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ABSTRACT

The aim of the paper is the study of Permutation Polynomials over finite fields and their ap-
plication to cryptography. In my talk, I will begin by a brief review of finite fields, define
permutation polynomials over finite fields and their properties. I will present old results such
as Hermite-Dickson’s Theorem as well as some most recent ones. After introducing cryptog-
raphy, I will give a historical overview, by explaining some cryptosystems such as RSA and
ElGamal. Finally, I will present some cryptographical protocols based on Permutation Polyno-
mials over Finite Fields.
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INTRODUCTION

The need to share information with some people without others being able to read their content
has probably always existed. From the simple substitution methods of the ancient Greeks to
today’s computerized algorithms, various codes and ciphers have been used by both individuals
and governments to send secure messages. As an increasing amount of our personal commu-
nications and data have moved online, understanding the underlying ideas of internet security
has become increasingly important and have led each civilization to develop solutions to the
problem of confidentiality.

The first thing that comes to mind, to get a message across, is simply to hide that mes-
sage, so that its existence is unknown by those who should not read it. The techniques used
to dissimulate a message are in the domain of steganography. The Greeks shaved the heads of
their soldiers to write a message, well concealed once the hair had grown back. Steganography
is not considered part of cryptography, which does not seek to conceal a message, but rather
transform it into an incomprehensible message for an untrained person.

The fundamental objective of cryptography is to allow two people, commonly referred to
as Alice and Bob, to send information over an insecure channel. Ideally this communication is
such that an unknown adversary eavesdropping on the channel cannot understand what is being
said. We may assume the information we wish to communicate is simply an element in F2n .
Thus the encryption of the plaintext and decryption of the ciphertext are (invertible) maps of
F2n 7→ F2n therefore, permutation polynomials can be used to construct cryptographic systems.
Although nowadays breaking the codes that the online world currently runs on would be an
almost hopeless task, when quantum computers appear, they will be threatened. That is why,
in this paper we will be introducing some cryptosystems based on some special permutation
polynomials that we believe almost unbreakable by this future technology.

In the first chapter, we present some finite fields basis, giving the definition of a finite field
and a survey of results needed to understand the underlying of permutation polynomials theory.
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In the second chapter, we introduce permutation polynomials, give some criteria to de-
termine if a polynomial is of permutation as well as presenting some classes of linear and
non-linear permutation polynomials that will be of great use in constructing the cryptographi-
cal schemes.

In the third chapter, we define what cryptography is, determine its use in ancient and most
nowadays cryptographical protocols.

Finally, in the last chapter, we see the use of permutation polynomial in constructing en-
cryption algorithms.
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CHAPTER 1

FINITE FIELDS

The theory of finite fields is a key part of number theory and computer science. Not only
that many questions about the integers and the rational numbers can be translated into ques-
tions about arithmetic in finite fields which tends to be more tractable. But it is well-suited to
computer calculations in many modern cryptographic applications.

In this chapter, we will see some definition and results on Finite fields.

Definition 1.1. A field is a set F with two binary operations + and . such that:

1. (F,+) is a commutative group with identity element 0.

2. (F−{0}, .) is a commutative group with identity element 1.

3. The distributive law a.(b+ c) = ab+ac holds ∀ a,b,c ∈ F.

Example 1. R, Q, C, and Zp for p a prime are fields with the usual operations of addition and
multiplication.

Definition 1.2. A subfield of a field F is a subset of F which is itself a field with the same
operations as F.

Lemma 1.1. Let F be a finite field containing a subfield K with q elements. Then F has qm

elements, where m = [F : K].

Proof. F is a finite vector space over K where m denote its dimension. Then F has a basis over
K consisting of m elements say v1, . . . ,vm. So every element of F can be written uniquely as a
combination of elements of the basis as follow a1v1 + . . .+ambm, ai ∈ K. Since each ai is in K
then ai can take q values then F must have exactly qm elements.

Example 2. Q is a subfield of R. R is a subfield of C. Zp has no subfields other than itself.

1.1 Extension Fields
If K is a subfield of a field F , then we say that F is an extension or extension field of K. F is
naturally a vector space over K, hence the degree of the extension is its dimension [F : K] :=
dimKF .
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Definition 1.3. Let K a subfield of F. An element α ∈ F is called algebraic over K if it is a
root of some nonzero polynomial with coefficients in K.

Definition 1.4. A field extension F over K is called a simple extension if there exists an element
α in F with F = K(α).

Example 3. Q[
√

2] = {a+b
√

2/a,b ∈ Q} is a field containing Q it is then an extension field
of Q and

√
2 is algebraic over Q as it is a root of a polynomial in Q[x] for instance x2−2.

Proposition 1.1. The sum, difference, product and quotient of algebraic elements are again
algebraic.

Theorem 1.1. If L is a finite extension of K and M is a finite extension of L, then M is a finite
extension of K with

[M : K] = [M : L][L : K].

Proof. Let [M : L] = m, [L : K] = n and {α1, . . . ,αm} be a basis of M over L and let {β1, . . . ,βm}
be a basis of L over K. We can use them to form a basis of M over K. Any element x in M can
be expressed as follow:

x = l1α1 + . . .+ lmαm

where l1, . . . , lm are in L. Therefore they can all be rewritten as a linear combination of L’s basis
{β1, . . . ,βm}. Then

x =
m

∑
i=1

liαi

=
m

∑
i=1

(
n

∑
j=1

ki jβ j)αi

=
m

∑
i=1

n

∑
j=1

ki jβ jαi

where ki j are coefficients in K. We now have to show that the mn elements β jαi form a basis
of M over K. We clearly see that with these elements span M, so we now need to prove they
are linearly independent over K. To do so we will have to show that if ∑

m
i=1 ∑

n
j=1 ki jβ jαi = 0

then ki j = 0 for i and j. Suppose we have:

m

∑
i=1

n

∑
j=1

ki jβ jαi = 0⇔
m

∑
i=1

(
n

∑
j=1

ki jβ j)αi = 0

and since αi are linearly independent over L we must have:

n

∑
j=1

ki jβ j = 0

for 1≤ i≤m, and since β j are linearly independent over K it follows ki j = 0 for all i and j.

Theorem 1.2. Every finite extension of K is algebraic over K.
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Proof. Let L be a finite extension of K and let [L : K] = m. For α in L, the m+ 1 elements
1,α, . . . ,αm must be linearly dependent over K therefore there exist a0,a1, . . . ,am in K (not all
zero) such that a0+a1α+ . . .+amαm = 0. Therefore α is algebraic over K. Then L is algebraic
over K, since all its elements are algebraic.

Theorem 1.3. Let F be an extension field of K and α in F be algebraic of degree n over K and
let g be the minimal polynomial of α over K. Then K(α) is isomorphic to K[x]/(g).

Proof. Let ϕ a mapping defined as follow:

ϕ : K[x]−→ K(α)

ϕ( f )−→ f (α)

where ker(ϕ) = { f ∈ K[x]/ f (α) = 0} = {hinK[x]/h(α)g(α) = 0} = (g). Then by the First
Isomorphism Theorem, K[x]/(g) ∼= Im(ϕ) and since g is irreducible then (g) is a prime ideal
of the principal ideal domain K[x] therefore the residue class ring K[x]/(g) is a field and so is
Im(ϕ). Moreover, K ⊂ Im(ϕ)⊂ K(α). and since α is in Im(ϕ) then Im(ϕ) = K(α).

Example 4. Consider the extension R(i) of R. The minimal polynomial of i over R is x2 + 1.
So R(i)∼= R[x]/(x2 +1) and {1, i} is a basis for R(i) so R(i) = {a+bi/a,b ∈ R}= C.

Theorem 1.4. If K is a field and f ∈K[x] a non-constant polynomial, then there exists a simple
algebraic extension field F of K containing a zero of f .

Proof. Let F = K[x]/( f ), F is the field since f is irreducible. Its elements are the residue
classes [k] = k+( f ) with k in K[x].F can be viewed as an extension of K, and for every k =
a0 +a1x+ . . .+amxm in K[x] we have:

[k] = [a0 +a1x+ . . .+amxm]

= [a0]+ [a1][x]+ . . .+[am][x]m

= a0 +a1[x]+ . . .+am[x]m

so any element of F can be expressed as a polynomial in [x] with coefficient in K. Since any
field containing K and [x] must contain these expressions then F is a simple extension of K
obtained by adjoining [x] and if f = ∑

n
i=0 bixi then f ([x]) = ∑

n
i=0 bi[x]i = [ f ] = [0] which means

[x] is a root of f thus F is a simple algebraic extension of K.

Corollary 1.1. A simple extension field F(α) is finite if and only if α is algebraic over F.

Definition 1.5. Let f in K[x] be a polynomial of positive degree and F an extension field of K.
Then we say that f splits in F if f can be written as a product of linear factors in F [x], in other
words there exist elements α1, . . . ,αn in F such that f = a(x−α1) . . .(x−αn) where a is the
leading coefficient of f .

Definition 1.6. The field F is called a splitting field of f over K if it splits in F and if F =
K(α1, . . . ,αn).
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1.2 Characterization of Finite Fields
Since 1 is in any field and addition is a closed operation (the sum of any two elements is another
element of the field) we have that; 1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1, etc. are
all elements of the field. Two possibilities exist for this sequence of elements:

• some sum of 1’s will equal 0

• or not in which case none of the elements of the sequence are the same and we get an
infinite number of elements in the field.

The smallest positive number of 1’s whose sum is 0 is called the characteristic of the field.
If no number of 1’s sum to 0, we say that the field has characteristic zero. In other words,
Let F a field. The mapping

ϕ : Z→ F
n 7→ n1F

is a ring homomorphism and the image of this ring map is a domain being a subring of a feild
hence the kernel of ϕ is a prime ideal in Z. Hence the kernel of ϕ is either (0) or (p) for some
prime number p. If the kernel is 0 then the characteristic of F is 0, if not then the characteristic
of F is p.

Proposition 1.2. Let F a finite field of characteristic a prime p, then F has pn elements with n
∈ N∗ the degree of F over its prime subfield.

Proposition 1.3. Let F a finite field of cardinal q, then for all a ∈ F, aq = a.

Proof. When a = 0, aq = a is satisfied. The non-zero elements form a group of order q− 1
under multiplication. Knowing that for a group G, a|G| = 1G for any element of the group, then
by looking at F∗ as a group, we have a|F

∗| = aq−1 = 1 for any a in F∗ and by multiplying by a
both sides we get aq = a for any a in F∗.

Lemma 1.2. If F is a field of characteristic p, then for n in N∗

(a+b)pn
= apn

+bpn
,∀a,b ∈ F.

Lemma 1.3. If F is a finite field with q elements and K is a subfield of F, then the polynomial
xq− x in K[x] factors in F [x] as

xq− x = ∏
a∈F

(x−a)

and F is a splitting field of xq− x over K.

Proof. Since the polynomial xq−x has degree q, it has at most q roots in F , and by Proposition
2.2 all elements of F are roots of the polynomial and there are exactly q. Therefore the poly-
nomial can be written as the product of x−a where a an element of F .

Theorem 1.5. For every prime number p and every positive integer n, there exists a finite field
with q = pn elements isomorphic to the splitting field of xq− x on Fp.
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Proof. (Existence) For q = pn, consider xq− x in Fp[x] and let F be its splitting field over Fp.
Since the derivative (xq−x)′= qxq−1−1=−1 meaning the gcd(xq−x,qxq−1−1)= 1 so xq−x
is separable and has q different roots. Let S = {a ∈ F/aq−a = 0}, then S is a subfield of F (S
contains 0 - for any a,b in S, (a− b)q = aq− bq = a− b is in S and (ab−1)q = aqb−q = ab−1

is in S). On the other hand xq− x must split in S since S contain all its roots so F which is the
splitting field of xq− x is a subfield of S therefore F = S and since S has q elements then F has
q = pn elements.

(Uniqueness) Let F be a finite field with q = pn elements, then by Proposition 2.2, F has
characteristic p if it contains Fp as a subfield. And by Lemma 2.3, F is a splitting field of xq−x
and unique up to isomorphism.

Example 5. Let F2[α] a field where α is a root of the polynomial x2+x+1 ∈ F2[x] then then by
the theorem above F2[α] contains 22 = 4 elements and F2[α] = F4 (not to confuse with Z/4Z
which is not a field.

Proposition 1.4. Let n,m ∈ N∗, then Fpm ⊂ Fpn if and only if m|n.

Proof. If m divides n, then pm−1 divides pn−1 and so xpm−1−1 divides xpn−1−1 in Fp[x],
so every root of xpm−1−1 is a root of xpn−1−1 hence belongs to Fq. It follows that Fq contains
a splitting field of xpm−1−1 as a subfield of Fp and by T heorem 1.5 such a splitting field has
order pm therefore Fpm ⊂ Fpn .

A subfield of Fpn must have order pm for some positive integer m≤ n but pn must be a pm

so m must divide n.

Example 6. The subfields of the finite field Fp36 can be found through the divisors of 36, as
shown in the diagram below:

Fp36

Fp18 Fp12

Fp6Fp9 Fp4

Fp3 Fp2

Fp

Figure 1.1: Subfields of Fp36
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Theorem 1.6. For every finite field Fq the multiplicative group F∗q of Fq is cyclic.

Proof. Let o = q− 1, the order of F∗q, and let o = pe1
1 pe2

2 . . . pem
m be its prime factor decompo-

sition. For each i, 1 ≤ i ≤ m, the polynomial xo/pi − 1 has at most o/pi roots in Fq. Since
o/pi < o, it follows that there are nonzero elements of Fq which are not roots of this polyno-

mial. Let ai be such an element, and set bi = aoi/pei
i

i , then bpei
i

i = aoi
i = 1 so the order of bi

divides pei
i therefore their order are of the form pdi

i for some 0≤ di ≤ ei. We then have:

bpdi−1
i

i = ao/pi
i 6= 1

so the order of bi is precisely pei
i .

Let b = b1b2 . . .bm, then its order is o which means b is a generator for the group. Suppose it is
not, and that the order of b is a proper divisor of o. It is therefore a divisor of at least one of the
m integers o/pi, say o/p1, then:

1 = bo/p1 = bo/p1
1 bo/p1

2 . . .bo/p1
m

Thus pei
i divides o/p1 so bo/p1

i = 1 which leads to bo/p1
1 = 1 therefore the order of b1 must

divide o/p1, which is impossible since the order of b1 is pe1
1 .Contradiction, thus F∗q is a cyclic

group with generator b.

Definition 1.7. A generator of the multiplicative group (cyclic) F∗q is called a primitive element
of Fq.

Example 7. F5 = Z/5Z has two primitive elements, namely 2 and 3.

1.3 Irreducible polynomials over finite fields
The important role of irreducible polynomials is that one can explicitly construct fields using
irreducible polynomials through factor rings. If one wants to make explicit calculations in say
a finite field, it is often required to find an irreducible polynomial, in order to get information
of the structure of the field. This is important for applications of field theory, for instance
cryptography.

Definition 1.8. The element α in some extension field Fpn has a minimal polynomial when
α is algebraic over Fp, that is when f (α) = 0 for some non-zero polynomial f (x) in Fp[x].
Then the minimal polynomial of α is defined as the monic polynomial of least degree among
all polynomials in Fp[x] having α as a root and denoted Mα .

Proposition 1.5. Let α in Fpn and Mα be its minimal polynomial over Fp. Then

1. Mα is irreducible over Fp.

2. deg(Mα)≤ n.

3. If α is a root of P in Fp[x], then Mα divides P. In particular, Mα divides X pn−X
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Proof. 1. If it weren’t the case, then Mα can be factor into the product of two monic poly-
nomials, say P and Q. Then Mα(α) = P(α)Q(α) = 0 that implies that either P(α) = 0 or
Q(α) = 0. Say P(α) = 0, since deg(P)< deg(Mα) it means that we found a new monic
polynomial with less degree then the minimal polynomial which is impossible.

2. Since Fpn is a vector space of dimension n over Fp, then the n+1 elements 1,α,α2, . . . ,αn

can’t be linearly independent, it means there exist k0, . . . ,kn in Fp such that

n

∑
i=0

kiα
i = 0

Then α is a root of P(x) = ∑
n
i=0 kixi. It follows that the degree of Mα is at most n.

3. If P(α) = 0 we write P(x) = Q(x)Mα(x) + R(x) with 0 < deg(R) < deg(Mα). Then
R(α) = 0 which leads R = 0 since there is no polynomial with degree less then the degree
of Mα with α as a root. Therefore Mα divides P. In particular Mα divides X pn−X .

Corollary 1.2. For every finite field Fq and every positive integer n there exists an irreducible
polynomial in Fq[x] of degree n.

Proof. Let Fs be the extension field of Fq of order qn, so that [Fs : Fq] = n. Then Fs = Fq(α)
for some α in Fr. Then, let p(x) the minimal polynomial of α over Fq, it is an irreducible
polynomial in Fq[x] of degree n.

Lemma 1.4. Let f ∈ Fq[x] be an irreducible polynomial over finite field Fq and let α be a root
of f in an extension field of Fq. Then for a polynomial h ∈ Fq[x] we have h(α) = 0 if and only
if f divides h.

Proof. The minimal polynomial of α over Fq is given by a−1 f , where a is the leading coef-
ficient of f since it is monic and irreducible in Fq[x]. Then by Proposition 1.5, Mα = a−1 f
divides h, therefore f divides h.

Lemma 1.5. Let f ∈ Fq[x] be an irreducible polynomial over Fq of degree m. Then f (x) divides
xqn− x if and only if m divides n.

Proof. Suppose f divides xqn − x. Let α be a root of f in the splitting field of f over Fq.
Then αqn

= α , so α is in Fqn . Thus Fq[α] is a subfield of Fqn . Since [Fq[α] : Fq] = m and
[Fqn : Fq] = n we have

[Fqn : Fq] = [Fqn : Fq[α]][Fq[α] : Fq]

n = [Fqn : Fq[α]].m

so m divides n.
Now suppose m divides n. Then by Proposition 1.3 Fqn contains Fqm . Let α be a root of f in
the splitting field of f over Fq. Then [Fq[α] : Fq] =m and so Fq[α] = Fqm then α is in Fqm ⊂ Fqn

so αqn
= α , thus α is a root of xqn− x in Fq[x] and by Lemma 1.4 f divides xqn− x.

Theorem 1.7. Let Fq be a finite field and let f ∈ Fq[x] be irreducible over Fq, deg f = n. Then
the splitting field of f is Fn

q . Furthermore, if α is a zero of f , then the other zeros of f are

given by αq, . . . ,αqn−1
.
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Proof. Let α be a root of f in the splitting field of f over Fq. Then [Fq[α] : Fq] = m, hence
Fq[α] = Fqm and so α is in Fqm . We will now prove that if β ∈ Fqm is a root of f then β q is also
a root of f . Let f = a0 +a1x+ . . .+amxm and by Proposition 1.2 we get:

f (β q) = a0 +a1β
q + . . .+amβ

qm

= aq
0 +(a1β )q + . . .+(amβ

m)q

= f (β )q

= 0

Then the elements α,αq, . . . ,αqm−1
are roots of f .

We now need to check that they are all distinct. Suppose not then for some power q j and qk

where 0 ≤ j < k ≤ m−1 we have αq j
= αqk

and raising to the power qm−k we get αqm−k+ j
=

αqm
= α then αqm−k+ j − α = 0 so α is a root of xqm−k+ j − x and by Lemma 1.4 f divides

xqm−k+ j − x but by Lemma 1.5 this is only possible if m divides m− k+ j which is impossible
since m > m− k+ j.

Corollary 1.3. Let f be an irreducible polynomial in Fq[x] of degree m. Then the splitting field
of f over Fq is given by Fqm .

Proof. The theorem above shows that f splits in Fqm , and we have Fq(α,αq, . . . ,αqm−1
=

Fq[α] = Fqm .

Corollary 1.4. Any two irreducible polynomials in Fq[x] of the same degree have isomorphic
splitting fields.

Theorem 1.8. For every finite field Fq and every n in N, the product of all monic irreducible
polynomials over Fq whose degrees divide n is equal to xqn− x.

Proof. By Lemma 1.5 the monic irreducible polynomials over Fq that appear in the canonical
factorization of xqn−x are those whose degrees divide n. And since (xqn−x)′ = qnxqn−1−1 =
−1 then it has no multiple roots in its splitting field over Fq. Therefore each monic irreducible
polynomial over Fq whose degree divides n occurs exactly once in the canonical factorization
of xqn− x in Fq[x].

Example 8. Let q = n = 2 the monic irreducible polynomials over F2[x] whose degrees divide
2 are x, x+ 1 and x2 + x+ 1. And we can easily see that x22 − x = x4− x indeed factors as
follow in F2[x]:

x4− x = x(x+1)(x2 + x+1)

1.4 Automorphisms and bases

Definition 1.9. Let Fqm be an extension of Fq and let α ∈Fqm . Then the elements α,αq,αq2
, . . . ,αqm−1

are called the conjugates of α with respect to Fq.

Theorem 1.9. The conjugates of α ∈ F∗q with respect to any subfield of Fq have the same order
in the group F∗q.
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Proof. We know that for a finite cyclic group < a > or order m the elements ak are of order
m

gcd(k,m) , then this applies to the cyclic group F∗q where all the power αqk
are of order q−1

gcd(qk,q−1)

but gcd(qk,q−1) = 1 hence the elements αqk
are of order q−1.

Corollary 1.5. If α is a primitive element of Fq, then so are all its conjugates with respect to
any subfield of F∗q.

Example 9. F4 can be seen as an extension of degree 2 of F2, ie, F4 = F2(α) where α is a
root of an irreducible polynomial of degree 2 with coefficients in F2 for instance x2 + x+1. So
F2(α) = {0,α,α2} but α2 can also be written as α +1 therefore F2(α) = {0,α,α +1}

Definition 1.10. An automorphism of Fqm over Fq is an automorphism σ of Fqm which fixes
the elements of Fq pointwise (acts as identity: ∀ x ∈ Fq, σ(x) = x). Thus, σ is a one-to-one
mapping from Fqm onto itself and for all α , β in Fqm we have:

1. σ(α +β ) = σ(α)+σ(β ).

2. σ(αβ ) = σ(α)σ(β ).

Theorem 1.10. The distinct automorphisms of Fqm over Fq are exactly the mappings σ0,σ1, . . . ,σm−1,
defined by:

σ j(α) = α
q j

for α ∈ Fqm and 0≤ j ≤ m−1.

for α ∈ Fqm and 0≤ j ≤ m−1.

Proof. Let’s first prove that the mappings are indeed automorphisms of Fqm over Fq, to do so
we will have to show that they are bijectives endomorphisms.

• Endomorphism for each σ j and ∀ α,β ∈ Fqm we have σ j(αβ ) = σ j(α)σ j(β ) and
σ j(α +β ) = σ j(α)+σ j(β ), then σ j is clearly an endomorphism.

• Injectivity σ j(α) = 0⇔ α = 0.

• Surjectivity Since Fqm is a finite set, σ j is surjective.

Let’s now show that any automorphism of Fqm is precisely one of the σ j for some 0≤ j ≤
m−1.
Let β be a primitive element of Fqm and let f = xm+am−1xm−1+ . . .+a0 ∈ Fq[x] be its minimal
polynomial over Fq, then

f (β ) = β
m +am−1β

m−1 + . . .+a0

= 0

and by applying sigma to both sides we get

0 = σ(β m +am−1β
m−1 + . . .+a0)

= σ(β m)+σ(am−1β
m−1)+ . . .+σ(a0)

= σ(β )m +am−1σ(β )m−1 + . . .+a0

so σ(β ) is a root of f in Fqm and by T heorem 1.4 any root is a power of the primitive one
so σ(β ) = β q j

for some j, 0≤ j≤m−1. Since σ is a homomorphism and β primitive, we get
that σ(α) = αq j

for all α in Fqm .
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Remark. The automorphisms of Fqm over Fq form a group under composition of mappings,
called the Galois group of Fqm over Fq and denoted Gal(Fqm/Fq). This group of automor-
phisms is a cyclic group of order m, generated by σ1.

1.5 Traces and Norms

Definition 1.11. For α in Fqm , the trace TrFqm/Fq(α) of α over Fq is defined by:

TrFqm/Fq(α) = sum of conjugates ofα inFq

= α +α
q +α

q2
+ . . .+α

qm−1

If q = p, where p is the characteristic of Fpm , then TrFpm/Fp(α) is called the absolute trace
of α and is denoted Tr(α).
Moreover, when looking at the minimal polynomial of α then TrF/K(α) =−am−1.

Proposition 1.6. Let K = Fq and F = Fqm . Then ∀ k ∈K and ∀ α and β ∈ F the trace function
TrF/K satisfies the following properties:

1. TrF/K(α +β ) = TrF/K(α)+TrF/K(β ),

2. TrF/K(kα) = kTrF/K(α),

3. TrF/K(a) = ma,

4. TrF/K(α
q) = TrF/K(α).

Proof. 1. For α and β in F :

TrF/K(α +β ) = (α +β )+(α +β )q + . . .+(α +β )qm−1

= α +β +α
q +β

q + . . .+α
qm−1

+β
qm−1

= TrF/K(α)+TrF/K(β )

2. Knowing that for k in K we have kqi
= k ∀ i≥ 0. Then for α in F :

TrF/K(kα) = kα +(kα)q + . . .+(kα)qm−1

= kα + kq
α

q + . . .+ kqm−1
α

qm−1

= kα + kα
q + . . .+ kα

qm−1

= k(α +α
q + . . .+α

qm−1
)

= kTrF/K(α)

3. TrF/K(a) = aTrF/K(1) = a[1+(1)q + . . .+(1)qm−1
] = ma.
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4.
TrF/K(α

q) = α
q +(αq)q + . . .+(αq)qm−2

+(αq)qm−1

= α
q +α

q2
+ . . .+α

qm−1
+α

qm

= α
q +α

q2
+ . . .+α

qm−1
+α

= α +α
q +α

q2
+ . . .αqm−1

= TrF/K(α).

Remark. We clearly see that TrF/K is a linear transformation from F onto K.

Theorem 1.11. Let F be a finite extension of a finite field K. Then the K−linear transforma-
tions from F into K are precisely the mappings Lβ with β in F given by Lβ (α) = TrF/K(βα)
for all α in F. And if α and β are distinct element of F then Lα 6= Lβ .

Definition 1.12. For α in Fqm , the norm NFqm/Fq(α) of α over Fq is defined by:

NF/K(α) = product of conjugates ofα

= α.αq.αq2
. . .αqm−1

= α
1+q+q2+...+qm−1

= α
qm−1
q−1

When looking at the minimal polynomial of α then NF/K(α) = (−1)ma0.

Proposition 1.7. Let K = Fq and F = Fqm . Then ∀ k ∈K and ∀ α and β ∈ F the norm function
NF/K satisfies the following properties:

1. NF/K(αβ ) = NF/K(α)NF/K(β ),

2. NF/K(a) = am,

3. NF/K(α
q) = NF/K(α).

Proof. The above properties can easily be shown using the definition of the norm the same way
it was done for the trace.

Theorem 1.12. Transitivity of Trace and Norm Let K be a finite field, let F be a finite extension
of K and E a finite extension of F. Then:

TrE/K(α) = TrF/K(TrE/F(α))

and
NE/K(α) = NF/K(NE/F(α))
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Proof. Let K = Fq, let [F : K] = m and let [E : F ] = n, so [E : K] = mn. Then for α in E we
have:

TrF/K(TrE/F(α)) =
m−1

∑
i=0

TrF/K(α)qi

=
m−1

∑
i=0

(
n−1

∑
j=0

α
q jm

)qi

=
m−1

∑
i=0

n−1

∑
j=0

α
q jm+i

=
mn−1

∑
k=0

α
qk

= TrE/K(α).

and

NF/K(NE/F(α)) = NF/K(α
qmn−1
qm−1 )

= (α
qmn−1
qm−1 )

qm−1
q−1

= α
qmn−1

q−1

= NE/K(α).

1.6 Bases

Fqm = Fq(α) can be seen as Fq[x]/( f ) where f is an irreducible polynomial of degree m and
α is a root of f in Fqm . Then every element of Fqm can be written uniquely as a polynomial in
α over Fq of degree less than m, therefore for any α , the set {1,α, . . . ,αqm−1} form a basis for
Fqm over Fq.

Definition 1.13. A polynomial basis of Fqm over Fq is a basis of the form {1,α, . . . ,αqm−1},
where α is a set of elements of Fqm over Fq.

Remark. The element α mentioned above can be a primitive element however it is not required
to be.

Example 10. Let K = F3 and F = F9 = F32 then F is an extension of K of degree 2. Therefore
there exist α a root of an irreducible polynomial of degree 2 over K. Let this polynomial be
x2 + 1 in F3[x], then {1,α} is a polynomial basis for F9 over F3 but α is not primitive since
α4 = 1.
However if we take α to be the root of the irreducible polynomial x2 + x+ 2 then {1,α} is a
polynomial basis and α is a primitive element of F9.

Definition 1.14. A normal basis of Fqm over Fq is a basis of the form {α,αq, . . . ,αqm−1},
consisting of a suitable element α in Fqm and all its conjugates with respect to Fq. And such
element is called a normal element.
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Theorem 1.13. For any finite extension F of a finite field K, there exists a primitive normal
basis of F over K that consists of primitive elements of F.

Example 11. Let K = F2 and F = F8 = F23 = K(α) where α is a root of an irreducible
polynomial of degree 3 over K. Let x3 + x2 + 1 be such polynomial. Then the set {α,α2,α4}
form a basis of F8 over F2 and since α4 = α(α3) = α(α2 + 1) = α3 +α = α2 +α + 1 then
{α,α2,α4 = α2 +α + 1} is a normal basis. And since α is a primitive elements of F then
{α,α2,α2 +α +1} is a primitive normal basis for F over K.
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CHAPTER 2

PERMUTATION POLYNOMIALS OVER FINITE FIELDS

Permutation polynomials are of great importance because of their link to modern cryptography,
used to secure data transmission and storage. As for a message M (being an element of Fq) that
Alice would want to send Bob. Bob would receive a ciphered message Mc = P(M), where P(x)
is a permutation polynomial of Fq. The issue is that, P being a bijection, the original message
can be easily recovered. To prevent any attacker from doing so, the permutation must have
additional properties.
The aim of this chapter is to present a survey of results on permutation polynomials as well as
explaining the way of determining them. Furthermore, we will be looking into the criteria for
a random polynomial to be a permutation one.

2.1 Permutations
Definition 2.1. Let S be a finite set of cardinal n, n ∈ N∗. A bijective function from a set S to
itself is called a permutation of the set S.

We denote by Sn the set of all permutations of the set {1,2, . . . ,n} and |Sn|= n! . An element
σ ∈ Sn is of the form:

σ =

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
The set Sn forms a group under the function composition "◦" and therefore called the symmetric
group.

Example 12. The group S3 consist of 3! elements. These six elements are:

S3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)}
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2.2 Permutation Polynomials

A polynomial f ∈ Fq[x], where q is a prime power, is called a permutation polynomial of Fq if
the associated polynomial function below is a permutation of Fq, in other words bijective.

f : Fq→ Fq

x 7→ f (x)

Obviously, if f is a permutation polynomial of Fq, then the equation f (x) = a has exactly one
solution in Fq for each a ∈ Fq.

Proposition 2.1. Below are some permutation polynomials:

• For all (a,b) ∈ F∗q×Fq, the polynomial aX +b is a permutation polynomial.

• Xk is a permutation polynomial of Fq if and only if gcd(k,q−1) = 1.

Proof. • ax+b = y⇔ x = (y−b)/a, the function is clearly bijective.

• 0 has a unique antecedent which is 0. F∗q is a cyclique group of order q− 1. Let α be a
generator, the group generated by αk is of order (q−1)/gcd(k,q−1).

Example 13. Let g(x) = 2x2+x is a permutation polynomial over Z/4Z as g(0) = 0, g(1) = 3,
g(2) = 2 and g(3) = 1, and g(x) defines the permutation:(

1 2 3 4
3 2 1 4

)
Example 14. Consider the polynomial h(x) = x2 + 3x+ 5 ∈ F11 which takes the following
values in F11:

x 0 1 2 3 4 5 6 7 8 9 10
h(x) 5 9 4 1 0 1 4 9 5 3 3

We clearly see that h(x) is not bijective, therefore h is not a permutation polynomial.

2.3 Criteria for determining Permutation Polynomials
In order to study these polynomials, it is important to have theoretical and algorithmic means
to test whether a polynomial is of permutation. In this section, we give simple criteria that,
although ineffective from an algorithmic point of view, yield to numerous theoretical results.
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2.3.1 Hermite’s Criterion
Hermite’s criterion is used to show that some polynomial families are of permutation. Testing
it in real life is hardly possible as it is of complexity O(q2), which is way to high to be used in
real life.

Theorem 2.1. Let Fq be of characteristic p. Then f ∈ Fq[x] is a permutation polynomial of Fq
if and only if the following two conditions hold:

1. f has exactly one root in Fq;

2. for each integer t with 1≤ t ≤ q−2 and t 6≡ 0 mod p, the reduction of f (x)t mod xq−x
has degree ≤ q−2.

Proof. → Let f be a permutation polynomial of Fq. Then (1) is trivial since f (x) = 0 has a
unique root because of the fact that f is bijective. The reduction of f (x)t mod xq− x is some
polynomial ∑

q−1
j=0 b(t)j x j, where b(t)q−1 = −∑c∈Fq

f (ai)
t (by the Lagrange polynomial), and ac-

cording to Lemma 3.2,b(t)q−1 = 0 for t = 1,2, . . . ,q−2, hence (2) follows.

← Conversly, let (1) and (2) be satisfied. Then (1) implies ∑
q−1
i=0 f (ai)

q−1 = −1 and from
(2), ∑

q−1
i=0 f (ai)

t = 0, 1≤ t ≤ q−2 and t 6≡ 0 mod p. Since Fq is of characteristic p, then using
the following formula:

q−1

∑
i=0

f (ai)
t p j

= (
q−1

∑
i=0

f (ai)
t)p j

,

we get ∑c∈Fq
f (ai)

t = 0 for 1≤ t ≤ q−2, and this identity holds trivially for t = 0. Therefore
Lemma 2.2 implies that f is a permutation polynomial of Fq.

Corollary 2.1. If q > 2 and f (x) is a permutation polynomial of Fq then the reduction of f
modulo xq− x has degree at most q-2.

Proof. By setting t = 1 in the theorem stated above, this gives us the assertion.

2.3.2 Images’ Criterion
The easiest algorithm is to calculate, for a permutation polynomial P, all P(a) values for one
in Fq, and see if they are distinct (as done above in Example 14). For a polynomial of degree n
this requires O(qn) operations since only one assessment is performed in O(n) computations,
along with O(q) in order to check if the values are distinct. Since we can stop as soon as we
get the same value twice, the average complexity will actually be O(n

√
q), however if P is a

permutation polynomial then we must calculate all values.
Alternatively, the following property can be tested:

Lemma 2.1. P ∈ Fq[x] is a permutation polynomial if and only if:

∏
a∈Fq

(X−P(a)) = Xq−X .
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2.3.3 Inverse images’ Criterion
We can also prefer to check the following criteria, which allows us to perform fewer operations
f the polynomial is not of permutation.

Lemma 2.2. P ∈ Fq[x] is a permutation polynomial if and only if:

∀a ∈ Fq,deg(gcd(Xq−X ,P(X)−a)) = 1.

2.4 Classes of Permutation Polynomials

2.4.1 Linearized Polynomials
These type of polynomials are of great use in cryptography. For instance, let Fq the finite field
of order q. We will denote an extension of Fq of degree m by Fqm . An element ϑ ∈ Fqm is said
to be normal over Fq if the elements ϑ ,ϑ q, . . . ,ϑqm−1 form a basis of Fqm over Fq. Any element
x of Fqm can be expressed as x = ∑

m−1
i=0 xiϑqi where xi ∈ Fq. Thus Fqm can be identified by Fm

q ,
the set of all m-tuples over Fq, and x ∈ Fqm can be written as (x0,x1, . . .xm−1). If q = 2, then
xi ∈ {0,1} and in this case the weight of x is defined to be the number of 1’s in (x0,x1, . . .xm−1),
and denote it by w(x).

Consequently, a polynomial L(x)∈Fqm[x] is called a linearized polynomial or p-polynomial
over Fq if L(x) = ∑

k
i=0 αixqi

and satisfies:

• L(x+ y) = L(x)+L(Y ) for all x,y ∈ Fqm .

• L(ax) = aL(x) for all x ∈ Fqm and a ∈ Fq.

Therefore, corresponding to an element α = (α0,α1, . . . ,αm−1) of finite field Fqm , we define
a polynomial function Lα on Fqm as:

Lα(x) =
m−1

∑
i=0

αixqi

where Lα(x) are linearized p-polynomials in Fqm .

The theorem below states when such polynomials are of permutation.

Theorem 2.2. Let Fq be of characteristic p. Then the p-polynomial:

L(x) =
m

∑
i=0

aixpi
∈ Fq[x]

is a permutation polynomial if and only if L(x) only has the root 0 in Fq.

Proof. Suppose that L(x) has only one root, then from above we have L(a) = L(b) if and only
if L(a−b) = 0. But since zero is the only root then a−b must equal 0 thus a = b. Therefore
L(x) is one-to-one, hence a permutation polynomial.
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Corollary 2.2. If m = 2k for some k ≥ 0 and α = (α0,α1, . . . ,αm−1) ∈ F2m . Then the polyno-
mial Lα(x) is a permutation of ∈ F2m if and only if w(α) is odd.

Proposition 2.2. An element α of Fqm is a normal element of Fqm over Fq if and only if Lα(x)
is a permutation polynomial of Fqm .

Proof. Suppose α a normal element of Fqm over Fq. Let y in Fqm , then y = ∑
m−1
i=0 yiα

qi
for some

yi in Fq. If z = ∑
m−1
i=0 yivqi

, where B = {v,vq, . . . ,vqm−1} is the fixed norla basis of Fqm over Fq.
Then y = Lz(α) = Lα(z) thus Lα is surjective and therefore Lα(x) is a permutation polynomial
of Fqm .

Conversly suppose Lα(x) is of permutation, then Lα(x) = Lx(α) = y has a unique solution
for all y in Fqm , which implies that α is a normal element of Fqm over Fq.

2.4.2 Some Classes of Nonlinear Permutation Polynomials
Definition 2.2. For α in Fqm , the trace Tr(α) of α over Fq is defined as

Tr(α) = α +α
q + . . .+α

qm−1

Theorem 2.3. Let m be an odd positive integer, and β = (β0, . . . ,βm−1) be an element of F2m

such that w(β ) is even and that 0 and 1 are the only roots of Lβ (x) in F2m . Suppose k1 and
k2 are non negative integers such that gcd(2k1 +2k2,2m−1) = 1. Let l be any positive integer
with (2k1 +2k2).l ≡ 1 mod 2m−1 and γ be an element of F2m with Tr(γ) = 1. Then

f (x) = (Lβ (x)+ γ)l +Tr(x)

is a permutation polynomial of F2m.

Proof. Since Tr(Lβ (x)) = 0 then Tr(Lβ (x)+ γ) = Tr(γ) = 1, therefore Lβ (x)+ γ 6= 0 in F2m .
Suppose that x and y are distinct elements of F2m such that f (x) = f (y). First, suppose that
Tr(x) = Tr(y). Then f (x) = f (y) gives (Lβ (x)+ γ)l = (Lβ (y)+ γ)l then when raising both
sides to the power 2k1 +2k2 we get Lβ (x)+ γ = Lβ (y)+ γ) which gives us Lβ (x)+Lβ (y) = 0)
which is equivalent to Lβ (x+ y) = 0.

Since the only roots of Lβ (x) are 0 and 1 then x+ y must be 1 (since we assumed they
were distinct). Therefore Tr(x + y) = Tr(1) = m.1 = 1, thus Tr(x) + Tr(y) 6= 0 therefore
Tr(x) 6= Tr(y) which contradict our assumption.

Let’s now assume Tr(x) = 0 and Tr(y) = 1, then f (x) = f (y) implies (Lβ (x) + γ)l =

(Lβ (y)+ γ)l +1 then after raising both sides to the power 2k1 +2k2 we get:

Lβ (x)+ γ = [(Lβ (y)+ γ)l +1]2
k1+2k2

= [(Lβ (y)+ γ)l +1]2
k1 [(Lβ (y)+ γ)l +1]2

k2

= [(Lβ (y)+ γ)l.2k1 +1][(Lβ (y)+ γ)l.2k2 +1]

= (Lβ (y)+ γ)l.(2k1+2k2)+(Lβ (y)+ γ)l.2k1 +(Lβ (y)+ γ)l.2k2 +1

= Lβ (y)+ γ +(Lβ (y)+ γ)l.2k1 +(Lβ (y)+ γ)l.2k2 +1
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Since Tr(Lβ (x)) = 0 and Tr((Lβ (y)+ γ)l.2k1 ) = Tr((Lβ (y)+ γ)l.2k2 ) = Tr((Lβ (y)+ γ)l), if we
apply the trace to the relation above we get

Tr(γ) = Tr(γ)+Tr(1)

which means Tr(1) = 0 which is a contradiction to the definition of the trace since m is
odd.

Example 15. The polynomial x2 + x has only 0 and 1 as roots in F2m so we can set Lβ (x) =
x2+x. Let’s take γ = 1, m = 3, k1 = 1, k2 = 0 and l = 5. Therefore, from the above theorem we
know that (x2 + x+1)7 +Tr(x) is a permutation polynomial of F23.

Lemma 2.3. The polynomial f (x) = x22r .k+2r
+ x22r .k

+ x2r
where r and k are positive integers,

is a permutation polynomial if and only if (2k.2r
+2r) and 2m−1 are co-prime.

Theorem 2.4. The polynomial g(x) = (x22r .k
+x2r

+α)l +x is a permutation polynomial of F2m

if Tr(α) = 1 and (2k.2r
+2r).l ≡ 1 mod 2m−1.

Proof. To show that g(x) is a permutation polynomial, we will show that for any element β the
equation g(x) = β has a unique solution in other words, showing that g(x)−β is a permutation
polynomial.
Since Tr(x22r .k

+x2r
+α) = Tr(α) = 1 then x22r .k

+x2r
+α 6= 0 for all x in F2m . Let β be an ele-

ment of F2m , then g(x)= β implies (x22r .k
+x2r

+α)l = x+β and raising both sides to the power
2k.2r

+2r we get (x22r .k
+x2r

+α) = (x+β )2k.2r
+2r

therefore (x22r .k
+x2r

+α)+(x+β )2k.2r
+2r

=
0.

Let h(x) = (x22r .k
+ x2r

+α)+ (x+ β )2k.2r
+2r

, note that h(x+ β ) and h(x) have the same
number of solutions and that h(x + β ) = x22r .k+2r

+ x22r .k
+ x2r

+ β 22r .k
+ β 2r

+α , and since
x22r .k+2r

+ x22r .k
+ x2r

is a permutation polynomial then the equation h(x+β ) = 0 has a unique
solution and so does h(x) = 0 therefore g(x) is a permutation polynomial.

2.4.3 Dickson Polynomials
Dickson Polynomials were first introduced by Leonard Eugene Dickson, an American mathe-
matician in 1897. In this section we will define them and give a brief survey of some of their
important properties.

Definition 2.3. The Dickson polynomial Dn(x,a) of the first kind over Fq is defined by:

Dn(x,a) =
bn/2c

∑
i=0

n
n− i

(
n− i

i

)
(−a)ixn−2i

where bn/2c is the largest integer ≤ n/2. It satisfies the following recurrence:

Dn(x,a) = xDn−1(x,a)−aDn−2(x,a),n≥ 2

where D0(x,a) = 2 and D1(x,a) = x, and ∀ x 6= 0, Dn(x+ a
x ,a) = xn +(a

x )
n.

26



Dickson polynomials have plenty of properties, and below are the main ones related to our
work

Lemma 2.4. The following properties are satisfied:

i. Dn(x,0) = xn

ii. Dmn(x,a) = Dm(Dn(x,a),an)

iii. bn(Dn(x,a)) = Dn(bx,b2a)

iv. if the field’s characteristic is a prime p then Dnp(x,a) = (Dn(x,a))p.

Proof. Let’s prove the above properties:

i. Dn(x,0) = xn:

Dn(x,a) =
bn/2c

∑
i=0

n
n− i

(
n− i

i

)
(−0)ixn−2i

=
n

n− i

(
n− i

i

)
(−0)0xn−2i +

bn/2c

∑
i=1

n
n− i

(
n− i

i

)
(−0)ixn−2i

Since ∀ i > 0, 0i = 0 then ∑
bn/2c
i=1

n
n−i

(n−i
i

)
(−0)ixn−2i = 0 thus Dn(x,0) = xn.

- We prove ii., iii., and iv. by introducing a new variable u such as x = u+ u
a .

Lemma 2.5. The Dickson polynomial D1(x,1) = x is a permutation polynomial modulo 2n

where n ∈ N and n≥ 2.

Proof. f (x) = x is clearly a bijective polynomial, therefore D1(x,1) = x is a permutation poly-
nomials over the finite field F2n .

Lemma 2.6. Let P(x) = a0+a1x+ . . .+amxm be a polynomial with integral coefficients. Then
P(x) is a permutation polynomials modulo 2n if and only if a1 is odd, and both (a2 +a4 + . . .)
and (a3 +a5 + . . .) are even.

Theorem 2.5. Dickson polynomial Dn(x,1) of an even degree is not a permutation polynomial
modulo 2n.

Proof. The result above derives from Lemma 4.7.

Lemma 2.7. Let m be an odd integer with m ≥ 1. If Dm(x,1) is a permutation polynomial
modulo 2n where n≥ 2 then Dm+2(x,1) is also a permutation polynomials modulo 2n.

Theorem 2.6. Let m be an odd integer with m≥ 1, then Dm(x,1) is a permutation polynomial
modulo 2n.
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Theorem 2.7. The Dickson polynomial Dn(x,a) is a permutation polynomial if and only if
gcd(n,q2−1) = 1

Proof. See [9] page 356.

Definition 2.4. Let R be a commutative ring with identity, for any m ∈ Z+, and given y and
u. The problem of calculating the value of m such that y = Dm(u,1) is called discrete Dickson
problem (DDP).

Theorem 2.8. The difficulty of solving DDP is equal to that of solving DLP over a finite field
Fq.
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CHAPTER 3

A JOURNEY THROUGH CRYPTOGRAPHY

Humans have always felt the need to hide information, even before the first computers and
calculating machines appeared. Since its creation, the Internet has evolved to such an extent
that it has become an essential communication tool. However, this communication increasingly
involves strategic issues related to business activity on the Web. Transactions made through the
network can be intercepted, especially since the laws have difficulty to set up on the Internet, so
it is necessary to guarantee the security of this information, that is when cryptography comes
in. Cryptography nowadays serves not only to preserve the confidentiality of data but also to
guarantee its integrity and authenticity.

3.1 What is cryptography ?
Cryptography is the science of using mathematics to encrypt and decrypt data. It is a word
designating all the techniques used to disguise a plaintext in such a way as to hide its content
(encrypt), which results in a ciphertext. And the process of reverting the ciphertext to its origi-
nal plaintext is called decryption.

Cryptography enables you to store sensitive information or transmit it across insecure net-
works so that it cannot be read by anyone except the intended recipient.

3.2 Why Cryptography ?
The primary goal of cryptography is to secure important data on the hard disk or as it passes
through a canal that may not be secure. Cryptography can therefore provide secrecy as it
ensures no one can read or intercept the message except for whom it is intended, thus data
is kept secret from those without the proper credentials even if the data was sent through an
insecure canal (the internet for example). It also assures the receiver that the message received
was not altered in any way from the original (integrity) and provides a mechanism to prove
that it was not sent from a third party, and does so, by establishing identity for authentication
purposes.
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3.3 History of Cryptography
Cryptography is the science of writing codes and encryption for secure communication, and
techniques used nowadays are the result of a rich history of development. Since ancient times,
cryptography has made it possible to transmit information securely. The development of the
techniques employed for current digital encryption may be traced back through the fascinating
history of cryptography.

3.3.1 Caesar Cipher
One of the oldest evidence of cryptography is its use when it comes to military, when Julius
Caesar sent messages to his generals, he didn’t trust his messengers so he replaced every A in
his messages with a D and every B with an E and so on through the alphabet. This shift of
letters is called Caesar cipher. If a shift by a number n was applied to the message then the
recipient of the message had to shift the letters back by n to obtain the original message.

Example 16. Let P = katia be the plaintext and n = 5 then k becomes p, a becomes f , t
becomes y and i becomes n. Therefore the cyphertext is C = p f yn f .

It is clear that these cyphers rely on the system’s secrecy rather than the encryption key.
These encrypted messages are simple to decrypt once the system is understood. In fact, consid-
ering the frequency of letters in the language, substitution cyphers can be cracked. This made
it necessary for cryptography to progress for it to remain effective. That is when the poly-
alphabetic algorithm came to life, which consist of using two completely different alphabet.
The first one in which the plaintext is written while the second one is in which the ciphertext
will appear.

Numerous cryptograms were used between the Middle Ages and the First World War, but
one the most famous is Vigenere Cipher that appeared on 1586, named after the french diplomat
Blaise de Vigenère.

3.3.2 Vigenère Cipher
This cipher was the first to use an encryption key. One of his ciphers involved repeating the en-
cryption key throughout the entire message, and creating the cipher text by adding the message
character with the key modulo 26.

Example 17. Let P = Brock University be the plaintext, and k = crypto the key.

3 18 25 16 20 15 3 18 25 16 20 15 3 18 25
c r y p t o c r y p t o c r y
2 18 15 3 11 21 14 9 22 5 18 19 9 20 25
b r o c k u n i v e r s i t y

And after adding each cell from row 1 with the one bellow from row 4 modulo 26 we obtain the
following:

5 10 14 18 5 10 17 1 21 21 12 8 12 12 24
e j n s e j q a u u l h l l x
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Therefore ciphertext is C = e jnse jqaulhllx.

Vigenere’s cypher introduced the concept of using encryption keys. In contrast to Caesar
cypher, the message’s secrecy is based on the confidentiality of the encryption key rather than
the confidentiality of the system.

3.3.3 The Enigma machine
Enigma was invented by Arthur Shebius a german engineer at the end of the first word war and
was extensively utilised by the German military during World War II. The Enigma machine
performed simple yet clever encryption. The difficulty is in the substitution, which switches
from one letter to another with each replacement. As you type on the keyboard, the rotors
revolve at various rates and output the proper cypher text letters. The initial setup of the rotors
was the cryptosystem’s key.

The Second World War might have dragged on for an additional three years if it weren’t for
Alan Turing’s efforts.

3.4 Modern Cryptography
With the rise of computing, cryptography has become much more advanced than it ever was. As
mentioned above the goal of cryptography "historically" was to make sure of the communica-
tion’s secrecy. In particular, cryptography was concerned with creating ciphers enabling secret
communication between two parties who had somehow, already shared the secret key, prior to
the secret communication. This scheme is now referred to as private-key (or the symmetric-
key) cryptography. We stress that in that situation, both sides have the same key, used for both
encryption and decryption. As opposed to asymmetric encryption, where the transmitter and
receiver use different keys for encryption and decryption and do not share any secrets. And as
in many modern settings, parties would have difficulties arranging any prior physical meeting,
we would easily assume that the asymmetric encryption also known as public-key cryptography
is more suitable for nowadays use. In this section we will first give some modular arithmetic
result and then give examples of such schemes (popular ones).

3.4.1 Modular Arithmetic
In the following we will be introducing some computational results use in cryptography.

Definition 3.1. Let a in Z/nZ. A solution x in Z/nZ of the equation ax ≡ 1 mod n is called
an inverse of a mod n and denoted a−1.

Lemma 3.1. Let a,b and c in N. The equation ax+by = c has integers solutions x and y if and
only if c is a multiple of the gcd(a,b).

Theorem 3.1. a is invertible mod n if and only if gcd(a,n) = 1.

Proof. By definition and element a is said to be invertible mod n if and only if there exists
an integer x with ax ≡ 1 mod n. This is true if and only if there exist an integer y such that
ax+ny = 1 and this is solvable if and only if gcd(a,n) = 1 by Lemma 3.1.
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And from the above theorem we have:

Corollary 3.1. Let p be a prime. Then every non-zero element of Z/pZ is invertible.

The above Corollary gives us a useful information about invertible numbers, which will be
of great importance when constructing encryption schemes. And the above theorem states that
any number has its unique inverse.

Theorem 3.2. Let n > 2 in N and a in Z. If a is invertible then its inverse is unique mod n. In
other word, there is a unique solution to the equation ax≡ 1 mod n.

Proof. Suppose it is not unique, then there exists b and c such that ab ≡ ac ≡ 1 mod n. So
a(b− c) ≡ 0 mod n thus n|a(b− c). But by T heorem 3.1, gcd(a,n) = 1 then n|(b− c) thus
b≡ c mod n, contradiction.

Definition 3.2. The Euler Function Let φ : N→ N by:

φ(n) = The number of a with 1≤ a≤ n and gcd(a,n) = 1.

A particular case is when n is of the form n = pq where p and q are prime numbers. It leads
to the following result.

Theorem 3.3. If a and b are relatively prime and n = ab, then φ(n) = φ(a)φ(b). In particular
when n = pq where p and q are two prime numbers, φ(n) = φ(p)φ(q) = (p−1)(q−1) (As for
a prime number p, the numbers a that are less than p satisfying gcd(a, p) = 1 are 1,2, . . . , p−1
so there are p−1 numbers relatively prime to p).

Theorem 3.4. (Euler) Let n in N. Suppose a in Z and gcd(a,n) = 1. Then

aφ(n) ≡ 1 mod n.

And from that, when n is a prime we have the following:

Theorem 3.5. (Fermat’s Little Theorem) Let p be a prime. Suppose a in Z is not divisible by
p. Then

ap−1 ≡ 1 mod p.

With the results above, we shall now go over a few cryptosystems.

3.4.2 RSA Encryption
The Rivest-Shamir-Adleman (RSA) encryption algorithm is an asymmetric encryption algo-
rithm publicly described in 1977 by Ron Rivest, Adi Shamir and Leonard Adleman of the
Massachusetts Institute of Technology. The creation of a key pair results from the creation of
a private and public key, with the private key remaining a secret known only to the key pair’s
inventor (Bob). This is ideal for delivering sensitive data via a network or Internet connection,
where the recipient of the data sends the data sender their public key. The sender of the data
then encrypts the sensitive information with the public key and sends it to the recipient. And
as only the owner of the private key can decrypt the sensitive data. Thus even though the data
could be intercepted and read in transit, the recipient would be aware that the data had been
altered in transit as he would be unable to decrypt the new message. It therefore allows the
recipient to confirm that the sender is who they claim to be.

The algorithm of such scheme is described as follow:

32



Scheme

Assume in the later, the key generator is Bob and the other party Alice.

• Public Key Generation : Bob will choose p and q to be two large prime numbers and let
N = pq. Take e an integer such that gcd(e,φ(N)) = 1 where φ(N) = (p−1)(q−1).

• Private Key Generation : Bob chooses kpriv his private key such that kpriv = e−1modφ(N).

• Key Publishing : Bob makes public the pair kpub = (N,e).

• Encryption Alice will then send the encrypted version c of a message m by computing
c≡ me mod N.

• Decryption Bob will retrieve back the original message m by computing ckpriv ≡ (me)kpriv ≡
mekpriv ≡ m mod N

Example 18. Bob will choose p = 11 and q = 23 and e = 3. He will then publish the key
(N = 253,e = 3). Then computes φ(N) = 220, and choose kpriv = 147, his private key with
respect to that.
To encrypt the binary message m = 57 with respect to the key (N = 253,e = 3), Alice will
compute me ≡ mod N as follow:

c≡ me ≡ 573 ≡ 250 mod 253

and send it to Bob who will, in order to retrieve the original message, compute ckpriv mod N as
follow:

ckpriv ≡ (me)kpriv ≡ mekpriv ≡ m≡ 57 mod 253

and Bob has finally the original message Alice sent him.

The security of RSA

The public key (N,e) is available to everyone. The cipher is broken if the private key kpriv
is found, and since ekpriv ≡ 1 mod φ(N), RSA would immediately be broken if φ(N) can be
calculated from N since then we could easily find kpriv.

As, if φ(N) was somehow found then:

φ(N) = (p−1)(q−1) = pq− (p+q)+1

so
p+q = N−φ(N)+1

thus p+q is know, then if you manage finding p−q then it’s done, and as you can see it below:

(p−q)2 = (p+q)2−4pq = (p+q)2−4N

therefore
p−q =

√
(p+q)2−4N
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So we know have both p+q and p−q which makes it easy to recover both p and q.

On the other hand, if we manage factoring N then φ(N) = (p− 1)(q− 1) is easily found.
And that tells us that the security on RSA entirely depends on the difficulty of factoring a large
integer into its prime factors. That is why the choice of those factors is decisive.

3.4.3 ElGamal Encryption
The ElGamal encryption scheme is another popular and widely-used encryption method that
provides an alternative to the RSA, by making it rely on the difficulty of computing discrete logs
in a large prime modulus instead of it depending on the difficulty of factoring large integers.
It was described by the egyptian cryptographer Taher Elgamal in 1985. This cryptosystem is
defined over a cyclic group G (in particular over Zp). It works as follow:

Scheme

Assume in the later, the key generator is Bob and the other party Alice.

• Public Key Generation : Bob will choose a cyclic group G of order oG with generator g
and identity element e.

• Private Key Generation : Bob chooses Bk his private key to be such that for a random
non-zero integer b from {1, . . . ,q−1}, Bk = gb.

• Key Publishing : Bob makes public the values kpub = (G,oG,g,Bk).

• Encryption Once the public key shared Alice will choose a non-zero element a from
{1, . . . ,q−1} and computes her key Ak = (Bk)

a Alice will then send the encrypted ver-
sion c = (c1,c2) of a message M she wants to send Bob, by first mapping it to an element
m of G and by computing both c1 = ga and c2 = m.Ak and sends it to Bob.

• Decryption Bob will retrieve back the original message M by computing first cb
1 =

(ga)b = gab = (gb)a = Ba
k = Ak, then look for its inverse in G and computes c2A−1

k =

(mAk)A−1
k = m. Then finally maps m back to the plaintext M.

Example 19. Bob chooses the cyclic group G to be Zp where p = 107, a generator g = 2 and
a secret integer b = 67 and computes his private key Bk = 267 ≡ 94 mod 107. His public key
is (Z107,2,67,94).

Alice wants to send the message M = Brock to Bob. She will first choose an integer a = 45
from {1, . . . ,106} and computes Ak = Ba

k = 9445 = 5 mod 107 and c1 = 245 = 28 mod 107,
convert the message using a = 00, b = 01, . . ., z = 25, which gives the message m = 01 17 14
02 10, then encrypt it by block, as follow:
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01.5≡ 5 mod 107
17.5≡ 85 mod 107
14.5≡ 70 mod 107
02.5≡ 10 mod 107
10.5≡ 50 mod 107

The ElGamal message Alice sends is (28,5) (28,85), (28,70), (28,10) and (28,50) (in
real-life use, we would change the key for every block for much more security).

Bob will look for the inverse of 5 which is c−b
1 = 28107−67 = 240 = 43, then does the follow-

ing to retrieve the original message back:

05.43≡ 01 mod 107
85.43≡ 17 mod 107
70.43≡ 14 mod 107
10.43≡ 02 mod 107
50.43≡ 10 mod 107

He then maps it back to letters, 1 corresponds to b, 17 to r, 14 to 0, 02 to c and 10 to k, to
finally get M = brock.
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CHAPTER 4

APPLICATION OF PERMUTATION POLYNOMIALS TO
CRYPTOGRAPHY

In this chapter we will see how can permutation polynomials be used to protect information
and secure communications so that only those for whom the information is intended can read
and process it.

4.1 RSA
Recall that RSA is a public-key cryptosystem that is widely used for secure data transmission.
It is also one of the oldest. The acronym "RSA" comes from the surnames of Ron Rivest, Adi
Shamir and Leonard Adleman, who publicly described the algorithm in 1977. And it is one of
the cryptosystem that uses permutation polynomials.

4.1.1 Scheme
Recall that for p and q prime numbers and N = pq. Take e an integer such that φ(N) =
(p−1)(q−1) and d = e−1modφ(N).
(N,e) will form the public key and d the private.
To cipher a message m, we will simply compute:

c≡ me(modN)

and the deciphered text will be obtained by computing,

m≡ cd(modN)

The polynomial used in the above cryptosystem is Xe, which is clearly a permutation poly-
nomial in ZN[X] (see Proposition 3.1). It has the following properties:

• Efficiency. Indeed, the fact that it is monic makes the size of the public key smaller.

• Easy to evaluate. The computations are modular exponentiation.

• Secure, as the inverse is hardly computable, since N = pq (the trapdoor) is picked such
that it can hardly be factored.
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4.2 Public Key Cryptosystem
We will, in this section, introduce a cryptosystem similar to the RSA, based on special permu-
taions polynomials. We introduce a multivariate public key cryptosystem with structure using
the group L (2,m) where m = 2k for some positive integer k. Let B= {v,vq, . . . ,vqm−1} a nor-
mal basis of Fqm over Fq. With respect to the basis, x = (x0,x1, . . . ,xm−1) ∈ Fqm , where xi ∈
Fq. Then the operation x 7→ xq transforms x to (xm−1,x0,x1, . . . ,xm−2) which is one left cycle
shift of x = (x0,x1, . . . ,xm−1). We have seen that the convolution of two binary strings is equiv-
alent to the composition of corresponding linearized polynomials and that the convolution of
two binary strings of odd weight is a binary string of odd weight. For x ∈ F2m let (x)t denote
the t times convolution of x with itself, denote the linearized polynomials by Lα and the set of
odd weight elements of F2m by OF2m . Now, in order to present our cryptosystem, we need the
results discussed below.

Definition 4.1. Suppose α = (α0,α1, . . . ,αm−1) and β = (β0,β1, . . . ,βm−1) are two elements
of finite fields Fqm where αi,βi ∈ Fq. The convolution α ∗β of α and β is defined by:

α ∗β = (γ0,γ1, . . . ,γm−1)whereγk =
m−1

∑
i=0

αi[m]βk−i[m] mod m.

Example 20. Let α = (1,0,1) and β = (0,1,1) then:

α ∗β = (
2

∑
i=0

αiβ−i[2],
2

∑
i=0

αiβ1−i[2],
2

∑
i=0

αiβ2−i[2])

= (1.0+0.1+1.1,1.1+0.0+1.1,1.1+0.1+1.0)[2]
= (1,2,1)[2]
= (1,0,1)

Lemma 4.1. For x = (x0,x1, . . . ,xm−1) ∈ F2m , if (x)2 = (y0, . . . ,ym−1) then y2i+1 = 0 and y2i =
xi + x(m/2)+i where 0≤ i≤ (m−2)/2.

Proof. We have, yk = ∑
m1
i=0 xi.xk−i, where the suffices will be modulo m. For 0 ≤ i ≤ (m2)/2,

we have y2i+1 = x0x2i+1 + x1x2i + . . .+ x2i+1x0 + x2i+2xm1 + . . .+ xm1x2i+2. All the terms will
be canceled out in pairs, so we have y2i+1 = 0. In a similar manner y2i = x0x2i + x1x2i1+ . . .+
xixi + . . .+x2ix0 +x2i+1xm1 + . . .+xm/2+ix(m/2)+i + . . .+xm1x2i+1 = x2

i +x2
m/2+i, as x2

i = xi for
xi ∈ F2.

Above lemma implies that (x)2 is a linear function on the finite field F2. In general, it can
be proved that (x)2k is a linear function on the finite field F2m .

Lemma 4.2. The function defined by h(x) = (x)t , where t and m are relatively prime, is a
bijection from OFm

2 onto OFm
2 .

Proof. Since t and m are co-prime, there exist integers r and k such that tk+ rm = 1 so tk =
1+ rm. Suppose y = h(x) = (x)t , this implies that either Ly = L(x)t = Lt

x or Lk
y = Lrm+1

x . And
since (Lx)

m = Lv where Lv is the identity mapping, then Lk
y = ((Lx)

r)m).Lx = ((Lx)
m)r).Lx =

Lx = L(y)k , or in other words x = yk.
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Lemma 4.3. Convolution is distributive over addition in finite fields, that is, for all α ,β and γ

∈ F2m:
α ∗ (β + γ) = α ∗β +α ∗ γ

Lemma 4.4. The convolution of two odd weight binary strings is an odd weight binary string.

4.2.1 Public Key Generation

Consider a message of m− 1 bit string (x0,x1, . . . ,xm−2), where m is of the form 2k . We are
adjoining one more bit xm−1 to make the weight odd, which has to be removed after decryption.

So we can assume that the message X = (x0,x1, . . . ,xm1) is an m bit odd weight element
of the finite field F2m . Suppose Lx,Ly,Lz,Lt ,Lu are elements of the group L(m) and Lv,Lw are
elements of the group L(2m). Let π1,π2,π3,π4 and π5 random permutations of 0,1,2, . . . ,m−1
and π6,π7 are random permutations of 0,1,2, . . . ,2m−1.

Now compute T ′1 = Lx◦π1, T ′2 = Ly◦π2, T ′3 = Lz◦π3, T ′4 = Lt ◦π4, T ′5 = Lu◦π5, T ′6 = Lm◦π6
and T ′7 = Lv ◦π7 where ◦ denotes the composition of mappings.

Now, define the affine transformation Tr(X) = T ′r (X) + σr for 1 ≤ r ≤ 7, where σr for
1 ≤ r ≤ 5 is an even weight element of F2m and σ6,σ7 are even weight element of F22m . And
when X is an odd weight element of F2m , then T ′r (X) and Tr(X) are odd weight element of F2m ,
thus, Tr(X) is a bijection of OF2m

Now compute the following:

• X ′ = T1(X) and X” = T2(X)

• T3((X ′)2 ∗X”) and T4(X ′ ∗X”)+T5((X ′)2 ∗X”)

Suppose the quadratic polynomials fi and fm+i denote the ith bits of T3((X ′)2 ∗X”) and
T4(X ′ ∗X”)+T5((X ′)2 ∗X”) respectively in their normal basis representation.

Suppose θ ′ is the normal element of F22m and B′ denotes the normal basis of F22m over F2
corresponding to θ ′. And consider ( f0, f1, . . . , f2m−1) as an element of F22m corresponding to
the basis B′.

Let Y = (y0,y1, . . . ,y2m−1) the ciphertext which is to be computed using the algorithm de-
scribed above. Now let Z = T6(Y ) and suppose λ and σ are elements of F22m of even and odd
weights respectively. Then by Lemma 4.2 the function λ +σ ∗ (Z)2m−1 is a bijection of OF22m .
Hence the relation between the plaintext and the ciphertext is:

T7( f0, f1, . . . , f2m−1) = λ +σ ∗ (Z)2m−1 (4.1)
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4.2.2 Secret Key
The secret key consist in the following:

• The linear transformations (T1,T2,T3,T4,T5,T6,T7).

• Two finite fields elements λ and σ .

4.2.3 Encryption
In order to encrypt a message M we will transform it into a binary string (x0,x1, . . . ,xm−2) and
then adjoin an additional bit xm−1 so that X = (x0,x1, . . . ,xm−1) is a binary string of odd weight.
Now that is done, we will do the following:

1. Substitute the plaintext (x0,x1, . . . ,xm−1) in the 2m equations in (4.1) and get 2m linear
equations in ciphertext variables yi, 0≤ i≤ 2m−1.

2. Solve the resulting system using Gaussian elimination to obtain the ciphertext (y0, . . . ,2m−1 ).

Thus, from equation (4.1), the plaintext variable X and the ciphertext Y satisfy the following
relation:

E(X) = Y = T−1
6 (((F(X)+λ )∗ (σ)2m−1)2m−1)

where F(X) = T7( f0, f1, . . . , f2m−1).

Theorem 4.1. The encryption function E is a bijection from OF22m to the set E(OF22m) of all
valid ciphertexts in OF22m .

4.2.4 Decryption
The decryption algorithm works as follow:

Input

A ciphertext Y = (y0, . . . ,y2m−1), secret parameters (T1,T2,T3,T4,T5,T6,T7), two finite fields
elements λ and σ as well as an element α ∈ F22m such that w(α) is odd.

Output

1. Z← T6(Y ).

2. (Z)2m−1← L−1
α (L2m−1

Z (α).

3. Z← λ +σ ∗ (Z)2m−1.

4. A← T−1
7 (Z′).

5. (t0, . . . , t2m−1)← A

6. A1← (t0, . . . , tm−1) and A2← (tm, . . . , t2m−1).
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7. A3← T−1
3 (A1)

8. A4← T5(A3)

9. A5← A2 +A4

10. A6← T−1
4 (A7)

11. A7← Lm−1
A6

(A3)

12. A8← T−1
1 (A7)

13. X ← T−1
6 (A8)

14. return X.

X can be proved to be the valid plaintext for the ciphertext Y .
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4.3 The cryptosystem Poly-Dragon

4.3.1 Public key generation
In this section we will be introducing another public key cryptosystem using non linear permu-
tation polynomials g(x) = (x2n

+x+α)2n+1+x and f (x) = (Lβ (x)+ γ)2n−1+Tr(x), where α ,
β and γ are secret. Suppose s and t are two invertible transformations, and the relation between
the plaintext x and the ciphertext y is given by g(s(x)) = f (t(y)). Let u = s(x) and v = t(y), we
have:

g(u) = f (v)

(u2n
+u+α)2n−1 +u = (Lβ (v)+ γ)2n−1 +Tr(v)

(u2n
+u+α)2n

(u2n
+u+α)

+u =
(Lβ (v)+ γ)2n

(Lβ (v)+ γ)
+Tr(v)

This gives, on the left hand side:

A = (u2n
+u+α)2n

(Lβ (v)+ γ)+u(Lβ (v)+ γ)(u2n
+u+α)

and on the right hand side:

B = (Lβ (v)+ γ)2n
(u2n

+u+α)+Tr(v)(u2n
+u+α)(Lβ (v)+ γ)

This then gives the relation below:

A+B = 0

We will now fix a basis B= {v0, . . . ,vm−1} of F2m and rewrite x and y as vectors which will
give us m nonlinear polynomial equations of the form:

∑ai jkxix jxk +∑bi jxix j +∑(ci j +Tr(v))xiy j +∑(dk +Tr(v))yk +∑(ek +Tr(v))xk + fl = 0

where ai j, bi j, ck, dk, ek and fl are elements in F2 and Tr(v) ∈ {0,1}.

4.3.2 Secret Key
The invertible transformations (s, t) and the field elements α , β and γ are the secret keys.
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4.3.3 Encryption
If Bob wants to send a message x = (x0, . . . ,xm−1) to Alice, he does the following:

1. Bob substitues the plaintext x = (x0, . . . ,xm−1) and Tr(v) = 0 in public key and gets n lin-
ear equations in ciphertext variables y0, . . . ,ym−1. Bob then solve those linear equations
by Gaussian elimination and get y′ = (y′0, . . . ,y

′
m−1).

2. Bob then repeats the same process letting Tr(v) = 1 this time and gets m linear equations
that he will solve to get y” = (y”0, . . . ,y”m−1).

3. The ordered pair (y′,y”) is the required ciphertext.

4.3.4 Decryption

Alice knows the ciphertext (y′,y”) and the secret parameters (s, t,α,β ,γ). In order to retrieve
the original message, she will use the following algorithm:

1. v1← t(y′) and v2← t(y”).

2. z1← Lβ (v1)+ γ and z2← Lβ (v2)+ γ

3. z′3← (z1)
2m−1 and z′4← (z2)

2m−1

4. z3← z′3 +Tr(v1) and z4← z′4 +Tr(v2)

5. z5← z2m
3 + z3 +α +1 and z6← z2m

4 + z4 +α +1

6. z7← z2m−1
5 and z8← z2m−1

6

7. O1← s−1(z3 +1), O2← s−1(z4 +1), O3← s−1(z3 + z7 +1) and O4← s−1(z4 + z8 +1)

8. return (O1,O2,O3,O4)

Out of the four messages Alice retrieved one of them will be the correct message, which is
easily identifiable.

Example 21. Let’s consider the finite field F23 where n = 2 and m = 3. Let x3 + x+ 1 the
irreducible polynomial over F2. Suppose v is the root of the above polynomial in the extension
field of F2. v is such v3 + v+ 1 = 0. Using the basis {1,v,v2} the element of the finite field
F23 can be expressed as F23 = {0,1,v,v2,1+ v,1+ v2,v+ v2,1+ v+ v2}. Bob will now take
α = γ = 1+ v+ v2 and β = 1+ v. Correseponding to β = 1+ v = (1,1,0), Lβ = x+ x2. He
will also take the invertible transformation s(x) = A1x+ c1 and t(x) = A2x+ c2, where:

A1 =

1 1 0
0 1 1
0 0 1

 ,A2 =

1 1 1
0 1 1
0 0 1

 ,c1 = (1,0,1)T c2 = (0,1,0)T
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Suppose x ∈ F23 , then x can be expressed as x = x0 + x1v+ x2v2, where xi ∈ F2. Taking
x = (x0,x1,x2)

T , we have:

A1x+ c1 = (x0 + x1 +1,x1 + x2,x2 +1)T

and
A2x+ c2 = (x0 + x1 + x2,x1 + x2 +1,x2)

T

For the plaintext variable x = (x0,x1,x2) the corresponding ciphertext variable is y =
(y0,y1,y2). We have:

u = (x0 + x1 +1)+(x1 + x2)v+(x2 +1)v2

and
v = (y0 + y1 + y2)+(y1 + y2 +1)v+ y2v2

The relation between the plaintext and the ciphertext is:

(u2n
+u+α)2n

(Lβ (v)+ γ)+u(u2n
+u+α)(Lβ (v)+ γ)+(u2n

+u+α)(Lβ (v)+ γ)2n
+

Tr(v)(u2n
+u+α)(Lβ (v)+ γ) = 0

By substitution we get the following relation between the plaintext and thhe ciphertext:

1+Tr(v)+(1+Tr(v))x2y2+(1+Tr(v))x2y1+Tr(v)x1y1+x0+y1+x1x2+x0x1y1+x0x2y1+x0x2y2 = 0,

x1 +(Tr(v)+1)y1 + y2 +Tr(v)x2 +Tr(v)x2y1 +(Tr(v)+1)x2y2 +Tr(v)x1y2 + x0x2 + x0y1+

x0x2y2 + x0x1y1 + x1y1 + x1x2y2 = 0,

1+ x2 +(Tr(v)+1)y2 +Tr(v)x1 +Tr(v)y1 +(Tr(v)+1)x1y1 +Tr(v)x1y2 +(Tr(v)+1)x2y1+

x2y2 + x0x1 + x0y1 + x0y2 + x0x1y1 + x0x1y2 + x0x2y1 + x1x2y1 = 0.

The above equations represent the public key.
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4.4 Key Exchange based on Dickson Polynomials
A key exchange is a protocol whereby a shared secret becomes available to two parties. A
method used to share cryptographic keys between two or more parties to allow them to secure
their communication.The security of such scheme relies on the difficulty of solving the discrete
logarithm problem, in other words, given α and a non zero element g the difficulty of finding
an integer k such that αk = g. We will, in this section, introduce two cryptosystems similar to
the Diffie-Hellman key exchange algorithm based on Dickson polynomials.

4.4.1 Diffie-Hellman Key Exchange
It is one of the most important developments in public key cryptography and it is still used
nowadays in various security protocols. It was first introduced by Diffie and Hellman in 1976
allowing two parties with no communication background to securely establish a key which they
can use to secure their communications. This key-exchange process works as follow:

• Alice and Bob agree to use two public integers modulo a prime p and and a base g where
g is a primitive root modulo p.

• Alice chooses a secret integer a and computes A ≡ ga mod p and so does Bob with an
integer b as he will be computing B≡ gb mod p, and send it to each other.

• Alice will then compute Ba mod p and Bob computes Ab mod p. They will then both
share the same key.

This key can then be used to encrypt ongoing communications. ElGamal cryptosystem is
one of the encryption based on the Diffie-Hellman key exchange.

4.4.2 New Version of the Diffie-Hellman Key Exchange
We will see the steps of an analogue of the Diffie-Hellman Key-exchange scheme, that works
as follow:

1. Alice and Bob agree on a finite field Fq, and a generator g in Fq.

2. Alice picks a secret integer a in [0,q2−1] and Bob picks a secret integer b in [0,q2−1].

3. Alice computes Ak = Da(g,1) and publishes it and so does Bob with Bk = Db(g,1).

4. Alice will compute Ck = Da(Bk,1) = Da(Db(g,1),1) = Dab(g,1) wich will be the com-
mon key as when Bob computes Db(Ak,1) = Db(Da(g,1),1) = Dba(g,1) = Dab(g,1) he
gets the same value Ck.

The shared secret is then Ck.

4.4.3 Key Exchange Scheme
In this section, a scheme using Dickson polynomials and hashing functions will be introduce.
We will first define hash functions, then state the steps of the cryptographic scheme.
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A glimpse on hash functions

A hash function takes an arbitrary length input as a message or a file and produces a fixed length
output. Note that hashing the same input will produce the same digest (hash). One major prop-
erty of hash functions is that one can not revert the algorithm, in other words, we shouldn’t be
able to find the input from just the output, we say that they are one-way.

Hash function are usually used in applied cryptography to provide specific security prop-
erties such as pre-image resistance that was mentioned above, the second pre-image resistance
that is if given an input and its digest one won’t be able to find a different input that hashes to
the same digest. And the collision-resistance which guarantees that no one should be able to
produce two different inputs that hash to the same output.

Hash functions in practice a rarely used alone, as they are mostly combined with other
elements to create a cryptographic protocol, which we will see below.

Scheme

Based on what seen above, we can now construct a key exchange protocol similarly to the on
of Diffie-Hellman algorithm, where Alice and Bob try to share a common key, which will work
as follow:

1. Alice and Bob agree on a Hash function H and share the hash value h=H(idA||idB||β ||α)
(the symbol || refers to concatenation, the operation of joining two strings together) where
idA and idB are Alice and Bob’s identity numbers, α and β are Alice and Bob’s private
key respectively.

2. Alice chooses a random integer a and a nonce (random number only used once) nA, and
then computes AK1 = H(h||a||nA||idA) and sends AK1, a, nA along with idA to Bob.

3. Bob computes AK′1 = H(h||a||nA||idA), compares whether AK1 = AK′1, if not, Bob stops
the exchange, otherwise Alice is authenticated and he moves to the next step.

4. Bob chooses a random integer b and a random nonce nB and computes BK2 =H(h||b||nB||idB)
and sends BK2, b, nB along with idB to Alice.

5. Alice computes BK′2 = H(h||b||nB||idB), compares whether BK2 = BK′2, if not, Alice
stops the exchange, otherwise Bob is authenticated and she moves to the next step.

6. Alice computes m = ab, x0 = (a+b) mod 2n then chooses an odd integer oA and com-
putes XA = D0A(x0,1) mod 2n (a permutation polynomial by T heorem 2.6) along with
AK3 = H(h||nB) and sends them to Bob.

7. Bob computes n= ab, x0 = (a+b) mod 2n then chooses an odd integer oB and computes
XB = D0B(x0,1) mod 2n, along with BK4 = H(h||nA) and sends them to Alice.

8. Alice computes AK′4 = H(h||nA) and compares whether the AK4 = AK′4 if the relation
holds Alice computes the secret key as CK ≡ DoA(XB,1) mod 2n.
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9. Bob computes AK′3 = H = (h||nB) and compares whether the AK3 = AK′3 if the relation
holds Alice computes the secret key as CK ≡ DoB(XA,1) mod 2n.

Bob and Alice now share a common key which will insure them to communicate securely,
the algorithm above can also be used to secure transmission between a person and a server.
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