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Abstract: Building energy signature analysis is a well-established tool for understanding the tem-
perature sensitivity of building energy consumption and measuring energy savings. This tool has
been used to measure energy savings of residential, commercial, and even industrial buildings. The
public availability of electricity loads (i.e., hourly electricity demand (MW)) from entire Balancing
Authorities (BAs) provide an interesting opportunity to apply this approach to a large aggregate
load. In this paper, we explore that opportunity for BAs and show that the correlations for large
geographical areas are surprisingly coherent when the change-point linear regression analysis is used
with the daily interval data of electricity demand and outside air temperature. The change-point
linear regression models of all the BAs, except WAUW and OVEC, show R2 of 0.70 or more and CV-
RMSE of 10.0% or less. We also suggest an analysis method that allows for meaningful comparisons
between BAs and to assess changes in time for a given BA which could be used to interpret changes
in load patterns year-to-year, accounting for changes in weather. This approach can be used to verify
the impact of energy efficiency programs on a building component/system-wide basis. This study
shows the annual electricity demand reductions for SCL and IPCO are 136,655 MWh (1.5%) and
182,053 MWh (1.1%), respectively.

Keywords: energy signature analysis; city scale energy analysis; easy-to-use tools; balancing authori-
ties; utility energy efficiency programs

1. Introduction

Utility companies and non-utility organizations have operated energy efficiency pro-
grams to reduce energy use, economic cost, and greenhouse gases [1]. Energy efficiency
programs generally include rebates and incentives for customers when they buy energy
efficient products. Weatherization is also offered for low-income houses [2,3]. Recently,
new technologies, exemplified by the advanced metering infrastructure, can affect the
energy efficiency programs because the new technologies provide interactive information
for utilities and customers [4,5].

Over the last three decades, energy efficiency programs have emerged as a crucial strat-
egy for meeting new demands and decreasing carbon emissions from the energy sector [5,6].
As these programs evolve, the challenge of the valuation of these programs continues to
be a complex problem, including a range of characteristics from the measurement and
verification of actual energy savings to the value of those savings for the utility and the
consumer [5]. In addition, examining how well energy efficiency programs and policies
provide improvements in energy efficiency is also important [7].

Building energy signature analysis is a well-established tool for assessing energy
savings from buildings. Such tools have been used to analyze residential, commercial,
and even industrial buildings [8–10]. Energy signature analysis is a data-driven or inverse
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modeling method. The analysis is steady-state in nature, making use of energy consumption
summed over time periods which normally exclude the energy dynamics brought about by
the building thermal mass. Typical time intervals for the data range from hourly (which can
contain dynamic response data) to monthly, corresponding to typical utility billing periods.
This approach also requires coincident weather data. Single-variate inverse modeling using
one independent variable of outside air temperature is popular because this approach is
simple and reliable [9,11,12].

The change-point or piece-wise linear regression models are used for individual
loads or used extensively for aggregate loads or regional datasets from individual loads.
Raffio et al. examined three-parameter (3P) heating and cooling change-point models for
individual monthly utility billing data from 260 residences in Dayton, Ohio [13]. They
analyzed the parameters of the models and identified why abnormal coefficients occurred
by visiting the selected houses. Perez et al. used a 3P cooling change-point model for daily
air conditioning (AC) systems from 45 houses in Austin, Texas [8]. They compared the
cooling slopes of each 3P model, which can be used to identify houses worthy of targeting
for energy efficiency improvements. In addition, Gianniou et al. used an Ordinary Least
Squares (OLS) method, which is similar to a 3P heating change-point model, for hourly
heating loads from about 14,000 households in Aarhus, Denmark [14]. They estimated and
compared inside temperature setpoints and total heat loss coefficients obtained from the
large amount of individual heating load data. Eriksson et al. used a 3P heating change-point
model to estimate the heating energy use of 95 multi-family buildings in a Swedish city
district [15]. The researchers accounted for the heat loss coefficient, heating balance-point
temperature, domestic hot water demand, and domestic hot water circulation demand. The
district heating demands before and after the building renovation were compared using
hourly interval data, and the heating energy signature was identified. Ding et al. used
piece-wise or 4P heating change-point models using hourly interval data for weekdays
and weekends to analyze electric heating use in educational and residential buildings
in Norway [16]. Using the 4P models, the researchers established new energy signature
curves based on the scenarios considering the COVID-19 situations, and then analyzed the
electricity demand by the building types and the scenarios. Aragon et al. also examined
piece-wise or 4P heating change-point models to evaluate the weekly heat demand of
462 dwellings in the south of the UK [17]. They analyzed the various energy trends of the
social housing dwellings such as the houses that do not require space heating or show
irregular heating use, as well as the houses that demonstrate no variation or no additional
heating energy use when extreme weather events occurred.

Even though the change-point linear regression analysis has been widely used in the
previous studies [8–10,13–17], few previous studies have provided the analysis of aggregate
loads by different region using this change-point approach. Although many researchers
use this approach of multiple loads for comparison or planning purposes, there are few
instances of attempting to use this approach for a large number of loads in aggregate. One
example is found in Ali et al. [18], where they developed a 3P cooling change-point model
for daily aggregate cooling load from about 800,000 residential and commercial buildings in
Abu Dhabi, United Arab Emirates, but they used additional humidity and solar irradiation
terms for the model to predict cooling loads and the results were used as a predictive and
planning tool. Finally, Wang et al. [19] examined the Balancing Authorities (BAs) data that
were also used in this study. However, they focused on comparing data-driven models
using the data from three BAs rather than utilizing the results from the change-point linear
regression analysis.

In summary, all the previous studies did not suggest energy analysis methods using
the simple datasets of energy use and outside air temperature for the aggregate loads in
large areas to characterize energy patterns and to identify energy saving opportunities.
The public availability of electric loads (from the EIA-930 survey) for entire Balancing
Authorities (BAs) [20,21] (now called the Hourly Electric Grid Monitor [22]) provide an
interesting opportunity to apply the change-point linear regression method to a large aggre-
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gate load (i.e., grid-level electricity use). BAs control electric generation and transmission
to maintain the balance of their areas. Each BA ensures electricity supply to meet expected
demand and manages transfers with other BAs. The quality of the data from BAs has been
well controlled [23]. In this paper, we explore that opportunity and show that the corre-
lations for large geographical areas (e.g., BA region) are surprisingly coherent when the
change-point linear regression analysis is used. This is important because the change-point
models have been widely used because of the simplicity and the reliability. Even when
the change-point linear regression analysis is compared with the degree day method [24],
the change-point linear regression analysis shows better usability and accuracy [19]. The
tools using the change-point models will be very useful for utility managers and planners
because the electricity demand in large areas can be easily characterized using outside
air temperature data only (i.e., large scale energy signature analysis). In addition, we
suggest a weather-adjusted analysis method (i.e., another easy-to-use analysis tool) that
will allow for meaningful comparisons between BAs and to assess changes in time for a
given BA based on energy efficiency programs that are searched for each BA. These show
the novelty of this study that provides the easy-to-use and the easy-to-interpret tools for the
energy demand and the energy savings of large areas in order to identify energy signature,
including weather-dependent and weather-independent energy demand and savings. The
next section describes the datasets and the methods used in this study. Section 3 presents
the results from the energy signature analysis using the change-point linear regression
models and the results from the weather-adjusted method. Then, the discussion and the
conclusions of this study are presented in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Electricity Demand Data

EIA-930 datasets (now called the Hourly Electric Grid Monitor) that include hourly
electricity demand (MW) for each BA are compiled by US Energy Information Administra-
tion (EIA) [25]. The EIA portal supports the monitoring tool that analyzes and visualizes the
electricity data on a national and regional level for all 68 BAs [20,22,25]. The data can also
be downloaded in a machine-readable file with the first entries beginning in July 2015. The
data for each BA generally includes interval data for actual demand, day-ahead predicted
demand, net generation, and interchange data between BAs. Errors and discrepancies
encountered in compiling these data are addressed in the report [26].

2.2. Selected BA

In total, 14 BAs were selected to examine how well the energy signature analysis
works. Figure 1 shows the 14 BAs selected for this paper. For further analysis, four BAs
(highlighted by red) are compared with two different annual periods to track changes in the
load characteristics over time, which could be a result of their energy efficiency programs.

Table 1 shows a list of the selected 14 BAs. They comprise a sample of geographically
compact BAs, which are more likely to occur in the Pacific Northwest, as well more
dispersed BAs, such as MISO. In this study, the BAs that cover smaller areas and are
located in the Pacific Northwest are selected first to reduce the uncertainty from the types
of buildings/people, as well as the types of industry that the BAs service. The next level of
this study will include the analysis using knowledge-based databases, including surveys of
demographics, industry types, etc. For reference, the International Energy Conservation
Code (IECC) climate zones [29] are compared in Table 1. A higher number means that the
region has more heating degree days (i.e., colder climate). A, B, and C represent moist,
dry, and marine conditions, respectively. For example, SCL and TPWR are in the mild and
marine climate, and HST is in the hot and dry climate.
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Figure 1. Balancing Authorities (BAs) and selected BAs in U.S. electric power regions. Adapted
from [27,28].

Outside air temperature data were collected from a NOAA reporting station [30]
deemed to be representative of each BA. For example, IPCO covers an area from Eastern
Oregon to the Wyoming border across southern Idaho. However, most customers in IPCO
are located in Boise, ID, so the temperature data from the Boise reporting station was used.
It is noted that the same NOAA weather data is used for SCL(4C), TPWR(4C), and PSEI(5B)
because the service areas of the BAs are placed in the marine climate.

Table 1. List of selected BAs.

BA Region IECC Climate
Zone

Weather Data (NOAA)
Location, State

Seattle City Light (SCL) Northwest 4C Seattle-Tacoma, WA
City of Tacoma, Department of Public Utilities, Light

Division (TPWR) Northwest 4C Seattle-Tacoma, WA

Puget Sound Energy, Inc. (PSEI) Northwest 5B Seattle-Tacoma, WA
Public Utility District No. 2 of Grant County,

Washington (GCPD) Northwest 5B Spokane, WA

Avista Corporation (AVA) Northwest 5B Spokane, WA
Public Utility District No. 1 of Chelan County (CHPD) Northwest 5B Omak, WA

PUD No. 1 of Douglas County (DOPD) Northwest 5B Omak, WA
Idaho Power Company (IPCO) Northwest 5B Boise, ID

Western Area Power Administration—Upper Great
Plains West (WAUW) Northwest 6B Glasgow, MT

Imperial Irrigation District (IID) California 2B EL Centro, CA
Southwestern Power Administration (SPA) Central 4A Harrison, AR
Ohio Valley Electric Corporation (OVEC) Mid-Atlantic 4A Cincinnati, OH

City of Homestead (HST) Florida 1A Miami, FL
Midcontinent Independent System Operator, Inc.

(MISO) Midwest 5A Des Moines, IA

Of the 14 BAs, the four BAs of SCL, IPCO, IID, and HST were selected for comparison
with the two different annual periods using a weather-adjusted method in an attempt
to examine changes over time and to correct for different weather patterns. The overall
methodology of this study is shown in Figure 2. The major steps of the methodology are
summarized below:
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- Hourly interval electricity demand data (MW) for 14 BAs were collected for the one-
year period from January 2016 to December 2016. For further analysis, hourly interval
electricity demand data (MW) for four BAs were collected for the two periods: July
2015 to June 2016 and July 2017 to June 2018. In addition, the corresponding hourly
outside air temperature (OAT) (◦C) data were collected for each BA [30];

- Blank, zero, and minus values from hourly electricity demand data were considered
as missing values. Outliers were then removed for hourly electricity demand data. If
hourly demand was above two times of the maximum value and below the half of
the minimum value during the year, the hourly demand was considered as an outlier.
When missing and outlier data exist in a day for hourly electricity demand data, the
day was handled as a missing and outlier day, respectively. In addition, missing data
were filled in for the hourly outside air temperature data using a linear interpolation
method when missing data were found [31];

- Hourly data were converted to daily data. The hourly demand data were added and
the hourly OAT data were averaged for the daily intervals;

- The daily data were organized by dividing the data into the two categories: weekdays
(WDs) and weekends/holidays (WEs);

- Change-point linear regression analysis was conducted using the ASHRAE Inverse
Modeling Toolkit (IMT) [32] to find a balance-point temperature, a heating or cooling
slope (weather-dependent electricity demand), and weather-independent electricity
demand for each BA;

- The results from the change-point analysis were compared for 14 BAs. Furthermore,
four BAs were compared with two different periods, which assumed that the periods
were pre- and post-energy efficiency program periods, respectively. In addition,
energy savings were estimated using a weather-adjusted method [9] for four BAs
during a post-energy efficiency program period.

We use change-point linear regression models [32] for energy signature analysis
because the change-point models are effective, and they can examine details by weather-
dependent and weather-independent demand use. We use daily interval data because we
found that the models for the daily data fit well compared to the models for hourly or
weekly interval data.

2.3. Model

Fundamentally, the change-point linear regression model is a curve-fitting approach
which chooses the best set of parameters for the best model that fits the data [11]. The
various models are differentiated by the number of parameters they use, and the param-
eters are slopes, temperature balance points, and the energy use that is not related to
temperature. The simplest model has three parameters, one slope indicating the intensity
of the temperature dependence, the level of energy use that is not temperature dependent,
and the temperature at which the two regions of the model meet. This is called a three-
parameter (3P) model. A 3P model indicates that the building requires either cooling or
heating, but not both. A five-parameter (5P) model finds two slopes, one for both modes
(heating and cooling), a balance-point temperature for each, and the level of energy use
that is not related to the outside temperature, which the building consumes when the
outside temperature is between the two balance-point temperatures. A variation of the
5P model is a four-parameter (4P) model in which the two balance-point temperatures
are coincident. The Inverse Modeling Toolkit (IMT) [32] provides a set of computational
tools that automates and regularizes the procedure of finding the best model and resulting
parameters for a given dataset.
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Figure 2. Overall methodology.

The 3P cooling and the 5P change-point linear regression models were used for
the BAs in this study. The 3P cooling and 5P models can be defined mathematically as
Equations (1) and (2), respectively. For the purpose of this paper, we used 24 h as the
sampling interval, although other can be used to similar effect.

Etot = Ew.i. + CS(TOA − Tc.b.)
+ (1)

Etot = Ew.i. + HS(TOA − Th.b.)
− + CS(TOA − Tc.b.)

+ (2)

where Etot is the total BA daily electricity demand, TOA is the daily average outside air
temperature (OAT) from each reporting station. The parameters for the model are: Ew.i. is
the daily weather-independent electricity demand, CS is the cooling slope that represents
cooling electricity use sensitivity to OAT, Tc.b. is the cooling balance-point (change-point)
temperature, HS is the heating slope that represents heating electricity use sensitivity
to OAT, and Th.b. is the heating balance-point (change-point) temperature. For the HS,
absolute values were used for better visualization in the figures.

The notation ( )+ and ( )− indicate that the values of the parentheses shall be zero
when they are negative and positive, respectively [32]. For example, the model described
by Equation (1) ignores temperatures colder than the cooling balance-point temperature. In
addition, when Th.b. is the same with the Tc.b., it makes the 4P model form for this paper.

The units of the HS and CS parameters are MWh/day/◦C. Since this value is sensitive
to the magnitude of the overall BA demand, a normalization is proposed which accounts
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for these differences and allows for comparison of the HS and CS parameters between
BAs. It is assumed that the slopes and the weather independent energy parameters scale
in a similar manner to the overall BA demand. Given that assumption, the slopes can
be normalized by dividing by the Ew.i. parameters, creating a normalized slope with the
dimensions 1 ◦C as shown in Equations (3) and (4). For the Normalized HS, absolute
values were also used.

Normalized HS =
HS
Ew.i.

(3)

Normalized CS =
CS

Ew.i.
(4)

One of the more important uses of this approach is that it can be used to quantify
and estimate energy savings by comparing data of two different years and account for the
change in weather. This is done by using the parameters from the change-point model in
the earlier year and ‘run through’ the temperature data from the later year. The results are
an estimate of how aggregate load would appear if nothing other than the weather had
changed. Comparing that result to the actual demand in the later year provides an estimate
of the savings that could be attributed to utility programs, such as weatherization, or other
efficiency measures. It should be noted that this approach assumes no substantial changes
in the aggregate load due to growth or other factors. Given the relatively flat demand
for electricity over the past decade, this is a reasonable assumption in some cases. This
approach is shown mathematically in Equation (5) [9]:

S =
n

∑
i=1

(
ÊPost i − EPost, measured i

)
(5)

where S is savings from the energy efficiency program, n is the number of daily electricity
demand during the post-energy efficiency program period (i.e., n = 365 or 366), ÊPost i is
the total electricity demand during the post-energy efficiency program period predicted
by the change-point model, and EPost, measured i is the total, measured electricity demand
during the same post-period.

To examine the accuracy of the change-point linear regression models, the Coefficient
of Determination (R2) and the Coefficient of Variation of the Root-Mean-Square Error (CV-
RMSE) were used as statistical indices. Using Equations (6) and (7), the R2 and CV-RMSE
values were calculated, respectively:

R2 =
∑i (yi − y)2 − ∑i (yi − ŷi)

2

∑i (yi − y)2 (6)

CV − RMSE =

√
∑i (yi−ŷi)

2

(n−p)

y
× 100 (%) (7)

where yi represents the collected electricity demand data, ŷi is the electricity demand
calculated by the change-point linear regression models, y is the average of the collected
data, n is the number of data points, and p is the number of parameters.

R2 describes how well measured data correlate with predicted data [11]. CV-RMSE
provides how well a model fits measured data [33]. CV-RMSE is more useful than R2 when
dependent variables are few because the degree of dependent variables does not affect
CV-RMSE [11,34]. Based on the indices, it was found that the models for the daily data fit
well compared to the models for hourly and weekly interval data. Thus, for this paper, the
results from the daily models were used and discussed.
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3. Results

This section describes results from the energy signature analysis using the change-
point linear regression models for 14 BAs in 2016 and deeper analysis for four BAs during
the two different periods with a weather-adjusted saving calculation method.

3.1. Results from the Energy Signature Analysis for 14 BAs

Table 2 shows a summary of the results from the change-point linear regression
analysis using 2016 data from 1 January 2016 to 31 December 2016. The collected electricity
demand data had missing data during the collection process. In addition, outliers existed
from hourly electricity demand data. The table shows how many days were treated as
missing and outlier days for each weekday (WD) and weekend/holiday (WE) period.
Except WAUW, the missing day percentages of all the 14 BAs were below 4.5% for each
WD and WE period. The outlier day percentages of all the 14 BAs were below 2.9%. The
change-point linear regression models of all the BAs, except the weekday model of WAUW
and the weekday and weekend models of OVEC, show R2 of 0.70 or more and CV-RMSE
of 10.0% or less. However, even R2 of 0.50 can be a moderate model to be utilized [35].

We used the daily electricity demand data from each BA and corresponding daily
average OAT data from the NOAA site in a city which is close to the location of a BA on the
US EIA map. For most BAs, the 5P change-point model (see Figure 3 and Table 2) was best,
indicating substantial energy use for heating in all BAs. Only data from GCPD during the
WE period were suitable for the 4P change-point model because it had the same heating
and cooling balance-point temperatures. In addition, the data from IID and HST resulted
in 3P cooling change-point models because their regions are in the hot climate zones where
most buildings do not use energy to heat inside the buildings.

Figure 3. The 5P model for AVA using the daily electricity demand and corresponding OAT data
during the WD period in 2016.

To investigate issues further, the results are presented in graphs ordered lowest to
highest for various parameter values in Figures 4–7. Figure 4 shows the daily weather-
independent energy use for each of the BAs. As one would expect, the magnitude follows
with the size of the BA. For example, MISO has the largest number of customers among
the 14 BAs. In addition, the types of industry can significantly affect the amount of the
weather-independent daily demand. The daily weather-independent demand from the
WD period is higher than the WE period from all the BAs. This reason could be that the
buildings of the BAs have higher electric internal loads from lighting and equipment during
the WD period compared to the WE period. It is interesting to note that the WE demand
use is within 10.0% of the WD demand use for all but one of the datasets (the exception
being SPA at 11.8%).
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Table 2. Summary of the change-point linear regression model results from daily BA electricity demand data for the 2016 period.

BA Weather Data
(NOAA), State WD/WE

Missing/
Outlier
Days

Used
model Th.b. (

◦C) Tc.b. (◦C) HS
(MWh/day/◦C)

CS
(MWh/day/◦C)

Normalized
HS (1/◦C)

Normalized
CS (1/◦C)

Ew.i.
(MWh/Day) R2 CV-RMSE

(%)

SCL Seattle-Tacoma, WD 4/0 5P 13.6 16.8 −817.6 251.7 −0.0334 0.0103 24,469.7 0.82 4.6%
WA WE 2/0 5P 14.8 17.9 −758.3 364.6 −0.0339 0.0163 22,398.0 0.89 4.2%

TPWR Seattle-Tacoma, WD 0/0 5P 14.7 17.8 −516.9 162.8 −0.0446 0.0141 11,580.6 0.93 4.0%
WA WE 0/0 5P 14.8 17.9 −535.5 188.0 −0.0512 0.0180 10,459.5 0.93 4.8%

PSEI Seattle-Tacoma, WD 3>/0 5P 13.6 16.8 −2,822.1 1,047.5 −0.0382 0.0142 73,919.6 0.82 5.5%
WA WE 2/0 5P 12.7 19.0 −3,026.7 1,375.6 −0.0432 0.0196 70,104.2 0.81 6.6%

GCPD Spokane, WD 0/0 5P 3.2 7.9 −298.7 247.7 −0.0259 0.0215 11,531.3 0.70 7.1%
WA WE 0/0 4P 7.6 7.6 −247.4 297.0 −0.0237 0.0284 10,448.0 0.75 6.9%

AVA Spokane, WD 0/2 5P 12.7 17.4 −933.1 661.7 −0.0343 0.0244 27,173.4 0.92 4.8%
WA WE 0/2 5P 14.3 15.8 −871.3 537.2 −0.0355 0.0219 24,531.3 0.94 4.9%

CHPD Omak, WD 0/0 5P 11.4 15.9 −230.6 90.3 −0.0649 0.0254 3554.2 0.96 5.6%
WA WE 0/0 5P 11.7 16.4 −233.2 86.5 −0.0693 0.0257 3366.6 0.96 7.0%

DOPD Omak, WD 11/0 5P 8.4 14.4 −185.0 89.8 −0.0578 0.0281 3201.2 0.95 5.0%
WA WE 4/0 5P 10.1 14.9 −174.1 94.9 −0.0596 0.0325 2922.8 0.95 6.3%

IPCO Boise, WD 1/7 5P 7.8 14.0 −873.1 1,960.0 −0.0226 0.0506 38,710.9 0.78 10.0%
ID WE 2/3 5P 9.0 13.7 −780.9 1,861.6 −0.0214 0.0511 36,459.9 0.77 9.9%

WAUW Glasgow WD 28/1 5P 3.8 14.1 −48.5 70.4 −0.0261 0.0379 1,855.2 0.65 9.6%
MT WE 30/0 5P 6.2 15.3 −48.2 95.8 −0.0276 0.0549 1744.7 0.81 7.0%

IID EL Centro, WD 5/0 3P 21.4 21.4 0.0 582.6 0.0000 0.0776 7506.4 0.98 4.6%
CA WE 5/0 3P 21.1 21.1 0.0 546.7 0.0000 0.0797 6856.4 0.97 5.4%

SPA Harrison, WD 0/0 5P 11.3 18.2 −50.8 63.6 −0.0327 0.0409 1553.8 0.73 7.9%
AR WE 0/0 5P 10.0 18.9 −48.8 62.6 −0.0356 0.0457 1370.1 0.71 8.9%

OVEC Cincinnati, WD 0/1 5P 9.8 16.9 −65.6 91.1 −0.0412 0.0572 1592.7 0.63 13.3%
OH WE 1/0 5P 7.4 16.4 −79.0 74.9 −0.0534 0.0507 1477.5 0.57 15.7%

HST Miami, WD 3/0 3P 21.5 21.5 0.0 97.4 0.0000 0.0899 1084.3 0.95 4.2%
FL WE 0/0 3P 21.0 21.0 0.0 91.4 0.0000 0.0858 1064.9 0.93 4.9%

MISO Des Moines WD 2/0 5P 4.8 14.4 −23,450.9 48,687.5 −0.0143 0.0297 1,638,332.9 0.80 5.1%
IA WE 1/0 5P 8.1 15.4 −17,020.5 51,193.9 −0.0115 0.0347 1,476,414.6 0.76 5.6%
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Figure 4. Comparison of weather-independent daily demand for the weekdays (left) and the week-
ends/holidays (right) in 2016.

Figure 5. Comparison of balance-point temperatures for the weekdays (left) and the week-
ends/holidays (right) in 2016.

Figure 5 shows the heating and cooling balance-point temperatures (the temperature
at which the internal loads balance the environmental loads). The results are interesting in
that there is a wide range of values from 3.2 to 14.8 ◦C for heating and 7.6 to 21.5 ◦C for
cooling balance-point temperatures. One BA in particular seems to stand out. GCPD has an
exceptionally low cooling and heating balance-point temperatures. This is likely due to the
fact that this region supports an unusually large number of food-processing facilities, many
of which produce frozen quantities. In addition, many data-center facilities are located in
GCPD. The notably lower set point for these facilities will bring down the average balance
temperature considerably.
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Figure 6. Comparison of normalized heating slopes (absolute values) and cooling slopes for the
weekdays (left) and the weekends/holidays (right) in 2016.

Figure 7. Comparison of R2 and CV-RMSE (%) for the weekdays (left) and the weekends/holidays
(right) in 2016.



Sustainability 2022, 14, 8649 12 of 19

WAUW shows the second and first lowest heating balance-point temperatures for
the WD and WE periods, respectively. This reason could be the coldest climate zone (6B)
where the location of WAUW is among the 14 BAs. AVA, PSEI, SCL, and TPWR show
relatively high heating balance-point temperatures, even though they are located in the
similar climate zones (4C and 5B). The reason could be one of higher heating thermostat
setpoints, lower internal loads from lighting or other equipment, and/or higher heat losses
through building envelopes of the buildings in the four BAs. HST and IID show the highest
cooling balance-point temperatures for both the WD and WE periods. This reason could
be the hot climate zones (1A and 2B) where the locations of HST and IID are among the
14 BAs. The higher variance in the heating-balance-point temperatures means that many
buildings used different heating setpoints, and heating-balance-point temperatures were
more affected by internal loads compared to cooling-balance-point temperatures. It also
depends on the types of industry in each BA.

Figure 6 shows the normalized heating and cooling slopes between BAs. MISO, IPCO,
GCPD, and WAUW show relatively low normalized heating slopes for both the WD and
WE periods. The four BAs show that the normalized heating slopes are 28.1% and 28.9%
lower compared to the averages for the WD period and the WE period, respectively. The
reason for this could be that the buildings of the BAs have higher efficiency heating systems
and/or lower heating loads from weatherization programs. DOPD and CHPD show
relatively high normalized heating slopes above 59.0% and 53.4% compared to the averages
for the WD and WE periods, respectively. This reason could be that the buildings of the
BAs have lower efficiency heating systems (e.g., electric resistance heaters) and/or higher
heating loads from lower-quality building envelopes. DOPD and CHPD have the lowest
electric rates in the U.S.

SCL, TPWR, and PSEI show relatively low normalized cooling slopes for both the WD
and WE periods. The three BAs show that the normalized cooling slopes are 62.0% and
51.4% lower compared to the averages for the WD period and the WE period, respectively.
The reason for this could be that the weathers of their cooling periods are very mild,
and few buildings in these areas have air conditioning systems. IPCO and OVEC show
relatively high normalized cooling slopes that are 35.8% and 25.6% higher compared to
the averages for both the WD and WE periods, except HST and IID in the hot climate
zones (1A and 2B). The reason for this could be that the buildings of the two BAs have
lower efficiency cooling systems and/or higher cooling loads from lower-quality building
envelopes. Further comparisons from Figures 4–6 are possible if more information was
known about the demographics and the characteristics of the loads in the various BAs.

Figure 7 shows the accuracy of the applied change-point linear regression models.
OVEC has the most inaccurate model, based on R2 and CV-RMSE. The reason for this could
be that the buildings of OVEC have the most variances of building characteristics, system
operation schedules, or occupancy schedules among the 14 BAs. The change-point linear
regression models of all the BAs, except OVEC, indicate R2 above 0.65 and CV-RMSE below
10.1%, showing that they are well-established models for each BA during the WD and
WE periods.

3.2. Results from the Energy Signature Analysis for Four BAs for the Two Different Periods

For further analysis, the four BAs of SCL, IPCO, IID, and HST are selected to compare
them with the two different annual periods using the coefficients from the energy signature
analysis and a weather-adjusted saving calculation method in order to examine the efficacy
of their energy efficiency programs. It is assumed that two different periods are from
1 July 2015 to 30 June 2016 (for a baseline or a pre-energy efficiency program period) and
from 1 July 2017 to 30 June 2018 (for a post-energy efficiency program period).

Figure 8 through 11 show the resultant comparisons for the four BAs during the two
different periods. In Figure 8, SCL and IPCO have lower weather-independent electricity
demand in the 2017–2018 period compared to the 2015–2016 period. The WD and WE
use from SCL show the reductions of 3.0% and 3.8%, respectively. The WD and WE use
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from IPCO also show the reductions of 4.5% and 8.4%, respectively. The reason for this
could be that the buildings of the BAs have lower electric internal loads from lighting and
equipment due to their energy efficiency programs.

Figure 8. Comparison of weather-independent daily demand for the weekdays (left) and the week-
ends/holidays (right) in the two different periods.

In Figure 9, for the WD period, the heating balance-point temperatures of SCL and
IPCO in the 2017–2018 period are higher than those in the 2015–2016 period. For both the
WD and WE periods, the cooling balance-point temperatures of IID in the 2017–2018 period
are higher than those in the 2015–2016 period. However, the cooling balance-point tem-
peratures of SCL and IPCO in the 2017–2018 period are lower than the 2015–2016 pe-
riod. The trends from the balance-point temperature analysis do not show a strong effect
from the energy efficiency program of weatherization because the weatherization pro-
gram normally causes a lower heating-balance-point temperature and a higher cooling
balance-point temperature.

In Figure 10, SCL shows that both the WD and WE heating slopes in the 2017–2018 period
are higher than the 2015–2016 period. This reason could be that the buildings in SCL have
more aggressive system-on schedules in the 2017–2018 period. IPCO shows a much higher
heating slope for the WEs in the 2017–2018 period, but a lower heating slope for the WDs.
The reason for this could be that the buildings in IPCO have the abnormal system-on
schedules for the WEs in the 2017–2018 period. A further survey would be needed to
explore this particular trend. In terms of the cooling slopes, IPCO have lower cooling slopes
for both the WDs and WEs in the 2017–2018 period, which could mean that the buildings
in IPCO have higher efficiency cooling systems or system schedules from IPCO’s energy
efficiency program and/or less cooling loads from its weatherization program.

Based on the signature analysis from the coefficient comparisons, SCL and IPCO have
a high likelihood that they could effectively implement their energy efficiency programs
for the buildings because they show significant reductions from the weather-independent
electricity demand in the 2017–2018 period. Furthermore, IPCO’s lower cooling slopes in
the 2017–2018 period could prove the implementation of its energy efficient program for
the cooling systems and/or cooling loads in the buildings.

To quantify and estimate energy savings from the four BAs’ energy efficiency pro-
grams, a weather-adjusted saving calculation method was used. The resultant electricity
demand is shown in Table 3. As it was estimated in the energy signature analysis, SCL
and IPCO have lower electricity demand in the 2017–2018 period compared to the base-
line 2015–2016 period. The annual electricity demand reductions for SCL and IPCO are
136,655 MWh (1.5%) and 182,053 MWh (1.1%), respectively. However, it is observed that
HST and IID might not have their energy efficiency programs or the energy efficiency
programs were not effectively implemented yet because their annual electricity demand in
the 2017–2018 period are increased.
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Figure 9. Comparison of heating and cooling balance-point temperatures for the weekdays (left) and
the weekends/holidays (right) in the two different periods.

Figure 10. Comparison of heating slopes (absolute values) and cooling slopes for the weekdays (left)
and the weekends/holidays (right) in the two different periods.
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Table 3. Four BAs’ measured electricity demand compared to the adjusted (predicted) baseline
electricity demand in the 2017 to 2018 period, as well as measured electricity demand in the 2015 to
2016 period.

BA Period WD/WE Measured
(MWh)

Adjusted
Baseline
(MWh)

Difference
(MWh)

Difference
(%)

SCL July 2015–June 2016 WD 6,806,550
WE 2,874,378

Total 9,680,928
July 2017–June 2018 WD 6,413,611 6,502,737 −89,126 −1.4%

WE 2,672,695 2,720,224 −47,529 −1.7%
Total 9,086,306 9,222,961 −136,655 −1.5%

IPCO July 2015–June 2016 WD 11,899,065
WE 4,974,351

Total 16,873,416
July 2017–June 2018 WD 10,934,425 11,050,100 −115,675 −1.0%

WE 4,751,940 4,818,318 −66,378 −1.4%
Total 15,686,365 15,868,418 −182,053 −1.1%

HST July 2015–June 2016 WD 328,037
WE 150,258

Total 478,295
July 2017–June 2018 WD 352,822 350,636 2186 0.6%

WE 156,657 157,539 −882 −0.6%
Total 509,479 508,176 1303 0.3%

IID July 2015–June 2016 WD 2,331,221
WE 923,900

Total 3,255,121
July 2017–June 2018 WD 2,338,633 2,132,910 205,723 9.6%

WE 972,205 863,453 108,752 12.6%
Total 3,310,838 2,996,362 314,476 10.5%

Based on the IPCO’s annual reports, the estimated energy savings is 187,474 MWh in
the 2017–2018 period [36,37]. The assumption on the estimated savings was the average of
the estimated savings in the 2017 and 2018 annual reports because the period used for this
analysis was from July 2017 to June 2018. The estimated savings from the weather-adjusted
method is 182,053 MWh, so the difference is only −5371 MWh (−2.87%). A time-series
analysis was also conducted for IPCO. Figure 11 shows measured daily electricity demand
during the 2017 to 2018 period compared to the adjusted baseline daily electricity demand,
as well as corresponding outside air temperature data. The significant demand reductions
occurred from the middle of September to the end of November and from the middle
of March to the middle of April when outside air temperatures are between the heating
balance-point temperature of 7.5 ◦C and the cooling balance-point temperature of 15.0 ◦C
(i.e., a weather-independent period inside the green lines in the figure). The heating and
cooling balance-point temperatures were calculated using the weighted average during the
baseline’s WD and WE periods. However, for the heating and cooling periods when outside
air temperatures are below the heating balance-point temperature and above the cooling
balance-point temperature, respectively, the demand shows decreases or increases in
fluctuations. In addition, using the CO2 emission factors for Idaho in 2017 and 2018 [38,39],
the carbon footprint was calculated. It was estimated that the highest CO2 emission of
11,865 ton was occurred on 14 June 2018, and the lowest carbon footprint of −9521 ton was
occurred on 29 October 2017.
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Figure 11. Time series for IPCO’s measured daily electricity demand during the post-energy efficient
program period with the adjusted baseline daily electricity demand as well as the corresponding out-
side air temperature (For better visualization, missing data were filled in using a linear interpolation).

4. Discussion

This paper suggests the analysis approach for the publicly available aggregate electric-
ity loads from entire Balancing Authorities (BAs). The same approach used for building
energy signature was applied to these datasets, and although the approach uses the as-
sumption of a uniform environmental temperature for all electric loads, which is clearly
violated in the case of BAs, the analysis results in surprisingly coherent regressions using
the daily intervals. Of the 14 BAs analyzed, only the two BAs (WAUW in central Montana
and OVEC in Southern Ohio) resulted in R2 values below 0.70, and the six BAs (TPWR,
AVA, CHPD, DOPD, IID, and HST) resulted in R2 values above 0.90 for both the WD and
WE datasets. Perhaps the most convincing result for the robustness of this method is that
the model for MISO, which covers a wide range of weather patterns from the continent in
the north through the Great Lakes and into the Great Plains, had the R2 value of 0.80 on the
weekdays with CV-RMSE of 5.1% and R2 of 0.76 on the weekends/holidays with CV-RMSE
of 5.6%. However, to identify the reasons of low R2, a future study should analyze the
energy patterns of the BAs with a knowledge-based database including the surveys of
demographics, industry types, etc.

Additionally, the addition of normalized heating and cooling slopes was proposed.
By normalizing the temperature-dependent coefficients with the weather-independent
annual energy consumption, it opens the opportunity to make a consistent comparison of
temperature dependence between BAs. Although this particular index of performance will
require further refinement, these results show promise. For example, the analysis shows
that BAs in hot climates (IID and HST) have the largest normalized cooling slopes, while
the two worst for heating (CHPD and DOPD) are located in central Washington. This may
be due to the fact that these two BAs have the lowest electricity rates in the U.S., so many
buildings have electric resistance heaters that are not energy efficient.

We examined a possible application of this approach by developing a model for a
one-year dataset, then using that model to estimate whether energy use in a subsequent
year was higher or lower taking different weather into account. By using the baseline
model, we estimate how much energy would have been consumed in the subsequent
year if nothing, except the changes from their energy efficiency programs, had changed
in the BA. By comparing that number to the actual energy consumption, we analyzed
weather-normalized measures of how the load in a particular area is evolving. This can
have significant impacts for both utility planners and those responsible for verifying
the efficacy of their energy efficiency programs. Our analysis shows that the estimated
decrease in electricity consumption in IPCO is very close to the amount of savings reported
from their energy efficiency programs in the intervening year. This analysis requires
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the assumption that there was no significant change in overall loads between the two
periods, an assumption that might not always be reasonable, but is generally accepted
for the period under analysis. For better analysis, we may need to obtain the detailed
information on demographic/firmographic locations and changes, economic conditions,
natural conservation, building codes and standards, building types, etc., however, the
approaches suggested in this paper can be useful for utility managers to effectively verify
the energy efficiency programs in their regions.

5. Conclusions

We conducted an energy signature analysis for BAs using publicly available data. We
also suggested an analysis method that allows for meaningful comparisons between BAs
and to assess changes in time for a given BA which could be used to interpret changes
in load patterns year-to-year, accounting for changes in weather. As an example, this
approach can be used to verify the impact of energy efficiency programs on a building
component/system-wide basis.

The application of building energy signature analysis to entire BAs results in sur-
prisingly coherent models of the relationship between daily electricity consumption and
corresponding daily average outside temperature. The resulting model that categorizes
weather-dependent and weather-independent electric loads in the large areas can be used
for a number of purposes, including tracking the characteristics of the load for a given BA
from year to year, predicting future load growth due to a warming climate, estimating the
efficacy of energy efficiency programs, and validating other load models used by utility
planners. The normalization of these models shows some promise, but requires further
refinement and validation before it can be truly useful.

Ultimately, the analysis approach in this paper was conducted in order to examine
the effectiveness of an energy efficiency program’s implementation. Energy efficiency
stakeholders can use this approach to survey how well energy efficiency programs are
implemented in their regions. If it is provided that how many buildings and types of
buildings are serviced by each BA, this approach will be more interpretable with less
uncertainty. Even though it has limitations, this analysis approach shows promising
benefits from the use of the publicly available BA-level aggregate electric loads. This
approach can be used as a tool to better understand the electric loads from BAs. For future
work, the uncertainty of the analysis approach will be checked with knowledge-based data
from BAs.
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