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ABSTRACT

The vast majority of contemporary methods to detect network level intru

sions are primarily signature-based, require significant processing power, 

and rarely perform deep packet inspection. Though research has been con

ducted regarding the use of General Purpose Graphics Processing Units 

(GPGPUs) to spread the processing load across numerous stream proces

sors, this research has focused largely on spreading packet load to increase 

throughput, rather than the analysis of the packets themselves. Using sin

gular value decomposition to examine the binary structure of the individual 

packets, it is possible to perform frequency analysis to identify and classify 

data, thereby potentially allowing for a new type of paradigm for malicious 

packet/data identification. Combined with the use of GPGPUs, this should 

allow for faster, less expensive hardware solutions, and furthermore, would 

free up core processor resources so that additional functionality could be 

built in.
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1. INTRODUCTION

1.1 Overview

Hackers. What started as a word to describe individuals with a strong skill set in 

computing is now a ubiquitous moniker used to describe those who would seek to use 

their computing skills to perpetrate malicious acts upon their fellow man. The term is 

so main stream now that it has become the frequent subject of nightly news reports, 

where hacker groups like Anonymous and LulzSec get top billing as conglomerates 

of supposed malcontents intent on disrupting major corporations and governmental 

agencies according to their capricious and convoluted agendas. Furthermore, it is 

now an accepted fact that various nation states are engaging in “Cyber Warfare.” 

China has been implicated as sponsoring various groups in their efforts to penetrate 

Western organizations and infrastructure, and the US has all but admitted to target

ing numerous facilities in the Middle East. In recent years cyber attacks have been 

used to among other things: shut down nuclear power plants, disrupt communica

tions during warfare, compromise millions of consumers’ financial information, and 

perhaps most significantly to steal intellectual property on the level of an estimated 

loss that numbers in the billions of US dollars [8] [12] [2] [26]. The problem has 

become so pervasive and serious that the US Air Force has created an entirely new 

command wing known as the “Air Force Cyberspace Command” [11]. In 2009, the 
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US Pentagon set up the US Cyber Command to defend American assets from foreign 

and native entities [4], Furthermore in 2011 the Pentagon outlaid plans that defined 

specific acts of cyber warfare as equivalent to conventional attacks and warranting a 

military response of a conventional nature [14]. As cyber warfare becomes an ac

cepted theatre of war, and viruses such as Stuxnet, Flame, and Gauss become the 

norm rather than exceptions, increasingly sophisticated means of detection will need 

to be developed to protect critical infrastructure from attack.

Cyber warfare/crime comes in many flavors. The two most common involve dis

tributed denial of service attacks in which a targeted server is flooded with requests 

from clients, often acting as part of a bot net under the control of a master server, 

that ultimately overwhelms the servers capacity to handle requests and causes a sys

tem failure. The second most common form of attack involves attempts to gain 

administrative access to a target computer for purposes of data mining, destruction 

of software/hardware, or to gain access to infrastructure command and control de

vices. This type of attack can be launched through a multitude of different vectors 

as diverse as computer viruses like trojan horse programs and worms, SQL injection 

attacks on databases, cross-site scripting attacks on websites, backdoors written into 

software, the exploitation of improperly written and unpatched software, and a host 

of other means.

According to SANS, one of the leading internet security consortiums, “Attacks 

against web applications constitute more than 60 percent of the total attack attempts 

observed on the Internet” [7]. As web based attacks are the most numerous, it be

comes crucially important to develop a means of protecting internet exposed systems 
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from outside attack. However, it is extremely important to note that when protecting 

web-exposed resources it is paramount that one only prevents harmful traffic from 

penetrating the system, as system availability is often mission critical on internet 

exposed systems. The backbone of internet communication is through the TCP/IP 

protocol stack, and its transmission of discrete “packets” of encoded binary data 

across networks, thus it is within this stack that the identification and nullification 

of threats can most effectively occur.

With the constant and rapidly changing dynamics of cyber threats, it is crucial 

to leverage computational abilities to assist in the identification and elimination of 

network level threats in as quickly and efficiently a manner as is possible. Many 

packet filters use keyword analysis at the application level using machine learning in 

combination with statistical models such as Bayesian analysis. Spam filters for your 

email are a popular example of this. Others focus on examining header information 

to analyze and filter based on IP address or protocol. Firewalls are a good example 

of this type of analysis. Deep packet inspection, where the contents of the payload 

of a packet are examined, typically requires a more sophisticated, less automated 

methods of analysis, typically where an individual is either hand examining a packet 

capture, or writing a quick script to parse a packet capture to look for a specific 

signature. This is an extremely time consuming process requiring a pretty high level 

of technical expertise. As a result, many organizations do not have this level of 

analysis at their disposal. The simple fact of the matter is that the practices of many 

security professionals tend to focus on the so-called low hanging fruit - attackers using 

commonplace, well established, less sophisticated methods, with the understanding 
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that there simply will be unavoidable intrusions from the more skilled individuals. It 

has repeatedly been asserted by top security professionals that there are two kinds 

of organizations in the wilds of the internet: those that have been hacked, and those 

that have been hacked but don’t know it.

The proposed solution that is the focus of this research concerns analyzing network 

traffic based on packet inspection at layers three and four of the OSI model (the 

network and transport layers). At this point in communication, the ethernet and 

IP headers can be stripped off the packet and the underlying TCP header and more 

specifically the payload itself can be analyzed. By training the system, it should be 

possible to develop “known good” data patterns in the payload data, which can be 

subsequently used in the analysis process to identify good traffic versus bad traffic. 

While on the surface this would seem to be the equivalent of establishing a “signature” 

for detection, it is in fact more of a positive security model, in which a white list 

of acceptable data is gathered against which all incoming data can be compared 

to. Examining data at the binary level requires very specific mathematical analysis. 

There are a number of methods that can be employed, such as statistical data mining, 

neural networks, and machine learning based algorithms such as Bayesian analysis. 

The algorithm that is employed here, singular value decomposition, is borrowed from 

linear algebra, and is frequently used in signal analysis. Singular Value Decomposition 

is basically a factorization of a matrix which yields three component matrices that 

define the column space (range) and row space (domain) of a matrix, as well as (sigma) 

which is the weighting from row to column space. Packet payload data is arranged 

into vectors, which are then compiled into matrices. A set of known good traffic is 
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developed based off of the domain space after the training data has been subjected 

to the singular value decomposition. Subsequent traffic can be compared against this 

by conducting vector dot products calculations between the incoming packet data 

and the known good packet data. Ideally, new packet vectors that point in the same 

“direction” as the known good traffic vectors should be allowed to pass, while vectors 

that are orthogonal with regard to known good traffic should be dropped. There 

should be a third subset of data also, which consists of packets that don’t exactly 

match the patterns for the good or bad traffic, which could be classified as unknown. 

This type of algorithm is ideally suited to stream processing via GPGPUs, as it 

consists of matrix operations, resulting in a binary process of classifying the data 

as either good or bad based off of a single set of calculations. No prior results are 

required, thus making the process extremely suited for parallelization.

The evolutionary arms-race between those that would try to penetrate systems for 

illegal purposes and those that strive to defend those systems has been ongoing for 

decades with the levels of sophistication growing at a rapid pace. At any given time, 

either one side or the other has the advantage in a particular venue. The hackers will 

find an exploit in a given protocol, then the defenders will patch the protocol, it goes 

on and on. The idea behind this research is to take yet another incremental step in 

furthering the ability of the defense by providing a potential new methodology off of 

which new tools can be developed.
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1.2 History

The traditional method for protecting network infrastructure is through the use of 

firewalls. Most firewalls focus on the limiting of traffic by port numbers, and known 

traffic behavior patterns. Sadly, the only firewall truly effective at preventing all 

attacks is the one that blocks all traffic. Obviously, due to the increasingly intercon

nected nature of how businesses and individuals operate on the internet, this is not a 

feasible solution. Unfortunately, leaving even a single port exposed to the internet can 

afford attackers the opportunity to penetrate a system. Thus it has become necessary 

to implement secondary systems like Intrusion Detection Systems and Intrusion Pre

vention Systems such as SNORT, which are often integrated with firewalls and other 

network level devices. Current supplemental strategies that include Intrusion Detec

tion Systems are largely utilizing negative security models (blacklists), implementing 

signature based detection with analysis occurring on a per-packet basis. Signature 

based detection, is inherently flawed as it relies exclusively on analysis of prior attack 

vectors to create signatures that are then dispersed to clients so that they may iden

tify and prevent any future attacks that match a given signature; therefore, they can 

never detect zero-day (never before seen) threats. Additionally, failure to keep the 

signature database consistently updated on given hardware/software effectively ren

ders this type of protection null. Though some of the more sophisticated enterprise 

appliances and software platforms do employ limited use of positive security models 

(white lists) and heuristics to analyze the behavior of network traffic; unfortunately, 

even the more sophisticated solutions are somewhat statically limited in their abil

ity to identify threats, requiring constant human directed re-training of what is and 
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what is not a threat to keep profiles current as threat patterns continually morph due 

to attackers identifying traps and threat detection methodologies, F5’s “Application 

Security Model” is a good example of this. Positive security models and heuristically 

based analysis are generally more effective at uncovering new vectors of attack that 

simple signature blacklists would miss. It is, in fact, often the case that small changes 

made to existing malicious code can enable it to bypass signature detection. Since 

traffic and behavior patterns would remain consistent, it is easy to argue that looking 

at traffic patterns and behavior would be the preferred method of detection.

Essentially traffic patterns are signals, digital streams of ones and zeros that 

demonstrate a variety of patterns depending on what is being transmitted. Signal 

filtering has been around for decades. Traditionally digital signal processing has used 

singular value decomposition as a primary means of frequency analysis to filter out 

specific bands of frequencies. This is done based on analysis of the singular values of 

a decomposed matrix comprised of digital signals. For example, “noise” can often be 

identified in a signal by examining the smallest singular values of a decomposition, 

and the subsequent removal of these frequencies based on this identification is a tried 

and true method for “cleaning” up digital signals. This is in fact one of the major 

reasons that digital voice and video signals sent over the airwaves, phone lines, and 

internet networks of the world are comprehensible at all on the receiving end. In light 

of the success of this methodology, it was supposed that the same principals could be 

applied to internet traffic that was not simply voice or video in an effort not to clean 

up the “signals” but to use this sort of classification as a means to separate traffic 

into disparate categories based on the supposed “good” or “bad” nature of the traffic.
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1.3 Literature Survey

The literature survey consisted of three separate fields of research. 1) The historical 

use of Singular Value Decomposition in Digital Signal Processing, 2) The use of 

different algorithms for the purpose of identifying and classifying packet traffic for 

purposes of providing a defensive security posture for use with Intrusion Detection 

Systems, and Intrusion Prevention Systems. 3) The use of GPGPUs in aiding the task 

of deep packet analysis, specifically with regard to the potentials for parallelization.

Research into Intrusion Detection System and Intrusion Prevention System is a 

rapidly expanding field, with more sophisticated methods and theories being intro

duced frequently. Past research has focused on largely on signature detection. Vigna, 

Cassell, and Fayram focused on a distributed agent based Intrusion Detection System 

that largely used signature based techniques, though there was some heuristical user 

analysis [23]. Viadya introduced and patented a dynamic signature based Intrusion 

Detection System in 1998 [22]. In 2001 Patton et. al. made the following state

ment: “The vulnerability of signature-based Intrusion Detection System to high false 

positive rates has been well documented but we go further to show (at a high level) 

how packets can be crafted to match attack signatures such that a alarms on a target 

Intrusion Detection System can be conditioned or disabled and then exploited” in 

their paper on the inherent flaws of signature based Intrusion Detection System [13]. 

Building off of past research, more modern theory has tended to incorporate aspects 

of prior research such as distributed agent networks, signature based identification, 

and user-level heuristical analysis; however, their is increased focus on packet-level, 

real time, line speed analysis, through the use of models like neural networks using 
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Adaptive Resonance Theory, as well as matrix decomposition through methods such 

as principal component analysis, and singular value decomposition [25] [15].

Traditional packet classification tends to focus almost entirely on classifying the 

types of traffic and traffic flows based entirely on layer 2 and 3 header information [6] 

[27]. Classic algorithms like the grid-of-tries, cross-producting, bit vector searching, 

and recursive flow classification are all examples of this [18] [5] [1] [17]. There 

is a substantial body of work related to these algorithms. Liu et. al. explores 

both the concept of parallelism for purposes of accelerating classification speeds, as 

well as developing a novel model for classification [10]. The technique described is 

largely a variation on the popular Recursive Flow Classification Algorithm, and the 

method of classification is entirely header based and uses a bitmap based recursive 

search of tables of classification data. Singh, et. al. use a variation of the popular 

HiCuts algorithm in their research which focuses on “multidimensional cutting” using 

hypercubes [16]. The model is a decision tree based analysis that is again focused 

on the header information of the packet.

The above models of packet classification are largely designed to aid routers in 

routing traffic. There is also some firewall-related value in that traffic flows can be 

monitored, and header based rules sets applied at fast speeds. However, the header 

is generally the smallest part of the packet, what about the payload. What research 

has been conducted examining payload information? The answer is: not much, but 

there are some. Wang and Stolfo describe a method called PAYL, which uses sta

tistical analysis of byte frequency distributions for packet payloads to determine the 

legitimacy of packet data [24]. Thorat et. al expanded on the Payl research by ap

9



plying a divide and conquer approach to Wang and Stolfo’s method by partitioning 

large packets such as those associated with HTTP to increase the efficiency of the 

algorithm [19]. This however is quite a different methodology to the linear algebraic 

methods described herein.

With regard to linear algebra and data analysis, there is substantial evidence that 

eigenvalue analysis is a successful model in conducting accurate real time analysis 

of large data streams. Several research papers have been produced that use this 

particular model to increase the success rate of identifying threats [25] [15] [20]. 

Furthermore, there is a multi-billion dollar tech giant that utilizes this approach 

in their page ranking algorithm namely, Google. The hypothesis behind this page 

ranking algorithm is the subject of a paper by Larry Page and Sergey Brin from 

Stanford that is now quite legendary [3]. Eigenvalue analysis focuses on more linear 

independent sets than Singular Value Decomposition, and does not include substantial 

relevance inside the Null Space.

The focus of this research is strictly on Singular Value Decomposition analysis of 

packet payload data for purposes of identifying anomalies, which after much research 

appears to be a novel approach to this specific problem.

1.4 Contributions

It is hypothesized that using Singular Value Decomposition as a means to analyze 

payload data within packets at layers three and four of the OSI model that it will be 

possible to detect anomalous data. The purpose of this detection being the ability 

to use such an algorithm to establish a security model wherein a set of training 
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data based on known good traffic can be established, and the subsequent analysis of 

unknown traffic using this algorithm can classify data as either good or bad. This 

would provide an additional methodology to those that axe existing that is based on a 

positive security model that utilizes white list techniques, which are far more effective 

at identifying new attack vectors than many of the current blacklist techniques. Using 

ICMP as an initial proof of concept, the algorithm shall be developed and refined as 

needed. ICMP stands for Internet Message Control Protocol. The ultimate goal 

would be to achieve an algorithm that is able to identify anomalous traffic patterns 

in protocols more complex than ICMP. Some of the different protocols and encoding 

models to be explored include: ICMP, HTTP, ASCII, and Unicode.

Should this research prove successful, it may lead to the development of a new 

paradigm of deep packet inspection techniques; techniques, that based on fundamen

tals of their mathematical algorithms, lend themselves well to parallelization and the 

use of stream processors, which are the predominant methods for maintaining the 

relevance of Moore’s law with regard to increases in computing capacity.
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2. THEORY

2.1 Definitions

This section will provide definitions for some of the terms that will be used throughout 

the rest of the paper.

Column Space of a matrix: This is the set that is defined by all of the linear 

combinations of the column vectors of a given matrix.

Diagonal Matrix: A matrix whose only non-zero elements lie on the main diagonal 

of the matrix.

GPGPU: This acronym stands for General Purpose Graphics Processing Unit. These 

are processors that were originally designed specifically for graphics computation 

within commodity hardware that can also be utilized outside of graphics processing 

for a multitude of mathematical computing purposes, specifically ones that can exploit 

the GPGPU’s ability to provide a high level of parallelization for matrix operations. 

HTTP: Hypertext Transfer Protocol. HTTP is the main application protocol by 

which information is encoded and sent across the internet. It is based on the client

server model where a client, such as a web browser, sends a request for information 

contained on a web page (commonly known as a GET or POST request) to a server, 

which then responds with the information requested. HTTP is typically associated 

with port 80, though it can be configured to run on different ports.
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ICMP: Internet Control Message Protocol. ICMP is one of the oldest, yet still widely 

utilized, networking protocols. ICMP is used primarily to debug network issues. The 

most common usage of ICMP involves the “ping” command, which is used to check 

if there is a communication line open between two machines.

Intrusion Detection System (IDS): A security device or application that alerts 

users based on one, or a combination of the following: signatures, heuristics, or 

anomalous behavior. An Intrusion Detection system can be either network based 

(referred to as NIDS) or host based (referred to as HIDS).

Intrusion Prevention System (IPS): A security device or application that can 

actively deny/prevent traffic or code execution based on one or a combination of the 

following: signatures, heuristics, or anomalous behavior. An Intrusion Prevention 

System can be either network based (referred to as NIPS) or host based (referred to 

as HIPS).

Linear Combination: This is the method by which a space is defined in Linear 

Algebra. It consists of taking a term or terms and multiplying the term(s) by any 

constant to determine all of the possible results that the multiplication of any constant 

with the given term(s) can create. For example, given the formula c + d , where c 

and d are vectors, the linear combinations of this formula could be represented by 

the new formula ac + bd where a and b are any given constant.

Matrix: A rectangular arrangement of elements. These elements can be composed 

of numbers, expressions, or other mathematical symbols. Matrices can be used to 

represent a system of equations, and can be manipulated through a multitude of 

operations to solve such systems.
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Orthogonal: This is a property in mathematics that is used to define a specific 

relationship between two or more lines/vectors. If A is a line/vector, then line/vector 

B is orthogonal with respect to A if and only if A is perpendicular to B at their point 

of intersection. In other words there is an angle of 7r/2 radians at the intersection of 

A and B. Two vectors are orthogonal if there inner product is zero.

Orthogonal Matrix: A square matrix whose column and row vectors are orthonor

mal to each other.

OSI Model: Open Systems Interconnection model. This is a model developed by the 

International Organization for Standardization that is used to separate the different 

stages of communication between computers into multiple layers with similar func

tions grouped within the same layer. There are 7 different layers in the model. Layer 

1 is the physical layer, which consists of the physical components such as cabling 

and network adapters. Layer 2 is the data link layer which describes the physical 

addressing of the various components using things like MAC Addresses. Layer 3 is 

the network layer, which provides the logical addressing of the various components 

using IP Addresses and handles the manipulation of traffic at the IP Address level. 

Layer 4 is the transport layer, which provides end to end communication through 

means such as the Transfer Control Protocol. Layer 5 is the session layer, which 

controls the communication streams over which different systems communicate. It is 

the layer responsible for opening, maintaining, and closing streams of data. Layer 

6 is the presentation Layer, which does a lot of the syntactical translation of data 

between the lower layers and layer 7. Layer 7 is the application layer, which is the 

layer that is most visible to the user. Layer 7 is where the user actively interacts with 
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an application.

Row Space of a matrix: This is the set that is defined by all of the linear combi

nations of the row vectors of a matrix.

Signature: A unique pattern used by Intrusion Detection Systems, Intrusion Preven

tion Systems, Antivirus Software, and other security related software and hardware 

to identify a specific malicious vector of attack. This vector can be software, URL 

data, embedded information, etc. If a security system identifies incoming data that 

matches a signature in its database, it will trigger a pre-defined response, which could 

vary from a packet being dropped, to a file being quarantined, to an alert being sent 

out by the system, etc.

Singular Value Decomposition: This is a factoring method for m x n matrices 

that produces three results: an m x m unitary matrix C7, an m x n positive semi- 

definite diagonal matrix S, and an n x n unitary matrix V. The relationship that 

exists between this three matrices is this: A — UDVH.

TCP: Transport Control Protocol. TCP is the main protocol, in conjunction with 

IP (Internet Protocol), by which data is transmitted over the internet. TCP manages 

the information that is required to route a packet from an application on a local ma

chine to the same application on a remote machine, including source and destination 

ports, sequence numbers for terminal packet reconstruction, and a number of other 

important parameters. On top of TCP there are hundreds of unique protocols, such 

as HTTP, that are associated with “port” numbers within the TCP protocol. For 

example, HTTP is commonly associated with port 80. TCP acts as an intermediary 

between IP and the higher levels of the OSI model.
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U Matrix: One of the results of a Singular Value Decomposition on an m x n matrix. 

U is an orthogonal matrix that is m x m in size. The U matrix is representative of 

the Column Space of the decomposed matrix.

V Matrix: One of the results of a Singular Value Decomposition on an m x n matrix.

V is an orthogonal matrix that is n x n in size. The V matrix is representative of the 

Row Space of the decomposed matrix.

S Matrix: One of the results of a Singular Value Decomposition on an m x n 

matrix. S is a diagonal matrix that is m x n in size. The E matrix describes the 

scaling relationship of the vectors resulting from a multiplication of a matrix A with

V as they relate to the result in U.

2.2 Hypothesis

The ideal solution would be to develop an Intrusion Detection System or Intrusion 

Prevention System that can independently and autonomously identify and eliminate 

threats in real time at line speed, while adjusting threat recognition in real time to 

identify new anomalies and novel attack vectors. The reality is that this ideal may 

well be outside the scope of what is achievable given the current state of Artificial 

Intelligence, which is not the focus of this research. Expanding on the prior work 

of others, a more modest, and potentially viable solution, which will be explored 

herein, leverages the ability of Singular Value Decomposition to identify frequencies 

in a “signal.” By using this algorithm, it should be possible to treat network packets 

as signals, and then identify them based on their individual “frequencies” as these 

frequencies relate to direction projection into the domain space, range space, and null 
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space of any given defined space. There should be characteristic spikes in magnitude 

within a given space for data that is non-standard or anomalous.

The theory is that packets can be analyzed at the binary level on the basis of 

networks and transport layer information, such as source and destination ports to 

determine what protocol the packets are associated with. Next, the data contained 

inside the payload of these packets can be analyzed via singular value decomposition 

in combination with the use of the dot product to determine how similar they are to 

packets in existing “training” data that has been specifically selected and classified as 

“known good” traffic, and which exists in a given defined space. It is theorized that 

this process will be able to take unknown traffic coming into a network and classify 

it based on the projection characteristics (a type of fingerprint) into three subsets. 

The first subset consists of known good traffic that conforms to vector directionality 

patterns represented in the training data. The second subset consists of truly mali

cious and malformed data that is atypical for the space defined by the training data, 

and is assumed to be intended to be used to try and penetrate or otherwise harm a 

network. Packet data that does not conform to the protocol specific training data 

that exists would also fall into this category. The third subset of data would consist 

of “questionable” traffic, that would require further, perhaps human level, analysis to 

determine the validity of it. The hope is that questions such as these can be answered: 

Can an SMTP based mail system be trained to only accept SMTP packets that, for 

example, contain no database commands or executable programs? Can we freeing up 

resources at endpoints by discarding all plaintext traffic or encrypted traffic before it 

even hits the mail server? Even ideas as simple as: can we identify the language inside 
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of HTTP data? This is something that can, of course, be achieved currently through 

other means; however, these algorithms are largely sequential in nature, slower, and 

also performed much further up the network stack, typically at the application level.

In the past, in order to enable a computer to identify these packets, different 

approaches have been taken utilizing different mathematical models, should singular 

value decomposition not prove fruitful, some of the other paths may be examined for 

usefulness and effectiveness starting with neural networks, data mining, and machine 

learning, which have been used prior with varying degrees of success [25] [21] [9].

Should this theory prove correct, it is hoped that the implementation of a system 

based on such a theory would leverage the use of GPGPUs, thus allowing stream 

processors to parse and categorize vast quantities of matrix-formatted data at speeds 

greatly increased over those of traditional sequential analysis. The goal of which would 

be to vastly increase the pace at which packets can be analyzed, which should add the 

following four benefits to incorporation within a unit such as a firewall. 1) Decrease 

in price due to the scalability/cost of stream processors versus regular processors, 2) 

reduced network bottleneck issues, and 3) the freeing up of system resources on such 

hardware which may enable more complex processes to be housed within a single 

unit, 4) It might be possible to add an additional layer of analysis at the transport 

layer, which would significantly increase the ability of an Intrusion Detection System 

or Intrusion Prevention System to detect anomalous behavior.
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2.3 Solution and Proof

Five rounds of testing yielded strong positive results that singular value decomposition 

can indeed be used in combination with vector dot product multiplication to produce 

definitive “finger prints” that can be used to identify anomalous data within a given 

packet “space.” It therefore should be possible to use these “fingerprints” to classify 

data as “good,” “bad,” or “unknown.” Not all singular vectors in the Column Space 

of the decomposed matrices of training data were suitable candidates for use in the 

algorithm. However, in the ICMP test, 77 out of 100 of the singular vectors from 

the U matrix proved to be effective in identifying anomalous data. Furthermore, in 

the ICMP test, 100 percent of singular vectors associated with the Null Space were 

effective in identifying anomalous packets. In all tests but one, an energy shift in the 

strongest singular vector was able to correctly identify the bad packets. However, 

typically only a few singular vectors in the Column Space were effective at identifying 

the “bad” payload data with characteristic magnitude spikes amongst the rest of the 

noise of the column space. Most of the Column Space was typically noise, for example 

only 11 percent of Column Space singular vectors were able to identify “bad” data 

in the ICMP test, with far smaller percentages in all other tests. However, there 

does appear to be information contained in the Column Space that with refinement 

of the algorithm could yield useful results. It was observed that only the strongest 

and weakest singular vectors in the Column Space were able to correctly identify 

the “bad” packets in the ICMP testing data. The analysis of the Null Space was 

significantly more dramatic containing on average significantly less noise than the 

Column Space and often very clear, defined, magnitude spikes in at least a few, of
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not many test sets for all testing cases.

2.4 Algorithm and Analysis

The algorithm relies on singular value decomposition to establish a set of training data 

based off of known good traffic which is composed of a matrix U, which represents the 

matrix column space (or range) of the training data, a matrix V, which represents the 

row space (or domain) of the training data, and a matrix composed of singular values, 

which represents the strength of the projections from the column space to the row 

space. Subsequently, unknown traffic is formatted into vectors and then multiplied 

with the column vectors of U from training data using the dot product which provides 

a value which is used to populate a chart, which can finally be used to classify whether 

the unknown data is “good” or “bad”.

The primary step of the algorithm aggregates and formats the training data. This 

process begins with extracting payload data from packets after stripping them of 

their IP and protocol headers. The primary protocol used during initial testing was 

ICMP. Subsequent testing used TCP packets, specifically the HTTP protocol, of two 

different types. The first type consisted of HTTP content that was mostly text based, 

and was taken from Reddit.com, the second type was HTTP content that was solely 

streaming audio, and was taken from Pandora.com. For purposes of explaining the 

algorithm, ICMP packets will be used as a model. The algorithm is identical for the 

other protocols, excepting protocol header and pay load sizes.

The ICMP packets used in initial testing were 84 byes in size, with 20 byes for the 

IP header, 8 bytes for the ICMP header, and 56 bytes for the ICMP pay load itself.
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The algorithm strips both the IP and ICMP header information, leaving only the 

payload for analysis. The payload data in binary form (448 bits total) is formatted 

into a column vector with 448 components.

While there was a fair amount of variance in sample size in initial testing, a sample 

size of 100 packets (or columns) was finally settled on for ICMP, as it was felt that this 

was big enough to represent the heterogeneity of the ICMP payloads that were being 

examined and thus be a good representation of the vector space that ICMP resides 

in. At the conclusion of sampling, 100 column vectors, consisting of 448 components 

each, were assembled. These vectors are assembled from ICMP data streaming from 

16 machines running 6 Unix variants and 4 Windows variants in order to simulate 

a more realistic, heterogeneous environment. These column vectors represent the 

“known good” traffic from the test environment.

The next step in the process involves aggregating the 100 column vectors into a 

matrix of size 448X100. With regard to matrices, rectangular matrices have certain 

characteristics that made them ideal for this experiment. The rectangular nature of 

the matrix ensured that the matrix was not a basis for the space that the matrix 

mapped to, and that there would be a substantial amount of free variables, which 

implied a significant amount of the multiplications on the singular vectors of the 

matrix would result in projections within the null space. All four fundamental spaces 

in linear algebra contain the zero vector. Only square matrices that are a basis for 

the space they define contain only the zero vector. It is in the null space that the 

most significant results of this research were located, hence the importance of the 

rectangular shape of the initial matrix, as this basically guaranteed a sizeable null 
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space.

Once the 448X100 training matrix was composed, a singular value decomposition 

was performed on the matrix producing three distinct matrices, one a 448X448 matrix 

representation of the singular vectors of the column space called U, the second a 

100X100 matrix representation of the singular vectors of the row space, called V, and 

finally a 100X100 matrix populated with values along the main diagonal (everything 

else in the matrix is zero) that is a representation of the scaling relationship between 

the column and row spaces of the original matrix. This final matrix is called X, and the 

values are known as the singular values. Each singular value defines a relationship in 

the factorization of the original matrix. The nth singular value in the matrix moving 

from top to bottom represents the how the nth singular vector in the column space 

scales to the nth singular vector in the row space and vice versa. Singular values of 

zero represent that there is no domain/range relationship between the column space 

and the row space. The singular values are of primary importance as they tell us 

two very important things: 1) the degree (or scaling factor) to which a vector in the 

column space scales in size to a vector in the row space, and more importantly 2)which 

of the singular vectors project into the null space; these are the vectors associated 

with singular values of zero. As would become apparent after testing, the null space 

is where the largest percentage of our usable data lay.

Once the data is factorized into the t/,V, and S matrices, the next step is to 

use these matrices, specifically the U matrix, along with references to the S matrix 

singular values, to filter unknown data to determine the classification of the data. The 

initial algorithm relied on determining the mean of the non-zero components in the 
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singular values matrix. Next the singular vector associated with this was extracted 

from either the U matrix. The intent of this was to see if the mean represented an area 

in the column space where anomalies in packet data between the known good data 

and the unknown data could be identified due to our theory that this space near the 

mean of the singular values was representative of some sort of average magnitude of 

vectors within the space represented by the known good traffic. Accordingly, vectors 

diverging from the directionality of the vectors resulting from calculations based on 

the mean, should be “bad” vectors, and easily identifiable. To test the theory, the 

algorithm then took the selected singular vector and multiplied it against all of the 

unknown vectors from our testing data using the dot product. The idea was to 

see if the values produced by this had a noticeable spike or dip in magnitude that 

would identify that particular vector in the testing data as bad compared to the other 

vectors. After testing this, it was determined that the values returned were essentially 

noise, and that there was no adequate means to make a successful identification using 

this approach. Back to the drawing board.

The second approach was a variant of the first approach. Still using the singular 

vectors from the U matrix only (this is because the U Matrix is a representation of 

the column space, and both our testing and training data vectors were assembled 

into column vectors), a more comprehensive approach was considered. Instead of 

choosing the mean singular vector to use in the vector multiplication stage based on 

a statistical analysis of the singular values, we selected each column vector from the 

U matrix iteratively and in sequence, multiplied each of these vectors, again using 

the dot product, against the entire set of vectors in the matrix composed of the test 
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data (unknowns). The values resulting from these multiplications were plotted in a 

chart that tracked the magnitude on the vertical axis, and the number of the packet 

from the unknown data set along the horizontal axis. The theory was again that the 

magnitude of projections of the “bad” payload data would differ enough from those of 

the good payload data that classification could be achieved. The chart was a means 

to visualizing the data in sets, large enough to see meaningful differences or patterns 

easily.

The complexity of the algorithm is two-fold as there are two main steps in the 

process. The first step concerns the development of training data. This involves 

gathering packets from the network (n time), reformatting them into binary and 

breaking out the IP Header and the Protocol Header, then creating vectors out of the 

pay load segments, then creating matrices out of the vectors, and finally performing 

a singular value decomposition on this matrix.

Stage 1 - Data gathering. This is a continuous process and has a complexity of O(n) 

since it simply captures each packet off of the line. Stage 2 - Converting the Data. 

This also has a complexity of O(n) since it performs the conversion operation on each 

item of data one time. Stage 3 - Performing the Singular Value Decomposition has 

a complexity based on the size of the matrix. For an mxn matrix, the complexity is 

O(mn2), for a square matrix the complexity if O(n3). Stage 4 - Vector Multiplication. 

This has a complexity of O(n2) due to the sequential, two level deep, nested loop 

operation of the algorithm.

Most of the complexity of the different stages is O(n), with the vector multiplica

tion loop being O(n2) Since the Singular Value Decomposition is O(n3) for the worst 
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case scenario, it is the limiting factor for complexity, and therefore the complexity for 

the entire algorithm is 0(n3).

2.5 Summary

The algorithm basically consisted of gathering two sets of data, training data, and 

testing data. The training data was composed of known good traffic for the particular 

protocol being tested. The testing data consisted of a separate set of known good 

traffic with a few bad packets interspersed. The algorithm gathered the training data 

into a matrix composed of vector columns, each of which represented a single packet. 

Next a singular value decomposition was performed on the training matrix, yielding 

three new matrices: a U matrix, a V matrix, and an E matrix. Next the testing 

data was also gathered into a matrix composed of mostly good packet vectors, with 

a few bad packet vectors. Finally, each column vector in U was multiplied using the 

dot product operation against each individual column vector of the testing data. The 

resulting values were plotted to a series of charts, with each chart consisting of the 

results of the multiplications of one singular vector from U against all of the vectors 

in the testing matrix. Finally the chart was analyzed visually to identify anomalies.
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3. TESTING

3.1 Methodology

This research required the use of many different pieces of hardware and software. The 

individual pieces of hardware and software will be detailed along with descriptions of 

how everything was used in the context of the research in Appendix I.

The testing portion of the research covered six distinct training/testing sets. For 

initial proof of concept work, ICMP was the protocol selected. This is due to the 

somewhat homogeneous nature of ICMP being that the data portions of each ICMP 

packet are relatively similar to each other; in fact, across Windows platforms, the 

ICMP packet is identical for every OS version, some even spanning multiple OS 

releases. An additional consideration was the small size of generic ICMP pay loads, 

with 56 bytes for Linux/Unix, and only 32 for Windows. The next set of data consisted 

of English ASCII and Chinese UNICODE representations of text taken from the 

Declaration of Independence, translated for the Chinese. This data was identical 

in format to how it would appear being transmitted over HTTP; however, it was 

extracted and converted manually from web pages, and not taken from payload data 

inside TCP/HTTP packets. The next set of data was actual HTTP traffic captured 

through tcpdump from the website Reddit.com. This site was chosen due to it’s 

largely text-based format, in an effort to get a data set representative of payloads 
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over TCP/HTTP containing mostly English text. The next set of data chosen was 

HTTP traffic from the website Pandora.com. This site was chosen due to it’s largely 

streaming audio based content. The next two sets of data were an intermingling of 

the prior sets of data, with one consisting of the Reddit training data tested against 

data containing the Chinese unicode character data. The final set was a comparison 

of packet payload data from Reddit against payload data from Pandora.

Once the data sets were populated, the first step in the testing process was to pre

pare an environment wherein the research would be conducted. A layer of complexity 

was added due to the fact that factors out of individual control required that the 

research be done completely offsite from CSUSB. This necessitated the creation of a 

remote, fully self contained environment, rather than being able to utilize CSUSB’s 

substantial research infrastructure. Due to financial restrictions, the only feasible way 

to create a large enough infrastructure to facilitate a heterogeneous environment that 

was complex enough to conduct thorough testing was to use virtualization technology 

to enable the leveraging of a tiny home network consisting of two desktops and two 

laptops with only two different operating systems into a still somewhat small, but 

now adequately sized, 16 machine network, utilizing four different versions of Win

dows, five different versions of Linux, one version of Unix, with one final machine 

running OSX. The open source movement was critical to the success of this venture, 

as multiple free programs, as well as free operating systems, were utilized to achieve 

the scale and complexity that was desired.

Once the environment was up and running, work began on the programming/testing 

phase of the project. This phase consisted of incorporating data streaming from the 
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above described components into a workable program that would capture and analyze 

data. The first iteration of this program, which was written in Python 2.7, consisted 

of a remote call to tcpdump to capture packets and dump them to a packet capture file 

called datcTcpdump.pcap. Next the program opened that file, converted the packet 

data to hex, discarded the ethernet header information while keeping the ip header 

information and the ICMP header information, and most importantly, the payload 

data, and wrote that data to a new file called daie_tcpdump_output.txt. Here is some 

sample output from the converted output file describing a single ICMP packet:

Sept_12_tcpdump_output.txt Output File example:

13:00:4?-884134 IP Ubuntul- Ubuntu2: ICMP echo request, id 3221, seq 534, length 

64 0x0000: 4500 0054 0000 4000 4001 bd45 c0a8 fe06 0x0010: c0a8 feOb 0800 1522 

0c95 0216 ecab 2650 0x0020: 0000 0000 fa63 0800 0000 0000 1011 1213 0x0030: 

1415 1617 1819 lalb lcld lelf 2021 2223 0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 

3031 3233 0x0050: 3435 3637

Next the program read in each line of the output file, converted the hex to binary, 

re-printed the header information associated with each packet, counted the bytes for 

each portion of the packet, and broke out the binary for each segment of the packet, 

finally writing this data to a new file called date_tcpdump_ping_binary.txt. Here is a 

sample of packet data from that file:
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Sept_12_tcpdump_ping_binary.txt Output File example:

Ping Packet Data For: 13:00:41-834134 IP Ubuntu 1 - Ubuntu2: ICMP echo request, 

id 3221, seq 534, length 64

IP Header - 20 Bytes: 0100010100000000 0000000001010100 0000000000000000

0100000000000000 0100000000000001 1011110101000101 1100000010101000 

1111111000000110 1100000010101000 1111111000001011

ICMP Header - 8 Bytes: 0000100000000000 0001010100100010 0000110010010101 

0000001000010110

ICMP Data Portion: 1110110010101011 0010011001010000 0000000000000000

0000000000000000 1111101001100011 0000100000000000 0000000000000060

0000000000000000 0001000000010001 0001001000010011 0001010000010101

0001011000010111 0001100000011001 0001101000011011 0001110000011101

0001111000011111 0010000000100001 0010001000100011 0010010000100101

0010011000100111 0010100000101001 0010101000101011 0010110000101101

0010111000101111 0011000000110001 0011001000110011 0011010000110101 

0011011000110111

Data Portion = 56.0 bytes

At this point, during the initial phase, the data portions of a file containing exclu

sively “known good” ICMP packet data were manually extracted, with each payload 

subsequently manually converted into an individual vector of binary digits 448 units 

long. This process occurred inside the R interpreter running on one of the CentOS 

boxes in the lab. For the first round of testing these vectors were assembled into ma

trices of size 20X448, with 20 of the previously assembled vectors inserted as column 
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vectors of the matrix. This matrix composition was conducted in a non-persistent 

R interpretive session on the same CentOS box. This matrix was to serve as the 

“known good” training data. After composing this matrix, a singular value decom

position was performed on the matrix, again using the non-persistent R interpreter. 

The singular value decomposition produced three results, a vector of singular values 

S, a U matrix, and a V matrix. The resulting singular values in the vector produced 

by this decomposition were examined to find a median value, and then the singular 

column vector from the U matrix that corresponded to the position of the median 

value in the vector of singular values of the same size was extracted. For example, if 

the value in position 5 of the singular values vector proved to be the median value, the 

Sth column vector of the U matrix, itself a vector 448 units long, was extracted. This 

extracted vector was then used as a multiplier in comparative dot product multipli

cations against individual vectors of both good and bad traffic types. The resulting 

values of these multiplications were examined to see if there were identifiers present 

that could illuminate whether traffic was “good” or “bad,” based on the assigned 

metrics. This process was conducted and repeated for matrices composed of “known 

good” traffic, as well as “known bad traffic.” The results of this experiment were 

inconclusive, as no identifers could be found to clearly differentiate between good and 

bad traffic.

After some contemplation, it was realized that larger data set would be required, 

as well as some sort of graphical-based visualization assistance in order for any type 

of concrete analysis to take place. Additionally, it was decided to switch tools with 

regard to the linear algebraic methods being used in the algorithm. This reasoning 
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behind this was two fold. First, there was the issue of the learning curve with regard to 

learning to write programs in the R language. While easy enough to use in a simple 

interpretive session, this method of usage of R was non-persistent and required a 

system to be up perpetually in order not to lose data cached in memory. Learning 

how to write persistent programs in R required substantially more complexity than 

simply navigating the interpreter, especially with regard to file handing. The second 

reason for the switch was the lack of easy integration between R and Python. If 

R had been maintained as the analysis language, it would have required external 

calls to programs outside of the main Python program, as well as some means of 

transferring variables between the programs. By using SciPy, a python library with 

the same functionality as R, complete integration with Python was achievable, greatly 

reducing the required code base, and providing a more stable and simplified platform 

for the research. The switch to SciPy also greatly accelerated testing, since tests could 

now be scripted once, rather than needing to be reconstructed in the R interpreter. 

Finally, the inclusion of the MatPlotLib graphical library, which also integrates nicely 

with Python, provided the means to achieve the necessary graphical visualization.

These developments led to the second phase of research, in which the first tangible 

positive results were obtained. With the integration of SciPy and MatPlotLib it was 

now possible to populate binary data directly from the dump files into SciPy vector 

and matrix variables, and then subsequently perforin singular value decomposition on 

the data as described previously. The major difference between the first phase, and the 

second phase was that the second phase incorporated a greater degree of completeness 

in the analysis of the singular values achieved by iteration over the entire matrix of 
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singular vectors, rather than just selecting the one associated with the median singular 

value as in the first phase. In the second phase of testing, a loop was added to the 

program that allowed for testing of all of the singular vectors, by selecting iteratively 

each of the columns in the U matrix, and then multiplying all of those columns using 

the dot product within SciPy against each vector in two different sets of vectors 

that were fed to the program. The first set of vectors contained only “known good” 

vectors, which were composed of actual binary data extracted from ICMP packets 

collected from selected nodes on the network. The second set contained mostly good 

vectors, with a few bad vectors, that were artificially produced using either hping 

or ColaSoft Packet Builder. The results of these dot product operations were stored 

into a “results” array within the Python program. Finally, the program iterated over 

the “results” array, plotting two lines. The first line was labeled “Training”, and 

it consisted of the results of multiplications of the “Known Good” singular vectors 

produced from the singular value decomposition with the original “Known Good” 

matrix prior to decomposition. Essentially the first line, labeled as “Training” is 

testing the known good traffic against itself. The second line, labeled “Testing” 

consisted of the results of multiplying the “unknown” traffic which consisted of a mix 

of mostly known good packets that were independent of the training data mixed a 

few bad packets against the singular vectors of the training data. By comparing the 

two lines it was now possible to see discrepancies between the “known good” traffic 

and the traffic that had “bad” packets mixed in with a unique set of known good 

traffic.

As mentioned previously, there were 6 different data sets. While the algorithm 
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was largely the same for each data set, some differences in structure of the different.

sets should be noted.

3.1.1 Set 1: ICMP

The ICMP data was composed of two subsets of data, one composed entirely of 

Windows packets, and one composed of linux, unix, and mac packets. ICMP is 

a mutable with regard to packet size, in that packets of different lengths can be 

constructed by providing additional arguments; however, there is a default size that 

is constructed with a standard call. The testing dealt only with the default packet 

sizes for each platform. Windows uses it’s own proprietary implementation of the 

ICMP protocol, which changed slightly after Windows XP. Windows ICMP packets 

are 32 bytes in length, with no differences in the contents of the binary payload data 

from one machine to the next, there packets, excepting the headers, are essentially 

static checksums. The Linux/Unix/Mac packets all use the BSD derived version of 

ICMP, which constructs packets that have payloads that are 56 bytes in length with 

small discrepancies in the payload contents based off of checksums that include source 

and destination information in the data. In the ICMP data set the training data was 

composed of 100 standard size known good packets. The training data was composed 

of 97 standard size known good packets that were unique from the training data, 

with 3 packets inserted that were standard size; however, their payloads had been 

manipulated by inserting SQL query data into the payload.
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3.1.2 Set 2: English ASCII vs. Chinese Unicode

This data set consisted of two subsets of data, English ASCII characters converted to 

binary, and Chinese Unicode characters converted to binary. The source document 

was the Declaration of Independence of the United States of America. The text was 

grabbed from www.archives.gov/exhibits/charters/declaration_transcript.html and a 

portion of it was converted first to ASCII using the converter located at: textop.us/Tex t- 

Convert/Ascii then, to binary using the converter located at: 

www.binaryhexconverter.com/ascii-text-to-binary-converter. Two sets of text were 

created, one to act as the training data, one to use for the testing data. The Chinese 

Unicode set was created by grabbing a different part of the Declaration of Inde

pendence, and using Google Translate located at: translate.google.com to convert 

the text to Chinese characters, which were then input into the converter located 

at www.pinyin.info/tools/converter/chars2uninumbers.html to convert them to Uni

code, finally the Unicode was converted to binary by using the converter located at: 

bennettroesch.com/Tools/BinaryUnicodeConverter/. In this set the training data 

consisted of 50 columns with 300 individual bit components derived from the English 

ASCII. The testing data consisted of 47 columns of 300 individual bit components 

derived from English ASCII, and 3 columns of 300 individual bit components derived 

from Chinese unicode.

3.1.3 Set 3: Reddit TCP/HTTP

This data set was composed of pay load data that was extracted from packet captures 

taken from communication with the website Reddit.com. Only incoming ACK data 
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packets were used. Reddit.com was selected on the basis of it’s composition of largely 

text-based content. Non-text based content was excluded from the data set as much 

as possible by only visiting pages that displayed mostly text. The payloads were 

extracted from standard 1500 KB MTU packets, and were 1452 bytes in size after the 

header information was removed. The data sets were 50 column vectors composed 

of 11621 individual bit components. The training data consisted of 50 known good 

vectors of this size. The testing data consisted of 47 known good vectors unique from 

the training data, and 3 vectors generated using ColaSoft’s packet generation tool 

that were of equal 11621 bit component length, but contained artificially generated 

garbage, basically randomly typed hex characters.

3.1.4 Set 4: Pandora TCP/HTTP

This data set was composed of two subsets. The first subset was composed of pay load 

data that was extracted from packet captures taken from communication with the 

website Pandora.com. Only incoming ACK data packets were used. Pandora.com 

was selected on the basis of it’s composition of largely streaming audio-based con

tent. The payloads were extracted from standard 1500 KB MTU packets, and were 

1452 bytes in size after the header information was removed. The data sets were 50 

column vectors composed of 11621 individual bit components. The training data con

sisted of 50 known good vectors of this size. The testing data consisted of 47 known 

good vectors unique from the training data, and 3 vectors generated using ColaSoft’s 

packet generation tool that were of equal 11621 bit component length, but contained 

artificially generated garbage, basically randomly typed hex characters. The second 
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set was identical to the first set, with the exception that an additional “bad” vector 

composed of roughly half known good bits, and half Is was added into the testing 

data.

3.1.5 Set 5: Reddit vs. Chinese

This was the first of two hybrid sets that were tested. Reddit training data that was 

using largely ASCII-based English text translations was tested against the Chinese 

Unicode data. The training data consisted of the 50 known good vectors from the 

Reddit training data, these were chopped from 11621 bits to 300 bits to conform to 

the size of the Chinese data vectors. The testing data consisted of 44 known good 

vectors from a set of data unique to the training data and two sets of “bad” data. 

The first set of “bad” data was 3 vectors from the original “bad” data from the first 

Reddit test chopped down to 300 bits in size. The second set was 3 vectors from the 

Chinese “bad” vectors from the first language test that were each 300 bits in size.

3.1.6 Set 6: Reddit vs. Pandora

This was the second of the two hybrid sets that were tested. The training data 

consisted of the Pandora training data from the previous homogeneous Pandora test, 

which was comprised of 200 vectors based off of payload captures of 11621 bit lengths. 

The testing data was composed of 197 vectors of “known good” payload data from 

Pandora of 11621 bit lengths, and three “bad” vectors taken from the “known good” 

vectors of the Reddit test that were 11621 bits in length.
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3.1.7 Conclusion

If the algorithm is sound, the identification of the goodness of each type of payload 

should be easily established. The more homogeneous payloads are expected to be 

more successful in this regard. For example, ICMP is a simple protocol that is largely 

homogenous in packet complexity and the packets should be easily distinguished as 

valid or not based on the contents of the payload. Packets that are either too big, 

too small, or contain erroneous header information can be easily filtered out by a 

router, while packets that fit typical standard norms in all the above categories should 

be fairly safe to allow through so that they may be subjected to internal analysis. 

Classification of packets will be threefold initially, where packets are identified as 

“good”, “bad”, or “unknown.” Based on classification, an implementation using this 

algorithm could then either drop the packets, allow the packets into the network, or 

place the packets into quarantine for further, human or computer based, examination.

3.2 Analysis of Data

There were multiple phases of testing, each yielding unique data sets that rather 

quickly identified the accuracy of the test being run. While clear, positive, results 

were obtained from five of the six data sets, the nature of the data implied that 

there were additional subtleties contained within the data that could mostly likely 

be exploited for future research and refinement of the algorithm. Within each testing 

set, there were two different sets of data which can be classified as either input or 

output.

The Input data was exclusively raw binary data. This data consisted of binary 
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digits collected from either raw packets or from translated ASCII and Unicode. This 

data was then assembled into individual column vectors, one for each packet or group

ing. These column vectors were then aggregated into matrices whose size varied on 

the length of the data in the initial vectors (number of rows) and the sample size 

(number of columns). The raw packet data was obtained from 16 different operat

ing systems, two different protocols, and three different websites. Below is a sample 

vector from the ICMP “known good” data set: 

10001101010111110010010001010000000000000000000000000000000000001011000111 

01110000001011000000000000000000000000000000000000000000010000000100010001 

00100001001100010100000101010001011000010111000110000001100100011010000110 

11000111000001110100011110000111110010000000100001001000100010001100100100 

00100101001001100010011100101000001010010010101000101011001011000010110100 

10111000101111001100000011000100110010001100110011010000110101001101100011 

0111

• The Output data consists of sets of values that were computed by using the vector 

dot product operation on the vectors from the “unknown” data set and the singular 

vectors from the U matrix, which were derived from the singular value decomposi

tion of the matrix comprised of the known good data. Although there were some 

generalities, this output data was unique for each testing set.

3.2.1 Set 1: ICMP

ICMP testing took part in two phases as it was the initial set to be tested, and 

consequently the algorithm was tested and refined during these initial periods of 
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testing. In phase one of the ICMP testing, the results were comprised of a single 

set that consisted of 20 values. Each value represented the result of multiplying the 

one singular vector from the U matrix that was associated with the mean singular 

value from the “known good” training data with each of the 20 unknown vectors 

from the testing set. Within the the unknown data set that was tested were three 

“bad” vectors that had spoofed SQL queries, created using hping. The data was 

completely inconclusive. There were no spikes in magnitude associated with the bad 

packets; furthermore, the magnitude of the values seemed to vary at random across 

all 20 packets. Although data from this phase was not plotted to a graph, the same 

phenomena reappeared in subsequent testing in the column space in and around the 

mean singular values. Figure 1 is an example taken from the second phase of testing, 

yet consistent with the inconclusive results seen with the first phase. This is a pattern 

that was seen again in every future phase of testing when looking at vectors associated 

with the mean singular values, though in a different context each time.

In phase two of the ICMP testing, the results were comprised of 100 sets of data. 

Each set containing 100 values, with each set of values associated with a unique 

singular vector from the U Matrix. Each value represented the result of that set’s 

unique singular vector from the U matrix multiplied against each of the 100 vectors 

from the unknown data set. Due to the large superset of resulting values, it was 

important to use a visual aid in order to discern patterns in the data. Accordingly, 

the values from each set were plotted onto 100 graphs, with each graph representing 

the results from one set of calculations.

After reviewing the results from phase two, two things became immediately ap-
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Fig. 3.1: Example of an inconclusive result from phase 1
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parent. 1) The initial expectation that the mean singular value and it’s associated 

vector would hold meaningful data was incorrect, and in fact quite the opposite was 

true. The magnitude shifts that were expected were only expressed at either extreme 

end of the singular values, or in the null space. Figure 2 shows a plotting of the first 

50 singular values for an ICMP testing set (the last 50 are all zeros) from the second 

phase of testing.

Plotted Singlar Values

Value

Fig. 3.2: Plotted Singular Values

The mean of this set is the singular value 4. An associated singular vector analysis 
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for one vector associated with a value near 4 is shown in Figure 3. By looking at 

the visualizations of the set represented in Figure 3, it is very difficult to get a clear 

picture of where the bad data sits in the set. In contrast, looking at the extreme ends 

of the value spectrum provides valuable data. Figure 4 is a plotting of the values 

associated with the Highest Singular Vector in the Linux ICMP tests. Figure 5 is a 

plotting of the values associated with the smallest Singular Vector.

Fig. 3.3: Singular vector plotting for value near 4

Using the extreme singular values on either end of the spectrum it is quite easy to 

distinguish where the bad packets are by observing the significant spikes in magnitude.
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Fig. 3.4: ICMP highest singular value
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Fig. 3.S: ICMP lowest singular value
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Additionally, looking at the sets of values associated with the Null Space where the 

singular value is zero, it is even easier to distinguish the location of the “bad” packets. 

Figures 6 and 7 are examples of values derived from Singular Vectors in the Null Space.

Fig. 3.6: ICMP Null space singular value 1

Clearly the Null Space has the most obvious results; however, it is interesting to 

note that the clarity observed at the extreme ends of the distribution of the singular 

values and their associated vectors blurred almost immediately when moving towards 

the mean. The reason for this is likely because the domain of the column space vectors 

of U does not cross into the Null Space, whereas, the anomalous vectors reside almost

45



T
N(A) Singular Value = 0

T T I

- Training
- Test

bl.

>0.4

0.3

01 
"O
I 0.2

EJI 
(U .

Vector Number

Fig. 3.7: Null space singular value 2

46



exclusively in the Null Space. The projections of the “bad” vectors that can be seen 

in the domain space are most likely due to a loss of energy in that space as the “bad” 

packets are projecting into the Null Space.

The Windows testing was all but worthless as the complete lack of any variation 

in the packets between the training data, and the testing data with the exception of 

the “bad” packet made it a little too easy to detect the anomalous data. As such this 

avenue of testing, and the accompanying platforms were quickly abandoned.

3.2.2 Set 2: English ASCII vs. Chinese Unicode

Testing for the this set again provided strong positive results both in the Column 

Space and the Null Space. The pattern held true from ICMP proof of concept testing 

that the areas where “bad” vectors could be identified were in the strongest projection 

of the Column Space, as well as throughout Null Space. This was the one test that 

was conducted that did not use actual packet data; however, the data it used was 

analogous to what would have been extractable from the payload of a packet. The 

reason for not using strictly packet data was so that a direct correlation could be 

drawn between ASCII English and Unicode Chinese. Had packet data been used, 

the payload might have been polluted slightly with non ASCII or Unicode binary 

information. In Figure 8, the strongest projection into the Column space identified 

the three bad packets quite clearly. However, as before, the characteristic pattern 

immediately fades when looking at even the second largest singular vector plotting, 

as demonstrated in Figure 9; however this was somewhat of an odd pattern compared 

to what was seen in the ICMP testing. The third vector into the Column space returns 
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to visualizations consistent with what was seen in the ICMP testing (see Figure 10). 

Looking at the middle of the Column space provides no better indication of which 

vectors are anomalous as indicated in Figure 11. Unlike the ICMP testing, when the 

Null Space is first entered, it remains somewhat unclear which of the packets are bad 

(see Figure 12). However, once the Sth vector in the Null Space is reached, the easily 

identifiable pattern emerges once again (see Figure 13). This trend continues with 

the 6th Null Space projection (see Figure 14). It is also evident in many of the rest 

of the Null Space projections. Figure 15 is a projection from the middle of the Null 

Space.

The data from the Chinese vs English testing was very conclusive. It is clearly 

possible to distinguish the Chinese Unicode data from the English ASCII data. There 

were a couple of interesting observations when examining the date. First, the initial 

projection into the Null Space did not provide an immediate conclusive result as it 

had in the ICMP testing. Second, unlike the ICMP testing which had positive results 

in the entirety of the null space, there were sets within the Null Space where it was 

not possible to identify the “bad” data. Furthermore, sets of data such as those 

expressed in Figures 16-18 posed questions as to what, if anything, is meant by the 

directional variation in energy projections.

3.2.3 Set 3: Reddit.com TCP/HTTP data

The Data from the Reddit TCP/HTTP test set was conclusive; however, there were 

again some variations between this set and the prior testing. First, this set was the 

first set where there were no conclusive results in the Column Space. Not only that,
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Fig. 3.8: Largest column space singular vector - English vs. Chinese
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Fig. 3.9: 2nd largest column space singular vector - English vs. Chinese
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Fig. 3.10: 3rd largest column space singular value - English vs. Chinese
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Fig. 3.11: Middle column space singular vector - English vs. Chinese
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Fig. 3.12: 1st null space singular value plotting - English vs. Chinese
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Fig. 3.13: Sth null space column space singular value - English vs. Chinese
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Fig. 3.14: 6th largest null space singular value - English vs. Chinese
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Fig. 3.15: Middle null space projection - English vs. Chinese
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Fig. 3.16: Odd null space projection 1 - English vs. Chinese
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Fig. 3.17: Odd null space projection 2 - English vs. Chinese
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Fig. 3.18: Odd null space projection 3 - English vs. Chinese
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but like the Chinese vs. English data tests, the positive results were not present 

in the first few sets of results in the Null Space. It took delving deeper into the 

Null Space before the characteristic magnitude spikes emerged. Like the Chinese vs. 

English results, not every projection in the Null Space provided clear illumination of 

the “bad” vectors. This particular set was important due to two factors. First, this 

was the first set where large data (Standard MTU sizes) taken from actual packets 

in the wild was analyzed. Second, this data set had direct implications to indicate 

usefulness in security applications. Unlike the ICMP data, which was constructed 

entirely in the lab, and had somewhat contrived “bad” payload data for its testing 

set, data that would not likely ever occur in the wild inserted into the payload, this 

data set had characteristics in the data that was representative of actual past attack 

vectors where garbage data is inserted into the payload portion. An example of an 

attack that would match this pattern would include a certain set of Distributed Denial 

of Service attacks, where the contents of the payload are meaningless junk and the 

goal is simply to overwhelm a network or server with data. Looking directly at the 

data, as previously mentioned, the first Singular Vector in the data set provided no 

clear results (see Figure 19), nor did the 2nd largest Singular Vector (see Figure 20), 

nor did the middle of the Column Space (see Figure 21), nor did any vector in the 

Column Space. Furthermore, like the Language tests, the first vector in the Null 

Space was also inconclusive (see Figure 22). However, further analysis of the Null 

space did provide very conclusive results as identified in Figures 23 and 24. These 

results were perhaps the most exciting of the entire range of testing as they proved 

conclusively that data taken directly from the wild could have the algorithm applied 
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to it with positive results. The implications of what could be done with this type of 

analysis given future research refining the algorithm appear to be far reaching, and 

will be discussed in the Future Directions section.

Fig. 3.19: Largest singular vector in the column space - Reddit Data

3.2.4 Set 4: Pandora TCP/HTTP

The data for the payload data from the website Pandora.com was the least successful, 

with the algorithm only able to detect a blatant manipulation of the data representa

tive of something somewhat unlikely to appear in the wild. This test was run in two
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Fig. 3.20: 2nd largest singular vector in the column space - Reddit Data
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Fig. 3.21: Middle singular vector in the column space - Reddit Data
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Fig. 3.22: 1st singular vector in the null space - Reddit Data
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Fig. 3.24: Singular vector in the null space 2 - Reddit Data
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phases, as the first phase was completely inconclusive. The first phase consisted of 

testing 200 packets of training data against 200 packets of testing data that contained 

three packets whose payloads consisted of arbitrary hex garbage similar to those used 

in the Reddit testing. The results of the first phase were that there were no sets where 

the “bad” packets were identified. After these: disappointing results, a second phase 

was initiated where an additional “bad” packet consisting of 800 bytes of just Is in 

addition to the regular garbage from the previous phase was included. This did yield 

a positive result; however, even with such a blatantly artificially created packet, there 

was only one set in the data where the algorithm was able to identify the packet; 

namely, the largest singular value in the Column Space (see Figure 25). The last sin

gular value was inconclusive (see Figure 26) , as was the middle of the Column Space 

(see Figure 27). The Null Space proved no more illuminating either in the first value 

in the Null Space (see Figure 28), or in the middle of the Null Space (see Figure 29), 

or anywhere in the Null Space. The fact that the Null Space had such an abundance 

of arbitrary strong projections unrelated to the “bad” packets would seem to indicate 

that the reason for failure in this space was due to too small of a data set used for 

testing, indicating the entirety of the domain was not covered by the training data, 

this may have been leakage of Column Space vectors appearing incorrectly in the Null 

Space calculation sets. Further testing with greatly expanded data sets could prove 

fruitful, and the fact at least a very skewed packet was detectable provides hope that 

further testing could prove successful.,
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Fig. 3.25: 1st singular vector in the column space - Pandora Data
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Fig. 3.26: Last singular vector in the column space - Pandora Data
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Fig. 3.27: Middle singular vector in the column space - Pandora Data
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Fig. 3.28: 1st singular vector in the null space - Pandora Data
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Fig. 3.29: Middle singular vector in the null space - Pandora Data
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3.2.5 Set 5: Reddit.com vs. Chinese Unicode

This was a hybrid test which combined data from two previous tests in order to see 

if further conclusions could be drawn. In this test, the previous Reddit.com data was 

truncated to match the data size of the Chinese Unicode test set. It was thought 

a valuable exercise to see if the largely English ASCII packet data gathered in the 

wild from Reddit.com could be tested against a testing set that contained additional 

Reddit.com data, as well as the Chinese Unicode from the previous test. The initial 

“bad” packets from the first testing set were included as well to provide a contrast in 

“bad” packet data to see if there was any valuable information to be gathered with 

regard to how one “bad” packet was identified compared to a completely different 

kind of “bad” packet. The answer was that there was no obvious distinction between 

the two types of “bad” packets. The results were again quite conclusive with positive 

results showing in both the Column Space and the Null Space. Note that there are 

now six spikes (three from the old garbage data, three from the new Chinese Unicode 

data) in this first set from the largest singular vector in the Column Space (see Figure 

30). Holding to a pattern seen in earlier testing, the clarity disappears when moving 

to the second largest of the Singular Vectors in the Column Space (see Figure 31). 

The third Singular Vector in the Column Space proved no more fruitful (see Figure 

32). However, once entering the Null Space, the “bad” vectors were again easily 

identifiable in a number of instances. The. first singular vector in the Null Space was 

able to detect all six “bad” vectors (see Figure 33). The second Singular Vector was 

also able to identify all three “bad” vectors (see Figure 34). As was the third (see 

Figure 35). There were several other instances in the Null Space where all six “bad” 
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vectors were easily identifiable, as well as some very strange behavior where some, but 

not all of the vectors were identified (see Figures 36, 37, 38). All told, the algorithm 

was very successful in identifying the Chinese Unicode characters (in binary form) 

mixed amongst the Reddit.com data, as well being able to still identify the initial 

garbage data. There did appear to be some differences in delineating between the 

Chinese Unicode and the garbage data, as evidenced by some of the stranger results

in Figures 36-38; however, the algorithm was equally successful in identifying the

Fig. 3.30: Largest singular vector - Reddit vs. Chinese
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Fig. 3.31: 2nd largest singular vector - Reddit vs. Chinese
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Fig. 3.32: 3rd largest singular vector - Reddit vs. Chinese
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Fig. 3.33: 1st singular vector in the null space - Reddit vs. Chinese
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Fig. 3.34: 2nd singular vector in the null space - Reddit vs. Chinese
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Fig. 3.35: 3rd singular vector in the null space - Reddit vs. Chinese
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Fig. 3.36: Some “bad” vectors in the null space - Reddit vs. Chinese
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Fig. 3.37: Some “bad” vectors in the null space - Reddit vs. Chinese

81



"r-

■ A in
;N(A) Singular Value — p

...
— Training

I; . — Test

0.8 -

J® 0.6
1 O'i 4J>

- *

c Ol ‘ ra
'■? Z 0.4

1 >L* '
-

j

Jr
■ X ’0i2i

n rv

! 8j ■ r t

•J "'

- 0.0(
) ‘ 10 '20 ;

Vector
30

Nu mber
40

.. -----
5 0 '

Fig. 3.38: Some “bad” vectors in the null space - Reddit vs. Chinese

82



3.2.6 Set 6: Reddit.com vs. Pandora.com

This was the one set of testing data that provided no conclusive results. The graphs 

from this test were unreadable noise both in the Column Space and in the Null Space. 

It is hypothesized that the reason for this was a lack of a training set of suitable size for 

the Pandora data. This hypothesis warrants future research to determine if training 

set size was indeed the limitation, or if the complexity of audio encoding makes it 

unsuitable for this type of analysis.

3.3 Summary

A test network was established as a virtual environment hosting multiple Linux, Win

dows. and Mac operating systems. Packet data was transmitted across this network 

to be collected in a central location for analysis. The data tested included the proto

cols ICMP and HTTP, as well as ASCII and Unicode. Known good traffic was sent 

across the network. The collected data was converted to binary and used to populate 

a set of training data that was composed of a large matrix whose column vectors 

were composed of the binary packet data. Using Singular Value Decomposition on 

'this large matrix produced a set of singular values that were used to identify new 

“unknown” incoming traffic composed of both good and bad packets on the network 

by using the vector dot product on vectors from the training data multiplied against 

vectors created from the unknown data. By plotting the resulting values into charts, 

in most cases it was easy to identify the the bad traffic amongst the good traffic. 

Further analysis of the results could provide even greater refinement and allow for 

more granularity in pattern recognition.
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4. CONCLUSIONS

4.1 Review of Contributions

The research has demonstrated conclusively that by using Singular Value Decom

position within the proper context it is possible to detect anomalous data in several 

contexts. Using ICMP as a proof of concept, the algorithm was developed and refined 

to overcome early mistakes in analysis. The more comprehensive approach that arose 

from these mistakes provided a strong framework that proved effective at identifying 

anomalies across nearly every set of testing data, including ICMP traffic, ASCII vs 

Unicode language, HTTP text-based traffic, HTTP ASCII encoding vs. Unicode, as 

well as to some degree HTTP streaming audio traffic. The characteristic magnitude 

spikes contained within the results clearly identified the location of “bad” packets 

within the testing data.

The implications of this research are many fold. The type of calculations being 

utilized by the algorithm lend themselves readily to parallelization, and thus would be 

ideal candidates for use with stream processors. This may enable a significant increase 

in the speeds typically required to analyze packet data. Furthermore, this research 

was largely a proof of concept endeavor, and further refinement of the algorithm may 

allow for even finer distinctions across a broad range of protocols, thereby opening 

up an entirely new way to conduct deep packet inspections.
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4.2 Future Directions

As mentioned previously, future experimentation in a variety of other protocols is war

ranted. Furthermore, larger samples of data might be tested to increase the success 

rate of the streaming audio analysis, which was the only non-conclusive protocol with 

regard to the testing contained herein. Furthermore, application of this algorithm 

within the framework of Cuda, and utilizing the inherent, parallelizable properties of 

the data being analyzed could prove exceedingly fruitful in providing a solution that 

can do autonomous packet filtering at line speed on large 10Gb networks. There are 

a number of permutations of the algorithm that was uncovered herein that might 

also prove more effective. For example, manipulating the size and shape of the ma

trices might allow for a greater variety of operations as the size of the Null Space is 

increased or decreased This may open the door to Eigenvalue/Eigenvector analysis. 

Further comparison with existing signal processing algorithms might also prove to be 

a valuable tangent. Though there was some precedents, this research was fairly novel 

in it’s approach; as such, it’s nascent abilities are very likely to be only scratching 

the surface of its full potential.
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5. APPENDIX

5.1 Software and Hardware Descriptions

In the course of the work the following pieces of software: Virtual Box, Hping, Python, 

SciPy, Tcpdump, Wireshark, Nmap, Windows XP, Windows 2003 R2, Windows 

Server 2008, Windows 7, Ubuntu, CentOS, Debian, BSD, Fedora, and Mac OSX.

5.1.1 Op erating System Software

Windows: - Windows is the dominant operating system in the market place today, 

as such it was imperative to include Windows operating systems in testing. Three dif

ferent variants of Windows were tested: The latest release for workstations, Windows 

7 acted as both a testing unit, as well as a host system for three virtual environ

ments. The latest server implementation of Windows, Server 2008, was used as a 

virtual test unit. This is a prominent operating system used by many businesses 

running server-based applications in today’s marketplace. An older implementation 

of Windows workstation solution, Windows XP, was also included as a virtual testing 

unit, as was the previous implementation of Windows server product line, Windows 

Server 2003 R2.

Linux: - Linux is an extremely popular operating system in enterprise environments, 

and a large percentage of the world’s web servers are housed on Linux boxes. There 
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are hundreds of different variants of the Linux kernel available; however, there are 

a few that dominate popular usage, and these were the ones selected for testing. 

Ubuntu Linux is probably the most popular workstation variant in the Linux com

munity today, three separate virtual instances were used in testing. CentOS is the 

free version of Red Hat Enterprise Linux (RHEL), another extremely popular variant 

of Linux within the business community. Three separate virtual instances of Cen

tOS were included in the testing group. There were also single virtual instances of 

Debian Linux, the distribution that Ubuntu was based off of, as well as Fedora, the 

workstation solution developed based on the Red Hat platform.

Unix: - A single virtual instance of BSD unix was included as a test unit.

Mac OSX: - A single physical MacBook Pro running Mac OSX 10.6 (Snow Leopard) 

was included as a test unit.

Virtual Box is a piece of software developed by Sun that enables a user to load 

a “virtual environment” onto an existing “host” operating system which allows the 

user to then install and run different (or the same) “guest” instances of operating 

systems within that “host” operating system. These “guest” operating systems use a 

virtualization layer to partition off segments of the “host” operating systems hardware 

resources (CPU, Hard Disk, and RAM) and treat them as if they are distinct and 

separate pieces of hardware that the “guest” can then use. The only limitation for 

how many “guest” operating systems can be run at once is the amount of physical 

resources that are available to the “host” operating system. For this research project, 

three “host” systems and 12 “guest” systems were used. The architecture was as 

follows:
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® Host 1 - Dell Workstation running Windows 7

1. 8 CPU cores

2. 8 GB of RAM

3. 500 GB of Hard Disk Space

— Guest 1 - Windows Server 2008

1. 2 Virtual CPUs

2. 2 GB Virtual RAM

3. 60 GB Virtual Hard Drive

— Guest 2 - Ubuntu Linux

1. 1 Virtual CPU

2. 1 GB Virtual RAM

3. 20 GB Virtual Hard Drive

— Guest 3 - CentOS Linux

1. 1 Virtual CPU

2. 1 GB Virtual RAM

3. 20 GB Virtual Hard Drive

— Guest 4 - BSD Unix

1. 1 Virtual CPU

2. 1 GB Virtual RAM

3. 20 GB Virtual Hard Drive

HOST 2 - HP Workstation running Windows 7
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1. 8 CPU cores

2. 16 GB of RAM

3. 1 TB of Hard Disk Space

— Guest 1 - Windows Server 2003R2

1. 2 Virtual CPUs

2. 4 GB Virtual RAM

3. 60 GB Virtual Hard Drive

— Guest 2 - Ubuntu Linux

1. 1 Virtual CPU

2. 1 GB Virtual RAM

3. 20 GB Virtual Hard Drive

— Guest 3 - CentOS Linux

1. 1 Virtual CPU

2. 1 GB Virtual RAM

3. 20 GB Virtual Hard Drive

— Guest 4 - Windows XP

1. 1 Virtual CPU

2. 1 GB Virtual RAM

3. 40 GB Virtual Hard Drive

HOST 3 - ASUS Laptop running Windows 7

1. 8 CPU cores
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2. 8 GB of RAM

3. 500 GB of Hard Disk Space

— Guest 1 - Fedora Linux

1. 1 Virtual CPU

2. 1 GB Virtual RAM

3. 20 GB Virtual Hard Drive

— Guest 2 - Ubuntu Linux

1. 1 Virtual CPU

2. 1 GB Virtual RAM

3. 20 GB Virtual Hard Drive

— Guest 3 - CentOS Linux

1. 1 Virtual CPU

2. 1 GB Virtual RAM

3. 20 GB Virtual Hard Drive

— Guest 4 - Debian Linux

1. 1 Virtual CPU

2. 1 GB Virtual RAM

3. 20 GB Virtual Hard Drive

Figure 1 details the physical/virtual topology of the lab environment where all 

testing was conducted.
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Fig. 5.1: Virtual Lab Topology
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5.1.2 Network Tools

Tcpdump: - Tcpdump is a common network tool that comes pre-installed on most 

unix/linux systems that enables a user to capture all network traffic in packet form 

on a designated network interface. Once captured the data can be translated in a few 

different ways and stored to a file. This is the primary tool that was used to both 

capture all test packet data, as well as translate it to hex so that it could be further 

translated to binary for use in subsequent matrix analysis. Tcpdump was utilized on 

all Linux boxes in the lab environment. An analogue to Tcpdump, Windump, was 

used on the Windows boxes to similarly capture packet data from that location.

Hping: - Hping is piece of packet crafting software written by Salvatore Sanfilippo 

that can be used for a variety of purposes related to network analysis and security 

including Firewall testing, Advanced Port Scanning, Network testing with a variety of 

protocols, manual path MTU discovery, advanced traceroute, remote OS fingerprint

ing, remote uptime guessing, and TCP/IP stack auditing, (source: www.hping.org). 

The research utilized Hping to create simulated malicious packets for testing the 

ability of the algorithm to detect malformed ICMP, UDP, and TCP packets.

Wireshark: - Wireshark is another packet capture/analysis tool similar to Tcpdump, 

but with a more intuitive and user-friendly Graphical User Interface. Wireshark was 

used as a secondary tool to do individual packet-level analysis of testing data sets. 

Nmap: - “Nmap (“Network Mapper”) is a free and open source utility for network 

discovery and security auditing. Many systems and network administrators also find 

it useful for tasks such as network inventory, managing service upgrade schedules, 

and monitoring host or service uptime. Nmap uses raw IP packets in novel ways to 
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determine what hosts are available on the network, what services (application name 

and version) those hosts are offering, what operating systems (and OS versions) they 

are running, what type of packet filters/firewalls are in use, and dozens of other 

characteristics.” (source www.nmap.org)

5.1.3 Programming To ols

Python: - “Python is a remarkably powerful dynamic programming language that 

is used in a wide variety of application domains.” (source: www.python.org) Python 

was used as the primary language for all programming done for this thesis.

SciPy: - “SciPy is open-source software for mathematics, science, and engineer

ing. The SciPy library depends on NumPy, which provides convenient and fast N- 

dimensional array manipulation. The SciPy library is built to work with NumPy 

arrays, and provides many user-friendly and efficient numerical routines such as rou

tines for numerical integration and optimization.” (source: www.scipy.org) SciPy 

and NumPy were the basis for all linear algebraic operations implemented by the 

algorithms used in the scope of the data analysis stage of this research.

R: - “R is a language and environment for statistical computing and graphics.” “R 

provides a wide variety of statistical (linear and nonlinear modelling, classical statisti

cal tests, time-series analysis, classification, clustering, ...) and graphical techniques, 

and is highly extensible.” (source: www.r-project.org). R was used as a data analysis 

tool in the early stages of the research process to determine the feasibility of certain 

numerical approaches. When it was discovered that a more iterative, programmatic 

approach was desired, R was discarded in favor of SciPy, which enabled the researchers 
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to accomplish the same tasks with direct and seamless integration with the Python 

programming language.

MatPlotLib: - “MatPlotLib is a python 2D plotting library which produces publi

cation quality figures in a variety of hard copy formats and interactive environments 

across platforms.” (source: matplotlib.sourceforge.net) MatPlotLib was the library 

that was used in order to create graphical representations of the results of numerical 

analysis using SciPy. It was through the use of these graphs that researchers were 

able to translate the results into a format that demonstrated that the algorithm did 

indeed produce valuable, concrete, results.

94

matplotlib.sourceforge.net


REFERENCES

[1] Florin Baboescu and George Varghese. Scalable packet classification. In ACM 

SIGCOMM’Ol, pages 199-210, 2001.

[2] Liana B. Baker. Hackers hit sony sites raising more security is

sues. ’’http: //www. reuters . com/article/2011/05/20/

us-sonyhacker-idUSTRE74J3Z820110520”, 2011.

[3] Sergey Brin and Larry Page. The anatomy of a large-scale hypertextual search 

engine. A Paper from the Computer Science Department at Stanford University, 

1998.

[4] US Strategic Command. Us cyber command fact sheet, ’’http://www. 

stratcom.mil/factsheets/cyber_command/”, 2009.

[5] P. Gupta and N. McKeown. Packet classification on multiple fields. In ACM 

SIGCOMM}99, pages 147-160, 1999.

[6] Pankaj Gupta and Nick McKeown. Algorithms for packet classification. Network, 

IEEE, 15(2), 2001.

[7] SANS Institute. Top cyber security risks. ’’http://www.sans.org/ 

top-cybersecurity-risks/summary.php”, 2009.

95

stratcom.mil/factsheets/cyber_command/%25e2%2580%259d
http://www.sans.org/


[8] Yaakov Katz. Stuxnet may have destroyed 1,000 centrifuges at natanz. ’’http: 

//www. jpost. com/Defense/Article. aspx\?id=200843”, 2010.

[9] Wenke Lee, Salvatore J. Stolfo, and Kui W Mok. Adaptive intrusion detection: 

A data mining approach. Artificial Intelligence Review, 14(6):533-567, 2000.

[10] Duo Liu, Bei Hua, Xianghui Hu, and Xinan Tang. High-performance packet 

classification algorithm for many-core and multithreaded network processor. In 

ACM CASES’06, 2006.

[11] Todd C. Lopez. 8th air force to become new cyber command. ’’http://www. 

af.mil/news/story. asp?storyID=123030505”, 2006.

[12] John Markoff. Before the gunfire cyber attacks. ’’http://www. nytimes . 

com/2008/08/13/technology/13cyber.html”, 2008.

[13] Samuel Patton, William Yurcik, and David Doss. An achilles heel in signature

based ids: Squealing false positives in snort. A Paper from the Department of 

Applied Computer Science at Illinois State University, 2001.

[14] David Sanger and Elizabeth Bumiller. Pentagon to consider cyberattcks 

acts of war. ’’http://www.nytimes.com/2011/0 6/01/us/politics/ 

01cyber.htm”, 2011.

[15] Mei-Ling Shyu, Thiago Quirino, and Xie XongXing. Network intrusion detection 

through adaptive sub-eigenspace modeling in multiagent system. ACM Transac

tions on Autonomous and Adaptive Systems, 1(3), 2007.

96

af.mil/news/story
http://www.nytimes.com/2011/0


[16] Summet Sing, Florin Baboescu, George Varghese, and Jia Wang. Packet classi

fication using multidimensional cutting. In ACM SIGCOMM’03, 2003.

[17] Haoyu Song and John W Lockwood. Efficient packet classification for network 

intrusion detection using fpga. In ACM/SIGDA 13th International Symposium 

on Field Programmable Arrays, 2005.

[18] Srinivasan T., Balakrishnan R., Gangadharan S.A., and Hayawardh V. Super

vised grid-of-tries: A novel framework for classifier management. In ICDCN}06 

Proceedings of the 8th international conference on Distributed Computing and 

Networking, pages 373-378, 2006.

[19] Sandeep A. Thorat, Amit K. Khandelwal, Bezawada Bruhadeshar, and Kishore 

K. Anomalous packet detection using partitioned pay load. Journal of Informa

tion Assurance and Security, 3:195-202, 2008.

[20] Marina Thottan and Ji Chuanyi. Anomaly detection in ip networks. IEEE 

Transactions on Signal Processing, 51(8), 2003.

[21] Brett Tjaden, Lonnie Welch, Shawn Ostermann, David Chelberg, Ravindra Balu- 

pari, Marina Bykova, Aaron Mitchell, Denis Lissitsyn, Lu Tong, Michael Masters, 

Paul Werme, David Marlow, Brett Chapell, and Philip Irey Iv. Inbounds: The 

integrated network-based ohio university network detective service. A Joint Pa

per from the The Naval Surface Warfare Center at Dahlgren in Virginia and 

the School Of Electrical Engineering and Computer Science at Ohio University, 

2000.

97



[22] Vimal Vaidya. Dynamic signature inspection-based network intrusion detection. 

US PATENT, (6,279,113), 2001.

[23] Giovanni Vigna, Bryan Cassell, and Dave Fayram. An intrusion dectection sys

tem for aglet, pages 64-77, 2000.

[24] Ke Wang and Salvatore J Stolfo. Anomalous payload-based network intrusion 

detection. Recent Advances in Intrusion Detection, 3224:203-222, 2004.

[25] Junbi Xiao and Hao Song. A novel intrusion detection method based on adap

tive resonance theory and principal component analysis. In 2009 International 

Conference on Communications and Mobile Computing, pages 133-139, 2009.

[26] Kim Zetter. Hacker spies hit security firm rsa. ’’http://www.wired.com/ 

threatlevel/2011/03/rsa-hacked/”, 2011.

[27] Denis Zuev and Andrew W. Moore. Internet traffic classification using bayesian 

analysis techniques. In SIGMETRICS }05 Proceedings of the 2005 ACM SIG

METRICS international conference on Measurement and modeling of computer 

systems, pages 50-60, 2005.

98

http://www.wired.com/

	Linear analysis of binary data as an aid to anomaly detection
	Recommended Citation


