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Abstract
Many classical theorems in combinatorics establish the emergence of substructures within sufficiently
large collections of objects. Well-known examples are Ramsey’s theorem on monochromatic subgraphs
and the Erdős-Rado sunflower lemma. Implicit versions of the corresponding total search problems
are known to be PWPP-hard under randomized reductions in the case of Ramsey’s theorem and
PWPP-hard in the case of the sunflower lemma; here “implicit” means that the collection is
represented by a poly-sized circuit inducing an exponentially large number of objects.

We show that several other well-known theorems from extremal combinatorics – including
Erdős-Ko-Rado, Sperner, and Cayley’s formula – give rise to complete problems for PWPP and PPP.
This is in contrast to the Ramsey and Erdős-Rado problems, for which establishing inclusion in
PWPP has remained elusive. Besides significantly expanding the set of problems that are complete
for PWPP and PPP, our work identifies some key properties of combinatorial proofs of existence
that can give rise to completeness for these classes.

Our completeness results rely on efficient encodings for which finding collisions allows extracting
the desired substructure. These encodings are made possible by the tightness of the bounds for the
problems at hand (tighter than what is known for Ramsey’s theorem and the sunflower lemma).
Previous techniques for proving bounds in TFNP invariably made use of structured algorithms. Such
algorithms are not known to exist for the theorems considered in this work, as their proofs “from
the book” are non-constructive.
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1 Introduction

A well-known theorem by Ramsey gives a lower bound on the size of the largest monochromatic
clique in any edge-coloring of the complete graph using two colors.

Ramsey [25] Any edge-coloring of the complete graph on n vertices with two colors contains
a monochromatic clique of size at least 1

2 log n.

Ramsey’s theorem gives rise to a natural computational search problem Ramsey [18, 16]:
given a description of an edge-coloring, output the vertices of a monochromatic clique of
size 1

2 log n. Since the theorem guarantees the existence of a monochromatic clique of this
size, Ramsey belongs to the complexity class TFNP, consisting of efficiently verifiable search
problems to which a solution is guaranteed to exist [20].

The computational complexity of Ramsey very much depends on its representation. On
the one hand, it is efficiently solvable when the graph is given explicitly; a folklore proof of
Ramsey’s theorem gives an efficient algorithm to find such a subgraph. On the other hand,
the situation is less clear when the graph is represented implicitly, e.g., via a small Boolean
circuit that, for any pair of vertices, outputs the corresponding color of the edge-coloring of
the graph.1

Another TFNP problem considered in the literature that is motivated by a result in
extremal combinatorics arises from the well-known Erdős-Rado sunflower lemma.

Erdős-Rado [10] Any family of n-sets of cardinality greater than nnn! contains an n-
sunflower of size n + 1, i.e., subsets A1, A2, . . . , An+1 ∈ F such that, for some ∆,
Ai ∩ Aj = ∆ for every distinct Ai, Aj.

Similarly to Ramsey, an instance of the total search problem Sunflower [16] can be
represented implicitly, e.g., by a Boolean circuit which outputs a characteristic vector of a
set in the family when given the index of this set.

In general, little is known of the complexity of the implicit variants of Ramsey or
Sunflower – the proofs of the corresponding theorems are either non-constructive or result
in inefficient (i.e., superpolynomial-time) algorithms. Ramsey is known to be PWPP-hard
under randomized reductions, as shown by Krajíček [18] and Komargodski, Naor, and
Yogev [16], and Sunflower is known to be PWPP-hard, as shown by Komargodski, Naor,
and Yogev [16]. This means that finding the desired substructure is at least as hard as finding
collisions in an arbitrary poly-sized shrinking circuit and, hence, hard in the worst-case if
collision-resistant hash functions exist. However, they are not known to be complete for
the class PWPP and the intriguing question of whether they give rise to a complexity class
distinct from PWPP has remained open for years.

1.1 Our Results
We explore new connections between classical theorems in extremal combinatorics and the
complexity classes PPP [23] and PWPP [14], i.e., the classes of search problems with totality
guaranteed by the (weak) pigeonhole principle. We show that PPP and PWPP can be
characterized via a number of new TFNP problems based on the following theorems.

1 Note that, given such a representation, it might be even hard to compute the degree of a node with
respect to one of the two colors.
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Erdős-Ko-Rado [9]. Any family of distinct pairwise-intersecting k-sets on a universe of size
m has size at most

(
m−1
k−1

)
.

Sperner [27]. The largest antichain, i.e., a family of subsets such that no member is
contained in any other, on a universe with 2n elements is unique and consists of all
subsets of size n.

Cayley [4]. There are exactly nn−2 spanning trees of the complete graph on n vertices.

Just as for Ramsey and Sunflower, the corresponding search problems are efficiently
solvable when given explicit access to the family of objects and, again, their computational
complexity is open when we consider implicit access to the structure, e.g., where the instance
is given by a circuit that on input i returns an encoding of the ith object in the collection.2
The totality of the problems we define follows from a common principle – the instances are
given via an implicit representation of a sufficiently large collection of objects (e.g., subsets
for Erdős-Ko-Rado) such that, by the corresponding theorem, there exists a small subset of
these objects satisfying some efficiently verifiable property (e.g, a pair of disjoint subsets for
Erdős-Ko-Rado).

In addition to the above completeness results, we define TFNP problems arising from the
following results in extremal combinatorics.

Mantel [19]. Any triangle-free graph on n vertices has at most n2/4 edges.

Turán [28]. If G = (V, E) is a graph on n = |V | vertices that does not contain any
r + 1-clique, then |E| ≤ (1 − 1

r ) n2

2 .

Ward-Szabó [29]. Any edge-coloring of the complete graph on n vertices with 2 ≤ r ≤
√

n

colors must contain a bichromatic triangle.

In the case of the Ward-Szabó theorem, we define three variants of the corresponding
computational problem. We prove that all three variants are PWPP-hard, the first one is in
PWPP and the second in in PPP. Proving the inclusion for the third variant remains open
and it joins Ramsey and Sunflower as a candidate problem that might define a new class
above PWPP. Turán’s theorem is a generalization of Mantel’s theorem. We define a weak
version of a problem based on Turán’s theorem for every r, and prove that these problems
form a hierarchy between PWPP and PPP. Furthermore, we define strong versions which,
by a reduction from [24], form a hierarchy above PPP. It is open whether these hierarchies
colllapse. An overview of our results in terms of weak and strong problems (see Section 1.3)
is given in Table 1.

1.2 Techniques and Ideas
A long-standing open problem regarding Ramsey and Sunflower has been to determine
their status with respect to the classes PWPP and PPP. For the most part, the most
challenging part in establishing completeness for some syntactic subclass of TFNP lies in
proving hardness (see, e.g., [7, 21, 11]). For subclasses of TFNP such as PPAD, PPA, and PLS,

2 Note that an implicit representation of the collection might not necessarily satisfy the assumptions of
the underlying theorem. For instance, representing sets via characteristic vectors for Erdős-Ko-Rado
does not ensure that they are actually k-sets or that they are distinct. Importantly, such a violation
could allow evading the totality of the search problem. Nevertheless, we can ensure totality by allowing
locally verifiable evidence of a malformed representation as a solution, e.g., an index not corresponding
to a k-set or two indices corresponding to the same set.

ITCS 2023
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Table 1 Summary of the complexity of problems we consider. Except for Ramsey
and Sunflower, all problems were introduced in this work. The containment results for
weak-general-Erdős-Ko-Radok and general-Erdős-Ko-Radok rely on the efficient Baranyai
assumption (Assumption 4.12). The PWPP-hardness of Ramsey is known only under randomized
reductions.

Problem Hardness Containment

Ramsey PWPP [18, 16]
TFNPSunflower

Ward-Szabó
PWPP

[Theorems 7.5, 8.4, and 8.14]

weak-Mantel PPP

[Theorems 7.8, 8.5, and 8.15]
weak-Turánr

Ward-Szabó-Colorful-Collisions
Ward-Szabó-Collisions

PWPP [Theorems 4.5, 4.14, 5.3, 6.3, 7.5, and 7.6]
weak-Erdős-Ko-Rado
weak-general-Erdős-Ko-Radok

weak-Sperner-Antichain
weak-Cayley
Erdős-Ko-Rado

PPP [Theorems 4.7, 4.16, 5.5, and 6.5]general-Erdős-Ko-Radok

Sperner-Antichain
Cayley
Mantel PPP [Theorem 8.9] TFNP

the inclusion in a subclass mostly follows from the existence of an inefficient yet structured
algorithm for the problem at hand; for example, the chessplayer algorithm for PPA [23] or
the steepest descent algorithm for PLS [15]. However, this methodology seems inapplicable
for proving inclusion in PWPP or PPP as these classes do not exhibit any characterizing
graph-theoretic structure that could capture some class of natural algorithms.

In contrast to many existing bounds in TFNP, our work does not make use of structured
algorithms but instead makes use of encodings that translate between substructures and
collisions in circuits. In order to establish inclusion in PWPP, we encode the objects of the
collection using a “property-preserving encoding” that encodes the objects in a way that
translates some specific relation into collisions. More precisely, we want an encoding function
that is efficiently computable and (nearly) optimal, such that whenever two elements have
the same encoding, these two elements give a solution to the original problem. While this
technique is quite general, it is not always clear how to instantiate the encoding to get the
desired collisions.

Consider, for example, the total search problem corresponding to the Erdős-Ko-Rado
theorem for intersecting families of n-sets on a universe of size 2n. An instance can be given
by a Boolean circuit C : {0, 1}⌈log((2n−1

n−1 ))⌉+1 → {0, 1}2n representing a family of subsets
of [2n], i.e., C(i) is the characteristic vector of the i-th n-set in the family. Suppose the
outputs of C define distinct n-sets. Since there are more than

(2n−1
n−1

)
of them, then, by the

Erdős-Ko-Rado theorem, there must exist a pair of inputs mapped to disjoint n-sets by C.
We define any such pair of inputs to be a solution. To ensure totality of the corresponding
search problem, circuits that do not represent distinct n-sets give rise to additional solutions
of the form (a) an i such that C(i) is not an n-set, or (b) i ̸= j such that C(i) = C(j).

When proving that the above total search problem is contained in the complexity class
PWPP, at a high level, we want to encode the n-sets of the family using a shrinking circuit,
in such a way that collisions correspond to disjoint sets. Observe that for n-sets in a universe



R. Bourneuf, L. Folwarczný, P. Hubáček, A. Rosen, and N. I. Schwartzbach 22:5

of size 2n, the only disjoint sets are complements and, hence, we get an equivalent instance
of the problem if we map each set to either itself or its complement, arbitrarily. In our
construction, we map each set S to the representative not containing the element 1. That is,
if 1 ̸∈ S, the set is left unchanged and, otherwise, it is mapped to its complement S. Note
that, by the pigeonhole principle, two sets that do not contain 1 must have a non-empty
intersection since we work with n-subsets of [2n]. To obtain a shrinking circuit, we make use
of Cover encodings (Section 3.1) that give an optimal encoding of all n-sets by considering
their lexicographic order. Notice that if the input S is not an n-set, we may map it arbitrarily
to any n-set, as a collision, in this case, yields a solution to the instance of the above problem
motivated by the Erdős-Ko-Rado theorem.

In contrast, the PWPP-hardness results for Ramsey and Sunflower follow an elegant
and rather direct (compared to other hardness results for subclasses of TFNP) technique
of the graph-hash product [18, 16], which we illustrate on Ramsey. Recall that there are
known randomized constructions of edge-colorings of the complete graph K2n/4 on 2n/4

vertices that do not contain a monochromatic clique of size n/2 [8]. Given such an underlying
edge-coloring of K2n/4 and a hash function h mapping n-bit strings to n/4-bit strings, one
can construct an edge-coloring of the complete graph on 2n vertices by assigning to every
edge (u, v) ∈ {0, 1}n × {0, 1}n the color of the edge (h(u), h(v)) ∈ {0, 1}n/4 × {0, 1}n/4 from
the underlying coloring. Since the underlying edge-coloring of K2n/4 does not contain a
monochromatic clique of size n/2, it is easy to see that any monochromatic clique of size n/2
in the resulting edge-coloring of K2n (guaranteed to exist by Ramsey’s theorem) must have
been introduced via a collision in the hash h.

As noted by [16], the structure of a PWPP-hardness proof using the graph-hash product is
not restricted to total search problems corresponding to graph-theoretic theorems of existence;
indeed, [16] used the graph-hash product to prove also PWPP-hardness of Sunflower. On a
high level, for a problem to be amenable to the graph-hash product technique, it is sufficient
to be able to construct a collection of objects such that 1) it does not contain the desired
substructure, 2) the logarithm of its size is at least a constant fraction of the logarithm of the
threshold necessary for the existential theorem to apply3 and 3) it can be efficiently indexed.
Then, we can interpret the output of an appropriately shrinking hash h as an index into the
small collection of objects, and, for each index, we can efficiently compute and output the
corresponding element in the collection. Again, since the small collection does not contain
the desired substructure, all solutions of the instance constructed via graph-hash product
must in some way result from a collision in the hash h.

For example, consider the total search problem arising from Sperner’s theorem on
antichains – here, the threshold size is

(2n
n

)
, meaning that if we have a family with strictly

more than
(2n

n

)
distinct subsets of [2n] then one subset from the family must be contained in

another member of the family. It is straightforward to construct a family of subsets that
does not contain the specific substructure (i.e., a subset that is included in another one) with
size equal to the threshold size

(2n
n

)
. It suffices to consider the family of all the n-subsets of

[2n]. Similarly, for many other combinatorial problems we study, an adequate collection of
objects can be found by looking at a collection of maximum size that does not contain the
substructure.

We also show natural reductions between some of the problems we define (for instance,
from Erdős-Ko-Rado to Sperner-Antichain), which, in our opinion, highlights the
relevance of these new problems and the fact that their definition is the correct one.

3 This is a technical condition ensuring that we can reduce from a PWPP-complete variant of the problem
of finding collisions in a shrinking hash. Note that it is easy to find collisions in functions that exhibit
extreme shrinking.

ITCS 2023
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1.3 PPP-Completeness From Extremal Combinatorics
Up to this point, our discussion did not explicitly distinguish between the classes PWPP
and PPP. However, our work highlights important structural differences between the two
complexity classes. Recall that the class PWPP contains the search problems in TFNP whose
totality can be proved using the weak pigeonhole principle: “In any assignment of 2n pigeons
to n holes there must be two pigeons sharing the same hole.”

This statement can be seen as a result in extremal combinatorics bounding the maximum
number of pigeons that can be assigned to n holes without two pigeons being sent to the
same hole. More generally, we say that a theorem from extremal combinatorics is “weak” if it
gives an upper bound (which may or may not be tight) on the maximum size of a collection
of objects that does not contain some substructure (above, two pigeons sharing the same
hole). On the contrary, we say that a theorem from extremal combinatorics is “strong” if
it gives a tight upper bound on the maximum size of a collection of objects that does not
contain some substructure, as well as some structural property about the maximum families
without the substructure. For instance, the strong pigeonhole principle can be stated as: “In
any assignment of n pigeons to n holes there is either a pigeon in the first hole or two pigeons
sharing the same hole.” Note that it is exactly this formulation of the strong pigeonhole
principle that defines the class PPP.

Many results in extremal combinatorics have both a weak statement and a strong
statement. For such results, we can define a problem corresponding to the weak statement,
which often is related to PWPP, and a problem corresponding to the strong statement,
which often is related to PPP. In this paper, all PWPP-hard problems correspond to a
weak theorem in extremal combinatorics, while PPP-hard problems correspond to a strong
theorems in extremal combinatorics. As an example, consider Cayley’s formula and note that
the bound nn−2 is tight. Hence, if we are given a collection of exactly nn−2 distinct graphs
on n vertices, then either one of the graphs is not a spanning tree, or every spanning tree is in
the collection. This observation induces a TFNP problem that we show to be PPP-complete.

1.4 Related Work
In independent and concurrent work, Pasarkar, Yannakakis, and Papadimitriou [24] explored
the connections between extremal combinatorics and the class PPP. They defined a new
subclass of TFNP called PLC inspired by the proof of Ramsey’s theorem and proved that
this class contains Ramsey, a version of Sunflower and the whole PPP. Compared to
our work, they also considered the Erdős-Ko-Rado theorem, yet, in the setup where the
universe has size 2n and the subsets of this universe have size 2; they proved that this
variant is also PPP-complete. Importantly, our setup does not allow subsets of constant
size. Pasarkar et al. also considered problems based on Turán’s theorem and problems
called Bad-k-Coloring and show that these problems form a hierarchy above PPP. Their
problems based on Turán’s theorem are equivalent to our Turánr and hence their reduction
implies Turánr ≤ Turánr+1.

Another subclass of TFNP, based on approximate counting, containing Ramsey was
defined by Kołodziejczyk and Thapen [17].

Compared to the majority of subclasses of TFNP that have been extensively studied and
are known to capture various total search problems from diverse domains of mathematics,
PPP and PWPP might seem less expressive and the first non-trivial completeness results
appeared only recently. Sotiraki, Zampetakis, and Zirdelis [26] and Ban, Jain, Papadimitriou,
Psomas, and Rubinstein [1] demonstrated that PPP contains computational problems from
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number theory and the theory of integral lattices. In particular, Sotiraki et al. showed
PPP-completeness of a computational problem related to Blitchfeld’s theorem and PPP-
completeness (resp. PWPP-completeness) of a problem motivated by the Short Integer
Solution problem. Hubáček and Václavek [13] showed that some general formalizations of
the discrete logarithm problem are complete for PWPP and PPP and, motivated by classical
constructions of collision-resistant hashing, they characterized PWPP via the problem of
breaking claw-free (pseudo-)permutations.

1.5 Open Problems
Our work suggests various interesting directions for future research:

We exploit the power of strong statements in extremal combinatorics for establishing
PPP-completeness. The notorious lack of tight bounds for the Erdős-Rado sunflower
lemma and Ramsey’s theorem implies that we have no strong version of these theorems,
which may explain why showing the inclusion of the corresponding problems in, e.g., PPP
has eluded researchers.
We introduced total search problems corresponding to Mantel’s theorem, Turán’s theorem,
and Ward-Szabó’s theorem. In this work, we only prove hardness results for these problems
but no inclusion results. Hence, it is still open whether they are complete for the classes
PPP and PWPP, or whether they could define a new subclass of TFNP.
Another exciting question is whether the efficient Baranyai assumption (Assumption 4.12)
holds, as well as whether it is possible to prove the inclusion results of the problems
associated to the general version of Erdős-Ko-Rado’s theorem without that assumption.
Showing reductions between general-Erdős-Ko-Radok and general-Erdős-Ko-
Radol for k ̸= l without the efficient Baranyai assumption would also be interesting.
The Turánr problem is defined in a similar fashion to Mantel and it holds Turánr ≤
Turánr+1. It is then open whether these problems are of the same complexity or whether
they form a hierarchy above PPP.
Finally, we believe that the problems between PWPP and PPP deserve a more thorough
investigation to further our understanding of the classes. In particular, weak-Turánr

and General-Pigeonk(n) (see Section 2.1) are two potential hierarchies between these
two classes.

2 Preliminaries

We denote by log x the binary logarithm of x. We denote by [n] the set {1, 2, . . . , n}. We
interpret elements of {0, 1}∗ as strings and write them as x = x1x2 · · · xn for xi ∈ {0, 1}. Each
element xi is also called a bit. We say n is the length of x ∈ {0, 1}n, and say x is an n-bit string.
We denote by 0n (resp. 1n) the n-bit string consisting of all 0 (resp. 1). If x, y ∈ {0, 1}∗

are two strings of lengths n, m, respectively, we denote by x ∥ y = x1x2 · · · xny1y2 · · · ym the
concatenation of x and y. We denote by ≤ the lexicographical order on strings. Note that ≤
is a partial order as it is only well-defined for strings of the same length. We use x < y to
denote x ≤ y and x ̸= y. We may occasionally abuse notation and write x < k where k ∈ N,
in which case we mean the binary encoding of k on the same number of bits as x. If ⌈log k⌉
exceeds the length of x, we define x < k such that the order is total.

If Ω is a set of size n, we associate the set 2Ω with the characteristic vectors from {0, 1}n

for some arbitrary (but fixed) order on Ω. We denote by ⊆ the partial order on {0, 1}n where
x ⊆ y iff xi ≤ yi for every i = 1 . . . n. If x ∈ {0, 1}n is a string, we denote by x := x1x2 · · · xn

the complement of x, defined by xi = 1 − xi. We also use other set-theoretic operators ∩, ∪, \
that are defined in a natural way. We also denote by |x| =

∑n
i=1 xi the number of 1s in x

when the length is implicit from the context.

ITCS 2023
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2.1 Total Search Problems
A search problem is defined by a binary relation R ⊆ {0, 1}∗ × {0, 1}∗ – a string s ∈ {0, 1}∗

is a solution for an instance x ∈ {0, 1}∗ if (x, s) ∈ R. A search problem defined by relation
R is total if for every x, there exists an s such that (x, s) ∈ R. We define TFNP as the
class of all total search problems that can be efficiently verified, i.e., there is a deterministic
polynomial-time Turing machine that, given (x, s), outputs 1 if and only if (x, s) ∈ R and,
for every instance x, there exists a solution s of polynomial length in the size of x.

To avoid unnecessarily cumbersome phrasing throughout the paper, we define TFNP
relations implicitly by presenting the set of valid instances X ⊆ {0, 1}∗ recognizable in
polynomial time (in the length of an instance) and, for each instance i ∈ X, the set of
admissible solutions Yi ⊆ {0, 1}∗ for the instance i. It is then implicitly assumed that, for
any invalid instance i ∈ {0, 1}∗ \ X, we define the corresponding solution set as Yi = {0, 1}∗.

We say that A ∈ TFNP reduces to B ∈ TFNP (written also as A ≤ B) if there exist two
poly-time computable functions f and g satisfying

∀x, y ∈ {0, 1}∗ (f(x), y) ∈ B ⇒ (x, g(x, y)) ∈ A.

Next, we recall the definitions of the complexity classes PWPP and PPP via their canonical
complete problems weak-Pigeon and Pigeon.

▶ Definition 2.1 (weak-Pigeon and PWPP [14]). The problem weak-Pigeon is defined
by the relation
Instance: A Boolean circuit C : {0, 1}n → {0, 1}n−1.
Solution: x1 ̸= x2 s.t. C(x1) = C(x2).
The class of all TFNP problems reducible to weak-Pigeon is called PWPP.

▶ Definition 2.2 (Pigeon and PPP [23]). The problem Pigeon is defined by the relation
Instance: A Boolean circuit C : {0, 1}n → {0, 1}n.
Solution: One of the following:

(i) x s.t. C(x) = 0n,
(ii) x ̸= y s.t. C(x) = C(y).

The class of all TFNP problems reducible to Pigeon is called PPP.

On several occasions, we need to change the domain size of the weak-Pigeon circuit.
The following lemma was proved by Krajíček [18], and later by Jeřábek using the well-known
Merkle-Damgård construction [22, 6].

▶ Lemma 2.3 ([14]). Let p be a polyonimal satisfying p(n) > n for every n. If we modify
the definition of the problem weak-Pigeon by having a circuit C : {0, 1}p(n) → {0, 1}n, the
new problem is equivalent to the original weak-Pigeon.

More generally, we can define the problem General-Pigeonk(n) as follows.

▶ Definition 2.4 (General-Pigeonk(n)). The problem General-Pigeonk(n) is defined by
the relation
Instance: A Boolean circuit C : {0, 1}n → {0, 1}n.
Solution: One of the following:

(i) x ̸= y ∈ {0, 1}n s.t. C(x) = C(y),
(ii) x ∈ {0, 1}n s.t. C(x) is one of the first k(n) elements of {0, 1}n.
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This problem is mentioned by Goldberg and Papadimitriou [12] and they denote the
class of all problems reducible to General-Pigeonk(n) by PPPk(n). Note that this problem
gets harder as the growth-rate of k(n) decreases. It is trivial for k(n) = 2n, equivalent to
weak-Pigeon for k(n) = 2n−1 and to Pigeon for k(n) = 1.

This problem induces an entire family of problems that interpolates between
weak-Pigeon and Pigeon. It is not clear how many distinct problems appear in the
hierarchy. It is also unclear whether each PWPP-hard problem that is in PPP is in
fact equivalent to one of these. This is relevant to us in Section 7, where we reduce
to General-Pigeon2n−1−2n/2−1 , and in Section 8, where we show a hierarchy of problems
weak-Turánr between PWPP and PPP.

3 Property-Preserving Encodings

A key ingredient to our proofs of inclusion in PWPP and PPP is the use of efficient encodings.
We rely on two different types of encodings. The first one simply consists of bijections
between two different representations of the same set of objects, the first one being more
natural and more convenient to work with, and the second one being more concise. The
second type of encodings, which we call property-preserving encodings, consists of shrinking
functions, in the sense that the range of the encoding is smaller than the domain, whose
collisions correspond to elements sharing some property of interest. The following definition
gives a precise description of the features we require from these encodings.

▶ Definition 3.1 (Property-preserving encoding). Let X ⊆ {0, 1}k, Y be sets, and let ∼ be an
equivalence relation on X . Let E : {0, 1}k → Y be a surjection. We say that E constitutes a
property-preserving encoding for ∼ on X if it satisfies.

(Efficiency). E can be computed in polynomial time.
(Compression). |Y| ≤ |X |.
(∼-correctness). ∀x, x′ ∈ X , [E(x) = E(x′) ⇒ x ∼ x′].

Note that bijections are a form of property-preserving encoding, where the equivalence
relation we want to preserve is equality. We describe several property-preserving encodings,
including some bijective encodings.

3.1 Cover Encodings
Our reductions in Section 4 make use of Cover encodings [5] that efficiently encode subsets
of a specified size in optimal space: namely, we may encode every subset S ⊆ {0, 1}m such
that |S| = k by considering the lexicographic order of all

(
m
k

)
such sets (in fact we consider

the lexicographic order over their characteristic vectors ∈ {0, 1}m), and mapping this into
binary strings: this requires

⌈
log

(
m
k

)⌉
bits which is optimal. We denote the encoding and

decoding functions as follows, with α(k, m) =
⌈
log

(
m
k

)⌉
.

Ek,m
Cover : {0, 1}m → {0, 1}α(k,m)

Dk,m
Cover : {0, 1}α(k,m) → {0, 1}m

We set ECover = En,2n
Cover and DCover = Dn,2n

Cover, and α = α(n, 2n). As described in [5], these
functions can be made efficient.

▶ Lemma 3.2. For every k ≤ m, Dk,m
Cover ◦ Ek,m

Cover is the identity over all k-subsets of {0, 1}m.
Similarly, Ek,m

Cover ◦ Dk,m
Cover is the identity over the first

(
k
m

)
elements in the lexicographic order

of {0, 1}α(k,m).
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Note that the behavior of Dk,m
Cover is undefined for the last 2α(k,m) −

(
m
k

)
inputs. Furthermore,

by design, Ek,m
Cover is well-defined on any subset of [m] (even if this subset does not have size k),

but the encoding only makes sense for subsets of size k. We also note the following identity
which will be useful later when dealing with n-subsets of [2n].

DCover(0α) = 0n1n = [n] (1)

▶ Remark 3.3. Consider the case of encoding n-subsets of [2n]. Since we encode sets according
to the rank of their characteristic vector in the lexicographic order, any set that does not
contain element 1 is one of the

(2n−1
n−1

)
= 1

2
(2n

n

)
≤ 2α−1 first ones in the lexicographic order,

hence its encoding starts with a 0. Conversely, if we decode an element whose first two bits
are 0’s, this means that the corresponding n-subset of [2n] is one of the first 2α−2 ≤

(2n−1
n−1

)
in the lexicographic order, hence that it does not contain the element 1.

▶ Remark 3.4. Let T1 be the tree composed of the edges (1, 2), (1, 3), . . . , (1, n). Then,
ẼPrüfer(T1) = 0β and D̃Prüfer(0β) = T1.

4 Erdős-Ko-Rado Theorem on Intersecting Families

In this section, we define total search problems motivated by the well-known Erdős-Ko-Rado
theorem on intersecting families and study their computational complexity. First, we present
a PWPP-complete variant of the problem. Next, we modify the problem using a strong
statement of the Erdős-Ko-Rado theorem to get a PPP-complete variant. Recall the definition
of an intersecting family and the statement of the Erdős-Ko-Rado theorem.

▶ Definition 4.1 (Intersecting family). Let Ω be any set. A family of sets F ⊆ 2Ω is an
intersecting family if no two sets are disjoint, i.e., if for any A, B ∈ F , it holds that A∩B ̸= ∅.

▶ Classical Theorem 4.2 (Erdős-Ko-Rado [9]). Assume m ≥ 2k. Any intersecting family
where each set has k elements on a universe of size m contains at most

(
m−1
k−1

)
sets, and this

bound is tight.

We start by defining a total search problem motivated by a special case of the Erdős-
Ko-Rado theorem for families of n-sets in a universe of size 2n presented in the following
corollary.

▶ Corollary 4.3. Any intersecting family where each set has n elements on a universe of size
2n contains at most

(2n−1
n−1

)
sets, and this bound is tight. Furthermore, if F is an intersecting

family of maximum size, then for every n-subset S, exactly one of S and S is in F .

Suppose that we have a collection containing more than
(2n−1

n−1
)

sets of size n on 2n

elements. Then, by Classical Theorem 4.2, there must be two sets that do not intersect.
This induces a total search problem of finding two such disjoint sets. We consider an implicit
representation of such a collection by a circuit C whose inputs serve as indices in the collection.
The output of the circuit is a representation of the corresponding set as a characteristic
vector of the 2n elements. Of course, this representation does not guarantee that C satisfies
the conditions required for Classical Theorem 4.2 to apply, which would make the problem
not total; in this case, we allow evidence of this fact to be a solution to the problem. Namely,
if for a given input x, we do not have |C(x)| = n, or two distinct indices x, y represent the
same set, i.e., C(x) = C(y), we allow such inputs as solutions.
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▶ Definition 4.4 (weak-Erdős-Ko-Rado). The problem weak-Erdős-Ko-Rado is
defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈log((2n−1

n−1 ))⌉+1 → {0, 1}2n.
Solution: One of the following:

(i) x s.t. |C(x)| ≠ n,
(ii) x ̸= y s.t. C(x) = C(y),
(iii) x, y s.t. C(x) ∩ C(y) = ∅.

As we discussed in the introduction, the totality of this problem is proved using a “weak”
statement in extremal combinatorics, namely the first part of Corollary 4.3, hence the name
Weak. However, the analogy with weak-Pigeon goes further. Indeed, our first main
theorem is the following.

▶ Theorem 4.5. weak-Erdős-Ko-Rado is PWPP-complete.

Due to space limitations, we present all the proofs from this and following sections and
some additional discussions in the full version of our work [3].

PPP-completeness using the tight bound

We remark that Corollary 4.3 gives a tight upper bound on the size of the collection.
Furthermore, we know some structure of any collection whose size is exactly one

(2n−1
n−1

)
: it

must either not be an intersecting family, or it must contain either [n] or [n]. This is an example
of a “strong” theorem in extremal combinatorics. As discussed in the introduction, this
observation allows us to modify the problem to be create a variant of weak-Erdős-Ko-Rado
that is to weak-Erdős-Ko-Rado what Pigeon is to weak-Pigeon. The idea is to let C

encode a collection whose size exactly matches the threshold. We then let C represent a
collection of exactly

(2n−1
n−1

)
sets, and also allow preimages of [n] and [n] as solutions. We

show that modifying the problem in this manner makes it PPP-complete, thus strengthening
the analogy with Pigeon. This technique is quite general, and we utilise it again in later
sections.

▶ Definition 4.6 (Erdős-Ko-Rado). The problem Erdős-Ko-Rado is defined by the
relation
Instance: A Boolean circuit C : {0, 1}⌈log((2n−1

n−1 ))⌉ → {0, 1}2n.
Solution: One of the following:

(i) x s.t. |C(x)| ≠ n and x <
(2n−1

n−1
)
,

(ii) x ̸= y s.t. C(x) = C(y) and x, y <
(2n−1

n−1
)
,

(iii) x, y s.t. C(x) ∩ C(y) = ∅ and x, y <
(2n−1

n−1
)
,

(iv) x s.t. C(x) = [n] or C(x) = [n] and x <
(2n−1

n−1
)
.

▶ Theorem 4.7. Erdős-Ko-Rado is PPP-complete.

4.1 A Generalized Erdős-Ko-Rado Problem
For the previous problems, we were only considering a very restricted version of the Erdős-
Ko-Rado theorem, namely for an intersecting family of n-subsets of [2n]. We now consider a
more general version where we consider an intersecting family of n-subsets of [kn] for some
k > 2.

We now fix some k > 2 for the rest of this section. The Erdős-Ko-Rado theorem states
that if F is an intersecting family where each set has n elements on a universe of size kn,
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then F contains at most
(

kn−1
n−1

)
sets. Then, we can define the following TFNP problem, very

similar to weak-Erdős-Ko-Rado.

▶ Definition 4.8 (weak-general-Erdős-Ko-Radok). The problem
weak-general-Erdős-Ko-Radok is defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈log((kn−1

n−1 ))⌉+1 → {0, 1}kn.
Solution: One of the following:

(i) x s.t. |C(x)| ≠ n,
(ii) x ̸= y s.t. C(x) = C(y),
(iii) x, y s.t. C(x) ∩ C(y) = ∅.

To prove that weak-general-Erdős-Ko-Radok ∈ PWPP, we present some useful
definitions and results related to the Erdős-Ko-Rado theorem.

▶ Definition 4.9. If k divides m, a (k, m)-parallel class is a set of m/k k-subsets of [m]
which partition [m].

▶ Classical Theorem 4.10 (Baranyai, [2]). If k divides m, we can define
(

m−1
k−1

)
(k, m)-parallel

classes A1, . . . , A(m−1
k−1 ) such that each k-subset of [m] appears in exactly one Ai.

▶ Remark 4.11. Note that Baranyai’s theorem proves the Erdős-Ko-Rado theorem in the case
where the size of the subsets divides the size of the universe. Note also that, up to renaming
of the elements, we can assume that A1 consists exactly of the sets {1, 2, . . . , n}, {n + 1, n +
2, . . . , 2n}, . . ., and {(k − 1)n + 1, (k − 1)n + 2, . . . , kn}.

However, all known proofs of this theorem are inefficient, in the sense that there is no known
way to define A1, . . . , A(m−1

k−1 ) such that given a k-subset of [m], we can find in polynomial
time the only i such that this subset appears in Ai. We make this assumption explicit.

▶ Assumption 4.12 (efficient Baranyai assumption). There is an efficient procedure to define
A1, . . . , A(m−1

k−1 ) and a circuit Bar : {0, 1}m → [
(

m−1
k−1

)
] which takes as input a k-subset of

[m] and returns the only index i such that this subset appears in Ai. Furthermore, we
assume that A1 consists exactly of the sets {1, 2, . . . , n}, {n + 1, n + 2, . . . , 2n}, . . ., and
{(k − 1)n + 1, (k − 1)n + 2, . . . , kn}.

▶ Remark 4.13. Let X be the set of n-subsets of [kn]. We define an equivalence relation ∼ on
X by saying that two n-subsets X and Y of [kn] are equivalent if and only Bar(X) = Bar(Y ),
meaning that they are in the same (n, kn)-parallel class in the partition induced by Bar.
Then, we have that Bar is a property-preserving encoding for ∼ on X . Note that two
equivalent subsets are either equal or disjoint. Hence, the property that is preserved by Bar

is such that if two of its inputs collide, they form a solution to our problem. Then, to prove
the inclusion of weak-general-Erdős-Ko-Radok into PPP, it suffices to compose our
instance of weak-general-Erdős-Ko-Radok with Bar.

The previous two lemmas establish the following result.

▶ Theorem 4.14. Under Assumption 4.12, weak-general-Erdős-Ko-Radok is PWPP-
complete.

PPP-completeness using the tight bound

Like for the case of n-subsets of [2n], we can define a “tight” version of the previous problem,
which is very similar to Erdős-Ko-Rado.
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▶ Definition 4.15 (general-Erdős-Ko-Radok).
The problem general-Erdős-Ko-Radok is defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈log((kn−1

n−1 ))⌉ → {0, 1}kn.
Solution: One of the following:

(i) x s.t. |C(x)| ≠ n and x <
(

kn−1
n−1

)
,

(ii) x ̸= y s.t. C(x) = C(y) and x, y <
(

kn−1
n−1

)
,

(iii) x, y s.t. C(x) ∩ C(y) = ∅ and x, y <
(

kn−1
n−1

)
,

(iv) x s.t. C(x) = {1, 2, . . . , n} or {n + 1, n + 2, . . . , 2n}, or..., or {(k − 1)n + 1, (k − 1)n +
2, . . . , kn} and x <

(
kn−1
n−1

)
.

First, let us see why this problem is total. Suppose that we have a list of
(

kn−1
n−1

)
subsets

of [kn]. If one of the sets does not have n elements, if two of the sets are equal, or if two
of the sets do not intersect, we have a solution. Now, suppose that we have an intersecting
family of

(
kn−1
n−1

)
distinct n-subsets of [kn] and consider a collection of (n, kn)-parallel classes

A1, . . . , A(kn−1
n−1 ) such that each n-subset of [kn] appears in exactly one Ai (which exists by

Classical Theorem 4.10). Up to renaming the elements, we can assume that A1 is composed of
the k n-subsets {1, 2, . . . , n}, {n+1, n+2, . . . , 2n}, ... and {(k−1)n+1, (k−1)n+2, . . . , kn}.
Since we have an intersecting family of distinct subsets, no two subsets can be in the
same Ai, and we have as many subsets as Ais, which means that one of the subsets is
in A1, hence that it is one of the particular subsets we are looking for. This proves that
general-Erdős-Ko-Radok ∈ TFNP. We then have the following result.

▶ Theorem 4.16. Under Assumption 4.12, general-Erdős-Ko-Radok is PPP-complete.

5 Sperner’s Theorem on Largest Antichains

We now turn our attention to a different existence theorem from extremal combinatorics,
concerning antichains. We say a family of sets F ⊆ 2Ω is an antichain if for every A ̸= B ∈ F ,
it holds that A ̸⊆ B. A well-known theorem by Sperner gives a characterization of the largest
antichain. As before, for an appropriate input size, this induces a total search problem of
finding two distinct sets A, B for which A ⊆ B. As in the previous section, we consider both
a weak and a strong version, and prove the weak version to be PWPP-complete, and the
strong one PPP-complete.

▶ Classical Theorem 5.1 (Sperner [27]). The largest antichain on a universe of 2n elements
is unique and consists of all subsets of size n.

Like before, we consider an implicit representation of the collection of subsets via a
circuit C whose input corresponds to an index into the collection, and whose output is the
characteristic vector of the corresponding set.

▶ Definition 5.2 (weak-Sperner-Antichain). The problem weak-Sperner-Antichain
is defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈log((2n

n ))⌉+1 → {0, 1}2n.
Solution: x ̸= y s.t. C(x) ⊆ C(y).

▶ Theorem 5.3. weak-Sperner-Antichain is PWPP-complete
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PPP-completeness using the tight bound

As with Erdős-Ko-Rado, we observe that the bound in theorem is tight, and we know the
unique antichain of size

(2n
n

)
, so we have some structural information about any collection of

size
(2n

n

)
. From that strong theorem, employing the same technique as before, we modify the

problem to let the circuit represent a collection of that exact size. By Classical Theorem 5.1,
we observe that if F is an antichain with |F| =

(2n
n

)
, then F must contain [n]. This leads us

to define the following problem.

▶ Definition 5.4 (Sperner-Antichain). The problem Sperner-Antichain is defined by
the relation
Instance: A Boolean circuit C : {0, 1}⌈log((2n

n ))⌉ → {0, 1}2n.
Solution: One of the following:

(i) x ̸= y s.t. C(x) ⊆ C(y) and x, y <
(2n

n

)
,

(ii) x s.t. C(x) = [n] and x <
(2n

n

)
.

▶ Theorem 5.5. Sperner-Antichain is PPP-complete.

6 Cayley’s Tree Formula

We consider yet another classic theorem from combinatorics, related to spanning trees. A
classic result by Cayley establishes the number of spanning trees of the complete graph on
n vertices. We observe then that if we have a collection of sufficiently many such graphs,
either one of the graphs is not a spanning tree, or two spanning trees collide. Note that two
isomorphic trees on distinct vertices are not considered a collision. This allows us to define a
total search problem of either finding a collision or finding an index not corresponding to a
spanning tree. We represent trees using a bitmap on all possible edges, ordered arbitrarily.
We show that this problem is equivalent to weak-Pigeon, in a more direct way than for
the previous results. As before, the problem can be modified using the same technique as
previously to become equivalent to Pigeon, and thus PPP-complete.

▶ Classical Theorem 6.1 (Cayley [4]). There are exactly nn−2 spanning trees of the complete
graph on n vertices.

▶ Definition 6.2 (weak-Cayley). The problem weak-Cayley is defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈(n−2) log(n)⌉+1 → {0, 1}(n

2).
Solution: One of the following:

(i) x s.t. C(x) is not a spanning tree (i.e., is not spanning, not connected or contains a
cycle),

(ii) x ̸= y s.t. C(x) = C(y).

▶ Theorem 6.3. weak-Cayley is PWPP-complete.

PPP-completeness using the tight bound

Again, we observe that Classical Theorem 6.1 gives an exact bound, namely that there are
exactly nn−2 labelled spanning trees on n vertices. As before, this leads us to defining the
following problem.

▶ Definition 6.4 (Cayley). The problem Cayley is defined by the relation
Instance: A Boolean circuit C : {0, 1}⌈(n−2) log(n)⌉ → {0, 1}(n

2).
Solution: One of the following:
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(i) x s.t. C(x) is not a spanning tree and x < nn−2,
(ii) x ̸= y s.t. C(x) = C(y) and x < nn−2,
(iii) x s.t. C(x) = T1 and x < nn−2, with T1 defined as in Remark 3.4.

▶ Theorem 6.5. Cayley is PPP-complete.

7 Ward-Szabó Theorem on Swell Colorings

We now focus on a different theorem from extremal combinatorics, and more precisely
from extremal graph theory. Let G = (V, E) be the complete graph on N vertices. An
edge-coloring c : E → [r] for some r is called a swell coloring of G if it uses at least 2 colors
and if every triangle is either monochromatic or trichromatic. It is rather straightforward to
see that in any 2-coloring of G, there must exist a bichromatic triangle. On the contrary, if we
color each edge with a different color, we trivially get a swell coloring. The natural question
that appears is then to determine the minimal number of colors required to swell-color the
complete graph on N vertices. This was solved in some cases by Ward and Szabó in 1994.

▶ Classical Theorem 7.1 (Ward-Szabó [29]). The complete graph on N vertices cannot be
swell-colored with fewer than

⌈√
N

⌉
+ 1 colors, and this bound is tight when N = p2k for

some prime p and integer k.

From that theorem, we can define a TFNP problem as follows: the input is a coloring C

of the edges of the complete graph on 22n vertices with 2n colors, as well as three vertices
a, b, c such that C(a, b) ̸= C(a, c) to guarantee that at least 2 colors are used in the coloring.
A solution is then the vertices of a bichromatic triangle (which is guaranteed to exist by
Classical Theorem 7.1). We also allow extra solutions if the coloring of the graph is not
consistent.

▶ Definition 7.2 (Ward-Szabó). The problem Ward-Szabó is defined by the relation
Instance: The following:

1. A Boolean circuit C : {0, 1}2n × {0, 1}2n → {0, 1}n; and,
2. Distinct a, b, c ∈ {0, 1}2n s.t. C(a, b) ̸= C(a, c).

Solution: One of the following:
(i) x, y s.t. C(x, y) ̸= C(y, x),
(ii) Distinct x, y, z s.t. C(x, y) = C(y, z) ̸= C(x, z).

We also define two variants of this problem, whose totality is a consequence of the totality
of Ward-Szabó.
In the first one, we allow an extra type of solution, namely the vertices of two distinct
triangles with the same “color profile”.

▶ Definition 7.3 (Ward-Szabó-Collisions). The problem Ward-Szabó-Collisions is
defined by the relation
Instance: The following:

1. A Boolean circuit C : {0, 1}2n × {0, 1}2n → {0, 1}n; and,
2. Distinct a, b, c ∈ {0, 1}2n s.t. C(a, b) ̸= C(a, c).

Solution: One of the following:
(i) x, y s.t. C(x, y) ̸= C(y, x),
(ii) Distinct x, y, z s.t. C(x, y) = C(y, z) ̸= C(x, z),
(iii) Two triples, (x, y, z), (x′, y′, z′), each with 3 distinct elements, s.t. {x, y, z} ≠ {x′, y′, z′}

and C(x, y) = C(x′, y′), C(x, z) = C(x′, z′), C(y, z) = C(y′, z′).
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In the second variant, we allow the same extra type of solution, namely the vertices of
two distinct triangles with the same “color profile”, with the additional constraint that these
triangles should be trichromatic.

▶ Definition 7.4 (Ward-Szabó-Colorful-Collisions). The problem Ward-Szabó-
Colorful-Collisions is defined by the relation
Instance: The following:

1. A Boolean circuit C : {0, 1}2n × {0, 1}2n → {0, 1}n; and,
2. Distinct a, b, c ∈ {0, 1}2n s.t. C(a, b) ̸= C(a, c).

Solution: One of the following:
(i) x, y s.t. C(x, y) ̸= C(y, x),
(ii) Distinct x, y, z s.t. C(x, y) = C(y, z) ̸= C(x, z),
(iii) Two triples (x, y, z), (x′, y′, z′), each with 3 distinct elements, s.t. {x, y, z} ≠ {x′, y′, z′},

C(x, y) = C(x′, y′), C(x, z) = C(x′, z′), C(y, z) = C(y′, z′) and the triangle (x, y, z) is
trichromatic.

▶ Theorem 7.5. It holds that
1. weak-Pigeon ≤ Ward-Szabó-Collisions,
2. Ward-Szabó-Collisions ≤ Ward-Szabó-Colorful-Collisions,
3. Ward-Szabó-Colorful-Collisions ≤ Ward-Szabó.

▶ Theorem 7.6. Ward-Szabó-Collisions ∈ PWPP.

▶ Remark 7.7. The last two theorems prove that Ward-Szabó-Collisions is PWPP-
complete. However, notice that the proof of inclusion into PWPP does not use solutions of
the first three types. Hence, if we call Ward-Szabó-Collisions’ the problem similar to
Ward-Szabó-Collisions but without the first three types of solutions, this new problem
is also PWPP-complete. Indeed, the proof of inclusion into PWPP would be similar, and
the proof of hardness too, only with less cases to consider. Thus, it seems (at least that
is how we prove it) that what makes Ward-Szabó-Collisions PWPP-complete is only
its last type of solutions. Now, one could wonder how hard this problem becomes if we
slightly modify this last type of solutions to make them harder to find. This is exactly what
Ward-Szabó-Colorful-Collisions does.

▶ Theorem 7.8. Ward-Szabó-Colorful-Collisions ∈ PPP.

▶ Remark 7.9. In the last proof, we define a reduction to Pigeon where the circuit C ′

only has a range of 22n−1 + 2n−1 elements. Indeed, we need exactly
(2n

2
)

= 22n−1 − 2n−1

elements to encode the pairs of colors. We also need exactly 2n elements for the fourth case.
However, we can map the x anywhere in that case if C(x, a) ∈ {C(a, b), C(a, c), C(b, c)}
because such an x would give us a bichromatic triangle. Hence, we need 2n − 3 colors for this
case. We also need 3 extra elements for a, b and c. Hence, overall, we only need a range of
22n−1 +2n−1 elements. Thus, we get a reduction from Ward-Szabó-Colorful-Collisions
to General-Pigeon2n−1−2n/2−1 .

8 Mantel’s Theorem on Triangle-Free Graphs

We move on to another classical theorem in extremal graph theory. It answers the following
question: What is the maximum number of edges in a triangle-free graph on N vertices?

▶ Classical Theorem 8.1 (Mantel [19]). If G = (V, E) is a triangle-free graph on N vertices
then |E| ≤ N2/4, and this bound is tight.
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This gives rise to the following search problem. Suppose that we are given a collection of
strictly more than N2/4 distinct edges for a graph on N vertices. Then, by Mantel’s theorem,
there must be three of these edges forming a triangle in the graph. The search problem is
then to find them. We can turn this problem into a TFNP problem if we also allow evidence
that two edges in the collection are in fact the same, or that an edge is in fact a loop. For
practical reasons, we demand that the endpoints of every edge are given in the lexicographic
order. When the edges are represented implicitly by a poly-sized circuit, we get the following
problem.

▶ Definition 8.2 (weak-Mantel). The problem weak-Mantel is defined by the relation
Instance: A Boolean circuit C : {0, 1}2n−1 → {0, 1}n × {0, 1}n.
Solution: One of the following:

(i) Distinct i, j, k s.t. C(i), C(j), C(k) form a triangle,
(ii) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order,
(iii) i ̸= j s.t. C(i) = C(j).

▶ Remark 8.3. Like in the other problems, the size of the collection we receive (in this case,
edges) is twice the threshold size (here, 22n−2). However, here, we observe that the number
of edges we receive as input is greater than the number of possible edges since 22n−1 >

(2n

2
)
.

Thus, in any instance of weak-Mantel, there must be solutions of type (ii) or (iii).

▶ Theorem 8.4. weak-Mantel is PWPP-hard.

▶ Theorem 8.5. weak-Mantel ∈ PPP.

▶ Remark 8.6. Similarly to the proof that Ward-Szabó-Collisions ∈ PPP, we only use
the last two types of solutions, which suggests that what makes this problem reducible to
Pigeon is only the fact that we are given more edges than there are different possible edges
in a graph on 2n vertices.

▶ Remark 8.7. In fact, the range of the circuit in this last proof has size 22n−1 − 2n−1 and
therefore weak-Mantel reduces to General-Pigeon2(n−1)/2 .

Mantel’s theorem states that there is a unique triangle-free graph on 2N vertices that
has N2 edges, it is the complete bipartite graph KN,N . Now, consider any labelling of the
vertices of KN,N . If for every label x, the vertices labelled x and x + 1 mod 2N were on the
same side of the bipartition, then all the vertices would be on the same side of the bipartition,
which is impossible. Hence, there must be 2 vertices labelled x and x + 1 mod 2N on
different sides of the bipartition, and therefore there must be an edge between them. Thus,
the following problem is total.

▶ Definition 8.8 (Mantel). The problem Mantel is defined by the relation
Instance: A Boolean circuit C : {0, 1}2n−2 → {0, 1}n × {0, 1}n.
Solution: One of the following:

(i) Distinct i, j, k s.t. C(i), C(j), C(k) form a triangle,
(ii) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order,
(iii) i ̸= j s.t. C(i) = C(j),
(iv) i s.t. C(i) = (u, v) with v = u + 1 mod 2n when we consider u and v as integers.

▶ Theorem 8.9. Mantel is PPP-hard.

ITCS 2023
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8.1 Generalization with Turán’s Theorem
Mantel’s theorem investigates the maximum number of edges in a triangle-free graph on N

vertices. Similarly, one could wonder about the maximum number of edges in a graph on N

vertices that does not contain a clique on r vertices, where r ≥ 3 is an arbitrary constant.
This problem was solved by Turán in 1941.

▶ Classical Theorem 8.10 (Turán [28]). If G = (V, E) is a graph on N = |V | vertices that
does not contain any r + 1-clique, then |E| ≤ (1 − 1

r ) N2

2 and this bound is tight when r divides
N .

Now, suppose that we are given a list of strictly more than (1 − 1
r ) N2

2 edges for a graph
on N vertices. It follows from Turán’s theorem that if all these edges are distinct, the graph
must contain an r + 1-clique. This induces a total search of finding the vertices of such a
clique. If the edges are given implicitly via a Boolean circuit which on input i returns the
endpoints of the i-th edge, we get the following TFNP problem.

▶ Definition 8.11 (weak-Turánr). The problem weak-Turánr is defined by the relation
Instance: A Boolean circuit C : {0, 1}2n−1 → {0, 1}n × {0, 1}n.
Solution: One of the following:

(i) Distinct i1, i2, . . . i(r+1
2 ) such that C(i1), C(i2), . . . C(i(r+1

2 )) are the edges of an r + 1-
clique,

(ii) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order,
(iii) i ̸= j s.t. C(i) = C(j).

▶ Remark 8.12. Note that r could be any polynomial in n in the previous definition and it
would still define a TFNP problem.

▶ Theorem 8.13. For every r1 < r2, weak-Turánr1 is reducible to weak-Turánr2 .

▶ Theorem 8.14. For every r ≥ 2, weak-Turánr is PWPP-hard.

▶ Theorem 8.15. For every r > 2, weak-Turánr ∈ PPP.

The proof is exactly similar to the proof of Theorem 8.5. In this case too, it appears that
what makes the problem easier than Pigeon is that we are given too many edges.

Turán’s theorem states that if r divides N , there is a unique graph on N vertices that
does not contain any r + 1-clique and that has the maximum number of edges. This graph
is the complete r-partite graph, where each part has size N/r. Like previously, there must
be 2 vertices labelled x and x + 1 mod 2N with an edge between them. We denote by N

the largest multiple of r that is at most 2n, and set M = (1 − 1
r )N2

2 . Thus, the following
problem is in TFNP.

▶ Definition 8.16 (Turánr). The problem Turánr is defined by the relation
Instance: The following:

1. A Boolean circuit C : {0, 1}2n−1 → {0, 1}n × {0, 1}n; and,
2. Two integers N and M satisfying N ≤ 2n < N + r, r divides N , and M = (1 − 1

r ) N2

2 .
Solution: One of the following:

(i) i s.t. C(i) = (u, v) with u ≥ N or v ≥ N , and i < M

(ii) Distinct i1, i2, . . . i(r+1
2 ) such that C(i1), C(i2), . . . C(i(r+1

2 )) are the edges of an r + 1-
clique, and ij < M for every j,

(iii) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order, and i < M ,
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(iv) i ̸= j s.t. C(i) = C(j), and i, j < M ,
(v) i s.t. C(i) = (u, v) with v = u + 1 mod 2n when we consider u and v as integers, and

i < M .
This last problem is in TFNP. The reduction from [24] implies Turánr1 ≤ Turánr2 for
every r1 < r2. Then, Turánr is PPP-hard because Turán2 is exactly Mantel.
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