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ARTICLE

An alternative approach to nucleic acid memory
George D. Dickinson 1,7, Golam Md Mortuza 2,7, William Clay1,7, Luca Piantanida 1,7,

Christopher M. Green 1,5, Chad Watson1, Eric J. Hayden 3, Tim Andersen 2, Wan Kuang4,

Elton Graugnard 1, Reza Zadegan 1,6 & William L. Hughes 1✉

DNA is a compelling alternative to non-volatile information storage technologies due to its

information density, stability, and energy efficiency. Previous studies have used artificially

synthesized DNA to store data and automated next-generation sequencing to read it back.

Here, we report digital Nucleic Acid Memory (dNAM) for applications that require a limited

amount of data to have high information density, redundancy, and copy number. In dNAM,

data is encoded by selecting combinations of single-stranded DNA with (1) or without (0)

docking-site domains. When self-assembled with scaffold DNA, staple strands form DNA

origami breadboards. Information encoded into the breadboards is read by monitoring the

binding of fluorescent imager probes using DNA-PAINT super-resolution microscopy. To

enhance data retention, a multi-layer error correction scheme that combines fountain and bi-

level parity codes is used. As a prototype, fifteen origami encoded with ‘Data is in our DNA!

\n’ are analyzed. Each origami encodes unique data-droplet, index, orientation, and error-

correction information. The error-correction algorithms fully recover the message when

individual docking sites, or entire origami, are missing. Unlike other approaches to DNA-

based data storage, reading dNAM does not require sequencing. As such, it offers an

additional path to explore the advantages and disadvantages of DNA as an emerging memory

material.
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As outlined by the Semiconductor Research Corporation,
memory materials are approaching their physical and
economic limits1,2. Motivated by the rapid growth of the

global datasphere3, and its environmental impacts, new non-
volatile memory materials are needed. As a sustainable alter-
native, DNA is a viable option because of its information density,
significant retention time, and low energy of operation4. While
synthesis and sequencing cost curves drive innovations in the
field, divergent approaches to nucleic acid memory (NAM) have
been constrained because of the ease of using sequencing to
recover stored digital information5–13.

Here, we report digital Nucleic Acid Memory (dNAM) as an
alternative to sequencer-based DNA memory. Inspired by pro-
gress in DNA nanotechnology14, dNAM uses advancements in
super-resolution microscopy (SRM)15 to access digital data stored
in short oligonucleotide strands that are held together for imaging
using DNA origami. In dNAM, non-volatile information is
digitally encoded into specific combinations of single-stranded
DNA, commonly known as staple strands, that can form DNA
origami nanostructures when combined with a scaffold strand.
When formed into origami, the staple strands are arranged at
addressable locations (Fig. 1) that define an indexed matrix of
digital information. This site-specific localization of digital
information is enabled by designing staple strands with nucleo-
tides that extend from the origami. Extended staple strands have
two domains: the first domain forms a sequence-specific double
helix with the scaffold and determines the address of the data

within the origami; the second domain extends above the origami
and, if present, provides a docking site for fluorescently labeled
single-stranded DNA imager strands. Binary states are defined by
the presence (1) or absence (0) of the data domain, which is read
with a super-resolution microscopy technique called DNA-Points
Accumulation for Imaging in Nanoscale Topography (DNA-
PAINT)16. Unique patterns of binary data are encoded by
selecting which staple strands have, or do not have, data domains.
As an integrated memory platform, data is entered into dNAM
when the staple strands encoding 1 or 0 are selected for each
addressable site. The staple strands are then stored directly, or
self-assembled into DNA origami and stored. Editing data is
achieved by replacing specific strands or the entire content of a
stored structure. To read the data, the origami is optically imaged
below the diffraction limit of light using DNA-PAINT (Fig. S1).

Key design features of dNAM, that ensure error-free data
recovery, are our error-correcting algorithms. Detection of indi-
vidual DNA molecules using DNA-PAINT is routinely limited by
incomplete staple strand incorporation, defective imager strands,
fluorophore bleaching, and/or background fluorescence17.
Although it is possible to improve the signal-to-noise ratio by
averaging multiple images of identical structures17, this approach
comes at a significant cost to the read speed and information
density. To overcome these challenges, we created dNAM-specific
information encoding and decoding algorithms that combine
fountain codes with a custom, bi-level, parity-based, and
orientation-invariant error detection scheme. Fountain codes
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Fig. 1 Binary dNAM overview. The test message (a) for optically reading dNAM was ‘Data is in our DNA!’. The message was encoded and then
synthesized into 15 dNAM origami. For clarity, only one of the 15 designs is shown in (b). The data domain colors correspond to their bit values as follows:
droplet (green), parity (blue), checksum (yellow), index (red), and orientation (magenta). Site-specific localization is enabled by extending or not-
extending the structural staple strands of the origami to create physical representations of 1s and 0s. The presence, absence, and identity of a data strand’s
docking sequence defines the state of each data strand and is assessed by monitoring the binding of data imager strands via DNA-PAINT in (c). AFM
images of an origami nanostructure are depicted in (d), with both the expected raft honeycomb structure (left) and data strands (right) visible. The scale
bar is 25 nmin the AFM images and the color scale ranges from 0–1 nm in height. To ‘read’ the encoded message, 4 μL of the DNA origami mixture,
containing 0.33 nM of each origami, was imaged via DNA-PAINT. Two representative origami cropped from the final rendered image are shown in
(e), scale bar, 10 nm. All structures identified as origami in the rendered image were converted to a matrix of 1’s and 0’s corresponding to the pattern of
localizations seen at each data domain in (f). The red boxes in (f) now indicate errors. The decoding algorithm performed error correction where possible in
(g) and successfully retrieved the entire message when sufficient data droplets and indexes were recovered in (a). The blue boxes in (g)
now indicate corrected errors.
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enable transmission of data over noisy channels18. They work by
dividing a data file into smaller units called droplets and then
sending the droplets at random to a receiver. Droplets can be read
in any order and still be decoded to recover the original file19, so
long as a sufficient number of droplets are sent to ensure that the
entire file is received. We encode each droplet onto a single ori-
gami and add additional bits of information for error correction
to ensure that individual droplets will be recovered, in the pre-
sence of high noise, from individual DNA origami. Together, the
error-correction and fountain codes increase the probability that
the message is fully recovered while reducing the number of
origami that must be observed.

In this report, we describe a working prototype of dNAM. As a
proof of concept, we encoded the message ‘Data is in our DNA!
\n’ into origami and recovered the message using DNA-PAINT.
We divided the message into 15 digital droplets, each encoded by
a separately synthesized origami with addressable staple strands
that space out data domains approximately 10 nm apart. A single
DNA-PAINT recording recovered the message from 20 fmoles of
origami, with approximately 750 origami needing to be read to
reach a 100% probability of full data retrieval. By combining the
spatial control of DNA nanotechnology with our error-correction
algorithms, we demonstrate dNAM as an alternative approach to
prototyping DNA-based storage for applications that require a
limited amount of data to have high information density,
redundancy, and copy number.

Results
Recovery of a message encoded into dNAM. To test our dNAM
concept, we encoded the message ‘Data is in our DNA!\n’ into 15
distinct DNA origami nanostructures (Fig. 1a). Each origami was
designed with a unique 6 × 8 data matrix that was generated by
our encoding algorithm with data domains positioned ~10 nm
apart. For encoding purposes, the message was converted to
binary code (ASCII) and then segmented into 15 overlapping data
droplets that were each 16 bits. Inspired in part by digital
encoding formats like QR-codes, the 48 addressable sites on each
origami were used to encode one of the 16-bit data droplets, as
well as information used to ensure the recovery of each data
droplet. Specifically, each origami was designed to contain a 4-bit
binary index (0000–1110), twenty bits for parity checks, four bits
for checksums, and four bits allocated as orientation markers
(Fig. 1b). To fully recover the encoded message, we then syn-
thesized each origami separately and deposited an approximately
equal mixture of all 15 designs (~20 fmoles of total origami) onto
a glass coverslip. The data domains were accessible for binding
via fluorescently labeled imager probes because they faced the
bulk solution and not the coverslip (Fig. 1c). High-resolution
atomic force microscopy (AFM) was used in tapping mode to
confirm the structural integrity of the origami and the presence of
the data domains (Fig. 1d). 40,000 frames from a single field of
view were recorded using DNA-PAINT (~4500 origami identified
in 2982 µm2). The super-resolution images of the hybridized
imager strands were then reconstructed from blinking events
identified in the recording to map the positions of the data
domains on each origami (Fig. 1e). Using a custom localization
processing algorithm, the signals were translated to a 6 × 8 grid
and converted back to a 48-bit binary string—which was passed
to the decoding algorithm for error correction, droplet recovery,
and message reconstruction (Fig. 1f, g). The process enabled
successful recovery of the dNAM encoded message from a single
super-resolution recording.

Quality control of dNAM. We evaluated all of the origami
structures using AFM to confirm that the 15 different designs

were successfully synthesized, with their data domains in the
correct location. Automated image processing algorithms were
developed to identify, orient, and average multiple images of each
origami from the DNA-PAINT recording of the mixture (Fig. 2).
Although the edges of the origami were more sensitive to data
strand insertion failures (Fig. S2), the results confirmed that all of
the data domains, in each of the origami designs, were detectable
in each of the three separate experiments. The AFM images
further confirmed that the general shapes of all 15 origami
designs were as expected with properly positioned data domains
(Fig. 1d, Fig. S3). The results indicate that the extended staple
strands do not prevent the synthesis of the 15 unique origami
designs.

Further AFM analysis of dNAM origami. As an additional
quality control step, we used AFM to examine origami deposited
onto a glass coverslip immediately following SRM imaging. We
were not able to resolve individual docking sites in these images,
most likely due to the increased roughness of glass, as compared
to mica. However, it was possible to count the number of origami
in a field of view for comparison with SRM. The densities of
origami estimated from the images were 2.4 and 1.4 origami/µm2

for AFM and SRM, respectively, suggesting that ~60% of the total
origami deposited on glass have their data domains facing away
from the coverslip and available for imager strand binding. To
further investigate the variance in error rates between origami
designs, we resynthesized the most error-prone origami (origami
index 2). DNA-PAINT imaging indicated that the new batch
showed 9.7 ± 2 false-negative errors per origami, consistent with
the original experiment, while the second batch showed 7.1 ± 2
false-negative errors (Fig. 3). This suggests that at least a portion
of the variance in error rates is independent of origami design and
may be caused by variations in mixing, folding, and purification
conditions.

Data encoding/decoding strategy for dNAM. Our encoding
approach added 24 error-correction bits of data to every origami
structure so that data droplets can be determined from individual
origami even when data domains are incorrectly resolved, and the
entire message recovered if some droplets are missed entirely. To
evaluate the performance of the decoding algorithm, we examined
the frequency and types of errors in the DNA-PAINT images and
the effect of these errors on our decoding outcomes. We used a
template matching strategy where each of the 15 origami designs
was considered a template, and each individual origami in the
field of view was compared to these designs to find the best
match. We identified the total number of origami that matched or
did not match, each design (Fig. 3a, b). We then determined the
number of each design identified by the decoding algorithm when
recovering the message (Fig. 3c): a process independent of tem-
plate matching and blind to the droplet data contained in the
DNA origami. We observed a clear negative correlation between
the number of errors detected in a specific design and the number
of corresponding origami that were successfully decoded by the
algorithm (Fig. 3d). The results indicate that, even though there
was a low relative abundance of several origami in the deposition
mixture (particularly origami index 2) and a mean of 7.3 ± 1.2
false errors per origami across the different designs, our error-
correction scheme enabled successful message recovery. False
positives were much less common in our experiments, with a
mean of 1.7 ± 0.5 (Fig. 3b). Furthermore, the mean number of
errors overcome by the decoding algorithm (5.5 ± 0.1) was lower
than the mean number of errors observed across all the origami
(7.7 ± 0.1), demonstrating the challenge of decoding origami
when several fluorescent signals are missing (Fig. 3e).
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Nevertheless, the ability of our data encoding and decoding
strategy to recover the message despite errors in individual ori-
gami is promising, and the results provide useful guidelines for
evaluating and optimizing origami performance for future dNAM
designs.

Sampling analysis of dNAM. Given the observed frequency of
missing data points, we then used a random sampling approach
to determine the number of origami needed to decode the ‘Data is
in our DNA!\n’ message under our experimental conditions. We
started with all the decoded binary output strings that were
obtained from the single-field-of-view recordings and took ran-
dom subsamples of 50–3000 binary strings. We passed each
random subsample of strings through the decoding algorithm and
determined the number of droplets that were recovered (Fig. 4).
Based on the algorithmic settings used in the experiment, we
found that only ~750 successfully decoded origami were needed
to recover the message with near 100% probability. This number
is largely driven by the presence of origami in our sample that
were prone to high error rates and thus rarely decoded correctly
(i.e., origami index 2).

Simulations of dNAM. Simulations were run to determine the
size efficiency of the encoding scheme, as well as its ability to
recover from errors. As shown in Fig. 5a, the number of origami
required to encode a message of length n increases roughly at a
linear rate up to n= 5000 bytes of data. Larger message sizes
require more bits to be devoted to indexing, decreasing the

number of available data bits per origami—creating a practical
limit of 64 kB of data for the prototype described in this work.
This limit can be increased by increasing the number of bits per
origami. To determine the ability of the decoding and error
correction algorithm to recover information in the presence of
increasing error rates, in silico origami that encoded randomly
generated data were subjected to increasing bit error rates. The
decoding algorithm robustly recovers the entire message for all
tested message sizes when the average number of errors per
origami is less than 7.4 (Fig. 5b). At 7.4 errors per origami, the
message recovery rate drops to 97.5%, and as expected decreases
rapidly with higher error rates (55% recovery at 8.2 errors per
origami, and 7.5% at 9 errors per origami). An important feature
of our algorithm is that the origami recovery rate can be low (as
low as 63% in these experiments) and still recover the entire
message 100% of the time.

Discussion
Our results demonstrate a proof of concept for writing and
reading digital information encoded in oligonucleotides. Because
of the durability of DNA, dNAM has long-term future potential
for archival information storage. Currently, the most widely used
material for this purpose is magnetic tape. Recent advancements
in tape report a two-dimensional areal information density up to
31 Gbit/cm220, though the current commercially available mate-
rial typically has lower density8. Although relevant only for
reading throughput, not storage, the information density of tape
can be compared to the dNAM origami, which contains data
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Fig. 2 DNA-PAINT imaging of dNAM indicates all sites are recovered in a single read. dNAM origami from a DNA-PAINT recording were identified and
classified by aligning and template matching them with the 15 design matrixes (Design) in which all potential docking sites are shown. Filled circles indicate
sites encoded ‘0’ (dark gray) or ‘1’ (white). Colored boxes indicate the regions of the matrixes used for the droplet (green), parity (blue), checksum
(yellow), index (red), and orientation (magenta). For clarity, only the first design image includes the colored matrix sites. Averaged images of 4560
randomly selected origami, grouped by index, are depicted (DNA-PAINT). Scale bar, 10 nm.
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domains spaced at 10 nm intervals to achieve an areal density of
about 1000 Gbit/cm2. After accounting for using ~2/3 of the bits
for indexing and error correction, this results in an areal data
density of 330 Gbit/cm2. It is possible to increase dNAM areal
density by placing a data domain at every turn in the DNA helix
(~3.5 nm spacing), a distance that has been resolved by SRM21.
Other avenues to increasing density are also available, such as
previously reported multiplexing techniques with multiple
fluorophores and orthogonal binding sequences with different
binding kinetics22, and incorporation of each of these approaches
is expected to impact reading throughput. In terms of durability,
typical magnetic tape lasts for 10–30 years, while double-stranded
DNA is estimated to be stable for millions of years under optimal
environmental conditions7.

With our optical microscope setup and origami deposition
protocol, we can image the 7500 unique origami designs needed
to store 5 kB of data (Fig. 5), albeit in several recordings. We
conservatively estimate it would take ~30 recordings to ensure a
100% probability of successful data recovery given our current
error rates. To efficiently handle larger datasets, it is necessary
to improve the data capacity of individual origami, which will
allow a larger range of indexing values and increase the
proportion of bits dedicated to the data as compared to indexing,

error-correction, and orientation. This could be achieved by
engineering larger origami or by increasing data density—either
by placing data sites closer together or by using multiplexing
techniques to augment bit depth at each site (see SI, Supplemental
Calculations).

Our results also indicate that advancements in origami-based
information storage and reading will require a coordinated effort
between improvements in origami synthesis, substrate deposition,
DNA-PAINT, and coding algorithms. For example, our sub-
sampling approach (Fig. 4) showed that a decoding algorithm
that corrected up to nine errors easily recovered our entire
message, while algorithms that corrected only five or fewer errors
are much less computationally expensive but rarely recovered our
full message. This makes sense, given that most of the origami
detected had more than five errors (Fig. 3e). We anticipate that
reducing the number of errors by improving origami design and
optimizing imager strand performance would allow more efficient
algorithms for data recovery, which would, in turn, decrease the
number of bits dedicated to error correction and thus increase
information density.

Our fountain code algorithm is robust to randomly lost packets
of information, as long as the receiver receives K+ ε packets,
where K is the minimum number of packets required to encode

a

d

cb

e

Fig. 3 All 15 dNAM data strings were recovered from a single read. (a) plots the numbers of each origami index observed in a single recording, based on
template matching. The mean counts are shown as gray bars, with the percentage of the total origami indicated on the secondary axis. In (b), the mean
number of total errors (top) for each structure is shown, based on template matching. The same errors are also shown after being grouped into false
negatives (middle) and false positives (bottom). (c) depicts the percent of origami passed to the decoding algorithm that had both their indexes and data
strings correctly identified. In (d), the percentage of each origami decoded is plotted against the mean number of errors for each structure. (e) shows
histograms of the total mean numbers of errors found in origami identified by template matching (open bars) and the decoding algorithm (gray bars). The
difference between the two is plotted in blue. Mean values for three experiments are depicted in all graphs, error bars indicate ±SD. Individual data points
are plotted as small black circles.
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the file under perfect conditions (i.e., K is equal to the file size)
and ε is the number of additional packets received. The prob-
ability of being able to decode the file is then (1−δ), where δ is
upper-bounded by 2−Kε23. This equation implies that all things
being equal, the larger the file size the greater the likelihood of
successfully recovering the file at the receiver. Normally, the
transmitter continues to transmit droplets in a fountain code
until the receiver acknowledges successful file recovery. In the

case of dNAM, this is not possible since the number of droplets
must be fixed ahead of time to equal the number of origami.
Reducing the error rates, or improving error correction/detection,
would have the added benefit of reducing the number of droplets
and hence origami discarded by the fountain code. These
improvements would make it easier to determine the minimum
number of droplets per DNA origami needed to ensure robust file
recovery while increasing information density even further.

The lower abundance and higher error rate of origami index 2
(Fig. 3) indicate that some designs have defects that we could not
detect by AFM and/or SRM. Careful defect analysis indicates that
incorporated but inactive data domains play a greater role in
producing errors than unincorporated staple strands24. Future
dNAM research should focus on sequence optimization to
minimize variation in hybridization rates and the formation of
off-target structures25. It should also include the use of larger
DNA origami and increased bit depth through multiplexing.

Future work on dNAM will also need to address scalability if
dNAM is to compete with established memory storage systems.
In this report, we describe the storage of a small amount of data
in order to illustrate the potential of dNAM. Scaling to much
larger data sets requires substantial engineering improvements in
both write and read speeds (see Fig. S8 and Supplemental Cal-
culations for further comparisons). For writing, the rate-limiting
step is the selection of the oligonucleotide data strands. In our lab,
we use an EpMotion 5075 liquid-handling system to pipette oli-
gonucleotides. While this machine could handle thousands of
sample transfers per day, it limits the write speed to thousands of
bits per day as each data strand encodes 1 bit. As far as we are
aware, the fastest liquid-transfer system available is the Echo ®
520 Liquid Handler, which is reported by the manufacturer to
process ~750,000 samples per day, allowing ~0.1 MB per day for
1-bit data strands. For dNAM to reach write speeds equivalent to
tape (hundreds of MB per second) using laboratory hardware,
significant increases in either the number of bits per strand and
the rate of transfer of samples or the rate at which DNA oligo-
nucleotides can be synthesized will be necessary. While writing
information into DNA at a competitive rate is a sincere challenge
that is facing the entire DNA-memory field5, and is likely to
undergo rapid innovation as the market for synthesized DNA
increases, the approach we have used here, in which a library of
premade oligonucleotides are drawn on, is currently the fastest
approach for dNAM.

Fig. 4 Number of dNAM origami required to recover the message. The
mean number of unique dNAM origami correctly decoded for randomly
selected subsamples of decoded binary strings are shown. The analysis was
broken out by the number of errors corrected for each origami, three
examples are plotted (1, 4, and 9). Black filled circles depict the mean results
for nine error corrections, which is the ‘maximum allowable number of errors’
parameter used in the decoding algorithm for all other analysis reported here.
The horizontal lines indicate the probability of recovering the message with
different numbers of unique droplets. With fourteen or more droplets, the
message should always be recovered (thick green line, and above indicates
100% chance of recovery) and with nine or fewer droplets the message will
never be recovered (thick red line and below indicates 0% chance of
recovery). Mean values for three experiments are shown. Error bars indicate
±SD. Individual data points are plotted behind as smaller gray symbols.

a b

Fig. 5 dNAM origami and message recovery rates in the presence of increasing errors. Simulations were performed to determine the theoretical success
rates for correctly decoding individual dNAM origami and recovering encoded messages. In (a), the mean number of dNAM origami needed to successfully
recover messages of increasing length with (circles) or without (squares) redundant bits are plotted. In (b), the mean success for recovering both
individual origami (triangles) and the entire message (diamonds) are plotted against the mean number of errors per origami (errors were randomly
generated for simulated data). Simulation recovery rates are averages of all message sizes tested (160 to 12,800 bits). For comparison, the mean success
rate for experimental data is also plotted (open circles). For experimental data, the mean success was estimated by comparing the decode algorithm’s
results with that of the template-matching algorithm. All simulations were repeated 40 times. Experimental data were derived from 3 independent DNA-
PAINT recordings.
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Due to the inherently parallel nature of DNA-PAINT imaging,
the read speed of dNAM is arguably less of a challenge to scale up
to deal with large amounts of data. The rate-limiting factors for
DNA-PAINT are the camera integration time needed to collect
sufficient photons to resolve an emitter and the number of
emitters that can be identified in a single frame of a recording.
The latest report on DNA-PAINT by Strauss and Jungmann
describes a 100-fold speed-up in data collection for origami very
similar to those we imaged in dNAM26. In their experiments, 5
nm resolution of the binding site was demonstrated with 100 ms
camera integration times. Another recent innovation, using deep
learning to rapidly identify the centroids of overlapping emitter
blink events (Deep-STORM27), has been shown to be able to
process dense SRM data (~6 emitters/µm2). Taken together we
estimate that by using densely-deposited dNAM origami28 with
data strands placed 5 nm apart, an EMCCD camera with a
1024 × 1024 imaging array, the Deep-STORM algorithm, and
Straus and Jungmann’s 100-fold speed-up methodology, we could
currently collect data at a rate of ~700MB per day (see SI, Sup-
plemental Calculations). Further improvements in reading speed
could be achieved by increasing the imaging array area—via
larger sensors or multiple cameras and using multicolored probes
or three-dimensional information to collect multiple bits worth of
data simultaneously from one site. Our hope is that this dNAM
prototype will motivate this work and more.

DNA is an emerging material for data storage due to its high
information density, high durability, low energy of operation, and
the declining costs of synthesis1. The traditional approach in the
field is to design and synthesize unique oligonucleotides that
encode data directly into their sequence. This data is recovered by
reading the pool of oligonucleotides using sequencing. In con-
trast, dNAM takes advantage of another property of DNA—its
programmability. By encoding binary data into DNA origami and
reading it as spatially and temporally distinct hybridization
events, dNAM decouples information recovery from sequencing.
Editing the data is trivial through the inclusion or exclusion of
sequence extensions from a library of staple strands. Data strands
can be stored directly or incorporated into origami and then
stored; separating the 3D storage density from the 2D reading
density. In addition, dNAM is a massively parallel process
because the large optical field of view affords tens of thousands of
origami to be imaged simultaneously, and the number of optical
read heads is proportional to the concentration of the imager
strands in solution. Rather than averaging thousands of DNA-
PAINT images together to resolve the digital data17, individual
origami were read here using custom encoding, decoding, and
error-correction algorithms. Our algorithms combined fountain
codes with bi-level parity codes to significantly enhance our data
retention—creating a multi-layer error correction scheme that
encoded index, orientation, parity, and checksum bits into the
origami. As a proof of concept, several bytes of data were
recovered in a single DNA-PAINT recording. Even when the
DNA origami recovery rate was poor (as low as 63%), the mes-
sage was recovered 100% of the time. As an alternative platform
for testing DNA-memory technology, dNAM offers a pathway to
explore the advantages and disadvantages of DNA as a material
for information storage and encryption, as previously demon-
strated by Zhang et al.29. Because of the scaling challenges of
using DNA as a memory material, this is particularly true for
applications like barcoding that require a limited amount of data
to have high information density, redundancy, and copy number.

Methods
The materials purchased for this study, and their respective vendors, are outlined in
Table 1. All other reagents were obtained from Sigma.

Buffers. As previously described17, two buffers were used to prepare and image
DNA origami: a deposition buffer and an imaging buffer. The deposition buffer
contained 0.5× TBE and 18 mM MgCl2. The imaging buffer contained the
deposition buffer with the supplement of 60 nM PCD, 1 mM Trolox, 3 nM imager
strands, and 10 mM PCA. PCA was added to the imaging buffer immediately
before the start of a DNA-PAINT recording.

Encoding algorithm. The encoding algorithm used a multi-layer error correction
scheme to encode message data bits along with the index, orientation, and error
correction bits onto multiple origami (Fig. S4).

At the message level, the algorithm used a fountain code to encode the data. Let
m be a message string composed of a sequence of n bits. The fountain code
algorithm first divides m into k equally sized and non-overlapping substrings s1, s2,
…, sk, where the concatenation s1s2…sk=m, and then systematically combines one
to many segments using the binary XOR operation to form multiple data blocks
called droplets. The number of segments d used to form each droplet are typically
drawn from a distribution based on the Soliton distribution:

p 1ð Þ ¼ 1=k ð1Þ
The Soliton distribution ensures that the algorithm encodes the optimal number

of single-segment droplets necessary for the decode step. Once the number of
segments d for a droplet is determined, the droplet is formed by XOR’ing d
randomly selected, unique segments from m, with each segment being selected with
probability 1/k.

For our experiments, we divided the message ‘Data is in our DNA!\n’ into
10 segments of 16 bits each. The segments were then combined via an XOR in
different combinations using the fountain code algorithm to form the 15 droplets.
While the theoretical minimum number of 16-bit droplets required to decode the
message is 10, the redundancy provided by the additional droplets ensured that the
message would be recoverable in all cases involving the loss of one droplet, and in
some cases with the loss of up to five droplets (Fig. 4).

After generating the droplets using fountain codes, the encoding algorithm
encoded each droplet onto fifteen 6 × 8 matrixes, and sequentially added index and
orientation marker bits, computed and added checksum bits, and then added parity
bits (Fig. 1b). These matrixes were used to construct 15 origami structures, with a
one-to-one mapping between the matrixes and the origami’s data domains.

Figure 1b shows the layout of how droplet information was encoded onto each
origami, composed of 16 bits of droplet data (green coloring in Fig. 1b), four
indexing bits (red), four orientation bits (magenta), four checksum bits (yellow),
and twenty parity bits (blue). It is important to note that the layout of the data,
orientation, and index bits relative to the corresponding parity and checksum bits
is invariant to rotation, which made it possible for the error correction algorithm to
perform error detection and recovery before determining the orientation (Fig. S4).
This led to more robust data recovery.

DNA origami folding. Rectangular DNA origami structures (~90 × 70 nm) were
designed based on previous work by Rafat et al.30 with 48 potential docking strand
sites arranged in a 6 × 8 matrix with 10 nm spacing. Then, using the protocol
described by Schnitzbauer et al.17 a mixture of extended and unmodified staple
strands (SI Tables S1 and S2) were selected to fold the M13 scaffold into the
designed shape, with extended strands located at the ‘1’ positions described in the
design matrix (SI Table S4). As described in the introduction, an extended staple
strand has a binding site for the M1 imager strand, unmodified strands bind solely
to the scaffold DNA to induce folding. Using this method, 15 origami designs were
created that matched the 15 matrixes output by the encoding algorithm.

We assembled individual origami designs by combining 22 nM M13mp18 with
10× unmodified stands, 50× extended strands, 1× TAE and 18mM MgCl2 (in
nuclease-free water; 100 µL total volume) and folding in a Mastercycler nexus
thermal cycler (Eppendorf) using the following heating cycle: [1 min 90 °C, 2 min
80 °C, then from 80 °C to 25 °C over 12 h]. We purified the origami by running
them on an ice-cooled 0.8% agarose gel containing 0.5× TBE and 8mM MgCl2,
excising the single sharp band, and collecting the exudate of the crushed gel piece.
Sharp triangle origami used as fiducial markers were prepared similarly, as
previously described31 (see S1 Table S3 for oligonucleotide sequences). All purified
origami were stored in the dark at 4 °C until use.

Glass coverslip preparation. Borosilicate glass coverslips (25 × 75 and 22 × 22
mm, #1 Gold Seal Coverglass) were sonicated in 0.1% (v/v) Liquinox and nano-
pure water (1 min in each) to remove contaminants and dried at 40 °C for at least
30 min. Fiducial markers (200 µL of 0.2 pM AuNPs) were deposited onto the
coverslips for 10 min at room temperature. The labeled coverslips were rinsed with
methanol and nano-pure water and stored at 40 °C prior to use.

DNA origami deposition onto coverslips. The glow discharge technique pre-
viously described by Green24 was used to deposit DNA origami onto glass cov-
erslips using an air-plasma vacuum glow-discharge system. Briefly, coverslips that
had been cleaned and labeled with fiducial markers were exposed to glow discharge
generated using an electrode coupled 115 V Electro-Technic BD-10A High-
Frequency Generator under 2 Torr of vacuum for 75 s. For DNA-PAINT analysis, a
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sticky-Slide flow cell (~50 µL channel volume) was glued to the coverslip, DNA
origami were then deposited by introducing 200 µL of 0.05 nM origami (a mixture
of dNAM origami and sharp triangle origami31 added as additional fiducial mar-
kers, in deposition buffer) into the flow chamber and incubated for 30 min at room
temperature. After deposition, the flow chamber was rinsed with 1 mL of
deposition buffer (no DNA origami) and refilled with imaging buffer.

When performing AFM measurements on samples previously used for DNA-
PAINT, a custom fluid chamber, modified from Jungmann et al.32, was used. A
22 × 22 mm coverslip was glued to a microscope slide using double-sided sticky
tape with the addition of a thin layer of gel sealant—to both seal any gaps and
weaken the binding of tape to the glass. Once DNA-PAINT imaging had been
performed the sealant allowed the coverslip to be easily removed for further AFM
analysis.

Fluorescence microscopy. DNA origami was imaged below the diffraction limit of
light via DNA-PAINT17 using an inverted Nikon Eclipse Ti2 microscope from
Nikon Instruments in total internal reflectance fluorescence (TIRF) mode. The
images were acquired using: an optical feedback focal-drift correction system
developed in-house or the Perfect Focus System from Nikon Instruments; an oil-
immersion CFI Apochromat ×100 TIRF objective with a 1.49 numerical aperture,
plus an extra ×1.5 magnification from Nikon Instruments; and a 405/488/561/647
nm Laser Quad Band Set TIRF filter cube from Chroma. A 561 nm laser source
excited fluorescence from the DNA-PAINT imager strands within an evanescent
field extending a few hundred nanometers above the surface of the glass coverslip.
The emitted fluorescence was imaged onto the full chip with 512 × 512 pixels (1
pixel= 16 μm) using a ProEM EMCCD camera from Princeton Instruments at a
300 ms exposure time (~3 frames/s). During an experimental recording, each of the
individual data strands, within a dNAM origami’s matrix, transiently and repeat-
edly bound an imager strand, which emits a signal, creating a series of blinks.
Images with blinking events were recorded into a stack (typically 40,000 frames per
recording) using Nikon NIS-Elements version 5.20.00 (Nikon Instruments) or
LightField version 5 (Princeton Instruments) prior to processing and analysis.

DNA-PAINT fluorophore localization. After recording a DNA-PAINT stack, the
center position of signals (localizations) emitted by imager probes, transiently
binding to DNA origami docking strands, were identified using the ImageJ
ThunderSTORM plugin33. The localizations were rendered and then drift corrected
using the Picasso-Render software package, as described by Schnitzbauer et al.17.
Data visualization and peak fitting of image data for PSF analysis were performed
using OriginPro Version 2019b (OriginLab).

Localization data processing. A custom algorithm was developed for identifying
clusters of localizations, determining the maximum likelihood position of the
emitters, and generating binary matrix data. The algorithm selected localization
clusters at random from the localization list. To do this, it sampled random points
in the list, determined the average position of nearby localizations, and counted the
localizations within a radius (R) and the localizations within a band R < r < 2R. The
algorithm accepted clusters if the counts in the inner circle were greater than a
threshold and the counts in the outer band were less than 15% of the counts in the
inner band. This ensured selection of bright clusters that were isolated from other
clusters.

The algorithm then fits the cluster localizations to a grid of emitters. An
idealized grid was created using the average DNA-PAINT image produced by
several thousand individual origami structures of the same architecture used in this
work. The algorithm performed fitting using a maximum likelihood estimation for

the likelihood function:
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Where Ik is the intensity of the kth emitter, (xc, yc) is the center position of the

grid, θ is the rotation angle of the grid, Δxg is the global lateral uncertainty caused
by an error in drift correction, B is the background, Δxi is the lateral position
uncertainty of localization i reported by the ThunderSTORM analysis described
above, (xi, yi) is the position of the ith localization, (xk, yk) is the position of the kth

emitter, as a function of the center position and rotation of the grid, A is the area of
the cluster, and N is the number of localizations found in the cluster. a is a
normalization constant given by:

a ¼ 2π Δx2i þ Δx2g

� �
ð3Þ

P(N,I,B) is the probability of finding N localizations given the intensity of each
grid point and the background intensity, determined from the Poisson distribution
of mean value N. This likelihood function determines the probability of finding
localizations at all of the observed sites given a set of point emitters at the grid sites
with intensity Ik and background intensity B. The optimization utilized the L-
BFGS-B method of the minimize function provided by Scipy34 to minimize −log
(L) subject to the constraint that all intensities are positive. Signals that did not
align to the 6 × 8 grid were filtered to minimize fragmented origami and to reduce
inadvertent assimilation of the triangular origami fiducial markers into the results.

The algorithm then assigned the emitters a binary value (1 or 0) using an
empirically derived threshold value. This binary matrix data was decoded using the
decoding algorithm described below.

In parallel with this blind cluster analysis, the processing algorithm also carried
out a template matching step to more reliably identify individual origami and
analyze their errors. This additional step used the known origami designs as
templates, matching the observed origami to the best fit, based on the total number
of errors. This method was more robust to higher error rates than the blind cluster
analysis and allowed more origami to be identified for image averaging and error
analysis (Fig. 3). It should be noted, however, that the template matching method
cannot be considered as a data reading method because it requires a priori
knowledge of the data being analyzed. For this reason, none of the analysis of the
recovery rates or data density discussed here used data obtained from pattern
matching.

Decoding algorithm. The decoding algorithm (Fig. S5) utilized a multi-layer error
correction/encoding scheme to recover the data in the presence of errors. The
algorithm first works at the dNAM origami level (Step 1, below), using the parity
and checksum bits, to attempt to identify and correct errors and recover the correct
matrix. After recovery, the algorithm uses binary operations to recover the original
data segments from the droplets (Step 2, below).

Decoding algorithm: Step 1–error correction. Given raw binary matrix data M
for a single dNAM origami, the output from the localization data processing step,
the matrix decoding algorithm determined which, if any, bits were associated with
checksum and parity errors by calculating the bi-level matrix parity and checksum
values, as described in Fig. S4. Any discrepancies between the calculated parity and
checksum values and the values recovered from the origami were noted, and a
weight for each of the bits associated with the errant parity/checksum calculation
was deduced. If no parity/checksum errors were detected for a particular matrix,

Table 1 Materials.

Materials purchased Vendor

DNA staple strands Integrated DNA Technologies
M13 bacteriophage single-stranded DNA scaffolds (M13mp18) Bayou Biolabs
Cy3B-labeled DNA oligonucleotide (M1 Imager strand: CTAGATGTAT-Cy3B) Bio-Synthesis, Inc.
150 nm diameter silanized gold nanoparticles (AuNPs) Nanopartz
Glass coverslips Ted Pella, Inc.
Sticky-slide flow cells (sticky-Slide I 0.2 Luer) Ibidi
Liquinox Pollardwater, Inc.
MilliporeSigma MilliporeSigma
Protocatechuate 3,4-dioxygenase pseudomonas (PCD) MilliporeSigma
(+−)−6-hydroxy-2,5,7,8-tetra-methylchromane-2-carboxylic acid (Trolox) MilliporeSigma
MgCl2 MilliporeSigma
Nuclease-free water Thermo Fisher Scientific
Tris-borate-EDTA (TBE) Thermo Fisher Scientific
Tris-Acetate-EDTA (TAE) Thermo Fisher Scientific

List of materials and vendors used in this study.
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then the data was assumed to be accurate, and the algorithm proceeded to extract
the message data.

To determine the site(s) of likely errors, the decoding algorithm first determined
a weight for every cell in M, beginning with data cells (the cells containing droplet,
index, or orientation bits) and proceeding to parity and checksum cells. Let Pcij be

the set of parity functions calculated over a given data cell cij. Then for each data
cell cij:

xij ¼ ∑
fcpq2Pcij

cpq � fcpq Mð Þ
���

��� ð4Þ

Where cpq is the parity cell where the expected binary value of f is stored.
The weight for each parity cell cij was then calculated based on the number of

non-zero weights greater than 1 for the data cells associated with it. More formally,
let cij be a parity cell and Dcij

be the set of data cells used in the calculation of cij.

Then the weight xij for each parity cell cij is:

xij ¼ ∑
cpq2Dcij^xpq>1

sgn xpq
� �

ð5Þ
The higher the weight value, the higher the probability that the corresponding

cell had an error.
An overall score for the matrix was then calculated by summing over all xij and

normalizing by the sum of the correctly matched parity bits. This value was
designated as the overall weight of the matrix. Higher values of this weight
correspond to matrixes with more errors.

Overall matrix weight ¼ ∑6
i¼0 ∑

8
j¼0 xij

#number of matched parity bits
ð6Þ

The algorithm then performed a greedy search to correct the errors using a
priority queue ordered by the overall matrix weight (Fig. S6). The algorithm began
by iteratively altering each of the probable site errors and computing the overall
matrix weight of the modified matrix for each, placing each potential bit flip into a
priority queue where the flips that produced the lowest overall weights had the
highest priority. At each step, the algorithm selected the bit flip associated with the
highest priority in the queue and then repeated this process on the resulting matrix.
This process was continued until the algorithm produced a matrix with no
mismatches or until it reached the maximum number of allowed bit flips (9 for our
simulation/experiment). If it reached the maximum number of flips, it returned to
the queue to pursue the next highest priority path. If the algorithm found a matrix
with no mismatches, it then checked the orientation bits and oriented the matrix
accordingly. The droplet and index data were then extracted and passed to the next
step. If the queue was emptied without finding a correct matrix, the algorithm
terminated in failure.

Decoding algorithm: Step 2–fountain code decoding. After extracting the dro-
plet and index data from multiple origami the algorithm attempted to recover the
full message (Fig. S7). Once decoded, each droplet had one or multiple segments
XORed in it. Using the recovered indexes the algorithm determined how many and
which segments were contained in each droplet. To decode the message, the
algorithm maintained a priority queue of droplets based on the number of seg-
ments they contained (their degree), with the lowest degree droplets having the
highest priority. The algorithm looped through the queue, removing the lowest
degree droplet, attempting to use it to reduce the degree of the remaining droplets
using XOR operations, and re-queuing the resulting droplets. Upon finding a
droplet of ‘degree one’ it stored it as a segment for the final message. If all segments
were recovered, the algorithm terminated successfully.

Data simulation test. To test the robustness of our encoding and decoding
algorithms, origami data were simulated with randomly generated messages and
errors. First, random binary messages of size m were created (for m= 160 to 12,800
bits, at 320-bit intervals). These messages were then divided into m/b equally sized
segments, where b is the number of data bits to be encoded onto an individual
origami. For fixed-size origami, larger messages necessitated a smaller b, as more
bits had to be dedicated to the index. In these cases, b varied between eight (for m
= 12,800) and twelve (for m= 160). After determining message segments, droplets
were formed using the fountain code algorithm and encoded onto origami, along
with the corresponding index, orientation, and error-correcting bits. Ten in silico
copies of each unique origami were created, and 0–9 bits flipped at random to
introduce errors. The origami was decoded as described above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Code availability
DNA-PAINT images were analyzed using custom and publicly available codes (as
indicated). The encoding/decoding algorithms were written in-house using Python,
version 3.7.3. The source codes for the encoding, decoding, and localization algorithms
are available on GitHub at https://github.com/BoiseState/NAM. The schematic in Fig. 1c

of digital Nucleic Acid Memory was derived from a model created using Nanodesign
(www.autodeskresearch.com/projects/nanodesign).

Data availability
The original DNA-PAINT recordings and drift-corrected centroid localization data that
support the findings of this study have been deposited in the Zenodo repository with the
identifier “https://doi.org/10.5281/zenodo.4672665”. Source data are provided with this
paper. Any other relevant data are available from the authors upon reasonable
request. Source data are provided with this paper.
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