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Abstract
We show that quantum states with “low stabilizer complexity” can be efficiently distinguished from
Haar-random. Specifically, given an n-qubit pure state |ψ⟩, we give an efficient algorithm that
distinguishes whether |ψ⟩ is (i) Haar-random or (ii) a state with stabilizer fidelity at least 1

k
(i.e.,

has fidelity at least 1
k

with some stabilizer state), promised that one of these is the case. With
black-box access to |ψ⟩, our algorithm uses O

(
k12 log(1/δ)

)
copies of |ψ⟩ and O

(
nk12 log(1/δ)

)
time

to succeed with probability at least 1 − δ, and, with access to a state preparation unitary for |ψ⟩
(and its inverse), O

(
k3 log(1/δ)

)
queries and O

(
nk3 log(1/δ)

)
time suffice.

As a corollary, we prove that ω(log(n)) T -gates are necessary for any Clifford+T circuit to
prepare computationally pseudorandom quantum states, a first-of-its-kind lower bound.
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1 Introduction

The stabilizer formalism [11] plays a central role in quantum information. Stabilizer states are
states that lie in the intersection of the positive eigenspaces of 2n commuting Pauli operators.
Stabilizer states can be generated by Clifford circuits, which are the group of unitary
transformations that normalize the Pauli group. Stabilizer states and the Clifford group have
widespread applications in quantum error correction [28, 8], measurement-based quantum
computation [27], randomized benchmarking [19], and quantum learning algorithms [16].
These applications are largely thanks to the rich algebraic structure afforded by the stabilizer
formalism.

Stabilizer states are also one of the few classes of states that admit efficient learning
algorithms. Montanaro [22] gave an algorithm that takes O(n) copies of an n-qubit stabilizer
state and correctly identifies the state with high probability in time O(n3). Gross, Nezami,
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and Walter [13] gave an algorithm for property testing stabilizer states, which is the task
of distinguishing whether a state is a stabilizer state or is far from any stabilizer state.
Remarkably, this algorithm requires only 6 copes of the state.

Despite finding numerous applications, Clifford circuits are not universal for quantum
computation. Furthermore, in 1998, Gottesman and Knill showed that Clifford circuits
acting on stabilizer states can be efficiently classically simulated [12, 1]. However, with
the additional ability to apply a T -gate (the gate |0⟩⟨0| + eiπ/4 |1⟩⟨1|), the resulting gate set
becomes universal. Therefore, efficient simulation of so-called Clifford+T circuits would
imply BPP = BQP, and a large line of work has been devoted to developing better simulation
algorithms [25, 7, 26, 6].

Currently, the best-performing simulation algorithms are based on modeling the output
state of a quantum circuit as a decomposition of stabilizer states [6]. These decompositions
give rise to simulation algorithms whose runtimes scale polynomially in the complexity of
the decomposition. One such complexity measure is the stabilizer extent. Consider the state
|ψ⟩ =

∑
i ci |ϕi⟩ for ci ∈ C and stabilizer states |ϕi⟩. The stabilizer extent is the minimum

(
∑
i |ci|)2 over all such decompositions of |ψ⟩, and scales exponentially in the number of

T -gates in the circuit producing the state. A closely-related complexity measure is the
stabilizer fidelity, which is the maximum overlap between |ψ⟩ and any stabilizer state. Indeed,
the inverse of stabilizer fidelity lower bounds stabilizer extent [6]. Collectively, we informally
refer to states with either low stabilizer extent or non-negligible stabilizer fidelity as states of
low “stabilizer complexity”.

As a generalization of stabilizer states, it is natural to ask whether states of low stabilizer
complexity are also efficiently learnable, and indeed a similar question has been raised
before [2]. Nevertheless, this problem remains largely open except in some highly restricted
settings [21]. This could be in part because many of the useful properties of stabilizer states
provably fail to generalize to states with low stabilizer complexity. For example, [15] observed
that one can efficiently learn the output distribution of any Clifford circuit, given samples
from this distribution.1 However, this task already becomes intractable for circuits with
a single T -gate (producing a state of constant stabilizer extent), where [15] proved that
learning the output distribution is as hard as the learning parities with noise problem.

Furthermore, it is known that stabilizer states form a t-design for t = 3, meaning that
random stabilizer states duplicate the first 3 moments of the Haar measure [20, 29]. By
contrast, [14] showed that circuits with poly(t) non-Clifford gates are sufficient to generate
approximate t-designs. Thus, for any constant t, states of constant stabilizer extent can form
approximate t-designs. This suggests that states of low stabilizer complexity can give much
stronger information-theoretic approximations to the Haar measure than ordinary stabilizer
states, because stabilizer states fail to form a t-design for any t > 3 [30].

In this work, we investigate whether these properties that differentiate stabilizer states
from low-stabilizer-complexity states can be pushed further, to prove hardness of learning
low-stabilizer-complexity states. One natural approach towards proving that low-stabilizer-
complexity states are hard to learn would be to show that they are pseudorandom. Ji, Liu,
and Song [18] define an ensemble of n-qubit states to be (computationally) pseudorandom if
every poly(n)-time quantum adversary has at most a negligible advantage in distinguishing
copies of a state drawn randomly from the ensemble from copies of a Haar-random n-qubit
state. Note that pseudorandom states are not efficiently learnable, as any algorithm for
learning some set of quantum states gives an algorithm to distinguish those states from the
Haar measure.

1 Indeed, every such distribution is simply an affine subspace of Fn
2 .
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Our main result is an efficient algorithm for distinguishing states of non-negligible stabilizer
fidelity from Haar-random states, showing that such states cannot be pseudorandom. This
type of distinguishing is sometimes known as weak learning in learning theory.

▶ Theorem 1 (Informal version of Theorem 23). Let |ψ⟩ be an unknown n-qubit pure state,
and let k ≤ 4

52n/12. There is an efficient algorithm that distinguishes whether |ψ⟩ is Haar-
random or a state with stabilizer fidelity at least 1

k , promised that one of these is the case.
In particular, the algorithm uses O(k12 log(1/δ)) copies of |ψ⟩ and O(nk12 log(1/δ)) time to
succeed with probability at least 1 − δ.

Theorem 1 also generalizes to distinguishing states with low stabilizer extent from Haar-
random. To the best of our knowledge, prior to our work, it was even unknown whether states
of stabilizer extent at most a constant could be efficiently distinguished from Haar-random.
We also emphasize that the contrast between our positive learning result and the hardness
result of [15] stems in part from the differing access models: we assume access to copies of
the quantum state, whereas [15] considers algorithms that only have outcomes of standard
basis measurements of the state.

As a simple corollary, we prove a first-of-its-kind lower bound on the number of T -gates
required to prepare computationally pseudorandom quantum states.

▶ Corollary 2 (Corollary 25). Any family of Clifford+T circuits that produces an ensemble of
n-qubit computationally pseudorandom quantum states must use at least ω(logn) T -gates.

In some sense, Corollary 2 contrasts sharply with the result of [14], where circuits
containing just a few non-Clifford gates are sufficient to produce strong information-theoretic
approximations to the Haar measure (i.e. t-designs). Nevertheless, we emphasize that our
result and [14] are formally incomparable, because computationally pseudorandom states
need not form approximate t-designs for constant t, nor vice-versa.

1.1 Main Ideas
Let x = (p, q) ∈ F2n

2 , where p and q are the first and last n bits of x, respectively. Define
Wx := ip·qXpZq (a Pauli operator without phase), and let |Φ+⟩ := 2−n/2∑

x∈Fn2
|x, x⟩ be a

maximimally entangled state. Then, the set {|Wx⟩ := (Wx ⊗ I) |Φ+⟩ | x ∈ F2n
2 } is the Bell

basis, an orthonormal basis of C2n ⊗ C2n .
Our algorithm uses Bell difference sampling [22, 13], which works as follows (see Section 2.3

for more detail): Given four copies of an n-qubit pure state |ψ⟩, perform a Bell-basis
measurement on |ψ⟩⊗2 to get measurement outcome x ∈ F2n

2 , repeat this on the remaining
two copies to get measurement outcome y ∈ F2n

2 , and return z = x+ y.
We refer to pψ(x) := 2−n|⟨ψ|Wx|ψ⟩|2 as the characteristic distribution of |ψ⟩. To see

that pψ is a distribution, recall that since the Pauli operators form an orthonormal basis
over Hermitian matrices, we can always decompose |ψ⟩⟨ψ| = 1

2n
∑
x∈Fn2

⟨ψ|Wx|ψ⟩ ·Wx. By
assumption, |⟨ψ|ψ⟩|2 = 1, so by Parseval’s identity,

1
2n
∑
x∈Fn2

|⟨ψ|Wx|ψ⟩|2 = 1.

Gross, Nezami, and Walter [13] showed that Bell difference sampling an arbitrary pure state
|ψ⟩ corresponds to sampling a random operator Wx according to the following distribution:

qψ(x) =
∑
y∈F2n

2

pψ(y)pψ(x+ y).

ITCS 2023
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We call qψ the Weyl distribution of |ψ⟩. Note that the Weyl distribution of |ψ⟩ is the scaled
convolution of the characteristic distribution with itself (i.e., qψ = 4n(pψ ∗ pψ), where “∗” is
the convolution operator).

Define the {±1}-outcome measurement Mx :=
{
I±Wx

2
}

(projections onto the ±1-
eigenspaces of Wx). Our algorithm begins by repeating the following process m times:
sample a random Weyl operator Wx (via Bell difference sampling) and perform the measure-
ment M⊗2

x on |ψ⊗2⟩. Then, average all of the measurement outcomes. If the average is at
least 1/poly(k), we decide that |ψ⟩ has stabilizer fidelity at least 1

k . Otherwise, we decide
that |ψ⟩ is Haar-random.

What statistic are we computing in our algorithm? Denote the measurement outcome on
the ith iteration as Xi ∈ {±1}. Observe that for all Xi,

E[Xi] =
∑
x∈F2n

2

qψ(x)|⟨ψ|Wx|ψ⟩|2 = 2n
∑
x∈F2n

2

qψ(x)pψ(x) = 2n E
x∼qψ

[pψ(x)],

where the expectation E[Xi] is taken over sampling x ∼ qψ and the randomness from
performing the measurement M⊗2

x . Hence, for our algorithm to work, Ex∼qψ [pψ(x)] must be
“different enough” when |ψ⟩ either is Haar-random or has low stabilizer complexity. Proving
that this is the case is the main technical ingredient of our work:

▶ Lemma 3 (Informal version of Lemma 15). Let |ψ⟩ be an n-qubit pure state. Suppose the
stabilizer fidelity of |ψ⟩ is at least 1

k . Then,

2n E
x∼qψ

[pψ(x)] ≥ 1
k6 .

In contrast, suppose |ψ⟩ is a Haar-random quantum state. Then, with overwhelming probability
over the Haar measure,

2n E
x∼qψ

[pψ(x)] ≤ 2−n/2.

Our proof uses Fourier analysis of Boolean functions, and some parts of our proof are
reminiscent of the celebrated Blum-Luby-Rubinfield linearity test [3]. Intuitively, qψ is
significantly closer to linear when |ψ⟩ has non-negligible stabilizer fidelity, as opposed to
when |ψ⟩ is a Haar-random state.

With the above lemma, all that remains is “merely” a sample complexity analysis, namely:
what m is sufficient to distinguish whether the average is close to 0 or Ω(1/k6)? In the
simplest case, we show that O(k12 log(1/δ)) samples are sufficient by Hoeffding’s inequality.
However, this complexity can be improved if given access to a unitary that prepares |ψ⟩ (and
its inverse). In this model, we are able to achieve a quartic speedup in both sample and time
complexity, which we explain in Appendix A.

2 Preliminaries

First, we establish some notation used throughout this work. We denote [n] := {1, . . . , n}.
For v ∈ Cn, ∥v∥p := (

∑
i∈[n]|vi|p)1/p is the ℓp-norm. Logarithms are assumed to be in base 2.

For a probability distribution P on a set S, we denote drawing a sample s ∈ S according to
P by s ∼ P . We denote drawing a sample s ∈ S uniformly at random by s ∼ S.
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2.1 Stabilizer States and Stabilizer Complexity Measures
We define the 1-qubit Pauli group to be the collection of matrices {I,X, Y, Z}, where

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The n-qubit Pauli group Pn is the set {±1,±i} × {I,X, Y, Z}⊗n. The Clifford group Cn
is the group of unitary transformations generated by H, S, and CNOT gates, where H is
the Hadamard gate, S := |0⟩⟨0| + i |1⟩⟨1| is the phase gate, and CNOT is the controlled-
not gate. We refer to unitary transformations in the Clifford group as Clifford circuits.
Clifford circuits with the addition of the T -gate are universal, where the T -gate is defined by
T := |0⟩⟨0| + eiπ/4 |1⟩⟨1|.

A unitary transformation U stabilizes a state |ψ⟩ when U |ψ⟩ = |ψ⟩. It is folklore that if an
n-qubit state can be reached from the |0n⟩ state by applying a Clifford circuit, then the state
is stabilized by a group of 2n commuting members of the subset {±1} × {I,X, Y, Z}⊗n ⊂
(Pn \ −I⊗n), called its stabilizer group. Such states are called stabilizer states, and we denote
the set of stabilizer states by Sn. For |ψ⟩ ∈ Sn, we denote its stabilizer group as Stab(|ψ⟩).
For more background on stabilizer states, see, e.g., [23].

We now define some complexity measures that characterize more general states in terms
of stabilizer state decompositions.

▶ Definition 4 (stabilizer extent [6]). Suppose |ψ⟩ is a pure n-qubit state. The stabilizer extent
of |ψ⟩, denoted ξ(|ψ⟩), is the minimum of ∥c∥2

1 over all decompositions |ψ⟩ =
∑
i ci |ϕi⟩,

where |ϕi⟩ ∈ Sn and c is some vector in C|Sn|.

▶ Definition 5 (stabilizer fidelity [6]). Suppose |ψ⟩ is a pure n-qubit state. The stabilizer
fidelity of |ψ⟩, denoted FS , is

FS(|ψ⟩) := max
|ϕ⟩∈Sn

|⟨ϕ|ψ⟩|2 .

Below we give a useful relation between the complexity measures defined above.

▷ Claim 6. Let |ψ⟩ be an n-qubit pure state. Then,

ξ(|ψ⟩) ≥ 1
FS(|ψ⟩) .

Proof. Let |ψ⟩ =
∑

|ϕ⟩∈Sn cϕ |ϕ⟩ be such that
(∑

ϕ|cϕ|
)2

= ξ(|ψ⟩). Suppose towards a
contradiction that FS(|ψ⟩) < 1

ξ(|ψ⟩) and therefore |⟨ϕ|ψ⟩| < 1
ξ(|ψ⟩) for all |ϕ⟩ ∈ Sn. Then,

1 = |⟨ψ|ψ⟩| =

∣∣∣∣∣∣
∑

|ϕ⟩∈Sn

c∗
ϕ ⟨ϕ|ψ⟩

∣∣∣∣∣∣ ≤
∑

|ϕ⟩∈Sn

|cϕ| |⟨ϕ|ψ⟩|

≤ max
i

|⟨ϕi|ψ⟩|
∑

|ϕ⟩∈Sn

|cϕ|

≤
√
FS(|ψ⟩)ξ(|ψ⟩)

< 1,

which is a clear contradiction. ◁

ITCS 2023
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The claim above also follows as a special case of [6, Theorem 4], though its proof is more
complicated.

To prove lower bounds on the number of T -gates necessary to prepare pseudorandom
quantum states, we need to upper bound the stabilizer extent of a quantum state prepared
by a Clifford+T circuit comprised of t T -gates.

▷ Claim 7. For |ψ⟩ = α |v⟩ + β |w⟩,

ξ(|ψ⟩) ≤
(

|α|
√
ξ(|v⟩) + |β|

√
ξ(|w⟩)

)2
.

Proof. Let |v⟩ =
∑
i ci |ϕi⟩ and |w⟩ =

∑
j dj |φj⟩ be the minimal decompositions in terms of

stabilizer extent (i.e., (
∑
i|ci|)

2 = ξ(|v⟩)). Since |ψ⟩ = α |v⟩+β |w⟩ = α
∑
i c |ϕi⟩+β

∑
j d |φj⟩,

we have a stabilizer decomposition of |ψ⟩. The stabilizer extent of this decomposition is at
most(∑

i

|αci + βdi|

)2

≤

(
|α|
∑
i

|ci| + |β|
∑
i

|di|

)2

=
(

|α|
√
ξ(v) + |β|

√
ξ(w)

)2
. ◁

▶ Lemma 8. Let C be any Clifford+T circuit comprised of t T -gates and |ψ⟩ = C |0n⟩.
Then,

ξ(|ψ⟩) ≤
(

1 + 1√
2

)t
.

Proof. We note that a Clifford+T circuit can be broken into layers of Clifford circuits,
followed by a single T -gate, followed by more layers of Clifford circuits, and so on. Since
Clifford circuits preserve stabilizer extent, we only need to show that the T -gate increases the
stabilizer extent of any state by at most a constant multiplicative factor. Since the SWAP
gate is a Clifford operation, we assume without loss of generality that each T -gate is applied
to the first qubit.

We proceed by induction on the layers of the circuit. In the first layer, when no
T -gates have been applied, the bound is trivially true because the stabilizer extent of
any stabilizer state is 1. Now, assume that, after applying some portion of the circuit
C ′ to |0n⟩ with t − 1 T -gates, we get the state |φ⟩. Observe that the T -gate can be
expressed as cos(π/8)eiπ/8I + sin(π/8)ei13π/8Z. Thus, (T ⊗ I⊗n−1) |φ⟩ = cos(π/8)eiπ/8 |φ⟩ +
sin(π/8)ei13π/8 (Z ⊗ I⊗n−1) |φ⟩. Since Z ⊗ I⊗n−1 is a Clifford operation,

(
Z ⊗ I⊗n−1) |φ⟩

has the same extent as |φ⟩. Therefore, applying Claim 7,

ξ(|ψ⟩) ≤ (cos(π/8) + sin(π/8))2
ξ(|φ⟩) ≤

(
1 + 1√

2

)t
. ◀

2.2 Boolean Fourier Analysis
We review the basics of Fourier analysis over the Boolean hypercube.

▶ Definition 9. Let S ⊆ [n] be an index of bits. Then the parity function on S is defined to
be

χS(x) :=
∏
i∈S

(−1)xi .
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Alternatively, we can define χS(x) = (−1)x·s where si = 1 if and only if i ∈ S. This form
will prove to be more natural for our purposes.

The parity functions are orthonormal under the inner product ⟨f, g⟩ = 1
2n
∑
x∈Fn2

f(x)g(x).
Since there are 2n distinct parity functions, this gives a complete basis. Given a function
f : Fn2 → R, we can then write

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

The f̂(S) are real numbers known as the Fourier coefficients (collectively known as the
Fourier spectrum), and are equivalently given by the formula

f̂(S) = ⟨f(x), χS(x)⟩.

As a basis change, we can then rethink inner products to be over the Fourier coefficients as
well.

▶ Fact 10 (Plancherel’s theorem).

⟨f, g⟩ = 1
2n

∑
S⊆[n]

f̂(S)ĝ(S).

Finally, the convolution is an operation that appears frequently in Fourier analysis over
the reals. We can similarly define it over Boolean inputs.

▶ Definition 11. For functions f, g : Fn2 → R, we define the convolution f ∗ g as

(f ∗ g)(x) := 1
2n
∑
t∈Fn2

f(t)g(x+ t).

Much like Fourier transforms over the reals, convolution maps to multiplication in the
Fourier domain.

▶ Fact 12 (Convolution theorem). f̂ ∗ g(S) = f̂(S)ĝ(S)

For proofs of all of these facts, as well as for a comprehensive reference on analysis of
Boolean functions, we recommend [24].

2.3 Weyl Operators and Bell Difference Sampling
For x = (p, q) ∈ F2n

2 , define the Weyl operator as

Wx := ip·q(Xp1Zq1) ⊗ . . .⊗ (XpnZqn) = ip·qXpZq.

Each Weyl operator is a Pauli operator, and every Pauli operator is a Weyl operator (up to a
phase). Note also that WxWy = Wx+y, up to a phase. We use Weyl operators (rather than
Pauli operators) when it is convenient to identify members of the Pauli group with length-2n
bit strings.

A critical subroutine in our work is Bell difference sampling, which was introduced
in [22, 13]. Let |Φ+⟩ := 2−n/2∑

x∈Fn2
|x, x⟩. Then, the set of quantum states {|Wx⟩ :=

(Wx ⊗ I) |Φ+⟩ | x ∈ F2n
2 } forms an orthonormal basis of C2n ⊗ C2n , which we call the

Bell basis. Bell sampling a state |ψ⟩ refers to measuring |ψ⟩⊗2 in the Bell basis, and the
measurement outcome is a length-2n bit string x that corresponds to a Weyl operator Wx.

ITCS 2023
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Bell difference sampling a state |ψ⟩ refers to Bell sampling twice to get measurement outcomes
x, y ∈ F2n

2 and returning z = x + y, which corresponds to a Weyl operator Wz and uses
four copies of |ψ⟩. Montanaro showed Bell difference sampling can be performed in O(n)
time [22].

Bell difference sampling returns a random Weyl operator, but according to what distribu-
tion? Gross, Nezami, and Walter [13] showed that the underlying distribution depends on
the so-called characteristic distribution of |ψ⟩.

▶ Definition 13 (characteristic distribution). The characteristic distribution of |ψ⟩ is defined as

pψ(x) := 2−n|⟨ψ|Wx|ψ⟩|2.

▶ Lemma 14 ([13, Theorem 3.2]). Let |ψ⟩ be an arbitrary n-qubit pure state. Bell difference
sampling corresponds to drawing a sample from the following distribution:

qψ(x) := 4n(pψ ∗ pψ)(x) =
∑
y∈F2n

2

pψ(y)pψ(x+ y).

Additionally, if |ψ⟩ ∈ Sn is a stabilizer state, then

qψ(x) = pψ(x) = 2−n|⟨ψ|Wx|ψ⟩|2.

We refer to qψ as the Weyl distribution. Using this terminology, the characteristic distribution
and Weyl distribution are equal only when |ψ⟩ is a stabilizer state (i.e., when 4n(pψ∗pψ) = pψ).

3 Certificate of Low Stabilizer Complexity

To efficiently distinguish a state with low stabilizer complexity (meaning, a state with low
stabilizer extent or non-negligible stabilizer fidelity) from a Haar-random one, we require a
property or statistic of the state that distinguishes it from Haar-random. As such, we present
the following technical lemma, which forms the backbone of our algorithm.

▶ Lemma 15. Let |ψ⟩ be an n-qubit pure state. If the stabilizer fidelity of |ψ⟩ is at least 1
k ,

then

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
≥ 1
k6 .

In contrast, if |ψ⟩ is Haar-random and n ≥ 33, then, with probability at least 1 −
exp

(
−2n/2−15) over the Haar measure,

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
≤ 2−n/2.

Our algorithm then amounts to estimating the quantity Ex∼qψ
[
|⟨ψ|Wx|ψ⟩|2

]
via a proce-

dure involving Bell difference sampling.
To prove Lemma 15, as a first step, we relate Ex∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
to the Fourier coeffi-

cients of pψ. Note that this analysis closely resembles the BLR linearity test [3] (see also [24,
Section 1.6]).

▶ Fact 16. Let |ψ⟩ be an n-qubit pure state. Then,

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
= 32n

∑
x∈F2n

2

p̂ψ(x)3.
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Proof.

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
= 2n E

x∼qψ
[pψ(x)]

= 2n
∑
x∈F2n

2

pψ(x)qψ(x)

= 8n
∑
x∈F2n

2

pψ(x)(pψ ∗ pψ)(x)

= 32n E
x∼F2n

2

[pψ(x)(pψ ∗ pψ)(x)]

= 32n
∑
x∈F2n

2

p̂ψ(x)p̂ψ ∗ pψ(x)) (Fact 10)

= 32n
∑
x∈F2n

2

p̂ψ(x)3. (Fact 12) ◀

For the remainder of this section, we use the following convention: when x = (v, w) ∈ F2n
2 ,

v and w denote the first and last n bits of x, respectively, and, we will sometimes write
pψ(v, w) and qψ(v, w), rather than pψ(x) and qψ(x).

3.1 The Fourier Spectrum of the Characteristic Distribution
By Fact 16, it is clear that understanding the Fourier spectrum of pψ is one avenue to proving
Lemma 15.

▶ Proposition 17. The Fourier coefficients of pψ(v, w) are p̂ψ(v, w) = 1
2n pψ(w, v).

Proof. Define f : F2n
2 −→ [−1, 1] as f(v, w) := ⟨ψ|iv·wXvZw|ψ⟩, where v, w ∈ Fn2 . We begin

by computing the Fourier expansion of f .

f(v, w) = ⟨ψ| iv·wXvZw |ψ⟩

=

∑
x∈Fn2

c∗
x ⟨x|

 iv·wXvZw

∑
x∈Fn2

cx |x⟩


= iv·w

∑
x∈Fn2

c∗
x ⟨x+ v|

∑
x∈Fn2

(−1)x·wcx |x⟩


= iv·w

∑
x∈Fn2

c∗
x+vcx(−1)w·x. (1)

In the second line we are simply writing |ψ⟩ in the computational basis.
Observe now that pψ(v, w) = 1

2n |f(v, w)|2, which we can also treat as a function on
Boolean variables. Hence,

pψ(v, w) = 1
2n

iv·w
∑
x∈Fn2

c∗
x+vcx(−1)w·x

(−i)v·w
∑
x∈Fn2

cx+vc
∗
x(−1)w·x


= 1

2n
∑

x,y∈Fn2

c∗
v+ycycv+x+yc

∗
x+y(−1)w·x,

where the first equality follows by substituting in Equation (1).
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We can now compute the Fourier spectrum of pψ by taking the inner product between
pψ and an arbitrary Fourier character (this is the simplest approach to computing Fourier
coefficients).

p̂ψ(v, w) = 1
4n

∑
s,t∈Fn2

pψ(s, t)(−1)s·v+t·w

= 1
8n

∑
s,t,x,y∈Fn2

c∗
s+ycycs+x+yc

∗
x+y(−1)t·x+v·s+w·t

= 1
8n

∑
s,x,y∈Fn2

c∗
s+ycycs+x+yc

∗
x+y(−1)v·s

∑
t∈Fn2

(−1)t·(x+w)

= 1
4n

∑
s,y∈Fn2

c∗
s+ycycs+w+yc

∗
w+y(−1)v·s

= 1
2n pψ(w, v). ◀

3.2 Low-Stabilizer-Complexity States
We prove the first part of Lemma 15; namely, that

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
≥ 1
k6

when |ψ⟩ has low stabilizer complexity.

▷ Claim 18. For an n-qubit pure state |ψ⟩ =
∑
x∈Fn2

cx |x⟩,

32n
∑
x∈F2n

2

p̂ψ(x)3 ≥ |c0|12.

Proof.

32n
∑

v,w∈F2n
2

p̂ψ(v, w)3 = 4n
∑

v,w∈F2n
2

pψ(w, v)3 (Proposition 17.)

≥ 4n
∑
v∈Fn2

pψ(0, v)3 (∀x, y, pψ(x, y) ≥ 0.)

= 1
2n
∑
v∈Fn2

|⟨ψ|Zv|ψ⟩|6

≥ 1
26n

∑
v∈Fn2

⟨ψ|Zv|ψ⟩

6  m∑
i=1

|ai|6 ≥ 1
m5

(
m∑
i=1

|ai|

)6

.


≥ |c0|12.

∑
v∈Fn2

Zv = 2n |0n⟩⟨0n| .

 ◁

Proof of first part of Lemma 15. Let |ψ⟩ be an n-qubit pure state, and suppose that the
stabilizer fidelity of |ψ⟩ is at least 1

k . Then there exists a Clifford circuit C ∈ Cn such that
C |ψ⟩ =

∑
x∈Fn2

cx |x⟩ where |c0|2 ≥ 1
k . Call |ϕ⟩ := C |ψ⟩. By Claim 18,

32n
∑

v,w∈Fn2

p̂ϕ(v, w)3 ≥ |c0|12 ≥ 1
k6 .
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A Clifford circuit C is a permutation of the Pauli group under conjugation (i.e., C†PnC = Pn
for any C ∈ Cn). Hence, for all C ∈ Cn and g : Pn → R,∑

x∈F2n
2

g(Wx) =
∑
x∈F2n

2

g(C†WxC).

Therefore, we conclude that

32n
∑

v,w∈Fn2

p̂ψ(v, w)3 ≥ 1
k6

as well. Combining this bound with Fact 16 completes the proof. ◀

3.3 Haar-Random States
We complete the proof of Lemma 15 by showing that Ex∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
is small when |ψ⟩

is a Haar-random state. We begin by showing that, for a Haar-random state, all of the Weyl
measurements (except Wx = I) are exponentially close to 0 with overwhelming probability.

▶ Lemma 19 (Lévy’s Lemma, see e.g. [10]). Let SN denote the set of all N-dimensional
pure quantum states, and let f : SN → R be L-Lipschitz, meaning that |f(|ψ⟩) − f(|φ⟩)| ≤
L · ∥|ψ⟩ − |φ⟩∥2. Then:

Pr
|ψ⟩∼µHaar

[|f(|ψ⟩) − E[f ]| ≥ ε] ≤ 2 exp
(

− Nε2

9π3L2

)
.

▶ Lemma 20. For any n-qubit Weyl operator Wx, the function fx : S2n → R defined by
fx(|ψ⟩) = ⟨ψ|Wx |ψ⟩ is 2-Lipschitz.

Proof. Write Wx = Π+ − Π− where Π+ and Π− are the projectors onto the positive and
negative eigenspaces of Wx, respectively. Then,

|fx(|ψ⟩) − fx(|φ⟩)| = |⟨ψ|Wx |ψ⟩ − ⟨φ|Wx |φ⟩|
= |⟨ψ| Π+ |ψ⟩ − ⟨φ| Π+ |φ⟩ − ⟨ψ| Π− |ψ⟩ + ⟨φ| Π− |φ⟩|
≤ |⟨ψ| Π+ |ψ⟩ − ⟨φ| Π+ |φ⟩| + |⟨ψ| Π− |ψ⟩ + ⟨φ| Π− |φ⟩|
= | ∥Π+ |ψ⟩∥2 − ∥Π+ |φ⟩∥|2 + |∥Π− |ψ⟩∥2 − ∥Π− |φ⟩∥2|
≤ ∥Π+(|ψ⟩ − |φ⟩)∥2 + ∥Π−(|ψ⟩ − |φ⟩)∥2

≤ 2∥|ψ⟩ − |φ⟩∥2,

where the third and fifth lines apply the triangle inequality, and the fourth and sixth lines
use the fact that Π+ and Π− are projectors. ◀

▶ Corollary 21. Let Wx be any n-qubit Weyl operator in which x ̸= 0 (i.e. Wx ̸= I). Then:

Pr
|ψ⟩∼µHaar

[|⟨ψ|Wx|ψ⟩| ≥ ε] ≤ 2 exp
(

− 2nε2

36π3

)
.

Proof. Define fx(|ψ⟩) = ⟨ψ|Wx |ψ⟩ as in Lemma 20. By Lemma 20, we know that fx is
2-Lipschitz. Additionally, observe that E[f ] = 0 over the Haar measure because exactly half
of the eigenvalues of Wx are 1 and the other half are −1. Then the corollary follows from
Lemma 19. ◀
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▶ Corollary 22.

Pr
|ψ⟩∼µHaar

[∃x ̸= 0 : |⟨ψ|Wx|ψ⟩| ≥ ε] ≤ 22n+1 exp
(

− 2nε2

36π3

)
.

Proof. This follows from Corollary 21 and a union bound over all 22n possible Weyl operators.
◀

Note that if ε ≥ 1
poly(n) , then the probability bound in Corollary 22 is doubly-exponentially

small.
We have shown that, with high probability, all Weyl measurements (except Wx = I) are

close to 0. We use this to complete the proof of Lemma 15.

Proof of second part of Lemma 15. Suppose |ψ⟩ is a Haar-random state. By Corollary 22,
for all Wx ̸= I, |⟨ψ|Wx|ψ⟩|2 = 2np(x) ≤ ε2 with probability 1−22n+1 exp

(
− 2nε2

36π3

)
. Therefore

by Fact 16 and Proposition 17,

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
= 32n

∑
x,y∈Fn2

p̂(x, y)3

= 4n
∑

w,v∈Fn2

p(v, w)3

= 4n

 1
8n +

∑
w,v∈Fn2
w,v ̸=0

p(v, w)3


≤ 1 + (4n − 1)ε6

2n ,

with probability at least 1 − 22n+1 exp
(

− 2nε2

36π3

)
. By setting ϵ2 = 1

2n/6

(
2n−2n/2

4n−1

)1/3
, we get

E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
≤ 1

2n/2

with probability at least 1 − 22n+1 exp
(

− 25n/6

36π3

(
2n−2n/2

4n−1

)1/3
)

, which is at least

1 − exp
(
−2n/2−15) for n ≥ 33. ◀

4 Algorithm and Sample Complexity Analysis

We are now ready to state and analyze our algorithm that distinguishes between Haar-random
states and states with low stabilizer complexity. Our algorithm uses the fact that we can
efficiently sample from qψ (via Bell difference sampling) and efficiently estimate |⟨ψ|Wx|ψ⟩|2
for any given x ∈ F2n

2 , using quantum measurements. By combining these subroutines, we
construct an unbiased estimator for Ex∼q

[
|⟨ψ|Wx|ψ⟩|2

]
. Motivated by Lemma 15, if our

estimator exceeds a certain threshold we determine that the input state has low stabilizer
complexity; otherwise, we determine that the state is Haar-random. For the remainder of
this section, η := Ex∼q

[
|⟨ψ|Wx|ψ⟩|2

]
.
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Algorithm 1 Distinguishing Low-Stabilizer-Complexity States from Haar-Random.

Input: Black-box access to copies of |ψ⟩
Promise : |ψ⟩ is Haar-random or has stabilizer fidelity at least 1

k

Output: 1 if |ψ⟩ has stabilizer fidelity at least 1
k and 0 if |ψ⟩ is Haar-random

1 Let m = 60k12 ln(1/δ).
2 repeat m times
3 Perform Bell difference sampling to obtain Wx ∼ qψ.
4 Perform the measurement W⊗2

x on |ψ⟩⊗2. Let Xi ∈ {±1} denote the
measurement outcome.

5 Set η̂ = 1
m

∑
iXi. Return 1 if η̂ ≥ 2

3k6 , and 0 otherwise.

▶ Theorem 23. Let |ψ⟩ be an unknown n-qubit pure state for some n ≥ 33, and let k ≤ 4
5 2n/12.

Algorithm 1 distinguishes whether |ψ⟩ is Haar-random or a state with stabilizer fidelity at
least 1

k , promised that one of these is the case. The algorithm uses O
(
k12 log(1/δ)

)
copies of

|ψ⟩ and O(nk12 log(1/δ)) time, and distinguishes the two cases with success probability at
least 1 − δ.

Proof. Following the notation in Algorithm 1, Xi is the outcome of the measurement on the
ith iteration of the algorithm loop. Observe that for any Xi,

E
x∼qψ,

meas. by W⊗2
x

[Xi] = E
x∼qψ

⟨ψ⊗2|W⊗2
x |ψ⊗2⟩ = E

x∼qψ
|⟨ψ|Wx|ψ⟩|2 = η.

Therefore, η̂ = 1
m

∑
iXi is an unbiased estimator of η (i.e., E[η̂] = η).

Suppose |ψ⟩ has stabilizer fidelity at least 1
k . Then, our algorithm fails when η̂ < 2

3k6 .
Hence,

Pr[Algorithm 1 fails] = Pr
[
η̂ <

2
3k6

]
= Pr

[
η̂ − η <

2
3k6 − η

]
≤ Pr

[
η̂ − η ≤ − 1

3k6

]
,

where the last inequality follows from Lemma 15. By Hoeffding’s inequality,

Pr
[
η̂ − η ≤ − 1

3k6

]
≤ exp

(
− m

18k12

)
.

Therefore, m ≥ 18k12 ln(15) = 49k12 samples suffice for the failure probability to be at most
1

15 .
Now suppose |ψ⟩ is Haar-random. Then, our algorithm fails when η̂ ≥ 2

3k6 . By Lemma 15,
η ≤ 2−n/2 with probability at least 1 − exp

(
−2n/2−15) >= 1 − e−2

√
2 for n ≥ 33. Assuming

that η ≤ 2−n/2,

Pr[Algorithm 1 fails] = Pr
[
η̂ ≥ 2

3k6

]
= Pr

[
η̂ − η ≥ 2

3k6 − η

]
≤ Pr

[
η̂ − η ≥ 1

2k6 − 2−n/2
]
.
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Once again, by Hoeffding’s inequality,

Pr
[
η̂ − η ≥ 1

2k6 − 2−n/2
]

≤ exp
(

−m

2

(
2

3k6 − 2−n/2
)2
)

≤ exp
(

−m

2

(
2

3k6 − 1
3k6

)2
)

≤ exp
(

− m

18k12

)
.

Therefore, m ≥ −18k12 ln
(

1
15 − e−2

√
2
)

≥ 88k12 samples suffice for the failure probability

to be at most 1
15 − e−2

√
2. By the union bound, the failure probability is at most 1

15 , where
the randomness is over both the Haar measure and the quantum measurements.

We have shown that in either case we output the correct answer with probability at
least 14

15 . Using the Chernoff-Hoeffding theorem, the success probability can be boosted
from 14

15 to at least 1 − δ by doing 2
3 ln(1/δ) repetitions of Algorithm 1 and taking the

majority answer. Since each iteration of the algorithm loop uses 6 copies of |ψ⟩, Algorithm 1
consumes O

(
k12 log(1/δ)

)
copies in total. Finally, Bell difference sampling and performing

the measurement W⊗2
x takes O(n) time, so the total runtime is O

(
nk12 log(1/δ)

)
. ◀

All of these results also apply to states with stabilizer extent at most k, since by Claim 6,
such states have stabilizer fidelity at least 1

k .

▶ Corollary 24. Let |ψ⟩ be an unknown n-qubit pure state for n ≥ 33, and let k ≤ 4
52n/12.

Algorithm 1 distinguishes whether |ψ⟩ is Haar-random or a state with stabilizer extent at
most k, promised that one of these is the case. The algorithm uses O

(
k12 log(1/δ)

)
copies of

|ψ⟩ and distinguishes the two cases with success probability at least 1 − δ.

The above result immediately implies that output states of Clifford+T circuits with few
T -gates cannot be computationally pseudorandom.

▶ Corollary 25. Any family of Clifford+T circuits that produces an ensemble of n-qubit
computationally pseudorandom quantum states must use at least ω(logn) T -gates.

Proof. Consider any ensemble of states wherein each state in the ensemble is the output of
some Clifford+T circuit with at most K logn T -gates. By Lemma 8, the stabilizer extent
of any such state |ψ⟩ is at most nαK for α ≤ 0.7716. By Corollary 24, on input copies of
|ψ⟩, Algorithm 1 takes O(n12αK+1) ≤ poly(n) time and outputs 1 with probability at least
2/3. On the other hand, if |ψ⟩ is a Haar-random state then the same algorithm outputs 1
with probability at most 1

3 . As such, the algorithm’s distinguishing advantage between the
ensemble and the Haar measure is non-negligible. This is to say that the ensemble cannot be
pseudorandom under the definition of [18]. ◀

5 Open Problems

An immediate direction for future work is to improve the sample complexity of our algorithm,
or to prove sample complexity lower bounds. One can also endeavour to improve other
features of our algorithm: Is it possible to remove the need for entangled measurements?2

Or, is it possible to show that entangled measurements are in any sense necessary? Are there
quantum measurements that allow us to sample from pψ directly (rather than qψ)?

2 The optimal algorithms for learning and testing stabilizer states use entangled measurements. So, a
first step would be to understand how many separable measurements are required to separate stabilizer
states from Haar-random.
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Beyond that, can Bell difference sampling be used for learning and/or property testing
stabilizer-extent-k states? For stabilizer states (k = 1), a 6-query property testing algorithm
is given by [13] and a Θ(n)-query learning algorithm is given by [22]. Both algorithms rely on
Bell difference sampling and are asymptotically optimal. We ask if there are generalizations
of these algorithms for states with higher stabilizer complexity, similar to the question that
was raised in [2].

▶ Question 26. Is there a poly(k)-query algorithm for property testing stabilizer-extent-k
states? Likewise, is there a poly(n, k)-time algorithm for learning stabilizer-extent-k states?

Our results on stabilizer extent are due to the fact that extent and fidelity are inversely
related. Is it possible to relate stabilizer rank (a closely-related complexity measure, denoted
by χ) and stabilizer fidelity? For instance, proving that, for all states |ψ⟩,

FS(|ψ⟩)−1 ≤ χ(|ψ⟩)c, for any constant c,

would imply that our algorithm can distinguish low-stabilizer-rank states from Haar-random.
However, proving such a relation for even c < αn

logn for α ≤ 0.2284 would imply super-linear
lower bounds on the stabilizer rank of Clifford magic states, a long-standing open problem.

One can also ask if the lower bound on the number of T -gates necessary for computationally
pseudorandom states can be improved.

▶ Question 27. How many T -gates are necessary for a family of Clifford+T circuits to
produce an ensemble of n-qubit computationally pseudorandom states?

We remark that any improvements to our logn lower bound would require techniques
beyond the ones used in our paper. Indeed, in Appendix B we show that one can hope for at
most a quadratic improvement in the relationship between η and stabilizer fidelity. Such
an improvement would only yield constant-factor improvements on the number of T -gates
necessary to prepare computationally pseudorandom states.

On the other hand, we are not aware of any attempts to optimize the T -gate count for
plausible constructions of n-qubit pseudorandom states. The best upper bound we know of is
the essentially trivial bound of O(n), based on constructions of with O(n) general gates. This
is because pseudorandom states can be constructed from pseudorandom functions (PRFs)
with constant overhead [4], and PRFs are believed to be constructible in linear time [17, 9].3
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A Algorithm Improvements via State Preparation Unitary

When given access to a state preparation unitary for |ψ⟩ (and its inverse), denoted by U and
U†, we can improve the sample and time complexities of our algorithm to O

(
k3 log(1/δ)

)
and O

(
nk3 log(1/δ)

)
, respectively, at the cost of O

(
k3 log(1/δ)

)
queries to U and U†.

Access to U and U† allows us to run quantum amplitude estimation (QAE) as a subroutine
in our algorithm. Recall the well-known result of Brassard, Høyer, Mosca, and Tapp:

▶ Theorem 28 (Quantum Amplitude Estimation (Theorem 12 in [5])). Let Π be a projector
and |ψ⟩ be an n-qubit pure state such that ⟨ψ|Π|ψ⟩ = η. Given access to the unitary
transformations RΠ = 2Π − I and Rψ = 2 |ψ⟩⟨ψ| − I, there exists a quantum algorithm that
outputs η̂ such that

|η̂ − η| ≤
2π
√
η(1 − η)
m

+ π2

m2

with probability at least 8
π2 . The algorithm makes m calls to RΠ and Rψ.

▶ Corollary 29. Let Π, |ψ⟩, RΠ, and Rψ be the same as in Theorem 28. There exists a
quantum algorithm that outputs η̂ such that

|η̂ − η| ≤ ε

with probability at least 8
π2 . The algorithm makes no more than

π

√
η(1 − η) + ε

ε

calls to RΠ and Rψ.

Proof. By Theorem 28, this will require m queries, where m is a solution to the following
quadratic equation:

2π
√
η(1 − η)
m

+ π2

m2 ≤ ε ⇒ m ≥ π

√
η(1 − η) + ε

ε
≥ π

√
η(1 − η) +

√
η(1 − η) + ε

2ε . ◀

With that, we are ready to explain the modifications to Algorithm 1 that achieves a
quartic speedup in the dependency on k.
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▶ Theorem 30. Let |ψ⟩ be an unknown n-qubit pure state prepared by a unitary U for
n ≥ 33, and let k ≤ 4

52n/12. There exists a quantum algorithm that distinguishes whether
|ψ⟩ is Haar-random or a state with stabilizer fidelity at least 1

k , promised that one of these
is The case. The algorithm uses O

(
k3 log(1/δ)

)
applications of either U or U† and time

O
(
nk3 log(1/δ)

)
, and distinguishes the two cases with success probability at least 1 − δ.

Proof. We first define the Bell difference sampling projector on x as

Πx :=
∑
y∈F2n

2

|Wy⟩⟨Wy| ⊗ |Wx+y⟩⟨Wx+y| .

Note that this is simply a compact way of writing the Bell difference sampling procedure: the
probability of sampling x is qψ(x) = ∥Πx |ψ⊗4⟩∥.4 We can also perform the projective mea-
surement Pψ,x := Wx |ψ⟩⟨ψ|Wx = WxU |0⟩⟨0|U†Wx, where this measurement is performed
by applying Wx, U†, and then measuring in the computational basis. We can entangle Πx

and Pψ,x to form the following projector:

M =
∑
x∈F2n

2

Πx ⊗ Pψ,x.

Building M involves controlled applications of Wx according to the Bell difference sampling
outcome. Observe that

⟨ψ⊗5|M |ψ⊗5⟩ =
∑
x∈F2n

2

⟨ψ⊗4|Πx|ψ⊗4⟩ · ⟨ψ|Pψ,x|ψ⟩ = E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
.

Hence, we can run QAE with the input projector M and the input state |ψ⊗5⟩, and the
output will be an estimate of η whose accuracy depends on m, the number of total calls to
RΠ and Rψ.

Proving the sample complexity bound will mimic Theorem 23. Suppose |ψ⟩ is a state with
stabilizer fidelity at least 1

k . Define ηmin := 1
k6 , and note that for any state with stabilizer

fidelity at least 1
k , η ≥ ηmin due to Lemma 15. For our algorithm to succeed, recall from the

proof of Theorem 23 that we need

|η̂ − η| ≤ | 2
3k6 − η|.

Therefore, we can run QAE with a fixed value of m (to be specified later) for an estimate of
η whose accuracy is within ±

(
η − 2

3k6

)
. By Corollary 29,

m ≥ π

√
η(1 − η) + η − 2

3k6

η − 2
3k6

(2)

queries suffice. The chosen value of m must work for all η ∈ [ 1
k6 , 1]. Note that Equation (2) is

monotonically decreasing for η ∈ [ 2
3k6 , 1), and is therefore maximized by ηmin for η ∈ [ 1

k6 , 1].
To succeed with probability at least 8

π2 ,

m ≥ 4πk3 ≥ π
√

12k6 − 9 = π

√
ηmin(1 − ηmin) + ηmin − 2

3k6

ηmin − 2
3k6

calls to RΠ and Rψ suffices.

4 Indeed, this is the way Gross, Nezami, and Walter [13] introduce Bell difference sampling.
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Now suppose |ψ⟩ is a Haar-random state. Again, by Lemma 15, we know that η ≤ 2−n/2

with probability 1 − e−2
√

2 for n ≥ 33. Assuming η ≤ 2−n/2 and using Corollary 29, as long
as we have

m ≥
√

6πk3 ≥ π

√
2−n/2(1 − 2−n/2) + 2

3k6 − 2−n/2

2
3k6 − 2−n/2 ≥ π

√
η(1 − η) + 2

3k6 − η

2
3k6 − η

queries to RΠ and Rψ, we obtain the correct answer with probability at least 8
π2 . In the

inequalities above we use similar reasoning to the stabilizer fidelity 1
k case, combined with

the fact that 2−n/2 ≤ 1
3k6 .

Finally, since RΠ and Rψ use a constant number of calls to U and U†, the total number
of calls is O(k3). Chernoff-Hoeffding can be used to bring the success probability from 3/4
to 1 − δ using 6 ln(1/δ) repetitions. The runtime includes an extra factor of O(n), due to
the linear cost of both preparing Wx and the Bell difference sampling projector, giving a
O
(
nk3 log(1/δ)

)
time complexity. ◀

B On the Tightness of Our Analysis

We argue that the first part of Lemma 15 is polynomially-close to optimal. We begin by
computing the stabilizer extent and stabilizer fidelity of Clifford magic states. The two
technical ingredients involved in the computation are due to Bravyi et al. [6].

▶ Fact 31 ([6, Proposition 2]). Let |ψ⟩ be a Clifford magic state. Then, ξ(|ψ⟩) = FS(|ψ⟩)−1.

▶ Fact 32 ([6, Proposition 1]). Let {|ψ1⟩ , |ψ2⟩ , . . . , |ψL⟩} be any set of states such that each
state |ψj⟩ describes a system of at most 3 qubits. Then,

ξ(|ψ1⟩ ⊗ |ψ2⟩ ⊗ . . .⊗ |ψL⟩) =
∏
i

ξ(|ψi⟩).

It is well known that the m-fold tensor product of |T ⟩ := 2−1/2(|0⟩+eiπ/4 |0⟩) is a Clifford
magic state. Using the facts above, we can compute the stabilizer extent and stabilizer
fidelity of |T⊗m⟩.

▶ Fact 33.

ξ(|T⊗m⟩) = (cosπ/8)−2m and FSm(|T⊗m⟩) = (cosπ/8)2m
.

Proof. By Fact 32, the stabilizer extent of |T⊗m⟩ is simply the stabilizer extent of |T ⟩ raised
to the power m. By Fact 31, the stabilizer extent is the inverse of the stabilizer fidelity.
Hence, the result follows simply by showing that the stabilizer fidelity of |T ⟩ is cos(π/8)2,
which can be verified by explicit calculation over the 6 different 1-qubit stabilizer states. ◀

Next, we compute η for the state |T⊗m⟩.

▷ Claim 34. Let |ψ⟩ = |T⊗m⟩ and define η := Ex∼qψ [2npψ(x)]. Then, η = (5/8)m.

Proof. We begin by writing out |T ⟩⟨T | as a sum of Pauli matrices. By definition,

|T ⟩⟨T | = 1
2

(
I + 1√

2
X + 1√

2
Y

)
.
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We wish to compute
∑
x∈F2m

2
p̂ψ(x)3. We know that every such Pauli with nonzero p̂ψ(x)

is a tensor product combination of I, X, and Y , so we enumerate over the number of indices
where an X or Y appear.

∑
x∈F2m

2

p̂ψ(x)3 = 1
26m

m∑
k=0

(
m

k

)
1

23k · 2k = 1
64m

m∑
k=0

(
m

k

)
1
4k =

(
5

256

)m
.

Thus, by Fact 16,

η = 32m
∑
x∈F2m

2

p̂ψ(x)3 =
(

5
8

)m
. ◁

Combining Claim 34 with Lemma 15, we have

FS(|ψ⟩) ≤ η1/c =
(

5
8

)m/c
for c = 6 (Lemma 15). But, from Fact 33, we know that FS(|T⊗m⟩) = (cosπ/8)2m.
Combining the two statements gives

(cosπ/8)2m ≤ (5/8)m/c.

c ≈ 2.97 is the minimum c that does not violate this inequality. Hence, one cannot hope for
much more than a quadratic improvement in our bound.
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