
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2013

Ticketing and event management web service Ticketing and event management web service

Nikolay Figurin

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Figurin, Nikolay, "Ticketing and event management web service" (2013). Theses Digitization Project. 4231.
https://scholarworks.lib.csusb.edu/etd-project/4231

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4231&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/4231?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4231&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

TICKETING AND EVENT MANAGEMENT WEB SERVICE

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Nikolay Figurin

September 2013

TICKETING AND EVENT MANAGEMENT WEB SERVICE

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Nikolay Figurin

September 2013

Approved by:

Computer Science and Engineering

dt'Cu.sr zx>/3
Date

© 2013 Nikolay Figurin

ABSTRACT

Event management and ticket sales platforms are moving to the web. This

service, called TicketStand, is utilized as an event creation and ticketing

system. The project aims at a version of the software that includes: user

account creation, event creation per user, tiered ticket sales per event, search

capabilities, a focus on scalability and data redundancy, a focus on verifi

cation of event creator identities and administration features, a focus on

account expandability, an ability to easily expand functionality, ease of

migration and stability, low and inexpensive maintenance, as well as an

optimal framework relying on PaaS CDN with the option of database ab

straction.

iii

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to the Computer Science department for

giving me the resources and opportunity to further not only my education but also

my understanding of the field by allowing me to pursue the M.S. degree. I wish to

specifically thank Dr.Gomez, Dr.Schubert, and Dr.Voigt for being on my committee

and offering an incredible amount of help throughout the entirety of the program.

iv

TABLE OF CONTENTS

Abstract... iii

Acknowledgements iv

List of Figures ... viii

1. Introduction.. 1

1.1 Purpose of the Project.. 1

1.2 Event Management and Ticketing System Participants........................ 2

1.2.1 Sellers... 2

1.2.2 Event Manager/Creator/Organizer... 3

1.2.3 Event Attendance Coordinator .. 3

1.2.4 Administrator .. 4

1.2.5 Customer.. 5

1.3 Two Types of Event Management Workflow.. 5

1.3.1 Individual Seller Model... 5

1.3.2 Team-based Model.. 5

1.4 Project Products ... 6

2. Event Management and Ticketing System Structure............... 8

3. Database Design.. 22

v

4. System Implementation r................ 26

4.1 General Structure of the System... 26

4.2 Scenario-Specific Workflows.. 30

5. System Validation and Security.. 34

6. Installation and Maintenance............................... 37

6.1 Installation ... 37

6.2 Maintenance and Scaling... 39

7. Conclusion and Future Directions............................ 40

7.1 Conclusion.. 40

7.2 Future Directions.. 41

Appendix A: Routing Configuration File .. 42

Appendix B: Account Controller Class 51

Appendix C: Administration Controller Class...................... 61

Appendix D: Event Controller Class 65

Appendix E: MyEvent Controller Class........................... 80

Appendix F: MyPurchase Controller Class.. 91

Appendix G: Public Controller Class.. 94

Appendix H: Purchase Controller Class........................... 101

Appendix I: Model of Ticket Class............................. 106

Appendix J: Model of User Class............................... 109

vi

Appendix K: Model of Tier Class............................... 113

Appendix L: Front Page View File............................. 116

Appendix M: View Portion of the editmyeventdetails File.............. 123

References 131

vii

LIST OF FIGURES

2.1 High Level TicketStand Workflow for Creating an Event.......................... 9

2.2 TicketStand Frontpage... 10

2.3 An Event Page in TicketStand... 12

2.4 Ticket St and Login Page.. 13

2.5 TicketStand Registration Page.. 14

2.6 TicketStand Account Dashboard........................... ... 15

2.7 TicketStand’s My Events Page.. 17

2.8 An Edit Event Details View in TicketStand.. 18

2.9 Summary of Requested Tickets in a Purchase... 20

2.10 A List of All Purchased Tickets By a Logged In User............................... 21

3.1 Ticketstack Database Schema from TicketStand...................................... 23

4.1 TicketStand System Structure Detailing a Request and Response Sce

nario... 27

viii

1. INTRODUCTION

Event management and ticket sales platforms are moving to the web. This service,

called TicketStand, is utilized as an event creation and ticketing system.

1.1 Purpose of the Project

The project purpose revolves around creating web based application that includes:

user account creation, event creation per user, tiered ticket sales per event, search

capabilities, a focus on seal ability and data redundancy, a focus on verification of

event creator identities and administration features, a focus on account expandability,

an ability to easily expand functionality, ease of migration and stability, low and

inexpensive maintenance, as well as an optimal framework relying on a platform as

a service content delivery network with the option of database abstraction. The

current options for creating an event and managing ticket sales, attendance, and

other information digitally leaves users with little alternatives. Most free and low-

cost solutions deliver services with agreements that disallow the use of such systems

for profit, and are usually supported by advertisements. This is hurtful to event

organizers as the options are scarce, the end user agreements are constrictive, and

the services offered are centralized- thus hurting sales, if any are allowed to begin with.

More expensive, enterprise options result in high upfront costs with a large percentage

1

being taken off in royalties on each purchase. Such a system is not attainable for event

organizers of a smaller scale and may not be optimal due to the centralized nature

of the services causing hard dependencies, thus making a switch from one system

to another unfavorable[8]. This project aims to solve the aforementioned issues by

creating a web application that would enable its users to manage events as well as

ticket sales with no tie to a centralized system, unless they wish. The web application

is portable enough to work under most modern platform as a service hosts and is

expandable enough to easily add new functionality via the model view controller

pattern utilized by the Laravel 4 framework.

1.2 Event Management and Ticketing System Participants

There are five main types of participants that may be found in the process of orga-

nizing, creating, and managing an event and its purchases in such a system - sellers,

event organizers, event attendance coordinators, administrators, and customers[9).

1.2.1 Sellers

Sellers are individuals that wish to create an event and sell the admission tickets

for it on their own. These individuals are expected to create an event and manage

it through the service without another party. The primary concerns of a seller are

to disperse all information about the event to the public through a searchable and

publically accessible form, and to receive payment for the tickets as well as a list of

attendees for easy management. It is possible to create an event with tickets that

have no price- therefore creating a free event while keeping a list of attendees. An

2

example of this type of seller would be a wedding host, or a small seminar gathering

organizer.

1.2/2 Event Manager/Creator/Organizer

Event managers and organizers have the role of creating the event with all required

data. These users are usually part of a team where all event-related tasks are dis

tributed between the members. The primary goal of an event manager is to populate

the event form with all necessary information about the event. Everything from the

event address to the contact information may be included on the event form. The

event form also allows for multiple tiers of tickets, such-as general admission tier, a

VIP tier, and a founder tier, as an example. These users also provide support for

the customers they reach via an external service of their choosing (email, phone, and

similar means). The event organizers may use a single account with their teammates

for account creation and management to minimize the chances of any fragmentation

in the workflow and in the public-facing portion of the application. The consolida

tion of different roles into one account also allows for quick changes by all roles in

the case of an error or other emergency. This scheme of account management may

also enable venues to create their own accounts to discuss the event details with other

event organizers while keeping the events centralized to that venue in particular.

1.2.3 Event Attendance Coordinator

The event attendance coordinator is a user that focuses on the attendance aspect

of each event. Such a user may perform a function similar to that of a bouncer

3

or guardian at the door to ensure that the participants admitted to the event are

legitimate clients that have purchased tickets to the event. Generally events will

hold multiple event attendance coordinators at the doors, forcing the utilization of a

synchronizing ticket tracker to be present in the application. The event attendance

coordinators may require access to details such as the unique code or ID of a ticket,

the event information per-ticket, tier information, customers first and last names, and

the email of the customer. Predominantly the ticket code or ID is used due to privacy

concerns exhibited with smaller vendors.

1.2.4 A dministrator

The administrator plays a vital role in account management of all registered users as

well as the ability to edit any event details that do not withhold a required degree of

integrity. Generally administrators are users which focus on the setup and mainte

nance of a non-centralized application as well as aiding sellers, event organizers, and

event attendance coordinators with any required permissions and external tasks. The

administrator role may be extended to other participants in the system on a per-user

basis, thus allowing an external party of maintenance or support staff to quickly make

changes to events and users such as deletion of events, users, and elevation of roles.

Administrators also require the ability to freeze accounts and events to disallow ticket

sales while keeping the fraudulent sellers information up in the public domain.

4

1.2.5 Customer

The customers are the users that purchase event tickets through the system directly

from the event organizer teams or individual sellers. Generally a customer requires

the ability to search all events of interest and their relevant information prior to

committing to a purchase for an admission ticket. Customers also have the need

to go back through their past purchases, and view the events they have purchased

tickets for. The customer will also have a need to create a full account detailing

their contact information (such as email) and be able to refer back to all of their

consolidated information in one place.

1.3 Two Types of Event Management Workflow

1.3.1 Individual Seller Model

This scenario includes an individual creating and managing the event entirely by

themselves with no team workflow. Such a use may be exhibited in very small events

such as parties and general get-togethers. This workflow revolves solely around the

user as all required duties (outside of payment handling) are completed by the one

seller. The event creation process may be summed up with account creation, event

information aggregation into one searchable entity or form, and attendance tracking

during the event if required.

1.3.2 Team-based Model

This scenario features a team where multiple tasks may be broken up per person

but consolidated under one account. This may include an event organizer, event

5

attendance coordinator, and administrator if the system is not centralized. The tasks

may also be split into groups and each person may hold responsibility over any atomic

tasks they require[10]. Such a workflow may separate a venue from event organizers,

or aid with distributing the workload between a team of event organizers and their

staff.

1.4 Project Products

To better suit the needs of event organizers, event attendance coordinators, individual

event sellers, and clients, we need to build a system that will allow a non-centralized,

web-based event management and ticketing platform which will allow all users to ful

fill their required tasks in an orderly and consolidated manner. This project builds

such a system with focus on extensibility, portability, and security. The aforemen

tioned participants may fulfill all tasks through the web-based application with little

to no maintenance and a small amount of technical background. The service allows

for creation of accounts, creation of events, search of all events, aggregation of event

information through a single form, multiple layers of security, an option to implement

any required payment APIs, fast installation through multi-tiered configurations and

migrations, as well as allowing editing of events, tracking attendance and ticket re

demption, deleting events, and freezing of fraudulent accounts and event pages.

The project limits its scope to just these services and the aforementioned partici

pants. Payment options are abstracted due to the nature of the market and disability

to select a universal payment gateway, while features such as inter-platform com

munication are simply a non-issue due to the spread and standardization of other

6

readily available communication protocols[ll]. Each user registered in the service

may both purchase and sell tickets. The list of aforementioned features applies to all

registered users with the exception of administrative role properties, which must be

enabled per-user by the initial administrator that will be created on the initial setup

of the application. This project has successfully delivered an extendable system which

provides the functionality of all mentioned requirements with a complete user inter

face that is compatible with the WebKit and Gecko web engines, multiple safeguards

for security, dependable structure for easy expansion and implementation of external

APIs, complete migration list for portability, and consolidated configuration lists and

dependency managers.

7

2. EVENT MANAGEMENT AND TICKETING SYSTEM STRUCTURE

Although the project may be molded into many different services, the project was

originally built around very specific workflows. These workflows focus on purchasing,

selling, and managing event tickets as well as managing user accounts. Views come

into play as they are the part of the framework that allow generation of HTML

elements, and each step of the way relies on the combination of the logic done in

the controller, the redirecting and passing of variables done by the routing functions,

and the database links created in the database and models of the application. On a

high level, the system may use this structure to redirect the user through a specific

sequence such as publishing an event as exhibited in Figure 2.1. The workflow of the

product is straightforward and simple to understand. A non-registered user may go

to the web address of the site and browse through the front page, the search pages,

event pages, and the registration and sign-in pages on the service. The front page(as

seen in Figure 2.2) features general information about the service and what it does.

In the case of a venue using such a system, the venue may populate these static fields

with background information and history of the location, as well as a dynamic call-

to-action button urging visitors to register. Located below the general information

is a search bar. The search bar allows search of all events through the use of event

name, event type, event description, user name, city, state, and zip code of the event.

8

Fig. 2.1: High Level Ticketstand Workflow for Creating an Event.

9

^TlckefStajuL_______
tVetcsw to imtay fiQuimni its, prtject This larrica, cuntuiy caled ticfcetitend, h » tfcfcei purdia wg and aetog

ptotfann, ThM tit? caste tasted flotcnJ/U) a PsaS. as total? expected. tatateas <noti other invars w th Vuyttte
ctenge.Tho tcnricett euly expanding end vreS-oguilzed wflh en UVC pattern. Sow eecurty features are aOBcnltiia!

. Wfl tod come standard wih proper ho ting.
The ttte rune on LaweMaiNitlySClL [mdaton of other tooted

Search Events «SirwuM»am*t OfSetnivtypt • Sear^tprtctlfii&n •iiear«j>U«<* •
£»rdi£r«4 •jS^rxh Smer * ?e.ireri Zipatet *

Upcoming Events

Event One from DB
20in2-i7n£r59 ncAMwiiXA

0 Tickets Left

Fig. 2.2: TicketStand Frontpage.

10

The visitor may search a term to be redirected to a page of all events that match the

query. Under the search bar is a list of 10 upcoming events sorted by closest date

first. Each event in this list is in stub form. The search view paginates results at

five events per page, with each event listed being in a stub form. The stub form is

a frame of a 200 pixel height that contains the events most immediate information.

This information includes the event name, date, time, city, state, amount of tickets

left, three categories (or types) to classify the event, an event summary, and a call-to-

action button to view the event. The three categories (or types) are visible as small

pill buttons which when clicked will redirect the user to the search page displaying

all other events with the selected type. Selecting the See event info call-to-action will

result in a new page detailing the event view.

The event page (seen in Figure 2.3) lists more information about the event than the

stub view. The information listed includes the event name, the three type pill buttons,

the date of the event, time of the event, city, state, zip code, street address, summary

of the event, number of tickets available, a full-text event description, up to three

tier fields, three photos pertaining to the event, an interactive Google maps frame

showing the location of the event and allowing the possibility to go to a new window

with directions via Google maps, a field detailing the event creators information

including their username, first and last name, and email, and lastly the dynamic tri

state purchase button. The purchase button holds the values of Buy Tickets with a

redirect to a purchase page (or the login page if the user isnt signed in), Sold Out

specifying the tickets are all sold, and Event Over denoting that the event in question

has passed.

11

la
Test Event

aiMMf*) NM
«*
*SV

1634 Tickets Left

;$dtf

Tickets

<7*

LmtttrukJ

Matter 3

WJCwiltei

Ticket Sates

Fig. 2.3: An Event Page in TicketStand.

12

Gran to rtmsq Rjrtxt1tif»uiwtu?iirtfw * auti *jpcrccw pcara.
ikAUO&n

Fig. 2.4: TicketStand Login Page.

The header of the service holds four links. The links in the header are in the logo

itself, which is a static asset and redirects to the front page of the service, and three

dynamic buttons. If the user has an account and is logged in, they will see their name,

a link to search, a link to the account dashboard, and a link to log out of the service.

If the user is logged out, they will see the search link, a link to log in, and a link

to register (or create a new account). The login page (seen in Figure 2.4) holds four

elements specific to it. The form has a username field and the password field as well

as the login button for that form. On submission of the form, the input is validated to

check against an array of rules such as length requirements and if the user does indeed

exist with that password. A green Need an Account? Register button may be found

below the form. This button will redirect the visitor to the registration form. Once on

13

CUM flj PittM ©twrfcjl MFM? a S«M VI OH tf *UDjj4« tfWlfOWtt.

amuosou

Fig. 2.5: TicketStand Registration Page.

the registration form (seen in Figure 2.5) , the user will see all required fields to create

a new account. This includes the fields for username, password, repeat password, first

name, last name, email, website (optional), and zip code. All fields have their own

validation on submission. The validation rules include checks for what type of input

is received (numeric or not), the values of the numeric input (specifically if the zip

code is valid), if the email is of a proper structure (contains at least one character

before the © symbol and is followed by a domain name, and if the password fields

match. Under this form we have another button not unlike the one seen in the login

screen to give the visitor the option to go directly to the login form. On creation of a

new account, the user is redirected to the login form where they may see a message

reading Account Created Successfully! and sign in. After signing in, the user will see

14

otiMtjMacq nun oc«j ik^sa tarpsaci

VUHSO3S1)

Fig. 2.6: TicketStand Account Dashboard.

the account dashboard.

The account dashboard (seen in Figure 2.6) includes two main portions- the user

account management on the left and the event management on the right. The account

management portion of the dashboard includes all fields that are stored in the account

and were required upon registration. These fields are prepopulated from the server

and allow the user to update their account information with one click. The form

has its own validation and allows the user to change their password, username, and

any other fields they wish. The event management portion of the account dashboard

holds a collection of links. These links include the option to create an event, a link

to the users purchases (this will not be seen if the user has no purchases on their

account), a link to the users created events, and a sign out option. The user may

15

wish to select the link which would allow them to create an event. This redirect will

take them to the event creation form. Here the user may find blocks of fields labeled

as basics, location, descriptions, photo upload, tier 1 tickets, tier 2 tickets, and tier 3

tickets. The basics block contains the fields for the event name, the three types that

the event should be listed under, and the date and time of the event. The location of

the event includes the events location name, street address, city, state abbreviation,

and the five digit zip code. The descriptions block allows the population of the event

summary and the event description. The photo upload block allows the uploading

of three different images to be displayed on the event page by browsing to the file

and selecting it via a popup browser. The tier 1, tier 2 and tier 3 ticket blocks allow

the user to specify the tier name, tier description, number of tickets, and price of

each ticket per tier. This view holds its own validation rules checking for types of

input, and looking over file size, as well as recovering all entered data in case the

event creation did not go through properly. This allows the user to continue fixing

any fields without having to repopulate the form from the beginning.

After the event is created by the user, the user may see it under the My Events

page (seen in Figure 2.7) that is accessible via the account dashboard. This view

holds a list of all events created by the user in a manner not unlike how the search

function displays them. The primary difference in this view is that each stub form

has a Remove Event button. Clicking this button will take the user to a confirmation

page asking them if they truly wish to remove the event with the option of removing

and keeping. The remove option deletes the event and all of its relevant information,

while the keep option redirects back. The event view is comprised of a few dynamic

16

^TlckefStaiuL
vw32 . wsJ (j s >3 J‘

My Events-
H<ro are the events you tieve created;

GHJKLFGHJK

IBWil gffifflffa mij-h-moommo isM.on
w

GHJKLFGHJK

fHH3EHH3gEJJ 2oimmi<khkwo woh
w

GHJKLFGHJK

gpffl 1IHWJ1 gMIW 2a«-H-1i 0MMH3 fgty,gt>

,. W

GHJKLFGHJK

0 Tickets Left

See Event Sates —

0 Tickets Left

0 Tickets Left

See Event Sales —

1 Remove Event P1.

See Event Sales —

n r

Fig. 2.7: TicketStand’s My Events Page.

elements that are hidden to an unregistered user. If the event creator is on the event

view, they may scroll down to see a Remove Event button and a Ticket Sales field.

The ticket sales field will either read No Tickets Sold if there are no sales for the

event, or will display a scrollable field with unique ticket codes that denote a users

ticket. Each code has its own button (or flag) which reads Mark or Unmark where

Mark suggests the ticket is not yet marked, and is therefore unused, whereas Unmark

denotes that the ticket has already been redeemed. This view will refresh with each

mark action, thus allowing multiple event attendance coordinators to use the same

component in synchronization and see near real-time changes between the statuses of

the tickets.

Another dynamic element on this view is the addition of an Edit this Event button

17

^JlckeiSttuul wi»_« VI‘X

Edit Event Details

Desafrittofla

View Event Page -* l Go io: My Events

Fig. 2.8; An Edit Event Details View in TicketStand.

which may be seen right under the Buy Tickets button. Selecting this option will take

the user to the Edit Event Details view. This view (seen in Figure 2.8) is similar to

the event creation form with the difference of saving the changes instead of creating a

new event, as well as pre-populating all of the data in the event. The validation holds

up not unlike the event creation page validation, and all input data is stored and

recovered in the case of an error. This view also adds three new actions that the user

may perform. The user may go to view the event page, go to the list of their events,

and may delete the event. This concludes most of the functionality that a seller or

event organizer would require. Administrators receive the same functionality with

additional privileges such as being able to edit and delete any events in the system

18

and seeing an Administration Panel in the event views. The administration panel

allows administrators to set other users as elevated to the administrator role or to

demote them from the administrator status. The panel also allows an administrator

to delete the users account, or to lock their account. The usefulness of locking an

account may be exhibited in a scenario where a user may create a fraudulent event,

and the administrator wishes to disable purchases (by changing event date or tickets

available) and freezing the users account to leave all of their information on the page.

Please recall that the event creators information is always displayed in the bottom

of the event page. The frozen user will not be able to log in, and will therefore

be unable to edit their information to conceal it, nor delete the event or account

altogether, allowing storage for records, or simply displaying the information for the

sake of the affected customers. Administrators cannot demote themselves from the

administrator status. All users have the ability to not only create events, but also

purchase tickets.

The purchasing mechanism may be seen by selecting the Buy Tickets button on

any event page that has tickets and the event date has not passed. The redirect will

take the user to a purchase selection form. At this point, a full implementation of

this project for commercial use may swap this element out with a payment gateway

as the existing code uses database calls to simulate payment transactions as it is

unsafe to have a sandboxed PayPal API frame in the development environment that

is accessible by the public. The purchase selection view is composed of the ticket tiers

that are available in the event, the event name, tier summaries, a dropdown selection

to choose the amount of tickets that the user wishes to purchase, along with the price

19

^JuJcetStaiul

teUSOWJ

Fig. 2.9: Summary of Requested Tickets in a Purchase.

of each ticket. Once the number of tickets is selected and the form is submitted, the

user may go through a summary of their purchase before committing to the payment.

The summary lists the tier name, tickets requested, price per ticket, and a subtotal as

seen in Figure 2.9) . Once payment is complete the purchaser will be redirected to the

My Purchases view (seen in Figure 2.10) , where they will see stub forms comprised

of the event name, a specific ticket code, a status for the code (used or not used), city

and state of event, and the event summary. The stub forms also include a button to

see the event page for further review. The user may then log out of the system and

see the same information again on their next login.

20

^^cketStaiid
venJJ * "HCtv-far-t ■ -

Test Event

J2yS£ SSMVflLV.FOyLnilvdsl tL5.Bltl0qmCkcxB.ti
Mot U>ed
tON.Oh
W

Test Event

J2yiatSa6k4SOw»!lVDFkiTwOttt2a Bef iUuVqoC>y2qS
Used

w*

Test Event

X2yttUt<>ja>t>jOu.wMkHtUeM2nl<6tiivfflOtia?O
Used
rgn|»gh
w

Test Event

UyWSSJ HSs6kWotocp9qU7XnUViilU*wn m. WtemB
Vied
Wi,gti

Fig. 2.10: A List of All Purchased Tickets By a Logged In User.

21

3. DATABASE DESIGN

The web application relies on a MySQL database with a schema that is optimized

for the Eloquent Object Relational Mapper supplied by the Laravel 4 framework.

Object-relational mappers allow for different sources and destinations of data to com

municate with each other through a virtual interface that both may understand and

stay compatible with. The Eloquent ORM is based around the ActiveRecord API[?]

and provides a simple way of interfacing the logic components of the application with

the database as well as supplying a schema builder class that allows the developer

to specify what tables and columns must be created in a PHP-like syntax without

the need for raw SQL commands (although they are possible). The database design

revolves around the utilization of the Eloquent ORM as it enables easy chaining of

tables with the minimal use of pivot tables and provides a very flexible interface that

continues to function properly even after changes to the database are made.

The schema for the application is comprised of eight tables with at most a one

to many relationship as seen in Figure 3.1. The schema is made of the users table,

purchases table, transactions table, tickets table, tiers table, events table, images

table, and the locations table. The schema itself is circular in design due to the fact

that the users table must connect in both directions to purchases and events as a

single user may purchase and create an event. The users table holds all required

22

Fig. 3.1: Ticketstack Database Schema from TicketStand.

23

data for the user accounts including flags for account suspension and administrative

privileges, as it holds a one to many relation to the purchases table. The purchases

table represents the state of a purchase before the payment has gone through. It

holds the timestamp for the purchase, the users id, and a Boolean value to denote if

the purchase was paid for or not. This allows for the possibility of running a cleanup

script on each purchase to delete any purchases that are not paid for within a set

amount of time. This script would run in the database itself, but may be enabled in

the application as a PHP function. Once the purchase is paid for, the tickets for that

specific event are created and tied to the user through a transactions table.

The transactions table serves as an intermediary table between the two to disallow

the performance pit falls of a many to many relation to occur by storing the tickets

id and the purchases id in a single row. The tickets table lists a specific code which

is created by a PHP function that takes the current time down to a millisecond and

hashes it, a Boolean value denoting if the ticket has been used or not, and a tiers

id which acts as a foreign key to the tiers table. The tiers table includes the tier

name, description, event id, the tickets available, and the price of the tier. This table

belongs to one event through a many to one relation. The event table holds the event

name, description, summary, type, date, and three foreign keys. The foreign keys

point to the users table, the locations table, and the images table. The images table

currently only holds the values for the event that the images are tied to, the user that

uploaded the image, and the location of the image.

While it may seem unnecessary to abstract images into its own table, it is important

to note that the platform as a service host, Pagodabox, that the project is initially

24

made to run on allows persistent, non-volatile file storage, thus only requiring a name

and location of the file. However, a majority of other cloud hosting solutions do

not offer non-volatile storage options, and therefore the abstraction of an images

table aids in uploading images on such a platform as the only change would be an

addition of two columns to the table to allow the image files to be stored directly in

the MySQL database. The locations table has also been abstracted from the event

table because of future plans to allow users to select previous locations they have

held events at, thus potentially minimizing overhead in the database. Generally the

Eloquent ORM allows for quick traversing of all tables with a minimal use of pivot

tables, and therefore a circular design with predominantly single relations between

tables was optimal[12j.

25

4. SYSTEM IMPLEMENTATION

This chapter goes into the details of the systems implementation. It covers the por

tions of the project that allow the functionality that may be exhibited by the interface

of the application, as well as cover some basic patterns seen in the Laravel 4 frame

work and any other tools that are included in it. An important bit of information

about the framework in question is its use of the MVC (model-view-controller) pat

tern. This pattern allows for easy separation and management of the logic, data, and

visual components of a system[l]. It is also important to be familiar with the LAMP

(commonly Linux, Apache, MySQL, and PHP) software bundle which follows ANSI

SQL standards in conjunction with support for popular languages like PHP (in our

case) [2].

4.1 General Structure of the System

The general structure of the system relies on three predominant components as the

Laravel 4 framework is based on the Model View Controller pattern, and runs on

most popular hosting environments as it expects a Linux Apache MySQL and PHP

stack. In general, all traffic first goes through the the routes portion of the code.

The routes file is a collection of get, post, and put method-based redirects that set a

flag to complete a specific check or filter before routing the requests over to a specific

26

Database

Fig. 4.1: TicketStand System Structure Detailing a Request and Response Scenario.

view and execute a specific controllers methods. An example of a general request and

response cycle in the application may be seen in Figure 4.1.

The routing mechanism in Laravel 4 is extensible enough to allow filters, before

methods, and route grouping, thus giving the developer plenty of functionality in

what should be done before the request is considered as complete. In this projects

case, we may see that the routes will differ depending on the get and post method,

not strictly the URL name supplied. This allows for passing of variables through the

session files, which are stored in the form of a fiat file (as opposed to a cookie).

The storage of a session as a fiat file also aids in the checks against cross-site

request forgery[13], something that is discussed in another chapter. Routes however

27

may pass data through query strings as well, which would generally create security

issues by design. However, the concerns are mended with the use of Auth class filters.

Generally, the routes are set up to check if the URL requested should be a member-

only piece of the system, or if its publically visible. We also check for the type of

request and make sure that no POST requests can be forced into the system through

the use of before filters. Some of the main filters use the Auth class to determine if the

user is logged in or if they are the owner of an event, and a similar check to determine

if the user requesting the page is an administrator. Once the requests go through and

are cleared by the routes component, the controllers come into play. Each controller

has its own family of methods that relate to each other in functionality. This is done

primarily for organization as most of the methods are not tied to each other directly,

and do not extend each other through imports or inheritance.

The main controllers are Account Controller, AdminController, BaseController,

EventController,KeywordController, My Event Controller, MyPurchaseCont roller, Pub-

licController, and PurchaseController. Each controller has a self-explanatory title to

best communicate what it does. The My prefix refers to the controllers that are spe

cific to a tied user, whereas the controllers lacking the prefix are those that are used

by all users, and do not pass data per-session, per-user. This is also the step where

all database related processing occurs. Through the use of the Eloquent ORM, the

system may retrieve all necessary information to feed into the view by passing the

information through a series of arrays, or using the static save and update methods

to update any tables that require changes. It is also possible to force SQL statements

into the database directly through the controller, but this is not seen in this project.

28

Once the data has been processed and written back to the database through the use

of the controllers, most controllers will either redirect the user to a GET function

that will render a view, or they will render a view outright. The views available in

the application are what displays the basic HTML structure of the page, as well as

doing some minor processing work. Primarily, we will see the processing portions of

the view strictly perform more authenticity checks and in some cases queries through

the Eloquent ORM.

The views in the application use the Blade templating engine. This system allows

for shortcodes to echo out specific variables, form creation, and a multitude of loops

with as little as two characters of code[14]. This is commonly seen throughout the

project for form creation using the Form class. The Blade templating engine also

allows the developer to separate the structure of the pages into multiple sections and

re-use it in other views. This is how the header, footer, and metadata is passed on

each page throughout the project. The specific setup relies on a blade file called

default.blade.php which holds the header, footer, and several variables that may be

passed to the head and script tags of the file. In the middle of the default.blade.php

file, we have a yield for content. This yield is a marker for where the rest of the code

will be imported in each page, depending on the view being rendered. This allows

for quick changes in the system to be reflected system-wide, as well as increasing

readability of code as the structure is generally object-oriented[15]. Lastly, the basic

structure relies on the public folder which hosts what is actually seen as the root of

the server. This is one of Laravels best points, and is something that increases the

integrity of the applications security by hiding more core files than most PHP-based

29

frameworks normally do. The public directory is also home to any uploaded files by

all users (as it may be seen publically anyway during upload), and the single CSS file

that drives all styling of every view.

4.2 Scenario-Specific Workflows

In the scenario of fetching a public page, the controller simply creates a basic data

array containing the user id of the visitor (if they have one) and the title of a page

and passes it to the view component that renders the page. In the case of the event

creation component of the system, the route may fail the authentication of the user

as being the owner, and will therefore redirect the user to the account dashboard with

an error message. However, if the authentication does not fail, the route will use the

showevent creation method from Event Controller to generate the view eventcreation

with an array of basic data such as user id and title, as previously explained. If the

same page is loaded with a legitimate use of a POST method instead of a generic GET

method, we will see the utilization of a different method under the same controller.

This scenario will have the routes call up the post event creation method under the

same controller. This method once again does the Auth method check to see who the

user pushing the POST is, and if they can create such an event. The method grabs

all input from the referrer screen (specifically the event creation form) and checks

it against the rules array. The check here not only ensures that no extra data is

being forced through the method, but also does the validation tasks. A few examples

in the rules array may be the requirement of the event summary to be required,

alphanumeric, and a maximum of 160 characters, and the requirement of the images

30

attribute to be a set of specific extensions and filetypes, as well as specifying a hard

limit of 300KB in filesize prior to being uploaded. The method also ensures that all

data is temporarily stored and will get re-populated in the event of an error, so that

the user will not have to start the event creation process all over again.

Once the validator completes and passes, we will fill a series of arrays (specifically

locationdata, eventdata, tierdata, and images) which will later be validated once more

and pushed through to the Eloquent ORM. This portion of the controller will specify

any new methods and update methods that will be passed to Laravels Schema Builder

component for creation and updating of the controllers respective tables. While

reviewing the code, one may notice that the event variables are interchangeable with

the nitwit variable due to the fact that name spacing support was not completely

implemented in Laravel 3 [16], and was therefore split into two different variables as

this project began while version 4 of the Laravel framework was not released. The

Eloquent ORM not only does any specified checks in its owner controllers, but will also

go through the migrations provided in the project to check against any constraints or

inconsistencies in the data push. This requires the ORM to go through the models

supplied in the workflow to check what the structure and relations of the database

tables are. This allows for the use of a constraint-free MySQL database setup, where

the application strictly relies on the Eloquent ORM. However, this project does not

get rid of the checks performed within the MySQL server itself, and therefore checks

over both constraints in the database itself, as well as the eloquent ORM through the

use of models.

The migration option provided by the Laravel 4 framework allows for automatic

31

creation of a database during a push, as well as seeding in tester events and users.

In the case of the project, this strategy is used to create an administrator with the

user name of Administrator and the password of Password upon the installation of the

application. The current setup also populates the event tables with four fake, and

incomplete events just for the sake of running constraint checks through the MySQL

database upon install. The migrations portion of the project are a large part of what

makes this application so portable. The fact that the application may be pushed

from a git repo onto nearly any LAMP stack is owed to the use of migrations as

they will create the database in a matter of seconds. Each migration creates what

could be considered an extremely detailed model of a specific table and its relations.

This is the equivalent of using the PHP language for database creation over straight

SQL statements. Another large part of why the system is so portable is the use of the

configuration files which are all consolidated in the config folder of the application[17].

These files allow the user to specify what database name and type they wish to use,

if they want to include any imported packages (by default, a profiler is enabled to

gauge performance of SQL queries and page loadtimes), and other options such as SSL

encryption. In the scenario of purchasing a ticket through the system, the workflow

goes through routes to check for the users authentication token and id, and pushes

to a GET method of the PurchaseController controller.

The authentication portion reads to a flatfile and takes note of the IP that the user

is requesting from. This flatfile has a lifetime of a half hour and expires if the session

is terminated, unless another newer token is requested. The controller renders a view,

which in turn renders the forms required to select the event tickets, all styled by the

32

CSS file tickets.css which is located in the public directory of the application. The

controller redirects once a POST method is called on the form, and pushes the pulls

the information via an Input class to create a new view that holds a small amount of

processing in the view to display the subtotals per-tier and the total cost of all tickets

in the cart. Once the purchase method is pushed POST, we will see the Eloquent

ORM write back to the database by marking the paid Boolean value as true, therefore

checking the rest of the controller into creating the tickets required and tying the two

tables via the transactions intermediary table. As the tickets are created, the date

method grabs the current time down to the millisecond and hashes it through into a

long, but unique code that may be later used as the ticket reference code. Such a task

is also possible through the migrations in the project, as a similar principle is used

in creating the administrator account. The password Password is hashed during the

migration, thus providing a secure password without changing it each installation.

Due to the fact that all login helpers created in the project do a hash compare as

opposed to a plaintext compare, this is the optimal choice for both password and

ticket. Again, the hash key is set in the config directory of the application.

33

5. SYSTEM VALIDATION AND SECURITY

Computer system validation (or CSB) is the process of assuring that a system does

what is required of it without fail as part of its development cycle[3]. In the case of

this application, the installation steps include validation checks right in the system

upon deployment. Upon completion, it is safe to assume that all components work

if the front page may load (the front page accesses multiple parts of the system just

to ensure this check by design). This is possible due to the use of migrations, which

are a type of version control aspect and auto-population tool of a database[4] and the

Eloquent ORM. The migrations created in this application are written with their own

specific syntax as part of the Laravel specification. Security is also a main focus of

the application. Primarily, we reply on security tokens for session validation, as well

as rule-based logical checks, database constraints, and route filters for data passing

and writing. Security tokens allow for a check of someone’s identity via the use of

data specific to the client communicated with[5] while the other checks ensure that

no extra data (or incorrect data) is passed through the system.

One of the primary focuses of this system was the aspect of its security. The Laravel

4 framework allows for many different ways of doing validation and authentication

checks, but for the sake of the project, most of the methods and actions go through

three or more checks before competing. An example of such a scenario would be the

34

event creation process, where we have the route be the first layer of protection by

using a filter and the Auth class to confirm if the user is registered, where the user

is coming from, and if they are an administrator or own the event (in the case they

wish to edit it). The second layer comes in the controller. Before any read or write

logic is processed, the controller often checks for the same authenticity by fetching

the current user with a token. The token in question is per IP, per timeslot, and per

request. This token disallows cross-site reference forgery attacks such as man in the

middle backtracks by forcing a check between the client machine directly. In other

words, the token is strictly valid for the machine of that IP, timeslot, and request,

and will not work for any other machines.

After the controller has completed all checks, the absence of raw SQL query in

terpretation in the code adds another layer of security by making SQL injections

impossible due to format inconsistencies. This bleeds over into another check in the

models section of the application where the ORM will complete all constraint checks

of the information that was passed in to flag any unrequested data, or incorrect val

ues. The controller also often runs through a specified set of validation rules, as well,

to ensure that the data is clear before the call to the Eloquent ORM is even made.

On top of all this, we still have the benefit of all constraint checks being performed

on the MySQL server directly, disallowing any inconsistencies or broken rules in the

data being passed once more[18]. Finally, we exhibit the views themselves as often

having both validator functions and authentication components to ensure that the

user is indeed who they say they are, and that the data being passed fits all require

ments. These multiple layers of security bring the application closer to the level of

35

security required for public use. It may be apparent that other means of cracking,

social engineering, and bruteforcing may be exhibited, as well as the host servers

being taken over (which is outside of the application’s control), but most, if not all of

these concerns are easily addressable with further expansion of the application. It is

always important to remember that any application may be compromised even if it

may be deemed as ’’unhackable”. This is also a major reason that there are options

to abstract the database and payment system entirely. Moreover, it is possible to test

all of these features with the use of migrations and seeding.

Upon installation, the migrations will automatically create all tables in the database.

The migrations specify the types of variables that are pushed through, along with

their relationships, and down to the details such as what engine the table should use.

The seeding portion of the migrations runs after all tables were created and linked

together through the models and foreign key constraints to ensure that the proper

data may be pushed through. If the seeding portion of the application throws an

error, then there is something incorrectly configured on the server environment itself.

Whereas if the seeding goes through, then most basic security checks should function

as expected.

36

6. INSTALLATION AND MAINTENANCE

The installation of the system is simple enough to only require basic knowledge of

creating user accounts in online services and a general understanding of navigating

an MVC-based application. The primary concern is the basic understanding of cloud

computing and platforms as a service. While the cloud may be described as a large

and distributed server farm chain [6], platforms as a service (PaaS) may be seen as

access to the cloud through a middleman that manages the software bundle and cloud

configuration for you[7j. However, little background is required to use such a service

as they are generally extremely simple due to the utilization of a user interface with

inline documentation.

6.1 Installation

The basic installation of this product revolves around using a platform as a service

host such as Pagodabox or AppFog to install a one-click configuration of Laravel 4

onto the server, and set up a git repository with that host. Alternatively, private

hosting may be used for running this application, but will require the installation

of Laravel 4. The installation process for Laravel 4 simply consists of downloading

the Laravel 4 framework from the official repository and extracting the Laravel 4

codebase into the host directory of the server and changing the secret key located

37

in the config file. In the case of using a platform as a service such as Pagodabox or

AppFog, the user may create a new account, create a new instance from the service’s

account dashboard, and deploy a new instance of Laravel 4. Every platform as a

service is different, but generally the user will face the requirement of linking a git

repository to their platform of choice by using the platform’s linking tool to generate

a new RSA key and pulling in the repository to their local machine. Once again,

it is important to change the secret key found in the config file of Laravel 4. This

file is what makes the hashing function work, as well as what provides a modifier

for the random function. Once the repository is set up, the administrator may copy

all of the files of the project into the Laravel installation directory. After extraction,

the administrator must install the composer, a minimal dependency manager[19],

on their server, and run the command php composer update to fetch any required

dependencies.

After the basics for the PHP server are set up, be sure to configure the MySQL

server to allow file uploads via the php.ini configuration file. This file will also contain

the possibility of using SSL features on the server, if desired. Next, it is important to

navigate to the directory of the application and run the php artisan migrate command.

This migrate command will take all of the migrations in the /database/migrations/

directory and populate the MySQL database with the required tables and seeds[20].

At this point, the installation is generally done. The MySQL name may be changed

from ticketstack to whatever is desired via the config/database.php file, as well as the

type of database you wish to use- although only MySQL is tested as of this time.

This concludes the basic installation of the TicketStand web-application. All up

38

dates to the system may be pushed through a git push and onto a platform as a service

which will automatically start a new instance of the server with the base Laravel 4

framework on it, fetch all dependencies via the Composer dependency manager, clone

the database over, reroute traffic to the new instance, and finally decommission the

previous infrastructure.

6.2 Maintenance and Scaling

This project requires minimal maintenance due to the nature of the Eloquent ORM

and how it is used. There is virtually no overhead created in the system that is not

utilized. If the administrator wishes to, they may create two scripts to periodically

flush out the images table and the purchases table. However, it is of utmost important

to note that only the entries that have the paid Boolean marked as a null value

should be marked for script deletion, not those with a value of 1. This is because

paid purchase entries are used to link the existing tickets and transactions over to

the users table. The automation should only remove unnecessary purchases that were

never paid, and are therefore unlinked to any valuable information. Due to the fact

that the project was designed with platforms as a service in mind, the only changes

required for proper scaling may be done through the control panel of the server that

the application is hosted on. In the case of using Pagodabox, scaling should require

no changes outside of throwing more hardware at the application, and allowing the

infrastructure to take care of all rebalancing[21]. It is heavily urged to increase the

database capacity resources allocated to the database first.

39

7. CONCLUSION AND FUTURE DIRECTIONS

7.1 Conclusion

The project discussed in this work solves multiple issues that event organizers reg

ularly face when utilizing the services that are readily available. Outside of being

a non-centralized platform, Ticketstand also delivers on new features such as event

creation from each user, and an administration panel with elevated role management.

The project has been built with security, expandability, and portability as priorities,

and has delivered in all fields. More importantly, the application has a real-world

impact as it may be used by organizers from the very first day of its public release.

The application also affects a large spectrum of users as it is suitable for extremely

small events such as parties with under a dozen people all the way up to massive

festivals with thousands of attendees. Personally, the project has provided a deep

understanding of PHP, CSS, basic HTML, JavaScript, the jQuery library, Laravel,

Composer, Eloquent, Fluent, MySQL, back-end PaaS management, the Git version

control system, and many other tools that are a necessity in web application devel

opment. The project has also forced me to become comfortable with the unknown

through the discovery of multiple bugs found in the Laravel framework during the time

of development. This knowledge will stay with me forever and will prove invaluable

in my future endeavors.

40

7.2 Future Directions

As previously mentioned, the project was built with expandability in mind. The com

mitment to expandability was of the utmost importance due to the plans of adapting

the system for other needs such as table reservations, appointment scheduling, and

more robust functionality as an event ticketing platform. Initially the project was

to be rewritten due to the multiple rewrites taking their toll on the integrity of the

structure, but it has become apparent that the current state of the application al

lows for continued work on this iteration as opposed to requiring a complete rewrite.

Some immediate features that will be implemented include emailing lists, email noti

fications, barcode and QR code implementation, per-seat ticket sales, and enhanced

search engine optimization. There are also plans to enhance the mobile experience as

well as allow more customizability through the front end of the application, as opposed

to having to make code changes in the project itself upon setup.

41

APPENDIX A

ROUTING CONFIGURATION FILE

42

<?php

Route :: get (’ / 5 , 5 Pub lie Cont roller ©showfront page 5) ;

Route : : get (’/search ’ , ’PublicController@showsearch ’) ;

Route: : get(’/sear ch/results’,

array(’uses ’=>’PublicController©postshowsearch ’ , ’as ’=>

show. search ’)) ;

Route :: get (’ events /{id} ’ , ’ EventController©showEvent ’) ;

Route : : get(’ / registration ’ , array (’before ’ => ’guest ’ ,

=>

’ AccountController©showregistration ’)) ;

Route :: get (’/login ’ , array (’before ’ => ’guest’, ’uses’

’ Account Controller@showlogin ’)) ;

Route :: post (’/registration ’ , array (’ before ’ => ’guest ’

=> ’AccountController@postregistration ’)) ;

post.

’uses ’

=>

’uses

43

Route :: post (’/login ’ , array (’before ’ => ’guest

’ Account Cont roller ©post login ’)) ;

5 uses’ =>5

Route : : filter (’guest ’ , function($route , ^request)

{

if (Auth :: check ())

{

return Redirect :: to(’/accountdashboard ’) ;

}

});

Route :: filter (’ csrf ’ , function ()

{

if (Request :: forged ()) return Response ::error(’500’);

});

Route::get(’/accountdashboard’, array (’before’ => ’auth|user’

)

’uses ’ => ’AccountController@showaccountdashboard ’)) ;

44

Route : : get (’ /myevents ’ , array (’ before ’ => ’ auth | user ’ , ’ uses 5

=>

’MyEventController@showmyevents ’)) ;

Route : : get (’/myevents/{eventid} ’ , array (’before ’ => ’auth|

user ’ ,

’uses 5 => ’ My Event C ont roller ©showevent det ails ’)) ;

Route :: get(’ /myevents/{eventid}/edit ’ , array(’before ’ =>

’ auth | user ’ , ’ uses ’ => ’ MyEvent Controller ©edit my event det ails ’

));

Route :: post (’ markTicketUsed/{ ticketid} ’ , array (’before ’=> ’ auth

| user ’ , ’ uses ’=> ’ EventController@markTicketUsed ’)) ;

Route : : post (’markTicketNotUsed/{ ticketid } ’ ,array (’ before ’=> ’

auth | user ’ , ’ uses ’=> ’ EventController@markTicketNotUsed ’)) ;

Route :: post (’ updateStatus ’ ,array (’ before ’=> ’ auth | user ’ , ’ uses ’

=>’ Nfy Event Cont r oiler ©updateS t atus ’)) j

Route: : get(’/event/creation ’, array (’before 5 => ’auth |user 5,

’uses ’ => ’ E vent Controller©showeventcreat ion ’)) ;

Route : : get(’/purchase selection ’ , array (’before ’ => ’ auth | user

J
J

’uses ’ => ’ PurchaseController@showpurchaseselection ’)) ;

45

Route :: post (’ /purchaseprocessed/{purchaseid} ’ , array (’ before ’

=>

’auth|user’, ’uses’ =>

’ PurchaseController@postpurchaseprocessed ’)) ;

Route :: get (’/mypurchases ’ , array (’before ’ => ’auth|user’, ’

uses ’

=> ’ MyPurchaseController@showmypurchases ’)) ;

Route :: get (’/mypurchase/{ ticketid} ’ , array (’before ’ ==>

’ auth | user ’ , ’ uses ’ => ’ MyPurchaseController@showmypurchase ’)

);

Route : : get (’ /myevents/{ eventid } / delete ’ , array (’ before ’ =>

’auth | user’, ’uses’ => ’ MyEventController@eventdeletion ’)) ;

Route : : get (’/myevents/{eventid}/deleted ’ , array(’before ’ =>

’auth|user’, ’uses’ => ’ MyEventController@posteventdeletion ’)

);

Route : : post(’events/{id}/purchase ’ , array (’before ’ =>

’auth| user ’ ,

’uses ’=>’ EventController@postpurchaseEventTickets ’ , ’as ’=>’

post.purchase.event.tickets ’));

Route: : get(’events/{id}/purchase’, array (’before’ =>

’ auth | user ’ ,

46

’uses ’=> ’ EventControllerOpurchaseEventTickets ’ , ’ as ’=> ’

purchase.event.tickets ’));

Route : : post (’/myevents/{ event id }/ edit ’ , array (’ before ’ =>

5auth|user’, ’as ’=>’postedevent’, ’uses’ =>

’ MyEventController@posteditmyeventdetails ’)) ;

Route :: delete (’ myevents/image/{imageid} / delete ’ , array (’ before

’=> ’ auth | user ’ , ’ as ’=> ’ delete . event. image ’ , ’ uses ’=> ’

MyEventControllerOdeletelmage ’)) ;

Route:: put(’/accountdashboard’, array (’before’ => ’auth| user’

’ uses ’ => ’ AccountController@putaccountdashboard ’)) ;

Route :: post (’/myevents ’ , array (’before ’ => ’auth|user’, ’uses

=> ’MyEventController@postmyevents ’)) ;

Route :: post (’/myevents/{eventid} ’ , array (’before ’ =>

’ auth | user ’ , ’ uses ’ => ’ MyEventController@postmyeventdetails ’

));

Route :: post(’/event/creation ’ , array (’before ’ => ’ auth | user ’ ,

’uses’ => ’ Event ControllerOposteventcreation ’)) ;

Route : : post (’/purchaseselection ’ , array (’ before ’ => ’auth [

user ’ ,

47

’uses ’ => ’ PurchaseController@postpurchaseselection ’)) ;

Route : : get (’ / purchaseprocessed ’ , array (’ before 5 => ’ auth | user

5

5 uses ’ => ’ PurchaseControllerOpostpurchaseprocessed ’)) ;

Route : : post (’ / purchasepayment ’ , array (’before ’ => ’ auth | user ’

!

’ uses ’ => ’ Pur chase Cont roller ©post pur chasepayment ’)) ;

Route :: post (’/mypurchases ’ , array (’before ’ ~> ’auth| user’,

’uses’ => ’ MyPurchaseController@postmypurchases ’)) ;

Route : : post (’ / mypurchase/{ ticket id } ’ , array (’before ’ =>

’auth | user’, ’uses’ => ’ MyPurchaseController@postmypurchase ’)

);

Route :: filter (’user’, function($route, $re quest)

{

if (Auth :: guest ())

{

return Redirect ::to(’/login’);

}

});

48

Route : : get (5 / adminuser / { creator }/makeadmin ’ , array (’before ’

=>

’ auth | admin ’ , ’ uses ’=> ’ AdminController©makeadmin ’)) ;

Route : : get (’ /adminuser/{ creator }/demoteadmin ’ , array (’ before ’

=>

’ auth | admin ’ , ’ uses ’=> ’ AdminController@demoteadmin ’)) ;

Route :: get (’/adminuser/{creator}/unlock ’ , array(’before ’ =>

’ auth | admin ’ , ’uses ’=>’ AdminController@unlockuser ’)) ;

Route ::get(3 /adminuser/{creator}/lock 3 , array(’before ’ =>

’ auth [admin 3 , 3 uses ’=>3 AdminController@lockuser 3)) ;

Route :: get (’/ adminuser/{creatorj/delete ’ , array (’before ’ =>

’ auth | admin ’ , ’ uses ’=> ’ AdminController@deleteuser 3)) ;

Route :: filter (’admin 3 , function (Sroute , Srequest)

{

if (Auth :: user ()—>admin != 1)

{

return Redirect : : to (3 / 3) ;

}

});

49

Route : : get (’ logout ’ , function () { Auth :: logout () ; return

Redirect :: to(’login ’) ;}) ;

50

APPENDIX B

ACCOUNT CONTROLLER CLASS

51

<?php

class AccountController extends BaseController {

public Srestful = true;

public function showlogin ()

{

$view = View :: make(’ login’) ;

$view —> title = ” Log-in”;

return $view ;

}

public function postlogin ()

{

$usernamed = Input :: get (’ username 5) ;

$user = User :: where(’username$usernamed)—>first () ;

Suserdata = Input :: only (’username ’ , ’password’);

$rules = array (

52

’username’ => ’ required | between :2 ,45 ’ ,

’password ’ => ’ required | between :5 ,64 ’ ,

);

Smessages = array(

’required ’ => ’The^ : attribute field is ^required. ’,

’ between ’ => ’The^ : attribute ^must^be^between: min^and^ :max

characters.’,

’unique’ => ’The^: attribute ^must^be^ unique .’ ,

);

Svalidator = Validator :: make(Suserdata , $rules , Smessages);

if ($ validator—>fails ())

{

return

Redirect : : to(’/login ’)—> with Errors (Svalidator)—>withlnput () ;

}

if ($user){

if (Suser—>locked = 1){

53

return Redirect ::to(’/login ’)—>with (’ message ’ , ’ Your -Account -

Was

Locked . ’) ;

}

}

if (Auth :: attempt ($userdata))

{

return Redirect :: to (’ / accountdashboard ’) ;

}

else

{

return Redirect :: to (’/login ’)->with (’login-errors ’ , true);

}

}

public function showregistration ()

{

$view = View :: make(’ registration ’) ;

$view —> title = ’’Register”;

return $view ;

54

}

public function postregistration ()

{

Sinputs = Input :: all () ;

$ rules = array (

’username’ => ’ required | between : 2 ,451 unique : users , username 5 ,

’password 5 => ’required | between : 5 ,64 ’ ,

’repeatpassword’ => ’same : password ’ ,

’firstname’ => ’ required | between : 2,15 ’ ,

’ last name ’ => ’required | between : 2,15 ’ ,

’ email ’ => ’required | email | between : 6 ,241 unique : users , email ’ ,

’website ’ => ’max:24 ’ ,

’ zip co de ’ => ’required | between :1000,99950|integer ’ ,

);

$messages = array (

’ required ’ => ’The^ : attribute ~field is ^required . ’ ,

’between’ => ’The^ : attribute ^must^bc^between : min^and-:max. ’

’max ’ => ’The^ : at tribute field ^must^be^aunax^ of ~ :max

characters.’,

’min’ => ’The^: at tribute fi el d ^must^be^a^min ̂of : min

characters.’,

’unique’ => ’The^ : attribute ^already exists ,

55

’integer ’ => ’The^ : attribute ^must^be^a ^number . ’ ,

);

Svalidator = Validator :: make(Sinputs , Srules , ^messages);

if ($ validator—>f ails ()) {

return

Redirect :: to(’/registration ’)—>withErrors ($validator)—>

withlnput () ;

}

else

{

User :: create (array (

’ username ’=>Input :: get (’ username ’) ,

’password ’=>Hash :: make(Input :: get (’password ’)) ,

’ firstname ’=>Input:: get (’ firstname ’) ,

’ last name ’=>Input :: get (’ last name ’) ,

’ email ’=>Input : : get (’ email ’) ,

’website :=>Input :: get(’website ’) ,

’zipcode ’=>Input :: get (’zipcode ’) ,

));

return Redirect :: to (’/login ’)—>with (’ message ’ , ’Account ^Made!

Please«log^in. ’) ;

56

}

}

public function showaccount dashboard ()

{

$id= Auth :: user ()—>id ;

Spurchases = Purchase :: where(’user_id ’ , Sid)—>get();

return View : : make(’ accountdashboard ’)

—>with(’purchases ’ , Spurchases)

—>with(’ title ’ , ’Dashboard’)

—>with (’ user ’ , User :: find (Sid).) ;

}

public function put account dashboard ()

{

Sid= Auth :: user ()—>id ;

Sinputs = Input :: all () ;

Srules = array(

’username’ =>

’required | between : 2 ,451 unique : users , username , ’ . Sid ,

57

’password’ => ’ between :5 >64 ’ ,

’repeatpassword’ => ’same : password ’ ,

’ fir st name ’ => ’required | between :2,15 ’ ,

’ last name ’ => ’required | between : 2,15 ’ ,

’ email ’ =>

’required | email | between : 6,241 unique : users , email , ’.Sid ,

’website’ => ’max: 24 ’ ,

’ zip co de ’ => ’required | between :1000,99950| integer

);

Spassword = Input :: get (’password;

^messages = array (

’required ’ => ’The- : attribute-field -is - required . ’ ,

’between ’ => ’The - : attribute -must-be-between - : min-and - :max. ’ ,

’max ’ => ’The- : attribute- field -must-be-a-max-of- :max

characters.’,

’min ’ —> ’The- : attribute- field -must-be-a-min-of - : min

characters.’,

’unique’ => ’The-: attribute-already-exists . ’ ,

);

Svalidator = Validator :: make(Sinputs , Srules , ^messages);

if ($validator ->f ails ()) {

58

return

Redirect :: to(’/ account dashboard ’)—>withErrors (Svalidator)—>

withlnput () ;

}

else

{

if ($password){

DB:: table (’users ’)—>where (’ id ’ , Sid)

—>update (array (

’username ’ =>Input : : get (’username ’) ,

’ password ’=>Hash :: make (Input :: get (’ password ’)) ,

’ fir st name ’=>Input:: get (’ first name ’) ,

’ lastname ’=>Input :: get (’ lastname ’) ,

’ email ’=>Input :: get (’ email ’) ,

’website ’=>Input : : get (’website ’) ,

’ zipcode ’=>Input :: get (’ zipcode ’) ,

));}

else{

DB:: table (’users ’)—>where (’ id ’ , Sid)

—>update (array (

59

’ username ’ =>Input :: get (’ username ’) ,

1 firstname ’=>Input :: get (’ firstname ’) ,

’ lastname ’=>Input :: get (’ lastname ’) ,

’ email ’=>Input : : get (’ email ’) ,

5 website ’=>Input :: get (’ website 3) ,

’ zipcode ’=>Input :: get (’ zipcode ’) ,

));}

}

return Redirect :: to (’ / account dashboard ’)—>with (’ message ’ ,

Account - Inf o-Updated ! ’);

}

60

APPENDIX C

ADMINISTRATION CONTROLLER CLASS

61

<?php

class AdminController extends BaseController {

public function makeadmin (Sid)

{

DB:: table(’users ’)—>where (’id ’ , Sid)—>update (array (’admin ’=> ’

i’));

return Redirect :: back ()—>with (’message ’ , ’Promoted^toAdmin! ’

); }

public function demoteadmin (Sid)

{

DB:: table (’users 5)—>where (’id5, Sid)—>update (array (’admin ’=> ’

0’));

return Redirect :: back ()—>with (’ message ’ , ’Demotedfrom^Admin 1

’); }

public function unlockuser (Sid)

62

{

DB:: table(’users ’)—>where (’ id ’ , Sid)—>update (array (’ locked ’=>

’0’));

return Redirect :: back ()—>with (’ message ’ , ’ Account-Unlocked ! ’)

; }

public function lockuser(Sid)

{

DB:: table (’users ’)—>where (’ id ’ , Sid)—>update (array (’locked ’=>

’i’));

return Redirect : : back ()—>with (’ message ’ , ’ Account-Locked ! ’) ;

}

public function deleteuser (Sid)

{

Suser = User :: find (Sid) ;

Suser—>delete () ;

return Redirect :: to (’ account dashboard ’)—>with (’ message ’ , ”

User ’ s

Account-Deleted ! ”) ;

63

APPENDIX D

EVENT CONTROLLER CLASS

65

<?php

class Event Controller extends BaseController {

public function showEvent (Sid)

{

Snitwit = Nitwit :: with (’images ’)—>findOrFail (Sid) ;

if (Auth :: user ()) {

if (Snitwit —>isOwner () || Auth :: user ()—>admin = 1) {

$nitwit=Nitwit :: with (’ images ’ , ’tiers . tickets ’)—>where (’ id ’ ,

Sid)—>first () ;

Stickets = array () ;

for each (Snitwit—>ti er s

{

for each (Stier —>tickets

{

Stickets [Sticket —>id] [

Stickets [Sticket —>id] [

Stickets [Sticket—>id] [

as Stier)

as $ ticket)

’code’] = Sticket—>code;

’used’] = Sticket —>used ;

’id’] = Sticket—>id;

66

}

}

return View :: make(’ eventpage ’ , array (

’title ’=>’View ..Event ’ ,

’event ’=>$nitwit ,

’tickets ’=>$ tickets)) ;

}

}

return View :: make(’ eventpage ’ , array (

’ title ’=> ’ View ..Event ’ ,

’event ’=>$nitwit

));

}

public function showevent creation ()

{

$view = View :: make(’ eventcreation ’) ;

Sview —> title = ” EventCreation” ;

return Sview;

}

67

public function posteventcreation ()

{

$id= Auth :: user ()—>id ;

Sinputs = Input :: all () ;

Srules = array(

3 eventname ’ => ’ required | between :6 ,60 ’ ,

’eventtypel 5 =>’required [max: 10 ’ ,

’ eventtype2 ’ => ’required |max: 10 ’ ,

’eventtype3’ =>: required |max: 10 ’ ,

’datetime’ => ’ required | date ’ ,

Tocationname ’ => ’ required |max:45 ’ ,

’street ad dr ess’ => ’required] between : 4 ,45 ’ ,

’city’ => ’ required | between :2 ,45 ’ ,

’state’ => ’ required | size : 2 | alpha ’ ,

’zipcode’ => 5 required | size :5 ’ ,

’eventsummary 5 => ’ required |max:160 ’ ,

’ eventdescription ’ => ’required’,

’images []’==> ’image |max:300 ’ ,

’tiernamel’ => ’ required [max:45 ’ ,

’ tierdescriptionl ’ => ’required’,

’ numberofticketsl ’ => ’ required | max: 1000 | numeric ’ ,

68

’priceofticketl ’ => ’required | max: 9 99.9 9 | numeric ’ ,

’tiername2 ’ => ’max:45 ’ ,

5 number ofti eke ts2 5 => ’max: 10001 numeric ’ ,

’ priceofticket2 ’ => ’max: 999.991 numeric ’ ,

’tiername3’ —> ’max:45 ’ ,

’numberoftickets3 ’ => ’max: 10001 numeric ’ ,

’priceofticket3 ’ => ’max: 99 9.991 numeric ’ ,

);

^messages — array(

’ required ’ => ’The- : attribute - field - is -required .

’between ’ => ’The- : attribute -must-be-between- : min-and-:max

characters . ’,

’max ’ —> ’The- : attribute-field -must-be-a-max-of - : max

characters.’,

’min ’ => ’The- : attribute- field -must-be-a-min-of- : min

characters.’,

’unique ’ => ’The- : attribute -must-be-unique . ’ ,

’integer ’ => ’The- : attribute -must-be-a-number . ’ ,

’ date ’=> ’The-date-is -not-in-a- valid - format ’ ,

’image ’ —> ’The- file -uploaded-must-be-an-image ’ ,

);

69

Svalidator = Validator :: make(Sinputs , Srules , Smessages) ;

if (Svalidator —>f ails ()){

return

Redirect :: to(’ / event /creation 5)—>withErrors (Svalidator)—>

withlnput () ;

}

else

{

Slocationdata = array(

’name ’ =>Input : : get (’ locationname ’) ,

’address ’=>Input :: get (’streetaddress ’) ,

’ city '=>Input : : get (’ city ’) ,

’state ’=>Input::get(’state ’) ,

’zip.code ’=>Input ::get(’zipcode’),

);

Seventdata = array(

’name ’ =>Input :: get (’eventname ’) ,

’typel ’=>Input : : get(’eventtypel ’) ,

’ type2 ’=>Input :: get (’ eventtype2 ’) ,

’type3 ’=>Input : : get(5eventtype3 ’) ,

’ date ’=>Input :: get (’ datetime ’) ,

70

’summary ’=>Input :: get (’ eventsummary ’) ,

’ description ’=>Input :: get (’ eventdescription ’)

);

Stier data 1 =(ar ray (

’name ’ =>Input :: get (’ tiernamel ’) ,

’description ’=>Input :: get (’tierdescriptionl ’) ,

’price ’=>Input :: get(’priceofticketl ’) ,

’tickets.available ’=>Input :: get (’numberofticketsl ’) ,

));

$tierdata2=(array (

’name ’ =>Input : : get (’ tiername2 ’) ,

’description '=>lnput :: get(’tierdescription2 ’) ,

’price ’=>Input :: get(’priceofticket2 ’) ,

’ ti ckets_a vailable ’=>Input : : get (’numberoftickets2 ’) ,

));

Stier data3=(array (

’name ’ =>Input : : get (’ tiername3 ’) ,

’description ’=>Input :: get (’tierdescription3 ’) ,

’price ’=>Input :: get (’ p r i ceoft i eke 13 5) ,

71

’tickets_available ’=>Input :: get (’ number oft ickets3 5) ,

));

SdestinationPath = ” uploads/” . Sid ;

Slocations = Location :: create (Slocationdata) ;

Snitwit = new Nitwit (Seventdata) ;

Snitwit —> location-id = Slocations—>id ;

Snitwit —> user_id = Auth :: user ()—>id ;

Snitwit —>save () ;

Sbool = false;

Simages = Input :: file (’images 5) ;

foreach (Simages as Simage) {

if (Simage) { Sbool = true; }

}

if (Sbool) {

foreach (Simages as Simage) {

Sname = date (5 YndHis ’) ;

$name.=Simage—>getClientOriginalName () ;

72

$uploadSucccss= Simage—>move(SdestinationPath , Sname) ;

if(SuploadSuccess) {

SimageData = array (

’filename ’=>$name,

’nitwit_id ’=>$nitwit—>id

);

Simage = Image :: create (SimageData) ;

}

else {

echo ” died-uploading-due-to-dev-environment. ” ;

}

}

}

$tierl= new Tier (Stierdatal) ;

Stierl —> nitwit_id = Snitwit—>id;

Stier2= new Tier (Stierdata2) ;

Stier2 —> nitwit-id = Snitwit—>id;

73

$tier3= new Tier ($tierdata3) ;

$tier3 —> nitwit_id = Snitwit—>id;

Stierl —>save () ;

$tier2 —>save () ;

Stier3 —>save () ;

Seventid = Snitwit—>id;

return Redirect : : to (” / myevents /$ event id / edit”)—>with (’ message

5
J

5Event«Created«Successfully ! ’) ;

}

}

public function purchaseEventTickets (Sid)

{

Stoday = date Y—m-d Jd: i : s”) ;

if (Nitwit :: find (Sid)—>date < Stoday)

{

return Redirect :: to (5 / accountdashboard ’)—>with (5 message 5 , 5

Event

is -over! ’);

74

}

else {

$ t it le =’Purchase - Tickets ’ ;

$event= Nitwit :: find (Sid) ;

if(Sevent) {

Stiers = Tier :: where (’ nitwit„id ’ , Sid)—>get () ;

return View :: make(’purchaseselection ’ , compact (’title ’ ,

tiers

’event ’));}

return Redirect :: to (’ / account dashboard ’)—>with (’message ’ ,

Event

is-over!’);

}}

}

public function postpurchaseEventTickets (Sid)

{
Sevent = Nitwit :: with(’ tiers ’)->find (Sid) ;

Sinputs = Input :: all () ;

$userid= Auth : : user ()—>id ;

75

$ title = ’ Confirm ^Purchase-&^Payment ’ ;

Srules = array(

’tickets [] ’ => ’max: 10 001 numeric ’ ,

);

^messages = array (

’max’ => ’The- : at tribute - fi el d -must-be-a-max- of - : max

characters.’,

’ numeric ’ => ’The- : attribute -must-be-a-number . ’ ,

);

Svalidator = Validator :: make(Sinputs , Srules , Smessages);

if (Svalidator —>f ails ()) {

return

Redirect :: to(’/event/ere at ion ’)—>withErrors (Svalidator)—>

withlnput () ;

}

else

{

if (Sevent—>date <= (date(”Y—m-ddH: i : s”))){

return Redirect :: to (’ account dashboard ’)—>with (’ message ’ , ’Old

Event’);

}

76

Stickets = Input :: get (’tickets’) ;

foreach (Stickets as $ tier I d=>$ ticket Count) {

foreach(Sevent—>tiers as Stier) {

if (Stierld = Stier—>id) {

if (SticketCount <= Stier—>tickets_available) {

Sinfo [Stier —>id] = array(

’tiername ’=>$tier —>name ,

’ tickets.wanted ’=>$ticketCount ,

’price ’=>$tier —>price ,

’description ’=>Stier —>description

);

}

else {

return Redirect :: to (’ accountdashboard ’)—>with (’ message ’ , ’ Sold

out-of ’. Stier—>name . ’ - Tickets ! ’) ;

}

}

}

}

77

Sdata = array(

’users.id’ => Auth :: user ()—>id ,

’paid ’ => ’O’,

’timestamp’ => date (” Y—m-d-II: i ”)

);

Sunpaidpurchase = new Purchase (Sdata) ;

Sunpaidpurchase —> user_id = Auth :: user ()—>id ;

Sunpaidpurchase —>save();

Session :: flash (’tierdatas ’ ,$info) ;

return

View :: make (’ purchasepayment ’)—>with (’tierdatas ’ ,$info)—>with (

’title ’ ,

’ Ticket -Payment ’)—>with (’ purchaseld ’ , Sunpaidpurchase—>id) ;

}

}

78

public function markTicketUsed (Sid) {

Sticket = Ticket :: findOrFail (Sid) ;

Sticket—>used = 1;

Sticket ->save () ;

return Redirect :: back () ;

}

public function markTicketNotUsed (Sid) {

Sticket = Ticket :: findOrFail (Sid) ;

Sticket —>used = 0;

Sticket —>save () ;

return Redirect :: back () ;

}

}

79

APPENDIX E

MYEVENT CONTROLLER CLASS

80

<?php

class MyEventController extends BaseController {

public function showmyevents ()

{

Sid = Auth : : user ()—>id ;

Sevents = Nitwit :: where (’user Ad ’ , Sid) —>get();

return View : : make(’myevents ’ , array (

’title’ => ’My-Events ’ ,

’events’ => Sevents,

));

}

public function showevent details (Seventid)

{

$nitwit= Nitwit :: find Or Fail (Seventid) ;

return View :: make(’ eventpage ’)

->with (’title’, ’ Edit -Event ’)

—>with (’locations ’ , Location :: find ($ nit wit—>location_id))

81

—>with (’event 5 , Snitwit) ;

}

public function editmyeventdetails(Seventid)

{

Sevent =

Nitwit :: with (’location ’)—>where (’id ’ , Sevent id)—> f i r s t () ;

if (Sevent) {

if (Sevent—>user_id = Auth :: user ()—>id | Auth :: user ()—>admin

1) {

return

View :: make(’ editmyeventdetails ’ ,compact(’ event ’))—>with (’

title ’ , ’Edit

Event’);

}

else {

return Redirect ::to(’ / account dashboard / ’)—>with (’ message ’ ,

’’That ’ s.not ^your^event ! ”) ;

}

}

82

else {

return Redirect ::to(5 / account dashboard / ’)—>with (’ message ’ , ”

No

Such-Event! ”) ;

}

}

public function posteditmyeventdetails(Seventid)

{

Snitwit = Nitwit :: find (Seventid) ;

if (Snitwit) {

$ inputs = Input :: all () ;

Srules = array(

5 eventname ’ => ’required | between :6 ,60 ’ ,

5 event type 1 ’ => ’required | max: 10 ’ ,

’ event type2 ’ => ’required | max: 10 ’ ,

’eventtype3 ’ =>’required |max:10 ’ ,

’datetime’ => ’ required | date ’ ,

’locationname’ => ’ required [max:45 ’ ,

’streetaddress 5 => ’required | between :4,45 ’ ,

83

’city’ => ’ required | between : 2,45 ’ ,

’state’ => ’ required | size :2 ’ ,

’zipcode’ => ’ required | size :5 ’ ,

’ eventsummary ’ => ’ required |max: 160 ’ ,

’ eventdescription ’ => ’required’,

’images [] ’ => ’image |max:300 ’ ,

’ numberoftickets ’ => ’max:1000| integer ’ ,

’priceofticket ’ => ’max: 999.99 | integer ’ ,

);

^messages = array (

’image ’ => ’The- file -uploaded-must-be-an-image ’ ,

’required ’ => ’The- : attri b ute „ fi e 1 d - i s -required .

’ between ’ => ’The- : at tribute -must -be-bet ween - : min-and-: max

characters . ’ ,

’max’ => ’The-: at tribute - fi el d -must-be-a-max-of - :max

characters.’,

’min ’ => ’The- : attribute - fie Id -must-be-a-min-of- : min

characters . ’ ,

’unique’ => ’The-: attribute-must-be-unique ,

’integer ’ => ’The- : attribute -must - be-a -number . ’ ,

’date '=> ’The-date- is -not-in -a-valid -format ’ ,

);

84

Svalidator = Validator :: make(Sinputs , Srules , Smessages);

if (Svalidator—>fails ()){

return Redirect :: back ()—>withErrors ($validator)—>withlnput ()

;}

else

{

Slocationdat a = array(

’name ’ =>Input :: get (5 locationname 5) ,

’address ’=>Input :: get (’streetaddress ’) ,

’ city ’=>Input :: get (’ city ’) ,

’state’=>Input::get(’state ’),

’ zip-code ’=>Input get (’zipcode ’) ,

);

Seventdata = array(

’name ’ =>Input : : get (’ eventname ’) ,

’ typel’=>Input::get(’eventtypel’) ,

’type2’=>Input::get(’eventtype2’),

’type3 ’=>Input::get(’eventtype3’),

’ date ’=>Input :: get (’ datetime ’) ,

’summary ’=>Input :: get (’ eventsummary ’) ,

’ description ’=>Input :: get (’ eventdescription ’) ,

85

);

foreach(Snitwit—>tiers as $index=>$tier) {

Sindex += 1;

Stierdata — array (

”name”=>Input :: get (” tiername{$index}”) ,

” description ”=>Input : : get (” tierdescription {Sindex}”) ,

” price”=>Input :: get (’’priceofticket {Sindex}”) ,

” tickets_available”=>Input :: get (” numberoftickets{Sindex}”)

);

Stier —>update (Stierdata) ;

}

$destinationPath- = ” uploads/” . Snitwit—>user_id ;

Slocation.id = Nitwit :: find (Seventid)—>location_id ;

Slocations = Location :: find (Slocation.id) ;

Snitwit —>update (Seventdata) ;

Slocations —>update (Slocationdata) ;

Sbool = false ;

Simages = Input :: file (’images ’) ;

foreach (Simages as Simage) {

86

if (Simage) { Sbool = true; }

}

if (Sbool) {

foreach (Simages as $key=>$image) {

if (Simage) {

Sname = date(’YndHis 5) ;

Sname.=Simage—>getClientOriginalName () ;

$uploadSuccess= Simage—>move(SdestinationPath ,Sname);

if (SuploadSuccess) {

SimageData = array (

’filename ’=>Sname,

’ nitwit.id ’=>$nitwit —>id

);

Simage = Image :: create (SimageData) ;

}

else {

echo ’’died”;

}

}

}

87

}

return

Redirect :: to (” /myevents/ Seventid/edit ”)—>with (’ message ’

Event

Updated-Sucessfully ! ’) ;

}}

else{

return Seventid;

}

}

public function eventdeletion (Sid)

{

Sview = View :: make(5 eventdeletion ’) ;

Sview —> title = ’’Event-Deletion”;

Sview —> eventid = Sid ;

return Sview;

}

public function posteventdeletion (Sid)

88

{

Sevent = Nitwit :: find (Sid) ;

Sevent—>tiers ()—>delete() ;

Sevent—>delete () ;

return Redirect :: to (” /myevents/”) ;

}

public function deleteimage (Sid) {

Simage = Image :: findOrFail (Sid) ;

$image->delete () ;

return Redirect:: back ()—>with (’ message ’ , ’Image-Deleted

Successfully ! ’) ;

}

public function updateStatus () {

Scodes = Input :: get (’used-tickets’) ;

foreach (Scodes as Scode) {

Sticket = Ticket :: where(’code’,Scode)—>first () ;

Sticket —>used = 1;

Sticket —>save () ;

}

89

return Redirect : : back ()->with (’message ’ , ’ Tickets ..Marked! ’) ;

}

90

APPENDIX F

MYPURCHASE CONTROLLER CLASS

91

<?php

class MyPurchaseController extends BaseController {

public function showmypurchases ()

{

Sa =

Purchase :: with (’tickets . tier . nitwit ’)—>where (’ user_id ’ , Auth ::

user ()—>id)—>get () ;

if ($a){

foreach($a as Spurchase) {

foreach (Spurchase—>tickets as Sticket) {

Stickets [] = Sticket ;

}

}

Sview = View :: make(5 mypurchases ’ , compact (’tickets ’)) ;

Sview —> title =”My^Piirchases” ;

return Sview;}

else {

92

return Redirect :: to(’account dashboard ’)—>with (’ message ’ ,

Have-No-Tickets . ’) ;

’You

}

}

}

93

APPENDIX G

PUBLIC CONTROLLER CLASS

94

<?php

class PublicController extends BaseController {

public function showfrontpage ()

{

Stoday = date (”Y—m-d-11: i : s”) ;

Sevents = Nitwit :: where(’dateStoday)—>take (10)—>get () ;

return View :: make(’ frontpage ’)

—>with (’title’, ’ Welcome-to-Ticketstand ’)

—>with (’events’, Sevents);

}

public function showsearch()

{

Sview = View :: make(’ search ’) ;

Sview —> title = ” Search-Events” ;

95

return Sview;

}

public function postshowsearch ()

{

SsearchTerms = Input :: get (’q’) ;

Ssearchtype = Input::get(’searchtype’) ;

SperPage = 5;

if (Ssearchtype = ’byname’){

Sresults [’Name ’] =

Nitwit : : where(’name ’ , ’ like ’ ,”%{SsearchTerms}%”)—>paginate (

SperPage) ;

}

if(Ssearchtype = ’bytype’){

$ results [’Type ’] =

Nitwit :: where (’ typel ’ , ’ like ’ 5”%{$searchTerms}%”)—>orWhere (’

type25,

’ like ’ ,

96

”%{$searchTerms}%”)—>orWhere (’type3’ , ’like ’ ,”%{SsearchTerms}%

”)—>paginate (SperPage) ;

}

if(Ssearchtype = ’ bydescription ’) {

S results [’Description ’] =

Nitwit :: where (’description ’ , ’like ’ , ”%{SsearchTerms}%”)—>

paginate (SperPage) ;

}

if(Ssearchtype = ’byuser’){

Susers = User :: where (’username ’ , ’like’,

”%{$searchTerms}%”)—>get () ;

Suser.id = array () ;

foreach(Susers as Suser) {

$user_id [] = Suser—>id;

}

i f (count(S u s e r _ i d)) {

Sresults [’User ’] =

Nitwit : : wherein (’ user.id ’ ,$user_id)—>paginate (SperPage) ;

}

}

97

if (Ssearchtype = ’bycity’){

Slocations = Location :: where (’city ’ , ’like’,

”%{$searchTerms}%”)—>get () ;

Slocationlds = array() ;

foreach($.locations as Slocation) {

Slocationlds [] = Slocation—>id ;

}

if (count(Slocationlds)) {

Sresults [’ City ’] =

Nitwit : : wherein (’location-id ’ , Slocationlds)—>p agin ate (

SperPage) ;

}

}

if(Ssearchtype = ’bystate’){

Slocationlds = array() ;

Slocations = Location :: where (’state ’ , ’like’,

”%{$search.Terms}%”)->get () ;

foreach(Slocations as Slocation) {

Slocationlds [] = Slocation—>id ;

}

98

if (count (Slocationlds)) {

Sresults[’State ’] =

Nitwit :: wherein (’ locat ion _i d ’ ,Slocationlds)—>p agin at e (

SperPage) ;

}

}

if (Ssearchtype = 5 byzipcode’) {

Slocations = Location :: where (’ zip_code ’ , ’like’,

”%{$searchTerms}%”)—>get () ;

Slocationlds = array ();

foreach (Slocations as ^location) {

Slocationlds [] = Slocation—>id ;

}

if (count(Slocationlds)) {

Sresults [’Zip code’] =

Nitwit : : wherein (’ local ion/d ’ ,$locationlds)—>paginate (

SperPage) ;

}

}

Stitle = ” Search ..Events” ;

99

Sview

return

}

}

; View :: make(’search ’ , compact (’results ’ , ’title ’));

Sview;

100

APPENDIX H

PURCHASE CONTROLLER CLASS

101

<?php

class PurchaseController extends BaseController {

public function showpurchaseselection (Sid)

{

Stoday = date (”Y-^n-d-H: i : s”) ;

dd(Nitwit :: find (Sid)—>date) ;

if (Nitwit :: find (Sid)—>date < Stoday)

{

return Redirect :: to (’/accountdashboard ’)—>with (’ message ’ , ’

Event

is-over! ’) ;

} else {

$view = View :: make(’purchaseselection ’) ;

Sview —> title = ” Purchase-Selection” ;

return Sview;}

}

public function showpurchasepayment ()

102

{

Stoday = date (Y—m-d^H: i : s”) ;

dd(Nitwit :: find (Sid)—>date) ;

if (Nitwit :: find (Sid)—>date < Stoday)

{

return Redirect ::to(’ /accoun t dashboard ’)—>with (’ message ’ , ’

Event

is -over ! ’) ;

} else {

Sview = View :: make(’purchasepayment ’) ;

Sview —> title = ” Purchase-Payment” ;

return Sview ;

}}

public function postpurchaseprocessed (Spurchaseld)

{

if ((Session:: has (’ tierdatas ’)) {

return

Redirect : : to (’ account dashboard ’)—>with (’ message ’ , ’Purchase

failed ! ’) ;

}

103

Spurchase — Purchase :: findOrFail (Spurchaseld) ;

Spurchase—>paid = 1;

Spurchase—>save () ;

foreach (Session :: get (’tierdatas ’) as Stier ld=>S tier) {

for ($a = 1; Sa <= Stier [’tickets.wanted’]; Sa-H-) {

Sticket = array (

’ code :=>Hash : : make (date (’ YmdHisu ’)) ,

’tier_id ’=>$tierld

);

Sticket = Ticket :: create (Sticket) ;

Stransaction = array(

’ ticket _id ’=>$ticket —>id ,

’purchase-id ’=>$purchase—>id

);

Stransaction = Transaction :: create (Stransaction) ;

}

104

StierObject = Tier :: find (Stierld) ;

echo ’’Before:-” . StierObject—>tickets.available ,”
”;

echo ’’Subtracting:-” . Stier [’tickets.wanted ’] . ”
” ;

StierObject—>t ickets.available —= Stier [’ tickets.wanted ’] ;

echo ’’After:-” . StierObject—>tickets.available .”
”;

StierObject —> save();

}

return Redirect :: to (’ mypurchases ’)—>with (’ message ’ , ’Tickets

Purchased ! ’) ;

}

}

105

APPENDIX I

MODEL OF TICKET CLASS

106

<?php

// Model: ’ Ticket ; — Database Table: ’tickets ’

Class Ticket extends Eloquent

{
public Stimestamps = false ;

protected $table=’tickets

protected Sguarded = array ();

public function transactions ()

{
return Sthis —>belongsToMany(’Transaction ’) ;

}
public function tier ()

{
return Sthis —>belongsTo (’ Tier ’) ;

}

public function purchases () {

return St his —>belongsToMany (’Purchase ’ , ’transactions ’ , ’

purchase.id ’ , ’ticket.id ’),;

}

107

APPENDIX J

MODEL OF USER CLASS

109

<?php

// Model: ’User’ — Database Table: ’users ’

use Illuminate\Auth\Userinterface ;

use Illuminate \Auth\Reminders \ Remin dablelnt er face ;

Class User extends Eloquent implements Userinterface ,

Remi nd able Interface {

protected Sfillable = array (’ username 5 , ’password’, ’

firstname ’ , 5 last name ’, ’email’, ’website’, ’admin ’ ,

locked ’ , ’zipcode ’);

public Stimestamps = false ;

protected Stable = ’users’;

protected Shidden = array (’password’) ;

110

public function getAuthldentifier ()

{

return $this—>getKey () ;

}

public function getAuthPassword ()

return Sthis —>p ass word ;

}

public function getReminderEmail ()

{

return Sthis —>email;

}

public function nitwits ()

{

return Sthis—>belongsToMany(’Nitwits ’) ;

}

111

public function purchases ()

{

return $this—>hasMany(’Purchase ’) ;

}

}

112

APPENDIX K

MODEL OF TIER CLASS

113

<?php

// Model: ’Tier ’ — Database Table: ’tiers ’

Class Tier extends Eloquent

{

protected $table=’tiers’;

protected Sfillable = array (’name ’ , ’description’, ’

nitwit s_id ’ , ’tickets.available ’ , ’price ’) ;

public Stimestamps = false ;

public function tickets ()

{

return Sthis—>hasMany(’ Ticket ’) ;

}

public function nitwit ()

{

return $this—>belongsTo (’Nitwit ’) ;

}

114

public function getDropdownAvailableTickets ()

{

for($a=0; $a<=$this~>tickets.available ; $a++)

{

Stickets [] = $a;

}

return Stickets;

}

}

115

APPENDIX L

FRONT PAGE VIEW FILE

116

©extends (5 layouts . default ’)

©section (’content ’)

<div class = ’’silver” id=” container”>

Welcome to Nikolay Figurin ’ sJvl. S .-project . -This-service , -

currently- called ^ticketstand,- is-a-ticket -purchasing-and -

selling -platform .

This-site - can-be -hosted -not - only-on-a-PaaS ,-as-initially-

expected , - but - also -on-most-other-servers - with-Very - little —

change . -The-service -is -easily -expandable-and-well —

organized-with-an-MVC-pattern . -Some-security - features -are-

absent - that -would-come-standard - with-proper -hosting .

<brXb>The-sit e - runs-on-Laravel-4-and-MySQL- (and-a-ton-of-

other-tools).

<div-id-=-” threecards”>

<div--class silver” -id-=-” frontpage—point”>

<img-src=”/buy tickets . png” - alt— ’Buy-Ticket s”>

Use-ticket st and - to-purchase-any-event- tickets -on-sale -

directly - from-other-users . - Currently , -PayPal-is -used-as-it

’s the fastest & cheapest for development/testing .

117

</div>

<div class = ’’silver” id = ” frontpage—point”>

Use ticketstand to sell any event tickets you want.

Alternatively , you may create free events and use the

service to host your event info and tally up guests.

</div>

<div class = ’’silver” id = ” frontpage—point”>

This service allows you to manage all of your sales & events

through the dashboard once you log in— see tickets sold ,

who they 5 re-sold-to , -and-confirm-attendance .

</div>

</div>

<brxdiv-iddisccall”>

<div-id-=-” disclamer”>

Disclamer : -This - is -a-development-server , -do-not -use - this -

outside - of-testing.</div>

@if-(Auth :: guest ())

118

<div- class green” - id -=”gotobutton”xa-href=”/registration

”>

Register -Today- -</div>

©else

<div- class -=-” green” - id -=” gotobutton” - style -=- ’color ’>

You ’ re-logged-in!-

Thanks-for -your-support ! -</div>

©endif

</divx/div>

<div-id=-” s ear chf i eld”>

{{-Form :: open (array (

’method ’=>’GET’ ,

’route ’=> ’post . show . search ’))-}}

<fieldset -class -=-” blue” ->

<legend Xhl>-Sear ch-Events-</hlx/legend>-<!—hl-tag-may-be-

an - i s s u e —>

<div-id-=-” searchfieldandbutton”>-<input - type-=-” Text” -

placeholder -=” Search-Events !” -name-=-”q”>

<input -type-=-” Submit” -value=”Submit”></divxbr>

{{ -Form :: label (’searchtype ’ ,-’ Search Names ’) ;} }

119

{{-Form ::radio(’ searchtype ’

{{-Form:: label/ ’searchtype ’

{{-Form :: radio (’searchtype ’

{{-Form ::label(5 searchtype ’

- ’byname ’ , -true) } } |

-’Search Types’);}}

„’bytype’)}}|

-’Search Description ’) ;}}

-’bydescription ’) }} |

-’Search Users’);}}

- ’ byuser ’) }}

- ’ Search Cities ’);}}

States ’) ;}}

bystate’)}}|

Zipcodes ’);}}

- ’ byzipcode ’) }}

{{-Form::radio(’ searchtype ’ ,

{{-Form ::label(’searchtype ’ ,

{{-Form ::radio(’searchtype ’ ,

{{-Form :: label (’ search type ’ ,

{{-Form :: radio(’searchtype ’ , - ’ by city ’) }}|

{{-Form :: label(’searchtype ’ ,-’Sear ch

{{-Form ::radio(’ searchtype ’ , -

{{-Form::label(’searchtype’,-’Search

{{-Form::radio(’searchtype ’

{{-Form:: close ()-}}

</fieldset >

</div>

<div- -class silver ” --id-=-” searchresults”>

<hl>-Upcoming-Events</hl>

©foreach-($events-as-$event)

<div-class searchresult”>

120

<div-id-=-” eventinfowrap”>

<div-id eventname”>{{$event—>name}} -</divxbr>

<div-id go top ill” - class blue”>-<a-href=” /search /results

?q={{$event—>typel}}&searchtype=bytype”x{{$event—>typel}}

-</ax/div>

<div-id-—-” gotopill”-class -=-” blue”>-<a-href=”/search/results

?q={{ $e vent —>type2}}&;searchtype=bytype”>-{{ $e vent—>type2

}}</ax/div>

<div-id gotopill”- class -=-” blue”>-<a-href=”/search / results

?q={{$event—>type3}}&searchtype=bytype”>-{{$event—>type3

}}</ax/div>

<div-id-=-” eventtag”>-{{ Sevent—>date}}-</div>

<div-id-=-” eventtag”>-{{$event—>location —>city }} ,{{ Sevent—>

location —>st at e }} -</div>

<brXdiv-id-=-” eventsummary”>-{{ Sevent —>summary}}</div>

</div>-<div-id -=-” searchresultsgotobutton”>

<div-idticketsleft”>-<h2>-<?php

Sticketsleft-=-0;

foreach ($ event—>tiers -as-$index=>$tier) :

Sticketsleft -=- Sticketsleft+(Stier—>tickets_available);

endforeach ;

echo - Sticketsleft -?>-Tickets - Left </h2>-</divxbr>

121

<div- class blue” - idgotobutton”><a-href—’/events/{{

Sevent—>id}}”>-See-event-info -

</div>-</div>

©endforeach

</div>

</div>

-</div>

©endsection

122

APPENDIX M

VIEW PORTION OF THE EDITMYEVENTDETAILS FILE

123

©extends (’ layouts . default ’)

©section (’ content ’)

<div class = ’’silver” id=” properform” style=”max—width :900px

;”>

<div id = ’’loginfield” style = ” margin—left :30px; ”>

©if (Session :: has (’ message ’))

<div class = ’’green” id = ’’message” sty le=” font—size :62px; ”

>{{Session :: get (’ message ’) }}
</div>

©endif

<div class = ’’green” id = ’’gotobutton” style— ’ float : right ; ~

margin—top : 20px; padding : lOpx

Go to My Events

</div>

<div class — ’’green” id = ’’gotobutton” style=” float : right ; ~

margin—top :20px; ^padding : lOpx; ”>

id}}/”>View Event Page

</div>

124

<div id = ” error”>

©foreach ($errors—>all () as terror)

{{ $error }}

©endforeach

</div>

</div>

<legendxhl>Edit Event Details </hlx/legend>

©if (Sevent—>images)

©foreach (Sevent—>images as $image)

user_id }/{$image—>

filename}”)-}} 5 style = ’’max—width :200px;-max—height :200px

;-display : inline—block ; ” />

{{ Form :: open (

array (

’ method ’=> ’DELETE ’ ,

’ route ’=>array (’ delete . event. image ’ , Simage—>id)

125

)

) }}

{{ Form :: submit (’x ’) }}

{{ Form :: close () }}

©endforeach

©endif

{{Form :: open (array (’ url ’=>” myevents / { Sevent—>id}/ edit” , ’

method ’=>’ post ’ , 5 files ’=>true)) }}

<legend> Basics </legend>

<div id = ” formcluster”>

Event Name — Keep it short!

{{Form :: text (’eventname ’ , Sevent—>name);}}

<brxbr>

Event Types — Concert, Rock, Music, or anything Custom — For

Sear ch ability

{{Form ::text(’eventtypel’, Sevent—>typel);}}

{{Form ::text(’eventtype2’, Sevent—>type2);}}

{{Form ::text(’eventtype3 ’ , Sevent—>type3);}}

<brXbr>Date & Time ({{date(”Y-m-d-H: i”)}})

{{Form :: text (’ datetime ’ , Sevent—>date);} }

</divXbr>

126

<legend> Location </legend>

<div id = ” formcluster”>

Location Name

{{Form :: text (’ locationname ’ , $event—>location —>name) ;}}

<brXbr>Street Address

{{Form :: text (’streetaddress ’ , $event—>location—>ad dress);} }

<brXbr>City

{{Form :: text (’city ’ , $event—>location —>city) ;} }

<brXbr>State Abbreviation

{{Form :: text (’state ’ , $event—>lo cation—>st ate) ;}}

<brxbr>5—Digit Zipcode

{{Form :: text (’ zip code ’ , Sevent—>lo cation —>zip .code);} }

</ divxbrxbrxbr>

<legend> Descriptions </legend>

<div id = ” formcluster”>

Event summary — This will be seen in the search and upcoming

views (160 Characters)

{{Form :: text (’eventsummary ’ , $ event—>summary) ;}}

<brxbr>

127

Event description — this will be seen on the event page

{{Form : : textarea(’eventdescription ’ , $ event—>description)

;}}</divXbrXbrXbr>

<legend> Photo Upload </legend>

<div id = ” formcluster”>

<?php for($a = count(Sevent—>images) ; Sa <= 2; $a++) { ?>

Upload Photo {{$a+l}}/3

{{Form :: file (3 images [] ’) }}

<brxbr>

<?php } ?>

</div>

<brxbr>

©foreach (Sevent—>tiers as $index=>$tier)

<legend>Tier {{($index+l)}} Tickets </legend>

<div id = ” formcluster”>

Tier name

{{ Form :: text (’tiername$index+l) , Stier—>name) }}

<brXbr>Tier description

128

{{ Form :: textarea (’tierdescription’.(Sindex4-1) , Stier —>

description) }}

<brXbr>Number of tickets

{{ Form :: text (’numberofticketsSindex4-1), Stier —>

tickets.available) }}

<brXbr>Price of each ticket in USD

$ {{ Form :: text (’priceofticket ’ .($ index 4-1) , Stier—>pr ice)

;}}</divXbrXbrXbrXbr>

©endforeach

{{Form:: submit (’ Update-Event ’) ;} }

{{Form:: token () }}

{{Form :: close () }}

<brxbr>

* Required. Be sure to check over all information as editing

and deletion is not allowed after purchases are made.

<div class = ’’red” id = ’’gotobutton” style— ”padding:lOpx;-

height: -28px; ”xa href=” /myevents/{{ Sevent—>id }}/ delete”

target—’ _blank”> Remove Event </div>

129

<brXbr>

</div>

©endsection

130

REFERENCES

[1] G. E. Krasner and S. T. Pope, ”A cookbook for using the model-view controller

user interface paradigm in Smalltalk-80”, Journal of Object-Oriented Program

ming, vol 1, (3), pp. 26-49, 1988.

[2] Top Reasons for Product Managers to Embed MySQL, MySQL, [online]

2013, http://www.mysql.com/why-mysql/topreasons-pm.html (Accessed: 13 July

2013).

[3] MNL Services, MNL, [online] 2010, http://www.mnl-limited.com/services.htm

(Accessed 13 July 2013).

[4] D. Rees, ’’Migrations”, (Documentation), [online] 2013,

http://four.laravel.com/docs/migrations (Accessed: 13 July 2013).

[5] C. Guitierrez and W. Jeffrey, ’’Personal Identity Verification (PIV) of Federal Em

ployees and Contractors”, Federal Information Processing Standards Publication,

Vol. 201 March 2006.

[6] P. Mell and T. Grance, ’’Recommendations of the National Institute of Standards

and Technology”, The NIST Definition of Cloud Computing, Vol. 800 (145) Septe-

meber 2011.

131

http://www.mysql.com/why-mysql/topreasons-pm.html
http://www.mnl-limited.com/services.htm
http://four.laravel.com/docs/migrations

[7] W. Door, Y. Chang, H. Abu-Amara, and J. F. Sanford, Transforming Enterprise

Cloud Services, New York: Springer, 2010.

[8] L. Conway, ’’The Economics of Ticketmaster”, (Planet

Money The Economy Explained), [online] September 2009,

http://www.npr.Org/blogs/money/2009/09/podcast_the_economics_of_ticke.h

tml (Accessed: 13 July 2013).

[9] M. Hasan, B. Sugla, and R. Viswanathan. A conceptual framework for network

management event correlation and filtering systems. In Proc. IEEE/IFIP 6th Int.

Symposium on Integrated Network Management, pages 233-246, 1999.

[10] G.C. Ramsborg, B. Miller, D. Breiter, B. J. Reed and A. Rushing (eds), Profes

sional meeting management: Comprehensive strategies for meetings, conventions

and events, Sth ed. Dubuque, Iowa: Kendall/Hunt Publishing, 2008.

[11] S. Radicati and T.Buckley, ’’Email Market 2012-2016 Executive

Summary”, [online] July 2012, http://www.radicati.com/wp/wp-

content/uploads/2012/10/Email-Market-2012-2016-Executive-Summary.pdf

[12] D. Rees, ’’Eloquent ORM”, (Code Happy), [online] 2013,

http://codehappy.daylerees.com/eloquent-orm (Accessed: 13 July 2013).

[13] J. Lewis, ’’Forms in Laravel”, (Laravel: Using Forms and the Validator), [online]

April 2012, http://jasonlewis.me/article/laravel-using-forms- and-the-validator

(Accessed: 13 July 2013).

[14] D. Rees, ’’Blade Templates”, (Code Happy), [online] 2013,

http://codehappy.daylerees.com/blade-templates (Accessed 13 July 2013).

132

http://www.npr.Org/blogs/money/2009/09/podcast_the_economics_of_ticke.h
http://www.radicati.com/wp/wp-content/uploads/2012/10/Email-Market-2012-2016-Executive-Summary.pdf
http://codehappy.daylerees.com/eloquent-orm
http://jasonlewis.me/article/laravel-using-forms-
http://codehappy.daylerees.com/blade-templates

[15] T. E. Potokj M. Vouk, and A. Rindos, ’’Productivity Analysis of Object- Ori

ented Software Developed in a Commercial Environment”, Software - Practice and

Experience, vol. 29, (10) pp. 833-847, 1999.

[16] Changelog (Laravel 4), Laravel Community Wiki, [online] 2012-2013,

http://wiki.laravel.io/Changelog_%28Laravel_4%29 (Accessed 13 July 2013).

[17] D. Rees, ’’Configuration”, (Documentation), [online] June 2013,

http://four.laravel.com/docs/configuration (Accessed 13 July 2013).

[18] How MySQL Deals with Constraints, MySQL, [online] 2013,

https://dev.mysql.eom/doc/refman/5.0/en/constraints.html (Accessed 13

July 2013).

[19] Composer Documentation, [online] 2012, http://getcomposer.org/doc/ (Ac

cessed 13 July 2013).

[20] Database Seeding with Laravel, CD, [online] 2013,

http://laravelbook.com/laravel-database-seeding/ (Accessed 13 July 2013).

[21] 6 Week Roadmap, Pagoda Box, [online] August 2012,

http://blog.pagodabox.com/six-week-roadmap/ (Accessed 13 July 2013).

133

http://wiki.laravel.io/Changelog_%2528Laravel_4%2529
http://four.laravel.com/docs/configuration
https://dev.mysql.eom/doc/refman/5.0/en/constraints.html
http://getcomposer.org/doc/
http://laravelbook.com/laravel-database-seeding/
http://blog.pagodabox.com/six-week-roadmap/

	Ticketing and event management web service
	Recommended Citation

