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Abstract
In the classical model of computation, it is well established that one-way functions (OWF) are
minimal for computational cryptography: They are essential for almost any cryptographic application
that cannot be realized with respect to computationally unbounded adversaries. In the quantum
setting, however, OWFs appear not to be essential (Kretschmer 2021; Ananth et al., Morimae and
Yamakawa 2022), and the question of whether such a minimal primitive exists remains open.

We consider EFI pairs – efficiently samplable, statistically far but computationally indistin-
guishable pairs of (mixed) quantum states. Building on the work of Yan (2022), which shows
equivalence between EFI pairs and statistical commitment schemes, we show that EFI pairs are
necessary for a large class of quantum-cryptographic applications. Specifically, we construct EFI
pairs from minimalistic versions of commitments schemes, oblivious transfer, and general secure
multiparty computation, as well as from QCZK proofs from essentially any non-trivial language. We
also construct quantum computational zero knowledge (QCZK) proofs for all of QIP from any EFI
pair.

This suggests that, for much of quantum cryptography, EFI pairs play a similar role to that
played by OWFs in the classical setting: they are simple to describe, essential, and also serve as a
linchpin for demonstrating equivalence between primitives.
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24:2 On the Computational Hardness Needed for Quantum Cryptography

1 Introduction

One of the most fundamental achievements of cryptography has been the conceptualization
and eventual formalization of the forms of computational hardness that are needed for ob-
taining prevalent cryptographic tasks. Notions such as one-way functions [29, 64] (capturing
functions that can be computed efficiently but are hard to meaningfully invert) and pseudor-
andom generators [57, 64, 14] (capturing the ability to efficiently expand short random strings
into longer strings that are hard to distinguish from fully random) became foundational
pillars for the design and reduction-based analysis of cryptographic schemes that are only
“computationally secure” (that is, secure only against computationally-bounded attacks).
Furthermore, the celebrated equivalence between the two notions [14, 33, 37] has cemented
the combined concept as the “foundational computational hardness for cryptography”: One
that is essential for realizing almost any cryptographic task that requires computational
hardness, and at the same time suffices for realizing a large class of cryptographic tasks.

However, in the quantum setting, where parties can generate, process, and communicate
quantum information, the lay of the land of computational hardness turns out to be different.
First, quintessential tasks such as key-exchange with only public communication, which
classically can only be computationally secure, can be obtained without any need for
computational hardness [11, 56]. Furthermore, quantum protocols can use (quantum-hard)
one way functions to obtain tasks that are provably unobtainable from one way functions
alone in the classical setting, at least in a relativizing manner. These include non-interactive
commitments with either statistical hiding or statistical binding property [50, 63, 13], and
oblivious transfer [41, 27, 8, 35].

Even further, it has been recently shown how to obtain commitments, oblivious transfer
and general multiparty computation from a form of computational hardness that appears
to be “purely quantum”, in the sense that it does not appear to imply one way functions
(or any equivalent formulation of computational hardness) – not even ones against classical
attackers [6, 51]. Superficially, this new form of computational hardness, called Pseudorandom
States (PRS), is a straightforward generalization of pseudorandom generators: it postulates
the ability to efficiently generate quantum states that are hard to distinguish from a Haar-
random state even when given multiple instances [44, 17, 18]. However this apparent similarity
is deceiving; indeed, there are no relativizing constructions of one way functions from PRS [49].
Also, in spite of initial attempts [51], the celebrated classical equivalence between one-wayness
and pseudorandomness does not appear to naturally generalize to the quantum setting, at
least not with respect to PRS. Still, we do not know whether PRS are essential for realizing
any of the above cryptographic primitives.

This leaves quantum cryptography devoid of a convenient form of “foundational compu-
tational hardness”, namely a form of computational hardness that is both necessary for any
meaningful computational security, and sufficient for realizing a large class of tasks.

Our contributions. We formulate a relatively simple and natural primitive and show that its
existence is both necessary and sufficient for a significant class of cryptographic applications
in a quantum-enabled computational model. While many of these implications are either
known or easily derived from known results, we hope that the proposed framing, along with
the new implications, will help in understanding the computational foundations of quantum
cryptography.

The proposed primitive draws from a classical primitive considered by Goldreich [32], as
well as from the notion of canonical quantum commitments proposed by Yan [62]. Goldreich’s
primitive is aimed at capturing non-trivial and “cryptographically useful” computational
indistinguishability:
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▶ Definition 1 (EFID pairs [32]). An EFID pair is a pair of efficient (classical) sampling
algorithms such that their output distributions are statistically far but computationally
indistinguishable.

Goldreich’s work leverages the result of Impagliazzo, Levin, and Luby [40] to show that
EFID pairs exist if and only if (classical) pseudorandom generators exist. This, together with
what we know about pseudorandom generators, means the existence of a classical protocol
for almost any cryptographic task that requires computational hardness implies existence of
EFID pairs, and furthermore that EFID pairs suffice for realizing a large class of tasks. We
consider a natural quantum analogue of EFID pairs:

▶ Definition 2 (EFI pairs, informal). An EFI pair is a pair of efficient quantum algorithms
whose output states are statistically far but computationally indistinguishable.

Clearly, any quantum-hard EFID pair is also an EFI pair. On the other hand, it is
unknown whether existence of EFI pairs implies the existence of (classical) pseudorandom
generators or one-way functions. Indeed, the implication is false in the relativizing setting
(see [49], combined with [6, Theorem 4.1]).

A first indication that EFI pairs are central to quantum cryptography is the observation
that they are essentially equivalent to the statically binding variant of canonical form quantum
commitments [62]1. Building on this initial connection, we demonstrate that the existence
of EFI pairs is essential for the existence of any commitment scheme, oblivious transfer
protocols, non-trivial multi-party computation protocols, and zero-knowledge proofs for
non-trivial languages. Furthermore, for each one of these primitives, we use EFI pairs as
a tool for demonstrating that existence of protocols for a minimal version of the primitive
implies existence of protocols for a full-fledged version of that primitive. Informally:

Quantum commitment schemes. A commitment scheme is a cryptographic protocol
where a committer commits to a hidden bit so that it can be later revealed but not
modified. As mentioned, EFI pairs can be readily used to build (cannonical form)
statistically binding non-interactive quantum commitments, which subsequently imply
statistically hiding commitments [62].
We construct EFI pairs from any plain “semi-honest” interactive commitment scheme,
namely an interactive commitment scheme that is (computationally) binding and hiding
as long as both parties are honest during the commitment phase. (For commitment
schemes that are either statistically hiding or statistically binding, this implication is
essentially shown in [62]. We extend this results to any commitment.)
Quantum oblivious transfer. An oblivious transfer scheme is a cryptographic protocol
where a sender makes two bits available to a receiver in a way that enables the receiver
to obtain exactly one of them, without the sender learning which bit it obtained. Fully
secure (namely, simulation-secure against adversaries that deviate from the protocol)
quantum oblivious transfer is known to be constructible from quantum statistically
binding commitments [8, 6] (and so also from EFI pairs).
We show how to construct EFI pairs from any semi-honest OT protocol, namely any
OT protocol that is only guaranteed to be secure when both parties follow the protocol
instructions without abort and up to purifications (namely, without tracing out any
register used by each party).

1 Indeed, Yan [62] suggests studying the connections between statistically binding canonical-form commit-
ment schemes and other cryptographic primitives. This work follows the same path, while distilling EFI
as the notion of interest. See more details in Section 1.1.
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Quantum secure multiparty computation protocols. A multiparty secure compu-
tation protocol is a protocol where participating parties jointly compute the output of a
function of their secret inputs without revealing anything but the function value. Known
constructions of general MPC from any statistically binding quantum commitment [6]
imply that EFI pairs can also be used to perform secure evaluation of any functionality.
We show how any protocol for securely evaluating any non-trivial classical finite function-
ality (namely a function with an insecure minor as in [9]), even in the semi-honest model,
implies the existence of EFI pairs.
Quantum computational zero-knowledge (QCZK) proofs. Finally, a computational
zero-knowledge proof is an interactive proof system where any malicious verifier cannot
learn anything beyond the fact that the statement is true, in the sense that their view
could be efficiently simulated given only the public instance.
By observing that zero knowledge is a special case of secure two-party computation (2PC),
we have that if EFI pairs exist then QCZK = QIP, and any language in QMA also admits
QCZK proofs with negligible soundness and an efficient prover that uses only a single
copy of the witness. Conversely, we build on results from [63] to construct EFI pairs from
any honest verifier QCZK proof (QCZKHV) for any language that is hard on average for
BQP. (QCZKHV is a relaxation of QCZK where zero knowledge property is guaranteed to
hold only against purified verifiers with abort, rather than arbitrary polytime verifiers.)

Furthermore, all these equivalences relativize2. Thus, Kretschmer’s oracle separation [49]
immediately generalizes to show that none of the objects constructible from EFI pairs (or
pseudorandom states) imply the existence of one-way functions (post-quantum or not) in a
relativizing way.

1.1 Our techniques
This section presents an overview of the proofs for our results.

EFI pairs and statistical commitments. In the classical setting, building a commitment
scheme from EFID pairs would naturally go via Goldreich’s transformation to a PRG, and
then use, say, Naor’s commitment [52]. However, it is not clear how this transformation could
be generalized to the quantum setting. In particular, Goldreich’s proof crucially relies on the
fact that for a BPP (randomized) algorithm, it is possible to separate the randomness from
the rest of the computation – or even arbitrarily program the randomness. Such techniques
cannot work for quantum algorithms, as also observed by the recent work of Aaronson,
Ingram, and Kretschmer [4] comparing the complexity classes BPP and BQP.

Still, as noticed several times in the literature, EFI pairs give quantum commitments in a
rather direct way. To sketch this basic construction, we first recall the syntax of a canonical
form quantum commitment scheme:3

2 We use the term relativizing to denote that the construction works even in the presence of (quantum)
oracles. In particular, this allows the construction to invoke the next message function of a protocol as a
black box or even run its purification. An example of a relativizing implication is Watrous’s construction
of a QSZK protocol from any honest-verifier QSZKHV protocol [60].

We reserve the use of the term black-box reductions to denote reductions which are black box in a primitive,
namely reductions that use oracle access to the ideal functionality describing the primitive, irrespective of
any particular implementation (as e.g. in the work of Kilian [46]).
3 This (non-interactive) canonical form of quantum bit commitment schemes was first introduced by the

work of Yan et al. [63], but the idea dates back to the work of Chailloux, Kerenidis, and Rosgen [24].
Subsequently, it has been shown that canonical form commitments are as useful as traditional bit
commitments by Yan et al. [63, 31, 62] Its connection to (classical) EFID pairs was observed by Yan in
a 2022 revision of their work [62].
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EFI pairs Statistical binding
commitments

CommitmentsSemi-honest
oblivious transfer

By definition

MPC for
any classical
functionality

Semi-honest 2PC for
some non-trivial

classical functionality

[6]

By definition

Single-witness
QCZK for QMA;
QCZK = PSPACE

QCZKHV for
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language

Theorem 23Mild assumption that
PSPACE is hard on

average against BQP

Figure 1 Our results for EFI pairs illustrated. We give a more detailed overview of these
implications in Section 1.1.

To commit to b, the committer efficiently generates a bipartite (i.e., two-register) state
|ψb⟩CR, and sends the commitment register C.
To open, simply reveal the other register R and b, and the receiver can perform a rank-1
projection onto the corresponding state |ψb⟩CR (or equivalently, uncompute the state
generation unitary for committing to b and check if we get back all zeroes) to check
whether to accept the commitment.

It is possible to view the purified generation of the EFI pair as a canonical form com-
mitment where the output corresponds to the commitment register C and the purification
corresponds to the opening register R. When viewed this way, the statistical distance guar-
antee of the EFI pair translates to statistical binding property, whereas the computational
indistinguishability of the EFI pair translates to the computational hiding property of the
commitment. Thus an EFI pair is essentially a statistically binding canonical form com-
mitment. This observation (which is implicit in [62]) is indeed the starting point of our
work.

Furthermore, the round collapsing theorem in [62] shows that any quantum commitment
can be compiled into the canonical form while preserving the hiding and binding prop-
erties. Since statistically binding commitments and statistically hiding commitments are
equivalent [27, 62], we can construct EFI pairs from either one.

Showing how to construct EFI pairs from commitment schemes that are neither statistically
binding nor statistically hiding appears more challenging. One may hope to somehow
construct a candidate EFI pair of states, and prove computational indistinguishability from
computational security of the commitment, and statistical distance via an inefficient attack
on the commitment scheme. However, it is not clear how to transform an inefficient attack
against the binding property into a distinguishing attack as needed for EFI pairs. (Classically,
this part can be done using one-way functions, but, as argued above, these techniques do not
have natural quantum analogues.)

We get around this difficulty by going through oblivious transfer, where the security for
both ends can be naturally viewed as distinguishing tasks, and is thus more amenable to
constructing EFIs even without statistical security. In fact, we observe that semi-honest OT
suffices. Let us elaborate.

ITCS 2023
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EFI pairs from semi-honest OT. We first define a new notion of quantum oblivious transfer,
which considers only “purification attacks”. (This notion can be viewed as a quantum analogue
of the classical “non-erasing, honest-but-curious” attacks.) Furthermore, the semi-honest
adversaries must run the purified protocol till the end, i.e. are disallowed to abort. (Classically,
this does not matter.)

We first describe constructing EFI from semi-honest OT, which is more straightforward.
Consider the adversarial view in the following two executions:

Here the sender is honest and the receiver is semi-honest. The sender chooses the bits
uniformly at random and the semi-honest receiver chooses the choice bit uniformly at
random. (By correctness, the receiver is always able to recover one bit specified by the
choice bit with certainty. The task for the semi-honest receiver is to extract the sender’s
other bit from his purified view.)
Here the receiver is honest and the sender is semi-honest. The receiver chooses the choice
bit uniformly at random and the semi-honest sender prepares two equal superposition
states |+⟩⊗2 for her input bits. (Here the task for the semi-honest sender is to extract
receiver’s choice bit from her purified view.)

It is easy to see that these views can be computed efficiently since the OT protocol is
efficient; and by the semi-honest security of OT, both tasks should be impossible for efficient
algorithms. At the same time, the impossibility of Chailloux, Gutoski, and Sikora [23]
states that for every OT protocol, one of these two tasks can be accomplished with success
probability ≥ 2

3 inefficiently.
Now the construction of EFI pairs follows by simply reinterpreting these bit extraction

tasks as a distinguishing task. In particular, for b = 0, 1, the b-th state is simply the
concatenation of the two above views, conditioned on the correct answers being b in both
executions. In other words, the b-th state consists of the semi-honest receiver’s view of the
first execution when the sender’s other bit is b, followed by the semi-honest sender’s view of
the second execution when the receiver’s choice bit is b.

Semi-honest OT from commitments. Many prior works have already studied constructing
quantum oblivious transfer from commitments [26, 12, 28, 27, 31, 62]. However, they all start
with a commitment with some statistical security guarantee – either statistically binding
or statistically hiding. On the other hand, we want to start from an arbitrary commitment
scheme (which may be computationally binding and computationally hiding). While these
constructions could probably still carry over, since here we are aiming for a much weaker
security, we instead give a much simplified protocol with a self-contained description. Let
us begin by considering the simplest (almost trivial) quantum oblivious transfer protocol
inspired by Crépeau and Kilian [26], which is only secure if both parties are completely
honest during the protocol:
1. The sender on input two message bits b0, b1, sends two qubits |b0⟩⊗H |b1⟩, where the first

qubit encodes the first message bit in the standard basis and the second qubit encodes
the second message bit in the Hadamard basis.

2. The receiver measures both qubits in the standard basis to recover b0 and a random bit
b′

1, or in the Hadamard basis to recover a random bit b′
0 and b1.

Security is straightforward: the sender gets no information at all, and the receiver destroys
the information about the other bit by measuring it in an incompatible basis.

However, this is obviously not semi-honest secure as a purified receiver could simply
uncompute a purified measurement to recover the other bit as well. Indeed, a better way to
“erase” information in the semi-honest model is to simply send it to the other party: in this
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case, the receiver sends a copy of these two measured (classical) bits to the sender. Since the
semi-honest receiver’s purified view at the end has the sender’s private registers traced out,
doing this ensures that these measured bits do indeed collapse even for the purified view.

On the other hand, since these two bits contains information about the receiver’s choice
bit, we cannot simply send it in the clear as now the sender can break. One simple fix is to
have the receiver instead commit to the two measured bits to the sender. This strategy is
also often employed when designing maliciously secure OT from commitments [12, 28, 27].

It is easy to see that this committed-measurement OT remains secure against semi-honest
sender by hiding of the commitment, and security against semi-honest receiver remains to
be seen. If the commitment is statistically binding, then it can be seen that the collapse
still occurs; but the computational binding case seems less clear. Fortunately, this can be
overcome through Yan’s computational collapse theorem [62], which on a high level states that
a canonical form computationally binding commitment scheme computationally “collapses”
the commited qubit (given that the commit phase was performed semi-honestly), even if
the commitment is never opened. (Their theorem is established via reducing a collapsing
distinguishing adversary to an adversary that breaks computational binding of the canonical
form commitment.) This completes the argument.

Multiparty secure computations for classical functionalities. Using a known sequence of
transformations outlined in existing works [6] (which builds on existing works including but
not limited to [12, 8, 35]), it is already known how construct, given any statistically binding
quantum commitment scheme (and hence also given any EFI pair), multi-party protocols
that securely evaluate any classical function with any number of faults. Furthermore, these
protocols provide statistical security guarantees against at least one of the parties. As
an aside, via known results, these protocols can further be used to construct two-party
secure computations for general quantum functions (or channels) where only one party
obtains output [30], and in addition, reactive (meaning stateful and interactive) classical
functionalities [25, 42].

For the converse direction, we can now use the powerful equivalence established for
oblivious transfer above, and simply invoke the classical equivalence of Beimel, Malkin, and
Micali [9] to complete the proof. While the [9] proof contains parts which do not naturally
generalize to the quantum setting, the only thing we need from that proof is the reduction
from semi-honest OT to semi-honest 2PC for any non-trivial classical functionality (i.e. if it
contains an insecure minor), and this construction is black-box and hence extends to our
setting. While the semi-honest models are slightly different, we verify that their semi-honest
reduction also works for our model. Once we have semi-honest OT, we get EFI pairs by the
equivalence above.

Zero knowledge proofs from EFI pairs. We now turn to establishing an equivalence
between EFI pairs and non-trivial quantum computational zero knowledge (QCZK) proofs.
We first consider the task of constructing QCZK protocols for QMA from EFI pairs. Here the
commit-and-open QCZK protocol by Broadbent and Grilo [20] can be readily instantiated
by any quantum commitment. However, this protocol uses sequential repetition, and as a
consequence, requires multiple copies of the quantum witness to achieve negligible soundness.
As also proposed by Broadbent et al. [21], this limitation can be avoided via performing 2PC
for quantum (CPTP) functionalities, which can be constructed from OT [30] and thus EFI
pairs.

We now move on to general QCZK proofs without any constraint on prover efficiency and
show how to use EFI pairs to construct QCZK proofs for all of QIP. Before presenting our
protocol, let us recall the celebrated construction of Ben-Or et al. [10] that transforms any

ITCS 2023
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(without loss of generality, Arthur-Merlin or public-coin) IP protocol into a CZK protocol.
In the transformed protocol, the parties first run the original public-coin protocol, where
the prover only sends (statistically binding) commitments to its messages. Next, the parties
engage in a zero-knowledge protocol where the instance consists of the transcript so far, and
the language accepts a transcript if there exist valid openings to all the prover commitments
that would have caused the original verifier to accept.

Since QIP = IP [58, 43], it is natural to consider extending the [10] construction to
our setting. However, direct extension hits a roadblock: the statement that needs to be
proven in zero knowledge is now a quantum statement involving the commitment states
when instantiated with quantum commitments. This is not a context that is traditionally
considered by the zero knowledge literature. (Indeed, recall that even zero knowledge proofs
for QMA still consider classical statements.) Even if we attempt to mimic a zero knowledge
proof via statistical 2PC, we soon encounter another issue: how should the two parties agree
on the quantum statement that is being proven? Sure, we could make the verifier send the
quantum state in the statement to 2PC, but a malicious verifier could refuse to provide
the correct state. This becomes an issue as the verifier might be able to manipulate the
commitment message so that checking the validity of the commitments itself might reveal
non-trivial information about the committed bit.

We thus take a different path: we have the prover and the verifier engage in a secure
evaluation of the following reactive functionality (which also can be constructed from
OT [25, 42]). The verifier inputs its random challenges in the underlying interactive proof,
and the functionality uses these challenges to play the verifier role in an interactive proof
with the external prover. Finally the functionality outputs the acceptance bit to the external
verifier. Both soundness and zero knowledge follow from the security of the MPC.

EFI pairs from non-trivial QCZKHV. Finally, we show how to construct EFI pairs from
any QCZK proof for any language that is hard on average against BQP. Note that the
computational indistinguishability given by the QCZK security does not give EFI pairs
immediately as it might be possible to generate the hoenst view efficiently.

One possible approach might be to try to extend the classical result of Ostrovsky and
Widgerson [55] to our setting. However, they use the non-existence of one way functions
to build universal extrapolators that efficiently turn simulators into cheating provers, and
it is not clear how to use the non-existence of EFI pairs to construct quantum universal
extrapolators.

We instead turn to the works of Ong and Vadhan [59, 54], showing an equivalence between
instance-dependent commitments and CZK, that is a language admits an instance-dependent
commitment (a commitment, parameterized by an instance x, whose computational hiding
and statistical binding properties only hold if x is in or not in the language, respectively) if and
only if it admits a CZK proof. We note that if a hard-on-average language admits an instance-
dependent commitment, then this commitment is essentially a full-fledged commitment, thus
implying the existence of EFI pairs. Therefore, it remains to extend the equivalence to the
quantum setting, i.e. we wish to establish that any language admits a QCZK proof if and
only if it admits instance-dependent quantum commitments.

The bad news is that going from CZK to instance-dependent commitments again involve
going through instance-dependent one-way (universal hash) functions. However, we note that
the mixed states considered by Watrous [60] for handling QSZK readily gives an instance-
dependent mixed state for QCZK protocols: a weak variant of EFI states that is only required
to satisfy either statistical farness or computational indistinguishability if x is in or not
in the language, respectively. It can be seen that the transformations described before
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also readily extends to the instance-dependent setting, and thus this gives an instance-
dependent commitment. Indeed, this transformation from QCZK to instance-dependent
quantum commitments has been observed by the work of Yan et al. [63]. We then conclude
that if L is hard on average for BQP, then this instance-dependent mixed state averaged over
the hard distribution immediately gives an EFI pair.

Upon the completion of this work, we discovered a result by Chailloux, Kerenidis, and
Rosgen [24] that is similar to this part with very similar proof techniques. However, their
separation is between QIP = PSPACE and QMA, which is technically incomparable with our
separation between QCZK and BQP. Furthermore, they consider worst case hardness instead
of average case hardness here, and thus only getting quantum auxiliary-input EFI. In our
case, this difference is rather minor and the results can translate back and forth; and in their
case, it is not clear how to get standard EFI pairs from any notion of average case hardness
of QIP against QMA.4

1.2 Discussions and open questions
We now give a few open questions in this direction, organized into three categories. To keep
the discussion succinct, we point the readers to the references for details of the terminologies.

EFI and quantum complexity. One way functions (and equivalently pseudorandom gener-
ators and classical EFID pairs) have been one of the central objects in complexity theory [7].
Since EFI pairs are both essential and sufficient for much of quantum cryptography, and
furthermore are very simple to describe, it is natural to ask whether EFI pairs could also be
a useful object to study from the complexity point of view. Note that the computational
hardness underlying EFI pairs, which is the quantum state distinguishability problem, seems
especially relevant to the study of the complexity of quantum states and transformations [1].

One very important question, we think, is whether there is any barrier for proving the
existence of EFI pairs. In the classical setting, existence of one-way functions implies P ̸= NP,
but is there any barrier for establishing the existence of quantum EFI pairs? EFI pairs would
immediately imply a quantum circuit lower bound for an explicit two-outcome measurement,
but is there any reason to believe that such a lower bound would be hard to establish?

For a more concrete example, is P vs PSPACE a (classical) barrier for the existence of
EFI pairs? In other words, does the existence of EFI pairs separate BQP from PSPACE? We
know that the existence of pseudorandom states do separate BQP from PP = PostBQP [49],
but nothing is known for EFI pairs. One way to achieve this could be to demonstrate a way
to synthesize the Helstrom measurement given a PSPACE oracle, which is closely related
to the unitary synthesis problem [5]: in particular, if the unitary synthesis problem could
be done by a PSPACE oracle, then the existence of EFI pairs would separate PSPACE from
BQP.

Hardness amplification for EFI. Another intriguing challenge is hardness amplification
for EFI. Is it possible to construct full-fledged EFI pairs from weaker veriants where either
the computational distance is non-negligible, or the statistical distance is bounded away
from 1, or both? What is the minimal initial gap between the statistical and computational
distances that still allows amplification?

4 For readers that are familiar with [24], even if we assume QIP is hard on average against QMA for BQP
samplable distributions, this still does not suffice for getting EFI pairs without quantum auxiliary input.
The reason is that the quantum auxiliary input needs to specify the state that witnesses the diamond
norm of the two channels, and it is not clear how this state could be prepared efficiently.

ITCS 2023
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Candidate EFI? Given the oracle separation, are there any concrete candidate assumptions
that imply quantum EFI, with formal evidence that it does not imply one-way functions?

Two natural candidates come from pseudorandom state candidates. One possible approach
is to assume that “sufficiently large” quantum random circuits are pseudorandom unitaries.
These random quantum circuits are already being investigated with motivations like quantum
supremacy [2, 3] and the theory of black holes [22, 19, 36]. One could hope that pursuing this
direction could ultimately lead to useful quantum cryptography that could be implemented
on near-term quantum devices. The other possible approach is to consider the pseudorandom
states proposed by Bouland, Fefferman, and Vazirani [15] from the physical description of
wormholes. Intuitively, such a construction could be secure based on the physical belief that
a wormhole is highly “scrambling”. In that paper, they also prove that their construction is
a secure pseudorandom state generator if the evolution unitary is a black-box Haar random
unitary.

Another candidate is proposed by Kawachi, Koshiba, Nishimura, and Yamakami [45]. On
a high level, they consider computational indistinguishability between two types of random
coset states, and show that it is at least as hard as the graph automorphism problem.

EFI and quantum cryptography. The importance of one way functions in classical crypto-
graphy cannot be overstated: virtually any non-trivial computational cryptography (those
that cannot be realized with respect to computationally unbounded adversaries) implies
the existence of one way functions classically. Yet it still remains to be seen how much of
quantum cryptography is related to EFI. For instance:
Quantum pseudorandomness. The celebrated result of Goldreich [32] shows existence of

classical EFI pairs imply pseudorandom generators and subsequently pseudorandom
functions. While we know how to construct various quantum cryptography from quantum
EFI pairs, the way we do it completely avoids the need to construct quantum pseudor-
andomness. Nevertheless, given the many applications of both classical and quantum
pseudorandomness, an important question is whether it is possible to construct quantum
pseudorandomness (pseudorandom states, unitaries, or any other meaningful pseudoran-
dom objects) from EFI pairs.

Quantum unforgeability. Cryptographic primitives such as digital signatures, message au-
thentication codes, or quantum money appear to inherently require some flavor of
one-wayness, in that a break involves solving a computationally hard search problem
where solutions exist and are efficiently verifiable given some additional secret information.
(In the public key setting, where some classical verification key is made public, solutions
are verifiable publicly.) Another related object already proposed previously is one-way
state generators [51]. As discussed, this form of computational hardness appears very
different than indistinguishability. Still, can we show that existence of any one of these
primitives implies existence of EFI pairs? Can we construct any of these primitives from
EFI pairs?

Quantum zero knowledge arguments. It is possible to extend our proof to show that if EFI
pairs exist then we can give a QSZK argument for any QMA language with an efficient
prover having a single copy of the witness. On the other hand, we are unable to show that
if L admits an argument then the instance-dependent commitment is computationally
binding for NO instances. On a high level, the difficulty is that known techniques in the
statistical binding setting do not translate to the computational setting, since we do not
have a hardness amplification procedure for computationally binding commitments: it is
not clear whether parallel repetition of commitments decreases the computational binding
error against malicious committers. We refer the readers to the related discussions in
Yan’s work [62] for more details.
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2 Preliminaries

2.1 Quantum information
We refer the reader to [53] for a comprehensive reference on the basics of quantum information
and quantum computation. We use standard Dirac notation for quantum states.

We recall the notion of density matrices, which are PSD trace-1 matrices that represent
the complete characterization of a state of a quantum system. The state of a system can
be “pure”, i.e. in the form of a state |ψ⟩, in which case the density matrix is |ψ⟩⟨ψ| (i.e. of
rank 1), or “mixed” which corresponds to a distribution over pure states, and is represented
by a density matrix of rank > 1. Two quantum states are identical if and only if their density
matrices are equal, and the distance between quantum states is also expressed as a function
of their density matrices, as explained below.

We recall that quantum operations can always be expressed as unitary operators on some
quantum system, and they act on the density matrix of this quantum system via conjugation.
We may sometimes refer to a quantum operation that uses some auxiliary registers, or that
removes (“traces out”) registers during the computation. Such a general quantum operation
is known as a quantum channel. (Mathematically, a quantum channel can be expressed as a
completely-positive trace-preserving (CPTP) map on the space of density matrices, but this
formulation will not be required for our purposes.)

We use D(H) to denote the set of density matrices on a Hilbert space H. Let ρ, σ ∈ D(H)
be density matrices. We write TD(ρ, σ) to denote the trace distance between them, i.e.,

TD(ρ, σ) = 1
2 ∥ρ− σ∥1

where ∥X∥1 = Tr(
√
X†X) denotes the trace norm. We also use F (ρ, σ) =

(
Tr

(√√
ρσ
√
ρ
))2

to denote the fidelity of ρ and σ.

▶ Fact 3. For any two mixed states ρ, σ, (F (ρ, σ))2 + (TD(ρ, σ))2 ≤ 1.

▶ Theorem 4 (Holevo–Helstrom [39, 38]). The best success probability to (inefficiently)
distinguish two mixed states ρ, σ is given by 1

2 (1 + TD(ρ, σ)). The measurement that achieves
this success probability is called the Helstrom measurement.

▶ Corollary 5. For any mixed states ρ, σ and integer n > 0,

TD(ρ⊗n, σ⊗n) ≥ 1− exp(−nTD(ρ, σ)/2).

We recall that ρ⊗n is the state containing n-copies of the state represented by ρ.

Proof. We prove this by building a majority-vote distinguisher. Let D be the distinguisher
optimally distinguishing ρ from σ by Holevo–Helstrom theorem. We apply D on each
copy, and take the majority vote. Corollary follows by applying Hoeffding’s inequality and
Holevo–Helstrom again. ◀

2.2 Quantum algorithms
A quantum algorithm A is a family of generalized quantum circuits {An}n∈N over a discrete
universal gate set (such as {CNOT,H, T}). By generalized, we mean that such circuits can
have a subset of input qubits that are designated to be initialized in the zero state, and a
subset of output qubits that are designated to be traced out at the end of the computation.
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Thus a generalized quantum circuit An corresponds to a quantum channel. When we write
An(ρ) for some density matrix ρ, we mean the output of the generalized circuit An on input
ρ. If we only take the quantum gates of An and ignore the subset of input/output qubits that
are initialized to zeroes/traced out, then we get the unitary part of An, which corresponds
to a unitary operator which we denote by Ân. The size of a generalized quantum circuit is
the number of gates in it, plus the number of input and output qubits.

We say that A = {An}n is a quantum polynomial-time (QPT) algorithm if there exists
a polynomial p such that the size of each circuit An is at most p(n). We furthermore say
that A is uniform if there exists a deterministic polynomial-time Turing machine M that on
input 1n outputs the description of An.

We also define the notion of a non-uniform QPT algorithm A that consists of a family
{(An, ρn)}n where {An}n is a polynomial-size family of circuits (not necessarily uniformly
generated), and for each n there is additionally a subset of input qubits of An that are
designated to be initialized with the density matrix ρn of polynomial length. This is intended
to model nonuniform quantum adversaries who may receive quantum states as advice.

The notation we use to describe the inputs/outputs of quantum algorithms will largely
mimic what is used in the classical cryptography literature. For example, for a state generator
algorithm G, we write Gn(k) to denote running the generalized quantum circuit Gn on input
|k⟩⟨k|, which outputs a state ρk.

Ultimately, all inputs to a quantum circuit are density matrices. However, we mix-and-
match between classical, pure state, and density matrix notation; for example, we may write
An(k, |θ⟩ , ρ) to denote running the circuit An on input |k⟩⟨k| ⊗ |θ⟩⟨θ| ⊗ ρ. In general, we will
not explain all the input and output sizes of every quantum circuit in excruciating detail;
we will implicitly assume that a quantum circuit in question has the appropriate number of
input and output qubits as required by context.

We assume that all parties are quantum algorithms with (noiseless) quantum communica-
tion. Furthermore, all algorithms run with the same security parameter.

A function f : N → R≥0 is negligible, if for any polynomial p, f(λ) ≤ 1/p(λ) for all
sufficiently large λ ∈ N. Otherwise, we say it is noticeable, or equivalently when it is infinitely
often at least 1/p(λ).

▶ Definition 6 (Computational indistinguishability). For two families of mixed states
{ρλ}λ, {σλ}λ, we say that they are computationally indistinguishable (against BQP/qpoly),
if for any QPT algorithm D, there exists a negligible function ε such that for any security
parameter λ and advice state α = (αλ)λ,

|Pr[D(αλ, ρλ) = 1]− Pr[D(αλ, σλ) = 1]| ≤ ε(λ).

Extending the standard cryptographic convention,the above definition considers adversaries
with non-uniform quantum advice. The definition can be adapted to the uniform setting
by simply requiring fixing α = ⊥. We note that the reductions shown in this work are
all uniform, or “advice preserving”: given an adversary with some advice, the generated
adversary uses the same advice.

3 EFI pairs of states

We define the main object considered in this work, namely pairs of efficiently generatable
mixed quantum states that are statistically far and yet computationally indistinguishable:
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▶ Definition 7. We call ξ = (ξb,λ) a pair of EFI states if it satisfies the following criteria:
1. Efficient generation: There exists a uniform QPT quantum algorithm A that on input

(1λ, b) for some integer λ and b ∈ {0, 1}, outputs the mixed state ξb,λ.
2. Statistically Far: TD(ξ0,λ, ξ1,λ) as a function of λ is at least inverse polynomial.
3. Computational Indistinguishability: (ξ0,λ)λ is computationally indistinguishable to

(ξ1,λ)λ.

Here we require exact generation of the mixed state. Since we only care about the
existence of such object, this requirement does not make a difference. In particular, if we can
approximately synthesize a certain family of states with inverse-exponential fidelity, then
taking the output of the circuit directly would also satisfy the requirement.

4 Commitments and semi-honest oblivious transfer

In this work, we without loss of generality focus on the canonical form of quantum commitment
schemes [62, Definition 5]. A commitment scheme consists of two phases. In the commitment
phase of a canonical commitment scheme, Alice (the committer) chooses a bit b, and runs a
uniform QPT circuit Qλ,b on all zeroes, which outputs two registers C,R; she then proceeds
to send the register C to Bob (the receiver). Later in the reveal phase, Alice sends the other
register R and the bit b to Bob; Bob accepts the opening if he performs Q†

λ,b on two registers
and measures all zeroes in the computational basis. We now recall the requirements on the
commitment schemes, specialized to canonical forms for convenience. It will be convenient
to define the commitment message ρλ,b := TrR(Qλ,b |0⟩⟨0|Q†

λ,b).

▶ Definition 8 (Computational hiding). A commitment scheme satisfies computational hiding,
if ρλ,0 is computationally indistinguishable to ρλ,1.

We are going to consider a specific more restricted variant of statistical binding called
honest binding. We refer the readers to related works [63, 31, 51, 62] for a more thorough
discussion on this variant (and how it is equivalent to statistical binding for canonical
commitment schemes).

▶ Definition 9 (Honest binding). A canonical commitment scheme satisfies honest computa-
tional (resp. statistical) binding if for any auxiliary state |ψ⟩ and any polynomial-time (resp.
physically) realizable unitary U , we have that∥∥∥(

Qλ,1 |0⟩⟨0|CR Q
†
λ,1 ⊗ IZ

)
(IC ⊗ URZ) (Qλ,0 |0⟩CR ⊗ |ψ⟩Z)

∥∥∥
2

is negligible.

In an oblivious transfer protocol, Bob (the sender) chooses two bits x0, x1 to send to
Alice, and Alice (the receiver) chooses the bit b to receive. At the end of the protocol, Alice
is able to recover xb. Here, we assume the protocol is able to transmit xb with probability 1.

Here, we say a (quantum) party is semi-honest (or secure against purified adversaries,
analogous to the classical honest-but-curious security), if they follow the protocol (without
abort) except that they can purify (without loss of generality) all measurements. We in
addition also allow Bob (the sender) to purify his randomness for x0, x1 if he was to sample
them randomly; on the other hand, we require Alice (the receiver) to specify a classical
input to make it easier to define security. (Looking ahead, this is also needed to invoke the
semi-honest inefficient attack [23].) At the end, they output their residual state as their view
for the distinguisher as usual.
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▶ Definition 10 (Statistical security against semi-honest Alice). We say an oblivious transfer
protocol is P ∗

A-secure against semi-honest Alice, if for every bits b, c, at the end of the protocol
with Alice’s input being b, a semi-honest Alice’s view when xb = c and x1−b = 0 is at most
P ∗

A-close to that when xb = c and x1−b = 1 in trace distance.

▶ Definition 11 (Statistical security against semi-honest Bob). We say an oblivious transfer
protocol is P ∗

B-secure against semi-honest Bob, if for every possible (purified) Bob’s inputs
(meaning an arbitrary bipartite quantum state where the first part is a qubit indicating the
input choice bit), at the end of the protocol, a semi-honest Bob’s view when b = 0 is at most
P ∗

B-close to that when b = 1 in trace distance.

Computational security against semi-honest Alice and Bob can be similarly defined, except
considering these two views to be computationally indistinguishable instead of statistically
indistinguishable.

We recall the impossibility due to Chailloux, Gutoski, and Sikora showing that oblivious
transfer protocols that are statistically secure against both parties do not exist. While
the “semi-honest” definition they have is different from here, we could open the proof and
check that the cheating strategies constructed there are indeed semi-honest according to our
definition.

▶ Theorem 12 ([23, Theorem 1.1]). For any oblivious transfer protocol, it holds that 2P ∗
B +

P ∗
A ≥ 2, where Alice chooses the choice bit uniformly at random (classically) and Bob

chooses the two bits as uniform superposition ( 1
2 (|00⟩+ |01⟩+ |10⟩+ |11⟩)), and P ∗

A is the
best probability that a semi-honest Alice is able to predict Bob’s choice correctly, and P ∗

B is
the best probability that a semi-honest Bob is able to predict both bits being sent by Alice
correctly.

We briefly recall the cheating strategies constructed in their proof. Alice’s strategy
is the following [23, Section 2.1]: she randomly chooses b and then follows the protocol
semi-honestly according to our definition; at the end, she performs a gentle measurement
to learn xb (it is gentle since by completeness she is supposed to be able to learn xb with
almost certainty), and then performs the Helstrom measurement (Theorem 4) to learn
x1−b. Similarly, Bob’s strategy is the following [23, Section 2.2]: he follows the protocol
semi-honestly, purifying all measurements including the uniform sampling of x0, x1; at the
end, he performs a post-processing to try to guess b. Let the success probability of Alice and
Bob be pa, pb respectively. They establish that for these two strategies, 2pb + pa ≥ 2, and
thus the theorem follows.

The following theorem is proven in [16]:

▶ Theorem 13. The following assumptions are equivalent.
1. Existence of EFI states.
2. Existence of statistically binding (canonical-form) commitment schemes.
3. Existence of commitment schemes.
4. Existence of semi-honest oblivious transfer.

5 Dichotomy for secure two party computations

In this section, we study secure two party computations with quantum parties for classical
functionalities. A secure two-party computation protocol consists of two (interactive uniform
quantum) algorithms A,B, where they receive (implicitly) the security parameter λ and
their respective inputs a, b, take turns to run and exchange a message register back and
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forth; in the end, we denote their joint state as ⟨A,B⟩ (a, b). We can also denote Alice’s
state to be ⟨A,B⟩ (a, b)A and Bob’s to be ⟨A,B⟩ (a, b)B. Without loss of generality, we
consider the protocol so that only Bob gets the output and otherwise they do not learn any
other information [9, Definition 1]. In this case, ⟨A,B⟩ (a, b) would simply be (⊥, z) as Alice
outputs nothing and Bob outputs the evaluated result z. In particular, this evaluated result
could be the output of any efficient quantum channel [30]. We can also define the output
state ⟨A∗, B⟩ (a, b) for a malicious Alice (and analogously for Bob), where the malicious Alice
can output anything she wants and not necessarily ⊥.

We now describe the definition for malicious simulation security.

▶ Definition 14 (Malicious simulation security). Let f = (fλ)λ be a quantum channel com-
putable by a polynomial-size quantum circuit. A protocol computing f satisfies malicious
simulation security for Alice, if the following holds. For any (malicious) QPT algorithm
A∗, there exists a QPT simulator S such that for any QPT distinguisher D, there exists a
negligible function ε such that for all security parameter λ, non-uniform bipartite advice state
ρAD, and Bob’s input b (permissible by fλ),

|Pr[D(⟨A∗, B⟩ (ρA, b), ρD) = 1]− Pr[D(Sf (ρA, b), ρD) = 1]| ≤ ε(λ),

where Sf (ρA, b) is the following algorithm:
The two-stage algorithm S(1λ, ρA) is run, which outputs some a∗.
Compute (za, zb)← fλ(a∗, b) to be the output of f . (In our setup, za = ⊥ but zb is the
actual output.)
Finish executing S with input za, which in the end outputs a certain state σ.
Output (σ, zb).

Malicious simulation security for Bob can be defined in the same way as above, except
exchanging the role of Alice and Bob.

We say the malicious simulation security is statistical if it holds even against any unboun-
ded algorithms A∗ and D, and in this case there need not be a running time bound on the
simulator.

In this work, we focus on secure two-party computations although the consequences also
generalize to secure multi-party computations where possibly more than two parties are
involved and all of them could receive outputs. We refer the readers to the prior work [8] for
related literature.

Combining our equivalence theorem from before and existing work constructing one-sided
statistically secure 2PC from statistically binding (quantum) commitments [8, 6, 61], we
immediately get the following corollary.

▶ Corollary 15. Assuming EFI state pairs exist, then any P/poly functionalities can be
computed with full malicious security and one-sided statistical security.

For the rest of the section, we show EFI states are also implied by non-trivial 2PC
protocols. For that purpose, we focus on 2PC protocols for finite functionalities. By “finite”,
we mean that the function to be computed is a fixed-size function independent of the security
parameter, say Yao’s millionaires’ problem.

▶ Definition 16 (Insecure minor). Let S1, S2, S3 be finite sets and f : S1 × S2 → S3 be a
(finite) function. Then we say f contains an insecure minor, if there exists x0, x1 ∈ S1 and
y0, y1 ∈ S2 such that f(x0, y0) = f(x1, y0) and f(x0, y1) ̸= f(x1, y1).
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▶ Lemma 17 ([9, Claim 1]). If a function f(·, ·) does not contain an insecure minor, then
there is a classical one-message perfectly secure computation protocol for f .

▶ Lemma 18. If a function f(·, ·) contains an insecure minor, then we can build an semi-
honest OT protocol from an semi-honest secure computation protocol for f .

Proof. This essentially follows from the work of Beimel, Malkin, and Micali [9, Claim 3].
Since the original proof is black-box, it also immediately generalizes to our setting when the
parties are quantum. As the precise definition of semi-honest is different in our case, we give
the proof for completeness.

Let x0, x1, y0, y1 be the values guaranteed by the insecure minor, and let Πf be the
semi-honest secure computation protocol for f . The (semi-honest) oblivious transfer protocol
described in that proof works as follows:

(Recall) Alice gets as input a0, a1 and Bob gets as input a choice bit b.
Execute Πf on input xa0 , y1−b, and Bob gets output z0.
Execute Πf on input xa1 , yb, and Bob gets output z1.
Bob outputs 0 if zb = f(x0, y1), otherwise Bob outputs 1.

Correctness follows directly since the construction is black-box. A semi-honest Alice’s view
only consists of her semi-honest view from two protocol executions, and thus Alice does not
learn anything about b. Similarly, a semi-honest Bob’s view only consists of his semi-honest
view from two protocol executions, and thus semi-honest security also follows from the
property of insecure minor and Alice’s privacy against semi-honest Bob for Πf . ◀

Combining this with Theorem 12, we immediately get the following:

▶ Corollary 19. If a function f(·, ·) contains an insecure minor, then f cannot be computed
by statistically-secure semi-honest protocols.

Combining our equivalence theorem with Lemmas 17 and 18, we obtain the following
dichotomy theorem. We shall remark that this theorem, similar to the classical proof [9], is
non-black-box in the use of the functionalities [26, 46, 47] due to the use of the equivalence
theorem.

▶ Theorem 20. If there is a semi-honest two-party secure computation protocol for a classical
finite functionality f(·, ·), then either f can be computed perfectly securely in a single message
or EFI states exist.

6 Quantum computational zero knowledge proofs

The existence of one-way functions implies that all of PSPACE admit a computational zero
knowledge proof [10, 58], and NP admits computational zero-knowledge proofs where proofs
can be efficiently generated given a witness for membership [34]. Furthermore, the existence
of computational zero-knowledge proofs for any non-trivial (i.e., average-case easy) language
implies the existence of (infinitely-often) one-way functions [55]. In this section, we use our
equivalence theorem to establish the quantum analogue of these classical results.

▶ Definition 21. A language L is in QCZK if there is a (quantum) interactive protocol
between an unbounded prover and a QPT verifier (specified by an interactive quantum Turing
machine V ) such that the following holds:

Completeness: For any x ∈ L, there is an unbounded prover strategy P that would make
V accept with probability at least 1− 2|x|.
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Soundness: For any x ̸∈ L and any unbounded prover strategy, V accepts with probability
at most 2|x|.
Computational zero knowledge: For any malicious QPT verifier V ∗, there exists a QPT
simulator S such that for any QPT distinguisher D and non-uniform bipartite advice
state ρAD, there exists a negligible function ε such that for any x ∈ L,

|Pr[D(⟨P, V ∗(ρA)⟩ (x, x)V ∗ , ρD) = 1]− Pr[D(S(x, ρA), ρD) = 1]| ≤ ε(|x|).

We can also consider a (much) weaker variant of this zero knowledge requirement called
computationally zero knowledge against purified verifiers with abort (or “honest verifier”),
where we restrict the malicious V ∗ to only purifying his state and aborting after any fixed
number of rounds5. We call the corresponding class QCZKHV, similar to QSZKHV with respect
to QSZK for statistical zero knowledge [60].

Note that here, unlike semi-honest OT where we disallow a semi-honest party to prema-
turely abort, here we must allow a purified verifier to abort prematurely (this makes the
complexity class smaller). This is because otherwise we can even show the corresponding
class (for even quantum perfect zero knowledge) is trivially equal to IP, by simply asking the
IP verifier at the end to destroy all the other information he has learned by measuring them
in Hadamard basis and then returning them to the prover.

▶ Fact 22 ([58, 60, 43, 48]). BQP ⊆ QSZK = QSZKHV ⊆ QCZK = QCZKHV ⊆ QIP = IP =
PSPACE.

We first consider QCZK protocols with efficient provers (in which case the largest com-
plexity class we can consider is QMA), and then move on to QCZK with inefficient provers.
The work by Broadbent and Grilo on QCZK [20] show how to build a commit-and-open zero
knowledge protocol for QCZK using a commitment scheme, and thus combining it with a
quantum commitment scheme, we get a QCZK proof, but it requires multiple copies of the
advice to boost the soundness to negligible. We strengthen this to show that we can achieve
the same thing from the same assumption, but with a single copy of the witness. Overall,
the following theorems are proven in [16]:

▶ Theorem 23. If EFI states exist, then QCZK = QIP. Furthermore, any language in QMA
has a quantum computational zero knowledge proof with negligible soundness and with an
efficient prover that uses only a single copy of the witness.

▶ Theorem 24. If there is a language in QCZKHV that is hard on average for BQP for some
BQP-samplable distribution D, i.e. any BQP algorithm has negligible success probability in
deciding L on average over D and the algorithm’s randomness, then EFI state pairs (secure
against uniform BQP adversaries) exist.
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