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A B S T R A C T

In the Stranski–Krastanov growth mode for heteroepitaxial systems, layer-by-layer growth is followed by the
formation and growth of three-dimensional (3D) islands. In this paper, we use a kinetic Monte Carlo method to
simulate this growth mode behavior. We present a detailed and systematic investigation into the effects of key
model parameters including strain, growth temperature, and deposition rate on this phenomenon. We show that
increasing the strain lowers the apparent critical thickness that is defined by the onset of 3D island formation.
Similarly, increasing the growth temperature lowers the apparent critical thickness, until intermixing, and the
resulting relevance of entropic contributions, become more significant. We also report the impact on Stranski–
Krastanov growth of more model-specific parameters, such as bond strengths between constituent atoms of the
system, and surface energy anisotropies.

1. Introduction

In this paper we discuss results from a model that uses kinetic
Monte Carlo (KMC) simulations to describe the growth of heteroepi-
taxial systems. Under strain, heteroepitaxy often proceeds via the
so-called Stranski–Krastanov (SK) mechanism, where two-dimensional
(2D) layer-by-layer growth transitions into three-dimensional (3D)
island growth mode after a critical thickness is reached. Strain in these
systems results from the difference in lattice constant between the
substrate and the material being deposited. Archetypal examples of
SK growth in semiconductor systems include the growth of InAs on
GaAs [1], and Ge on Si [2,3]. The resulting 3D islands are often referred
to as quantum dots (QDs).

QD formation is the result of an instability, and this has been
investigated theoretically, from the continuum and mesoscales, to the
microscopic (atomic) scale. The basic driving force for this instability
is a competition between minimizing the surface energy of the system,
which stabilizes layer-by-layer growth, and the strain relief that occurs
by forming 3D features [4,5]. The early work of Asaro and Tiller [6]
and Grinfeld [7] predicted an instability that forms immediately with a
critical thickness of zero, in contrast to the experimentally observed SK
growth mode. Spencer, Voorhees, and Davis [8] suggested that while
the instability is indeed present immediately, it is not observed until
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an apparent critical thickness is reached. To explain why SK growth
begins with several flat layers, Tersoff [9] introduced the concept of
a wetting potential, which one can interpret as a thickness-dependent
surface energy of the deposited material.

In a 1+1 dimensional KMC model, Baskaran and Smereka [10]
showed that all of these concepts are relevant to describing SK growth
properly, but that intermixing also plays a crucial role. Intermixing has
two effects: it reduces the effective lattice misfit, and it enhances the
role of entropic contributions, which become more important as the
temperature increases. A follow-up paper by Schulze and Smereka [11]
confirmed that the results observed in Ref. [10] for 1+1 dimensions
also hold for a 2+1 dimensional KMC model. However, due to com-
putational limitations, the work of Schulze and Smereka only showed
results for a few model parameters. By exploring the effects of all model
parameters, in this paper we seek to provide a comprehensive study of
this KMC model.

Our renewed interest in this topic has been motivated in part by a
some unexpected results in recent experiments, particularly in tensile-
strained QD systems. The first concerns the thickness of the 2D wetting
layer during SK growth. Typically, once the critical thickness is reached
and QDs begin to form, the 2D wetting layer stops growing. However,
reports of GaAs QDs grown on InAlAs(111)A show that the wetting
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layer continues to grow even after the 2D-to −3D SK transition has oc-
curred [12,13]. The second concerns the fact that for Ge QDs grown on
InAlAs(111)A, researchers have observed a transition from SK growth
to the Volmer–Weber (VW) growth mode as the substrate temperature
is increased [14]. The KMC model we describe here will form the basis
for future studies aimed at understanding these phenomena.

The organization of this paper is as follows. We begin by describing
our 2+1 dimensional KMC model, before showing detailed results
of the effect of strain, temperature, and deposition rate for a set of
fixed bond-strengths that eliminate any effects of surface energies. We
then vary the relative bond strengths between substrate atoms and
deposited atoms, which amounts to including the effects of different
surface energies. Some key results, such as the formation of QDs upon
the introduction of strain, are only weakly dependent on the surface
energies.

2. The model

The KMC model that we use has been described in detail in
Ref. [11]. It is a cube-on-cube, bond-counting model. The state of the
system is described by a discrete height array ℎ𝑖𝑗 , supplemented by
a discrete displacement field, 𝐮𝑖𝑗𝑘. The total energy 𝐸 of the system
consists of the bond energies 𝑈 and a discrete elastic energy 𝑊 , and
𝐸 = 𝑈 + 𝑊 . Transitions from one state to the next occur with rates
that depend only on the initial state and the location of the hopping
particle:

𝑟𝑖𝑗 = 𝐾 exp
[

(𝐸0 + 𝛥𝐸)∕𝑘𝐵𝑇
]

, (1)

where {𝑖𝑗} indicates the initial position of the atom making the move
and −(𝐸0 + 𝛥𝐸) is the energy barrier for the transition. We take 𝐸0 as
a fixed constant, and 𝛥𝐸 is the difference between the energies with
and without a surface atom at (𝑖, 𝑗). Like the total energy, 𝛥𝐸 consists
of two pieces: one that describes the bonding found in bond-counting
schemes without elastic effects and that depends only on ℎ𝑖𝑗 , and one
that depends only on the elastic energy,

𝛥𝐸 = 𝛥𝑈 + 𝛥𝑊 . (2)

As described in Ref. [15], we shall consider two species of atoms,
denoted type 1 and type 2. For most of our simulations we will consider
the situation in which atoms of type 2 are deposited onto a substrate
of type 1. For this model, 𝛥𝑈 for a surface atom at site (𝑖, 𝑗) is given by

𝛥𝑈 = −(𝐵11 + 𝐵22 + 𝐵12), (3)

with

𝐵𝛼𝛽 =
(

𝑎𝑁 (1)
𝛼𝛽 + 𝑏𝑁 (2)

𝛼𝛽 + 𝑐𝑁 (3)
𝛼𝛽

)

𝛾𝛼𝛽 , (4)

where 𝛾𝛼𝛽 is the strength of the interaction (bond strength) between
atoms of type 𝛼 and type 𝛽, and 𝑁 (1)

𝛼,𝛽 denotes the total number of
bonds of type 𝛼 and 𝛽 connecting the atom at site (𝑖, 𝑗) and its nearest
neighbors. 𝑁 (2)

𝛼𝛽 and 𝑁 (3)
𝛼𝛽 are defined analogously, but for next-nearest

neighbors and next-to-next-nearest neighbors, respectively. We choose

𝐸0 = −𝐸𝐷 + (𝑎 + 4𝑏 + 4𝑐)𝛾12.

This implies that 𝐸𝐷 is the energy barrier for the diffusion of a type 2
adatom on a type 1 substrate (ignoring the 𝛥𝑊 term for now).

The parameters 𝑎, 𝑏, and 𝑐 allow one to vary the anisotropy of the
crystal. For example, the surface energy per unit area for the (001) facet
of material 1 is

𝜎001 =
(𝑎 + 4𝑏 + 4𝑐)𝛾11

2𝓁2
,

where 𝓁 is the size of the cubic unit cell. Similarly, the surface energies
per unit area for the (011) and (111) facets are given, respectively, by

𝜎011 =
(2𝑎 + 6𝑏 + 4𝑐)𝛾11

2𝓁2
√

2

and

𝜎111 =
(3𝑎 + 6𝑏 + 5𝑐)𝛾11

2𝓁2
√

3
.

These expressions are computed by counting the number of broken
bonds.

Finally, 𝑊 is the total elastic contribution to the energy. We ac-
count for the elastic interactions using a ball-and-spring model with
longitudinal and diagonal springs having spring constants 𝑘𝐿 and 𝑘𝐷
respectively. The elastic effects arise because the natural bond lengths
of materials 1 and 2 are different. The elastic energy of the system is
then of the general form

𝑊 =
∑

allsprings

1
2
𝑘spring𝛿

2 , (5)

where 𝛿 is the respective relative change in spring length.
In analogy to 𝛥𝐸, 𝛥𝑊 is given by the difference in elastic contri-

butions with and without a surface atom at position (𝑖, 𝑗). These elastic
energies are obtained by minimizing the elastic energies with respect
to all 𝐮𝑖𝑗𝑘.

In later sections we will use the surface roughness 𝑟, which we
define as

𝑟 =
√

⟨(ℎ𝑖𝑗 − ℎ𝑎𝑣)2⟩ , (6)

where ℎ𝑎𝑣 is the average height of the system, and the angular brackets
⟨⟩ signify the spatial average over all lattice sites.

3. Results and discussion

Here, we provide a systematic study of how the key parameters in
our KMC model affect the formation and evolution of quantum dots.
In 3.1 we investigate the effect of strain for a system where the bond
energies between any two atoms of type 1 or type 2 are all the same.
We then explore the effects of temperature 3.2 and deposition rate 3.3,
which can usually be controlled experimentally, for example during QD
growth by molecular beam epitaxy. In 3.4 we investigate in greater
detail the role of different bond energies, which translates into the role
of different surface energies for atoms of type 1 and 2. Finally, in 3.5
we examine how the choice of different surface energies for different
facets affects the resulting shape and orientation of the QDs.

All results shown in Section 3.1 and Section 3.2 are for 𝑎 = 0.3, 𝑏 =
0.5, 𝑐 = 1.0, bond energies 𝛾11 = 𝛾12 = 𝛾22 = 0.2425 eV, and a deposition
rate of 1.0 ML/s (monolayer per second). We used an identical value for
the three bond energies in these sections to isolate the effect of different
surface energies from the effects of other parameters. We chose this
specific value since it is the average of the bond energies 𝛾11 = 0.26 eV,
𝛾12 = 0.2425 eV, and 𝛾22 = 0.225 eV used in Ref. [11], and it corresponds
to a typical value for semiconductor materials. Our choice for 𝑎, 𝑏, and 𝑐
leads to surface energies 𝜎100 = 2007 erg/cm2, 𝜎110 = 1712 erg/cm2, and
𝜎111 = 1637 erg/cm2. We note that many conclusions discussed below
are qualitatively similar given different choices for 𝑎, 𝑏, and 𝑐, and for
𝛾𝑖𝑗 .

3.1. Effect of strain

In Fig. 1, we show how the surface morphology of 4 ML of type
2 atoms deposited on type 1 atoms at 𝑇 = 700 K evolves as the
strain is increased from 0 % to 7 %. For strains < 4 %, we observe
layer-by-layer growth for these parameters and no QD formation. When
the strain reaches 4%, we enter the SK growth mode. Following the
growth of a 2D wetting layer of ∼ 2 − 3 ML thickness, a transition to
3D growth occurs and QDs begin to form. We refer to the thickness
of the wetting layer at this moment as the apparent critical thickness,
consistent with the work of Baskaran and Smereka [10]. In Fig. 2
we plot the time evolution of surface roughness 𝑟 for all simulations
shown in Fig. 1. During layer-by-layer growth the roughness oscillates
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Fig. 1. Surface morphology after the deposition of 4ML at 700 K for 0%, 2%, 4%,
5%, 6%, and 7% strain. The parameters chosen are described in the text. Atoms of
type 1 (the substrate atoms) are shown in blue, while atoms of type 2 (the deposited
atoms) are shown in yellow. The inserts show a color-coded height profile where we
do not distinguish between atoms of type 1 and 2. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Surface roughness 𝑟 as a function of coverage for systems with 0%, 2%, 4%, 5%,
6%, and 7% strain at 700 K. The simulations correspond to the ones shown in Fig. 1.
The transition from layer-by-layer growth to Stranski–Krastanov growth is indicated by
an arrow.

between 0 and 0.5, with each period corresponding to the formation
and completion of a new atomic layer. These roughness oscillations in
our model are analogous to the intensity oscillations of the reflection
high-energy electron diffraction (RHEED) signal routinely seen during

Fig. 3. Apparent critical thickness at 700 K from Fig. 2, showing the Stranski–
Krastanov transition from layer-by-layer growth to 3D QD formation as a function of
strain.

molecular beam epitaxy [16]. In both cases, one oscillation period
corresponds to the growth of a complete monolayer of the crystal. There
is a clear signature in the roughness plots (indicated by a dashed red
line) that indicates the SK transition from the roughness oscillations
corresponding to layer-by-layer 2D growth, to a monotonic increase in
𝑟 due to 3D QD formation. For a given set of simulation parameters,
we refer to the deposition amount required to produce this transition
as the apparent critical coverage. We note that the formal definition of
the apparent critical thickness is slightly different in Ref. [10].

As the strain increases, the apparent critical thickness decreases so
that the onset of QD formation takes place at lower deposition (Fig. 3).
The formation of QDs lowers the elastic energy, while at the same time
it increases the overall surface energy. This strain relief mechanism
becomes more important as the strain increases, and therefore occurs
at an earlier time [17–19]. We also see that as the strain increases,
the island radius decreases, the island height increases, and the island
areal density is increased. This is also well known from experimental
results, for example the early work of Snyder et al. for In𝑥Ga1−𝑥As on
GaAs(100) [1]. For 7% strain the QDs start forming after the deposition
of approximately 0.6 ML. This indicates that the system has transitioned
to the VW growth mode, where 3D growth of QDs starts before the
completion of the first 2D monolayer.

3.2. Effect of temperature

In Fig. 4 we show the surface morphologies after the deposition
of 4 ML under 5% strain at different temperatures. The corresponding
apparent critical thicknesses are shown in Fig. 5. At 𝑇 = 500 K, we have
layer-by-layer growth until ∼ 2.8 ML deposition, and Fig. 4(a) shows
the beginning of the QD formation. As the temperature increases, the
apparent critical thickness decreases. The explanation is that there is
an energetic driving force for the formation of QDs to relieve strain.
At low temperatures, QD self-assembly is kinetically limited, but as the
temperature increases, we get closer to equilibrium, and we see the
formation of QDs at lower coverage [14,20]. This result also agrees
with the work of Baskaran and Smereka [10]. For temperatures above
𝑇 = 600 K, the apparent critical thickness stabilizes around 1.3 ML,
and does not decrease any further. In fact, our data suggests that the
apparent critical thickness increases slightly between 𝑇 = 650 K and
𝑇 = 700 K. At first glance, this is an unexpected result. But an analysis
of the intermixing of atoms of type 1 (the substrate atoms) and atoms of
type 2 (the deposited atoms) can explain this behavior. At temperatures
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Fig. 4. Surface morphology after the deposition of 4ML under 5% strain at 𝑇 = 500 K,
𝑇 = 600 K, 𝑇 = 650 K, and 𝑇 = 700 K. The parameters chosen are described in the text.
Atoms of type 1 (the substrate atoms) are shown in blue, while atoms of type 2 (the
deposited atoms) are shown in yellow. The inserts show a color-coded height profile
where we do not distinguish between atoms of type 1 and 2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 5. Apparent critical thickness at 5 % strain, showing the Stranski–Krastanov
transition from layer-by-layer growth to 3D QD formation as a function of temperature.

below 𝑇 = 600 K, there is essentially no intermixing of atoms of type
1 and type 2. All atoms in layer 0 (which we define as the top atomic
layer of the original substrate) and below are of type 1. All atoms in
layer 1 (i.e., the first atomic layer above the original substrate) and
above are of type 2. This can be seen in Fig. 6, where we show the
concentration of atoms of type 2 in layer 0. At low temperatures, it is
essentially 0, which means that almost all atoms in this layer are of
type 1. As the temperature increases above 𝑇 = 600 K, this intermixing
fraction increases, and it is around 0.2 and 0.4 at 𝑇 = 650 K and 𝑇 =
700 K, respectively. This increased intermixing is also apparent upon
visual inspection of Fig. 4, where we clearly see more type 1 atoms
exposed at the top layer as the temperature increases. The observed
stabilization of the apparent critical thickness of the wetting layer
happens because increased intermixing leads to a reduced effective
lattice mismatch. Furthermore, intermixing increases the relevance of
entropic contributions that stabilize the thickness of the wetting layer.

Fig. 6. Fraction of atoms of type 1 in layer 0 (the top substrate layer) at the time
when QDs start forming as a function of temperature. The strain is 5%, and the data
shown here correspond to Fig. 4. A value of 0.0 means that there is no intermixing,
while a value of 0.5 means that half of the atoms in the top substrate layer were
replaced by an atom of type 2.

Fig. 7. Surface morphology after the deposition of 4ML under 6% strain at 𝑇 = 700K
and different values for the deposition rate 𝐹 . Atoms of type 1 (the substrate atoms)
are shown in blue, while atoms of type 2 (the deposited atoms) are shown in yellow.
The inserts show a color-coded height profile where we do not distinguish between
atoms of type 1 and 2. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

3.3. Effect of deposition rate

For homoepitaxial growth, increasing the temperature produces
many trends that are similar to what one observes when reducing
the atomic deposition rate. The reason is that the adatom diffusion
length, and correspondingly the density of islands (in the submonolayer
regime), depend on the ratio 𝐷∕𝐹 , which can be increased or decreased
by changing either the diffusion constant 𝐷 or the deposition rate 𝐹 . In
fact, in the absence of any additional processes such as edge diffusion
or adatom detachment from island edges, increasing 𝐷 or lowering 𝐹
leads to identical morphologies. However, once adatom detachment is
allowed as an additional process, this equality no longer holds. Let us
assume for simplicity that only singly bonded atoms detach from an
island edge at a rate 𝐷𝑑𝑒𝑡, which is dependent on the temperature 𝑇 ,
but is independent of the deposition rate 𝐹 . One can now change 𝑇 and
𝐹 to keep 𝐷∕𝐹 constant, but at the same time, 𝐷𝑑𝑒𝑡∕𝐹 cannot be kept
constant.
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Fig. 8. Apparent critical thickness, showing the Stranski–Krastanov transition from
layer-by-layer growth to 3D QD formation under 6% strain at 𝑇 = 700 K as a function
of deposition rate 𝐹 . Note that to simplify comparison with Fig. 5, we present the
results from high (left) to low (right) deposition rate.

During homoepitaxial growth, the differences in morphology that
emerge upon varying 𝐷 vs. 𝐹 are small for a wide range of parameters,
In contrast, for heteroepitaxial growth, these morphological differences
are more significant and lead to qualitative changes that result in QD
formation. Fig. 7 shows the morphologies of 4 ML under 6% strain
deposited at four different rates. Raising the deposition rate leads to
a higher density of smaller QDs due to a reduction in adatom diffusion
length. This outcome is similar to what we observe when we reduce the
growth temperature (see Section 3.2). This result is also in agreement
with results obtained from continuum models for strained island growth
by Aqua and co-workers [21,22].

However, when we look at the effect on the apparent critical
thickness (c.f. Fig. 8), we see a significant qualitative difference. Above
we have shown that a lower temperature leads to prolonged layer-by-
layer growth, and a larger apparent critical thickness. In Fig. 8 we
see the opposite effect, where raising the deposition rate beyond 10
ML/s results in the system immediately forming QDs. The reason is
that lowering the temperature reduces 𝐷∕𝐹 but lowers 𝐷𝑑𝑒𝑡∕𝐹 even
more, and so reduces the relative importance of detachment. Atoms
are less likely to detach from an island edge and move to a higher
atomic layer, thus stabilizing and prolonging layer-by-layer growth.
In contrast, when we increase 𝐹 , the relative importance of 𝐷∕𝐹 vs.
𝐷𝑑𝑒𝑡∕𝐹 remains constant. Furthermore, since a higher value of 𝐹 leads
to smaller islands, it is now easier for atoms that detach from an
island edge to hop up to a higher layer, destabilizing the layer-by-layer
growth.

3.4. Effect of surface energies

In this section we discuss the effect on surface morphology when we
vary the bond energies 𝛾11, 𝛾12, and 𝛾22. We present results for the cases
where we keep 𝛾12 fixed, and increase (decrease) 𝛾11 while decreasing
(increasing) 𝛾22 by the same amount. Table 1 summarizes the values
used for 𝛾11, 𝛾12, and 𝛾22 for the five cases studied here. We acknowledge
that this discussion is by no means complete. One could, for example,
also choose to keep 𝛾11 fixed, and then vary 𝛾12 and 𝛾22.

Fig. 9 shows surface morphologies after the deposition of 4 ML
under 5% strain for cases (a)–(e) in Table 1. In the preceding sections
we showed results for 𝛾11 = 𝛾22, which is the case shown in Fig. 9(c).
As we increase 𝛾11 (panels (b) and (a)), the most noticeable effect is

Table 1
Choices for 𝛾11, 𝛾22, and 𝛾12 for the results discussed in Section 3.4.

Case (a) (b) (c) (d) (e)
𝛾11 >> 𝛾22 𝛾11 > 𝛾22 𝛾11 = 𝛾22 𝛾11 < 𝛾22 𝛾11 << 𝛾22

𝛾11 (eV) 0.2775 0.26 0.2425 0.225 0.2075
𝛾22 (eV) 0.2075 0.225 0.2425 0.26 0.2775
𝛾12 (eV) 0.2425 0.2425 0.2425 0.2425 0.2425

Fig. 9. Surface morphology after the deposition of 4 ML (2.7 ML for panel (a)) under
5% strain and different values of bond strengths 𝛾11, 𝛾12, and 𝛾22. Shown are the cases
with (a) 𝛾11 ≫ 𝛾22, (b) 𝛾11 > 𝛾22, (c) 𝛾11 = 𝛾22, (d) 𝛾11 < 𝛾22, and (e) 𝛾11 ≪ 𝛾22. In all
cases, 𝛾12 is the average of 𝛾11 and 𝛾22. The exact values are given in Table 1. Atoms of
type 1 (the substrate atoms) are shown in blue, while atoms of type 2 (the deposited
atoms) are shown in yellow. The inserts show a color-coded height profile where we
do not distinguish between atoms of type 1 and 2. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Effect of surface energies (or bond energies) on the apparent critical thickness
for (a) 𝛾11 ≫ 𝛾22, (b) 𝛾11 > 𝛾22, (c) 𝛾11 = 𝛾22, (d) 𝛾11 < 𝛾22, and (e) 𝛾11 ≪ 𝛾22.

a reduction in intermixing with fewer type 1 substrate atoms floating
to the top of the system. Fig. 11 also shows this effect, where the
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Fig. 11. Effect of surface energies (or bond energies) on intermixing. Shown is the
fraction of type 1 atoms in layer 0 (the top substrate layer) for (a) 𝛾11 ≫ 𝛾22, (b)
𝛾11 > 𝛾22, (c) 𝛾11 = 𝛾22, (d) 𝛾11 < 𝛾22, and (e) 𝛾11 ≪ 𝛾22.

intermixing as defined earlier is shown for all five cases. For cases
(b) and (a) there is essentially no intermixing. With increasing 𝛾11, the
substrate gets stabilized, the apparent critical thickness decreases, and
QDs form a little sooner (c.f. Fig. 10).

If we instead decrease 𝛾11, we see from Figs. 9(d)–(e) that inter-
mixing is enhanced. The substrate gets de-stabilized, and type 1 atoms
float to the top. This can also be seen from the larger intermixing
fraction shown in Fig. 11. The increased intermixing in Figs. 9(d)–(e)
also lowers the effective misfit, and for the parameters discussed here, it
appears that the surface begins to roughen very early without the clear
formation of QDs. We note that the intermixing fraction in Fig. 9(e) is
slightly smaller than in Fig. 9(d), and not larger. This happens because
we increase the bond strength between two atoms of type 2 when
we lower the bond strength between atoms of type 1, and once the
bond between atoms of type 2 is too large, the intermixing is reduced.
We also show the measured apparent critical thickness for Fig. 9(d)–
(e) in Fig. 10. In Section 3.2 we showed that enhanced intermixing
at higher temperature can stabilize layer-by-layer growth due to the
increased importance of entropic contributions. In this section we
have demonstrated that the detailed interplay between different atomic
interactions 𝛾𝛼𝛽 is also an important factor influencing intermixing and
the associated stability of the thin film.

3.5. Effect of facet anisotropies

As described in Section 2, the parameters 𝑎, 𝑏, and 𝑐 define the
anisotropy of the surface energy for different facets. In this section
we show how our model can capture important details such as surface
anisotropies. For all results discussed so far, we have chosen 𝑎 = 0.3,
𝑏 = 0.5, and 𝑐 = 1.0, which leads to surface energies 𝜎100 = 2007
erg/cm2, 𝜎110 = 1712 erg/cm2, and 𝜎111 = 1637 erg/cm2. The (110)
and (111) facets are the preferred facets (with a ratio 𝜎110∕𝜎111 = 1.05).
Indeed in all results shown above, these were the dominant side facets
for the QDs, while the (100) facet was least favorable. The (100) facet
appears only at the top of each QD, and disappears as the QDs get
taller (see for example Fig. 1). We note that in many figures we see
more (110) than (111) facets, which we presume is because of kinetic
limitations.

If we now set the next-next-nearest neighbor interactions to zero
(i.e., 𝑐 = 0.0), these surface energies change to 𝜎100 = 733 erg/cm2,
𝜎110 = 811 erg/cm2 and 𝜎111 = 717 erg/cm2. We find that the (100)

Fig. 12. Morphologies after the deposition of ∼ 2.5 ML at 700K with 5% strain for
𝑎 = 0.3, 𝑏 = 0.5, and 𝑐 = 1.0 (left panel), and 𝑎 = 0.3, 𝑏 = 0.5, and 𝑐 = 0.0 (right panel).
Atoms of type 1 (the substrate atoms) are shown in blue, while atoms of type 2 (the
deposited atoms) are shown in yellow. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

facet now becomes energetically more favorable than the (110) facet.
More importantly, the ratio 𝜎110∕𝜎111 = 1.13, so that the (111) facet is
now even more preferred energetically compared to the (110) facet. In
Fig. 12 we show results of the surface morphologies with 𝑐 = 1.0 and
with 𝑐 = 0.0. The main effect is indeed that for 𝑐 = 0.0 the (111) facet
starts to dominate. In addition, since the (100) facet has now a lower
surface energy than the (110) facet, the (110) side facets are being
replaced by (100) (i.e., vertical) side facets, and the tops of the QDs
do not get smaller as they grow. This suggests that if one were able
experimentally to control the different surface energies (for example
using surfactants), one might be able to manipulate the orientation and
details of QD shape.

3.6. Application to III–V growth

As mentioned in the introduction, our renewed interest in this model
has been motivated in part by some recent experiments on III–V QD
self-assembly [12–14]. We would like to discuss briefly why a cubic
KMC model is relevant to such systems, and how one could include
the specific effects of the presence of the group V species. In almost
all cases, molecular beam epitaxy of III–V materials takes place under
group V-rich conditions, and growth is limited by the kinetics of the
group III species [23]. An excess of the group V species is provided to
stabilize the III–V surface at the growth temperature, and so whenever
a group III atom attaches to an island or step edge, there is a group
V atom available to rapidly bond to it. We can therefore think of the
cubic atom used in our model as the group III element. We can capture
the details of the bonding of the group III atom to the system (and to
the group V atoms) by effective parameters for the cubic atom in the
model. These effective parameters can be tuned to a specific system,
for example by matching RHEED patterns [24].

The other important effect of the presence of group V atoms is
their impact on the surface morphology. For example, a combined
theoretical and experimental study of InAs(001) showed that the stable
surface reconstruction changes from 𝛽2(2 × 4) to 𝛼2(2 × 4) as the As
overpressure is reduced [25]. The mobility of adatoms and the surface
diffusion anisotropy is determined by the surface reconstruction. One
must therefore modify the parameters of the KMC model presented here
to account for the different reconstructions that result as we vary group
V overpressure.

4. Conclusions

In this paper we have systematically studied the effects of strain,
temperature and deposition rate on the apparent critical thickness of
the wetting layer and formation of QDs during SK growth. These are
parameters that can be experimentally controlled. In general, increas-
ing the temperature lowers the apparent critical thickness, while also
increasing intermixing between atoms that are deposited and atoms in
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Fig. 13. Apparent critical thickness for 6.5% strain showing the Stranski–Krastanov
transition from layer-by-layer growth to 3D QD formation as a function of temperature.
The apparent critical thickness drops below 1.0 ML for 𝑇 ≥ 500 K, indicating a transition
from SK growth at lower temperatures to VW growth.

the substrate. In a certain intermediate regime, we find that raising the
temperature increases intermixing just enough that increased entropic
contributions stabilize the wetting layer, and therefore reverse the
trend of a decreasing apparent critical thickness. The deeper under-
standing of intermixing and entropic contributions we have gained
during this study will play a key role in future investigations of the
growth of GaAs QDs on InAlAs(111)A, where experiments unexpectedly
show that the wetting layer continues to grow even after QD formation
has begun [12,13].

Of the model parameters that we have investigated, strain i.e., the
lattice mismatch between the substrate and the deposited material,
is the most influential. As strain increases, we find that the apparent
critical thickness decreases, leading to a transition in the growth mode
from layer-by-layer, to SK, and ultimately VW growth. The preliminary
results in Fig. 13 suggest that for a strain of 6.5% we can find a
transition from SK growth (with an apparent critical thickness above
1.0 ML) to VW growth (with an apparent critical thickness below
1.0 ML). These results contrast with what we saw for 5 % strain (Fig. 5)
where the apparent critical thickness also decreased with temperature,
but remained above 1.0 ML, indicating SK growth even at the highest
temperatures we considered. A more detailed study of the effect of the
bond energies and intermixing on the SK-to-VW transition, and possible
relations of our chosen model parameters to real III-V materials, will
be subject of future work. We therefore believe that this model is well
suited to exploring experimental observations of this SK-to-VW growth
mode transition in the Ge on InAlAs(111)A QD system [14]. Finally,
we have investigated how QD formation is affected by other model
parameters such as bond strength and bond anisotropy, that are more
difficult to control experimentally.
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