a sufficient number of samples for L, and L yields an
efficient adversary for G′ and G. This is a contradiction.

To show the opposite direction from the average-case hardness of learning to a PPRG, we
apply the idea presented by Naor and Reingold [46]. First, we observe that for each constant-
degree F2-polynomial f and input x, the value of f(x) is evaluated by a constant-degree
F2-polynomial taking x and the binary representation of f as the input (where we naturally
assume that each f is represented by the coefficients of f). Then, the construction of a
PPRG G is outlined as follows. We use the hardness assumption for a sample complexity
m(n) sufficiently larger than (n + r(n))2, where r(n) is the upper bound on the seed
length for the target distribution in Theorem 4. Let R = n + r(n). Then, G selects
R2 examples x(1), . . . , x(R2) and R2 target functions f (1), . . . , f (R2) according to the hard
example distribution and target distribution by using its own random seed. Then, G

outputs R4 bits f (i)(x(j)) for each i, j ∈ {1, . . . , R2} as a pseudorandom string. We can
prove the pseudorandomness of G using the hybrid argument and the equivalence between
unpredictability and pseudorandomness [61]. Since G requires only a R2(n+r(n))-bit random
seed to select the examples and the target functions, G stretches an R3-bit random seed
into an R4-bit pseudorandom string. Thus, G has polynomial-stretch. Note that we apply
the standard padding technique to obtain a PPRG defined on all input lengths. Since the
sampling algorithm for the target distribution and the evaluation algorithm are computable
by constant-degree F2-polynomials, this generator is implemented by a constant-degree
F2-polynomial by taking composition. Thus, we obtain a PPRG computable by a constant-
degree F2-polynomial. Note that the construction in the formal proof is more complicated
because we apply the XOR lemma to amplify the success probability of the adversary to the
desired advantage of a learner.

2.3 Proof Ideas for Theorem 5
Theorem 5 shows the equivalence of a collection of PPRGs in ⊕-NC0 and the average-case
hardness of learning constant-degree F2-polynomials with FPT samples with respect to (a
samplable distribution of) example distributions and a target distribution samplable by a
constant-degree F2-polynomial. One direction from the average-case hardness of learning to
a collection of PPRGs is shown in the same way as in Section 2.2 except that the sampling
algorithm for the example distributions is simulated during preprocessing, where the examples
are hardwired in the generator.

We present a rough idea to show the other direction from a collection of PPRGs to
the hardness of learning. Note that we cannot apply the technique in Section 2.2 because
the sampler of generators cannot be implemented in constant-degree F2-polynomials in
general, and the sampling algorithm for selecting a pseudorandom F2-polynomial is not
always implemented in constant-degree F2-polynomials. Thus, we take the strategy based on
FPT dualization again. As discussed in Section 2.2, it is unclear whether FPT dualization of
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constant-degree F2-polynomials is feasible. However, to show the direction from a PPRG to
hardness of learning based on the argument in Section 2.1, the type of functions we need
to dualize is restrictive, i.e., composite functions of the original pseudorandom generator G

(in the GGM construction). We apply this observation to avoid the obstacle involved in the
dualization of general constant-degree F2-polynomials.

The outline follows the argument in Section 2.1. Let G′ be the collection of PPRGs
obtained by applying G c times to amplify the stretch. We create the sample set from G′

and a pseudorandom string y = G′(x), where each example corresponds to the dual of the
function computing each bit of G′. Intuitively, for each position i, we define the dual of
the i-th bit of G′ as c concatenated descriptions of G that are relevant for computing the
i-th bit of G′. Then, we consider a target function as a constant-degree F2-polynomial that
computes the description of G′ by taking the composition of the given descriptions of G

and then applies the random seed x, where we regard this x to be hardwired by another
constant-degree F2-polynomial given x as the input. We regard the latter F2-polynomial
as the sampling algorithm for the target distribution. Consequently, we can prevent the
dependence of c and the degree d of G′ on the exponent of the input size and the sample
complexity in learning. By contrast, c affects the exponent of the stretch of G′. Thus, based
on the similar argument as in Section 2.1, we can show the average-case hardness of learning
by selecting sufficiently large c.

In the full version, we present the formal proofs based on the ideas above.
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