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ABSTRACT

Magnetic Resonance Imaging (MRI) provides an excellent modality for dis
tinguishing different tissues in the human body, which makes this modality 
essential for medical applications. MRI can also be used for treatment 
planning of medical procedures that require a great degree of geometrical 
accuracy such as functional radiosurgery. Unfortunately, the accuracy of 
MRI for medical targeting applications is compromised by the presence of 
geometric distortions such as non-linearities of the magnetic gradient fields 
or inhomogeneities of the scanner main field. Also, the correction method 
developed by a previous study cannot be applied due to the magnetic field 
inside current 3-Testla(T) scanner is much larger than the one used in pre
vious study.
The goal of this work was to develop and implement a numerical software
based method that can accurately correct the distortion of MR images gen
erated by 3T MRI scanner. To accomplish this, a new phantom has been 
designed from scratch to capture the distortions inside 3T MRI scanner. 
An algorithm has been developed, based on the unique geometric feature 
of the new phantom, to estimate the location of gradient isocenter of the 
magnetic field inside 3T MRI scanner for the first time. Several other al
gorithms have also been developed to extract some unique features from 
CT and MR images of the new phantom. Using the calculated gradient 
iso cent er and extracted data points, combining with some accurate geomet
ric measurements of the new phantom, a set of correction parameters has 
been calculated. Simulated tests has shown that locations of data points 
corrected from MR images using the set of correction paramters are very 
close to their original locations. Further tests need to be performed in the
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future to explore the accuracy and limitations of this distortion correction 
algorithm developed in this work.
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1. INTRODUCTION

1.1 Thesis Overview

Magnetic resonance imaging (MRI) provides an excellent modality for distinguishing 
different tissues in the human body, which makes this modality essential for medical 

applications. MRI can also be used for treatment planning of medical procedures that 
require a great degree of geometrical accuracy such as functional radiosurgery [2]. Un
fortunately, the accuracy of MRI for medical targeting applications is compromised 
by the presence of geometric distortions such as non-linearities of the magnetic gra
dient fields or inhomogeneities of the scanner main field [1, 5, 6, 7, 8, 3, 11, 12]. 
Gradient nonlinearities can cause over 2mm of distortion to the location of features 
in the image [8, 3].

The primary purpose of this thesis was to improve the distortion correction method 
developed in a previous thesis [4], To do this, the following issues were addressed in 
this work:

• A new phantom was designed that can capture the distortion in modern 3- 
Tesla(T) MRI scanner.

• Algorithms were developed that can extract relevant data points from the MR 
images of the new phantom.
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• An new algorithm was developed that can accurately estimate the gradient 
isocenter of the magnetic field inside 3T MRI scanners.

• An algorithm was developed that can determine the correction parameters, which 
can then be used to generate corrected MR images.

The thesis is organized as follows. After the introduction, Chapter 2 gives back
ground information on MRI, it’s geometric distortion, and approaches to corrected. 
Chapter 3 describe the design details of the new phantom and several phases and 
changes the design went through. The main feature of the final design of the phan
tom and their importance will be discussed. The next chapter discusses the algorithm 
for estimation of gradient isocenter based on new phantom design. Chapter 5 describe 
a series of algorithms used to extract relevant data from MR and CT images. CT 
images were used in this work to obtain accurate dimensions inside the phantom. 
Chapter 6 describes the procedure to estimate the parameters of the model that cor
rects the distorted MR images. The final chapter summarizes the main results and 
suggests future work.

1.2 Background

The research project associated with this thesis relates to the correction of MRI 
images that will be used for functional proton radiosurgery at Loma Linda University 
Medical Center (LLUMC). The clinical application of protons was first suggested over 
60 years ago [13]. The ability to penetrate human tissue, delivering high dosage of 
proton beams at a target region and being able to concentrate on a very small target 
area make protons ideal for use in noninvasive surgery [13]. Currently, Loma Linda 
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University Medical Center (LLUMC) is using proton beams to treat patients with 
tumors or vascular malformations in the brain.

Due to the effectiveness of proton radiosurgery, a new system is proposed that 

targets functional disorders in the brain, such as trigeminal neuralgia and Parkin
son’s disease by creating small lesions in the brain regions affected by the disease. 
The current system can treat targets as small as 1 to 3 cm. Target localization is 
accomplished using CT and projection angiography. MRI will to be used for target 
localization in the new system. The major obstacle of using MRI is the geometric 
distortion on MRI images caused by the nonlinearity of the magnetic gradient fields 
of the scanner.

For the proposed application, two of the most important requirements for a suc
cessful distortion correction are:

1. The distortion correction must have submillimeter accuracy.

2. The correction process must be finished within 15 minutes.

This work is based on a published method for gradient nonlinearity correction using 
a cubic phantom MRI data set [3], which was also subject of a previous thesis by Tom 
S. Lee [4]. The published method utilizes the sum of spherical harmonics to model the 
geometrically warped planes of the cube, and applies the model to correct arbitrary 
image sets acquired with the same scanner. The cube is placed in the MRI scanner 
such that the cube’s center is exactly in the center of the MRI scanner. This work 
assumes the center of the MRI scanner corresponds to the isocenter of the magnetic 
field of the scanner. Opposite faces of the phantom are averaged, and three midplanes 

are fit to these surfaces. Due to the symmetric property of the magnetic field, the 
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midplanes of different orientations of the phantom cube are corrected. Through each 
midplane, the ideal planes of different surfaces of the cube are calculated simply by 
shifting the midplane to the direction of the ideal plane by one-half the length of the 
cube. For each pixel on the ideal plane, the sum of spherical harmonics equation
6.1 is applied to transform that pixel to the corresponding location on the distorted 
plane.

d = n(l + Kao(x2 + y2) + Kaiz2 + Ka2z2(x2 4- y2) + Ka3(x2 + y2)2 + K^z4) (1.1)

Where a and a are corrected and distorted 3D coordinate respectively; x, y and z 
are coordinates of a on each axis; Kai are distortion parameters. Thus the distortion 
parameters in equation 6.1 are computed using linear least squares technique.

Several assumptions are made for this model:

• The phantom is (reasonably) centered with respect to the gradient isocenter of 
the scanner.

• The distortion is (reasonably) symmetric for each pair of faces.

• The origin of the DICOM patient coordinate system coincides with the position 
of the gradient isocenter.

In reality, however, these assumptions are not valid. Due to the geometry of the 

MR scanner, the phantom cannot be centered, and the phantom center will always 
we located in the upper half of the circular scanning plane. The issue of phantom 
centering has been identified as a crucial factor in the quality of distortion correction.
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Improper centering of the phantom in the scanner produces strong asymmetry in the 

phantom surfaces, thereby violating the assumption of symmetry of the distortion.
The assumption that the origin of the DICOM patient coordinate system cor

responds to the isocenter of the magnetic field in the MRI scanner is also invalid. 
Siemens engineers have confirmed that the exact location of the gradient isocenter 
is unknown. Thus, the assumption that the origin of the DICOM patient is at the 
same location as the gradient isocenter will further compromise the accuracy of the 
distortion correction method.

In addition, with the introduction of the new 3T MR scanner with a larger bore, 
the previous phantom, which was designed for a 1.5 T scanner with a much smaller 
bore, turned out to be inadequate. The new scanner had only minimal distortion in 
the area probed by the original phantom with 16 cm diameter. A larger phantom 
was clearly needed that also better probed the circular field of view of the scanner.

1.3 Significance

Geometric distortions are critical for the use of MRI in accurate medical targeting. 
Procedures such as functional proton radiosurgery that deliver very high doses to 
small targets very accurate targeting is an absolute requirement. The built-in dis
tortion correction of modern MRI scanners is probably not accurate enough for such 
procedures, and distortion correction methods that are based on measurements of the 

nonlinearity in the actual scanner are needed. With the work accomplished in this 
thesis, we have come a step closer to using MRI for such procedures. The phantom 
and algorithms developed will also be useful for other MRI targeting procedures.
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2. BACKGROUND

2.1 Magnetic Resonance Imaging

The image in MRI is a multidimensional data array representing the spatial dis

tribution of nuclear magnetic properties of the image object, although the original 
data acquired represents the frequency distribution of the responses of a multitude 
of hydrogen nuclei in an inhomogeneous magnetic field. The information is usually 
organized as 2D images, presented discretely in form of image pixels such that each 
pixel is a 2D representation of the measured physical quantity in the corresponding 
object voxel (a small 3D box).

The value of MR image pixels (or corresponding voxels) depends on many intrinsic 
physical parameters, including the nuclear spin density, p , the spin-lattice relaxation 
time Tl, the spin-spin relaxation time T2, molecular motions (diffusion and perfu
sion), susceptibility effects, chemical shift differences, etc. The relative weight of these 
parameters in their contribution to the image contrast can be influenced by operator- 
selectable parameters, such as the repetition time TR, echo time TE, and flip angle 
a. However, this will not be further discussed here because it is not necessary for 
correcting the origin of gradient nonlinearity.
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2.1.1 Hardware Components of an MRI Scanner

The main components of the MRI scanner system are shown in Fig 2.1. It consists of 

three main hardware components: the main magnet (blue), the gradient coil system 
(red), and the radiofrequency (RF) coil system (green). The main magnet can be 
thought of as a large tube, which fits inside the bore of the MR scanner. The housing 

of the three gradient coils also takes the form of a tube, which fit inside the main 
magnet. The RF coil, which both produces and receives RF signals, takes the shape 
of another tube that fits inside the gradient coils. Hence the space in which the body 
part to be imaged is placed is a cylindrical volume with the longitudinal axis (z) being 
parallel to the patient longitudinal body axis and the diameter matching the inner 
diameter of the coil housing. If the head is imaged, a removable RF head coil, which 
has a better signal to noise ratio than the body coil, is placed inside the body coil.

SHIELD]

RATENT

RF
DETECTOR 

J DIGITIZER 

1 PULSE PROG

T. RF COIL r~-----

Coil

' coil “ ]
EHUCD1LSM

HjGRAQIEMffl T 
mm

Pfilm I_

source

-jRFAMP
[EftOG D-

Fig. 2.1: Simplified block diagram of a typical MRI scanner
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2.1.2 Physics of Signal Formation and Detection

The signal source in MRI is the macroscopic magnetization produced by excited 
nuclear spins in the imaged object. Spin is a fundamental quantum property of 
elementary particles just like electrical charge or mass, which is related to the angular 
momentum of the nucleus. In classical terms, angular momentum is due to spinning 
of an object about its axis. Spin quantum numbers come discrete, i.e., in multiples of 
j, and can be either positive or negative. The total spin quantum number of | paired 
protons and neutrons equals zero, while unpaired protons and neutrons in a nucleus 
each contribute a spin quantum number of Thus, a nucleus with an uneven number 
of nucleons (protons or neutrons) has a nonzero spin quantum number, which is a 
multiple of and a large number of them can, therefore, produce a net magnetization 
when placed in an external magnetic field. The most abundant nucleus with uneven 
number of nucleons in the human body is hydrogen with just one proton.

In MRI, an ensemble of nuclei of the same type, such as hydrogen, present in 
an object being imaged is called a nuclear spin system. Although nuclear spin is a 
property of the individual nucleus, characterized by quantum mechanics, with the 
large number of nuclei present in bulk matter, the bulk behavior of a spin system 
can be described in classical physics terms and the macroscopic magnetization is no 
longer discrete.

A single nucleus with a nonzero spin, such as hydrogen, creates a small magnetic 
field, which is represented by the vector quantity fj,, called the nuclear magnetic 
moment. Spin angular momentum J and magnetic moment are linearly related to 
each other by
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(2.1)7 i

which 7 is gyromagnetic ratio.

2.1.3 Distortion Origin and Manifestations

Spatial indexing in MRI is accomplished by gradient coils in three orthogonal direc
tions. In image reconstruction, gradients are assumed linear throughout the imaging 

volume. Due to pragmatic constraints, further considered below, it is difficult to 
achieve this situation.

For a patient to fit comfortably, the bore of the main magnet must be as large as 
possible. The larger the bore, the more difficult it is to generate a linear gradient. 
In general, the gradient along the axis of the main magnet (z axis) has the highest 
linearity compared to the other two directions (x and y) due to physical constraints.

Consider a slice of constant z, read in x direction. In the slice image, gradient 
field non-linearity distortion manifests itself in two ways. First, due to non-linearities 
in the x gradient, Gx, and in the y-gradient, Gy, there is a systematic transverse 
distortion in the slice plane. Second, because of the gradient field non-linearity, a 
potato chip effect takes place along the slice selection direction (z). Although MRI 
slices are usually considered to be planes, in actuality, because of gradient field non
linearity, these planes tend to warp into a potato chip-like shapes. This distortion is 
difficult to correct in 2D imaging but can be, in principle, corrected in 3D imaging 

methods. ’

9



2.1.4 The Gradient Coils

Misregistration caused by gradient field non-linearities occur in all three directions. 
The magnetic fields generated by the three gradient coils and the main magnet lie 
along the z-axis. Due to the strength of the main BO field, any other component of 
the gradient fields can be neglected.

The z-gradient coil is designed to produce a linear variation in the z-component of 
the field along the axis of the magnet, with a high degree of gradient uniformity in 
the transverse plane. Circular wire loops are the most obvious choice since they are 
azimuthally symmetric and possess reasonable radial uniformity. Since the gradient 
fields have to be symmetric with respect to the gradient iso center, the coils are usually 
arranged as pairs. For the z-gradient, the current in the coil pair, called Maxwell pair, 
is equal in magnitude, but opposite in direction (see Fig. 2.2 (a)). Coils on one side 
of the z = 0 plane generate fields parallel to BO while fields due coils on the other 
side are anti-parallel to Bq leading to an overall field variation along z. The relation 
between the radius a of the coils and their axial distance d is optimized in order to 
minimize all but the linear z-term in the polynomial expansion of the field described 
below.

The design of the gradient coils in x and y-direction is more complicated. The 
principle design, called Golay arrangement, is shown in Fig. 2.2(b). The x- and 
y-gradient coils are identical except for a rotation by 90 degrees.
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Fig. 2.2; (a) Principal design of a Maxwell pair of coils generating the z-gradient field, (b) Golay arrangement 

of a coils producing a y-gradient. Note that the field direction coincides with the z axis.

4 4 J
(b)

2.1.5 Physical and Mathematical Description of Nonlinear Gradient Fields

The following description of nonlinear gradient field was given by Dr. Sumanaweera in 

his thesis [10]. Let B the magnetic flux density and H be the magnetic field intensity 
vectors produced by any of the gradient coils. The relationship between these vector 
quantities is

B = (2.2)

where p is the permeability of the medium. Gradient fields are usually qua
sistatic (slowly varying in time) magnetic fields, therefore, displacement currents in 

the medium inside the coil may be ignored unless very rapid sequences are used. 
Electromagnetic field theory tells us that a quasistatic magnetic field in a current free 
region can be described by a scalar magnetic field potential such that

H = -V^

A fundamental property of magnetic fields is that its divergence is always zero, thus 
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V ■ B = 0 everywhere, and therefore the scalar magnetic potential satisfies Laplaces 
equation:

Vfy = 0 (2.4)

It can be shown that solutions of Laplaces equation can be expressed as linear 
combinations of homogeneous polynomials in the coordinates x, y, z. In order to 
describe the nonlinearity of a gradient field, one usually decomposes the field into 
the ideal linear term and additional nonlinear field terms; the latter are expanded 
into homogenous polynomials. Furthermore, if one assumes circular symmetry, which 
means that there is no specific angular dependence of the nonlinear field terms, one 
obtains following general expressions for the three gradient fields Bx, By, and Bz

Bx — Gx^
oo i

1 + 52 52 (®2 + y2y

i=l j=0

By — Gyy
i+£Bi5bM2(i_’v+!/v

t=l j=0
(2-5)

Bz = Gcz
oo i

1+13 12 cjz2(i~jKx2+y2y

i=l j=0

Note that if the nonlinear terms vanish, the gradient fields become perfectly linear.
In general, the higher order polynomials in these field equations are insignificant 
(contribute very little to the field) and can. therefore be ignored. In practice, it is 
sufficient to include only polynomials up to the second order i — 2 in x2, y2, and z2.

Thus, the field gradient expressions become:
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Bx Gxx [1 + Nx0(x2 + y2) 4- M 4- Kx2z2(x2 + y2)+

Kx3(z2 + y2)2 + K^Z4]

By * Gyy [1 4- + y2) + /W 4- Ky2z2(x2 + y2)4-

Ktfdp2 + I/2)2 + KytZ4] (2.6)

Bz — Gcz [1 + /f2o(x2 4" y2) 4- Kz\z2 + KZ2%2(%1 + y2)4-

Kz2(x2 + y2)2 4- Kz±z4]

where we have introduced new constants K (for example, Kxq = A0a0). Since the 
coordinate distortion function can be expressed as:

n/= z(l 4-VGtJ = AW (2.7)

we have:

f(x) = x [1 4- KxQ(x2 4- y2) + A/W 4- I<x2z2(x2 + y2)4-

K^ + y^ + K^]

f(y) = GyV [1 + Ky^X2 + y2) 4- KylZ2 + KylZ^X2 + j/2) +

Ky^ + W + Kyiz4] (2.8)

/(?) = Gcz [1 + K,o(s2 + 2/2) + KJ1 + + !/*)+

+ y1}2 + K^z4]

Equation 2.8 can be conveniently written in matrix form as

r' = r 4- if • F(r) (2.9)
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where r' is the distorted coordinate vector derived from the undistorted vector r,
K is the distortion parameter matrix formed by the elements , a — x}y,zj. — 

0,1, • • - 4, and F(r) is a nonlinear six-dimensional vector field given by

F(r) =

x(x2 -f- y2) 
rrz2 

xz2(x2 + y2) 

x(x2 + y2)2

(2.10)
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3. PHANTOM DESIGN

3.1 Introduction

Magnetic Resonance Imaging (MRI) provides an excellent modality for distinguishing 
different tissues in the human body, which is essential for medical applications. When 
MRI is used for stereotactic treatment planning, its geometric accuracy is crucial. 
Previous studies have been conducted to correct the distortion caused by nonlinearity 

of the MRI scanners magnetic gradient fields by imaging a cubic phantom [3], [8] 

and defining distortion correction functions based on the distorted appearance its 
surfaces. Correct mathematical handling of the distortion correction function required 
that the cube was centered about the magnetic isocenter, which is defined as the 
common center of the three magnetic gradient fields and is not very accurately known. 
New 3-Tesla MRI systems have a larger bore, making the previous phantom design 
impractically small for probing the field nonlinearity in the periphery of the bore, 
as the phantom cannot be scaled up due to constraints related to weight and cost of 
manufacturing. We are introducing a new phantom design using a different approach, 

which can be built to a larger size, improves accuracy of distortion characterization, 
and reduces cost.
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3.2 Initial Design

The original phantom design, a 16-cm oil-filled cube, could not be scaled up due to 
weight and manufacturing constraints. Our first modification was to look at changing 

the material to FR-4 since it is rigid, very flat, and could be submerged for short 
periods of time to permit scanning the solid liquid interface in an MRI machine. 
Since most of the distortion is visible only in the corners, this was rapidly replaced by 
8 corners of a virtual cube, which could be connected by a rigid frame. The weight of 
a tank to submerge either of these designs to allow scanning was prohibitive, requiring 
a complete redesign.

Fig. 3.1: Initial designs for new phantom
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3.3 New Design

The phantom is shaped to be as large as possible, while still fitting in the head coil 

of the scanner, so as to achieve the maximum quality of signal and largest distortion. 
The phantom is an octagonal prism with 205 mm between opposite sides. Each face of 
the octagonal prism is composed of 8 high precision NMR tubes that are 5mm in outer 
diameter and 205 mm in length. These tubes are filled with copper sulfate solution 
to generate a strong signal in an MRI scanner. The tubes are placed parallel to the 
magnetic field so they will cause less susceptibility distortion [9], and thus provide 
more accurate information on the gradient field. In the center of the phantom is a 
large water tank to help intensify the signals generated by the tubes. At one end 
of the phantom is a cylindrical tank filled with copper sulfate, with a number of 
small solid cylinders in a hexagonal pattern that are connecting the two surfaces of 
the tank. These cylinders are used to maintain the long-term accuracy of the two 
surfaces, making sure they wont deform, and are also aligned to the field to minimize 
their effect on the field. The data generated from 64 tubes mounted on the sides are 
designed to give us x and y axis distortion information, and the end tank is designed 
to provide z-axis distortion data, allowing a complete 3-D distortion correction with 
a relatively small amount of data.

3.4 Sealing NMR Tubes

Our original idea for sealing the NMR tubes was to use paraffin wax, either with 
or without a silicon seal. Paraffin was heated and a liquid drop was then added to 
the tube as a seal , but had an uneven bottom caused by the rapid solidifying of 

17



the wax, when it came in contact with the copper sulfate. Additionally, it tended to 
trap air bubbles, which made the end very hard to work with in the images. Worst 
yet, after a few weeks the liquid level in the tubes started to drop. We decided to 

compare three potential alternatives: machinable wax, water weld, and silicon sealer. 
As the images on the right show, the silicon was far and away the best. There was 
no leakage lost, and since the setup time was slower on the liquid side it ended up 
being almost completely flat. Every feature was met, and it was also the most cost 
effective solution.

W (b) (c) (d) (e)

Fig. 3.2: (a) Paraffin wax at top with floatable silicon at bottom (b) Paraffin wax only (c) Machinable wax

(d) Water weld (e) Silicon
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3.5 Updated Design

3.6 Installation and Use

The new phantom is designed to rest in the head coil of a 3T MRI scanner. It has a 
back plate with several leveling screws to align the phantom in the head coil using the 
laser alignment system. This alignment is aided by alignment marks on the outside 
of the phantom. The phantom is then moved into the MRI scanner, and its center is 
placed as close to the isocenter as possible. While it is not required to be centered, 
centering does improve the performance. A quick alignment scan is used to ensure 
the phantom is in the best location possible. When this is done the scan is taken and 
processed using distortion detection and correction software, which is not subject of 
the present presentation.

3.7 Initial Experience

The original phantom design, a 16-cm oil-filled cube, could not be scaled up due to 
weight and manufacturing constraints. Our first modification was to look at changing 
the material to FR-4 since it is rigid, very flat, and could be submerged for short 
periods of time to permit scanning the solid liquid interface in an MRI machine. 
Since most of the distortion is visible only in the corners, this was rapidly replaced by 

8 corners of a virtual cube, which could be connected by a rigid frame. The weight of 

a tank to submerge either of these designs to allow scanning was prohibitive, requiring 
a complete redesign.
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3.8 Conclusion

A new phantom for the measurement and correction of nonlinear gradient field dis
tortion of MRI systems is presented. It is lighter, more economic, and allows for both 

more accurate measurement of field distortion and the location of the isocenter.
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4. GRADIENT ISOCENTER LOCALIZATION

4.1 Introduction

Magnetic resonance imaging (MRI) provides an excellent modality for distinguishing 
different tissues in the human body, which makes this modality essential for medical 
applications. MRI can also be used for treatment planning of medical procedures that 
require a great degree of geometrical accuracy such as functional radiosurgery [2]. Un
fortunately, the accuracy of MRI for medical targeting applications is compromised 
by the presence of geometric distortions such as non-linearities of the magnetic gra
dient fields or inhomogeneities of the scanner main field [1, 5, 6, 7, 8, 3, 11, 12], 
Gradient nonlinearities can cause over 2mm of distortion to the location of features 
in the image [8, 3].

Modern MRI scanners have built-in distortion correction algorithms, that rely on 
knowledge of the magnetic field configuration and its distortion. Built-in algorithms, 
which are usually proprietary, are designed based on assumed knowledge of the geom
etry and location of the gradient coils. A more practical approach is to use a phantom 
of known geometry and to derive the distortion by analyzing the MRI images gener

ated with such a phantom [1, 5, 6, 7, 8, 3, 11, 12], This method has the advantage 

that a scanner-specific correction can be applied, which can also take into account 
potential changes in the gradient fields over time.

21



Accurate knowledge of the gradient isocenter is essential to very accurate distor
tion correction methods, To our knowledge, existing distortion correction algorithms, 
both built-in and phantom based, make the assumption that the gradient isocenter 
coincides with the origin of the DICOM coordinates. This assumption may not be 
accurate and should not be used if a high degree of accuracy is necessary.

The goal of this work was to develop and implement a numerical software-based 
method to estimate the gradient isocenter of the magnetic field inside an MRI scanner 
using the MRI scan of a custom-built phantom. In our previous work [5, 6, 7, 8], we 
used an oil filled plexiglass cube with 159.50mm x 159.70mm x 158.11mm dimension 

that was designed to fit MR scanners that were available at that time. Current MRI 
scanners have a significantly wider aperture, which necessitates a larger phantom 
to characterize the field distortion. Furthermore, since the lower part of the scanner 
aperture is occupied by the scanner table, the scanning area occupied by the phantom 
or the patient is not centered on the gradient isocenter, making correction methods 
that assume that the phantom is centered with respect to the gradient isocenter [5, 

6, 7, 8, 3] obsolete and potentially inaccurate.

4.2 Distortion Phantom

A new phantom design was developed with the intention to probe the distortion in the 
50 cm field-of-view (FOV) of a modern 3T MRI scanner (Magnetom Trio, Siemens). 
Due to the geometry of the gradient field nonlinearity, the distortion is largest in 
the outer fringes of the FOV [5, 6, 7, 8], Capturing distortion data in the periphery 
of the FOV is important for better accuracy of the distortion correction. Building 
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a very large cubical oil-filled phantom is a challenge due to weight limitations and 
limited capability to accurately machine a very large flat surface. Thus it was felt 
to be impractical to simply scale up the original phantom. Another limitation is 
that the phantom needs to fit inside the scanner head coil which needs to be used to 
achieve a sufficiently high signal-to-noise ratio. To meet all requirements, we designed 
a phantom that is comprised of 64 NMR glass tubes of 3 mm inner diameter, filled 

with copper sulfate and arranged in 8 surfaces forming an octagon. A water-filled 
cylinder in the middle of the octagon ensures a good signal generated by the tubes. 
The distance between tubes on the opposite side of the surface is 205mm, which is' 
about 28% wider than the original phantom. In addition we also added four more 
surfaces to provide data and better fit the headcoil. There are 8 removable tubes on 
each surface with 10 mm gap between adjacent tubes. Each tube is about 207 mm 
long, which is also an increase of about 28% in length from the original phantom. 
Tubes are placed along the main axis of the magnetic Bo field to reduce the effects of 
chemical shift and magnetic susceptibility and resulting in high-quality axial images.

4.3 Computational Algorithm

The algorithm we described here is using simulated data set that is based the geomet
ric property of the phantom and the properties of the MR images. The MR images we 
are using have 1mm per pixel resolution for every image and 1mm thickness between 
two adjacent planes. In the simulation, we will be using millimeters as unit for each 
data point. Since the images we are using to collect data points are all axial scans, 
we will only add noise to x and y coordinate of each data point.
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4.4 Tube Modeling

The tubes are 203 mm long. So our simulation data is ranging from -100 to 100 on z 
axis for each tube. The arrangement of the tubes could be seen in Figure 4.1. Our 
algorithm is based on two standard assumptions [5, 6, 7, 8, 3].: (1) the distortion in 
MR images are only caused by the magnetic field inside MRI scanner and (2) the

magnetic field can be perfectly described using the sum of spherical harmonic.

(a) Axial view. (b) Coronal view.

Fig. 4.1: Phantom modeling without distortion

The spacial coordinate of the phantom must be transformed into a coordinate 
relative to the gradient isocenter of the magnetic field, see Equation 4.1, then using 
the first 5 terms of the spherical harmonic we can estimate a offset in x, y, z direction, 
see Equation 4.4. Finally this offset is added the original coordinate to create a 
distorted model, see Equation 4.5. Also a very key requirement for this algorithm is 
that the z-axis the phantom which is parallel to the tubes must be aligned with the 
z-axis of the magnetic field.
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4.5' ISO-Center. Coordinate Estimation

Using a exaggerated distortion parameter we can visualize the shape of the distor
tion model. Without distortion, the phantom appears as in Figure 4.1. With large 
distortions, the phantom appears as in Figure 4.2, which is useful to understand the 
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form of the distortions. A more realistic distortion can be seen in Figure 4.3, which
uses distortion parameters from [8].

(a) Axial view.

Fig. 4.2: Phantom modeling with large distortions

(a) Coronal view.

(a) Axial view.

Fig. 4.3: Phantom modeling with small distortions

(c) Coronal view.

Distortion in the sum of spherical harmonics is coupled in the x and y directions 
(orthogonal to axis), making the z axis independent. Noise and distortion are thus 
very different in the z direction as opposed to the x-y plane. We break down the 

gradient isocenter coordinate estimation into two big steps: estimation of z coordinate 
and estimation of x,y coordinate.
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Z-Coordinate Estimation

Since the distortion model is based on sum of spherical harmonics, the shape of the 
distorted data for each tube is an even polynomial function. Figure 4.3 shows that 

the realistic distortion is quite small, being about a maximum of 2 pixels, and the 
smaller the distortion the more sensitive the problem becomes. With the first four 
terms of sum of spherical harmonics, the shape of the. each tube can be seen as part 
of a polynomial function of 4th degree. Since the data points of tubes only represent 
the middle section of the 4th degree polynomial function, it is also very similar to 
a shape of quadratic function. The offset between the largest distortion and the 
smallest distortion can be as small as 1mm. With such a small margin, it is more 

practical to fit the data points to simpler model than a 4th degree polynomial. Only 
the first spherical harmonic is needed in order to estimate the point where gradient 
is zero to measure the isocenter. Furthermore, the first term of the sum of spherical 
harmonics has the largest signal to noise ratio, so we use a quadratic model to fit the 
data points.

We can see the distorted tube models’ middle part is bending toward the center 
with both end bending outward. If we were to fit each tubes to a parabola and locate 
the point where its gradient is zero, that point’s z-coordinate should be the same as 
the z-coordinate of the gradient isocenter of the magnetic field. The z-coordinate is 
measured for all 64 tubes and the result averaged. The resulting estimation is within 
0.1 mm of the actual z-coordinate.
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X,y Coordinate Estimation

The estimation of the x and y coordinates of the isocenter is the more difficult problem. 
We are assuming that the difference between the distortion on x and y direction are 
so small that we can treat them as if they are the same. When this is not true, 
the errors on the isocenter location will be asymmetric, and it will be even more 

important to maintain a good numerical method to estimate the isocenter. With 
that in mind, the distorted data of a tube should all stay on a plane which isocenter 
is also in. The intersection of such planes from each tube should be a line that goes 
through isocenter. Using the isocenter estimated from previous step we should obtain 
an estimation of x and y coordinate.

Since the tubes were aligned to the z-axis to reduce magnetic field distortion by 
the tubes, the range of data in the z-direction is of necessity larger. In the x-y plane 
the range of points is controlled by the distortion, and is thus only a few pixels. The 

resulting equations are highly sensitive, requiring careful handling in our numerical 
algorithm.

The equation of a plane in three dimensions is as follows.

ax + by + cz + d = 0 (4.6)

Rewriting eq 5.2 with the measured data, we can solve for the plane each tube 
lies in. This in turn can be used to find the intersection of the planes, which is the
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Note that eq 5.2 can be rewritten so either x or y is independent, which affects 
the error in standard least squares. This becomes particularly important when the 
non-linearity is not the same in the x and y directions, as scaling is also well known
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to cause problems for least squares.
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As we can see from figure 4.4, by using equation 5.3 and equation 4.9 to estimate 
planes in figure 4.4(b) and 4.4(d) respectively we get and quite accurate x and y 
coordinate estimate. However, when you swap the choice of equations, even though 
they are mathematically identical, they make a huge numeric difference as shown in 
4.4(a) and 4.4(b).

When estimating the x-y coordinate using least square we should keep in mind 
that least square assumes there is no observation error, it will only try to correct 
one side of the equation depending on how it is setup. With this in mind, we uses 
equation 4.8 for x coordinate estimation and 4.11 for y estimation. For the tubes on 

the diagonal planes, as we can see in fig4.5, they offers neither a good data for x nor 

y coordinate estimation as compared to fig 4.4 (b) and (d). So in order to utilize 
the diagonal tubes we have to rotate these tubes to either x or y plane, and get an 
estimation of a rotated x-y coordinate, then rotate the rotated x-y coordinate back
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(a) LS fit with y orientation. (b) LS fit with x orientation.

(c) LS fit with x orientation. (d) LS fit with y orientation.

Fig. 4.4: Phantom modeling with distortion, showing differences in isocenter estimates due to how the LS 

equation is oriented.

and average it with original x-y coordinate estimation.

In order to obtain a good estimate, we thus must separate the estimation of x and 
y, as well as rotate the diagonal oriented tube planes and then separate the estimation 
of x and y and rotate back. We refer to this algorithm as Rotated Separable Least 
Squares (RSLS). We now present the RSLS algorithm to estimate x-y coordinate of 
gradient isocenter as follows:

1. Use equation 5.3 to estimate tube planes for tubes at upper and lower surfaces.

2. Solve equation 4.8 for x and y, but only use x for x coordinate.

3. Use equation 4.9 to estimate tube planes for tubes at left and right surfaces.
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(a) LS using x orientation. (b) LS using y orientation.

Fig. 4,5: Phantom modeling with distortion, showing how diagonal tube planes without rotation do not 

improve the estimates produced.

4. Solve equation 4,11 for y and x, but only use y for y coordinate.

5. Rotate diagonal tubes 7r/4, and repeat steps 1-4.

6. Rotate x-y coordinate obtained from previous step by — 7r/4.

7. Average the x-y coordinate from previous step with x-y coordinate calculated 
from step 2 and step 4 for final x-y estimation.

Alternatively, after obtaining the plane equation parameters we can put everything 
into one matrix and do a one time estimation using either least square or total least 
square. In table 4.1, we can see the comparison of accuracy of estimating an isocenter 
at [4 4 3] using different methods. Least square tends to lean toward one coordinate 
more depends on setup, while total least square has an accurate and very balanced 
result due to the property that it will try to correct errors on both side of the equation. 

In the contrast, our method has best properties of both methods:

• It is accurate. For both x and y coordinate it does a better job than total least 
square, much better than least square’s worst case and very close to least square’s
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Tab. 4.1: Average of 200 runs using different methods for estimating the isocenter at [4 4 3] in the presence 

of symmetrical distortion

X &x err y err

RSLS 3.9709 0.1068 0.0291 3.9677 0.1008 0.0323
LS 3.9950 0.1118 0.0050 3.9414 0.1011 0.0586

TLS 4.0800 0.1035 0.0800 4.0800 0.0964 0.0800

best case.

• It has very balanced result. Both x and y coordinates are very close the correct 

result equally just like total least square.

• It has very tight error boundaries. After 200 runs, it’s error is tighter than 
standard least square.

Therefore, our estimation method is a good alternative to traditional least square 
or total least square methods. Although it might require more computation, it could 
be easily dealt by modern GPU computing. And due to the fact that each least 
square estimation has relative small matrix, and each estimation is independent of 
each other, it is very close to “embarrassingly parallel” type of problems and makes 
it easy to solve.

In table 4.1, the test is run using a symmetric x-y axis distortion. We can see 

that all three methods performed very well. RSLS method’s result is slightly better 

than Total Least Squares (TLS), and one on y axis it is better than standard Least 
Squares method.

When the distortion is not symmetrical the issue of proper estimation becomes
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Tab. 4.2: Average of 200 runs using different methods for estimating the isocenter at [4 4 3] in the presence

of non-symmetrical distortion

X Ox err y err
RSLS 3.8073 0.1117 0.1927 3.9838 0.1059 0.0162

LS 4.2191 0.1117 0.2191 3.8765 0.1003 0.1235

TLS 9.5744 0.2616 5.5744 8.6905 0.2393 4.6905

crucial. In table 4.2, we show the result of using non-symmetrical distortion in which 
the y direction was set to be twice the distortion in the x. In this test, TLS method’s 

result is the worst, off by a few millimeters. Both LS and RSLS show comparable 
degradation of performance in x. LS shows degradation in the estimation of y as well, 
but RSLS, since it is separable, does not experience any degradation of it. Only the 
RSLS’s result remains quite accurate. This shows the advantage of RSLS over the 
other two traditional methods.

4.6 Conclusion

In this work, we developed a new numerical algorithm to accurately determine the 
gradient isocenter of MRI scanners based on a new distortion correction phantom. 
Knowledge of the gradient isocenter is an essential part of gradient-nonlinearity cor
rection methods. We have shown that the method used in this work to estimate the 
gradient isocenter is a good alternative to more traditional estimation methods such 
as least squares and total least squares. The new algorithm is particularly suited 

when the image data are extremely sensitive to the presence of noise and asymmet

ric distortion. Using simulated (but realistic) distortion data, it was shown, that 
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the resulting estimated isocenter was within 0.2 mm of the actual gradient isocenter, 
leading to a better estimate than the currently used DICOM coordinate center.
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5. DATA EXTRACTION

5.1 Introduction

In order for our estimation to work we need to collect two different types of data 
for our calculations. One is the true geometric dimension of our phantom, the other 

is the corresponding distorted signal that represent those known geometric locations 
inside MR images. Some of these data can be relied on manufacture’s measurement, 
while others would require us to extract information from various types of images 
to estimate the measurements. In this chapter we will discuss how we obtain each 
measurements and algorithm involved in those processes.

5.2 Measuring Water Tanks Distances Using CT Images

5.2.1 Introduction

Due to the limitation of manufacture’s equipments, water tank at each end can only 
be guaranteed that their surfaces are parallel to each other, their accurate distances 
between each other are unknown. We decided to perform a CT scanon the phan

tom, then collect each surfaces’ data points through coronal view CT images. With 

enough data points on each surface, we should be able to have a good estimation of 
the distances with between each pair of surfaces.
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(a) Coronal view, center slice (b) Marked target surfaces

Fig. 5.1; Sample CT image in coronal view.

Figure 5.1 (b) indicates the target feature we are looking for inside a typical 
coronal view of CT image.

5.2.2 Canny Edges

The obvious method is to extract the data points is to apply an edge detection 
algorithm on the image, then iterate through the resulting edge image to collection 
the desired lines. However, the resulting edge image from this approach often contain 
fair amount of noise edges some of which overlap with the desired edges we are looking 
for. This problem is illustrated in figure 5.2, 5.3 and 5.4.

In figure 5.2(a), we can see that Matlab’s canny algorithm with default parameter 

gives descent edges when applied to image #141. However, the same parameters will 
create many noisy edges in some other images, e.g. #270 in the same series in figure 



5.3(c). Setting higher threshold is able to reduce those noisy edges as we can see in 
figure 5.3(c), but that threshold will eliminate some edges we are looking for as shown 
in 5.2(c).

To get rid of this noisy edges, different types algorithms might be involved, proba
bly including validating all the edges in an image, which might involve multiple pass 

to the whole image, and in which case the process could be slowed down by factor of 
several times. So if there is a simpler and faster way, it would be preferred choice.

5.2.3 Surface Location

Since all objects we are looking for has a very uniform and distinct shape, we could 

start with finding a small regions each contains one object. In our case, the choice is 
very obvious. The objects we are looking for are four straight lines at fixed location 
and parallel to each other. For images that contain those objects, they should have 
them at almost exactly the same location with possibility of a few pixels offset due 
to potential tilt of the phantom during scan. If we choose a slice in the middle of 
the series, that should give us a relatively smaller overall error margin both above 
and below the surface location on that particular slice comparing to picking a slice at 
the beginning or at the end of the series which would give a relatively larger error on 
either above or below the surface location. Also the slice in the middle of series tends 
to have better quality. We would call this middle slice as surface location sample.

In the surface location sample, we would plot a histogram of gradient of the sum of 
middle 7 columns as shown in figure 5.5(a) and a histogram of intensity distribution as 

shown in figure 5.5(b). From figure 5.5(b), we can see that there are three very obvious 
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normal distribution in the graph. From left to right, they represent background 

noise signal, water signal and phantom tank signals respectively. In figure 5.5(c), a 
zoomed in picture of the region between water signal distribution and phantom tank 
distribution, we can see that two distributions’ tails overlaps with each other. From 
the fact that the number of pixels in this overlap region is quite small and that this 

region is between two distributions, we can determine that most of them should be 
the pixels on the boundary between water and tank. So, according to ranges of two 
distributions as we can observer from the diagram, the range of difference between 
tank signal and water signal should be somewhere between 40 to 300. However, since 
the difference we are looking for is on the boundary of water and phantom tank, 
signals in those regions should tend to be close to each other. Therefore we should 
expect the to see spikes in gradient to be around ±40. In figure 5.5(a), we can clearly 
see six spikes that can be uniquely identified. Their values are -41.8404, 44.2372, 
-36.2271, 50.4055, -40.9654 and 29.8124, and they are right around the predicted 
range. Thus, we can identify them with high confidence that they are on each of the 
boundary between water and phantom tank.

With one pixel on each locations of the water and phantom tank boundaries are 
identified, we can also narrow down the location of each surface by specifying the 
surfaces are within the ±5 rows of the row coordinate of each identified pixels. The 
±5 rows should give enough room for any horizontal or vertical tilts.
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5.2.4 Edge Detection On Local Surface Region

After the regions of boundaries of water and phantom tank are extract we can proceed 
to extract the surface edge from these regions. The following issues are need to be 
resolved:

1. Identify the left and right boundaries of the edges.

2. Remove the noisy edges, and there are two types noisy edges:

(a) Noisy edges that are not in contact with the target edge.

(b) Noisy edges that are in contact with the target edge.

Boundary Finding

To detect the left and right boundary we plot the histogram of sum of intensities of 
each column across the region as well as the gradient for the intensity graph as shown 
in figure 5.6.

Upper pair of arrows in figure 5.6(a) indicates where the inside edges of the phan
tom tanks are, and the lower pair of arrows indicates how do those edges shows up 
in its gradient graph. The two small edges are identifiable with properties of value 
between 200 and 1000. We can identify them with this property for most of the 
slices. The transition from phantom tank to water become smoother on the slices 
more toward anterior or posterior in coronal view.

There are couple of issues with this approach.

• For images close to either edges of the two tanks, contrast ratio between water 
and tank material become very weak. As shown in figure 5.9, the transition from 
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tank to water become very smooth, and their gradient, therefore, become very 

small, and fallen out the filter range we specified. If we lower the range of the 
filter, it will pick up too many noise.

• For superior tank’s outside surface, its regions also include the end part of tubes. 
Structure on those regions of tubes are fairly complex, which will result in fre
quent change of each column’s total intensities in regions that have tubes.

However, with the slices that able to identify the edges, we can reconstruct majority 
of each water tank surface and they are more than enough for us to estimate the 
distances between each surfaces, especially with the assumption that they are all flat 
and parallel to each other.

Removing Noise

We are going to remove the noise of the each edge in two steps.

1. Remove noisy edges that are unattached to target edges.

2. Filter out small edges sticking out of target edges.

Noisy edges unattached to target edges has one characteristic which is short. Since 
these edges are generated by noises, all observations has shown that they all tend to 
be very short in length due to lack of consistent pattern. To remove the noisy edges 

that are unattached to the target edges, we do the following steps:

1. Create an empty image that has the same size of the input image.

2. Iterate every pixel of input image
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(a) if current pixel in input image is not zero:

i. We recursively collect all the nonzero pixels from the input image and 
set those pixel values on the input image to 0.

(b) If there has been an edge collected, we check the length of this group of 
pixels

i. If the length is less than a threshold, say, 15, we assume they are a noisy 
edge and complete ignore this group of pixels

ii. Otherwise, we will write these pixels’ values to the image we initially 
created.

After following above steps, the resulting image will look like something like figure 
5.8 (c).

At this stage, we will apply the boundary limit to this newly filtered edge, removing 
all the pixels beyond either left or right boundary. And this will left us with target 
edges with some small noisy edges sticking out as shown in figure 5.8 (d).

To filter these sticking edges out, we do the following steps:

1. Extract 2d coordinate information of every edge pixels, and fit them to a straight
line, since we know our target edge is a straight line. We can setup the equation
as:

columns rows (5-1)

where columns is column values of all edge pixels and rows is row values of all
edge pixels, m and k will the line parameter of the straight line we are trying to 
fit into.
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2. Group all edge pixels by their column value.

3. Iterate all column groups. We pick a pixel from each group having the minimum 
value of \Pixelrow — (m * Pixelcoiumn 4- &)| and ignore the rest.

4. At the end we should have one pixel per column group left, they will be our final 
edge.

For testing we write out these filtered edges to original input image. We can see 
the result in figure 5.9 (a). For some edges, in some image we are unable to determine 
the left and right boundary. We will skip them as we have more than enough data 
with images that can gives us good edges. Figure Figure 5.9 (b) is an example where 
some edges are identifiable while others not.

Improvement

5.2.5 Creating Surfaces

Surface in 3D space can be represented by equation:

ax + by 4- cz + d — 0 (5.2)

With somewhere between 50,000 70,000 date points for each surfaces, it’s the 
best to use least square (Ax = b) to estimate each surfaces’ equation parameters. 
Considering the following fact:

1. Least square assumes that there is error in measurement but not observation, so 
it will only try to minimize error in A not b.

2. For every data point we only have measurement error in two axis, the third one 
is taking for granted from DICOM info. Though there should be some very 
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small error during CT image reconstruction as well, but that’s not necessary to 
be consider here.

Since the image set we are dealing with is coronal view, which means it’s the y-axis 
we are taking for granted, we are setting up our least square as follows:

(5.3)

(5-4)
Xq Zq 1 a/b

c/b —

i-------
o1

t_______

Xn Zn 1 d/b Vn

With this setup, our estimatec parameters for each planes are:
a b c d

surface 1 -1.0617 x IO"06 1 -6.9880 x 10-10 -2.0644
surface 2 -3.8209 x IO”08 1 -2.3851 x 10~9 -6.7681
surface 3 3.2496 x IO'06 1 4.3242 x 10"10 -4.8297
surface 4 3.3399 x IO”06 1 1.2575 x 10~10 -2.0644
Reconstructed surfaces can be see below:
Notice that in the YZ view in figure 5.10(a) (b) (c), all four surfaces are tilted.

This is consistent with what we observed on sagittal reconstruction of this image set.

5.3 Extracting MR Tubes Centers from MR Images

5.3.1 Introduction

There are total 64 MR tubes filed Copper Sulfate (CuSOt) places on the outer region 
of the phantom. We filled them with CuSCL due to this solution has very good 
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magnetic susceptibility inside MRI scanner. They produce very strong signals in MR 

images which make them much easier to extract. Tubes can be purchased separately, 
and easy to replace if necessary. Tubes are sealed with silicon to prevent leaking and

It

could stored vertically for a long period of time.
These tubes are used to estimate MRI scanner’s gradient isocenter as well as cal

culate the x and y axis’ correction parameters. To calculation correction parameter, 

we need both original accurate 3D locations and distorted 3D locations of each tubes. 

We can use tube holders’ spacing specified in phantom’s specification to determine 
their corrected locations since these holders are precision made. So the missing infor
mation are distorted tubes locations. MRI’s distortion is nonlinear, which means the 
3D shifts at different locations are different. The way we extract tubes’ distortion is 
by analyzing the axial scan/reconstruction of the phantom to determine a starting 

and ending slice of those tubes, and for every slices in between them, we find the 
center of the each tube. Each bent tube in MR images can be viewed as series. We 
will use these centers in later calculation of correction parameters.

5.3.2 Range

This section describes how to determine the first and the last axial slices that are 
used to extract tube centers.

Tube holders at both end of the MR tubes will cause the regions of the tubes inside 

the tube holder to shift. Depending on how the original scan is performed, the shifts’ 
direction may vary. If the original scan is done in axial direction, the the shift will 
occur inside xy plane; if the original scan is performed in sagittal direction the shift 
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will occur on z-axis. So this means that we cannot use the signal from the regions 
where tube holders are at.

One way to determine where the tube holders’ z-axis location is to find the middle 
water tank boundaries. Tube holder is usually at least 5mm away from each tank 
surfaces in MR images. So after finding the location of two water tank surfaces we 
can add or subtract 4mm as two boundaries. For every axial slices, we will check it’s 
z-axis location to see if that slice is between the boundary, if it is, we will continue 
to process the slice, otherwise we will ignore it.

To find a accurate middle tank surfaces, we can work on either coronal or sagittal 
series, and use the following steps:

1. Average the middle slice of the series with its two adjacent slices to produce 
a sample slice. This way we can get rid of some noise and would give a more 
reliable result.

2. In the sample slice, we average middle 3 columns of pixels to produce a sample 
column.

3. Produce a gradient for the sample column.

4. The top surface of the middle water tank could be set to be the first peak in 
second half of the data that is greater than 150; and the bottom surface of the 
water tank could be set to the last peak in the first half that’s lower than -150.

5. Two pixels will be used for calculating the z-axis location of the two tank surfaces. 
Their row values are the two values we calculated from previous step respectively, 
and their column values are both middle column of the middle slice of this series.
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6. Two pixels will be converted into 3D DICOM coordinate using DICOM affine 

formula. The one with positive z coordinate will be added 4mm and the one with 

negative z coordinate will be subtract 4mm. These two z coordinates defines a 
range which axial slices used to extract MR tubes centers should be in.

7. To validate a axial slice, we use the ImagePatientPosition parameter to see if the 
slice is in the range.

5.3.3 Tube Centers Extraction

This section describes the method used in tube center extraction.
A typical axial view of phantom in MR images looks like this:
The strategy to extract tube centers is to use one slice to produce a series of masks 

which specified the tube locations. For reset of the slices, we use the masks to extract 
regions where tubes are at and process each region separately. There are several 
advantage of doing this:

® This method will make the whole process runs a lot faster due to significant less 
amount of pixels needed to process.

• It also has a lot potential to run much more faster. Once a set of masks is 

produced from a image, not only a number of images following that slice could 
be processed simultaneously, 64 regions in each images could also be processed 

at the same time after they are extracted.

• It will be less error prone as well, due to masks narrows down the problem 
regions.
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Mask Extraction

This section describes how the masks are produced.
The following steps are used to extract a set of tube mask from an axial MR images 

within the range we have calculated previously.

1. Use a threshold to produce a binary image that only contains tube signals. Due 
to the good susceptibility of CUSO4 solutions, signals from solutions inside MR 

tubes are much higher than other regions of in the same image.

2. Apply canny edge detection on the binary image produced from previous step. 
Note: Applying canny directly on original image with high threshold will also 
yield a good quality edge images with much smaller circles.

3. Masks of tubes at top row, bottom row, left column and right column are gen
erated first, for top row:

(a) Iterate the the top left region of the image, sweeping row wise from left to 
right to search for a pixel that belongs to left most tube on top row.

(b) Once an edge pixel is found, all the edge pixels of the this tube will be 
collected, i.e. record and remove from the image. And a center of the tube 
is computed using steepest descent method.

(c) Use the center calculated from previous method as a starting point and walk 

the pixels on the same row to the right to obtain 7 other tube centers of top 
row by repeating previous steps.

4. Use similar method that obtained centers of top row to obtain bottom row, left 
column and right column. For bottom row, lower right region of the image are 
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searched initially, sweeping from right to left, once the first tube center is found, 

algorithm traverse to left to collect the rest tube; for left column, top left region 

is swept column wise from up to down, after finding the first center, algorithm 
traverse down ward on the same column to search for other tubes, for right 
column, bottom right region is swept column wise from bottom to top, after 
finding the first center, algorithm traverse upward to search for other tubes.

5. For diagonal tubes, similar initial search is used to look for the first pixel of the 

first tube. When looking remaining tubes, row wised sweeping is motion is used.

6. After a center is found, a square region is allocated for a mask for that tube. In 
total, there are 64 masks extracted from on image. Each region will have it’s 
top left coordinate on the image as well as width and height.

Center calculation is using steepest descent. Several other algorithms are tested, 

such as, weighted average, least square, but steepest descent has the best result among 
the three.

Center Extraction Using Masks

With a set of mask is extracted, it would much easier to extract centers on other 
images with the masks:

1. Using each region’s top left corner coordinate and it’s width and height, 64 much 

smaller regions only containing tubes can be extracted.

2. Each region can use the same edge algorithm used earlier step, then extract 
pixels and calculate the centers. Center coordinate in the region will add to the
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top left corner coordinate to become a coordinate in original image.

5.4 Extracting Water Tank Edges From MR Images

5.4.1 Introduction

Water tank edges in MR images contains the z-axis distortion information. Combining 

with water tank edges in CT images, z-axis correction parameters could estimated 
using least square fitting method.
Due to the similarity in physical location of the interested data points, algorithm used 
in water tank edge extraction from CT images is a good candidate. However, there 
are some issue preventing that algorithm to be applied directly on water tank edge 
extraction from MR images.

1. There are much more considerable noises in MR images than in CT images. Due 
to the length of the phantom is slightly longer than the internal length of the 
headcoil, one water tank is slightly outside of the headcoil. This will results a 
much noise region on the water tank appear in lower region of MR images, as 
shown in figure 5.12.

2. Unlike CT images, the surfaces in MR images are curved. So we cannot use the 
same line fitting method we used in CT images water tank edges extraction.

3. Unlike CT images, we need as much data points as possible on each surface. 
Especially those ones on the edge.
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5.4.2 Algorithm

The algorithm used in water tank extraction in MR. images is a modification of water 
tank extraction in CT images, it can be described as follows:

1. Find left and right boundaries. The algorithm of finding left and right boundary 

is the same as as water tank edges extraction in CT images, except we only need 

to find the boundaries for top tank’s lower surface. This is because before final 
MRI scan, the phantom is already aligned, MR tubes should be quite parallel 
to the z-axis, and all four surfaces left and right boundary should be extremely 
close. In fact, top tank’s lower surface’s left and right boundary should be wider 
than other surfaces. This tight bound is sufficient for rest of the algorithm to 
work well.

2. For each surface, instead of using canny algorithm to find initial raw edge, algo
rithm will iterate from left boundary to right boundary to analyze the histogram 
of each column, and pick the maximum peaks with the highest value as a edge 
point. As shown in figure 5.13.

3. The resulting edge from previous step is very noisy. The following steps will be 
use to remove the noises.

(a) Remove disjointed short edges.

(b) By analyzing the gradient histogram, remove large disjointed edges.

(c) By analyzing the gradient histogram, remove short bumps in noisy edge.

(d) By analyzing the gradient histogram, remove all the sharp peaks.
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The algorithm used to parse the gradient histogram is described in figure 5.14.
Edge result after each step are shown in figure 5.15.

Using this method, the final surface extracted from MR images for lower tank 
lower surface is shown in figure 5.16
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(c) (d)

Fig. 5.2: Canny algorithm applied to coronal sequence 141 with different parameters: (a) Default parameters

(b) Low threshold 0.01, high threshold 0.02 (c) Low threshold 0.02, high threshold 0.04 (d) Low

threshold 0.05, high threshold 0.1
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Fig. 5.3: Canny algorithm applied to coronal sequence 270 with different parameters: (a) Default parameter

(b) Low threshold 0.01, high threshold 0.02 (c) Low threshold 0.02, high threshold 0.04 (d) Low 

threshold 0.05, high threshold 0.1
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(a)

Fig, 5.4: Canny algorithm applied to coronal sequence 276 with different parameters: (a) Low threshold

0.02, high threshold 0.04 (b) Low threshold 0.05, high threshold 0.1

Fig. 5.5: Histograms of middle column of middle slice of a coronal series: (a) mid slice intensity histogram

(b) Marked overlap region (c) mid slice surface locations
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(a) (b)

Fig. 5.6: Histogram for boundary detection: (a) inferior tank inside edge of #270 (b) superior tank outside

edge of #100

(b)

Fig. 5.7: Superior outside surface artifacts: (a) Extra edge caused by tube section (b) Histogram for superior

outside surface of the same image
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(a) Extracted region (b) Raw edges

(c) Removed noisy edges (d) Edges within the boundary

Fig. 5.8: Edge extraction intermediate results on image sequence #270’s inferior tank inside edge

(b)

Fig. 5.9: Final edge results: (a) Edge result on image sequence #270 (b) Edge result on image sequence

#100
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(c) (d)

Fig. 5.10: Water tank surfaces reconstruction from CT scan, YZ view
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(c) (d)

Fig. 5.11: Water tank surfaces reconstruction from CT scan, XY view
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Fig. 5.12: Noisy MR images, especially the lower tank

Fig. 5.13: Histogram for finding edge points
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Fig. 5.14: gradient'histogram‘state'machine

Fig. 5.15: MRI surface intermediate edge results: (a) Raw edge (b) after removing short edges (c) after 

removing large bumps (d) after removing peaks (e) final edge

(d)

0
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Fig. 5.16: Lower tank lower surface result.
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6. DISTORTION CORRECTION PARAMETERS CALCULATION

6 J Introduction

With both original measurements of the phantom and distorted data points, distortion 
or correction parameters can now be calculated

= Xi(l 4- KXo(x? 4- y2) 4- KX1z? 4- 4- y2) 4- K^xf 4- y2)2 4- C6-1)

Vi = yf(l + 4- y?) 4- Kmz2 4- Ky2z2(x2 4- y?) 4- Kyz(x2 4- y2)2 + Kyd) (6.2)

= zf(l 4- /<z0(iE2 4- y2) 4- KZ1z2 4- K^z^x? 4- y2) 4- K^x2 4- y2)2 4- Kz,z4) (6.3)

where {xi^y^Zi) and (xi^y^Zi) represent distorted and corrected data sets. If 
(^i,yi,^) is distorted data set, KXi,Kyi, KZi would be distortion parameters, i.e. 
parameters used to distort original phantom data. If (xi^y^Zi) and (x^y^zi) are 
swapped, KXi, Kyi, KZi would work as correction parameters, i.e. parameters used to 
convert distorted data points into their original position. In this case, what, need to 
be calculated is correction parameters which will be used to correct the distortions 
inside MR images.

Both (xi,yi,Zi) and (x^y^Zi) have to be in DICOM coordinate, i.e. relative co
ordinate from gradient isocenter. The gradient isocenter computed in early chapters 

are using data points extracted from MR images, so it can be used to convert data 
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points from MR images into DICOM coordinate, but not the corrected data.

6.2 XY Axis Distortion Correction Parameters Calculation

This section describes how to setup and calculate the X and Y axis correction pa
rameters.

Consider using two data points from two separate MR tubes in the same xy plane, 
two equations could be setup:

Xo = Xo(l + Kxo($ + 2/o) + + KxiZo&l + Vo) + + 3/o)2 + KX4z%) (6.4)

= irfyl + KX1(x2 + y2) + KXlz$ 4- X^z^x^ + y2) 4- 4- y?)2 4- K^zf) (6.5)

where (zo,^»2o) and (xi,j/i,zi) are DICOM coordinates of the two points from 
distorted space, which are known, and (xoZ/o, zq), (ah, yi,^i) are DICOM coordinates 
of two points from corrected spaces which are unknown. However, the exact distance 
of tube spacings are known, as well as the distance between opposite side of tubes. 
So (5.tOii, (Ju/ou, 3*o,i)  can be calculated using

, 5zi}j) — (xi,yi, Zj) — (xj, yj, Zj) (6-6)

where i,j should belong to the same row of tubes for calculating X-axis correction 
parameters or should belong to the same column of tubes for calculating Y-axis 
correction parameters, figure 6.1 shows how the pairing is done for x, and y axis.
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(a)

Fig. 6.1: Pairing of MR tubes, (a) Pairing for X-axis (b) Pairing for Y-axis

For each pairing, a new formula is produced.

dXij = fay(l + Km(.(x2 + y2) - (x2 + y2)) +

^((x2 + y2)2-(X2 + y2^ +

(6.7)

bylj = byij(l + Km((x? + y?) - (z? + y?)) +

KM(xi + y2) - z2(x2 + y?)) +

I<M - $)) (6.8)
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6.3 Z Axis Distortion Correction Parameters Calculation

Similarly to xy correction, we pair up surfaces of water tanks. Figure 6.2, show the 
pairing.

Fig. 6.2: Pairing of tank surfaces.

And the formula we used for z axis correction is:

5zy = <5zy(i + Kn((rf + y,2) - (®2 + y2)) +

Kn(z?tf + yt)-zfc* j + yty +

K„((x? + y?)2-(^ + ^)2) +

- ~4)) (6.9)
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7. SUMMARY AND CONCLUSION

In summary, all major goals of this thesis has been achieved:

1. A new phantom has been designed and manufactured which accurately captures 
the distortions inside MR images of a 3T MRI scanner

2. An algorithm was developed to calculate the gradient isocenter of the magnetic 
field of a 3T MRI scanner. Simulated results have shown that this algorithm 
worked quite accurately.

3. Several algorithms were also developed to extract required geometry information 
from CT and MR images for MRI distortion correction.

4. Finally, an algorithm was developed to calculate the distortion correction pa
rameters using the phantom features extracted from the CT and MR images.

In the near future, further tests will be perform to explore the accuracy and limita
tions of this distortion correction algorithm developed in this thesis. There are other 
sources of geometric distortions in MRI images that need to be considered, including 
magnetic susceptibility distortion and chemical shift. Lastly, one should compare the 
performance of the correction algorithm developed in this thesis with that of intrinsic 
distortion correction algorithms that are included in the scanner software.
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