California State University, San Bernardino
CSUSB ScholarWorks

Theses Digitization Project

A study of finite symmetrical groups

Patrick Kevin Martinez

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project
Part of the Algebra Commons

Recommended Citation

Martinez, Patrick Kevin, "A study of finite symmetrical groups" (2013). Theses Digitization Project. 4218. https://scholarworks.lib.csusb.edu/etd-project/4218

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

A Study of Finite Symmetrical Groups

A Thesis
Presented to the
Faculty of
California State University, San Bernardino
In Partial Fulfillment of the Requirements for the Degree

Master of Arts
in

Mathematics
by

Patrick Kevin Martinez

December 2013

A Study of Finite Symmetrical Groups

A Thesis

Presented to the

Faculty of
California State University, San Bernardino

by
Patrick Kevin Martinez

December 2013

Approved by:

Abstract

In this thesis, we have discovered several important groups that involve the classical and sporadic groups. These groups have appeared as finite homomorphic images of the progenitors $3^{* 8}: P G L_{2}(7), 2^{* 14}: L_{3}(2), 5^{* 3}: S_{3}$ and $7^{* 2}:_{m} S_{3}$. We used the technique of manual double coset enumeration to give a by hand construction of several groups, including ($M_{21} \times 4$) : $S_{3}, U_{3}(3): 3$, and A_{7}. For some of the groups we have given computer-based proofs of their isomorphism types. The symmetric presentations given in this thesis for the groups $L_{2}(7), U_{3}(3): 3,\left(M_{21} \times 4\right): S_{3}$ and $S_{4}(5)$ are original to the best of our knowledge.

Acknowledgements

No journey of this academic magnitude can be walked alone. I wish to thank my wonderful wife for supporting me in this major endeavor. Without her love and support, my success would not have been possible. I wish to thank Dr. Stanton for his patience and understanding. I thank my Graduate Commitee members Dr. Laura Wallace and Dr. Shawnee McMurran, who have been instrumental in my success here at CSUSB. I wish to thank my fellow students for helping me succeed, in particular Rebeca Blanquet, Ramon Ontiveros, Curtis Koch, Grace Gerken and May Majid. Lastly, I wiṣ to thank my graduate mentor Dr. Zahid Hasan. His guidence and support in my understanding of algerba has been unparalleled. He helped me realize my potential for graduate level mathematics and his belief in my ability has helped me become a better mathematician, and a better person.

Table of Contents

Abstract iii
Acknowledgements iv
List of Tables vii
List of Figures viii
1 Introduction 1
1.1 Definitions 1
1.2 Types of Representations 3
1.3 Methods and Applications 7
2 Construction of $2^{5}: S_{5}$ 8
2.1 Relations 9
2.2 Double Coset Enumeration 10
2.3 Factoring by the Center 17
2.4 Double Coset Enumeration 18
3 Construction of $3^{* 3}: A_{3}$ 20
3.1 Relations 20
3.2 Double Coset Enumeration 21
4 Construction of $\left(M_{21} \times 4\right): S_{3}$ 33
4.1 Relations 35
4.2 Double Coset Enumeration 36
4.3 Factoring by the Center 49
5 Construction of $U_{3}(3): 3$ as a Homomorphic Image of $2^{* 14}: L_{3}(2)$ 50
5.1 Relations 51
5.2 Double Coset Enumeration 52
6 Construction of A_{7} as a Homomorphic Image of the Monomial Progenitor $3^{* 7}:_{m} L_{3}(2)$ 61
6.1 Relations 62
6.2 Double Coset Enumeration 63
7 Finite Homomorphic Images of the Monomial Progenitor $7^{* 2}:_{m} S_{3}$ 67
7.1 An Irreducible Monomial Representation of S_{3} 67
7.2 The Construction of $7^{* 2}:_{m} S_{3}$: The Relations 73
7.3 Double Coset Enumeration 74
7.4 Additional Finite Homomorphic Images of the Monomial Progenitor $7^{* 2}: m$ S_{3} 84
Appendix A: MAGMA Code for $\frac{3^{*}: A_{3}}{t_{0} t_{1}=t_{1} t_{0}}$ 92
Appendix B: MAGMA Code for $\frac{7^{* 2} 2_{m} S_{3}}{t_{0} t_{1} 0 t_{1}=e}$ 105
Appendix C: MAGMA Code for $\left(M_{21} \times 4\right): S_{3}$ Factored by Center 131
Bibliography 141

List of Tables

2.1 Labeling of and Actions on the Single Cosets 16
7.1 Character Table for S_{3} 68
7.2 Character Table for Z_{3} 68
7.3 Labeling for Matrix $A(x x)$ to Determine $t_{i}{ }^{\prime} s$ 71
7.4 Labeling for Matrix $B(y y)$ to Determine t_{i} 's 71
7.5 Labeling of and Actions on the Single Cosets 83

List of Figures

2.1 Cayley diagram for $2^{5}: S_{5}$ 15
2.2 Cayley diagram for $2^{5}: S_{5}$ Factored by $t_{0} t_{1} t_{2}=t_{3} t_{4}$ 19
3.1 Partial Cayley diagram of G over A_{3} 21
3.2 Cayley diagram of G over A_{3} Factored by $t_{0} t_{1}=t_{1} t_{0}$ 32
3.3 Cayley diagram of G over A_{3} Factored by the Center 32
4.1 Completed Cayley diagram of $\left(M_{21} \times 4\right): S_{3}$ 48
4.2 Completed Cayley diagram of $\left(M_{21} \times 4\right): S_{3}$ Factored by the Center 49
5.1 Cayley diagram of $U_{3}(3): 3$ as a Homomorphic Image of $2^{* 14}: L_{3}(2)$ 60
6.1 Cayley diagram of A_{7} as a Homomorphic Image of $3^{* 7}: L_{3}(2)$ 66
7.1 Cayley diagram of $7^{* 2}:_{m} S_{3}$ 81

Chapter 1

Introduction

The successful exploration of finite groups requires multiple methods, due to their varied properties. We will investigate and construct several types of groups throughout this thesis. The first type is symmetric, which we will discuss in Chapter 2. In Chapter 3, we will construct an alternating group, which we will then find and factor by the center. In Chapter 4, we will construct a projective general linear group, denoted PGL. In some instances, we utilize multiple types of groups within a single construction. Such is the case in Chapter 5 , where we will construct a unitary group as the homomorphic image of a general linear group. In Chapter 6, we examine similar presentations of two different types of groups via their homomorphic images by constructing a monomial presentation of an alternating group as a homomorphic image of another monomial presentation of a general linear group. We will also define and discuss the lifting process by induction, which we utilize to determine multiple homomorphic images of a monomial progenitor in Chapter 7.

1.1 Definitions

Group

A group is a set, G, combined with an operation $*$, such that:
(1) An identity element exists:

There exists an $e \in G$ such that for all $g \in G, e * g=g * e=g$
(2) The inverse element exists in G :

There exists an $h \in G$ such that $g * h=h * g=e$
We say H is a subset of G if every element of H is also an element of G.

Semi-Direct Product

Lemma 1.1. Let K be a group and $A \leq A u t K$ be a subgroup of the automorphism group of K. Then the cartesian product $A \times K$ becomes a group under the binary operation "o" defined by $(a, x) \circ(b, y)=\left(a b, x^{b} y\right)$ where $a, b \in A$ and $x, y \in K$.

The group constructed from a cartesian product of two groups A and K, as described in the lemma above, is called a semi-direct product and is denoted by $K: A$. A progenitor is a semi-direct product of the form:
$P \cong m^{* n}: N=\left\{\pi \omega \mid \pi \in N\right.$ and ω is a reduced word in $\left.t_{i}\right\}$
where $m^{* n}$ denotes the free product of n copies of the cyclic group of order m generated by t_{i} for $i=1,2, \ldots, n$, of order n, and N is a transitive permutation group of degree n which acts on the free product by permuting the generators (i.e. joins), t_{i} 's.

Group Action

Let G be a group and X be a nonempty set. We say that G acts on X if there exists a mapping $\alpha: G \times X \rightarrow X$ defined as $(g, x) \rightarrow x g$ such that:
(1) $x \cdot 1=x, \forall x \in X$
(2) For each $x \in X, x(g h)=(g h) x, \forall g, h \in X$.

The mapping α is called an action of G on X.
If G is a group and $a \in G$, then a conjugate of a is any element in G of the form $g^{-1} a g$, where $g \in G$. We also write $g^{-1} a g=a^{g}$. If G act on X, then $f: G \rightarrow S_{X}$ is a homomorphism. We have $x f(g)=x g, \forall x \in X$

Right Coset

Let G be a group and H be a subgroup of G then a right coset of $h \in G$ is a set $H a=\{h a \mid a \in G\}$, where $a \in G$. The cosets partition the set G into disjoint subsets. We note that:
(1) Either $H a=H b$ or $H a \cap H b=\varnothing$
(2) $H a=H$ if and only if $a \in H$.

Orbits

Let G be a permutation group on the finite set X and let $x \in X$. The orbit of x is the set

$$
X^{G}=\left\{x^{\alpha} \mid \alpha \in G\right\}
$$

Double Coset

Let H be a subgroup of G. Let $x \in G$. Then $H x H=\{H x h \mid h \in H\}$ is a double coset of H in G. Notice that double cosets are composed of right cosets, i.e. single cosets. The index of a subgroup $H \in G$, denoted by $[G: H]=\frac{|G|}{|H|}$, is the number of single cosets of H in G. In particular, the number of single cosets in the double coset $N w N$ is $\frac{|N|}{\left|N^{(w)}\right|}$. To determine the distinct single cosets in a double coset $N w N$, you take $N w$ and conjugate it by its coset stabiliser $N^{(w)}$. If $N^{(w)}$ has several elements, you do this for each element. The orbits of $N^{(w)}$ on the symmetric generators are obtained through conjugation of each generator by $N^{(w)}$. The orbits are disjoint.

Permutation Group

In some of the following chapters, we will be dealing with groups in which the control subgroup, N, is a permutation group. The permutation group S_{n} is the group of permutations of (01234 $\ldots n$). The order of S_{n} is $\left|S_{n}\right|=n$!

Let $X=\{1,2,3, \ldots\}$. Then S_{X}, the set of all one-to-one and onto mappings from X to X, called permutations of X, forms a group under function composition. S_{X} is called the permutation group of X. If $X=\{1,2,3, \ldots, n\}$, then $S_{X}=S_{n}$ is called the symmetric group of degree n.

1.2 Types of Representations

In group theory, we have different ways to characterize and define a specific group. We define these different methods of expressing groups as a representation. We will discuss four different types of representations known as symmetric, permutation, matrix and monomial. We will first discuss symmetric representation.

Symmetric Representation

We define a symmetric representation of a group G of the form

$$
G \cong \frac{p^{* n}: N}{\pi w_{1}, \pi w_{2}, \ldots}
$$

where $p^{* n}$ denotes a free product of n copies of the cyclic group of order p, N is a transitive permutation group of degree n which permutes the n generators of the cyclic groups by conjugation, which defines a semi-direct product factored by the relators, denoted $\pi w_{1}, \pi w_{2}, \ldots$

The progenitor $p^{* n}: N$ represents an infinite group, so to produce finite images of G, we must factor by some relation represented by $\pi w_{1}, \pi w_{2}, \ldots$.

Permutation Representation

We will now dicuss a permutation representation of a group.
Let G be a group, denoted by

$$
G=\left\{a, b \mid a^{2}=b^{2}=(a b)^{2}=1\right\}
$$

where $a b=b a$. The elements within this group are $\{e, a, b, a b\}$. We will demonstrate the permutation representaion of G by denoting the elements a and b as two cycle permutaions

$$
a=(1,2)(3,4) \text { and } b=(1,3)(2,4) .
$$

Then the permutaion representation of this particular G is

$$
P=\langle(1,2)(3,4),(1,3)(2,4)\rangle
$$

where all the elements within G are generated by these two cycle permutations via right hand multiplication. This gives us

$$
\{e,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}
$$

Matrix Representation

We define a Matrix representation of a group G as

$$
G \rightarrow G L(n, \mathbb{C}), \text { where } G L(n, \mathbb{C}) \text { is a general linear group of degree } n
$$

defined by

$$
x \mapsto A(x)
$$

where

$$
A: G \rightarrow G L(n, \mathbb{C})
$$

is a representation of G if A is a homomorphism. Thus, A is an $n \times n$ matrix. Now, since matrix multiplication is associative, we have

$$
A(x) \cdot A(y)=A(x y), \forall x, y \in G
$$

which implies that

$$
A\left(x^{-1}\right)=A(x)^{-1}
$$

Since

$$
\begin{gathered}
A(x) \cdot A\left(x^{-1}\right)=A(e)=I_{n} \\
\Rightarrow A(x)=A(x)^{-1}
\end{gathered}
$$

Now,

$$
A(x)=A(x \cdot e)=A(x) \cdot A(e)=A(x)
$$

which implies

$$
A(e)=I
$$

Now, the matrix representation of this same group G would be denoted

$$
a=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

and similarly,

$$
\mathrm{b}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

If we square the matrix denoted a, we have

$$
\mathbf{a}^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and repeat the process with b, which gives us

$$
\mathbf{b}^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

So, by right hand multiplication, we have

$$
a^{2}=b^{2}=I
$$

Thus, a and b satisfy $<a, b \mid a^{2}=b^{2}=(a b)^{2}=1>$. This process implies that

$$
\left\langle\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right\rangle
$$

is a matrix representation of G.

Monomial Representation

A monomial representation of a group G is a homomorphism from G into $G L_{n}(F)$, the group of non singular $n \times n$ matrices over the field F, in which the image of every element of G is a monomial matrix over F. The action of the image of a monomial representation on the underlying vector space is to permute the vectors of a basis while multiplying them by scalars.

Every monomial representation of G in which G acts transitively on the 1dimensional subspaces generated by the basis vectors is obtained by inducing a linear representation of a subgroup H up to G. If this linear representation is trivial, we obtain the permutation representation of G acting on the cosets of H. Otherwise we obtain a proper monomial representation.

An ordinary linear representation of H is a homomorphism of H onto C_{m}, where C_{m} is a cyclic multiplicative subgroup of the complex numbers \mathbb{C}, and the resulting monomial matrices will involve comples m th roots of unity. Similarly, we can define a linear representation into any field F which possesses m th roots of unity.

1.3 Methods and Applications

The Manual Double Coset Enumeration

Building on the above definitions of right coset and double coset, we define the process of manual double coset enumeration, which is the process of determining the decomposition of single and double cosets within a finite group G factored by some relation.

The Lifting Process

Let G be a group, let N be a normal subgroup of G and χ_{0} be a character of G / N. Then we define

$$
\chi(g)=\chi_{0}(N g), \forall g \in G
$$

χ is a character of G lifted from the character χ_{0} of G / N.
Note:

$$
\chi(n)=\chi_{0}(N n)=\chi_{0}(N)
$$

An example of the lifting proces will be performed in Chapter 7.

Factoring by the Center

As we complete the double coset enumeration of a finite group factored by a relation, we determine the permutation representation of that group. The three resulting permutations $x x=f(x), y y=f(y)$ and $t t_{i}=f(t)$ generate our group G. Factoring by the center is the process by which we find the centralizing elements (denoted Z) of our group to determine which double coset (or double cosets) represent blocks of impermiability that are at the center of the group. We then find the double coset(s) that contain a single coset farthest from our identity coset (denoted[*]). We then determine what our Z is by setting the coset representative of that double coset equal to the identity to find our new relation based on the equation

$$
z=n \cdot w, \text { where } w \text { is a word in the } t_{i}^{\prime} s \text { and } m=n^{-1}
$$

Once we have determined our new relation, we perform double coset enumeration of our group with the new relation, which will collapse the group into a smaller Cayley diagram configuration. We utilize this property to find the centraliser of our group.

Chapter 2

Construction of $2^{5}: S_{5}$

We have a computer-based proof that G is isomorphic to $2^{5}: S_{5}$. This proof is obtained as follows: We first us MAGMA to obtain the composition factors of a permutation representation of G . This is done as follows:

```
CompositionFactors(G1);
gives
G
| Cyclic(2)
*
| Alternating(5)
*
| Cyclic(2)
*
| Cyclic(2)
| Cyclic(2)
*
| Cyclic(2)
```



```
| Cyclic(2)
1
```

$\mathrm{f}, \mathrm{G1}, \mathrm{k}:=\operatorname{CosetAction}(\mathrm{G}, \mathrm{sub}\langle\mathrm{G}| \mathrm{x}, \mathrm{y}>)$;

We now write a presentation of the group $2^{5}: S_{5}$ (obtained based on the composition factors above) and verify that $G \cong 2^{5}: S_{5}$.

$$
\frac{2^{* 5}: S_{5}}{t_{0} t_{1}=t_{1} t_{0}}
$$

We will perform a double coset enumeration on the group $2^{* 5}: S_{5}$ factored by the relation $t_{0} t_{1}=t_{1} t_{0}$, denoted by the following group representation:

$$
G=<x, y, t \mid x^{5}, y^{2}, t^{2},(x y)^{4},(x, y)^{3},(t, y),\left(t, x^{2} y x^{-1} y\right),\left(t t^{x}\right)^{2}>
$$

where $N=<x, y>\cong S_{5}, x \sim(01234)$ and $y \sim(01)$. We know $N \cong S_{5}$ has 120 elements, or $|N|=120$.

2.1 Relations

We are given the relation $t_{0} t_{1}=t_{1} t_{0}$. This relation can be used to determine equal cosets with words of length two. We take $N t_{0} t_{1}=N t_{1} t_{0}$ and conjugate it by every element in our control group S_{5} to get the following relations:

$$
\begin{array}{lll}
t_{0} t_{2}=t_{2} t_{0}, & t_{0} t_{3}=t_{3} t_{0}, & t_{0} t_{4}=t_{4} t_{0} \\
t_{1} t_{2}=t_{2} t_{1}, & t_{1} t_{3}=t_{3} t_{1}, & t_{1} t_{4}=t_{4} t_{1} \\
t_{2} t_{3}=t_{3} t_{2}, & t_{2} t_{4}=t_{4} t_{2}, & t_{3} t_{4}=t_{4} t_{3}
\end{array}
$$

To utilize our relations for words of length three, we must use right coset multiplication by the $t_{i}^{\prime} s$ to increase the length of the relations. Then we use the above relations to manipulate the relations of length three:

$$
\begin{aligned}
t_{0} t_{1} t_{2} & =t_{1} t_{0} t_{2} \\
& =\underline{t_{1} t_{2} t_{0}} \\
& =t_{2} \underline{t_{1} t_{0}} \\
& =t_{2} t_{0} t_{1}
\end{aligned}
$$

Using this method, we can determine all the relations with words of length three:

$$
\begin{aligned}
& 012 \sim 102 \sim 120 \sim 210 \sim 201 \sim 021 \\
& 031 \sim 301 \sim 310 \sim 130 \sim 103 \sim 013
\end{aligned}
$$

$$
\begin{aligned}
& 041 \sim 401 \sim 410 \sim 140 \sim 104 \sim 014 \\
& 241 \sim 421 \sim 412 \sim 142 \sim 124 \sim 214 \\
& 231 \sim 321 \sim 312 \sim 132 \sim 123 \sim 213 \\
& 341 \sim 431 \sim 413 \sim 143 \sim 134 \sim 314
\end{aligned}
$$

To utilize our relations for words of length greater than three we repeat the aforementioned process, adding the appropriate amount of letters as needed.

2.2 Double Coset Enumeration

NeN

$N e N$ is a double coset made up of words of length zero. We know $N e N=\{N\}$, which is the first double coset [*]. There is one single coset within the first double coset. The coset representative for [$*$] is $N e$. We find the orbits of N on $0,1,2,3,4$ by permuting each element by $g \in N$ as follows:

$$
\begin{aligned}
0^{g} & =\{01234\} \\
1^{g} & =\{01234\} \\
2^{g} & =\{01234\} \\
3^{g} & =\{01234\} \\
4^{g} & =\{01234\}
\end{aligned}
$$

Thus, we see that the orbit on N on $\{0,1,2,3,4\}$ is $\{0,1,2,3,4\}$ When we apply a representative t_{i} from each orbit to the coset representative $N e$ we see that all five of the elements in orbit $\{0,1,2,3,4\}$ extend to a new double coset $N t_{0} N$, called [0]. This double cosets will be made up of words of length one.

$\mathrm{Nt}_{0} \mathrm{~N}$

We must first determine the coset stabilizer, denoted $N^{(0)}$. We look at permutations in N and find those that "fix" the the element 0 . So, $N^{(0)}=<(1234),(12)>$, is the point stabiliser in N of 0 . At this point in the process, our relation $t_{0} t_{1}=t_{1} t_{0}$ is not needed, since it does not affect words of less than length two. Thus, our point stabilizer, denoted N^{0} is also our coset stabilizer, denoted $N^{(0)}$. Since N is transitive on
$\{01234\}$, the 24 permutations that "fix" the element (0) represent the coset satbilizers. Thus, $\left|N^{(0)}\right|=24$. We now will determine the number of single coset in the double coset [0] by this formula $\frac{|N|}{\left|N^{(0)}\right|}$ This gives us $\frac{120}{24}=5$. The coset, representative for [0] is $N t_{0}$. We now identify the orbits of $N^{(0)}$ and determine their action. Since the element (0) is fixed, our two orbits are $\{0\}$ and $\{1,2,3,4\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{0}$ we see that the following results:

$$
N t_{0} \cdot t_{0}=N\left(t_{0}\right)^{2} \in N e N
$$

So the the orbit $\{0\}$ takes one generator back to the double coset $[*]$.

$$
N t_{0} \cdot t_{1}=N t_{0} t_{1} \in N t_{0} t_{1} N
$$

So the the orbit $\{1,2,3,4\}$ extends four generators to a new double coset $N t_{0} t_{1} N$, denoted [01].

$\mathrm{Nt}_{0} \mathrm{t}_{1} \mathrm{~N}$

We now have a double coset with word of length two, so our relation $t_{0} t_{1}=t_{1} t_{0}$ must be utilized to help us accurately determine the coset stabilizer. The following equations will tell us what permutation(s) increase the coset stabilizer by taking the representative coset back to itself:

$$
N t_{0} t_{1}=N t_{1} t_{0} \Rightarrow N t_{0} t_{1}^{(01)}=N t_{1} t_{0}=N t_{1} t_{0}
$$

So (01) $\in N^{(01)}$. Thus, the generators of $N^{(01)}$ are: $\left\langle N^{01},(01)>\right.$. The six elements of the coset stabilizer $N^{(01)}$ are : $\{c,(23),(24),(34),(234),(243)\}$. The permutation (01) will double this number, so $\left|N^{(01)}\right|=12$. We may now determine the number of single cosets in the double coset [01] by our formula:

$$
\frac{|N|}{\left|N^{(01)}\right|}
$$

This gives us:

$$
\frac{120}{12}=10
$$

So there are ten single cosets in the double coset [01] .
Next, we will determine the orbits of $N t_{0} t_{1}$. Since $N^{01}=<(234),(23)>$, our orbits of N^{01} on $\{0,1,2,3,4\}$ are $\{0,1\}$ and $\{2,3,4\}$. We take a representative coset from [01] and a representative t_{i} from each orbit to determine the action:

$$
N t_{0} t_{1} \cdot t_{1}=N t_{0}\left(t_{1}\right)^{2}=N t_{0} \in N t_{0} N
$$

So the the orbit $\{0,1\}$ takes two generators back to the double coset $[0]$.

$$
N t_{0} t_{1} \cdot t_{2}=N t_{0} t_{1} t_{2} \in N t_{0} t_{1} t_{2} N
$$

So the the orbit $\{2,3,4\}$ extends three generators to a new double coset $N t_{0} t_{1} t_{2} N$, denoted [012].

$\mathrm{Nt}_{0} \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{~N}$

We wish to determine the single cosets in the double coset [012] and to do this, we will "fix" our next point (2). Thus, the point stabilizer will be:

$$
N^{012}=<(34)>.
$$

Using our relation, we can expand the point stabilizer to our desired coset stabilizer:

$$
\begin{aligned}
N t_{0} t_{1} & =N t_{1} t_{0} \Rightarrow N t_{0} t_{1} t_{2}=N t_{1} t_{0} t_{2}=N t_{1} t_{0}\left(\text { right hand coset multiplication of } t_{2}\right) \\
& \Rightarrow N t_{0} t_{1} t_{2}^{(01)}=N t_{1} t_{0} t_{2}=N t_{0} t_{1} t_{2} \Rightarrow \text { the permutation }(12)^{(01)} \in N^{(012)}
\end{aligned}
$$

So (01) $\in N^{(012)}$. Thus, the generators of $N^{(0,1,2)}$ are: $<(34),(01)^{(12)}>$ The six elements of the coset stabilizer $N^{(0,1,2)}$ are : $\{e,(01),(02),(12),(012),(021)\}$. The permutation (34) will double this number, so $\left|N^{(012)}\right|=12$

We may now determine the number of single cosets in the double coset [012] by our formula:

$$
\frac{|N|}{\left|N^{(012)}\right|}
$$

This gives us:

$$
\frac{120}{12}=10 .
$$

So there are ten single cosets in the double coset [012] .
Next, we will determine the orbits of $N t_{0} t_{1} t_{2}$. Since the elements 0,1 and 2 are fixed, our orbits of $N^{(012)}$ on $\{0,1,2,3,4\}$ are $\{0,1,2\}$ and $\{3,4\}$. We take a representative coset from [012] and a representative t_{i} from each orbit to determine the action:

$$
N t_{0} t_{1} t_{2} \cdot t_{2}=N t_{0} t_{1}\left(t_{2}\right)^{2}=N t_{0} t_{1} \in N t_{0} t_{1} N
$$

So the the orbit $\{0,1,2\}$ takes three generators back to the double coset [01].

$$
N t_{0} t_{1} t_{2} \cdot t_{3}=N t_{0} t_{1} t_{2} t_{3} \in N t_{0} t_{1} t_{2} t_{3} N
$$

So the the orbit $\{3,4\}$ extends two generators to a new double coset $N t_{0} t_{1} t_{2} t_{3} N$, denoted [0123].

$N t_{0} t_{1} \mathrm{t}_{2} \mathrm{t}_{\mathbf{3}} \mathrm{N}$

We determine the single cosets of [0123]. We begin by "fixing" our next point (3). Thus, the point stabilizer will be :

$$
N^{0123}=\langle e\rangle
$$

Expanding our relations (as shown in section 2.1), we can increase the point stabilizer. We note:

$$
\begin{array}{lll}
02 \sim 20, & 03 \sim 30, & 04 \sim 40, \\
12 \sim 21, & 13 \sim 31, & 14 \sim 41, \\
23 \sim 32, & 24 \sim 42, & 34 \sim 43 .
\end{array}
$$

The above relations are used to determine the elements in $N^{(0123)}$. We do this by conjugating the representative coset $N t_{0} t_{1} t_{2} t_{3}$ by generators that will take the point stabilizer back to itself:

$$
\begin{aligned}
& N t_{0} t_{1} t_{2} t_{3}^{(01)}=N t_{1} t_{0} t_{2} t_{3}=N t_{0} t_{1} t_{2} t_{3} \rightarrow(01) \in N^{(0123)} \\
& N t_{0} t_{1} t_{2} t_{3}^{(012)}=N t_{1} t_{2} t_{0} t_{3}=N t_{0} t_{1} t_{2} t_{3} \rightarrow(0,1,2) \in N^{(0123)} \\
& N t_{0} t_{1} t_{2} t_{3}^{(0123)}=N t_{1} t_{2} t_{3} t_{0}=N t_{0} t_{1} t_{2} t_{3} \rightarrow(0123) \in N^{(0123)}
\end{aligned}
$$

So $N^{(0123)}=<(01),(012),(0123)>$. Now $\left|N^{(0123)}\right|=\left|S_{4}\right|=4!=24$
We may now calculate the number of single cosets in [0123] by our formula:

$$
\frac{|N|}{\left|N^{(0123)}\right|}
$$

This gives us:

$$
\frac{120}{24}=5 .
$$

So there are five single cosets in the double coset [0123].
Next, we will determine the orbits of $N t_{0} t_{1} t_{2} t_{3}$. Since the elements $0,1,2$ and 3 are fixed, our orbits of $N^{(0123)}$ on $\{0,1,2,3,4\}$ are $\{0,1,2,3\}$ and $\{4\}$. We take a representative coset from [0123] and a representative t_{i} from each orbit to determine the action:

$$
N t_{0} t_{1} t_{2} t_{3} \cdot t_{3}=N t_{0} t_{1} t_{2}\left(t_{3}\right)^{2}=N t_{0} t_{1} t_{2} \in N t_{0} t_{1} t_{2} N
$$

So the the orbit $\{0,1,2,3\}$ takes four generators back to the double coset [012].

$$
N t_{0} t_{1} t_{2} t_{3} \cdot t_{4}=N t_{0} t_{1} t_{2} t_{3} t_{4} \in N t_{0} t_{1} t_{2} t_{3} t_{4} N
$$

So the the orbit $\{4\}$ extends one generator to a new double coset $N t_{0} t_{1} t_{2} t_{3} t_{4} N$, denoted [01234].
$\mathrm{Nt}_{0} \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4} \mathrm{~N}$
We determine the single cosets in the double coset [01234]. First note that all of the five elements are"fixed". Thus, the point stabilizer is :

$$
N^{01234}=\langle e\rangle
$$

As before, we must apply the appropirate permutation to the point stabilizer to send it back to itself:

$$
\begin{gathered}
N t_{0} t_{1} t_{2} t_{3} t_{4}^{(01)}=N t_{0} t_{1} t_{2} t_{3} t_{4} \rightarrow(0,1) \in N^{(01234)} \\
N t_{0} t_{1} t_{2} t_{3} t_{4}^{(01234)}=N t_{1} t_{2} t_{3} t_{4} t_{0}=N t_{0} t_{1} t_{2} t_{3} t_{4} \rightarrow(0,1,2,3,4) \in N^{(01234)}
\end{gathered}
$$

Now $\left|N^{(01234)}\right|=<(01),(01234)>=\left|S_{5}\right|=5!=120$
We may now calculate the number of single cosets in [01234] by our formula:

$$
\frac{|N|}{\left|N^{(01234)}\right|}
$$

This gives us:

$$
\frac{120}{120}=1
$$

So there is one single coset in the double coset [01234] .
Next, we will determine the orbits of $N t_{0} t_{1} t_{2} t_{3} t_{4}$. Since all of the elements are fixed, our single orbit of $N^{(0,1,2,3,4)}$ on $\{0,1,2,3,4\}$ is $\{0,1,2,3,4\}$. We take a representative coset from [01234] and a representative t_{i} from this orbit to determine the action:

$$
N t_{0} t_{1} t_{2} t_{3} t_{4} \cdot t_{4}=N t_{0} t_{1} t_{2} t_{3}\left(t_{4}\right)^{2}=N t_{0} t_{1} t_{2} t_{3} \in N t_{0} t_{1} t_{2} t_{3} N
$$

Thus, the the orbit $\{0,1,2,3,4\}$ takes all five generators back to the double coset [0123] Since we have no generators extending to new double cosets, our double coset enumeration is complete. All this information is summarized in the following cayley diagram Figure 2.1:

Figure 2.1: Cayley diagram for $2^{5}: S_{5}$

In Table 2.1, we first label each single coset. We then compute the action of $x x$, $y y$, and t_{0}. We will use the information in the table to determine $f(x), f(y)$, and $f(t)$.

Table 2.1: Labeling of and Actions on the Single Cosets

Labeling	Single Cosets	$x x$		yy		$t t_{0}$	
1	N	1	N	1	N	2	$N t_{0}$
2	$N t_{0}$	3	$N t_{1}$	3	$N t_{1}$	1	N
3	$N t_{1}$	4	$N t_{2}$	2	$N t_{0}$	7	$N t_{0} t_{1}$
4	$N t_{2}$	5	Nt_{3}	4	$N t_{2}$	8	$N t_{0} t_{2}$
5	$N t_{3}$	6	$N t_{4}$	5	Nt_{3}	9	$N t_{0} t_{3}$
6	$N t_{4}$	2	$N t_{0}$	6	$N t_{4}$	10	$N t_{0} t_{4}$
7	$N t_{0} t_{1}$	11	$N t_{1} t_{2}$	7	$N t_{0} t_{1}$		$N t_{1}$
8	$N t_{0} t_{2}$	12	$N t_{1} t_{3}$	11	$N t_{1} t_{2}$	4	$N t_{2}$
9	$N t_{0} t_{3}$	13	$N t_{1} t_{4}$	12	$N t_{1} t_{3}$	5	Nt_{3}
10	$N t_{0} t_{4}$	7	$N t_{0} t_{1}$	13	$N t_{1} t_{4}$	6	
11	$N t_{1} t_{2}$	14	$N t_{2} t_{3}$	8	$N t_{0} t_{2}$	17	$N t_{0} t_{1} t_{2}$
12	$N t_{1} t_{3}$	15	$N t_{2} t_{4}$	9	$N t_{0} t_{3}$	18	$N t_{0} t_{1} t_{3}$
13	$N t_{1} t_{4}$	8	$N t_{0} t_{2}$	10	$N t_{0} t_{4}$	19	$N t_{0} t_{1} t_{4}$
14	$N t_{2} t_{3}$	16	$N t_{3} t_{4}$	14	$N t_{2} t_{3}$	20	$N t_{0} t_{2} t_{3}$
15	$N t_{2} t_{4}$	9	$N t_{0} t_{3}$	15	$N t_{2} t_{4}$	21	$N t_{0} t_{2} t_{4}$
16	$N t_{3} t_{4}$	10	$N t_{0} t_{4}$	16	$N t_{3} t_{4}$	22	$N t_{0} t_{3} t_{4}$
17	$N t_{0} t_{1} t_{2}$	23	$N t_{1} t_{2} t_{3}$	17	$N t_{0} t_{1} t_{2}$	11	$N t_{1} t_{2}$
18	$N t_{0} t_{1} t_{3}$	24	$N t_{1} t_{2} t_{4}$	18	$N t_{0} t_{1} t_{3}$	12	$N t_{1} t_{3}$
19	$N t_{0} t_{1} t_{4}$	17	$N t_{0} t_{1} t_{2}$	19	$N t_{0} t_{1} t_{4}$	13	$N t_{1} t_{4}$
20	$N t_{0} t_{2} t_{3}$	25	$N t_{1} t_{3} t_{4}$	23	$N t_{1} t_{2} t_{3}$	14	$N t_{2} t_{3}$
21	$N t_{0} t_{2} t_{4}$	18	$N t_{0} t_{1} t_{3}$	24	$N t_{1} t_{2} t_{4}$	15	$N t_{2} t_{4}$
22	$N t_{0} t_{3} t_{4}$	19	$N t_{0} t_{1} t_{4}$	25	$N t_{1} t_{3} t_{4}$	16	$N t_{3} t_{4}$
23	$N t_{1} t_{2} t_{3}$	26	$N t_{2} t_{3} t_{4}$	20	$N t_{0} t_{2} t_{3}$	27	$N t_{0} t_{1} t_{2} t_{3}$
24	$N t_{1} t_{2} t_{4}$	20	$N t_{0} t_{2} t_{3}$	21	$N t_{0} t_{2} t_{4}$	28	$N t_{0} t_{1} t_{2} t_{4}$
25	$N t_{1} t_{3} t_{4}$	21	$N t_{0} t_{2} t_{4}$	22	$N t_{0} t_{3} t_{4}$	29	$N t_{0} t_{1} t_{3} t_{4}$
26	$N t_{2} t_{3} t_{4}$	22	$N t_{0} t_{3} t_{4}$	26	$N t_{2} t_{3} t_{4}$	30	$N t_{0} t_{2} t_{3} t_{4}$
27	$N t_{0} t_{1} t_{2} t_{3}$	31	$N t_{1} t_{2} t_{3} t_{4}$	27	$N t_{0} t_{1} t_{2} t_{3}$	23	$N t_{1} t_{2} t_{3}$
28	$N t_{0} t_{1} t_{2} t_{4}$	27	$N t_{0} t_{1} t_{2} t_{3}$	28	$N t_{0} t_{1} t_{2} t_{4}$	24.	$N t_{1} t_{2} t_{4}$
29	- $N t_{0} t_{1} t_{3} t_{4}$	28	$N t_{0} t_{1} t_{2} t_{4}$	29	$N t_{0} t_{1} t_{3} t_{4}$	25	$N t_{1} t_{3} t_{4}$
30	$N t_{0} t_{2} t_{3} t_{4}$	29	$N t_{0} t_{1} t_{3} t_{4}$	31.	$N t_{1} t_{2} t_{3} t_{4}$	26	$N t_{2} t_{3} t_{4}$
31	$N t_{1} t_{2} t_{3} t_{4}$	30	$N t_{0} t_{2} t_{3} t_{4}$	30	$N t_{0} t_{2} t_{3} t_{4}$	32	$N t_{0} t_{1} t_{2} t_{3} t_{4}$
32	$N t_{0} t_{1} t_{2} t_{3} t_{4}$	32	$N t_{0} t_{1} t_{2} t_{3} t_{4}$	32	$N t_{0} t_{1} t_{2} t_{3} t_{4}$	31	$N t_{1} t_{2} t_{3} t_{4}$

Thus:

$$
\begin{gathered}
f(x)=(2,3,4,5,6)(7,11,14,16,10)(8,12,15,9,13)(17,23,26,22,19) \\
(18,24,20,25,21)(27,31,30,29,28) \\
f(y)=(2,3)(8,11)(9,12)(10,13)(20,23)(21,24)(22,25)(30,31) \\
f(t)=(1,2)(3,7)(4,8)(5,9)(6,10)(11,17)(12,18) \\
(13,19)(14,20)(15,21)(16,22)(23,27)
\end{gathered}
$$

2.3 Factoring by the Center

We will find the centralizer of $2^{5}: S_{5}$ and factor by its center. The order of our blocks of impermiability is two,since we have 2 double cosets that contain only one coset. We see that these permutatons occur on 32 letters because there exist 32 single cosets in this group. So we have our central element

$$
\begin{gathered}
f(t)=(1,2)(3,7)(4,8)(5,9)(6,10)(11,17)(12,18)(13,19) \\
(14,20)(15,21)(16,22)(23,27)(24,28)(25,29)(26,30)(31,32)
\end{gathered}
$$

We examine our Cayley diagram and determine the double coset $[0,1,2,3,4]$ contains only one coset (excluding the identity coset). We then determine our centralizer Z by setting the coset representative of that double coset equal to the identity

$$
N t_{0} t_{1} t_{2} t_{3} t_{4}=e
$$

We let $z=n \cdot w$, where w is

$$
\begin{gathered}
t_{0} t_{1} t_{2} t_{3} t_{4}=e \\
t_{0} t_{1} t_{2} t_{3}=t_{4}^{-1} \\
t_{0} t_{1} t_{2}=t_{4}^{-1} t_{3}^{-1}
\end{gathered}
$$

Since $t^{2}=e$ then $t=t^{-1}$. Hence, our relation is $t_{0} t_{1} t_{2}=t_{4} t_{3}$
Using our prior relation $t_{0} t_{1}=t_{1} t_{0}$, we also have $t_{0} t_{1} t_{2}=t_{3} t_{4}$
We now repeat the double coset enumeration with our new relation.

$$
\frac{2^{5}: S_{5}}{t_{0} t_{1} t_{2}=t_{3} t_{4}}
$$

We will perform a double coset enumeration on the group $2^{5}: S_{5}$ factored by the relation $t_{0} t_{1} t_{2}=t_{3} t_{4}$, denoted by the following group representation:

$$
\left.\left.\left.G \cong<x, y, t \mid x^{5}, y^{2}, t^{2},(x y)^{4},(x, y)^{3},(t, y),\left(t, x^{2} y x^{-1} y\right),\left(t t^{x}\right)^{2}, t t^{x} t^{(} x^{2}\right) t^{(} x^{3}\right) t^{(} x^{4}\right)>
$$

where $N=<x, y>\cong S_{5}, x \sim(01234)$ and $y \sim(01)$. We know $N \cong S_{5}$ has 120 elements, or $|N|=120$.

2.4 Double Coset Enumeration

$\mathbf{N e N}$ and $\mathrm{Nt}_{0} \mathbf{N}$

Our procees for this double coset enumeration will be repeated exactly as in the above steps for double coset $N e N$ and $N t_{0} N$ due to the fact that our new relation will not increase the coset stabilzer $N^{(0)}$. Recall:

$$
\begin{gathered}
N e N=\{N\} \\
N t_{0} N=\left\{N t_{0}, N t_{1}, N t_{2}, N t_{3}, N t_{4},\right\}
\end{gathered}
$$

$\mathrm{Nt}_{0} \mathrm{t}_{1} \mathbf{N}$

We now have a double coset with word of length two, so our relation $t_{0} t_{1} t_{2}=t_{3} t_{4}$ must be utilized to help us accurately determine the coset stabilizer.

$$
N t_{0} t_{1}=N t_{1} t_{0} \Rightarrow N t_{0} t_{1}^{(01)}=N t_{1} t_{0}=N t_{1} t_{0}
$$

So (01) $\in N^{(01)}$. Thus, the generators of $N^{(01)}$ are $<N^{01},(01)>$. The six elements of the coset stabilizer $N^{(01)}$ are : $\{e,(23),(24),(34),(234),(243)\}$. The permutation (01) will double this number, so $\left|N^{(01)}\right|=12$. We may now determine the number of single cosets in the double coset [01] by our formula $\frac{|N|}{\left|N^{(01)}\right|}$. This gives us: $\frac{120}{12}=10$.

So there are ten single cosets in the double coset [01].
Now we determine the orbits of $[01]$ to be $\{0,1\}$ and $\{2,3,4\}$. We will take a representative t_{i} from each of these orbits and apply right hand multiplication to the coset $N t_{0} t_{1}$:

1. $N t_{0} t_{1} \cdot t_{0}=N t 0 t_{1}^{2}=N t_{0} \in N t_{0} N$ denoted [0], so this orbit takes 2 generators back to the double coset [0].
2. $N t_{0} t_{1} \cdot t_{2}=N t_{0} t_{1} t_{2}=N t_{4} t_{3} \in N t_{0} t_{1} N$ denoted [01], so this orbit takes 3 generators back to itself (the double coset [01]).

Since we have no generators extending to new double cosets, our double coset enumeration is complete. All this information is summarized in the following cayley diagram Figure 2.2

Figure 2.2: Cayley diagram for $2^{5}: S_{5}$ Factored by $t_{0} t_{1} t_{2}=t_{3} t_{4}$

Chapter 3

Construction of $3^{* 3}: A_{3}$

$$
G=\frac{3^{* 3}: A_{3}}{t_{0} t_{1}=t_{1} t_{0}}
$$

We will perform a double coset enumeration of the group $3^{* 3}: A_{3}$ factored by the relation $t_{0} t_{1}=t_{1} t_{0}$, given by:

$$
G \cong<x, t \mid x^{3}, t^{3}, t t^{x}=t^{x} t>
$$

We have a computer-based proof that $G \cong C_{3} \times C_{3} \times C_{3} \times C_{3}$.
where $N=<x, t>\cong A_{3}, x \backsim(0,1,2)(\overline{0} \overline{1}, \overline{2})$. We know $N \cong A_{3}$ has 3 elements, or $|N|=3$.

3.1 Relations

Since this group has three generators, we let $t=t_{3}$. Our given relation is $t t^{x}=t^{x} t$. We can substitute the values for $t \sim t_{3}$ and $x \sim(123)(\overline{1} \overline{2} \overline{3})$ and obtain $t_{3} t_{3}^{(123)(\overline{1} \overline{2} \overline{3})}=t_{3}^{(123)(\overline{1} \overline{2} \overline{3})} t_{3}$, thus:

$$
t_{3} t_{1}=t_{3} t_{1}
$$

We prefer to to write $t_{3}=t_{0}$. Thus, our relation is:

$$
t_{0} t_{1}=t_{0} t_{1}
$$

We have the three generators t_{0}, t_{1}, t_{2} and their inverses, denoted by $\bar{t}_{0}, \bar{t}_{1}, \bar{t}_{2}$, respectively.

3.2 Double Coset Enumeration

NeN

$N e N$ is a double coset made up of words of length zero. We know $N e N=\{N\}$, which is the first double coset [*]. The coset representative for [*] is N. We find that the orbits of N on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0,1,2\}$ and $\{\overline{0}, \overline{1}, \overline{2}\}$. When we apply a representative t_{i} from each orbit to the double coset representative N we see that the elements in orbit $\{0,1,2\}$ extend to a new double coset $N t_{0} N$, denoted [0], and.the elements in the orbit $\{\overline{0}, \overline{1}, \overline{2}\}$ extend to another new double coset $N \bar{t}_{0} N$, denoted $[\overline{0}]$. These double cosets will be made up of words of length one. Unlike $2^{5}: S_{5}$ in the previous chapter, this Cayley diagram splits from [*] and extends to two new double cosets denoted [0] and [0] as shown in Figure 3.1 below:

Figure 3.1: Partial Cayley diagram of G over A_{3}

$\mathrm{Nt}_{\mathbf{0}} \mathbf{N}$

We now will determine the number of single coset in the double coset [0] by this formula $\frac{|N|}{\left|N^{(0)}\right|}$ which gives us $\frac{3}{1}=3$. The coset representative for $[0]$ is $N t_{0}$. We now identify the orbits of $N^{(0)}$ and determine where they go. We see that the orbits of N on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{0}$ we see the following results:

1. $N t_{0} t_{0}=N \vec{t}_{0}$ which means this orbit extends $N t_{0}$ to a new double coset $N \bar{t}_{0} N$, denoted [$\overline{0}]$.
2. $N t_{0} t_{1}=N t_{0} t_{1}$ which means this orbit extends $N t_{0}$ to a new double coset $N t_{0} t_{1} N$, denoted [01].
3. $N t_{0} t_{2}$, which means this orbit extends $N t_{0}$ to a new double coset $N t_{0} t_{2} N$, denoted [02]. Our relation tells us the double coset [02] is equivalent to [01]. Hence, this orbit takes $N t_{0}$ to the double coset [01]
4. $N t_{0} \bar{t}_{0}=N e=N$, which takes this coset back to the double coset [$\left.{ }^{*}\right]$.
5. $N t_{0} \ddot{t}_{1}$, which means this orbit extends $N t_{0}$ to a new double coset $N t_{0} \bar{t}_{1} N$, denoted [01].
6. $N t_{0} \bar{t}_{2}$, which means this orbit extends $N t_{0}$ to a new double coset $N t_{0} \bar{t}_{2} N$, denoted [02].

$N \bar{t}_{0} N$

We now will determine the number of single coset in the double coset [$\overline{0}]$ by this formula $\frac{|N|}{\left|N^{(0)}\right|}$ which gives us $\frac{3}{1}=3 . N^{(\overline{0})}$ is the stabiliser of the coset $N \bar{t}_{0}$. We now identify the orbits of $N^{(\overline{0})}$ and determine where they go. We see that the orbits of $N^{(\overline{0})}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N \bar{t}_{0}$ we see that the following results:

1. $N \bar{t}_{0} t_{0}=N e=\mathrm{N}$ which means this orbit takes $N \bar{t}_{0}$ back to the double coset $[*]$.
2. $N \vec{t}_{0} t_{1}$. Our relation tells us the double coset [$\left.\overline{0} 1\right]$ is equivalent to [0 $\left.\overline{2}\right]$. Hence, this orbit takes $N \bar{t}_{0}$ to the double coset [02] .
3. $N \bar{t}_{0} t_{2}$. Our relation tells us the double coset [$\left.\overline{0} 2\right]$ is equivalent to $[0 \overline{1}]$. Hence, this orbit takes $N \bar{t}_{0}$ to the double coset [0 $\left.\overline{1}\right]$
4. $N \bar{t}_{0} \bar{t}_{0}=N t_{0}$, which takes this coset back to the double coset $[0]$.
5. $N \bar{t}_{0} \bar{t}_{1}$, which means this orbit extends $N \bar{t}_{0}$ to a new double coset $N \bar{t}_{0} \bar{t}_{1} N$, denoted [$\overline{0} 1]$.
6. $N \bar{t}_{0} \bar{t}_{2}$, which means this orbit extends $N \bar{t}_{0}$ to a new double coset $N \bar{t}_{0} \bar{t}_{2} N$, denoted [$\overline{0} \overline{2}]$.

From this point on in our process, we will be dealing with words of length two or more, so we must utilize our relation $t_{0} t_{1}=t_{1} t_{0}$ to find our remaining cosets. In addition, we will use our relation to determine which double and single cosets (if any) exist in other single or double cosets. First, we must calculate all our relations. Conjugation by elements of A_{3} gives rise to the following relations:

$$
01 \sim 10,20 \sim 02,12 \sim 21,0 \overline{1} \sim \overline{1} 0,1 \overline{2} \sim \overline{2} 1,2 \overline{0} \sim \overline{0} 2, \overline{1} \overline{2} \sim \overline{2} \overline{1}, \overline{2} \overline{0} \sim \overline{0} \overline{\overline{0}}, \overline{0} \overline{1} \sim \overline{1} \overline{0}
$$

Furthermore, we use the above relations to seek out which double cosets are actually elements of other double cosets. We call these "equal cosets". We will show that many double cosets in this group are equal. MAGMA confirms what we will show by hand:

Remembering our notation;

$$
3=0,1=1,2=2,6=\overline{0}, 4=\overline{1}, 5=\overline{2}
$$

We prove that $[02]=[01]$;
Note: $A_{3}=<(012),(\overline{0} \overline{1} \overline{2}),(021)(\overline{0} \overline{2} \overline{1}), e>$.
pf:
$[01]=[02]$
$N t_{0} t_{1} N=\left\{N\left(t_{0} t_{1}\right)^{n} \in N\right\}=\left\{N t_{0} t_{1}, N t_{1} t_{2}, N t_{2} t_{0}\right\}$
But our relation tells us that $N t_{2} t_{0}=N t_{0} t_{2} \in N t_{0} t_{2} N$
So $N t_{0} t_{1} N=N t_{0} t_{2} N$.
$[0 \overline{0} 1]=[02]$
$N \bar{t}_{0} t_{1} N=N t_{0} \bar{t}_{2} N$
$N \bar{t}_{0} t_{1} N=\left\{N\left(\bar{t}_{0} t_{1}\right)^{n} \in N\right\}=\left\{N \bar{t}_{0} t_{1}, N \bar{t}_{2} t_{0}, N t_{1} t_{2}\right\}$
But our relation tells us that $N \bar{t}_{2} t_{0}=N t_{0} \bar{t}_{2} \in N t_{0} \bar{t}_{1} N$
So $N \bar{t}_{0} t_{1} N=N t_{0} \bar{t}_{2} N$.

Similarly, we prove that the remaining ten double coset equalities listed below:
$[02]=[01],[0 \overline{1} 1]=[0 \overline{0} 2],[0 \overline{2}]=[0 \overline{1}],[\overline{0} \overline{2}]=[\overline{0} \overline{1}]$,
$[0 \overline{1} \overline{2}]=[\overline{0} \overline{1} 2],[\overline{0} 12]=[0 \overline{1} 2],[01 \overline{2}]=[0 \overline{1} 2],[\overline{0} 1 \overline{2}]=[\overline{0} \overline{1} 2]$
$[01 \overline{2} 1]=[02],[0 \overline{1} 2 \overline{1}]=[012],[0 \overline{1} 2 \overline{0}]=[0 \overline{2}],[0 \overline{1} 20]=[\overline{0} \overline{1} 2]$.
We will now use these relations to help us find our remaining cosets.

$\mathrm{Nt}_{\mathbf{0}} \mathrm{t}_{1} \mathrm{~N}$

We now will determine the number of single coset in the double coset [01] by this formula $\frac{|N|}{\mid N^{(013)}}$ which gives us $\frac{3}{1}=3$. The coset representative for $[01]$ is $N t_{0} t_{1}$. We now identify the orbits of $N^{(01)}$ and determine where they go. We see that the orbits of $N^{(01)}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{0}$ we see the following results:

1. $N t_{0} t_{1} t_{0}=N t_{0} t_{0} t_{1}=N \bar{t}_{0} t_{1}$ which means this orbit extends $N t_{0} t_{1}$ to a new double $\operatorname{coset} N \bar{t}_{0} t_{1} N$, denoted [$\left.\overline{0} 1\right]$.
We have proven that $[\overline{0} 1]=[0 \overline{2}]$, so this orbit extends $N t_{0} t_{1}$ to $[0 \overline{2}]$.
2. $N t_{0} t_{1} t_{1}=N t_{0} \bar{t}_{1}$ which means this orbit extends $N t_{0} t_{1}$ to a new double coset $N t_{0} \bar{t}_{1} N$, denoted [0디].
3. $N t_{0} t_{1} t_{2}$ which means this orbit extends $N t_{0} t_{1}$ to a new double coset $N t_{0} t_{1} t_{2} N$, denoted [012].
4. $N t_{0} t_{1} \bar{t}_{0}=N t_{1}, \in[0]$.
5. $N t_{0} t_{1} \overline{t_{1}}=N t_{0}$, which means this orbit extends $N t_{0} t_{1}$ back to the double coset $N t_{0} N$, denoted [0$]$.
6. $N t_{0} t_{1} t_{2}$, which means this orbit extends $N t_{0} t_{1}$ to a new double coset $N t_{0} t_{1} t_{\overline{2}} N$, denoted [012].
We have proven that $[01 \overline{2}]=[0 \overline{1} 2]$, so this orbit extends $N t_{0} t_{1}$ to $[0 \overline{1} 2]$.

$\mathrm{Nt}_{0} \mathrm{t}_{2} \mathrm{~N}$

We now will determine the number of single coset in the double coset [02] by this formula $\frac{|N|}{\left|N^{(02)}\right|}$ which gives $\frac{3}{1}=3$. The coset representative for [02] is $N t_{0} t_{2}$. We now identify the orbits of $N^{(02)}$ and determine where they go. We see that the orbits of $N^{(02)}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{0} t_{2}$ we see the following results:

1. $N t_{0} t_{2} t_{0}=N \bar{t}_{0} t_{2}$ which means this orbit extends $N t_{0} t_{2}$ to a new double coset $N \bar{t}_{0} t_{2} N$, denoted [$\overline{0} 2$].
2. $N t_{0} t_{2} t_{1}=N t_{0} t_{1} t_{2}$ which means this orbit sends $N t_{0} t_{2}$ to the double coset $N t_{0} t_{1} t_{2} N$, denoted [012].
3. $N t_{0} t_{2} t_{2}=N t_{0} \bar{t}_{2}$, which means this orbit extends $N t_{0} t_{2}$ to a new double coset $N t_{0} \bar{t}_{2} N$, denoted [02].
4. $N t_{0} t_{2} \bar{t}_{0}=N t_{0} \bar{t}_{0} t_{2}=N t_{2}, \in[0]$.
5. $N t_{0} t_{2} \bar{t}_{1}=N t_{0} \bar{t}_{1} t_{2}$, which means this orbit extends $N t_{0} t_{2}$ to a new double coset $N t_{0} \bar{t}_{1} t_{2} N$, denoted [$\left.0 \overline{1} 2\right]$.
6. $N t_{0} t_{2} \bar{t}_{2}=N t_{0}$, which means this orbit sends $N t_{0} t_{2}$ back to the double coset [0].
$\mathrm{Nt}_{0} \overline{\mathrm{t}}_{1} \mathrm{~N}$
We now will determine the number of single coset in the double coset [0디 by this formula $\frac{|N|}{\mid N^{(01) \mid}}$ which gives us $\frac{3}{1}=3$. The coset representative for [01] is $N t_{0} \bar{t}_{1}$. We now identify the orbits of $N^{(01)}$ and determine where they go. We see that the orbits of $N^{(0 \overline{1})}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{0} \bar{t}_{1}$ we see the following results:
7. $N t_{0} \bar{t}_{1} t_{0}=N \bar{t}_{0} \bar{t}_{1}$ which means this orbit extends $N t_{0}$ to a new double coset $N \bar{t}_{0} N$, denoted $[\overline{0}]$.
8. $N t_{0} \bar{t}_{1} t_{1}=N t_{0}$ which means this orbit takes $N t_{0} \bar{t}_{1}$ back to the double coset [0].
9. $N t_{0} \bar{t}_{1} t_{2}$, which means this orbit extends $N t_{0} \bar{t}_{1}$ to a new double coset $N t_{0} \bar{t}_{1} t_{2} N$, denoted [012].
10. $N t_{0} \bar{t}_{1} \bar{t}_{0}=N \bar{t}_{1}$, which takes this coset back to the double coset $[\overline{0}]$.
11. $N t_{0} \bar{t}_{1} \bar{t}_{1}=N t_{0} t_{1}$, which means this orbit takes $N t_{0} \bar{t}_{1}$ back to a the double coset [01].
12. $N t_{0} \bar{t}_{1} \bar{t}_{2}$, which extends $N t_{0} \bar{t}_{1}$ to a new double coset $[0 \overline{1} \overline{2}]=[\overline{0} \overline{1} 2]$.

$\mathrm{Nt}_{0} \overline{\mathrm{t}}_{2} \mathrm{~N}$

We now will determine the number of single coset in the double coset [$0 \overline{2}$] by this formula $\frac{|N|}{\left|N^{(02)}\right|}$ which gives us $\frac{3}{1}=3$. The coset representative for $[0 \overline{2}]$ is $N t_{0} \bar{t}_{2}$. We now identify the orbits of $N^{(0 \overline{2})}$ and determine where they go. We see that the orbits of $N^{(0 \overline{2})}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{0} \bar{t}_{2}$ we see that the following results:

1. $N t_{0} \bar{t}_{2} t_{0}=N \bar{t}_{0} \bar{t}_{2}$ which means this orbit extends $N t_{0} \bar{t}_{2}$ to a new double coset $N \bar{t}_{0} \bar{t}_{2} N$, denoted [$\left.0 \overline{2}\right]$.
2. $N t_{0} \bar{t}_{2} t_{1}=N t_{0} t_{1} \bar{t}_{2}$ which means this orbit extends $N t_{0} \bar{t}_{2}$ to a new double coset $N t_{0} t_{1} \bar{t}_{2} N$, denoted $[01 \overline{2}] \in[0 \overline{1} 2]$.
3. $N t_{0} \bar{t}_{2} t_{2}=N t_{0}$, which means this orbit sends $N t_{0} \bar{t}_{2}$ back to [0].
4. $N t_{0} \bar{t}_{2} \bar{t}_{0}=N \bar{t}_{2}$, which takes this coset back to the double coset [$[\overline{0}]$.
5. $N t_{0} \bar{t}_{2} \bar{t}_{1}=N t_{0} \bar{t}_{1} \bar{t}_{2}$, which means this orbit takes $N t_{0} \bar{t}_{2}$ to a new double coset [0 $\left.\overline{2} \overline{2}\right]$.
6. $N t_{0} \bar{t}_{2} \bar{t}_{2}=N t_{0} t_{2}$, which means this orbit extends $N t_{0} \breve{t}_{2}$ to the double coset [02].

$\mathbf{N} \bar{t}_{0} \mathbf{t}_{\mathbf{I}} \mathbf{N}$

We now will determine the number of single coset in the double coset [$\overline{0} 1$] by this formula $\frac{|N|}{\left|N^{(01)}\right|}$ which gives us $\frac{3}{1}=3$. The coset representative for $[\overline{0} 1]$ is $N \bar{t}_{0} t_{1}$. We now identify the orbits of $N^{(\overline{0} 1)}$ and determine where they go. We see that the orbits of $N^{(\overline{0} 1)}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N \vec{t}_{0} t_{1}$ we see the following results:

1. $N \bar{t}_{0} t_{1} t_{0}=N t_{1}$ which means this orbit takes $N \bar{t}_{0} t_{1}$ back to the double coset [0].
2. $N \bar{t}_{0} t_{1} t_{1}=N \bar{t}_{0} \bar{t}_{1}$, which means this orbit takes $N \bar{t}_{0} t_{1}$ to the double coset [$\left.\overline{0} \overline{1}\right]$.
3. $N \bar{t}_{0} t_{1} t_{2}$, which means this orbit extends $N \bar{t}_{0} t_{1}$ to a new double coset $N \bar{t}_{0} t_{1} t_{2} N$, denoted $[012]=[0 \overline{1} 2]$.
4. $N \bar{t}_{0} t_{1} \bar{t}_{0}=N t_{0} t_{1}$, which takes this coset back to the double coset [01].
5. $N \bar{t}_{0} t_{1} \bar{t}_{1}=N \bar{t}_{0}$, which means this orbit takes $N \bar{t}_{0} t_{1}$ back to the double coset $[\overline{0}]$.
6. $N \bar{t}_{0} t_{1} \bar{t}_{2}$, which means this orbit extends $N \bar{t}_{0} t_{1}$ to a new double coset $N \bar{t}_{0} t_{1} \bar{t}_{2} N$, denoted $[\overline{0} 1 \overline{2}]=[\overline{0} \overline{1} 2]$.

$\mathrm{N}_{\mathbf{t}} \mathrm{t}_{2} \mathbf{N}$

We now will determine the number of single coset in the double coset [0ె2] by this formula $\frac{|N|}{\mid N^{(02) \mid}}$ which gives us $\frac{3}{1}=3$. The coset representative for $[\overline{0} 2]$ is $N t_{\overline{0}} t_{2}$. We now identify the orbits of $N^{(\overline{0} 2)}$ and determine where they go. We see that the orbits of $N^{(\overline{0} 2)}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N \bar{t}_{0} t_{2}$ we see the following results:

1. $N \bar{t}_{0} t_{2} t_{0}=N t_{2}$ which means this orbit takes $N \vec{t}_{0} t_{2}$ back to the double coset [0$]$.
2. $N \bar{t}_{0} t_{2} t_{1}=N \bar{t}_{0} t_{1} t_{2}$, which means this orbit extends $N \bar{t}_{0} t_{2}$ to the double $\operatorname{coset}[\overline{0} 12]=$ [012].
3. $N \bar{t}_{0} t_{2} t_{2}=N \bar{t}_{0} \bar{t}_{2}$, which means this orbit takes $N \bar{t}_{0} t_{2}$ to the double coset $[\overline{0} \overline{2}]$.
4. $N \bar{t}_{0} t_{2} \bar{t}_{0}=N t_{0} t_{2}$, which takes this coset back to the double coset [02].
5. $N \bar{t}_{0} t_{2} \bar{t}_{1}=N \bar{t}_{0} \bar{t}_{1} t_{2}$, which means this orbit extends $N \bar{t}_{0} t_{2}$ to a new double coset [0̄12].
6. $N \bar{t}_{0} t_{2} \bar{t}_{2}=N \bar{t}_{0}$, which means this orbit takes $N \bar{t}_{0} t_{2}$ back to the double coset $[\overline{0}]$.

$N \overrightarrow{\mathrm{t}}_{0} \overline{\mathrm{t}}_{1} \mathrm{~N}$

We now will determine the number of single coset in the double coset [$\overline{0} \overline{1}]$ by this formula $\frac{|N|}{\left|N^{(01)}\right|}$ which gives us $\frac{3}{1}=3$. The coset representative for $[\overline{0} \overline{1}]$ is $N \bar{t}_{0} \bar{t}_{1}$. We now identify the orbits of $N^{(\overline{\overline{1}})}$ and determine where they go. We see that the orbits of $N^{(\overline{0} \overline{1})}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N \bar{t}_{0} \bar{t}_{1}$ we see the following results:

1. $N \bar{t}_{0} \bar{t}_{1} t_{0}=N \bar{t}_{1}$ which means this orbit takes $N \bar{t}_{0} \bar{t}_{1}$ back to the double coset $[\overline{0}]$.
2. $N \bar{t}_{0} \bar{t}_{1} t_{1}=N \bar{t}_{0}$, which means this orbit takes $N \bar{t}_{0} \bar{t}_{1}$ to the double coset $[\overline{0}]$.
3. $N \bar{t}_{0} \bar{t}_{1} t_{2}$, which means this orbit extends $N \bar{t}_{0} \bar{t}_{1}$ to a new double coset $N \bar{t}_{0} \bar{t}_{1} t_{2} N$, denoted [$\overline{1} \overline{1} 2]$.
4. $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{0}=N t_{0} \bar{t}_{1}$, which takes this coset back to the double coset $[0 \overline{1}]$.
5. $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{1}=N \bar{t}_{0} t_{1}$, which means this orbit extends $N \bar{t}_{0} \bar{t}_{1}$ to a new double coset $N \bar{t}_{0} t_{1} N$, denoted $[\overline{0} 1]=[02 \overline{2}$.
6. $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2}$, which means this orbit extends $N \bar{t}_{0} \bar{t}_{1}$ to a new double coset $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2} N$, denoted $[\overline{0} \overline{1} \overline{2}]$.
$N \bar{t}_{0} \bar{t}_{2} N$

We now will determine the number of single coset in the double coset [$\overline{0} \overline{2}]$ by this formula $\frac{|N|}{\left|N^{(0)}\right|}$ which gives us $\frac{3}{1}=3$. The coset representative for $[\overline{0} \overline{2}]$ is $N \overline{0}_{0} \overline{t_{2}}$. We now identify the orbits of $N^{(0 \ddot{\partial})}$ and determine where they go. We find that the orbits of $N^{(\overline{0} \overline{2})}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N \bar{t}_{0} \bar{t}_{2}$ we see the following results:

1. $N \bar{t}_{0} \bar{t}_{2} t_{0}=N \bar{t}_{2}$ which means this orbit takes $N \bar{t}_{0} \bar{t}_{2}$ back to the double coset [$[\overrightarrow{0}]$.
2. $N \bar{t}_{0} \bar{t}_{2} t_{1}=N \bar{t}_{0} t_{1} \bar{t}_{2}$, which means this orbit extends $N t \bar{t}_{0} \bar{t}_{2}$ to a new double coset $N \overleftarrow{t}_{0} t_{1} \stackrel{t}{t}_{2} N$, denoted $[\overline{0} 1 \overline{2}]$.
3. $N \bar{t}_{0} \bar{t}_{2} t_{2}=N \bar{t}_{0}$, which means this orbit takes $N \bar{t}_{0} \bar{t}_{2}$ to the double coset [$\left.\overline{0}\right]$.
4. $N \bar{t}_{0} \bar{t}_{2} \bar{t}_{0}=N t_{0} \bar{t}_{2}$, which means this orbit extends $N \bar{t}_{0} \bar{t}_{2}$ to a new double coset $N t_{0} \bar{t}_{2} N$, denoted [0 $\left.\overline{2}\right]$.
5. $N \bar{t}_{0} \bar{t}_{2} \bar{t}_{1}=N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2}$, which means this orbit extends $N \bar{t}_{0} \bar{t}_{2}$ to a new double coset $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2} N$, denoted [$\left.\overline{0} \overline{1} \overline{2}\right]$.
6. $N \bar{t}_{0} \bar{t}_{2} \bar{t}_{2}=N \bar{t}_{0} t_{2}$, which means this orbit extends $N \bar{t}_{0} \bar{t}_{2}$ to a new double coset $N \bar{t}_{0} t_{2} N$, denoted $[\overline{0} 2]=[0 \overline{1}]$.

$\mathrm{Nt}_{\mathbf{0}} \mathrm{t}_{\mathbf{1}} \mathrm{t}_{\mathbf{2}} \mathbf{N}$

We now will determine the number of single coset in the double coset [012] by this formula $\frac{|N|}{\left|N^{(012)}\right|}$ which gives us $\frac{3}{3}=1$. The coset representative for $[012]$ is $N t_{0} t_{1} t_{2}$. We now identify the orbits of $N^{(012)}$ and determine where they go. We find that the orbits of $N^{(012)}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$.

When we apply a representative t_{i} from each orbit to the coset representative $N t_{0} t_{1} t_{2}$ we see the following results:

1. $N t_{0} t_{1} t_{2} t_{0}=N \bar{t}_{0} t_{1} t_{2}$ which means this orbit takes $N t_{0} t_{1} t_{2}$ to the double coset $[\overline{0} 12]=[0 \overline{1} 2]$.
2. $N t_{0} t_{1} t_{2} t_{1}=N t_{0} \bar{t}_{1} t_{2}$ which means this orbit extends $N t_{0} t_{1} t_{2}$ to the double coset [01̄2].
3. $N t_{0} t_{1} t_{2} t_{2}=N t_{0} t_{1} \bar{t}_{2}$ which means this orbit extends $N t_{0} t_{1} t_{2}$ to a new double coset $N t_{0} t_{1} \bar{t}_{2} N$, denoted [012] $=[0 \overline{1} 2]$.
4. $N t_{0} t_{1} t_{2} \bar{t}_{0}=N t_{1} t_{2}, \in[01]$.
5. $N t_{0} t_{1} t_{2} \bar{t}_{1}=N t_{0} t_{2}$, which means this orbit takes $N t_{0} t_{1} t_{2}$ back to the double coset $[02]=[01]$.
6. $N t_{0} t_{1} t_{2} \bar{t}_{2}=N t_{0} t_{1}$, which means this orbit takes $N t_{0} t_{1} t_{2}$ back to the double coset [01].

$N t_{0} t_{1} \mathbf{t}_{2} N$

We now will determine the number of single coset in the double coset [$01 \overline{2}$] by this formula $\frac{|N|}{\left|N^{(012)}\right|}$ which gives us $\frac{3}{3}=3$. The coset representative for $[01 \overline{2}]$ is $N t_{0} t_{1} \bar{t}_{2}$. We now identify the orbits of $N^{(01 \overline{2})}$ and determine where they go. We see that the orbits of $N^{(01 \overline{2})}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{0} t_{1} \bar{t}_{2}$ we see the following results:

1. $N t_{0} t_{1} \bar{t}_{2} t_{0}=N \bar{t}_{0} t_{1} \bar{t}_{2}$ which means this orbit takes $N t_{0} t_{1} \bar{t}_{2}$ to the double coset $[\overline{0} 1 \overline{2}]=[\overline{0} \overline{1} 2]$.
2. $N t_{0} t_{1} \bar{t}_{2} t_{1}=N t_{0} \bar{t}_{1} \bar{t}_{2}$ which means this orbit takes $N t_{0} t_{1} \bar{t}_{2}$ to the double coset $[0 \overline{1} \overline{2}]=$ [0̄1̄2].
3. $N t_{0} t_{1} \bar{t}_{2} t_{2}=N t_{0} t_{1}$ which means this orbit takes $N t_{0} t_{1} \overline{t_{2}}$ back to the double coset [01].
4. $N t_{0} t_{1} \bar{t}_{2} \bar{t}_{0}=N t_{1} \bar{t}_{2}, \in[0 \overline{1}]$
5. $N t_{0} t_{1} \bar{t}_{2} \bar{t}_{1}=N t_{0} \bar{t}_{2}$, which means this orbit takes $N t_{0} t_{1} \bar{t}_{2}$ back to the double coset [$0 \overline{2}]$.
6. $N t_{0} t_{1} \bar{t}_{2} \bar{t}_{2}=N t_{0} t_{1} t_{2}$, which means this orbit takes $N t_{0} t_{1} \bar{t}_{2}$ back to the double coset [012].

$N t_{0} \bar{t}_{1} \mathrm{t}_{2} \mathrm{~N}$

We now will determine the number of single coset in the double coset [012] by this formula $\frac{|N|}{\left|N^{(012)}\right|}$ which gives us $\frac{3}{1}=3$. The coset representative for $[0 \overline{1} 2]$ is $N t_{0} \bar{t}_{1} t_{2}$. We now identify the orbits of $N^{(0 \overline{1} 2)}$ and determine where they go. We see that the orbits of $N^{(0 \overline{1} 2)}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{0} \bar{t}_{1} t_{2}$ we see that the following results:

1. $N t_{0} \overline{1}_{1} t_{2} t_{0}=N \bar{t}_{0} \bar{t}_{1} t_{2}$ which means this orbit takes $N t_{0} \bar{t}_{1} t_{2}$ to the double coset [$\left.\overline{0} \overline{1} 2\right]$.
2. $N t_{0} \bar{t}_{1} t_{2} t_{1}=N t_{0} t_{2}$ which means this orbit takes $N t_{0} \bar{t}_{1} t_{2}$ to the double coset [02] $=$ [01].
3. $N t_{0} \bar{t}_{1} t_{2} t_{2}=N t_{0} \bar{t}_{1} \bar{t}_{2}$ which means this orbit takes $N t_{0} \bar{t}_{1} t_{2}$ to the double coset $[0 \overline{1} \overline{2}]=[\overline{0} \overline{1} 2]$.
4. $N t_{0} \bar{t}_{1} t_{2} \bar{t}_{0}=N \bar{t}_{0} \bar{t}_{1} t_{2}, \in[\overline{0} \overline{1} 2]$.
5. $N t_{0} \bar{t}_{1} t_{2} \bar{t}_{1}=N t_{0} t_{1} t_{2}$, which means this orbit takes $N t_{0} \bar{t}_{1} t_{2}$ back to the double coset [012].
6. $N t_{0} \bar{t}_{1} t_{2} \bar{t}_{2}=N t_{0} \bar{t}_{1}$, which means this orbit takes $N t_{0} \bar{t}_{1} t_{2}$ back to the double coset [0ĩ].
$\mathbf{N} \bar{t}_{0} \bar{t}_{1} \mathrm{t}_{2} \mathbf{N}$

We now will determine the number of single coset in the double coset [$\overline{0} \overline{1} 2]$ by this formula $\frac{|N|}{\mid N^{(012) \mid}}$ which gives us $\frac{3}{1}=3$. The coset representative for $[\overline{0} \overline{1} 2]$ is $N \bar{t}_{0} \bar{t}_{1} t_{2}$. We now identify the orbits of $N^{(\overline{0} \overline{1} 2)}$ and determine where they go. We see that the orbits of $\{\overline{0} \overline{1} 2]$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N \bar{t}_{0} \bar{t}_{1} t_{2}$ we see the following results:

1. $N \bar{t}_{0} \bar{t}_{1} t_{2} t_{0}=N \bar{t}_{1} t_{2}$ which means this orbit takes $N \bar{t}_{0} \bar{t}_{1} t_{2}$ back to the double coset [01].
2. $N \bar{t}_{0} \bar{t}_{1} t_{2} t_{1}=N \bar{t}_{0}$, which means this orbit takes $N \bar{t}_{0} \bar{t}_{1} t_{2}$ to the double coset $[\overline{0}]$.
3. $N \bar{t}_{0} \bar{t}_{1} t_{2} t_{2}$, which means this orbit extends $N \bar{t}_{0} \bar{t}_{1} t_{2}$ to a new double coset $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2} N$, denoted [$\overline{0} \overline{1} \overline{2}]$.
4. $N \bar{t}_{0} \bar{t}_{1} t_{2} \bar{t}_{0}=N t_{0} \bar{t}_{1}$, which takes $N \bar{t}_{0} \bar{t}_{1} t_{2}$ back to the double coset [0 $\left.\bar{I}\right]$.
5. $N \bar{t}_{0} \bar{t}_{1} t_{2} \bar{t}_{1}=N \bar{t}_{0} t_{1} t_{2}$, which means this orbit takes $N \bar{t}_{0} \bar{t}_{1} t_{2}$ to the double coset $\left[\overline{0}_{12}\right]=[0 \overline{1} 2]$.
6. $N \bar{t}_{0} \bar{t}_{1} t_{2} \bar{t}_{2}=N \bar{t}_{0} \bar{t}_{1}$, which means this orbit takes $N \bar{t}_{0} \bar{t}_{1} t_{2}$ back to double coset $[\overline{0} \overline{1}]$. $N \bar{t}_{0} \overline{\mathrm{t}}_{1} \overline{\mathrm{t}}_{2} \mathrm{~N}$

We now will determine the number of single coset in the double coset [$\overline{0} \overline{1} \overline{2}]$ by this formula $\frac{|N|}{\left|N^{(012)}\right|}$ which gives us $\frac{3}{3}=1$. The coset representative for $[\overline{0} \overline{1} \overline{2}]$ is $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2}$. We now identify the orbits of $N^{(\overline{1} \overline{1} \overline{2})}$ and determine where they go. We find that the orbits of $N^{(\overline{0} \overline{1} \overline{2})}$ on $\{0,1,2, \overline{0}, \overline{1}, \overline{2}\}$ are $\{0\},\{1\},\{2\},\{\overline{0}\},\{\overline{1}\},\{\overline{2}\}$. When we apply a representative t_{i} from each orbit to the coset representative $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2}$ we see the following results:

1. $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2} t_{0}=N \bar{t}_{1} \bar{t}_{2}$ which means this orbit takes $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2}$ back to the double coset [$\overline{0} \overline{1}]$.
2. $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2} t_{1}=N \bar{t}_{0} \bar{t}_{2}$, which means this orbit takes $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2}$ to the double coset $[\overline{0} \overline{2}]=$ [$\overline{0} \overline{1}]$.
3. $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2} t_{2}=N \bar{t}_{0} \bar{t}_{1}$, which means this orbit takes $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2}$ back to the double coset [0̄1̄].
4. $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2} \bar{t}_{0}=N t_{0} \bar{t}_{1} \bar{t}_{2}$, which takes $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2}$ back to the double coset $[0 \overline{1} \overline{2}]=[\overline{0} \overline{1} 2]$.
5. $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2} \bar{t}_{1}=N \bar{t}_{0} t_{1} \bar{t}_{2}$, which means this orbit takes $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2}$ to the double coset $[\overline{0} 1 \overline{2}]=[\overline{0} \overline{1} 2]$.
6. $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2} \bar{t}_{2}=N \bar{t}_{0} \bar{t}_{1} t_{2}$, which means this orbit takes $N \bar{t}_{0} \bar{t}_{1} \bar{t}_{2}$ back to double coset [$\overline{0} \overline{1} 2]$.

As we continue this process, we determine that we have a total of eleven double cosets that survive the enumeration via the aforementioned relation. Those double cosets are $\left.{ }^{*}\right],[0],[\overline{0}],[01],[0 \overline{1}],[0 \overline{2}],[\overline{0} \overline{1}],[012],[0 \overline{1} 2],[\overline{0} \overline{1} 2]$, and $[\overline{0} \overline{1} \overline{2}]$. The results are summarized in the following Cayley graph Figure 3.2:

Figure 3.2: Cayley diagram of G over A_{3} Factored by $t_{0} t_{1}=t_{1} t_{0}$

Factoring this group by the center yields us the following Cayley diagram Figure 3.3:

Figure 3.3: Cayley diagram of G over A_{3} Factored by the Center

Chapter 4

Construction of $\left(M_{21} \times 4\right): S_{3}$

We have a computer-based proof that G is isomorphic to $\left(M_{21} \times 4\right): S_{3}$. This proof is obtained as follows: We first use MAGMA to obtain the composition factors of a permutation representation of G . This is done as follows:

```
f,G1,k:=CosetAction(G,sub<G|x,y>);
```

CompositionFactors(G1);
gives

```
The below results indicate a semi direct product:
G
1 Cyclic(3).
*
| Cyclic(2)
*
| A(2,4) = L(3,4)
*
| Cyclic(2)
*
    | Cyclic(2)
    1
```

Note: The above progenitor has produced another group in addition to the presentation we will construct below. From MAGMA, we have

```
for a in [0..10] do for b in [0..10] do for c in [0..10] do
for d in [0..10] do
    for e in [0..10] do
G<x,y,t>:=Group<x,y,t|x^8 , y^2 , (x*y)^3 , (x,y)^4,t^3,(t,y), (t, x^3 *
y * x^3 * y * x^-1),(t,y * x^-2 * y * x^3 * y * x^-2), (x*t)^a,
(x^3*t)^b, (x^-2 * y * x^2 * y*t^( (x^6) )^c, (x^4 * y*t)^d, (x^2*t)^e>;
    if Index(G,sub<G|x,y>) ge 3 then a,b,c,d,e,
Index(G,sub<G|x,y>); end if; end for; end for; end for; end for; end
for;
G<x,y,t>:=Group<x,y,t|x^8 , y^2 , (x*y) ` 3 , (x,y)^4,t^3,(t,y), (t, x^3 *
y * x^3 * y * x^-1), (t,y * x^-2 * y * x^3 * y * x^-2), (x*t) ^ 0,
(x^3*t)^0,(x^-2 * y * x^2 * y*t^(x^6) ) ^0, (x^4 * y*t)^ 6, (x^2*t)^0>;
    CompositionFactors(G1);
        G
            | Cyclic(3)
            *
            | Cyclic(2)
            *
            | A(2,4)
            = L(3, 4)
            *
            | A(1,7) = L(2, 7)
            *
            | Cyclic(2)
            *
            | Cyclic(2)
            1
```

which gives rise to the group $L_{3}(4)$.

We now write a presentation of the group $\left(M_{21} \times 4\right): S_{3}$ (obtained based on the composition factors above) and verify that $G \cong\left(M_{21} \times 4\right): S_{3}$.
We will perform a double coset enumeration of the group $\left(M_{21} \times 4\right): S_{3}$ factored by the relation $t_{3} t_{6} t_{2} \sim \bar{t}_{8} \bar{t}_{4} \bar{t}_{7}$, given by:

$$
G \cong<x, y, t \mid x^{8}, y^{2},(x y)^{3},(x y)^{4}, t^{3},(t, y),\left(t, x^{3} y x^{3} y x^{-1}\right),\left(t, y x^{-2} y x^{3} y x^{-2}\right),\left(x^{3} t\right)^{6}>
$$

where

$$
\begin{gathered}
N=<x, y>\cong P G L_{2}(7) \\
x \backsim(8,2,5,4,6,1,7,3)(\overline{8}, \overline{2}, \overline{5}, \overline{4}, \overline{6}, \overline{1}, \overline{7}) \\
y \sim(1,6)(2,5)(3,4)(\overline{1}, \overline{6})(\overline{2}, \overline{5})(\overline{3}, \overline{4}) .
\end{gathered}
$$

We know $N \cong P G L_{2}(7)$ has 168 elements, or $|N|=168$.
We have a computer-based proof that $G \cong C_{3} \times C_{2} \times A_{2}(40)=L_{3}(4) \times C_{2} \times C_{2}$

4.1 Relations

Since this group has eight generators, we let $t=t_{8}$.
The first relation we must expand is

$$
\left(x^{3} t\right)^{6}=1
$$

Let $\pi=x^{3}$, then our relation becomes

$$
(\pi t)^{6}=1
$$

expanding our relation, we have

$$
\begin{gathered}
\pi^{6} t^{\pi^{5}} t^{\pi^{4}} t^{\pi^{3}} t^{\pi^{2}} t^{\pi} \\
x^{18} t^{x^{15}} t^{x^{12}} t^{x^{9}} t^{x^{6}} t^{x^{3}} t=1
\end{gathered}
$$

since we are using t_{∞}, this relation becomes

$$
x^{2} t^{x^{7}} t^{x^{4}} t^{x^{1}} t^{x^{6}} t^{x^{3}} t=1
$$

The permutation representation of our group is

$$
f(x)=x x=(1,7,3,8,2,5,4,6)(\overline{1}, \overline{7}, \overline{3}, \overline{8}, \overline{2}, \overline{5}, \overline{4}, \overline{6})
$$

So, using $x x$, we have

$$
x^{2} t_{3} t_{6} t_{2} t_{7} t_{4} t_{8}=1
$$

Using right-hand multiplication and the property $t_{i}^{-1}=\bar{t}_{i}$, we obtain the following

$$
\begin{equation*}
t_{3} t_{6} t_{2} \sim \bar{t}_{8} \bar{t}_{4} \bar{t}_{7} \tag{4.1}
\end{equation*}
$$

4.2 Double Coset Enumeration

NeN

We start our double coset enumeration by evaluating our first double coset, denoted [*], containing words of length zero. This double coset has one single coset, which is the identity $N e N=N$. Since $t=t_{8}$ and t has eight conjugates, there are two orbits that extend from [${ }^{*}$]. The first orbit includes the generators $\{1,2,3,4,5,6,7,8\}$, and the second orbit includes the generators $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}\}$.

Now we examine the double cosets containing words of length one. We do this by taking a representative t_{i} from each orbit and apply right hand multiplication to the $\operatorname{coset} N$.

$$
N \cdot t_{8}=N t_{8} \in N t_{8} N
$$

Denote this double coset as [8]

$$
N \cdot \bar{t}_{8}=N \bar{t}_{8} \in N \bar{t}_{8} N
$$

Denote this double coset as $[\overline{8}]$
$\mathrm{Nt}_{8} \mathrm{~N}$
Consider the double coset [8]. We now compute the coset stabilizer $N^{(8)}$. Note that in this case the coset stabiliser equals the point stabilizer N^{8}. Using MAGMA we found the order of the coset stabiliser, $\left|N^{(8)}\right|=42$. Next, we find the number of cosets in the double coset [8] by using the formula

$$
\begin{equation*}
\left|N t_{8} N\right|=\frac{|N|}{\left|N^{(8)}\right|} \tag{4.2}
\end{equation*}
$$

Hence, $\left|N t_{8} N\right|=\frac{336}{42}=8$.
Now we compute orbits for the double coset [8] using MAGMA. It tells us that there are four orbits on [8]. The first orbit contains the generator $\{8\}$, the second orbit contains the generator $\{\overrightarrow{8}\}$, the third orbit contains the generators $\{1,2,3,4,5,6,7\}$ and the fourth orbit contains the generators $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}\}$. We will now examine the two "singleton" orbits containing the generators 8 and 16 . We will take a representative t_{i} from each of these two orbits and apply right hand multiplication to the double coset [8].

$$
N t_{8} \cdot t_{8}=N \bar{t}_{8} \in N \bar{t}_{8} N
$$

So this orbit takes one generator over to the double coset $[\overline{8}]$.

$$
N t_{8} \cdot \bar{t}_{8}=N e \in N e N
$$

So this orbit takes one generator back to the double coset [*]. Now we examine the remaining two orbits in this double coset:

$$
N t_{8} \cdot t_{1}=N t_{8} t_{1} \in N t_{8} t_{1} N
$$

Denote this double coset as $[8,1]$.

$$
N t_{8} \cdot \bar{t}_{1}=N t_{8} \bar{t}_{1} \in N t_{8} \bar{t}_{1} N
$$

Denote this double coset as $[8, \overline{1}]$.

$\mathrm{Nt}_{8} \mathrm{~N}$

Consider the double coset $[\overline{8}]$. We now compute the coset stabilizer $N^{(\overline{8})}$. Note that in this case the coset stabiliser equals the point stabilizer $N^{\overline{8}}$. Using MAGMA we found the order of the coset stabiliser, $\left|N^{(\overline{8})}\right|=42$. Next, we find the number of cosets in the double coset $[\overline{8}]$ by using the formula

$$
\begin{equation*}
\left|N \bar{t}_{8} N\right|=\frac{|N|}{\left|N^{(\overline{8})}\right|} \tag{4.3}
\end{equation*}
$$

Hence, $\left|N \bar{t}_{8} N\right|=\frac{336}{42}=8$
Now we compute orbits for the double coset [$\overline{8}]$ using MAGMA. It tells us that there are four orbits on $[\overline{8}]$. The first orbit contains the generator $\{8\}$, the second orbit
contains the generator $\{\overline{8}\}$, the third orbit contains the generators $\{1,2,3,4,5,6,7\}$ and the fourth orbit contains the generators $\{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$. We will now examine the two "singleton" orbits containing the generators $\{8\}$ and $\{\overline{8}\}$. We will take a representative t_{i} from each of these two orbits and apply right hand multiplication to the double coset [$\overline{8}]$.

$$
N \bar{t}_{8} \cdot t_{8}=N e \in N e N
$$

So this orbit takes one genrator back to the double coset [*].

$$
N \bar{t}_{8} \cdot \bar{t}_{8}=N t_{8} \in N t_{8} N
$$

So this orbit takes one generator to the double coset $[\overline{8}]$. Now we examine the remaining two orbits in this double coset.

$$
N \bar{t}_{8} \cdot t_{1}=N \bar{t}_{8} t_{1} \in N \bar{t}_{8} t_{1} N
$$

Denote this double coset as $[\overline{8}, 1]$.

$$
N \bar{t}_{8} \cdot \bar{t}_{1}=N \bar{t}_{8} \bar{t}_{1} \in N \bar{t}_{8} \bar{t}_{1} N
$$

Denote this double coset as $[\overline{8}, \overline{1}]$.
We have four new double cosets with words of length two. Note that the orbits not only extend the generators to double cosets with words of increased length, they also take the generators back to double coests with words of reduced length. They can also take generators to other double cosets with words of equal length. We will now consider these four double cosets.

$\mathrm{Nt}_{8} \mathrm{t}_{1} \mathrm{~N}$

Consider the double coset $[8,1]$. We now compute the coset stabilizer $N^{(81)}$. Note that in this case the coset stabiliser equals the point stabilizer N^{81}. Using MAGMA we found the order of the coset stabiliser, $\left|N^{(81)}\right|=42$. Next, we find the number of cosets in the double coset $[8,1]$ by using the formula

$$
\begin{equation*}
\left|N t_{8} t_{1} N\right|=\frac{|N|}{\left|N^{(81)}\right|} \tag{4.4}
\end{equation*}
$$

Hence, $\left|N t_{8} t_{1} N\right|=\frac{336}{6}=56$. Therefore, we have 56 cosets in $N t_{8} t_{1} N$. This implies that we have 56 equal names for these cosets. Please note

$$
N t_{1} t_{2}=N t_{2} t_{1} \Rightarrow 12 \sim 21
$$

Thus we have the following 56 relations for $N t_{8} t_{1} N=\left\{N\left(t_{8} t_{1}\right)^{n} \mid n \in N\right\}$:

$$
\begin{aligned}
& 12 \sim 13 \sim 14 \sim 15 \sim 16 \sim 17 \sim 18 \\
& \sim 21 \sim 23 \sim 24 \sim 25 \sim 26 \sim 27 \sim 28 \\
& \sim 31 \sim 32 \sim 34 \sim 35 \sim 36 \sim 37 \sim 38 \\
& \sim 41 \sim 42 \sim 43 \sim 45 \sim 46 \sim 47 \sim 48 \\
& \sim 51 \sim 52 \sim 53 \sim 54 \sim 56 \sim 57 \sim 58 \\
& \sim 61 \sim 62 \sim 63 \sim 64 \sim 65 \sim 67 \sim 68 \\
& \sim 71 \sim 72 \sim 73 \sim 74 \sim 75 \sim 76 \sim 78 \\
& \sim 81 \sim 82 \sim 83 \sim 84 \sim 85 \sim 86 \sim 87
\end{aligned}
$$

MAGMA confirms these relations, which we will use to find equal double cosets with words of length three and greater within this group.

Now we compute orbits for the double coset $N t_{8} t_{1} N$ by conjugating elements in $N t_{8} t_{1} N$ by the coset stabilizer $N^{(81)}$. Note that the permutation for $N t_{8} t_{1} N$ is

$$
N^{(81)}=<(265734)(\overline{2} \overline{6} \overline{5} \overline{7} \overline{3} 4)>
$$

1. $1^{N^{(81)}}=\{1\}$
2. $2^{N^{(81)}}=\{6,5,7,3,4,2\}$
3. $8^{N^{(81)}}=\{8\}$
4. $\overline{1}^{N^{(81)}}=\{\overline{1}\}$
5. $\overline{2}^{N^{(81)}}=\{\overline{6}, \overline{5}, \overline{7}, \overline{3}, \overline{4}, \overline{2}\}$
6. $\overline{8}^{N^{(81)}}=\{\overline{8}\}$

To examine these orbits we take a representative t_{i} from each of these orbits and apply right hand multiplication to the double coset $[8,1]$. We will now examine orbits 1 and 4:

$$
N t_{8} t_{1} \cdot t_{1}=N t_{8} \bar{t}_{1} \in N t_{8} \bar{t}_{1} N
$$

So this orbit takes one generator over to the double coset $[8, \overline{1}]$.

$$
N t_{8} t_{1} \cdot \bar{t}_{1}=N t_{8} \in N t_{8} N
$$

So this orbit takes one genrator back to the double coset [8].
We will now consider the remaining four orbits, which extend the generators to new double cosets with words of length three.

$$
N t_{8} t_{1} \cdot t_{2}=N t_{8} t_{1} t_{2} \in N t_{8} t_{1} t_{2} N
$$

So this orbit extends 6 generators to the double coset $[8,1,2]$.

$$
N t_{8} t_{1} \cdot t_{8}=N t_{8} t_{1} t_{8} \in N t_{8} t_{1} t_{8} N
$$

So this orbit extends one generator to the double coset $[8,1,8]$.

$$
N t_{8} t_{1} \cdot \bar{t}_{2}=N t_{8} t_{1} \bar{t}_{2} \in N t_{8} t_{1} \bar{t}_{2} N
$$

So this orbit extends six generators to the double coset $[8,1, \overline{2}]$.

$$
N t_{8} t_{1} \cdot \bar{t}_{8}=N t_{8} t_{1} \bar{t}_{8} \in N t_{8} t_{1} \bar{t}_{8} N
$$

So this orbit extends one generator to the double coset $[8,1, \overline{8}]$.

$\mathrm{Nt}_{8} \overline{\mathrm{t}}_{1} \mathbf{N}$

Now we consider the double coset $[8, \overline{1}]$. We now compute the coset stabilizer $N^{(8 \overline{1})}$. Note that in this case the coset stabiliser equals the point stabilizer $N^{8 \overline{1}}$. Using MAGMA we found the order of the coset stabiliser, $\left|N^{(8 \overline{1})}\right|=42$. Next, we find the number of cosets in the double coset $[8, \overline{1}]$ by using the formula

$$
\begin{equation*}
\left|N t_{8} \bar{t}_{1} N\right|=\frac{|N|}{\left|N^{(8 \overline{1})}\right|} \tag{4.5}
\end{equation*}
$$

Hence, $\left|N t_{8} \bar{I}_{1} N\right|=\frac{336}{6}=56$.
Now we compute orbits for the double coset $N t_{8} \bar{t}_{1} N$ by conjugating elements in $N t_{8} \bar{t}_{1} N$ by the coset stabilizer $N^{(8 \overline{1})}$.

1. $1^{N^{(8 \overline{1})}}=\{1\}$
2. $2^{N^{(8 \mathrm{i})}}=\{2,4,3,7,5,6\}$
3. $8^{N^{(8 \overline{1})}}=\{8\}$
4. $\overline{1}^{N^{(\mathrm{BI})}}=\{\overline{\mathrm{I}}\}$
5. $\overline{2}^{N^{(81)}}=\{\overline{2}, \overline{4}, \overline{3}, \overline{7}, \overline{5}, \overline{6}\}$
6. $\overline{8}^{N^{(8 \overline{1})}}=\{\overline{8}\}$

We repeat the process to examine the above orbits:

$$
N t_{8} \bar{t}_{1} \cdot t_{1}=N t_{8} \in N t_{8} N
$$

So this orbit takes one generator back to the double coset [8].

$$
N t_{8} \bar{t}_{1} \cdot \bar{t}_{1}=N t_{8} t_{1} \in N t_{8} t_{1} N
$$

So this orbit takes one generator over to the double coset $[8,1]$.

$$
N t_{8} \bar{t}_{1} \cdot t_{8}=N t_{8} \bar{t}_{1} t_{8} \in N t_{8} \overline{1}_{1} t_{8} N
$$

So this orbit extends one generator to the double coset $[8, \overline{1}, 8]$.

$$
N t_{8} \bar{t}_{1} \cdot \bar{t}_{8}=N t_{8} \bar{t}_{1} \bar{t}_{8} \in N t_{8} \bar{t}_{1} \bar{t}_{8} N
$$

So this orbit extends one generator to the double coset $[8, \overline{1}, \overline{8}]$.

$$
N t_{8} \bar{t}_{1} \cdot t_{2}=N t_{8} \bar{t}_{1} t_{2} \in N t_{8} \bar{t}_{1} t_{2} N
$$

So this orbit extends six generators to the double coset $[8, \overline{1}, 2]$.

$$
N t_{8} \bar{t}_{1} \cdot \bar{t}_{2}=N t_{8} \bar{t}_{1} \bar{t}_{2} \in N t_{8} \bar{t}_{1} \bar{t}_{2} N
$$

So this orbit extends six generators to the double coset $[8, \overline{1}, \overline{2}]$.

$N \bar{t}_{8} t_{1} N$

Consider the double coset $[\overline{8}, 1]$. We now compute the coset stabilizer $N^{(\overline{8} 1)}$. Note that in this case the coset stabiliser equals the point stabilizer $N^{\overline{8} 1}$. Using MAGMA we found the order of the coset stabiliser, $\left|N^{(\overline{8} 1)}\right|=42$ Next, we find the number of cosets in the double coset $[\overline{8}, 1]$ by using the formula

$$
\begin{equation*}
\left|N \bar{t}_{8} t_{1} N\right|=\frac{|N|}{\left|N^{(\overline{1} 1)}\right|} \tag{4.6}
\end{equation*}
$$

Hence, $\left|N \bar{t}_{8} t_{1} N\right|=\frac{336}{6}=56$.
Now we compute orbits for the double coset $[\overline{8}, 1]$ by repeating the same process detailed in the prior two double cosets. Our results tells us that there are six orbits on $[\ddot{8}, 1]$:

1. the generator $\{1\}$
2. the generator $\{8\}$
3. the generator $\{\overline{1}\}$
4. the generator $\{\overline{8}\}$
5. the generators $\{2,3,4,5,6,7\}$
6. the generators $\{\overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$

We repeat the process of right hand multiplication to examine the above orbits:

$$
N \bar{t}_{8} t_{1} \cdot t_{1}=N \bar{t}_{8} \bar{t}_{1} \in N \bar{t}_{8} \bar{t}_{1} N
$$

So this orbit takes one generator over to the double coset $[\overline{8}, \overline{1}]$.

$$
N \bar{t}_{8} t_{1} \cdot \bar{t}_{1}=N \bar{t}_{8} \in N \bar{t}_{8} N
$$

So this orbit takes one generator back to the double coset $[\overline{8}]$.

$$
N \bar{t}_{8} t_{1} \cdot t_{8}=N \bar{t}_{8} t_{1} t_{8} \in N \bar{t}_{8} t_{1} t_{8} N
$$

So this orbit extends one generator to a new double coset $[\overline{8}, 1,8]$.

$$
N \bar{t}_{8} t_{1} \cdot t_{16}=N \bar{t}_{8} t_{1} \bar{t}_{8} \in N \bar{t}_{8} t_{1} \bar{t}_{8} N
$$

So this orbit extends one generator to a new double coset $[\overline{8}, 1, \overline{8}]$.

$$
N \bar{t}_{8} t_{1} \cdot t_{2}=N \bar{t}_{8} t_{1} t_{2} \in N \bar{t}_{8} t_{1} t_{2} N
$$

So this orbit extends six generators to a new double coset $[\overrightarrow{8}, 1,2]$.

$$
N \bar{t}_{8} t_{1} \cdot \bar{t}_{2}=N \bar{t}_{8} t_{1} \bar{t}_{2} \in N \bar{t}_{8} t_{1} \bar{t}_{2} N
$$

So this orbit extends six generators to a new double coset $[\overline{8}, 1, \overline{2}]$.

$N \bar{t}_{8} \bar{t}_{1} \mathbf{N}$

Consider the double coset $[\overline{8}, \overline{1}]$. We now compute the coset stabilizer $N^{(\overline{\overline{8}} \overline{1})}$. Note that in this case the coset stabiliser equals the point stabilizer $N^{\overline{8} \overline{1}}$. Using MAGMA we found the order of the coset stabiliser, $\left|N^{(\overline{(} \overline{1})}\right|=42$. Next, we find the number of cosets in the double coset $[\overline{8}, \overline{1}]$ by using the formula

$$
\begin{equation*}
\left|N \bar{t}_{8} \ddot{t}_{1} N\right|=\frac{|N|}{\left|N^{(\overline{\mathrm{s}})}\right|} \tag{4.7}
\end{equation*}
$$

Hence, $\left|N \bar{t}_{8} \bar{t}_{1} N\right|=\frac{336}{6}=56$.
Now we compute orbits for the double coset $[\overline{8}, \overline{1}]$ using the aforementioned process. It tells us that there are six orbits on $[\overline{8}, \overline{1}]$:

1. the generator $\{1\}$
2. the generator $\{8\}$
3. the generator $\{\overline{1}\}$
4. the generator $\{\overline{8}\}$
5. the generators $\{2,3,4,5,6,7\}$
6. the generators $\{\overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$
repeating our process to examine the above orbits, we note the following:

$$
N \bar{t}_{8} \bar{t}_{1} \cdot t_{1}=N \bar{t}_{8} \in N \bar{t}_{8} N
$$

So this orbit takes one generator back to the double coset $[\overline{8}]$.

$$
N \bar{t}_{8} \bar{t}_{1} \cdot \bar{t}_{1}=N \bar{t}_{8} t_{1} \in N \bar{t}_{8} t_{1} N
$$

So this orbit takes one generator over to the double coset $[\overline{8}, 1]$.

$$
N \bar{t}_{8} \bar{t}_{1} \cdot t_{8}=N \bar{t}_{8} \bar{t}_{1} t_{8} \in N \bar{t}_{8} \bar{t}_{1} t_{8} N
$$

So this orbit extends one generator to a new double coset $[\overline{8}, \overline{1}, 8]$.

$$
N \bar{t}_{8} \bar{t}_{1} \cdot \bar{t}_{8}=N \bar{t}_{8} \bar{t}_{1} \bar{t}_{8} \in N \bar{t}_{8} \bar{t}_{1} \bar{t}_{8} N
$$

So this orbit extends one generator to a new double $\operatorname{coset}[\overline{8}, \overline{1}, \overline{8}]$.

$$
N \bar{t}_{8} \bar{t}_{1} \cdot t_{2}=N \bar{t}_{8} \bar{t}_{1} t_{2} \in N \bar{t}_{8} \bar{t}_{1} t_{2} N
$$

So this orbit extends six generators to a new double coset $[\overline{8}, \overline{1}, 2]$.

$$
N \bar{t}_{8} \bar{t}_{1} \cdot \bar{t}_{2}=N \bar{t}_{8} \bar{t}_{1} \bar{t}_{2} \in N \bar{t}_{8} \bar{t}_{1} \bar{t}_{2} N
$$

So this orbit extends six generators to a new double coset $[\overline{8}, \overline{1}, \overline{2}]$.

We have sixteen new double cosets with words of length three. Again, note that the orbits not only extend the generators to double cosets with words of increased length, they also take the generators back to double cosets with words of reduced length. They can also take generators to other double cosets with words of equal length. We will apply the process described in the relations section of this chapter to find any equal double cosets with words of length three. By using our relations, we find that six of of the sixteen "new" double cosets are equivalent to existing double cosets. Thus, we have ten double cosets with words of length three:

$$
[8,1,2],[8,1, \overrightarrow{2}],[8,1,8],[8,1, \overline{2}],[8, \overline{1}, \overline{2}],[8, \overline{1}, 8],[8, \overline{1}, \overline{8}],[\overline{8}, 1,8],[\overline{8}, 1, \overline{8}],[\overline{8}, \overline{1}, 8]
$$

We will now examine these ten double cosets.

$\mathrm{Nt}_{8} \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{~N}$

Consider the double coset $[8,1,2]$. We now compute the coset stabilizer $N^{(812)}$. Using MAGMA we found the order of the coset stabiliser, $\left|N^{(812)}\right|=2$. Next, we find the number of cosets in the double coset $[8,1,2]$ by using the formula

$$
\begin{equation*}
\left|N t_{8} t_{1} t_{2} N\right|=\frac{|N|}{\left|N^{(812)}\right|} \tag{4.8}
\end{equation*}
$$

We then calculate the number of cosets in the double coset $[8,1,2]$ to be

$$
\begin{equation*}
\left|N t_{8} t_{1} t_{2} N\right|=\frac{336}{2}=168 \tag{4.9}
\end{equation*}
$$

Now we compute orbits for the double coset $N t_{8} t_{1} t_{2} N$ by conjugating elements in $N t_{8} t_{1} t_{2} N$ by the coset stabilizer $N^{(812)}$. Our resulting sixteen orbits contain a single generator in each:

$$
\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7\},\{8\},\{\overline{1}\},\{\overline{2}\},\{\overline{3}\},\{\overline{4}\},\{\overline{5}\},\{\overline{6}\},\{\overline{7}\},\{\overline{8}\} .
$$

We will take a representative t_{i} from each of these orbits and apply right hand multiplication to the coset $N t_{8} t_{1} t_{2}$. Note that we will use our relations to determine which double coset the orbits take their generators to:

$$
N t_{8} t_{1} t_{2} \cdot t_{1}=N t_{8} t_{1} t_{2} t_{1}=N t_{8} \overline{t_{2}} \overline{t_{1}} \overline{t_{2}}=N t_{8} \overline{t_{1}} t_{2}=N t_{8} t_{1} \overline{t_{2}} \in N t_{8} t_{1} \overline{t_{2}} N
$$

So this orbit takes one generator over to the double coset $N t_{8} t_{1} \overline{t_{2}} N$ denoted $[8,1, \overline{2}]$.

$$
N t_{8} t_{1} t_{2} \cdot t_{2}=N t_{8} t_{1} \overline{t_{2}} \in N t_{8} t_{1} \overline{t_{2}} N
$$

So this orbit also takes one generator over to the double $\operatorname{coset} N t_{8} t_{1} \bar{t}_{2} N$ denoted $[8,1, \overline{2}]$.

$$
N t_{8} t_{1} t_{2} \cdot t_{3}=N t_{8} t_{1} t_{2} t_{3}=N t_{8} t_{1} t_{2} t_{1}=N t_{8} t_{1} t_{8} t_{1}=N t_{8} t_{1} t_{1} t_{8}=N t_{8} \bar{t}_{1} t_{8} \in N t_{8} \vec{t}_{1} t_{8} N
$$

So this orbit takes one generator to the double coset $N t_{8} \bar{t}_{1} t_{8} N$ denoted $[8, \overline{1}, 8]$.

$$
N t_{8} t_{1} t_{2} \cdot t_{4}=N t_{8} t_{1} t_{2} t_{4}=N t_{8} t_{1} t_{2} t_{I}=N t_{8} t_{1} t_{8} t_{1}=N t_{8} t_{1} t_{1} t_{8}=N t_{8} \bar{t}_{1} t_{8} \in N t_{8} \bar{t}_{1} t_{8} N
$$

So this orbit takes one generator to the double coset $N t_{8} \bar{t}_{1} t_{8} N$ denoted $[8, \overline{1}, 8]$.

$$
N t_{8} t_{1} t_{2} \cdot t_{5}=N t_{8} t_{1} t_{2} t_{5}=N t_{8} t_{1} t_{2} t_{1}=N t_{8} t_{1} t_{8} t_{1}=N t_{8} t_{8} t_{1} t_{1}=N \bar{t}_{8} \bar{t}_{1} \in N \overline{t_{8}} \overline{t_{1}} N
$$

So this orbit takes one generator back to the double coset $N \overline{t_{8}} \overline{t_{1}} N$ denoted $[\overline{8}, \overline{1}]$.

$$
N t_{8} t_{1} t_{2} \cdot t_{6}=N t_{8} t_{1} t_{2} t_{6}=N t_{8} t_{1} t_{2} t_{1}=N t_{8} t_{1} t_{8} t_{1}=N t_{8} t_{8} t_{1} t_{1}=N \overline{t_{8}} \bar{t}_{1} \in N \overline{t_{8}} \overline{t_{1}} N
$$

So this orbit takes one generator back to the double coset $N \bar{t}_{8} \bar{t}_{1} N$ denoted $[\overline{8}, \overline{1}]$.

$$
N t_{8} t_{1} t_{2} \cdot t_{7}=N t_{8} t_{1} t_{2} t_{7}=N t_{8} t_{1} t_{2} t_{1}=N t_{8} \overline{t_{2}} \overline{t_{1}} \overline{t_{2}}=N t_{8} \overline{t_{1}} t_{2}=N t_{8} t_{1} \overline{t_{2}} \in N t_{8} t_{1} \overline{t_{2}} N
$$

So this orbit takes one generator over to the double coset $N t_{8} t_{1} \bar{t}_{2} N$ denoted $[8,1, \overline{2}]$.

$$
N t_{8} t_{1} t_{2} \cdot t_{7}=N t_{8} t_{1} t_{2} t_{8}=N t_{8} t_{1} t_{2} t_{1}=N t_{8} \overline{t_{2}} \overline{t_{1}} \overline{t_{2}}=N t_{8} \bar{t}_{1} t_{2}=N t_{8} t_{1} \overline{t_{2}} \in N t_{8} t_{1} \overline{t_{2}} N
$$

So this orbit takes one generator over to the double coset $N t_{8} t_{1} \bar{t}_{2} N$ denoted $[8,1, \overline{2}]$. Using a similar process with their inverse counter parts, the remaining orbits behave in a similar fashion:
$\{\overline{1}\}$ takes one generator to the double coset $N \overline{t_{8}} t_{1} \overline{t_{8}} N$ denoted $[\overline{8}, 1, \overline{8}]$
$\{\overline{2}\}$ takes one generator to the double coset $N t_{8} t_{1} N$ denoted $[8,1]$
$\{\overline{3}\}$ takes one generator to the double coset $N t_{8} \bar{t}_{1} \bar{t}_{2} N$ denoted $[8, \overline{1}, \overline{2}]$
$\{\overline{4}\}$ takes one generator to the double coset $N t_{8} \bar{t}_{1} \bar{t}_{2} N$ denoted $[8, \overline{1}, \overline{2}]$
$\{\overline{5}\}$ takes one generator to the double coset $N t_{8} \overline{t_{1} t_{2}} N$ denoted $[8, \overline{1}, \overline{2}]$
$\{\overline{6}\}$ takes one generator to the double coset $N t_{8} \overline{t_{1}} \overline{t_{2}} N$ denoted $[8, \overline{1}, \overline{2}]$
$\{\overline{7}\}$ takes one generator to the double coset $N t_{8} t_{1} N$ denoted $[8,1]$
$\{\overline{8}\}$ takes one generator to the double coset $N \bar{t}_{8} t_{1} \bar{t}_{8} N$ denoted $[\overline{8}, 1, \overline{8}]$

Showing Equal Double Cosets

We now have double cosets consisting of words of at least length three. Since our relation is based on three letters, we must now apply the relation to our double cosets to verify the existence of equal cosets.

We derived our original relation

$$
x^{2} t_{3} t_{6} t_{2}=\bar{t}_{8} \bar{t}_{4} \bar{t}_{7}
$$

from our symmetric presentation. Through conjugation by elements of our control subgroup $P G L_{2}(7)$ we obtain the relation

$$
t_{8} t_{1} t_{8}=\bar{t}_{1} \bar{t}_{8} \bar{t}_{1}
$$

By using this relation, we will now verify that the double coset $N t_{8} t_{1} t_{8} t_{1} N$, denoted $[8,1,8,1]$, is equal to the double coset $N \bar{t}_{8} \bar{t}_{1} N$, denoted $[\overline{8}, \overline{1}]$.

$$
\underline{t_{8}} t_{1} t_{8} t_{1}=\bar{t}_{1} \bar{t}_{8} \underline{\bar{t}_{1}} t_{1}=\bar{t}_{1} \bar{t}_{8}
$$

Now we must show that the coset $N \bar{t}_{1} \bar{t}_{8}$ belongs to $N \bar{t}_{8} \bar{t}_{1} N$

Lets examine the double coset [$\overline{8} \overline{1}]$:

$$
N \bar{t}_{8} \bar{t}_{1} N=\left\{N\left(\bar{t}_{8} \bar{t}_{1}\right)^{n} \mid n \in N\right\}
$$

Recall: $N=\langle x, y\rangle=<(17382546)(\overline{1} \overline{7} \overline{3} \overline{8} \overline{2} \overline{5} \overline{4} \overline{6}),(16)(25)(34)(\overline{1} \overline{6})(\overline{2} \overline{5})(\overline{3} \overline{4})\rangle$.
We must find a permutation, n, in N such that

$$
N\left(\bar{t}_{8} \bar{t}_{1}\right)^{n}=N \bar{t}_{1} \bar{t}_{8}
$$

or n takes the coset $N \bar{t}_{8} \bar{t}_{1}$ to $N \bar{t}_{1} \bar{t}_{8}$. We found the desired permutation to be:

$$
n=\left(x^{y}\right)^{4}=(65)(72)(43)(18)(\overline{6} \overline{5})(\overline{7} \overline{2})(\overline{4} \overline{3})(\overline{1} \overline{8})
$$

So, $N\left(\bar{t}_{8} \bar{t}_{1}\right)^{n}=N \bar{t}_{1} \bar{t}_{8}$. Hence, the single coset $N \bar{t}_{1} \bar{t}_{8}$ belongs to the double coset $N \bar{t}_{8} \bar{t}_{1} N$. Since two different double cosets are disjoint, we can conclude that $N \bar{t}_{1} \bar{t}_{8} N=N \bar{t}_{8} \bar{t}_{1} N$. Hence,

$$
N \underline{t_{8} t_{1} t_{8}} t_{1} N=N \bar{t}_{1} \bar{t}_{8} \bar{t}_{1} t_{1} N=N \bar{t}_{1} \bar{t}_{8} N=N \bar{t}_{8} \bar{t}_{1} N
$$

Thus, we have verified the following double coset equality

$$
N t_{8} t_{1} t_{8} t_{1} N=N \bar{t}_{8} \bar{t}_{1} N
$$

Repeating this process, we can verify the existence of other equal double cosets within our group.

$$
\begin{aligned}
& {[8,1,8,1]=\{\overline{8}, \overline{1}]} \\
& {[8,1,8,8]=[8,1, \overline{8}]} \\
& {[8,1,8, \overline{1}]=[\overline{8}, \overline{1}, 8]} \\
& {[8,1,8, \overline{8}]=[8,1]} \\
& {[8,1,8,2]=[8,1,2]} \\
& {[8,1,8, \overline{2}]=[8,1, \overline{8}]}
\end{aligned}
$$

Due to times constraints, we were not able to finish the manual construction of this group. However, we have utilized algorithms in MAGMA that provided us with an accurate Cayley diagram, which is provided in Figure 4.1 below:

Figure 4.1: Completed Cayley diagram of $\left(M_{21} \times 4\right): S_{3}$

4.3 Factoring by the Center

Due to times constraints, we were not able to manually construct this group factored by its centralizer. However, we have utilized algorithms in MAGMA that provide us with an accurate Cayley diagram as seen in Figure 4.2. This illustrates the efficiency in finding and factoring larger groups by their center:

Figure 4.2: Completed Cayley diagram of $\left(M_{21} \times 4\right): S_{3}$ Factored by the Center

Chapter 5

Construction of $U_{3}(3): 3$ as a Homomorphic Image of $2^{* 14}: L_{3}(2)$

We have a computer-based proof that

$$
G \simeq \frac{2^{n 14}: L_{3}(2)}{32=\overline{71}} \xrightarrow{\text { homo }} U_{3}(3): 3
$$

This proof is obtained as follows: We first use MAGMA to obtain the composition factors of a permutation representation of G. This is done as follows:

```
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
```

which gives the following results.
G
| Cyclic(2)
*
$\mid 2 A(2,3)=U(3,3)$
1
We now write a presentation of the group $U_{3}(3): 3 \xrightarrow{\text { homo }} 2^{* 14}: L_{3}(2)$ (obtained based on the composition factors above) and verify that $G \cong U_{3}(3): 3 \xrightarrow{\text { homo }} 2^{* 14}: L_{3}(2)$.
We will perform a double coset enumeration on the group $U_{3}(3): 3 \xrightarrow{\text { homo }} 2^{* 14}: L_{3}(2)$ factored by the relation $t_{3} t_{2}=\bar{t}_{7} \bar{t}_{1}$, denoted by the following group representation:

$$
G \cong<x, y, t \mid x^{7}, y^{2},(x y)^{3},(x, y)^{4}, t^{2},\left(t, x^{-3} y x^{2}\right),(t, y), t^{x} t^{(x y)},\left(x y t^{-1}\right)^{8},\left(x y t^{x^{2}}\right)^{6}>
$$

We have a computer-based proof that $G \cong C_{2} \times 2 A_{2}(3)=U_{3}(3)$.
where $|G|=12096$ and $N=<x, y>\simeq L_{3}(2)$.
The generators are represented by:

$$
x \backsim(1,2,3,4,5,6,7)(\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7})
$$

and

$$
y \sim(1, \overline{1})(3, \overline{7})(2, \overline{6})(4,5)(\overline{4}, \overline{5})(\overline{2}, 6) .
$$

We know $N \simeq L_{3}(2)$ has 168 elements, or $|N|=168$.

5.1 Relations

The relation we must expand is

$$
\left(x y t^{x^{-1}}\right)^{8}=1
$$

Let $\pi=x y$. We then expand our relation

$$
\left(x y t^{x^{-1}}\right)\left(x y t^{x^{-1}}\right)=1
$$

We also know that $t \sim t_{7}$ and $t_{7}^{-1}=t_{14}$. We use the insertion of identity inverses $\pi^{-1} t \pi=t^{\pi}$ to convert our relation to a relation involving the $t_{i}^{\prime} s$:

$$
\pi^{8}\left(t_{7}^{-1}\right)^{\pi^{7}}\left(t_{7}^{-1}\right)^{\pi^{6}}\left(t_{7}^{-1}\right)^{\pi^{5}}\left(t_{7}^{-1}\right) \pi^{4}\left(t_{7}^{-1}\right)^{\pi^{3}}\left(t_{7}^{-1}\right)^{\pi^{2}}\left(t_{7}^{-1}\right)^{\pi} t^{-1}=1
$$

Now, we consider our permutation $x y$ which we have transformed into π which becomes

$$
\pi=x y \sim(1234567)(\overline{1} \overline{\overline{3}} \overline{4} \overline{5} \overline{5} \overline{6} \overline{7})(1 \overline{1})(3 \overline{7})(2 \overline{6})(45)(\overline{4} \overline{5})(\overline{2} 6) .
$$

We then apply our permutation π to our relation which gives us our permutations

$$
\begin{aligned}
& \pi^{2}=(1357246)(\overline{1} \overline{3} \overline{5} \overline{7} \overline{2} \overline{4} \overline{6}), \\
& \pi^{3}=(1473625)(\overline{1} \overline{4} \overline{7} \overline{3} \overline{6} \overline{2} \overline{5}),
\end{aligned}
$$

$$
\begin{aligned}
& \pi^{4}=(1526374)(\overline{1} \overline{5} \overline{2} \overline{6} \overline{3} \overline{7} \overline{4}) . \\
& \pi^{5}=(1357246)(\overline{1} \overline{3} \overline{5} \overline{7} \overline{2} \overline{4} \overline{6}), \\
& \pi^{6}=(1473625)(\overline{1} \overline{4} \overline{7} \overline{3} \overline{6} \overline{2} \overline{5}), \\
& \pi^{7}=(1526374)(\overline{1} \overline{5} \overline{2} \overline{6} \overline{3} \overline{7} \overline{4}) . \\
& \pi^{8}=(1473625)(\overline{1} \overline{4} \overline{7} \overline{3} \overline{6} \overline{2} \overline{5}),
\end{aligned}
$$

We then convert our permutations back into $t_{i}^{\prime} s$ to get our relation

$$
\pi^{4} t_{3} t_{2} t_{1} t_{7}=1
$$

Utilizing right multiplication of our $t_{i}^{\prime} s$, we have a relation based on two letters

$$
\pi^{4} t_{3} t_{2}=\overline{t_{7}} \overline{t_{1}} .
$$

We can use this relation to evaluate cosets and double cosets within our group.

5.2 Double Coset Enumeration

NeN

We start our double coset enumeration by evaluating our first double coset, denoted [*], containing words of length zero. This double coset has one single coset, which is the identity $N e N=N$. Since our presentation group is $U 3(3)$, we have $t=t_{7}$ and $t_{7}{ }^{-1} \sim \bar{t}_{7}$. This means our first orbit contains all fourteen generators

$$
\{1,2,3,4,5,6,7, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}
$$

When we apply a representative t_{i} from this orbit, say t_{7} to the coset representative $N e$ to get a new coset $N t_{7}$. We see that all fourteen generators extend to a new double coset $N t_{7} N$, denoted [7]. This double cosets will be made up of words of length one.

$\mathrm{Nt}_{7} \mathrm{~N}$

We now consider the double coset $N t_{7} N=\left\{N t_{7}^{n} \mid n \in N\right\}$. We must first determine the coset stabilizer, denoted $N^{(7)}$. We look at permutations in $N=L_{3}(2)$ and find those that "fix" the the element (7) and permute all others. We determine

$$
N^{7}=<(1 \overline{1})(2 \overline{6})(3 \overline{3})(45)(6 \overline{2})(\overline{4} \overline{5}),(16 \overline{5})(2 \overline{4} 3)(4 \overline{3} \overline{2})(5 \overline{1} \overline{6})>.
$$

Since there are no additional relations, our point stabilizer is our coset stabilizer. Thus we have

$$
N^{7}=N^{(7)}
$$

Please note that

$$
\left|N^{7}\right|=\left|N^{(7)}\right|=2^{2} \cdot 3=12
$$

We now determine the number of cosets in [7] by using our equation

$$
\begin{equation*}
\left|N t_{7} N\right|=\frac{|N|}{\left|N^{(7)}\right|} \tag{5.1}
\end{equation*}
$$

which gives us

$$
\left|N t_{7} N\right|=\frac{168}{12 \cdot 2}=7
$$

This is true, since each coset in [7] has two equal names. We now determine the orbits on [7], which are

$$
\{7\},\{\overline{7}\}, \text { and }\{1,2,3,4,5,6, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\} .
$$

We will take a representative t_{i} from each of these orbits and apply right hand multiplication to the coset $N t_{7}$:

1. $N t_{7} t_{7}=N t_{7}^{-1}=N t_{7} \bar{t}_{7} \in N e N$ denoted [*], so this orbit takes 1 generator to the double coset $[*]$.
2. $N t_{7} \bar{t}_{7}=N e \in N e N$ denoted $[*]$, so this orbit takes 1 generator to the double coset [*].
3. $N t_{7} t_{1}=N t_{7} t_{1} \in N t_{7} t_{1} N$ denoted $[7,1]$, so this orbit takes 12 generators to the double coset $[7,1]$.

$\mathrm{Nt}_{7} \mathrm{t}_{1} \mathrm{~N}$

We now consider the double coset $N t_{7} t_{1} N$. Through Magma, we determine there are 8 equal names in this double coset:

$$
[\overline{1}, 7],[7, \overline{1}],[7,1],[1, \overline{7}],[\overline{7}, 1],[1,7],[\overline{7}, \overline{1}],[\overline{1}, \overline{7}]
$$

We must determine the coset stabilizer, denoted $N^{(7,1)}$. We look at permutations in $N=L_{3}(2)$ and find those that "fix" the the elements 7 and 1 while permuting all others. We determine the coset stabilizer by using our relations:

$$
N^{(7,1)}=<(17 \overline{1} \overline{1})(2 \overline{4} 56)(3 \overline{3})(4 \overline{5} \overline{6} \overline{2}),(16 \overline{7})(2 \overline{2})(4 \overline{3} \overline{2})(46)(5 \overline{5})(7 \overline{1})(\overline{4} \overline{6})>.
$$

We determine $\left|N^{(7,1)}\right|=8$. Thus, we may now determine the number of cosets within the double coset $[7,1]$:

$$
\begin{equation*}
\left|N t_{7} t_{1} N\right|=\frac{|N|}{\left|N^{(7,1)}\right|} \tag{5.2}
\end{equation*}
$$

which gives us

$$
\left|N t_{7} t_{1} N\right|=\frac{168}{8}=21
$$

We now determine the orbits on $[7,1]$, which are

$$
\{3, \overline{3}\},\{1,7, \overline{1}, \overline{7}\}, \text { and }\{2,4,5,6, \overline{2}, \overline{4}, \overline{5}, \overline{6}\} .
$$

We will take a representative t_{i} from each of these orbits and apply right hand multiplication to the coset $N t_{7} t_{1}$:

1. $N t_{7} t_{1} \bar{t}_{1}=N t_{7} \in N t_{7} N$ denoted [7], so this orbit takes 4 generators back to the double coset [7].
2. $N t_{7} t_{1} t_{3}=N t_{7} t_{1} t_{3} \in N t_{7} t_{1} t_{3} N$ denoted $[7,1,3]$, so this orbit extends 2 generators to a new double coset $[7,1,3]$.
3. $N t_{7} t_{1} t_{2}=N t_{7} t_{1} t_{2} \in N t_{7} t_{1} t_{2} N$ denoted $[7,1,2]$, so this orbit extends 8 generators to a new double coset $[7,1,2]$.

$\mathrm{Nt}_{7} \mathrm{t}_{\mathbf{1}} \mathrm{t}_{\mathbf{2}} \mathrm{N}$

We now consider the double coset $N t_{7} t_{1} t_{2} N$. As in the prior double cosets, there are eight equal names:

$$
[5,9,8],[8,14,9],[14,8,5],[5,9,8],[9,5,14],[12,2,7],[1,7,12],[2,12,1]
$$

We must determine the coset stabilizer, denoted $N^{(7,1,2)}$. We look at permutations in $N=L_{3}(2)$ and find those that "fix" the the elements 7,1 , and 2 while permuting all others. We determine the coset stabilizer by utilizing our relations to increase the stabilizer:
$N^{(7,1,2)}=<(17)(2 \overline{5})(4 \overline{4})(5 \overline{2})(6 \overline{6})(\overline{1} \overline{7}),(1 \overline{5} 72)(3 \overline{3})(4 \overline{6} \overline{4} 6)(5 \overline{7} \overline{2} \overline{1}),(15)(2 \overline{7})(3 \overline{3})(4 \overline{4})(7 \overline{2})(\overline{1} \overline{5})>$.
We determine $\left|N^{(7,1,2)}\right|=8$. We now calculate the number of cosets within [$7,1,2]$ by using our equation:

$$
\begin{equation*}
\left|N t_{7} t_{1} t_{2} N\right|=\frac{|N|}{\left|N^{(7,1,2)}\right|} \tag{5.3}
\end{equation*}
$$

which gives us

$$
\left|N t_{7} t_{1} t_{2} N\right|=\frac{168}{8}=21
$$

Again, we have 21 cosets in $[7,1,2]$. We now determine the orbits on $[7,1,2]$, which are

$$
\{3, \overline{3}\},\{4,6, \overline{4}, \overline{6}\}, \text { and }\{1,2,5,7, \overline{1}, \overline{2}, \overline{5}, \overline{7}\} .
$$

We will take a representative t_{i} from each of these orbits and apply right hand multiplication to the coset $N t_{7} t_{1} t_{2}$:

1. $N t_{7} t_{1} t_{2} t_{3}=N t_{7} t_{1} t_{2} t_{3} \in N t_{7} t_{1} t_{2} t_{3} N$ denoted $\{7,1,2,3]$, so this orbit extends 2 generators to a new double coset $[7,1,2,3]$.
2. $N t_{7} t_{1} t_{3}=N t_{7} t_{1} t_{3} \in N t_{7} t_{1} t_{3} N$ denoted $[7,1,3]$, so this orbit extends 2 generators to a new double coset $[7,1,3]$.
3. $N t_{7} t_{1} t_{2}=N t_{7} t_{1} t_{2} \in N t_{7} t_{1} t_{2} N$ denoted $[7,1,2]$, so this orbit extends 8 generators to a new double coset $[7,1,2]$.

$N t_{7} t_{1} \mathrm{t}_{3} \mathrm{~N}$

We now consider the double coset $N t_{7} t_{1} t_{3} N$. There are 24 cosets within $[7,1,3]$ having equal names:

$$
\begin{gathered}
{[1,10,14],[14,3,8],[1,14,10],[8,10,7],[14,8,3],[8,3,14],[7,8,10],[1,3,7],} \\
{[10,8,7],[7,10,8],[3,7,1],[7,3,1],[3,1,7],[10,7,8],[14,1,10],[10,14,1],} \\
{[3,8,14],[8,14,3],[7,1,3],[8,7,1.0],[14,10,1],[1,7,3],[3,14,8], \text { and }[10,1,14] .}
\end{gathered}
$$

We then increase our coset stabilizer to account for the equally named cosets. The permutation that achives this is:

$$
(1,3,8,10)(2,12,13,11)(4,9,5,6)(7,14)(1,10,7)(2,13,5)(3,14,8)(6,12,9)
$$

We must determine the coset stabilizer, denoted $N^{(7,1,3)}$. We look at permutations in $N=L_{3}(2)$ and find those that "fix" the the elements 7,1 , and 3 while permuting all others. We determine the coset stabilizer by utilizing our relations to increase the stabilizer:

$$
N^{(7,1,3)}=<(13 \overline{1} \overline{3})(2 \overline{5} 6 \overline{4})(4 \overline{2} 56)(7 \overline{7}),(1 \overline{3} 7)(2 \overline{6} 5)(3 \overline{7} \overline{1})(6 \overline{5} \overline{2})>
$$

We determine $\left|N^{(7,1,3)}\right|=24$. We now calculate the number of cosets within $[7,1,3]$ by using our equation:

$$
\begin{equation*}
\left|N t_{7} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(7,1,3)}\right|} \tag{5.4}
\end{equation*}
$$

which gives us

$$
\left|N t_{7} t_{1} t_{3} N\right|=\frac{168}{24}=7
$$

We now determine the orbits on $[7,1,3]$, which are

$$
\{1,3,7, \overline{1}, \overline{3}, \overline{7}\} \text { and }\{2,4,5,6, \overline{2}, \overline{4}, \overline{5}, \overline{6}\}
$$

We will take a representative t_{i} from each of these orbits and apply right hand multiplication to the coset $N t_{7} t_{1} t_{3}$:

1. $N t_{7} t_{1} t_{3} t_{3}=N t_{7} t_{1}\left(t_{3}\right)^{2}=N t_{7} t_{1} \in N t_{7} t_{1} N$ denoted $[7,1]$, so this orbit takes 6 generators backto the double coset $[7,1]$.
2. $N t_{7} t_{1} t_{3} t_{2}=N t_{7} t_{1} t_{3} t_{2} \in N t_{7} t_{1} t_{3} t_{2} N$ denoted [7,1,3,2], so this orbit extends 8 generators to the new double coset $[7,1,3,2]$.

We now consider the double coset $N t_{7} t_{1} t_{3} t_{2} N$. There are 24 cosets within [$7,1,3,2]$ having equal names:
$[1,10,14,13],[14,3,8,12],[1,14,10,6],[8,10,7,4],[14,8,3,5],[8,3,14,2],[7,8,10,13],[1,3,7,5]$, $[10,8,7,12],[7,10,8,6],[3,7,1,4],[7,3,1,9],[3,1,7,11],[10,7,8,5],[14,1,10,4],[10,14,1,2]$,
$[3,8,14,6],[8,14,3,9],[7,1,3,2],[8,7,10,11],[14,10,1,11],[1,7,3,12],[3,14,8,13]$, and $[10,1,14,9]$.

We then increase our coset stabilizer to account for the equally named cosets. The relation that we achive this with is:

$$
(1,3,8,10)(2,12,13,11)(4,9,5,6)(7,14)(1,10,14)(2,4,13)(3,7,8)(6,9,11)
$$

We determine $\left.\mid N^{(7,1,3,2)}\right\}=24$. We now calculate the number of cosets within $[7,1,3,2]$ by using our equation:

$$
\begin{equation*}
\left|N t_{7} t_{1} t_{3} N\right|=\frac{|N|}{\left|N^{(7,1,3)}\right|} \tag{5.5}
\end{equation*}
$$

which gives us

$$
\left|N t_{7} t_{1} t_{3} N\right|=\frac{168}{24}=7
$$

We have 7 cosets in $[7,1,3,2]$. We now determine the orbits on $[7,1,3,2]$, which are

$$
\{1,3,7,8, \overline{3}, \overline{7}\} \text { and }\{2,4,5,6, \overline{2}, \overline{4}, \overline{5}, \overline{6}\}
$$

We will take a representative t_{i} from each of these orbits and apply right hand multiplication to the coset $N t_{7} t_{1} t_{3}:$

1. $N t_{7} t_{1} t_{3} t_{2} t_{1}=N t_{7} t_{1} t_{3}=N t_{7} t_{1} t_{2} t_{3} \in N t_{7} t_{1} t_{2} t_{3} N$ denoted $[7,1,2,3]$, so this orbit extends 6 generators to the double coset $[7,1,2,3]$.
2. $N t_{7} t_{1} t_{3} t_{2} t_{2}=N t_{7} t_{1} t_{3} \in N t_{7} t_{1} t_{3} N$ denoted $[7,1,3]$, so this orbit takes 8 generators back to the double coset $[7,1,3]$.

We now use MAGMA to confirm that we have an increase in the total count of single cosets thus far in our group. We determine that the total count of cosets do not increase with [$7,1,3,2$], which indicates that we have equal double cosets. We now confirm and identify our equal double cosets by conjugating the double coset [7,1,3,2] by the permutation that stabilizes the coset, and compare the result to existing double cosets. We find that

$$
\begin{gathered}
\left(N t_{7} t_{1} t_{3} t_{2} N\right)^{(1,3,8,10)(2,12,13,11)(4,9,5,6)(7,14)(1,10,7)(2,13,5)(3,14,8)(6,12,9)} \\
=N t_{7} t_{1} t_{2} t_{3} N .
\end{gathered}
$$

Thus, the double coset $[7,1,3,2]=[7,1,2,3]$. Therefore, the orbit $\{2,4,5,6, \overline{2}, \overline{4}, \overline{5}, \overline{6}\}$. takes 6 generators back to the double coset $[7,1,2]$.

$\mathrm{Nt}_{7} \mathrm{t}_{\mathbf{1}} \mathrm{t}_{\mathbf{2}} \mathrm{t}_{\mathbf{4}} \mathrm{N}$

We now consider the double coset $N t_{7} t_{1} t_{2} N t_{4}$. There are 24 cosets within [$7,1,2,4]$ having equal names:

$$
\begin{gathered}
{[2,8,7,10],[3,7,4,5],[8,2,5,3],[7,3,9,12],[9,10,7,8],[14,4,2,1],[5,9,8,4],[2,11,14,5]} \\
{[4,12,10,2],[11,2,10,12],[12,4,8,9],[12,14,1,10],[10,9,11,1],[8,11,12,7],[7,1,2,4]} \\
{[11,8,3,14],[14,12,9,3],[3,1,11,9],[4,14,3,8],[10,5,4,7],[1,7,12,11],[5,10,1,14]} \\
{[1,3,5,2],[9,5,14,11] .}
\end{gathered}
$$

We then increase our coset stabilizer to account for the equally named cosets. The permutation that we achieve this with are:

$$
\begin{gathered}
(1,8)(2,7)(3,11)(4,10)(5,12)(9,14) \\
(1,7,3)(2,4,5)(8,14,10)(9,11,12) \\
(1,2,5,14)(3,11,10,4)(6,13)(7,8,9,12)
\end{gathered}
$$

We must determine the coset stabilizer, denoted $N^{(7,1,2,4)}$. We look at permutations in $N=L_{3}(2)$ and find those that "fix" the the elements $7,1,2$ and 4 while permuting all others. We determine the coset stabilizer by utilizing our relations to increase the stabilizer:
$N^{(7,1,2,4)}=<(1 \overline{1})(27)(3 \overline{4})(4 \overline{3}),(5 \overline{5})(\overline{2} \overline{7}),(173)(245),(\overline{1} \overline{7} \overline{3})(\overline{2} \overline{4} \overline{5}),(125 \overline{7})(3 \overline{4} \overline{3} 4)(6 \overline{6})(7 \overline{1} \overline{2} \overline{5})>$

We determine $\left|N^{(7,1,2,4)}\right|=24$. We now calculate the number of cosets within $[7,1,2,4]$ by using our equation:

$$
\begin{equation*}
\left|N t_{7} t_{1} t_{2} t_{4} N\right|=\frac{|N|}{\left|N^{(7,1,2,4)}\right|} \tag{5.6}
\end{equation*}
$$

which gives us

$$
\left|N t_{7} t_{1} t_{2} t_{4} N\right|=\frac{168}{24}=7
$$

We now determine the orbits on $[7,1,2,4]$, which are

$$
\{1,2,3,4,5,7, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{7}\} \text { and }\{6,13\}
$$

We will take a representative t_{i} from each of these orbits and apply right hand multiplication to the coset $N t_{7} t_{1} t_{2} t_{4}$:

1. $N t_{7} t_{1} t_{2} t_{4} t_{4}=N t_{7} t_{1} t_{2}\left(t_{4}\right)^{2}=N t_{7} t_{1} t_{2} \in N t_{7} t_{1} t_{2} N$ denoted $[7,1,2]$, so this orbit sends 12 generators back to the double coset [7,1,2].
2. $N t_{7} t_{1} t_{2} t_{4} t_{6}=N t_{7} t_{1} t_{2} t_{4} t_{6} \in N N t_{7} t_{1} t_{2} t_{4} t_{6} N$ denoted [7, 1, 2, 4, 6], so this orbit extends 2 generators to a new double coset $[7,1,2,4,6]$.

$N t_{7} t_{1} t_{2} t_{4} t_{6} N$

We now consider the double coset $N t_{7} t_{1} t_{2} t_{4} t_{6}$. There are 168 cosets within [$7,1,2,4,6]$ having equal names. Utilizing MAGMA, we obtain the permutation that increase the order of our coset stabilizer to 168 :

$$
\begin{gathered}
(1,6,10)(3,8,13)(4,7,12)(5,11,14),(1,2,6)(4,7,5)(8,9,13)(11,14,12) \\
(1,3,11,14,6,12,2)(4,7,13,5,9,8,10)
\end{gathered}
$$

We must determine the coset stabilizer, denoted $N^{(7,1,2,4,6)}$. We look at permutations in $N=L_{3}(2)$ and find those that "fix" the the elements 7, 1, 2, 4 and 6 while permuting all others. We determine the coset stabilizer by utilizing our relations to increase the stabilizer:

$$
N^{(7,1,2,4,6)}=<(16 \overline{3})(3 \overline{1} \overline{6})(47 \overline{5})(5 \overline{4} \overline{7}),(126)(475),(\overline{1} \overline{2} \overline{6})(\overline{4} \overline{7} \overline{5}),(13 \overline{4} \overline{7} 6 \overline{5} 2)(47 \overline{6} 5 \overline{2} \overline{1} \overline{3})>
$$

We determine $\left|N^{(7,1,2,4,6)}\right|=168$. We now calculate the number of cosets within $[7,1,2,4,6]$ by using our equation:

$$
\begin{equation*}
\left|N t_{7} t_{1} t_{2} t_{4} t_{6} N\right|=\frac{|N|}{\left|N^{(7,1,2,4,6)}\right|} \tag{5.7}
\end{equation*}
$$

which gives us

$$
\left|N t_{7} t_{1} t_{2} t_{4} t_{6} N\right|=\frac{168}{168}=1
$$

We have 1 coset in $[7,1,2,4,6]$. We now determine the orbits on $[7,1,2,4,6]$, which are

$$
\{1,2,3,4,5,6,7, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}
$$

Thus, all the generators are within a single orbit. We will take a representative t_{i} from this orbit and apply right hand multiplication to the coset $N t_{7} t_{1} t_{2} t_{4} t_{6}$:

1. $N t_{7} t_{1} t_{2} t_{4} t_{6} t_{6}=N t_{7} t_{1} t_{2} t_{4}\left(t_{6}\right)^{2}=N t_{7} t_{1} t_{2} t_{4} \in N t_{7} t_{1} t_{2} t_{4} N$ denoted $[7,1,2,4]$, so this orbit sends all 14 generators back to the double coset $[7,1,2,4]$.

Since we have no orbits extending generators to new double cosets, this group is closed under right hand multiplication. Thus, we have completed the double coset enumeration process for $U_{3}(3): 3$ as a homomorphic image of $2^{* 14}: L_{3}(2)$. The results are submarized in the following cayley diagram Figure 5.1:

Figure 5.1: Cayley diagram of $U_{3}(3): 3$ as a Homomorphic Image of $2^{* 14}: L_{3}(2)$

Chapter 6

Construction of A_{7} as

a Homomorphic Image of the

 Monomial Progenitor $3^{* 7}:_{m} L_{3}(2)$We have a computer-based proof that

$$
\frac{3^{* 7}:_{m} L_{3}(2)}{t_{3} t_{2}=t_{7} t_{1}} \xrightarrow{\text { homo }} A_{7}
$$

This proof is obtained as follows: We first us MAGMA to obtain the composition factors of a permutation representation of G. This is done as follows:

```
f,G1,k:=CosetAction(G, sub<G|x,y>);
CompositionFactors(G1);
```

give

G
\mid Alternating(7)
1
We now write a presentation of the group A_{7} as a Homomorphic Image of the Progenitor $3^{* 7}: m L_{3}(2)$ (obtained based on the composition factors above) and verify that G is isomorphic to A_{7} as a Homomorphic Image of the Progenitor $3^{* 7}:_{m} L_{3}(2)$.

$$
A_{7} \xrightarrow{\text { homo }} \frac{3^{* 7}: L_{3}(2)}{t_{3} t_{2}=\bar{t}_{7} \bar{t}_{1}}
$$

I will perform a double coset enumeration on the group $G \xrightarrow{\text { homo }} \frac{3^{*}: L_{3}(2)}{t_{3} t_{2}=t_{7} t_{1}}$, denoted by the following group representation:

$$
G \cong<x, y ; t\left|x^{7}, y^{2},(x y)^{3},(x, y)^{4}, t^{3},\left(t, x^{-3} y x^{2}\right),(t, y), t^{x} t^{x y},(x t)^{4}\right\rangle
$$

We have a computer-based proof that $G \cong A_{7}$.
where $|G|=2520$ and $N=<x, y>\cong L_{3}(2)$.
The generators are represented by:

$$
x \backsim(1,2,3,4,5,6,7)(\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7})
$$

and

$$
y \sim(1, \overline{1})(3, \overline{7})(2, \overline{6})(4,5)(\overline{4}, \overline{5})(\overline{2}, 6) .
$$

We know $N \simeq L_{3}(2)$ has 168 elements, or $|N|=168$.

6.1 Relations

The first relation we must expand is

$$
(x t)^{4}=1
$$

Let $\pi=x$, then our relation becomes

$$
(\pi t)^{4}=1
$$

We then expand our relation, giving us

$$
\pi^{4} t^{\pi^{3}} t^{\pi^{2}} t^{\pi} t=1
$$

Note in this particular group, $t \sim t_{7}$ and $t_{7}{ }^{-1} \sim \bar{t}_{7}$. This transforms our relation to

$$
\pi^{4} t_{7}^{\pi^{3}} t_{7}^{\pi^{2}} t_{7}^{\pi} t_{7}=1
$$

Now, we consider our permutation x which we have transformed into π which becomes

$$
\pi=x \sim(1234567)(\overline{1} \overline{2} \overline{3} \overline{4} \overline{5} \overline{6} \overline{7}) .
$$

We then apply our permutation π to our relation which gives us our permutations

$$
\begin{aligned}
& \pi^{2}=(1357246)(\overline{1} \overline{3} \overline{5} \overline{7} \overline{2} \overline{4} \overline{6}), \\
& \pi^{3}=(1473625)(\overline{1} \overline{4} \overline{7} \overline{3} \overline{6} \overline{2} \overline{5}), \\
& \pi^{4}=(1526374)(\overline{1} \overline{5} \overline{2} \overline{6} \overline{3} \overline{7} \overline{4}) .
\end{aligned}
$$

We then convert our permutations back into $t_{i}^{\prime} s$ to get our relation

$$
\pi^{4} t_{3} t_{2} t_{1} t_{7}=1
$$

Utilizing right multiplication of our $t_{i}^{\prime} s$, we have a relation based on two letters

$$
\pi^{4} t_{3} t_{2}=\overline{t_{7}} \overline{t_{1}}
$$

We will use this relation to evaluate cosets and double cosets within our group.

6.2 Double Coset Enumeration

NeN

We start our double coset enumeration by evaluating our first double coset, denoted [*], containing words of length zero. This double coset has one single coset, which is the identity $N e N=N$. Since our presentation group is A_{7}, we have $t=t_{7}$ and $t_{7}{ }^{-1} \sim \bar{t}_{7}$. This means our first orbit contains all fourteen generators

$$
\{1,2,3,4,5,6,7, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}
$$

When we apply a representative t_{i} from this orbit, say t_{7} to the coset representative $N e$ to get a new coset $N t_{7}$. We see that all fourteen generators extend to a new double $\operatorname{coset} N t_{7} N$, denoted [7]. This double cosets will be made up of words of length one.

$\mathrm{Nt}_{7} \mathrm{~N}$

We now consider the double coset $N t_{7} N=\left\{N t_{7}^{n} \mid n \in N\right\}$. We must first determine the coset stabilizer, denoted $N^{(7)}$. We look at permutations in $N=L_{3}(2)$ and find those that "fix" the the element (7) and permute all others. Using Magma, we found

$$
N^{7}=<(1 \overline{1})(2 \overline{6})(3 \overline{3})(45)(6 \overline{2})(\overline{4} \overline{5}),(16 \overline{5})(2 \overline{4} 3)(4 \overline{3} \overline{2})(5 \overline{1} \overline{6})>.
$$

Since there are no additional relations, our point stabilizer is our coset stabilizer. Thus we have

$$
N^{7}=N^{(7)}
$$

We note that

$$
\left|N^{7}\right|=\left|N^{(7)}\right|=2^{2} \cdot 3=12
$$

We now determine the number of cosets in [7] by using our equation

$$
\begin{equation*}
\left|N t_{7} N\right|=\frac{|N|}{\left|N^{(7)}\right|} \tag{6.1}
\end{equation*}
$$

whic gives us

$$
\left|N t_{7} N\right|=\frac{168}{12}=14
$$

Now we compute orbits of $N^{(7)}$ on $\{1,2,3,4,5,6,7, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ by conjugating elements in $N t_{7} N$ by the coset stabilizer $N^{(7)}$.

1. $7^{N^{(7)}}=\{7\}$
2. $\overline{7}^{N^{(7)}}=\{\overline{7}\}$

To determine the next orbit, we assign variables to the generators of $N=L_{3}(2)$;
Let $A=(1 \overline{1})(2 \overline{6})(3 \overline{3})(45)(6 \overline{2})(\overline{4} \overline{5})$ be the first permutation and let $B=(16 \overline{5})(2 \overline{4} 3)(4 \overline{3} \overline{2})(5 \overline{1} \overline{6})$ be the second permutation.
Next, we multiply and conjugate the remaining elements by A and B to construct our orbit:

$$
\begin{aligned}
1^{A} & =\{\overline{1}\} \\
1^{A^{2}} & =\{1\} \\
1^{B} & =\{6\} \\
1^{B^{2}} & =\{\overline{5}\} \\
1^{B^{A}} & =\{2\}
\end{aligned}
$$

Now all the above generators are in the same orbit as 1 . Since 1 and $\overline{1}$ share the same cycle within A, any generator within a cycle containing 1 or $\overline{1}$ will be in the same orbit. Similarly, any generator sharing the same cycle within B will also be in the same orbit. Having said that, we can finish the construction of this orbit.

$$
1^{\left(B^{A}\right)^{2}}=\{4\}
$$

$$
\begin{gathered}
1^{A^{B}}=\{3, \overline{3}\} \\
\overline{1}^{B}=\{\overline{6}\} \\
\overline{1}^{B^{2}}=\{\overline{5}\} \\
\overline{1}^{B^{A}}=\{\overline{2}\} \\
\overline{1}^{\left(B^{A}\right)^{2}}=\{\overline{4}\}
\end{gathered}
$$

Thus, we have all the above elements in the final orbit:

$$
\{1,2,3,4,5,6, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}
$$

Now we have three orbits for $N t_{7} N$:

1. $\{7\}$
2. $\{\overline{7}\}$
3. $\{1,2,3,4,5,6, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$

We will examine orbits 1 and 2 : We will take a representative t_{i} from each of these two orbits and apply right hand multiplication to the coset $N t_{7}$:

$$
N t_{7} \cdot t_{7}=N t_{7}^{2}=N \bar{t}_{7} \in N t_{7} N
$$

So this orbit takes one generator back to the same double coset $N t_{7} N$ denoted [7].

$$
N t_{7} \cdot \bar{t}_{7}=N e \in N e N
$$

So this orbit takes one generator back to the double coset $N e N$ denoted [*].

$$
N t_{7} \cdot t_{1}=N t_{7} t_{1} \in N t_{7} t_{1} N
$$

At first glance, one would assume that this orbit extends the twelve generators to a new double coset $N t_{7} t_{1} N$, but we must remember that the cosets $N t_{1} \in N t_{7} N$ and $N t_{7} \in N t_{7} N$. This implies that $N t_{1}=N t_{7}$. By substitution, we have

$$
N t_{7} \cdot t_{1}=N t_{7} \cdot t_{7}=N t_{7}^{2}=N \bar{t}_{7} \in N t_{7} N
$$

so the third orbit also takes the twelve generators back to the same double coset $N t_{7} N$ denoted [7]. Since we have no orbits extending generators to new double cosets, this group is closed under right hand multiplication. Thus, we have completed the double coset enumeration process for A_{7} as a homomorphic image of the progenitor $3^{* 7}:_{m} L_{3}(2)$. The results are submarized in the following cayley diagram Figure 6.1:

Figure 6.1: Cayley diagram of A_{7} as a Homomorphic Image of $3^{* 7}: L_{3}(2)$

Chapter 7

Finite Homomorphic Images of the Monomial Progenitor $7^{* 2}: m S_{3}$

7.1 An Irreducible Monomial Representation of S_{3}

We define the monomial representation of a group G as a homomorphism from G into $G L_{n}(F)$, the group of non-singular $n \times n$ matrices over the field F, in which the image of every element of G is a monomial matrix over F.
We define a monomial matrix as follows: An $n \times n$ matrix $M=\left[m_{i j}\right]$ over a field K is monomial if there is $\alpha \in S_{n}$ and (not necessarily distinct) nonzero elements $x_{1}, \ldots, x_{n} \in$ K such that

$$
y= \begin{cases}x_{i} & \text { if } j=\alpha(i) \\ 0 & \text { otherwise }\end{cases}
$$

Monomial matrices thus have only one nonzero entry in any row or column. Of course, a monomial matrix in which each $x_{i}=1$ is a permutation matrix over K.
We say G_{χ} is a monomial character of G if $\chi=\lambda^{G}$, where λ is a linear character of a subgroup (not necessarily proper) of G. Note: For a linear character $\lambda, \lambda(1)=1$.

Induced linear characters of H become monomial characters of G. All linear characters of G are monomial, therefore a single entry in the monomial matrix.

To induce a progenitor from another group, we must utilize their respective character tables. Tables 7.1 and 7.2 are the character tables for both groups:

Table 7.1: Character Table for S_{3}

χ	C_{1}	C_{2}	C_{3}
$\chi^{(1)}$	1	1	1
$\chi^{(2)}$	1	-1	1
$\chi^{(3)}$	2	0	-1

Table 7.2: Character Table for Z_{3}

χ	C_{1}	C_{2}	C_{3}
$\chi^{(1)}$	1	(123)	$(123)^{2}=(132)$
$\chi^{(2)}$	1	w	w^{2}
$\chi^{(3)}$	1	w^{2}	w

In this example, we will induce from the third character of the Z_{3} table and write the permutations that generate S_{3} in matrix form. We have:

$$
\left.S_{3}=<(123)(12)\right\rangle
$$

where the permutations (123) and (12) are represented respectively in this manner:

$$
\begin{gathered}
x x(123) \\
y y(12)
\end{gathered}
$$

We find the right transversals through magma, which are:

$$
e,(12)
$$

Since the right transversal contains two elements, we a have a 2×2 matrix. We want the four possible entries based on $x x$ using our right transversals $e,(12)$.

$$
A(x x)=\left(\begin{array}{cc}
e x x e^{-1} & e x x(12) \\
(12) x x e^{-1} & (12) x x(12)^{-1}
\end{array}\right)
$$

Now we substitute $x x=$ (123) and evaluate the four matrix entries by multiplying the permutations and comparing to the elements in $A_{3}=\{e,(123),(132)\}$:

$$
A(x x)=\left(\begin{array}{cc}
e(123) e^{-1} & e(123)(12) \\
(12)(123) e^{-1} & (12)(123)(12)^{-1}
\end{array}\right)
$$

which gives rise to the following matrix:

$$
A(x x)=\left(\begin{array}{cc}
(123) \in A_{3} & (13) \notin A_{3} \\
(13) \notin A_{3} & (213)=(132)=(123)^{2} \in A_{3}
\end{array}\right)
$$

These entries must be in A_{3}, else the entries $=0$. Then we have the resulting matrix:

$$
A(x x)=\left(\begin{array}{cc}
(123) & 0 \\
0 & (123)^{2}
\end{array}\right)
$$

Now we will substitute the entries from the third row of the character table Z_{3} (see Table 7.2) to find the final matrix configuration denoted A :

$$
A=\left(\begin{array}{cc}
w^{2} & 0 \\
0 & w
\end{array}\right)
$$

. We must now determine the second matrix, denoted B which pertains to the permutation $y y=(12)$. Using the same right transversals and matrix template, we have:

$$
B(y y)=\left(\begin{array}{cc}
\text { eyye }^{-1} & \operatorname{eyy}(12) \\
(12) y y e^{-1} & (12) y y(12)^{-1}
\end{array}\right)
$$

Now we substitute $y y=(12)$ and evaluate the four matrix entries by multiplying the permutations and comparing to the elements in $A_{3}=\{e,(123),(132)\}$:

$$
B(y y)=\left(\begin{array}{cc}
e(12) e^{-1} & e(12)(12) \\
(12)(12) e^{-1} & (12)(12)(12)^{-1}
\end{array}\right)
$$

which gives rise to the following matrix:

$$
B(y y)=\left(\begin{array}{cc}
(12) \notin A_{3} & (e) \in A_{3} \\
(e) \in A_{3} & (12) \notin A_{3}
\end{array}\right)
$$

These entries must be in A_{3}, else the entries $=0$. By using the same steps as in determmining $A(x x)$, we have the resulting matrix, denoted B :

$$
B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

So we now have the following matrices A and B :

$$
A=\left(\begin{array}{cc}
w^{2} & 0 \\
0 & w
\end{array}\right)
$$

$$
B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We must now verify that we have a monomial representation of S_{3} by checking the order of A, B, and their product, $A \cdot B$. From MAGMA, we have: $|A|=3,|B|=2,|A \cdot B|=2$. Thus, A, B, given a monomial representation of S_{3}.
Now, w is a cube root of unity. We must find the smallest finite field with cube roots of unity. In other words, a finite field which has elements of order 3 in its multiplicative group. Since the matrices have cube roots of unity, we replace these by the cube root of 1 in the smallest field with cube roots of unity. Consider the field

$$
Z_{7}=\{0,1,2,3,4,5,6\}
$$

We take a group $H=\{1,2,3,4,5,6\}$, which is a group under multiplication modulo seven. Then:

$$
\begin{gathered}
|2|=3,\left(\text { since } 2^{3}=8=1(\bmod) 7\right) \\
|4|=3,\left(\text { since } 4^{3}=64=1(\bmod) 7\right)
\end{gathered}
$$

So we let $w=2$, and $w^{2}=4$. Now, we substitute those values into the matrix A to generate out $t_{i}^{\prime} s$, which will generate our permutations for $x x$ and $y y$.
Since we have 2×2 matrices over a field of seven elements, we will have $2 t_{i}^{\prime} s$ of order 7 . Thus, our progenitor will will be expressed as:

$$
7^{* 2}: m S_{3}
$$

The m typifies this as a monomial presentation. We use our matrix A to generate permutations where each t_{i} goes:

$$
A(x)=\begin{gathered}
t_{1} \\
1 \\
2
\end{gathered}\left(\begin{array}{ll}
t_{2} \\
4 & 0 \\
0 & 2
\end{array}\right)
$$

For the A matrix, we see that entry $t_{1}=4$ and $t_{2}=2$, which implies:

$$
\begin{aligned}
& t_{1} \rightarrow t_{1}^{4} \\
& t_{2}^{1} \rightarrow t_{2}^{2}
\end{aligned}
$$

We now determine the action on the remaining $t_{i}^{\prime} s$ by multiplying the exponents of all the $t_{1} ' s$ by 4 , and the exponents of all the $t_{2}{ }^{\prime} s$ by 2 . Note that we evaluate each new exponent by modulo 7. We now set up our $t_{i}{ }^{\prime} s$ based on two sets of six elements (six elements for t_{1} and six elements for t_{2}) $=12$ letters:

Table 7.3: Labeling for Matrix $A(x x)$ to Determine $t_{i}{ }^{\prime} s$

1	2	3	4	5	6	7	8	9	10	11	12
t_{1}	$t_{1}{ }^{2}$	$t_{1}{ }^{3}$	$t_{1}{ }^{4}$	$t_{1}{ }^{5}$	$t_{1}{ }^{6}$	t_{2}	$t_{2}{ }^{2}$	$t_{2}{ }^{3}$	$t_{2}{ }^{4}$	$t_{2}{ }^{5}$	$t_{2}{ }^{6}$
\downarrow											
$t_{1}{ }^{4}$	$t_{1}{ }^{1}$	$t_{1}{ }^{5}$	$t_{1}{ }^{2}$	$t_{1}{ }^{6}$	$t_{1}{ }^{3}$	$t_{2}{ }^{2}$	$t_{2}{ }^{4}$	$t_{2}{ }^{6}$	$t_{2}{ }^{1}$	$t_{2}{ }^{3}$	$t_{2}{ }^{5}$

The results of Table 7.3 give rise to our permutation

$$
x x=(1,4,2)(3,5,6)(7,8,10)(9,12,11)
$$

We use a similar method for determining the permuation for $y y$: We examine the matrix for $B(y y)$:

$$
B(y)=\begin{gathered}
t_{1} \\
1\left(\begin{array}{ll}
t_{2} \\
0 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Since the B matrix has $1^{\prime} s$ for all entries for t_{1} and t_{2}, we see that

$$
\begin{aligned}
& t_{1} \rightarrow t_{2} \\
& t_{2} \rightarrow t_{1}
\end{aligned}
$$

for each respective exponent. As with the A matrix, we now set up our labeling table based on the action of the B matrix:

Table 7.4: Labeling for Matrix $B(y y)$ to Determine $t_{i}{ }^{\prime} s$

1	2	3	4	5	6	7	8	9	10	11	12
t_{1}	$t_{1}{ }^{2}$	$t_{1}{ }^{3}$	$t_{1}{ }^{4}$	$t_{1}{ }^{5}$	$t_{1}{ }^{6}$	t_{2}	$t_{2}{ }^{2}$	$t_{2}{ }^{3}$	$t_{2}{ }^{4}$	$t_{2}{ }^{5}$	$t_{2}{ }^{6}$
\downarrow											
$t_{2}{ }^{1}$	$t_{2}{ }^{2}$	$t_{2}{ }^{3}$	$t_{2}{ }^{4}$	$t_{2}{ }^{5}$	$t_{2}{ }^{6}$	$t_{1}{ }^{1}$	$t_{1}{ }^{2}$	$t_{1}{ }^{3}$	$t_{1}{ }^{4}$	$t_{1}{ }^{5}$	$t_{1}{ }^{6}$

The results of Table 7.4 give rise to our permutation

$$
y y=(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)
$$

We are now ready to write our progenito S_{3}, which is represented by the progenitor

$$
S_{3}=<x^{3}, y^{2},(x y)^{2}>
$$

Since our matrices are over Z_{7}, we add t^{7} to our progenitor which gives us:

$$
7^{* 2}: m S_{3}=<x^{3}, y^{2},(x y)^{2}, t^{7}>
$$

We must now find the normaliser for t in N (or, the permutation that takes the set $\langle t\rangle$ back to itself). Then we must find the relations which commute with t. To find the normaliser for t we must first assign t to one of the $t_{i}{ }^{\prime} s$. We let $t=t_{1}$. So by inspection, we want to determine the permutation cycles that keeps t_{7} and its powers together, or fixes the $t_{i}^{\prime} s$. We find

$$
x x=(1,4,2)(3,5,6)(7,8,10)(9,12,11), e, x x^{-1}
$$

satisfies that condition. First we must determine the action within the 3-cycle permutation that contains t_{1}^{1}. We see that if we permute t_{1} by $x x$, we get t_{4}. Note also that if we permute t_{1} by $(x x)^{-1}$, we get t_{2}. Thus, these two actions represent the normaliser of t. Thus far, we have a progenitor:

$$
7^{* 2}:_{m} S_{3}=<x^{3}, y^{2},(x y)^{2}, t^{7}, t^{x}=t^{4}, t^{x^{-1}}=t^{2}>
$$

We need to find relations that represent what t commutes with. From MAGMA, we have the relation

$$
(x t y)^{3}=1
$$

So we add this relation to our progenitor to get the following:

$$
7^{* 2}:_{m} S_{3}=<x^{3}, y^{2},(x y)^{2}, t^{7}, t^{x}=t^{4}, t^{x^{-1}}=t^{2},(x t y)^{3}=1>
$$

Having completed this monomial progenitor, we can now look at its composition factors. MAGMA tells us that the composition factors of this progenitor is:

$$
A(1,7)=L(2,7)
$$

which is a computer-based proof that we verify by constructing the following group.

7.2 The Construction of $7^{* 2}:_{m} S_{3}$: The Relations

We will now construct our new progenitor

$$
7^{* 2}:_{m} S_{3}=<x^{3}, y^{2},(x y)^{2}, t^{7}, t^{x}=t^{4}, t^{x^{-1}}=t^{2},(x t y)^{3}=1>
$$

by first expanding our relation

$$
\begin{gathered}
(x t y)^{3}=1 \\
\Longrightarrow(x t y)(x t y)(x t y)=1
\end{gathered}
$$

We now use the identity principle

$$
\pi \pi^{-1}=1
$$

and the property of conjugation

$$
\pi^{-1} t \pi=1
$$

to expand our relation, which gives us

$$
(x y)^{3} t^{(x y)^{2}} t^{(x y)} t=1
$$

Since we have the relation

$$
(x y)^{2}=1
$$

we now have

$$
(x y) t t^{(x y)} t=1
$$

We now examine the permutations x and y to further define our $t_{i}{ }^{\prime} s$. Recall that we let $t=t_{1}$. We need to determine what the permutation ($x y$) does to 1 , then assign the results to the corresponding t_{i}. The permutation ($x y$) takes 1 to 10 . Therefore, our relation becomes

$$
f(x y) t_{1} t_{10} t_{1}=1 .
$$

We have two generators, each of order seven. Therefore

$$
\begin{aligned}
t_{i}^{7} & =1 \\
\Rightarrow t_{i}{ }^{1} & =t_{i}^{-6} .
\end{aligned}
$$

Using right hand multiplication, we can determine other relations:

$$
\begin{gathered}
f(x y) t_{1} t_{10} t_{1}=1 \\
\Rightarrow f(x y) t_{1} t_{10} t_{1} \cdot t_{1}-1=1 \cdot t_{1}^{-1} \\
\Rightarrow f(x y) t_{1} t_{10}=t_{1}^{-1}
\end{gathered}
$$

We will expand on these relations to determine other relations as needed when we construct and perform double coset enumeration on this group.

7.3 Double Coset Enumeration

We have a computer-based proof that G is isomorphic to

$$
7^{* 2}:_{m} S_{3}
$$

. This proof is obtained as follows: We first us MAGMA to obtain the composition factors of a permutation representation of G . This is done as follows:
$\mathrm{f}, \mathrm{G} 1, \mathrm{k}:=\operatorname{Coset} \operatorname{Action}(\mathrm{G}, \operatorname{sub}\langle\mathrm{G} \mid \mathrm{x}, \mathrm{y}\rangle$);
CompositionFactors(G1);
G

$$
\mid A(1,7) \quad=L(2,7)
$$

We now write a presentation of the group $7^{* 2}:_{m} S_{3}$ (obtained based on the composition factors above) and verify that G is isomorphic to $7^{* 2}:_{m} S_{3}$.

We will perform a double coset enumeration on the group $7^{* 2}: m S_{3}$ factored by the relation $t_{1} t_{10} t_{1}=1$, denoted by the following group representation:

$$
7^{* 2}:_{m} S_{3}=<x^{3}, y^{2},(x y)^{2}, t^{7}, t^{x}=t^{4}, t^{x^{-1}}=t^{2},(x t y)^{3}=1>
$$

where $N=<x, y>\simeq S_{3}, x \backsim(1,2,3)$ and $y \sim(1,2)$. We know $N \simeq S_{3}$ has 6 elements, or $|N|=6$.

Consider the following notation of our $t_{i}^{\prime} s$:

$$
\begin{gathered}
t_{1}=f(t), t_{2}=t_{1}^{2}, t_{3}=t_{1}^{3}, t_{4}=t_{1}^{4}, t_{5}=t_{1}^{5}, t_{6}=t_{1}{ }^{6} \\
t_{2}=f\left(t^{y}\right), t_{8}=t_{2}^{2}, t_{9}=t_{2}^{3}, t_{10}=t_{2}^{4}, t_{1} I=t_{2}^{5}, t_{1} 2=t_{2}{ }^{6}
\end{gathered}
$$

which gives rise to:

$$
\begin{gathered}
t_{1}, \quad t_{2}=t_{1}^{2}, \quad t_{3}=t_{1}{ }^{3}, \quad t_{4}=t_{3}{ }^{-1}=t_{1}^{4}, \quad t_{5}=t_{2}{ }^{-1}=t_{1}^{5}, \quad t_{6}=t_{1}{ }^{-1}=t_{1}{ }^{6} \\
t_{8}=t_{2}{ }^{2}, \quad t_{9}=t_{2}{ }^{3}, \quad t_{10}=t_{9}{ }^{-1}=t_{2}^{4}, \quad t_{11}=t_{8}^{-1}=t_{2}{ }^{5}, \quad t_{12}=t_{7}{ }^{-1}=t_{2}{ }^{6}
\end{gathered}
$$

Based on the above notation,

$$
S_{3}=\left\langle\left(1,1^{4}, 2\right)\left(1^{6}, 1^{3}, 1^{5}\right)\left(1^{7}, 2^{2}, 2^{4}\right)\left(2^{6}, 2^{5}, 2^{3}\right)>.\right.
$$

We conjugate our relation $t_{1} t_{2}^{4} t_{1}=e \Rightarrow 12^{4} 1=e$ by the elements in S_{3} to obtain our remaining relations:

$$
\begin{aligned}
& 11^{5} 1 \sim 11^{4} 1 \sim 12^{6} 1 \sim 1^{5} 1 \sim 12^{4} 1 \\
& \sim 1^{2} 1^{6} 1^{2} \sim 1^{2} 1^{4} 1^{2} \sim 1^{2} 2^{6} 1^{2} \sim 1^{2} 2^{5} 1^{2} \sim 1^{2} 2^{4} 1^{2} \\
& \sim 1^{3} 1^{6} 1^{3} \sim 1^{3} 1^{5} 1^{3} \sim 1^{3} 2^{6} 1^{3} \sim 1^{3} 2^{5} 1^{3} \sim 1^{3} 2^{4} 1^{3} \\
& \sim 1^{6} 21^{6} \sim 1^{6} 1^{3} 1^{6} \sim 1^{6} 21^{6} \sim 1^{6} 2^{2} 1^{6} \sim 1^{6} 2^{3} 1^{6} \\
& \sim 1^{5} 11^{5} \sim 1^{5} 1^{3} 1^{5} \sim 1^{5} 21^{5} \sim 1^{5} 2^{2} 1^{5} \sim 1^{5} 2^{3} 1^{5} \\
& \sim 1^{4} 11^{4} \sim 1^{4} 1^{2} 1^{4} \sim 1^{4} 2^{4} \sim 1^{4} 2^{2} 1^{4} \sim 1^{4} 2^{3} 1^{4} \\
& \sim 2^{6} 12^{6} \sim 2^{6} 22^{6} \sim 2^{6} 1^{3} 2^{6} \sim 2^{6} 2^{2} 2^{6} \sim 2^{6} 2^{3} 2^{6} \\
& \quad \sim 21^{6} 2 \sim 21^{5} 2 \sim 21^{4} 2 \sim 22^{5} 2 \sim 22^{4} 2 \\
& \sim 2^{2} 1^{6} 2^{2} \sim 2^{2} 1^{5} 2^{2} \sim 2^{2} 1^{4} 2^{2} \sim 2^{2} 2^{6} 2^{2} \sim 2^{2} 2^{4} 2^{2} \\
& \sim 2^{3} 1^{6} 2^{3} \sim 2^{3} 1^{5} 2^{3} \sim 2^{3} 1^{4} 2^{3} \sim 2^{3} 2^{6} 2^{3} \sim 2^{3} 2^{5} 2^{3} \\
& \sim 2^{5} 12^{5} \sim 2^{5} 1^{2} 2^{5} \sim 2^{5} 1^{3} 2^{5} \sim 2^{5} 22^{5} \sim 2^{5} 2^{3} 2^{5} \\
& \sim 2^{4} 12^{4} \sim 2^{4} 1^{2} 2^{4} \sim 2^{4} 1^{3} 2^{4} \sim 2^{4} 2^{4} \sim 2^{4} 2^{2} 2^{4}
\end{aligned}
$$

MAGMA confirms these relations, which we will use to find equal double cosets with words of length two and greater within this group.

NeN
$N e N$ is a double coset made up of words of length zero. We know $N e N=\{N\}$, which is the first double coset [*]. The coset representative for $[*]$ is N. The number of cosets in [$*$] is 1 . We find that the orbits of N on $\left\{1,1^{2}, 1^{3}, 1^{4}, 1^{5}, 1^{6}, 2,2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}\right\}$ are $\left\{1,1^{2}, 1^{4}, 2,2^{2}, 2^{4}\right\}$ and $\left\{1^{3}, 1^{5}, 1^{6}, 2^{3}, 2^{5}, 2^{6}\right\}$. When we apply a representative t_{i} from each orbit to the double coset representative N we see that the elements in orbit $\left\{1,1^{2}, 1^{4}, 2,2^{3}, 2^{4}\right\}$ extend to a new double coset $N t_{1} N$, denoted [1], and the elements in the orbit $\left\{1^{3}, 1^{5}, 1^{6}, 2^{3}, 2^{5}, 2^{6}\right\}$ extend to another new double coset $N t_{1}^{6} N$, denoted $\left[1^{6}\right]$. These double cosets will be made up of words of length one:

$\mathrm{Nt}_{1} \mathbf{N}$

We now will determine the number of single coset in the double coset [1] by this formula $\frac{|N|}{\left|N^{(1)}\right|}$ which gives us $\frac{6}{1}=6$. The coset representative for $[1]$ is $N t_{1}$. We now identify the orbits of $N^{(1)}$ and determine where they go. We see that the orbits of N on $\left\{1,2,1^{4}, 2,2^{2}, 2^{4}\right\}$ are $\left\{1,1^{3}\right\},\left\{1^{6}\right\},\left\{1^{2}, 1^{4}, 1^{5}, 2^{4}\right\},\left\{2,2^{3}\right\},\left\{2^{2}\right\},\left\{2^{5}\right\}$ and $\left\{2^{6}\right\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{1}$ we see the following results:

1. $N t_{1} t_{1}=N\left(t_{1}\right)^{2}=N t_{2} \in N t_{1} N$, so this orbit sends 2 joins back to the same double coset $N t_{1} N$, denoted [1].
2. $N t_{1} t_{1}^{5}=N t_{1}{ }^{-1}=N t_{1}{ }^{6} \in N t_{1}{ }^{6} N$ which means this orbit sends 4 joins to a new double coset $N t_{1}{ }^{6} N$, denoted [1 1^{6}].
3. $N t_{1} t_{1}^{6}=N e N$, so this orbit sends I join back to the doublecoset $[*]$.
4. $N t_{1} t_{2} \in N t_{1} t_{2} N$, which means this orbit extends 2 joins to a new double coset $N t_{1} t_{2} N$, denoted [1, 2].
5. $N t_{1} t_{2}{ }^{2} \in N t_{1} t_{2}{ }^{2} N$, which means this orbit extends 1 join to a new double coset $N t_{1} t_{2}{ }^{2} N$, denoted $\left[1,2^{2}\right]$.
6. $N t_{1} t_{2}{ }^{5} \in N t_{1} t_{2}{ }^{5} N$, which means this orbit extends 1 join to a new double coset $N t_{1} t_{2}{ }^{5} N$, denoted $\left[1,2^{5}\right]$.
7. $N t_{1} t_{2}{ }^{6} \in N t_{1} t_{2}{ }^{6} N$, which means this orbit extends 1 join to a new double coset $N t_{1} t_{2}{ }^{6} N$, denoted $\left[1,2^{6}\right]$.
$\mathrm{Nt}_{\mathrm{I}}{ }^{6} \mathrm{~N}$
We now will determine the number of single coset in the double coset $\left[1^{6}\right]$ by this formula $\frac{|N|}{\left|N^{(6)}\right|}$ which gives us $\frac{6}{1}=6$. The coset representative for $\left[1^{6}\right]$ is $N t_{6}$. We now identify the orbits of $N^{(6)}$ and determine where they go. We see that the orbits of N on $\left\{1^{3}, 1^{5}, 1^{6}, 2^{3}, 2^{5}, 2^{6}\right\}$ are $\{1\},\left\{1^{2}, 1^{3}, 1^{5}, 2^{3}\right\},\left\{1^{4}, 1^{6}\right\},\{2\},\left\{2^{2}\right\},\left\{2^{4}, 2^{6}\right\}$, and $\left\{2^{5}\right\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{1}{ }^{6}$ we see the following results:
8. $N t_{1}{ }^{6} t_{1}=N e N$ so this orbit send 1 join back to [$*$.
9. $N t_{1}{ }^{6} t_{9}=N t_{1}{ }^{-1} t_{10}^{-1}=N t_{1} \in N t_{1} N$, so this orbit sends four joins back to the double $\operatorname{coset} N t_{1} N$, denoted [1].
10. $N t_{1}{ }^{6} t_{1}{ }^{6}=N\left(t_{1}{ }^{6}\right)^{2}=N t_{1}{ }^{5} \in N t_{1}{ }^{6} N$, so this orbit sends two joins back to itself.
11. $N t_{1}{ }^{6} t_{2}{ }^{6}=N t_{1} t_{2} \in N t_{1} t_{2} N$, so this orbit sends two joins to the double coset $N t_{1} t_{2} N$, denoted $[1,2]$.
12. $N t_{1}{ }^{6} t_{2}{ }^{5}=N t_{1}{ }^{6}{ }_{2}{ }^{5}=N t_{1} t_{8} \in N t_{1} t_{8} N$, so this orbit sends 1 join to the double coset $N t_{1} t_{2}{ }^{2} N$, denoted $\left[1,2^{2}\right]$.
13. $N t_{1}{ }^{6} t_{2}=N t_{1} t_{2}{ }^{6} \in N t_{1} t_{2}{ }^{6} N$, so this orbit sends 1 join to the double coset $N t_{1} t_{2}{ }^{5} N$, denoted $\left[1,2^{5}\right]$.
14. $N t_{1}{ }^{6} t_{8}=N t_{1} t_{2}{ }^{6} \in N t_{1} t_{2}{ }^{6} N$, so this orbit sends 1 join to the double coset $N t_{1} t_{2}{ }^{6} N$, denoted $\left[1,2^{6}\right]$.

We have now completed all double cosets with words of length one.

We will now determine the double cosets with words of length two. We will now utilize our relation

$$
(x y) t_{1} t_{10} t_{1}=1
$$

to determine the orbit paths for our joins within our double coset enumeration. We will also utilize MAGMA to determine the existence of equal double cosets, which may collapse part of our Cayley diagram by reducing the number of distinct double cosets.

$\mathrm{Nt}_{1} \mathrm{t}_{2} \mathrm{~N}$

We now will determine the number of single coset in the double coset $[1,2]$ by this formula $\frac{|N|}{\left|N^{(1,2) \mid}\right|}$ which gives us $\frac{6}{1}=6$. The coset representative for $[1,2]$ is $N t_{1} t_{2}$. We now identify the orbits of $N^{(1,2)}$ and determine where they go. We see that the orbits of $N^{(1,2)}$ on $\left\{3,1^{5}, 1^{6}, 2^{3}, 2^{5}, 2^{6}\right\}$
are $\left\{1^{4}, 2^{6}\right\},\left\{1,2^{3}\right\},\left\{1^{5}, 2^{2}\right\},\left\{1^{6}, 7\right\},\left\{2,2^{4}\right\}$ and $\left\{3,2^{5}\right\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{1} t_{2}$ we see the following results:

1. $N t_{1} t_{2} t_{2}{ }^{6}=N t_{1} t_{2} t_{2}{ }^{-1}=N t_{1} \in N t_{1} N$ so this orbit send two joins back to the double $\operatorname{coset} N t_{1} N$, denoted [1].
2. $N t_{1} t_{2} t_{1}=N t_{1} t_{2} t_{6}{ }^{-1}=N t_{6} \in N t_{6} N$ which means this orbit sends four joins back to the double coset $N t_{6} N$, denoted [6].
3. $N t_{1} t_{2} t_{5}=N t_{1} t_{2} \in N t_{1} t_{2} N$. So this orbit sends these two joins back to itself.
4. $N t_{1} t_{2} t_{2}=N t_{1} t_{2}{ }^{2} N t_{1} t_{8} \in N t_{1} t_{8} N$. So this orbit sends these two joins to the double coset $N t_{1} t_{8} N$, denoted $\left[1,2^{2}\right]$.
5. $N t_{1} t_{2} t_{2}{ }^{4}=N t_{1} t_{2}{ }^{5} \in N t_{1} t_{2}{ }^{5} N$, which means this orbit sends these two joins to the double coset $N t_{1} t_{2}{ }^{5} N$, denoted $\left[1,2^{5}\right]$.
6. $N t_{1} t_{2} t_{3}=N t_{1} t_{2}{ }^{6} \in N t_{1} t_{2}{ }^{6} N$, which means this orbit sends these two joins to the double coset $N t_{1} t_{2}{ }^{6} N$, denoted $\left[1,2^{6}\right]$.
$\mathrm{Nt}_{1} \mathrm{t}_{2}{ }^{2} \mathrm{~N}$
We now will determine the number of single coset in the double coset $\left[1,2^{2}\right]$ by this formula $\frac{|N|}{\mid N^{\left(1,2^{2}\right) \mid}}$ which gives us $\frac{6}{2}=3$. The coset representative for $\left[1,2^{2}\right]$ is
$N t_{1} t_{2}{ }^{2}$. We now identify the orbits of $N^{\left(1,2^{2}\right)}$ and determine where they go. We see that the orbits of N on $\left\{3,1^{5}, 1^{6}, 2^{3}, 2^{5}, 2^{6}\right\}$ are $\{1,2\},\left\{1^{5}, 2^{5}\right\},\left\{2,2^{2}\right\},\left\{1^{6}, 2^{6}\right\},\left\{3,2^{3}\right\}$, and $\left\{1^{4}, 2^{4}\right\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{1} t_{2}{ }^{2}$ we see that the following results:
7. $N t_{1} t_{2}{ }^{2} t_{1}=N t_{1} t_{2}{ }^{2} t_{=} N t_{1} N t_{2}{ }^{2} t_{2}{ }^{2-1} t_{1} t_{1}^{-1} t_{2}{ }^{2}=N t_{1}^{-1} t_{2}{ }^{2} \in N t_{1} t_{2} N$ so this orbit send two joins back to the double coset $N t_{1} t_{2} N$, denoted [1,2].
8. $N t_{1} t_{2}{ }^{2} t_{2}{ }^{5}=N t_{1} t_{2}{ }^{2} t_{2}{ }^{2-1}=N t_{1} \in N t_{1} N$ so this orbit send two joins back to the double coset $N t_{1} N$, denoted [1].
9. $N t_{1} t_{2}{ }^{2} t_{2}{ }^{2}=N t_{1} t_{2}{ }^{2}=N t_{1}{ }^{6} \in N t_{1}{ }^{6} N$ which means this orbit sends two joins back to the double coset $N t_{1}{ }^{6} N$, denoted [1 $\left.{ }^{6}\right]$.
10. $N t_{1} t_{2}{ }^{2} t_{2}{ }^{6}=N t_{1} t_{2}^{2}=N t_{1} t_{2} \in N t_{1} t_{2} N$. So this orbit sends these two joins to the double coset $N t_{1} t_{2} N$, denoted [1,2].
11. $N t_{1} t_{2}{ }^{2} t_{2}{ }^{3}=N t_{1} t_{2}{ }^{5} \in N t_{1} t_{2}^{5} N$. Our relations indicate this orbit sends these two joins to the double coset $N t_{1} t_{2}^{5} N$, denoted [1, $\left.2^{5}\right]$.
12. $N t_{1} t_{2}{ }^{2} t_{2}{ }^{4}=N t_{1} t_{2}{ }^{6} \in N t_{1} t_{2}{ }^{6} N$, so this orbit sends 2 joins to the double coset $N t_{1} t_{2}^{6} N$, denoted $\left[1,2^{6}\right]$.
$N t_{1} \mathrm{t}_{2}{ }^{5} \mathrm{~N}$
We now will determine the number of single coset in the double coset $\left[1,2^{5}\right]$ by this formula $\frac{|N|}{\mid N^{\left(1,2^{5}\right) \mid}}$ which gives us $\frac{6}{2}=3$. The coset representative for $\left[1,2^{5}\right]$ is $N t_{1} t_{2}^{5}$. We now identify the orbits of $N^{\left(1,2^{5}\right)}$ and determine where they go. We see that the orbits of $N^{\left(1,2^{5}\right)}$ on $\left\{3,1^{5}, 1^{6}, 2^{3}, 2^{5}, 2^{6}\right\}$ are $\left\{1^{4}, 2^{2}\right\},\left\{1^{5}, 2^{6}\right\},\left\{1^{6}, 2^{3}\right\},\left\{1,2^{4}\right\},\{2,7\}$ and $\left\{3,2^{5}\right\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{1} t_{2}^{5}$ we see that the following results:
13. $N t_{1} t_{2}^{5} t_{2}{ }^{2}=N t_{1} t_{2}{ }^{2-1} t_{2}{ }^{2}=N t_{1} \in N t_{1} N$ so this orbit send 2 joins back to the double coset $N t_{1} N$, denoted [1].
14. $N t_{1} t_{2}^{5} t_{1}^{5}=N t_{1}^{6} \in N t_{1}^{6} N$ which means this orbit sends 2 joins back to the double coset $N t_{1}^{6} N$, denoted $\left[1^{6}\right]$.
15. $N t_{1} t_{2}^{5} t_{2}{ }^{3}=N t_{1} t_{2} \in N t_{1} t_{2} N$. So this orbit sends 2 joins to the double $\operatorname{coset} N t_{1} t_{2} N$, denoted $[1,2]$.
16. $N t_{1} t_{2}^{5} t_{2}^{4}=N t_{1} t_{2}^{2} \in N t_{1} t_{2}^{2} N$. Our relations indicate this orbit sends 2 joins to the double coset $N t_{1} t_{2}^{2} N$, denoted $\left[1,2^{2}\right]$.
17. $N t_{1} t_{2}^{5} t_{2}=N t_{1} t_{2}^{6} \in N t_{1} t_{2}^{6} N$, so this orbit sends 2 joins to the double coset $N t_{1} t_{2}^{6} N$, denoted $\left[1,2^{6}\right]$.
18. $N t_{1} t_{2}^{5} t_{2}^{5}=N t_{1} t_{2}^{5} t_{2}^{5}=N t_{1} t_{2}^{7} t_{2}^{3}=N t_{1} t_{2}^{3}=N t_{1} t_{2}{ }^{2} \in N t_{1} t_{2} N$, so this orbit sends 2 joins to the double coset $N t_{1} t_{2} N$, denoted [1,2].

$\mathrm{Nt}_{1} \mathrm{t}_{2}{ }^{6} \mathrm{~N}$

We now will determine the number of single coset in the double coset $\left[1,2^{6}\right]$ by this formula $\frac{|N|}{\left|N^{\left(1,2^{6}\right)}\right|}$ which gives us $\frac{6}{2}=3$. The coset representative for $\left[1,2^{6}\right]$ is $N t_{1} t_{2}^{6}$. We now identify the orbits of $N^{\left(1,2^{6}\right)}$ and determine where they go. We see that the orbits of $N^{\left(1,2^{6}\right)}$ on $\left\{3,1^{5}, 1^{6}, 2^{3}, 2^{5}, 2^{6}\right\}\left\{1,2^{4}\right\},\{2,7\},\left\{3,2^{5}\right\},\left\{1^{4}, 2^{2},\right\},\left\{1^{6}, 2^{3}\right\}$, and $\left\{1^{5}, 2^{6}\right\}$. When we apply a representative t_{i} from each orbit to the coset representative $N t_{1} t_{2}^{6}$ we see that the following results:

1. $N t_{1} t_{2}{ }^{6} t_{1}=N t_{1} t_{2}^{6} t_{1}=N t_{1} t_{2} \in N t_{1} t_{2} N$ so this orbit send 2 joins back to the double coset $N t_{1} t_{2} N$, denoted [1,2].
2. $N t_{1} t_{2}{ }^{6} t_{2}=N t_{1} t_{2} t_{2}^{-1}=N t_{1} \in N t_{1} N$ so this orbit send 2 joins back to the double coset $N t_{1} N$, denoted [1].
3. $N t_{1} t_{2}{ }^{6} t_{2}^{5}=N t_{6} \in N t_{6} N$ which means this orbit sends 2 joins back to the double coset $N t_{6} N$, denoted $\left[1^{6}\right]$.
4. $N t_{1} t_{2}{ }^{6} t_{2}{ }^{2}=N t_{1} t_{2} \in N t_{1} t_{2} N$. So this orbit sends 2 joins to the double coset $N t_{1} t_{2} N$, denoted [1, 2].
5. $N t_{1} t_{2}{ }^{6} t_{2}{ }^{3}=N t_{1} t_{2}{ }^{2} \in N t_{1} t_{2}{ }^{2} N$. Our relations indicate this orbit sends 2 joins to the double coset $N t_{1} t_{2}{ }^{2} N$, denoted $\left[1,2^{2}\right]$.
6. $N t_{1} t_{2}{ }^{6} t_{2}^{6}=N t_{1}\left(t_{2}^{6}\right)^{2}=N t_{1} t_{2}^{5} \in N t_{1} t_{2}^{5} N$, so this orbit sends 2 joins to the double coset $N t_{1} t_{2}^{5} N$, denoted $\left[1,2^{6}\right]$.

This concludes all words of length two. Since we did not extend any of the orbits to new double cosets, this group is closed under right hand multiplication. Thus, our double coset enumeration of $7^{* 2}:_{m} S_{3}$ is complete.

The results are submarized in the following cayley diagram Figure 7.1:

Figure 7.1: Cayley diagram of $7^{* 2}:_{m} S_{3}$

In Table 7.5, we first label each single coset. We then compute the action of $x x, y y$ and $t t_{1}$ to determine $f(x), f(y)$, and $f(t)$:

$$
\begin{gathered}
f(x)=(2,4,6)(3,7,9)(5,11,10)(8,15,14)(12,21,23)(13,24,25) \\
(16,20,26)(17,27,18)(19,28,22) \\
f(y)=(2,5)(3,8)(4,10)(6,11)(7,14)(9,15)(12,17)(13,25) \\
(16,26)(18,21)(19,28)(23,27) \\
f(t)=(1,2,6,7,4,9,3)(5,12,22,17,8,16,13) \\
(10,14,23,26,28,25,18)(11,19,15,24,21,27,20)
\end{gathered}
$$

Table 7.5: Labeling of and Actions on the Single Cosets

Labeling	Single Cosets	$x x$		$y y$			$t t_{1}$	
1	N	1	N	1	N	2	$N t_{1}$	
2	$N t_{1}$	4	$N t_{1}^{4}$	5	$N t_{2}$	6	$N t_{1}^{2}$	
3	$N t_{1}^{6}$	7	$N t_{1}^{3}$	8	$N t_{2}^{6}$	1	N	
4	$N t_{1}^{4}$	6	$N t_{1}^{2}$	10	$N t_{2}^{4}$	9	$N t_{1}^{5}$	
5	$N t_{2}$	11	$N t_{2}^{2}$	2	$N t_{1}$	12	$N t_{1} t_{2}$	
6	$N t_{1}^{2}$	2	$N t_{1}$	11	$N t_{2}^{2}$	7	$N t_{1}^{3}$	
7	$N t_{1}^{3}$	9	$N t_{1}^{5}$	14	$N t_{2}^{3}$	4	$N t_{1}^{4}$	
8	$N t_{2}^{6}$	15	$N t_{2}^{5}$	3	$N t_{1}^{6}$	16	$N t_{1}^{4} t_{2}^{3}$	
9	$N t_{1}^{5}$	3	$N t_{1}^{6}$	15	$N t_{2}^{5}$	3	$N t_{1}^{6}$	
10	$N t_{2}^{4}$	5	$N t_{2}$	4	$N t_{1}^{4}$	14	$N t_{2}^{3}$	
11	$N t_{2}^{2}$	10	$N t_{2}^{4}$	6	$N t_{1}^{2}$	19	$N t_{1}^{4} t_{2}^{4}$	
12	$N t_{1} t_{2}$	21	$N t_{1}^{4} t_{2}^{2}$	17	$N t_{2} t_{1}$	22	$N t_{1} t_{2}^{2}$	
13	$N t_{1}^{4} t_{2}^{5}$	24	$N t_{1}^{2} t_{2}^{3}$	25	$N t_{1} t_{2}^{6}$	5	$N t_{2}$	
14	$N t_{2}^{3}$	8	$N t_{2}^{6}$	7	$N t_{1}^{3}$	23	$N t_{1}^{2} t_{2}^{4}$	
15	$N t_{2}^{5}$	14	$N t_{2}^{3}$	9	$N t_{1}^{5}$	24	$N t_{1} \bar{t}_{8}$	
16	$N t_{1}^{4} t_{2}^{3}$	20	$N t_{1}^{2} t_{2}^{6}$	26	$N t_{1} t_{2}^{5}$	13	$N t_{1}^{4} t_{2}^{5}$	
17	$N t_{2} t_{1}$	27	$N t_{2}^{2} t_{1}^{4}$	12	$N t_{1} t_{2}$	8	$N t_{2}^{6}$	
18	$N t_{2}^{4} t_{1}^{2}$	17	$N t_{2} t_{1}$	21	$N t_{1}^{4} t_{2}^{2}$	10	$N t_{2}^{4}$	
19	$N t_{1}^{4} t_{2}^{4}$	28	$N t_{2} t_{1}^{3}$	28	$N t_{2} t_{1}^{3}$	15	$N t_{2}^{5}$	
20	$N t_{1}^{2} t_{2}^{6}$	26	$N t_{1} t_{2}^{5}$	20	$N t_{1}^{2} t_{2}^{6}$	11	$N t_{2}^{2}$	
21	$N t_{1}^{4} t_{2}^{2}$	23	$N t_{1}^{2} t_{2}^{4}$	18	$N t_{2}^{4} t_{1}^{2}$	27	$N t_{2}^{2} t_{1}^{4}$	
22	$N t_{1} t_{2}^{2}$	19	$N t_{1}^{4} t_{2}^{4}$	22	$N t_{1} t_{2}^{2}$	17	$N t_{2} t_{1}$	
23	$N t_{1}^{2} t_{2}^{4}$	12	$N t_{1} t_{2}$	27	$N t_{2}^{2} t_{1}^{4}$	26	$N t_{1} t_{2}^{5}$	
24	$N t_{1}^{2} t_{2}^{3}$	25	$N t_{1} t_{2}^{6}$	24	$N t_{1}^{2} t_{2}^{3}$	21	$N t_{1}^{4} t_{2}^{2}$	
25	$N t_{1} t_{2}^{6}$	13	$N t_{1}^{4} t_{2}^{5}$	13	$N t_{1}^{4} t_{2}^{5}$	18	$N t_{2}^{4} t_{1}^{2}$	
26	$N t_{1} t_{2}^{5}$	16	$N t_{1}^{4} t_{2}^{3}$	16	$N t_{1}^{4} t_{2}^{3}$	28	$N t_{2} t_{1}^{3}$	
27	$N t_{2}^{2} t_{1}^{4}$	18	$N t_{2}^{4} t_{1}^{2}$	23	$N t_{1}^{2} t_{2}^{4}$	20	$N t_{1}^{2} t_{2}^{6}$	
28	$N t_{2} t_{1}^{3}$	22	$N t_{1} t_{2}^{2}$	19	$N t_{1}^{4} t_{2}^{4}$	25	$N t_{1} t_{2}^{6}$	

7.4 Additional Finite Homomorphic Images of the Monomial Progenitor $7^{* 2}:_{m} S_{3}$

We found five other homomorphic images of the monomial progenitor $7^{* 2}:_{m} S_{3}$, which can be further examined as we have done in the above chapter. From MAGMA, we have the following:

```
a:=0;b:=0;c:=0;d:=4;e:=0;f:=0;g:=0; //Index = 168 //
G<x,y,t>:=Group<x,y,t|x^3, y^2, (x*y)^2,t^7,t^x=t^4,t^^(x^-1)=t^2,
(x*t*t^x*t^(x^2))^a, (x*y*t)^b, (x^2*y*t^x)^c,
(x*y*t^y)^d,(x*t*t^(x^2))}\mp@subsup{)}{}{\wedge}e
(x*t*t^(x^2))^e, (y*t*t^y*t^x*t^y*t^2*(t^x)^3)^f,(t*t^x)^g>;
```

G;

Finitely presented group G on 3 generators
Relations

$$
\begin{aligned}
& x^{\wedge} 3=\operatorname{Id}(G) \\
& y^{\wedge} 2=\operatorname{Id}(G) \\
& (x * y) \sim 2=\operatorname{Id}(G) \\
& t^{\wedge} 7=\operatorname{Id}(G) \\
& t^{\wedge} x=t^{\wedge} 4 \\
& x * t * x^{\wedge}-1=t^{\wedge} 2 \\
& (x * t * y)^{\wedge} 4=\operatorname{Id}(G)
\end{aligned}
$$

\#G;

1,008
$\mathrm{f}, \mathrm{G} 1, \mathrm{k}:=\operatorname{Coset}$ Action($\mathrm{G}, \mathrm{sub}\langle\mathrm{G} \mid \mathrm{x}, \mathrm{y}\rangle$);

CompositionFactors(G1);

G
$\mid \mathrm{A}(1,7)=\mathrm{L}(2,7)$
| Cyclic(2)
*
| Cyclic(3)
1
a:=0;b:=0;c:=6;d:=7;e:=0;f:=3;g:=0; //Index = 224 //
$G<x, y, t>:=G r o u p<x, y, t \mid x^{\wedge} 3, y^{\wedge} 2,(x * y)^{\wedge} 2, t^{\wedge} 7, t^{\wedge} x=t \wedge 4, t^{\wedge}\left(x^{\wedge}-1\right)=t^{\wedge} 2$, $\left(x * t * t^{\wedge} x * t^{\wedge}\left(x^{\wedge} 2\right)\right)^{\wedge} a,(x * y * t)^{\wedge} b,\left(x^{\wedge} 2 * y * t^{\wedge} x\right)^{\wedge} c$, ($\left.x * y * t^{\wedge} y\right)^{\wedge} d,\left(x * t * t^{\wedge}\left(x^{\wedge} 2\right)\right)^{\wedge} e$,
$\left(x * t * t^{-}\left(x^{-} 2\right)\right)^{-} e,\left(y * t * t^{-} y * t^{-} x * t^{-} y * t^{\wedge} 2 *\left(t^{-} x\right)^{-} 3\right)-f,\left(t * t^{-} x\right)^{-} g>;$

G;

Finitely presented group G on 3 generators
Relations

$$
\begin{aligned}
& x^{\wedge} 3=\operatorname{Id}(G) \\
& y^{\wedge} 2=\operatorname{Id}(G) \\
& (x * y)^{\wedge} 2=\operatorname{Id}(G) \\
& t^{\wedge} 7=\operatorname{Id}(G) \\
& t^{\wedge} x=t^{\wedge} 4 \\
& x * t * x^{\wedge}-1=t^{\wedge} 2 \\
& \left(x^{\wedge} 2 * y * x^{\wedge}-1 * t * x\right)^{\wedge}=\operatorname{Id}(G)
\end{aligned}
$$

$$
\begin{aligned}
& (x * t * y)^{\wedge} 7=\operatorname{Id}(G) \\
& \left(y * t * y^{\wedge}-1 * t * y * x^{\wedge}-1 * t * x * y^{\wedge}-1 * t * y * t^{\wedge} 2 * x^{\wedge}-1 * t^{\wedge} 3 *\right. \\
& x)^{\wedge}=\operatorname{Id}(G)
\end{aligned}
$$

```
#G;
1,344
f,G1,k:=CosetAction(G,sub<G|x,y>);
    CompositionFactors(G1);
    G
    | A(1, 7) = L(2, 7)
    *
    | Cyclic(2)
    *
    | Cyclic(2)
    *
    | Cyclic(2)
    1
```

$\mathrm{a}:=0 ; \mathrm{b}:=0 ; \mathrm{c}:=0 ; \mathrm{d}:=0 ; \mathrm{e}:=0 ; f:=2 ; \mathrm{g}:=0 ; \quad / /$ Index $=343 / /$
$G<x, y, t\rangle:=G r o u p<x, y, t \mid x^{\wedge} 3, y^{\wedge} 2,(x * y)^{\wedge} 2, t^{\wedge} 7, t^{\wedge} x=t^{\wedge} 4, t^{\wedge}\left(x^{\wedge}-1\right)=t^{\wedge} 2$,
$\left(x * t * t^{\wedge} x * t^{\wedge}\left(x^{\wedge} 2\right)\right)^{\wedge} a,(x * y * t)^{\wedge} b,\left(x^{\wedge} 2 * y * t^{\wedge} x\right)^{\wedge} c$,
$(x * y * t \wedge y)^{\wedge} d,\left(x * t * t^{\wedge}\left(x^{\wedge} 2\right)\right)^{\wedge} e$,
$\left(x * t * t^{\wedge}\left(x^{\wedge} 2\right)\right)^{\wedge} e,\left(y * t * t^{\wedge} y * t^{\wedge} x * t \wedge y * t^{\wedge} 2 *\left(t t^{\wedge} x\right)^{\wedge} 3\right)^{\wedge} f,\left(t * t^{\wedge} x\right)^{\wedge} g>;$
G;

```
Finitely presented group \(G\) on 3 generators
Relations
\(x^{-} 3=\operatorname{Id}(G)\)
\(y^{-2}=\operatorname{Id}(G)\)
\((\mathrm{x} * \mathrm{y})^{\wedge} 2=\operatorname{Id}(\mathrm{G})\)
\(\mathrm{t}^{\wedge} 7=\operatorname{Id}(\mathrm{G})\)
\(t^{-} \mathrm{x}=\mathrm{t}^{-4}\)
\(\mathrm{x} * \mathrm{t} * \mathrm{x}^{\wedge}-1=\mathrm{t}-2\)
(y * \(\mathrm{t} * \mathrm{y}^{\wedge}-1 * \mathrm{t} * \mathrm{y} * \mathrm{x}^{\wedge}-1 * \mathrm{t} * \mathrm{x} * \mathrm{y}^{\wedge}-1 * \mathrm{t} * \mathrm{y} * \mathrm{t} \wedge 2 * \mathrm{x}^{\wedge}-1 * \mathrm{t}\) 3 \(*\)
\(\mathrm{x})^{\wedge} 2=\operatorname{Id}(\mathrm{G})\)
```

\#G;

2,058
$\mathrm{f}, \mathrm{Gi}, \mathrm{k}:=\operatorname{Coset} \operatorname{Action}(\mathrm{G}, \operatorname{sub}\langle\mathrm{G} \mid \mathrm{x}, \mathrm{y}\rangle$);

CompositionFactors(G1);

CompositionFactors(G1);
G
I Cyclic(2)
*
I Cyclic(3)
*
1 Cyclic(7)
*
| Cyclic(7)
*
1 Cyclic(7)
1
$\mathrm{a}:=0 ; \mathrm{b}:=0 ; \mathrm{c}:=0 ; \mathrm{d}:=5 ; \mathrm{e}:=0 ; \mathrm{f}:=4 ; \mathrm{g}:=0 ; \quad / /$ Index $=420 / /$
$G<x, y, t\rangle:=G r o u p<x, y, t \mid x^{\wedge} 3, y^{\wedge} 2,(x * y)^{\wedge} 2, t^{\wedge} 7, t^{\wedge} x=t^{\wedge} 4, t^{\wedge}\left(x^{\wedge}-1\right)=t^{\wedge} 2$,
$\left(x * t * t^{\wedge} x * t^{\wedge}\left(x^{\wedge} 2\right)\right)^{\wedge} a,(x * y * t)^{\wedge} b,\left(x^{\wedge} 2 * y * t^{\wedge} x\right)^{\wedge} c$,
$\left(x * y * t^{\wedge} y\right)^{\wedge} d,\left(x * t * t^{\wedge}\left(x^{\wedge} 2\right)\right)^{\wedge} e$,
$\left(x * t * t^{\wedge}\left(x^{\wedge} 2\right)\right)^{\wedge} e,\left(y * t * t^{\wedge} y * t^{\wedge} x * t^{\wedge} y * t^{\wedge} 2 *\left(t^{\wedge} x\right)^{\wedge} 3\right)^{\wedge} f,\left(t * t^{\wedge} x\right)^{\wedge} g>;$

G;

Finitely presented group G on 3 generators
Relations
$x^{-} 3=\operatorname{Id}(G)$
$y^{\wedge} 2=\operatorname{Id}(G)$
$(\mathrm{x} * \mathrm{y})^{\wedge} 2=\operatorname{Id}(\mathrm{G})$
$\mathrm{t}^{\wedge} 7=\operatorname{Id}(\mathrm{G})$
$\mathrm{t}^{-x}=\mathrm{t}-4$
$x * t * x^{-}-1=t^{-2}$
$(\mathrm{x} * \mathrm{t} * \mathrm{y})^{-5}=\operatorname{Id}(\mathrm{G})$
($\mathrm{y} * \mathrm{t} * \mathrm{y}^{\wedge}-1 * \mathrm{t} * \mathrm{y} * \mathrm{x}^{\wedge}-1 * \mathrm{t} * \mathrm{x} * \mathrm{y}^{\wedge}-1 * \mathrm{t} * \mathrm{y} * \mathrm{t}^{\wedge} 2 * \mathrm{x}^{\wedge}-1 * \mathrm{t}^{\wedge} 3 *$
x) ${ }^{4} 4=\operatorname{Id}(G)$
\#G;
2,520
$\mathrm{f}, \mathrm{G} 1, \mathrm{k}:=\operatorname{CosetAction}(\mathrm{G}, \mathrm{sub}\langle\mathrm{G}| \mathrm{x}, \mathrm{y}>)$;

CompositionFactors(G1);

CompositionFactors(G1);
G
| Alternating(7)
1
$\mathrm{a}:=0 ; \mathrm{b}:=0 ; \mathrm{c}:=6 ; \mathrm{d}:=7 ; \mathrm{e}:=0 ; \mathrm{f}:=0 ; \mathrm{g}:=0 ; \quad / /$ Index $=1792 / /$
$G\langle x, y, t\rangle:=G r o u p<x, y, t \mid x^{\wedge} 3, y^{\wedge} 2,(x * y)^{\wedge} 2, t^{\wedge} 7, t^{\wedge} x=t^{\wedge} 4, t^{\wedge}\left(x^{\wedge}-1\right)=t^{\wedge} 2$,
$\left(x * t * t^{\wedge} x * t^{\wedge}\left(x^{\wedge} 2\right)\right)^{\wedge} a,(x * y * t)^{\wedge} b,\left(x^{\wedge} 2 * y * t^{\wedge} x\right)^{\wedge} c$,
$(x * y * t \wedge y) \wedge d,\left(x * t * t^{\wedge}\left(x^{\wedge} 2\right)\right)^{\wedge} e$,
$\left(x * t * t^{\wedge}\left(x^{\wedge} 2\right)\right)^{\wedge} e,\left(y * t * t^{\wedge} y * t^{\wedge} x * t^{\wedge} y * t^{\wedge} 2 *\left(t^{\wedge} x\right)^{\wedge} 3\right) \wedge f,\left(t * t^{\wedge} x\right)^{\wedge} g>;$

G;

Finitely presented group G on 3 generators
Relations

$$
\begin{aligned}
& x^{\wedge} 3=\operatorname{Id}(G) \\
& y^{\wedge} 2=\operatorname{Id}(G) \\
& (x * y)^{\wedge} 2=\operatorname{Id}(G) \\
& t^{\wedge} 7=\operatorname{Id}(G)
\end{aligned}
$$

```
\(t^{-} x=t^{\wedge} 4\)
\(x * t * x^{\wedge}-1=t^{\wedge} 2\)
\(\left(x^{\wedge} 2 * y * x^{\wedge}-1 * t * x\right)^{\wedge}=\operatorname{Id}(G)\)
\((x * t * y)^{\wedge} 7=\operatorname{Id}(G)\)
```

\#G;

```
// 10,752 //
```

f, G1, $\mathrm{k}:=\operatorname{CosetAction(G,sub<G|x,y>);~}$
CompositionFactors(G1);
CompositionFactors(G1);
G
$1 \mathrm{~A}(1,7)=\mathrm{L}(2,7)$
$*$
| Cyclic(2)
| Cyclic(2)
*
| Cyclic(2)
*
| Cyclic(2)
*
1 Cyclic(2)
| Cyclic(2)

Lastly, we discovered another progenitor $2^{5}: S_{3}$ which gives rise to a Symplectic group $S_{4}(5)$, as seen in our MAGMA code below:

```
    G<x,y,t>:=Group<x,y,t|x^3, y^3 , (x*y)^2, t^5, (t,x),
> (y*t)^5, (x*y*t)^0, (y*t*(t^y)^(x^2) )
> #G;
4 6 8 0 0 0 0
> f,G1,k:=CosetAction(G,sub<G|x,y>);
> CompositionFactors(G1);
    G
    | C(2, 5) =S(4, 5)
    1
```

The construction of this presentation gives us $5^{3}: S_{3}$.

```
Appendix A: MAGMA Code for
    \frac{3*:A}{3}
Group 3 **3: A3/t0t1=t1t0
N:=Sym(6);
xx:=N!(1,2,3)(4,5,6);
N:=sub<N|xx>;
G<x,t>:=Group<x,t |x^3,t^3,t*t^x=t^x*t>;
Index (G,sub<G|x>);
    f,G1,k:=CosetAction(G,sub<G|x>);
    IN:=sub<G1 |f(x)>;
ts:=[Id(G1) : i in [1..6]];
ts[3]:=f(t); ts[1]:=f(t*x); ts[2]:=f(t^(x^2));
ts[4]:=ts[1] - -1; ts [5]:=ts[2]^-1; ts [6]:=ts[3] - -1;
cst := [null : i in [1 .. 27]] where null is [Integers() | ];
prodim := function(pt, Q, I)
/*
Return the image of pt under permutations Q[I] applied sequentially.
    */
    v := pt;
for i in I do
    v := v^(Q[i]);
end for;
return v;
end function;
```

```
CompositionFactors(G1);
    G
    | Cyclic(3)
    *
    | Cyclic(3)
    *
    | Cyclic(3)
    *
    | Cyclic(3)
    1
```

N3:=Stabiliser(N, 3);
S: =\{[3]\};
SS: $=S^{\wedge} N$;
SSS:=Setseq(SS);
for i in [1..\#SSS] do
for n in IN do
if ts[3] eq $n *(t s[(\operatorname{Rep}(S S S[i]))[1]])$
then print Rep(SSS[i]);
end if;
end for;
end for;
T3:=Transversal (N,N3);
for i in [1..\#T3] do
ss: $=[3]$ ~T3 [i];
cst[prodim(1, ts, ss)] := ss;
end for;
m: =0;
for i in [1..27] do if cst[i] ne []
then $m:=m+1$; end if; end for; m;
Orbits(N3);

```
N6:=Stabiliser (N,6);
S:={[6]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SSS] do
for n in IN do
if ts[6] eq n*(ts[(Rep(SSS[i]))[1]])
then print Rep(SSS[i]);
end if;
end for;
end for;
T6:=Transversal (N,N6);
for i in [1..#T6] do
ss:=[6] ^T6[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0;
for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N6);
```

N31:=Stabiliser (N3, 1);
$S:=\{[3,1]\}$;
SS: = $\mathrm{S}^{\wedge} \mathrm{N}$;
SSS: =Setseq (SS);
for i in [1..\#SS] do
for g in IN do if ts[3]*ts[1]
eq g*ts[Rep(SSS[i]) [1]]*ts[Rep(SSS[i]) [2]]
then print SSS[i];
end if; end for; end for;
T31:=Transversal (N,N31);

```
for i in [1..#T31] do
ss:=[3,1] T31[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N31);
```

N34:=Stabiliser ($\mathrm{N},[3,4]$);
S: $=\{[3,4]\}$;
SS: $=\mathrm{S}^{\wedge} \mathrm{N}$;
SSS:=Setseq(SS);
for i in [1..\#SS] do
for g in IN do if ts[3]*ts[4]
eq $\mathrm{g} * \mathrm{ts}[\operatorname{Rep}(\mathrm{SSS}[\mathrm{i}])[11] * \operatorname{ts}[\operatorname{Rep}(\mathrm{SSS}[\mathrm{i}])[2]]$
then print SSS[i];
end if; end for; end for;
T34:=Transversal ($\mathrm{N}, \mathrm{N} 34$);
for in in [1..\#T34] do
ss:=[3,4] T 34 [i];
cst[prodim(1, ts, ss)] := ss;
end for;
$\mathrm{m}:=0$; for i in [1..27] do if cst[i] ne []
then $m:=m+1$; end if; end for; m;
Orbits(N34);
N32: =Stabiliser (N, [3,2]);
$S:=\{[3,2]\}$;
SS: $=S^{\wedge} N$;
SSS: =Setseq(SS);
for i in [1..\#SS] do
for g in $I N$ do if ts[3]*ts[2]

```
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
then print SSS[i];
end if; end for; end for;
Orbits(N32);
T32:=Transversal(N,N32);
for i in [1..#T32] do
ss:=[3,2] T32[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N32);
N35:=Stabiliser(N,[3,5]);
S:={[3,5]};
SS:=S~N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g}\mathrm{ in IN do if ts[3]*ts[5]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
then print SSS[i];
end if; end for; end for;
Orbits(N35);
T35:=Transversal (N,N35);
for i in [1..#T35] do
ss:=[3,5] ~T35[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N35);
```

```
N61:=Stabiliser(N,[6,1]);
S:={[6,1]};
SS:=S^N;
SSS:=Setseq_(SS);
for i in [1..#SS] do
for g in IN do if ts[6]*ts[1]
eq g*ts[Rep(SSS[i]) [1]]*ts[Rep(SSS[i]) [2]]
then print SSS[i];
end if; end for; end for;
T61:=Transversal(N,N61);
for i in [1..#T61] do
ss:=[6,1] `T61[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N61);
N64:=Stabiliser(N,[6,4]);
S:={[6,4]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[6]*ts[4]
eq g*ts[Rep(SSS[i]) [1]]*ts[Rep(SSS[i])[2]]
then print SSS[i];
end if; end for; end for;
Orbits(N64);
T64:=Transversal(N,N64);
for i in [1..#T64] do
ss:=[6,4] T64[i];
cst[prodim(1, ts, ss)] := ss;
```

end for;
$\mathrm{m}:=0$; for i in [1..27] do if cst[i] ne []
then $\mathrm{m}:=\mathrm{m}+1$; end if; end for; m ;
Orbits(N64);

N62:=Stabiliser ($\mathrm{N},[6,2]$);
S:=\{[6,2]\};
SS: $=S^{\wedge} N$;
SSS: =Setseq(SS);
for i in [1..\#SS] do
for g in IN do if ts[6]*ts[2]
eq $g * \operatorname{ts}[\operatorname{Rep}(\operatorname{SSS}[i])[1]] * \operatorname{ts}[\operatorname{Rep}(S S S[i])[2]]$
then print SSS[i];
end if; end for; end for;
T62:=Transversal(N,N62);
for i in [1..\#T62] do
ss:=[6,2]^T62[i];
cst[prodim(1, ts, ss)] := ss;
end for;
$m:=0$; for i in [1..27] do if cst[i] ne []
then $m:=m+1$; end if; end for; m;
Orbits(N62);

N65:=Stabiliser (N, $[6,5]$);
S: $=\{[6,5]\}$;
SS: = S $^{\wedge} N$;
SSS: =Setseq(SS);
for i in [1..\#SS] do
for g in IN do if ts[6]*ts[5]
eq $g * \operatorname{ts}[\operatorname{Rep}(S S S[i])[1]] * \operatorname{ts}[\operatorname{Rep}(S S S[i])[2]]$
then print SSS[i];
end if; end for; end for;

```
T65:=Transversal (N,N65);
for i in [1..#T65] do
ss:=[6,5] N65[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N65);
N642:=Stabiliser(N,[6,4,2]);
    S:={[6,4,2]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[6]*ts[4]*ts[2]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]
then print SSS[i];
end if; end for; end for;
T642:=Transversal(N,N642);
for i in [1..#T62] do
ss:=[6,4,2] 'T642[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N642);
N312:=Stabiliser(N,[3, 1, 2]);
S:={[3,1,2]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
```

```
for g in IN do if ts[3]*ts[1]*ts[2]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i]) [2]]*ts[Rep(SSS[i]) [3]]
then print SSS[i];
end if; end for; end for;
    for n in N do if [3,1,2]^n eq [1,2,3]
then N312:=sub<N|N312,n>; end if; end for;
// Determines equal double cosets //
for n in N do if [3,1,2] n n eq [2,3,1]
then N312:=sub<N|N312,n>; end if; end for;
T312:=Transversal(N,N312);
for i in [1..#T312] do
ss:=[3,1,2]-T312[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N312);
N342:=Stabiliser(N, [3,4,2]);
    S:={[3,4,2]};
    SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
    for g in IN do if ts[3]*ts[4]*ts[2]
    eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i]) [2]]*ts[Rep(SSS[i]) [3]]
    then print SSS[i];
end if; end for; end for;
T342:=Transversal(N,N342);
for i in [1..#T342] do
ss:=[3,4,2] 'T342[i];
    cst[prodim(1, ts, ss)] := ss;
end for;
```

```
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N342);
N3421:=Stabiliser(N, [3,4,2,1]);
S:={[3,4,2,1]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[3]*ts[4]*ts[2]*ts[1]
eq g*ts[Rep.(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i]) [3]]*ts [R\
ep(SSS [i]) [4]]
    then print SSS[i];
    end if; end for; end for;
T3421:=Transversal(N,N3421);
for i in [1..#T342] do
ss:=[3,4,2,1] T3421[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N3421);
```

N3424: =Stabiliser ($N,[3,4,2,4]$);
$S:=\{[3,4,2,4]\} ;$
SS: $=S^{\wedge} N$;
SSS: =Setseq(SS);
for i in [1..\#SS] do
for g in IN do if $\mathrm{ts}[3] * \operatorname{ts}[4] * \operatorname{ts}[2] * \mathrm{ts}[4]$
eq g*ts [Rep(SSS[i]) [1]]*ts [Rep(SSS[i]) [2]]*ts [Rep (SSS [i]) [3]]*ts [R\
ep(SSS [i]) [4]]
then print SSS[i];

```
end if; end for; end for;
// determines equal cosets //
for n in N do if [3,4,2,4] n eq [1,5,3,5]
then N3424:=sub<N|N3424,n>; end if; end for;
for n in N do if [3,4,2,4] n eq [2,6,1,6]
then N3424:=sub<N|N3424,n>; end if; end for;
T3424:=Transversal(N,N3424);
for i in [1..#T3424] do
ss:=[3,4,2,4] `T3424[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N3424);
N3426:=Stabiliser(N, [3,4,2,6]);
    S:={[3,4,2,6]};
SS:=S~N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[3]*ts[4]*ts[2]*ts[6]
eq g*ts[Rep(SSS[i]) [1]]*ts[Rep(SSS[i]) [2]]*ts[Rep(SSS[i]) [3]]*ts[Rep(SSS[i])[4]]
then print SSS[i];
end if; end for; end for;
T3426:=Transversal(N,N3426);
for i in [1..#T3426] do
ss:=[3,4,2,6] `T3426[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N3426);
```

```
N3423:=Stabiliser(N, [3,4,2,3]);
    S:={[3,4,2,3]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do if ts[3]*ts[4]*ts[2]*ts[3]
eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]*ts[Rep(SSS[i])[3]]*ts[Rep(SSS[i])[4]]
then print SSS[i];
end if; end for; end for;
T3423:=Transversal(N,N3423);
for i in [1..#T3423] do
ss:=[3,4,2,3] `T3423[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..27] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N3423);
N645:=Stabiliser(N, [6,4,5]);
S:={[6,4,5]};
SS:=S~N;
SSS:=Setseq(SS);
for i in [1..#SS] do
    for g in IN do if ts[6]*ts[4]*ts[5]
    eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i]) [2]]*ts[Rep(SSS[i]) [3]]
then print SSS[i];
end if; end for; end for;
// determines equal cosets //
for n in N do if [6,4,5] n eq [5,6,4]
then N645:=sub<N|N645,n>; end if; end for;
for n in N do if [6,4,5]^n eq [4,5,6]
```

then N645:=sub<N|N645,n>; end if; end for;
T645:=Transversal(N,N645);
for i in [1..\#T645] do
ss:=[6,4,5] ${ }^{\text {T645 }}$ [i];
cst[prodim(1, ts, ss)] := ss;
end for;
$\mathrm{m}:=0$; for i in [1..27] do if cst[i] ne []
then $m:=m+1$; end if; end for; m;
Orbits(N645);

Appendix B: MAGMA Code for $\frac{7^{* 2}: m S_{3}}{t_{0} t_{1} 0 t_{1}=e}$

```
G<x,y,t>:=Group<x,y,t|x^3, y^2,(x*y)^2,t^7,t`x=t^4,t^(x^-1)=t^2,(x*y*t)^3>;
```

\#G;
//168//
Index ($G, \operatorname{sub}\langle G| x, y>$;
// 28 //
$f, G 1, k:=\operatorname{CosetAction}(G, s u b<G|x, y\rangle)$;
$f\left((y * x)^{\wedge} 3 * t^{\wedge}\left((y * x)^{\wedge} 2\right) * t^{\wedge}(y * x) * t\right) ;$
$\left.f\left((x * y) \wedge 3 * t^{\wedge}((x * y))^{\wedge}\right) * t^{\wedge}(x * y) * t\right) ;$
CompositionFactors(G1);
/*
G
$\mathrm{A}(1,7)=\mathrm{L}(2,7)$

```
IN:=sub<G1|f(x),f(y)>;
ts:=[Id(G1) : i in [1..12]];
    ts[1]:=f(t); ts[2]:=(ts[1])~2; ts[3]:=(ts[1]) ^3;
    ts[4]:=(ts[1]) ^4; ts[5]:=(ts[1]) -5; ts[6]:=(ts[1])^6;ts[7]:=f(t^y);
    ts[8]:=(ts[7])^2;ts[9]:=(ts[7])^3;ts[10]:=(ts[7])~4;ts[11]:=(ts[7])~5;ts
    [12]:=(ts[7])~6;
    S:=Sym(12);
    xx:=S! (1,4,2) (3,5,6) (7,8,10) (9,12,11);
    yy:=S!(1,7)(2,8)(3,9)(4,10)(5,11)(6,12);
    N:=sub<S|xx,yy>;
    xx*yy;
// (1, 10) (2, 7) (3, 11)(4, 8) (5, 12) (6, 9) //
f(x*y)*ts[1]*ts[10]*ts[1];
// Id(G1) //
f(x*y)*ts[7]*ts [2]*ts [7];
if f(x*y)*ts[1]*ts[10] eq ts[1] - -1 then print true;end if;
if f(x*y)*ts[1] eq ts[1] - 1*ts[10] - - then print true;end if;
cst := [null : i in [1 .. 28]] where null is [Integers() | ];
prodim := function(pt, Q, I)
v := pt;
for i in I do
    v := v^(Q[i]);
end for;
return v;
```

```
end function;
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
// 7 //
DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
/*
{ <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * x * t, GrpFP>, <GrpFP, t * y * t,
GrpFP>, <GrpFP, t, GrpFP>, <GrpFP, t^-1, GrpFP>, <GrpFP, t * y * t^-1, GrpFP>,
<GrpFP, y^t, GrpFP> }
*/
Setseq(DoubleCosets(G,sub<G|x,y>,sub<G|x,y>));
/*
[ <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * x * t, GrpFP>, <GrpFP, t * y * t,
GrpFP>, <GrpFP, t, GrpFP>, <GrpFP, t^-1, GrpFP>, <GrpFP, t * y * t^-1, GrpFP>,
<GrpFP, y^t, GrpFP> ]
> { <GrpFP, Id(G), GrpFP>, <GrpFP, t * y * x * t, GrpFP>, <GrpFP, t * y * t,
>GrpFP>, <GrpFP, t, GrpFP>, <GrpFP, t^-1, GrpFP>, <GrpFP, t * y * t^-1, GrpFP\
>,
><GrpFP, y^t, GrpFP> }
*/
--------------------- ti's and inverses
ts[1]*ts[6];
// Id(G1) implies ts[1] = ts[6] --1 //
ts[2]*ts[5];
// Id(G1) implies ts[2] = ts[5] - -1 //
ts[3]*ts[4];
// Id(G1) implies ts[3] = ts[4]^-1 //
ts [4]*ts [3];
//Id(G1) implies ts[4] = ts[3]^-1//
```

```
ts[5]*ts [2];
//Id(G1) implies ts[5] = ts[2]--1//
ts [6]*ts[1];
//Id(G1) implies ts[6] = ts[1]--1 //
ts[7]*ts[12];
// Id(G1) implies ts[7] = ts[12]^-1//
ts [8]*ts [11];
//Id(G1) implies ts[8] = ts[11]^-1//
ts[9]*ts[10];
//Id(G1) implies ts[9] = ts[10] ^1//
ts[10]*ts[9];
//Id(G1) implies ts[10] = ts[9]^1//
ts[11]*ts[8];
//Id(G1) implies ts[11] = ts[8]^-1//
ts[12]*ts[7];
//Id(G1) implies ts[12] = ts[7]^-1//
```

Checking orbits paths from DC to DC
checking orbit paths from DC [1]
if ts[1]*ts[6] eq Id(G1) then print true; end if;
// true so ts [6] takes 1 to [*]//
if ts[1]*ts[3] eq ts[1] then print true; end if;
$/ /$?? so either ts[1] or ts[3] takes 2 back to itself//
if ts[1]*ts[5] eq ts[6] then print true; end if;
// so ts[5] takes 4 to [6]//
if ts[1]*ts[7] eq ts[1]*ts[7] then print true; end if;
$/ /$ so ts[7] takes 2 to [1,7]//
if ts[1]*ts[] eq ts[1]*ts[8] then print true; end if;
// true so ts[8] takes 1 to $[1,8] / /$
if ts[1]*ts[] eq ts[1]*ts[11] then print true; end if;
// true so ts[11] takes 1 to [1,11]//
if $\mathrm{ts}[1] * \mathrm{ts}[]$ eq ts[1]*ts[12] then print true; end if;
// true so ts[12] takes 1 to $[1,12] / /$
checking orbit paths from DC [6]
if $\mathrm{ts}[6] * \mathrm{ts}[1]$ eq $\operatorname{Id}(\mathrm{G} 1)$ then print true; end if;
// true so ts[1] takes 1 to [*]//
if ts[6]*ts[6] eq ts[6] then print true; end if;
// ?? so either ts [4] or ts[6] takes 2 back to itself//
if ts[6]*ts[2] eq ts[1] then print true; end if;
// true so ts [2] takes 4 to [1]//
if ts[6]*ts[10] eq ts[1]*ts[7] then print true; end if;
$/ /$?? so either $t s[10]$ or $\mathrm{ts}[12]$ takes 2 to $[1,7] / /$
if $t s[6] * t s[11]$ eq ts[1]*ts[8] then print true; end if;
// true so ts [8] takes 1 to $[1,8] / /$
if ts[6]*ts[] eq ts[1]*ts[11] then print true; end if;
$/ /$ true so ts[11] takes 1 to [1,11]//
if ts[6]*ts[] eq ts[1]*ts[12] then print true; end if;
// true so ts[12] takes 1 to $[1,12] / /$
checking orbit paths from DC $[1,7]$
if $\mathrm{ts}[1] * \mathrm{ts}[7] * \mathrm{ts}[12]$ eq ts[1] then print true; end if;
// true so ts[12] takes 2 to [1]//

```
if ts[1]*ts[7]*ts[9] eq ts[1]^(-1) then print true; end if;
// ?? so either ts[1] or ts[9] takes 2 to [6]//
if ts[1]*ts[7]*ts[8] eq ts[1]*ts[7] then print true; end if;
// ?? so either ts[5] or ts[8] takes 2 back to itself//
if ts[1]*ts[7]*ts[7] eq ts[1]*ts[8] then print true; end if;
// true so ts[7] takes 2 to [1,8]//
if ts[1]*ts[7]*ts[10] eq ts[1]*ts[11] then print true; end if;
// true so ts[10] takes 2 to [1,11]//
if ts[1]*ts[7]*ts[11] eq ts[1]*ts[12] then print true; end if;
// true so ts[11] takes 2 to [1,12]//
checking orbit paths from DC [1,8]
if ts[1]*ts[8]*ts[12] eq ts[1]*ts[7] then print true; end if;
// true //
if ts[1]*ts[8]*ts[11] eq ts[1] then print true; end if;
// true //
if ts[1]*ts[8]*ts[8] eq ts[1]^-1 then print true; end if;
// ?? //
if ts[1]*ts[8]*ts[9] eq ts[1]*ts[11] then print true; end if;
// true //
if ts[1]*ts[8]*ts[10] eq ts[1]*ts[12] then print true; end if;
// true //
checking orbit paths from DC [1,11]
if ts[1]*ts[11]*ts[8] eq ts[1] then print true; end if;
// true //
if ts[1]*ts[11]*ts[12] eq ts[6] then print true; end if;
// ?? //
if ts[1]*ts[11]*ts[9] eq ts[1]*ts[7] then print true; end if;
// true //
if ts[1]*ts[11]*ts[10] eq ts[1]*ts[8] then print true; end if;
// true //
```

```
if ts[1]*ts[11]*ts[7] eq ts[1]*ts[12] then print true; end if;
// true //
checking orbit paths from DC [1,12]
if ts[1]*ts[12]*ts[7] eq ts[1] then print true; end if;
// true //
if ts[1]*ts[12]*ts[11] eq ts[6] then print true; end if;
// ?? //
if ts[1]*ts[12]*ts[8] eq ts[1]*ts[7] then print true; end if;
// true //
if ts[1]*ts[12]*ts[9] eq ts[1]*ts[8] then print true; end if;
// true //
if ts[1]*ts[12]*ts[12] eq ts[1]*ts[11] then print true; end if;
// true //
//--------------------------------------------------------------------
S:={[1]};
SS:=S~N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do
if ts[1] eq g*ts[Rep(SSS[i])[1]]
then print SSS[i];
end if;
end for;
end for;
/*
{
            [1]
}
*/
```

```
N1:=Stabiliser(N,1);
#N1;
N1;
/*
Permutation group N1 acting on a set of cardinality 12
Order = 1
*/
T1:=Transversal(N,N1);#T1;
// 6 transversals //
T1;
/*
{@
    Id(N),
    (1, 4, 2) (3, 5, 6) (7, 8, 10) (9, 12, 11),
    (1, 7) (2, 8) (3, 9) (4, 10) (5, 11) (6, 12),
    (1, 2, 4) (3, 6, 5) (7, 10, 8) (9, 11, 12),
    (1, 10) (2, 7) (3, 11) (4, 8) (5, 12) (6, 9),
    (1, 8) (2, 10) (3, 12) (4, 7) (5, 9) (6, 11)
@}
*/
for i in [1..#T1] do
SS:=[1]^T1[i];
cst [prodim(1,ts,SS)]:=SS;
end for;
m:=0; for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
// 6, so 6 cosets in the DC [1] //
Orbits(N1);
/*
```

```
[
    GSet{ 1 },
    GSet{ 2 },
    GSet{ 3 },
    GSet{ 4 },
    GSet{ 5 },
    GSet{ 6 },
    GSet{ 7 },
    GSet{ 8 },
    GSet{ 9 },
    GSet{ 10 },
    GSet{ 11 },
    GSet{ 12 }
]
*/
//-------------------------------------------------------------------
N6:=Stabiliser(N,6);
S:={[6]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do
if ts[6] eq g*ts[Rep(SSS[i])[1]]
then print SSS[i];
end if;
end for;
end for;
/*
{
    [6 ]
}
*/
```

\#N6;

$$
/ / 1 / /
$$

N6;
/*
Permutation group N6 acting on a set of cardinality 12
Order $=1$
*/
T6:=Transversal(N,N6);\#T6;
// 6, so 6 transversals //
T6;
/*
〔@
$\operatorname{Id}(\mathbb{N})$,
$(1,4,2)(3,5,6)(7,8,10)(9,12,11)$,
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$,
$(1,2,4)(3,6,5)(7,10,8)(9,11,12)$,
$(1,10)(2,7)(3,11)(4,8)(5,12)(6,9)$,
$(1,8)(2,10)(3,12)(4,7)(5,9)(6,11)$
@\}
*/
for i in [1..\#T6] do
SS:= [6] "T6[i];
cst $[$ prodim $(1, \mathrm{ts}, \mathrm{SS})]:=\mathrm{SS}$;
end for;
$\mathrm{m}:=0$; for i in [1..\#cst] do if cst[i] ne [] then $\mathrm{m}:=\mathrm{m}+1$; end if;
end for; m;
// 6, so 6 cosets in DC [6] //

Orbits(N6);
/*

```
[
    GSet{ 1 },
    GSet{ 2},
    GSet{ 3},
    GSet{ 4},
    GSet{ 5 },
    GSet{ 6 },
    GSet{ 7},
    GSet{ 8},
    GSet{ 9},
    GSet{ 10 },
    GSet{ 11 },
    GSet{ 12 }
]
*/
DC [1,7]
N17:=Stabiliser(N,[1,7]);
S:={[1,7]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g}\mathrm{ in IN do
if ts[1]*ts[7] eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
then print SSS[i];
end if;
end for;
end for;
/*
{
    [ 1, 7 ]
}
*/
```

\#N17;
// 1 //

N17;
/*
Permutation group N17 acting on a set of cardinality 12
Order = 1
*/
T17:=Transversal(N,N17);
for i in [1..\#T17] do
ss: $=[1,7]^{\wedge}$ T17 [i];
cst[prodim(1, ts, ss)] := ss;
end for;
$\mathrm{m}:=0$; for i in [1..28] do if cst[i] ne []
then $m:=m+1$; end if; end for; m;
// 18-12=6, so 6 cosets in DC [1,7] //
\#T17;
// 6 //

T17;
/*
\{@
Id (N),
$(1,4,2)(3,5,6)(7,8,10)(9,12,11)$,
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$,
$(1,2,4)(3,6,5)(7,10,8)(9,11,12)$,
$(1,10)(2,7)(3,11)(4,8)(5,12)(6,9)$,
$(1,8)(2,10)(3,12)(4,7)(5,9)(6,11)$
@\}
*/
Drbits(N17);

```
/*
[
        GSet{ 1 },
        GSet{ 2 },
        GSet{ 3 },
        GSet{ 4 },
        GSet{ 5 },
        GSet{ 6 },
        GSet{ 7 },
        GSet{ 8 },
        GSet{ 9 },
        GSet{ 10 },
        GSet{ 11 },
        GSet{ 12 }
]
*/
S: \(=\{[1,8]\}\);
SS:=S~N;
SSS:=Setseq(SS);
for i in [1..\#SS] do
for \(g\) in \(I N\) do
if ts[1]*ts[8] eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i]) [2]]
then print SSS[i];
end if;
end for;
end for;
```

```
{
    [1, 8]
}
{
    [7, 2 ]
}
N18:=Stabiliser(N,[1,8]);
/* Enter [1,8] ~ [7,2]*/
for n in N do if 1^n eq 7 and 8^n eq 2
then N18c:=sub<N|N18,n>; end if;end for;
[1,8] N18c;
#N18c;
// 2//
N18c;
/*
Permutation group N18c acting on a set of cardinality 12
Drder = 2
    (1, 7) (2, 8) (3, 9) (4, 10) (5, 11) (6, 12)
*/
T18:=Transversal(N,N18c);
for i in [1..#T18] do
ss:=[1,8]^T18[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..28] do if cst[i] ne []
```

then $\mathrm{m}:=\mathrm{m}+1$; end if; end for; m ;
// 21-18=3, so 3 cosets in DC [1,8] //
\#T18;
// 6 //
T18;
/*
\{@

$$
\operatorname{Id}(N),
$$

$(1,4,2)(3,5,6)(7,8,10)(9,12,11)$,
$(1,2,4)(3,6,5)(7,10,8)(9,11,12)$
© 6
*/

Orbits(N18);
/*
[
GSet\{1, 7\}, GSet\{ 2, 8$\}$, GSet $\{3,9\}$, GSet $\{4,10\}$, GSet\{ 5, 11$\}$, GSet\{ 6, 12$\}$
]

So our orbit paths are:

1) $N t_{-} 1 t_{-} 8 t_{-} 7=$
2) $\mathrm{Nt} \mathrm{H}_{-} 1 \mathrm{t} _8 \mathrm{t} _8=$
3) $\mathrm{Nt} \mathrm{t}_{-} 1 \mathrm{t} _8 \mathrm{t} \mathrm{t}_{-}$
4) $\mathrm{Nt} \mathrm{t}_{-} 1 \mathrm{t}_{-} 8 \mathrm{t}_{-}$
```
5) Nt_1t_8t_
6) Nt_1t_8t_
*/
                                    DC [1,11]
S:={[1,11]};
SS:=S^N;
SSS:=Setseq(SS);
for i in [1..#SS] do
for g in IN do
if ts[1]*ts[11] eq g*ts[Rep(SSS[i])[1]]*ts[Rep(SSS[i])[2]]
then print SSS[i];
end if;
end for;
end for;
/*
{
        [ 1, 11]
}
{
        [ 10, 3 ]
}
*/
N111:=Stabiliser(N, [1, 11]);
/* Enter [1,11] ~ [10,3]*/
for n in N do if 1^n eq 10 and 11'n eq 3
```

```
then N111c:=sub<N|N111,n>; end if;end for;
[1,11] N111c;
#N111c;
// 2//
N111c;
/*
Permutation group N111c acting on a set of cardinality 12
Order = 2
    (1, 10) (2, 7) (3, 11) (4, 8) (5, 12) (6, 9)
*/
T111:=Transversal(N,N111c);
for i in [1..#T111] do
ss:=[1,11]^T111[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..28] do if cst[i] ne []
then m:=m+1; end if; end for; m;
// 24-21 = 3, so 3 cosets in DC [1,11] //
#T111;
// 3 //
T111;
/*
{@
    Id(N),
    (1, 4, 2)(3, 5, 6) (7, 8, 10) (9, 12, 11),
```

```
    (1, 2, 4) (3, 6, 5) (7, 10, 8) (9, 11, 12)
```

@\}
*/

Orbits(N111c);
/*
[

GSet\{1, 10$\}$, $\operatorname{GSet}\{2,7\}$, GSet\{ 3, 11$\}$, $\operatorname{GSet}\{4,8\}$, GSet $\{5,12\}$, GSet\{ 6, 9 \}
]
*/
$S:=\{[1,12]\} ;$
SS:=S~N;
SSS:=Setseq(SS);
for i in [1..\#SS] do
for g in IN do
if ts[1]*ts[12] eq g*ts[Rep(SSS[i]) [1]]*ts[Rep(SSS[i]) [2]]
then print SSS[i];
end if;
end for;

```
end for;
/*
{
[ 10, 5]
}
{
        [ 1, 12 ]
}
*/
N112:=Stabiliser(N,[1,12]);
/* Enter [10,5] ~ [1,12]*/
for n in N do if 10^n eq 1 and 5'n eq 12
then N112c:=sub<N|N112,n>; end if;end for;
[1,12] N112c;
#N112c;
// 2//
N112c;
/*
Permutation group N112c acting on a set of cardinality 12
Order = 2
    (1, 10)(2, 7)(3, 11)(4, 8)(5, 12) (6, 9)
*/
```

T112: =Transversal(N,N112c);
for i in [1..\#T112] do
ss:=[1,12] "T112[i];
cst[prodim(1, ts, ss)] := ss;
end for;
$\mathrm{m}:=0$; for i in [1..28] do if cst[i] ne []

```
then m:=m+1; end if; end for; m;
// 27-24 = 3, so 3 cosets in DC [1,12] //
#N112;
// 1 //
N112;
/*
Permutation group N112 acting on a set of cardinality 12
Order = 1
*/
#T112;
// 3 //
T112;
/*
{@
    Id(N),
    (1, 4, 2) (3, 5, 6)(7, 8, 10) (9, 12, 11),
    (1, 2, 4)(3, 6, 5)(7, 10, 8) (9, 11, 12)
@)
*/
Orbits(N112C);
/*
[
        GSet{ 1, 10 },
    GSet{ 2, 7},
    GSet{ 3, 11 },
    GSet{ 4, 8},
    GSet{ 5, 12 },
```

```
    GSet{ 6, 9 }
]
*/
--process for finding relations used in determining equal double cosets--
NN<a,b>:=Group<a,bla^3,b^2, (b*a) ^2>;
Sch:=SchreierSystem(NN, sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..6]];
for i in [2..6] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1
then P[j]:=xx--1; end if;
if Eltseq(Sch[i])[j] eq 2
then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for n in IN do if ts[1]*ts[8] eq n*ts[7]*ts[2] then n; end if; end for;
/*
(2, 4, 6)(3, 7, 9) (5, 11, 10) (8, 15, 14) (12, 21, 23) (13, 24, 25) (16, 20, 26)(17,
    27, 18)(19, 28, 22)
*/
for i in [1..20] do i, cst[i]; end for;
/*
1 []
2 [1]
3[6]
4[4]
```

```
5 [7]
6 [ 2 ]
7 [ 3 ]
8 [ 12 ]
9 [ 5 ]
10 [ 10]
11 [ 8 ]
12[7, 1]
13 [7, 6]
14 [ 9 ]
15 [ 11]
16 [ 7, 5]
17 [1,7]
18 [ 2, 10]
19 [ 8, 1]
20 [ 8, 6 ]
So (2,6,4)--> (1,2,4): (3,9,7)--> (6,5,3): (5,10,11) --> (7,10,8)
: (8,14,15)--> (12,9,11): enter that into next loop.
We use [1..6} since S_3 has 6 elements...
*/
for i in [1..6] do if ArrayP[i] eq N! (1,2,4) (6,5,3)(7,10,8)(12,9,11)
then Sch[i]; end if; end for; // an-1 , so we use ( }\mp@subsup{\textrm{x}}{}{\wedge}-1\mathrm{ ) as relation
that proves [1,8]=[7,2]//
ts[1]*ts[8] eq f(x-1)*ts[7]*ts[2];
// true , so $t_1t_8=(x-1)t_7t_2$ //
NN<a,b>:=Group<a,b|a^3,b^2,(b*a)^2>;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..6]];
for i in [2..6] do
P:=[Id(N): l in [1..#Sch[i]]];
```

```
for j in [i..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1
then P[j]:=xx^-1; end if;
if Eltseq(Sch[i])[j] eq 2
then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for n in IN do if ts[1]*ts[11] eq n*ts[10]*ts[3] then n;
end if; end for;
/*
(2, 6, 4)(3, 9, 7)(5, 10, 11) (8, 14, 15) (12, 23, 21)
(13, 25, 24)(16, 26, 20) (17,18, 27) (19, 22, 28)
*/
for i in [1..20] do i, cst[i]; end for;
/*
1 []
2 [1]
3[6]
4 [4]
5[7]
6 [2]
7[3]
8[12]
9[5]
10 [ 10]
11 [ 8]
12 [7, 1]
```

```
13 [7, 6 ]
14 [ 9 ]
15 [ 11 ]
16 [ 7, 5 ]
17 [ 1, 7]
18 [ 2, 10]
19 [ 8, 1]
20 [ 8, 6]
So (2,6,4)--> (1,2,4): (3,9,7)--> (6,5,3): (5,10,11)--> (7,10,8):
    (8,14,15)--> (12,9,11): enter that into next loop.
We use [1..6} since S_3 has 6 elements...*/
for i in [1..6] do if ArrayP[i] eq N! (1,2,4) (6,5,3) (7,10,8)(12,9,11)
    then Sch[i]; end if; end for;
// an-1 , so we use ( }\mp@subsup{x}{}{n}-1)\mathrm{ as relation that proves [1,11]=[10,3]//
ts[1]*ts[11] eq f(x - -1)*ts[10]*ts[3];
    // true , so $t_1t_11=(x-1)t_10t_3$ //
NN<a,b>:=Group<a,b|a^3,b~2,(b*a)^2>;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..6]];
for i in [2..6] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1
then P[j]:=xx--1; end if;
if Eltseq(Sch[i])[j] eq 2
then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
```

```
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for n in IN do if ts[10]*ts[5] eq n*ts[1]*ts[12] then n;
end if; end for;
/*
(2, 6, 4)(3, 9, 7)(5, 10, 11) (8, 14, 15) (12, 23, 21)(13, 25, 24)
(16, 26, 20)(17, 18, 27)(19, 22, 28)
*/
    for i in [1..20] do i, cst[i]; end for;
/*
1 []
2 [ 1]
3 [6]
4 [4]
5 [7]
6 [2 ]
7 [ 3 ]
8 [ 12 ]
9 [ 5 ]
10 [ 10 ]
11 [ 8 ]
12 [ 7, 1]
13 [7,6]
14 [ 9 ]
15 [ 11 ]
16 [ 7, 5]
17 [ 1, 7 ]
18 [ 2, 10]
19 [ 8, 1]
20 [ 8, 6]
so we use this table's labeling to convert the above permutation
```

to anothex permutation and use the resulting permutation to determine the relation: $(2,6,4) \rightarrow(1,2,4):(3,9,7) \rightarrow(6,5,3):(5,10,11) \rightarrow(7,10,8):$ $(8,14,15)->(12,9,11)$. We use $[1 . .6\}$ since $S _3$ has 6 elements...*/ for in $[1 . .6]$ do if ArrayP[i] eq $N!(1,2,4)(6,5,3)(7,10,8)(12,9,11)$ then Sch[i]; end if; end for; $/ / a^{\wedge}-1$, so we use ($x^{\wedge}-1$) as relation that proves $[10,5]=[1,12] / / \operatorname{ts}[10] * t s[5]$ eq $f\left(x^{n}-1\right) * t s[1] * \operatorname{ts}[12]$; $/ /$ true , so $\$ t_{-} 10 t_{-} 5=\left(x^{n}-1\right) t_{-} 1 t_{-} 12 \$ / /$
// SO THE RELATION ($x^{\wedge}-1$) IS USED TO PROVE ALL EQUAL DOUBLE COSETS //

Appendix C: MAGMA Code for $\left(M_{21} \times 4\right): S_{3}$ Factored by Center

MAGMA CODE $3 * 8$: PGL _2 (7)
FACTORED BY NEW RELATIONS :

$$
\begin{gathered}
\left(\left(t^{\wedge}\left(x^{\wedge} 6\right)\right)^{\wedge}-1\right)^{\wedge} 3, x^{\wedge}-1 * y * x^{\wedge} 2 *\left(t^{\wedge}\left(x^{\wedge} 3\right)\right)^{\wedge}-1 * t^{\wedge}\left(x^{\wedge} 6\right) * t^{\wedge}\left(x^{\wedge} 3\right) *(t \\
\left.-\left(x^{\wedge} 6\right)\right)^{-}-1,\left(x^{\wedge}-1 * y * x^{\wedge} 2\right)^{\wedge}-1 * t^{\wedge}\left(x^{\wedge} 3\right) * t^{\wedge}\left(x^{\wedge} 6\right) *\left(t^{\wedge}\left(x^{\wedge} 3\right)\right)^{\wedge}-1 *\left(t^{\wedge}\left(x^{\wedge} 6\right)\right)^{\wedge}-1>
\end{gathered}
$$

S: =Sym(16);

```
xx:=S!(8,2,5,4,6,1,7,3)(16,10,13,12,14,9,15,11);
```

$\mathrm{yy}:=\mathrm{S}!(1,6)(2,5)(3,4)(9,14)(10,13)(11,12)$;
$N:=s u b<S \mid x x, y y>;$
$G\langle x, y, t\rangle:=G r o u p<x, y, t \mid x \wedge 8, y^{\wedge} 2,(x * y) \sim 3$,
$(x, y) \sim 4, t \sim 3,(t, y)$,
($\mathrm{t}, \mathrm{x}^{\wedge} 3 * \mathrm{y} * \mathrm{x}^{\wedge} 3 * y * \mathrm{x}^{-}-1$),
$\left(t, y * x^{-}-2 * y * x^{-} 3 * y * x^{-}-2\right)$,
($\left.x^{\wedge} 3 * t\right)-6$,
$\left(\left(t^{\wedge}\left(x^{\sim} 6\right)\right)^{-1}-1\right)^{-3}$,
$x^{\wedge}-1 * y * x^{\wedge} 2 *\left(t^{\wedge}\left(x^{\wedge} 3\right)\right)^{\wedge}-1 * t^{\wedge}\left(x^{\wedge} 6\right) * t^{\wedge}\left(x^{\wedge} 3\right) *\left(t^{\wedge}\left(x^{\wedge} 6\right)\right)^{\wedge}-1$,
$\left(x^{\wedge}-1 * y * x^{\wedge} 2\right)^{\wedge}-1 * t^{\wedge}\left(x^{\wedge} 3\right) * t^{\wedge}\left(x^{\wedge} 6\right) *\left(t^{\wedge}\left(x^{\wedge} 3\right)\right)^{\wedge}-1 *\left(t^{\wedge}\left(x^{\wedge} 6\right)\right)^{\wedge}-1$
$>$;
IndexG:=Index (G, sub<G|x,y>);
$\mathrm{f}, \mathrm{G1}, \mathrm{~K}:=\operatorname{Coset}$ Action ($\mathrm{G}, \mathrm{sub}\langle\mathrm{G}| \mathrm{x}, \mathrm{y}>$);
G1;
/*

```
Permutation group G1 acting on a set of cardinality 360
Order = 120960 = 2^7 * 3^3 * 5 * 7
where 360 is the number of double cosets.
*/
IN:=sub<G1|f(x)>;
ts:=[Id(G1) : i in [1..16]];
    ts[8]:=f(t);
ts[2]:=f(t^x);
ts[5]:=f(t^(x~2));
ts[4]:=f(t^(\mp@subsup{x}{}{~}-3));
ts[6]:=f(t^(x^4));
ts[1]:=f(t^(\mp@subsup{x}{}{\wedge}5));
ts[7]:=f(t^(x^6));
    ts[3]:=f(t^(x^7));
    ts[9]:=ts[1]^-1;
ts[10]:=ts[2]*-1;
ts[11]:=ts[3] - - ;
ts[12]:=ts[4] - 1;
ts[13]:=ts[5] - 1;
ts[14]:=ts[6] - 1;
    ts[15]:=ts[7] ^-1;
ts[16]:=ts[8] - -1;
prodim := function(pt, Q, I)
v := pt;
for i in I do
v := v^(Q[i]);
end for;
return v;
end function;
```

cst := [null : i in [1 .. 360]] where null is [Integers() |];
for $\mathrm{i}:=1$ to 16 do

```
cst[prodim(1, ts, [i])] := [i];
end for;
m:=0; for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
// 16 so the origional 16 SC's in [8] and [16] ///////
for a in [8,16] do
Stabil := Stabilizer(N,[a]);
trans := Transversal(N, Stabil);
    for i := 1 to #trans do
        ss := [a]^trans[i];
        cst[prodim(1, ts, ss)] := ss;
    end for;
n:=m;m:=0;for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if; end for;
if m-n ne O then "Number of Cosets in DC [",a,"]",m-n,m; end if;
if m-n ne 0 then Orbits(Stabil); end if;
end for;
// now we fix [8] & [16] and check all words of length two //
for a in [8,16],b in [1..16] do
Stabil := Stabilizer(N,[a,b]);
trans := Transversal(N, Stabil);
    for i := 1 to #trans do
        ss := [a,b]`trans[i];
        cst[prodim(1, ts, ss)] := ss;
    end for;
n:=m;m:=0;for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if; end for;
if m-n ne 0 then "Number of Cosets in DC [",a,b,"]: ",m-n;
"Total Cosets filled out of 360:",m; end if;
if m-n ne 0 then Orbits(Stabil); end if;
end for;
```

```
// below are all DC's, SC's and orbits of length two//
/*
Number of Cosets in DC [ 8 1 ]: 28
Total Cosets filled out of 360: 44
[
    GSet{ 1 },
    GSet{ 8 },
    GSet{ 9 },
    GSet{ 16 },
    GSet{ 2, 3, 4, 5, 6, 7},
    GSet{ 10, 11, 12, 13, 14, 15 }
]
Number of Cosets in DC [ 8 9 ]: 56
Total Cosets filled out of 360: 100
[
    GSet{ 1 },
    GSet{ 8 },
    GSet{ 9 },
    GSet{ 16 },
    GSet{ 2, 3, 4, 5, 6, 7},
    GSet{ 10, 11, 12, 13, 14, 15 }
]
Number of Cosets in DC [ 8 16 ]: 1
Total Cosets filled out of 360: 101
[
    GSet{ 8 },
    GSet{ 16 },
    GSet{ 1, 2, 3, 4, 5, 6, 7},
    GSet{ 9, 10, 11, 12, 13, 14, 15 }
]
Number of Cosets in DC [ 16 9 ]: 28
```

```
Total Cosets filled out of 360: 129
[
    GSet{ 1 },
    GSet{ 8 },
    GSet{ 9 },
    GSet{ 16 },
    GSet{ 2, 3, 4, 5, 6, 7 },
    GSet{ 10, 11, 12, 13, 14, 15}
]
*/
/* Now, we fix the third elements [1],[9],[16] & check for DC's of length three
*/
for a in [8,16],b in [1,9,16], c in [1..16] do
Stabil := Stabilizer(\mathbb{N,[a,b,c]);}
trans := Transversal(N, Stabil);
    for i := 1 to #trans do
        ss := [a,b,c] `trans[i];
        cst[prodim(1, ts, ss)] := ss;
    end for;
n:=m;m:=0;for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if; end for;
if m-n ne O then "Number of Cosets in DC [",a,b,c,"]: ",m-n;
"Total Cosets filled out of 360:",m; end if;
if m-n ne 0 then Orbits(Stabil); end if;
end for;
// below are the results of that search ////////
/*
Number of Cosets in DC [ 8 8 1 2 ]: 42
Total Cosets filled out of 360: 171
```

```
[
    GSet{ 1 },
    GSet{ 2 },
    GSet{ 3 },
    GSet{ 4 },
    GSet{ 5 },
    GSet{ 6 },
    GSet{ 7 },
    GSet{ 8 },
    GSet{ 9 },
    GSet{ 10 },
    GSet{ 11},
    GSet{ 12},
    GSet{ 13},
    GSet{ 14},
    GSet{ 15 },
    GSet{ 16 }
]
Number of Cosets in DC [ [ 8 1 10 ]: 84
Total Cosets filled out of 360: 255
[
GSet{ 1 },
GSet{ 2 },
GSet{ 3 },
GSet{ 4 },
GSet{ 5 },
GSet{ 6 },
GSet{ 7 },
GSet{ 8 },
GSet{ 9 },
GSet{ 10 },
GSet{ 11},
```

```
    GSet{ 12 },
    GSet{ 13 },
    GSet{ 14 },
    GSet{ 15 },
    GSet{ 16 }
]
Number of Cosets in DC [ 8 9 10 ]: 84
Total Cosets filled out of 360: 339
[
    GSet{ 1 },
    GSet{ 2 },
    GSet{ 3 },
    GSet{ 4 },
    GSet{ 5 },
    GSet{ 6 },
    GSet{ 7 },
    GSet{ 8 },
    GSet{ 9 },
    GSet{ 10 },
    GSet{ 11 },
    GSet{ 12 },
    GSet{ 13 },
    GSet{ 14 },
    GSet{ 15 },
    GSet{ 16 }
]
/*
    Now, we fix the fourth elements [2],[10] & check for DC's of length four
*/
for a in [8,16],b in [1,9,16], c in [2,10], d in [1..16] do
Stabil := Stabilizer(N,[a,b,c,d]);
trans := Transversal(N, Stabil);
```

```
    for i := 1 to #trans do
    ss := [a,b,c,d]`trans[i];
    cst[prodim(1, ts, ss)] := ss;
    end for;
n:=m;m:=0;for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if; end for;
if m-n ne 0 then "Number of Cosets in DC [",a,b,c,d,"]: ",m-n;
"Total Cosets filled out of 360:",m; end if;
if m-n ne 0 then Orbits(Stabil); end if; end for;
//Our resulting final DC, it's SC's and orbits are below //////
Number of Cosets in DC [[ 8 1 10 12 ]: 21
Total Cosets filled out of 360: 360
[
    GSet{ 1 },
    GSet{ 2 },
    GSet{ 3 },
    GSet{ 4 },
    GSet{ 5 },
    GSet{ 6 },
    GSet{ 7 },
    GSet{ 8 },
    GSet{ 9 },
    GSet{ 10 },
    GSet{ 11 },
    GSet{ 12 },
    GSet{ 13},
    GSet{ 14 },
    GSet{ 15 },
    GSet{ 16 }
]
```

```
The below code is to check the extensions from Double coset to connected double cosets. By inputting a specific DC, the below program compares the two lists and based on my input DC, outputs all the orbit paths to their respective DC's. From this information, I'm able to complete my Cayley diagram.
/*
    List of the Names of my Double Cosets
*/
mlist:=[
[8],
[16],
[8,1],
[8,9],
[8,16],
[16,9],
[8,1,2],
[8,1,10],
[8,9,10],
[8,1,10,12]
];
restore pkm;
a :=16;b:=9;
for c in [1..16]do
Stabil := Stabilizer(N,[a,b,c]);
trans := Transversal(N, Stabil);
    for i := 1 to #trans do
        ss := [a,b,c] trans[i];
        cst[prodim(1, ts, ss)] := ss;
    end for;
n:=m;m:=0;for i in [1..#cst] do if cst[i] ne [] then m:=m+1; end if; end for;
if m-n ne 0 then "Number of Cosets in DC [",a,b,c,"]: ",m
```

end if;
end for;
load pk;
"[",a,b,c,"]";
nlist:=[null : i in [1..10]] where null is [Integers() |];
i:=1; $j:=1 ; k:=1 ;$
repeat
if mlist[i] eq dlist[j] then $i:=i+1 ; j:=j+1$; end if;
if mlist[i] ne dlist[j] then nlist[k]:=mlist[i]; $k:=k+1$; $i:=i+1$; end if; until i gt 10 or j gt 10 ;
for i in [1..10] do if nlist[i] ne [] then nlist[i]; end if; end for;

Bibliography

[BCH96] J.N. Bray, R. T. Curtis, and 'A.M.A. Hamas. A systematic approach to symmetric presentations. Math Proc. Cambridge Philos. Soc., 1996.
[Bra97] John N. Bray. Symmetric presentations of sporadic groups and related topics. University of Birmingham, England, 1997.
[Cea05] J. Cannon et al. MAGMA programming language (various versions up to version 2.12). School of Mathematics and Statistics, University of Sydney, 1993-2005.
[CH96] R. T. Curtis and Z. Hasan. Symmetric representation of elements of the Janko group J_{1}. Symbolic Comput. 1996.
[Con71] J. H. Conway. Three lectures on exceptionalgroups. In Finite Simple Groups (Proc. Instructional Conf., Oxford,1969). Academic Press, London, 1971.
[HK06] Z. Hasan and A. Kasouha. Symmetric representation of elements of finite groups. arXiv:math/0612042, 2006.

