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Abstract

Quality-Diversity search is the process of �nding diverse solutions within the

search space which do not sacri�ce performance. MAP-Elites is a quality-diversity

algorithm which measures n phenotypes/behaviours of a solution and places it into

an n-dimensional hypercube based o� its phenotype values. This thesis proposes

an approach to addressing MAP-Elites' problem of exponential growth of hyper-

cubes. The exponential growth of evaluation and computational time as the phe-

notypes/behaviours grow is potentially worse for optimization performance. The

exponential growth in individuals results in the user being given too many candidate

solutions at the end of processing. Therefore, MAP-Elites highlights diversity, but

with the exponential growth, the said diversity is arguably impractical.

This research proposes an enhancement to MAP-Elites with Distributed island-

model evolution. This will introduce a linear growth in population as well as a

reasonable number of candidate solutions to consider. Each island consists of a two

dimensional MAP which allows for a realistic analysis and visualization of these in-

dividuals. Since the system increases on a linear scale, and MAP-Elites on an expo-

nential scale, high-dimensional problems will show an even greater decrease in total

candidate solution counts, which aids in the realistic analysis of a run. This system

will then be tested on procedural texture generation with multiple computer vision

�tness functions. This Distributed MAP-Elites algorithm was tested against vanilla

GP, island-model evolution, and traditional MAP-Elites on multiple �tness functions

and target images. The proposed algorithm was found, at the very minimum, to be

competitive in �tness to the other algorithms and in some cases outperformed them.

On top of this performance, when visually observing the best solutions, the algorithm

was found to have been able to produce visually interesting textures.
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Chapter 1

Introduction

Evolutionary design is a �eld that looks into the world of creativity and explores

this space through evolving solutions. For example, procedural texture generation

[15] is a popular application within this �eld. Within computer graphics, procedural

textures provide a texture that requires little memory due to being generated by

an algorithm [41]. Due to this, the texture also has no set resolution and any such

resolution can be generated. The algorithm can use the x and y coordinates to

generate the colour at that speci�c coordinate point.

Diversity is a key term in evolutionary design which denotes the di�erence in so-

lutions generated. A wide range of art pieces in di�erent styles is considered diverse.

Having a wide range of art makes things interesting and enables the viewer to appre-

ciate each individual style more, depending on their subjective own tastes. Without

diversity in art, everyone would be producing the exact same thing for eternity. Di-

versity is what enables evolution to create di�erent solutions, by having a diverse set

of solutions in the pool it will continue to try new possibilities.

Diversity search focuses on diversity, rather than exclusively on optimization. In

typical optimization, the evolution focuses on providing the best �tness value possible,

whether minimizing or maximizing. Diversity search tries to �nd di�erent solutions

where possible. An example of this is novelty search, where the novelty of a solution

1
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is desired [29]. The novelty of a solution is determined by how di�erent it is than

other solutions. The value in this is that not all desired solutions can be de�ned

adequately by a �tness function alone. For example, a common deceptive problem

is maze navigation where an agent is to navigate a maze and reach an exact point.

Optimization algorithms on maze problems will typically fail if "distance to the exit"

is used as the �tness. However, if a novelty search of "go to a new unexplored

part of the maze" is used, solutions can be found. Similar to mazes, art and design

cannot always be de�ned by a simple �tness function. Two people observing the

same architecture or painting can have completely di�erent opinions on it, which is

why novelty is important. Novelty in evolutionary design can produce many di�erent

solutions which may contain something the developer is speci�cally looking for which

the �tness function cannot quantify.

Related to novelty search, quality-diversity (QD) search [45] aims to �nd solutions

within the search space which are as diverse as possible with respect to the behaviours

within the space, while also maintaining high performance. To summarize the direct

comparison between the two, novelty compares solutions to one another where QD

focuses on diverse areas within the search space whilst performing well in regards to

the �tness value.

The QD search algorithm, Multidimensional Archive of Phenotypic Elites (MAP-

Elites) tracks certain aspects, or behaviours, of a solution and keeps the best per-

forming solutions with the measured behaviours [38]. One problem is that measuring

too many behaviours results in too many possible solutions. For example, if there are

3 behaviours with 7 intervals for each behaviour this will result in 73 = 343 possible

solutions.

island-model (IM) evolution is a technique utilized within Genetic Algorithms

(GA) and Genetic Programming (GP) which increase genetic diversity through the

usage of multiple populations communicating to one another. This is a possible
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compromise for the issue of many behaviours producing too many candidate solutions.

1.1 Proposed Solution

This thesis proposes a new MAP-Elites island-model system as one possible answer

to the problem of many variables with varying complexity. This system creates mul-

tiple sets of solutions where each set can optimize for slightly di�erent things. These

sets of solutions will also be communicating with each other, taken from island-model

evolution, and transferring solutions in order to provide and promote more diversity

within each set. This is an exponential growth in terms of the number of behaviours.

Besides being potentially harmful in algorithmic performance, it can also result in sup-

plying too many solutions to the user. These two diversity techniques, MAP-Elites

and island-model evolution, produce diversity in structurally di�erent ways which

allow for combination to be possible. MAP-Elites works based on the optimization of

multiple features, where island-model provides multiple sets or populations and the

communication between sets which is inspired from parallel genetic algorithms [38][7].

1.1.1 Diversity Search

Lehman and Stanley proposed an technique within evolutionary computation

called novelty search [30]. This search technique learns through rewarding function-

ally di�erent solutions rather than searching for a �nal objective.

Vassiliades et al. [51] acknowledge the main drawback of MAP-Elites being the

inability to scale into high dimensional feature spaces due to exponential growth.

They utilize computational geometry to partition the high-dimensional space into

well-spread geometric regions. Their algorithm uses centroidal Voronoi tessellation

(CVT) to divide the feature space into x regions. Individuals are placed into the
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closest region. CVT-Map-Elites was found to scale much better than MAP-Elites.

Basher applies a variant of MAP-Elites to procedural texture synthesis [5]. He

proposes a new MAP-Elites algorithm that focuses on the cells within the grid. He

uses 2-D MAP-Elites with many-objective �tness optimization, in other words, many

�tness scores must be optimized simultaneously. His system shares similar optimiza-

tion performance to vanilla GP. Also, each cell is considered a bin that can hold N

individuals, rather than only 1. By increasing the potential individuals with the same

behaviour features it is hoped to increase diversity.

Alvarez et al. [2] successfully created diverse designs of dungeons within procedu-

ral content generation utilizing MAP-elites and its illumination abilities.

Khalifa et al. [26] utilized MAP-elites for a di�erent kind of content genera-

tion, speci�cally level generations for action games that require avoiding extreme

amounts of projectiles. This framework combines MAP-elites with Feasible-Infeasible

2-Population Genetic Algorithm which resulted in successful creation of levels of vary-

ing di�culty.

Fontaine et al. [17] devised a modi�cation on MAP-Elites, MAP-Elites with Slid-

ing Boundaries (MESB), which would design and build decks for the strategic online

card game, Hearthstone. The sliding boundaries comes from setting boundaries at

percentages on the distribution rather than at speci�c feature values allowing for more

�exibility. This research found that the modi�cation on MAP-Elites played Hearth-

stone in diverse and advantageous ways while also revealing a common patterns that

recur through dimensions.
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Colas et al. [10] addressed MAP-Elites limitation of low-dimension controllers

within robotics. They propose a system utilizing Evolution Strategies to scale MAP-

Elites to high-dimensional controllers parameterized by large neural networks. They

prove that ME-ES performs e�cient exploration competitively with state-of-the-art

exploration algorithms.

Other examples of MAP-Elites research includes uses in GP program representa-

tion [13], bipedal walkers [25], noise [16], and gait controllers [39].

1.1.2 Island-Model Evolution

Island-Model evolution is the concept where a population is subdivided into smaller

subpopulations and these islands exchange genes with other islands [28]. Island-model

evolution takes this concept and applies it to parallel GAs [8]. Rather than genes,

each island sends solutions to other islands at the discretion of the user. The segre-

gated islands promote diversity through their own evolutions resulting in potentially

di�erent solutions and then migrating these said solutions. Koza and Andre [3] found

that using this to parallelize GPs resulted in super linear speed-ups in computational

e�ort.

Research utilizing island-model evolution includes the combination of age-layering

with novelty search with IM [37], processing linearly separable algorithms [56], param-

eter tuning for benchmark functions [19], optimizing Arti�cial Neural Network param-

eters and weights [23], soft topologies [1], di�erential evolution with an immigration

pool [32], dynamic migration policy [14], lack of migration on discrete-continuous

scheduling with continuous resource discretization [49], and speci�c region searching

in GP [11].
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1.1.3 Procedural Textures

There is a lot of research that explores GP on the domain of evolutionary design

and procedural textures [58, 18, 46, 22, 9, 20, 21, 34]. One example in the Gentropy

system, an island-model multi objective GP system that would evolve 2-D proce-

dural textures. The three �tness functions utilized within the topology are: colour

histogram quadratic matching (CHISTQ), wavelet analysis (WAV), and smoothness

histogram matching (SHIST). Some sub populations would only calculate the �tness

using one of these functions, some would take two functions and have a weighted

sum of half and half, and the last variation would take the three multiplied by 0.33

for an even split. This setup provided success in automatically generating textures,

and its user-selectable image analysis �tness functions proved to be e�ective when

automating aesthetics [57].

1.2 Motivations and Goals

1.2.1 Motivations

This research provides a new approach towards multi-behaviour diversity in evo-

lution through the combination of island-model evolution and MAP-Elites. The mo-

tivation behind this approach is to provide higher dimensionality for behavioural

diversity while minimizing computational overhead. MAP-Elites allows for a multi-

dimensional archive, or map of solutions. However, there exists some problems with

this. If a map contains k number of behaviours it becomes a hypercube of k dimen-

sions. If each behaviour has a resolution of m behaviour categories (cells within the

map), then the total hypercube will have mk cells. This is a problem because the map

will grow exponentially with the number of dimensions. This provides a sparse and

dispersed population which may result in less e�ective optimization. When looking
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at the end-of-run solutions, it then becomes increasingly di�cult to observe due to

the sheer number of individuals to consider.

Island-Model MAP-Elites provides a smaller overall population. This is because

it only utilizes 2-D maps, since each map has 2 behaviours. If each behaviour has m

categories, a map would then have a total of m2 cells under the assumption of equal

categories per behaviour. There would then be multiple islands of these 2x2 maps

that would communicate with each other.

For example, consider k = 3 for behaviours A, B, and C we have 3 distinct maps:

AB, AC, and BC. If each map is of size 10x10, then there are 3×10×10 = 300 solutions

in the overall population. A 3-dimensional (hyper)cube is 103 = 1000 overall solutions.

This is a reduction of 70% as 300 is 30% of 1000. If raised to k = 4 behaviours, this

results in 6 distinct pairs. MAP-Elites would produce 104 = 10, 000, whereas DME

would produce 6× 10 = 600. There is a di�erence of 94% of solutions since 600 is 6%

of 10,000. The island's reduced size is even more pronounced with a greater number of

behaviours. The hope is that the proposed island-model MAP-Elites system is much

more practical than multi-dimensional maps in terms of space as well as time, while

also providing more diverse results in comparison to vanilla evolution. It should

be more e�ective for multiple behaviours assuming better convergence while also

supplying fewer �nal solutions to the user.

The purpose behind applying this system to evolutionary art is because diversity

and subjectivity are extremely important when it comes to artistic creative appli-

cations. Diversity can be quanti�ed with the usage of multiple behaviours and the

number of intervals for each behaviour. However, subjectivity cannot be quanti�ed

because each person will perceive things di�erently. Art is an inherently subjective

�eld that cannot be optimized due to emotion, and the di�erences in each person's

senses. Creativity and expression is individualistic and is moulded by a person's

experiences which is why it cannot be boiled down to a single or multiple �tness
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functions. Due to this subjectivity it is important to provide a diverse set of solutions

to the user and have them observe each solution. This system is not only applicable

evolutionary design but other problem domains like intelligent agents [44]. Andrea

Wiens' Gentropy [57] was very inspirational in this work being in the same problem

domain of evolving procedural textures while it explores diversity. Wiens explored

diversity through di�erent island con�gurations while this research is concerned with

MAP-Elites.

1.2.2 Goals

1. Add multiple diversity behaviours to an application without the exponential

increase seen with high-dimensional MAP-Elite hypercubes.

2. Compare diversity and quality of solutions given by Distributed MAP-Elites to

the baseline runs of MAP-elites, island-model evolution, and GP.

3. Discover a practical strategy to examine multiple solutions from at least one

run from the Distributed MAP-elites

4. Test Distributed MAP-elites on an evolutionary design application (procedural

texture synthesis).

1.3 Thesis Structure

The thesis is structured as follows:

� Chapter 2 provides background information with regards to concepts related to

this thesis: MAP-Elites, island-model, Procedural Textures.

� Chapter 3 explains the system design: the algorithm, the applications to be

used, and the feature space.
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� Chapter 4 highlights the results and discussion for each experiment conducted.

� Chapter 5 summarizes the thesis and discusses future work.



Chapter 2

Background

2.1 Genetic Programming

Genetic programming (GP) is a computational intelligence technique which in-

volves evolving programs to solve speci�c problems [27] [42]. These programs are

evolved using the same natural selection concepts as found in GAs. The individuals,

in this case programs, are evaluated for �tness to determine how well they solve the

problem. Reproduction that produces o�spring follow the same concepts of crossover

and mutation. However the way in which these operations are performed are di�erent.

This is because GP operates with tree-based chromosomes. Algorithm 1 illustrates

aspects of GAs which are core to the algorithm.

10
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[1] Initialize x number of individuals;

while not maximum generations do

[2] Choose two individuals;

[3] Breed two new individuals;

[4] Evaluate the two new individuals;

if Ideal solution is found(Optional) then

[5] Exit loop;

end

end

Algorithm 1: Genetic Algorithm Pseudocode

2.1.1 Initialization

There is a population of individuals that the algorithms evolve. This population

must be initialized with individuals in order to perform evolution.

Figure 2.1: Genetic Programming Tree For Expression: sqrt((2/x1) + x2)

The tree-based chromosomes in GP get randomly generated with function nodes

and terminal nodes. The root note determines the value of the individual which can

be used in di�erent ways depending on the problem. Figure 2.1 shows the di�erent

parts of the tree. Functional nodes are operators that take in operands, but not

necessarily multiple operands. There are operations like log10 where only one operand

is necessary. Operands of these functional nodes can be both functional and terminal
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nodes as in Figure 2.1. The result of the division operator is used as one operand for

the addition operator. Terminal nodes are static values that do not take any children

or operands. These terminal nodes can be variables which the user passes in, x1 and

x2, or they can be values known as ephemeral random constants (ERC). ERCs are

randomly initialized constants which persist in value for the rest of the run.

Within a tree are sub-trees, for example, Figure 2.1 contains a sub-tree of the

division operator, the constant 2, and x1. Since these are randomly generated in this

initialization phase, there are certain constraints. The depth of the sub-tree generated

is controlled through minimum and maximum size parameters in order to limit the

depth of the tree.

2.1.2 Selection

After the population of individuals has been initialized, the �rst step of evolution

is to do �tness-based selection of parents to breed children. A common technique of

selecting individuals is tournament selection. First, a number amount of individuals,

typically 3-7, are randomly selected from the population. The �ttest individual from

this set is designated to be a parent. This process is then repeated for deciding the

second parent for crossover. Mutation does not require two individuals and thus only

uses tournament selection once to mutate said individual.

2.1.3 Crossover and Mutation

The third step highlighted in algorithm 1 is the breeding process. This breeding

process involves crossover and mutation of the parents in order to create the children.
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Figure 2.2: Genetic Programming Reproduction

The process of crossover is: randomly select a node on each parent tree, swap these

two sub-trees, then the resulting trees are made into children for the next generation.

Sub-trees are chosen to cross over with other sub-trees to ensure that trees are always

syntactically correct (Figure 2.2).

Mutation begins by �rst determining a sub-tree to delete. This sub-tree is then

replaced with a newly generated sub-tree which has been randomly generated.

2.2 Map-Elites

Map-Elites is an algorithm devised by Mouret and Clune [38]. Rather than an op-

timization algorithm, which would try to �nd the best performing solution within the

search space, this is an illumination algorithm which tries to �nd the best perform-

ing solutions within each user-designated area of the feature space. Since it explores

di�erent aspects of the feature space, it is tailored towards diversity rather than op-

timization. Map-Elites provides an n-dimensional map to house individual solutions.

Each of the n dimensions is a feature, and the solutions would have a behaviour value

tied to it in order to be placed within the map. Each dimension or behaviour has
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intervals which are set to the user. For example, there may be a behaviour that mea-

sures the average red channel of an image. The intervals set for the behaviour can

be 0-100, 101-200, 201-255. Solutions with average red values within each interval

would then be placed in those cells. Assuming k number of intervals for a behaviour

or dimension, a 2-dimensional map would result in a k × k sized grid.

[1] Initialize a number of individuals or percentage of total possible solutions ;

while not maximum evaluations do

[2] Choose two random individuals;

[3] Breed new individual;

[4] Generate behaviour/phenotype values for new individual;

[5] Obtain cell in the MAP for these behaviour values;

if cell empty then

[6] Place individual inside cell;

else

[7] Replace individual if new individual �tness is better;

[8] Replace individual if the new individual is equivalent in �tness and

passes replacement probability;

end

end

Algorithm 2: Map-Elites Pseudocode

Algorithm 2 is the pseudocode for the Map-Elites algorithm when evolving in-

dividuals. After generating a children solution or solutions, the feature values or

behaviours would be evaluated for the solution in order to place it within its re-

spective cell within the map based on the aforementioned intervals. If that cell is

already �lled by another solution then a �tness comparison is done so that the more

�t solution is placed within the cell.
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2.3 Island-Model Evolution

Island-model evolution is a di�erent way to achieve diversity in evolutionary algo-

rithms [7]. It is also a classical approach to parallelism within evolutionary algorithms.

Island-model evolution is comprised of N number of subpopulations, also referred to

as islands or demes, as decided by the user. Each island is an independent subpopu-

lation that evolves on its own most of the time. However, at regular intervals, islands

"migrate" individuals to each other. The result is, when successful, a distributed

evolutionary algorithm that evolves better solutions faster than a single population.

Island-model evolution brings along many new parameters with the existence of

subpopulations:

1. Number of subpopulations

2. Individual subpopulation parameters:

(a) Subpopulation Size

(b) Breeding parameters (Crossover/Mutation etc.)

(c) Fitness function

3. Island/Subpopulation topology:

(a) Selection method

(b) Migration interval

(c) Generation to start migration

(d) Number of individuals to migrate

(e) Destinations to migrate

Each subpopulation is an instance of a population which means that they all need

their own population GP parameters. It is necessary to state the number of subpop-

ulations so GP knows how many subpopulation parameters it needs to process. As
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previously stated, these subpopulations require their own population GP parameters

which are identi�ed under "Individual subpopulation parameters". They are capable

of processing individuals in separate ways thanks to the �tness function, however, it

is also possible to maintain all subpopulations with the same �tness function. This

allows for a new outlook to diversity, by trying to optimize for di�erent combinations

of �tness functions connected through migration. As for the topology, the system

needs a way to choose individuals to migrate over to di�erent subpopulations, which

is why each subpopulation will de�ne a selection method for migration. The same

for the following parameters under "Island/Subpopulation topology". It is possible

to have the di�erent subpopulations migrate individuals at di�erent rates which is

de�ned by generation count, for example, a rate of 5 would mean every 5 generations

a migration would occur to the designated destinations. The number of individuals to

migrate remains consistent for the destinations. To elaborate on this, if the number

of individuals to migrate is 10, and there are 5 destinations, it will send 10 individuals

to each of the 5 destinations. The destination refers to the speci�c subpopulation(s)

it is migrating individuals to.

Island-model may produce superior search performance to that of single popula-

tion models because of the linear separability of a problem by decomposing a problem

into subproblems and solving these subproblems separately before building the full

answer through migration. Whitley [55] devised a model that hints to the fact that

island-model may be advantageous when increasing the population size no longer

helps solve the problem, however they acknowledge there are many variables unex-

plored to this model. However, the diversity maintenance and the linear separable

nature of it does prove that it has the ability to solve some problems better than that

of single population models. Koza and Andre [3] successfully introduce a parallel

implementation of GP that achieves a super linear speed-up with less computational

e�ort. The two speed-ups identi�ed are the near linear speed-up in code execution
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and more than linear speed-up in solving the problem.

2.4 Procedural Textures

Procedural textures are a procedurally generated images using an algorithm or

formulae. They contrast to storing photographic pixel data of an image into memory

[54]. Since the memory now only holds an algorithm to generate the texture as needed,

there is vastly more free memory with this method. The main advantage to using

procedural textures is their ability to compute complex designs and patterns at any

resolution whilst avoiding tiling in bitmaps. This also makes texture mapping easier

[15]. Here is an example of a procedural texture algorithm:

R(x, y) = sin(x) (2.1)

G(x, y) = cos(y)sin(x) (2.2)

B(x, y) = x− y (2.3)

Utilizing the x and y coordinates, red, green, and blue values are calculated through

their respective formulas and thus form the RGB value for that speci�c pixel.

Procedural textures do come with some problems, they can be computationally

expensive especially if large algorithms and formulae are used. Secondly, they can

be di�cult to hand-design to create desired e�ects. Often, well known procedural

textures are parameterized for users; for example, Perlin noise [40] is commonly used

for realistic stone e�ects. Procedural textures produce colour values where texture

images created are de�ned over a continuous range of texture coordinates and thus is

the baseline for high-quality "shader-based" texturing approaches [36].
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2.5 Image Features

This section will highlight image features that are used in the experiments per-

taining to procedural textures. The majority of the features were obtained from

Lombardi et al.'s set [31]. This set of features are lightweight meaning they are

e�cient to compute

2.5.1 Feature De�nition

Lombardi et al. [31] provided the set of features through their model that de-

scribed and analyzed digitized paintings. Two principle features are de�ned by the

model, palette and canvas. The palette refers to the set of colours required to make

a painting where they state is derived from the colour map of an image. Canvas

features focus on frequency and spacial distribution of these colours.

Within their research, they developed two feature sets to test their system. The

�rst feature set works within the red, green, and blue (RGB) colour space. This

set utilizes one palette feature and �fteen canvas features. The second feature set

operates within the hue saturation value (HSV) colour space which corresponds more

towards human perception than that of the RGB colour space. The second set is

comprised of eighteen canvas features.
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Feature Name Type Description and Notes

Red Mean Canvas The arithmetic mean of values in the R channel

Green Mean Canvas The arithmetic mean of values in the R channel

Blue Mean Canvas The arithmetic mean of values in the B channel

Intensity Mean Canvas The global brightness of an image

Colour Entropy Canvas
The degree of disorder in the frequency distribution

of colours

Table 2.1: Lombardi Feature Tests

Table 2.1 are the features which have been utilized in this thesis. Intensity, mean,

and colour entropy are canvas features which are a part of the second feature set,

while the others are part of the �rst preliminary feature set.

Unique triplets refer to the number of unique pixel value combinations in an

image. Poynton [43] illustrates that colour images are generally best captured at the

red, green and blue spectrums. The combination of these three channels will result

in the colours that people are familiar with. The RGB triplet have values that range

from 0 to 255 giving 2563 combinations of colours. However, the human eye is not

able to discern the subtle di�erence between all these colour values.

Poynton[43] points towards the important component of lightness in video sys-

tems conveying data. Lightness is conveyed in a perceptually uniform manner that

minimizes the amount of noise or quantization error. The weighted sum of the re-

spective coe�cients and the colour channels of red, green, and blue would form a

luma(Y' ) signal representative of lightness. An example of this is the International

Telecommunication Union's recommendation for standard de�nition content:

Y ′ = 0.299R′ + 0.587G′ + 0.114B′ (2.4)
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Within information theory, the entropy of a random variable is the average uncer-

tainty of the possible outcomes. Shannon identi�es three properties that this measure,

H(p1, p2, ..., pn), must adhere to [48]:

1. H should be continuous in the pi

2. If all the pi are equal, pi =
1
n
, then H should be a monotonic increasing function

of n. With equally likely events there is more than one choice, or uncertainty,

when there are more possible events

3. If a choice be broken down into two successive choices, the original H should

be the weighted sum of the individual values of H.

The only H that satis�es these three properties is:

H = −KΣn
i=1pilogpi (2.5)

Since an image can be described by each pixel's values, Shannon entropy can be

applied to an image. The description used within this research will be the grayscale

values rather than the unique colour triplet of red, green, and blue. Both unique

colour triplets and grayscale values operate within the same range thus providing the

ability to perform the same entropy calculation if either were to be used. Shannon

entropy on images is very popular within computer vision.



Chapter 3

System and Experiment Design

This chapter discusses the system, Distributed MAP-Elites. It will provide de-

tails about the system's implementation, parameters which are shared through ex-

periments, the platform it is implemented on, the application it is applied to, and

external tools utilized for the application. The systems that will be compared and

contrasted to DME in this work are vanilla GP, island-model, and MAP-Elites. The

following sections will outline parameters for all these systems.

3.1 GP System

This system will run on ECJ version 27 [33]. Evolutionary Computation Jour-

nal(ECJ) is a research EC system written in Java. ECJ evolves GP trees [27]. The

reasoning for choosing ECJ was due to previous familiarity with the system, in addi-

tion to the many features it houses. There exists a steady state evolution application

within ECJ that aided with the implementation of MAP-Elites, since the general

concept using a steady-state population is similar. Steady-state evolution is where

the population does not get replaced and does not run on a per-generation basis. As

children are created and evaluated they will replace the worst performing individuals

if they are better than said worst performing individuals. As for island-model, it is by

default incorporated into the GP implementation of ECJ which provides a straight-

21
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forward implementation for the distribution of DME. The GP system requires some

basic parameters in order to run which are highlighted in Table 3.1. These are native

to GP evolution and ECJ's Koza parameters [33].
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PARAMETER VALUE DESCRIPTION

Evaluations/

Generations
300000/200

Total number of evaluations/generations

in a single run

Population Size

(GP/IM)
1500 Number of individuals in the population

Tree Initializer Ramped Half-n-Half
Method that is used to create trees in

the beginning

Initial Tree Depth Min: 2 �Max: 6
Minimum and maximum depths

when creating trees

Crossover Rate 0.9
Probability of using the crossover

operator for reproduction

Mutation Rate 0.3
Probability of using the mutation

operator for reproduction

Crossover Max-Depth 17
Maximum depth to perform the

crossover operator

Mutation Max-Depth 17
Maximum depth to perform the

mutation operator

Retries 1
Number of retries when performing

mutation or crossover

Selection Method
Tournament(GP/IM)

Random (ME/DME)

Method that individuals are selected

for breeding

Tournament Size

(GP/IM)
3

Number of individuals selected for the

tournament selection method

Table 3.1: GP Parameters

The evaluations/generations in Table 3.1 is what the GP uses to know how long to

run for. Each evaluation is a singular individual being bred. A generation is when a
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population of individuals are bred which is only evident in population based evolution.

Vanilla GP utilizes a population of 1500, and island-model 1500 total individuals

within its con�guration. These algorithms are conducted on 200 generations. An

evaluation is de�ned as the act of reproduction, thus, 1 generation would result in

1500 evaluations. Therefore, MAP-Elite variants will equivalently use 1500 × 200 =

300, 000 evaluations. The crossover rate determines when parents will perform a

crossover operation on the children. The mutation rate determines when a child

solution performs the mutation operation. When performing crossover and mutation,

there can be a limit to the tree where the system will not allow crossover and mutation

to occur. If there is a node below a tree depth of 17 then that will not be allowed which

results in a retry. Parents must be selected before breeding children and performing

these operations. The selection methods used are random and tournament. Random

does not require any parameters as it chooses randomly from the set or population.

This is used within the MAP-Elite variant algorithms. Tournament will be used

for the island-model evolution and vanilla GP. Tournament selection chooses from

a subset of individuals which have randomly been selected from the total set. This

subset or pool is the tournament size which is 3.

3.2 MAP-Elites

MAP-Elites, being a fundamentally di�erent algorithm than vanilla GP, results

in a unique set of parameters necessary to run it. There are some fundamental

parameters that will not change between experiments whereas others highlighted will

only be a boilerplate having the experiments detail speci�cally what they use.
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PARAMETER VALUE DESCRIPTION

Starting Individuals 0.6
Percentage of the MAP

to try and �ll initially

Replacement Probability 1.0
How often to replace

individuals with the same �tness

Behaviours 3
Number of behaviours to

evaluate

Behaviour Names

Behaviour 1: Red

Behaviour 2: Green

Behaviour 3: Blue

Names for each behaviour

Behaviour Intervals

Behaviour 1: 3

Behaviour 2: 3

Behaviour 3: 3

Number of intervals for

each behaviour

Interval Upper Bounds

Interval 1: 100

Interval 2: 200

Interval 3: 255

Upper bounds for each

interval

Table 3.2: MAP Parameters

The starting individuals parameter in Table 3.2 will remain consistent throughout

all experiments utilizing MAP-Elites variants. It will try to �ll 60% of the total pop-

ulation of the MAP, otherwise it will evaluate until 10 times the maximum occupancy

has been ful�lled. The replacement probability is there for cases when an individual is

generated with the same �tness as an existing elite occupying the cell which it would

be placed in. This probability will determine whether it replaces the pre-existing

elite or not. The number of behaviours to be evaluated from a solution must �rst

be set before the details, in this case it will be 3. 3 behaviours, or any behaviour

count greater than 2, is considered high-dimensional due to the inability to easily vi-
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sualize the proceeding results. Each behaviour will have a name denominating what

it is evaluating, and it will have intervals to determine which cell on the MAP the

solution should go in. In this example, there will be 3 intervals for each behaviour

and each interval set will be the same for each behaviour. The interval upper bounds

parameter delineates where the interval ends and where the next interval starts.

3.3 Distributed GP and MAP-Elites

Distributed MAP-Elites combines MAP-Elites and island-model distribution. Each

island within the model is replaced with a MAP of elites instead of a population. The

communication between the islands will stay the same where individuals are emi-

grated to other islands after a certain number of evaluations have passed. Each of

these MAPs are their own entities and thus have individually de�ned behaviours and

�tnesses. The MAPs sizes are �xed to two dimensions and thus will only have two

behaviour measures for each island. Based o� the total number of behaviours being

considered, at the very least, there will be as many islands as there are unique pairs.

However, the user is still capable of picking and choosing speci�c behaviours to explore

relationships. The MAP requires some base parameters for during the initialization

phase which will remain consistent. Islands in distributed GP, or island-model evo-

lution, need to disclose their population size as opposed to each sub-MAP disclosing

the number of behaviours and intervals. These two distributions will be utilizing the

same �tnesses for all islands unless stated otherwise.

Other population speci�c parameters in Tables 3.1 and 3.2 are all the same for

their respective algorithms.
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PARAMETER VALUE DESCRIPTION

Sub-MAPs/Subpopulations 3
Number of islands in the

distribution

Subpopulation Size (IM) 500 Size of subpopulation

Emigration Rate
4 generations

6000 Evaluations

Evaluations or generations to

emigrate individuals

Start O�set 0
Number of generations or evaluations

to pass before the �rst emigration

Emigration Size 5 Number of individuals to emigrate

Number of Destinations 1 Number of destinations for emigration

Destinations

Island 1->2

Island 2->3

Island 3->1

Destinations for each island

Table 3.3: Distributed Parameters

Every experiment involving a distributed algorithm will be utilizing 3 islands

in its distribution. The island-model evolution experiments will maintain the 500

population size for each subpopulation to remain consistent with the 1500 individuals

in the vanilla GP experiments. An emigration rate of 4 was chosen for all the islands

in order to keep it simple, as well as having a large e�ect on the diversity through

the frequent shu�ing of individuals. The o�set was not set as it is acceptable for

the 4th generation to begin emigration and immigration. Each island will only send

individuals to one other island to avoid complicating the architecture. The islands

are set to send individuals to the subsequent island in a circle-like architecture, once

again for simplicity.

Figure 3.1 is an example of the circle-like architecture. Each island will be sending

5 individuals from its own map to the next map. The individuals do not simply get
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Figure 3.1: DME Island Con�guration

placed into the map after being emigrated. For example, sub-map 2 would reevaluate

the behaviours of the individuals sent by sub-map 1 to see which cell it would be

placed in. If the cell it's supposed to go in is empty then it will be placed in there,

otherwise a �tness comparison will be done and the �tter individual will take the cell.

This is repeated for all individuals emigrated to sub-map 2. Each sub-map would

perform this set of actions each time migration occurs.

3.4 Procedural Texture Language

Procedural textures reside in an in�nite texture space(plane) and it must be spec-

i�ed which coordinates to use when generating the texture. The experiments con-

ducted here will not explore di�erent coordinates for the application's simplicity case.

The minimum and maximum X and Y values used are -1 to 1.

Table 3.4 is the procedural texture language that makes up the solutions in the

GP tree [18, 5]. This is a combination of mathematical functions, ERCs and problem

speci�c values. The problem speci�c values, the coordinates of the image, are neces-

sary in creating images. The texture coordinates must be able to be passed into the

tree in order to generate a colour value for each pixel. The ERC values are there in
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order to provide constant variance in each tree.

Table 3.4: GP Language

Function Description

Add(x,y) Adding two inputs together

Sub(x,y)
Subtracting the second input

from the �rst input

Mul(x,y) Multiplying two inputs together

Div(x,y)
Protected division between

two inputs

Sin(x) Sine function of an input

Cos(x) Cosine function of an input

Pow(x)
Taking the �rst input as the

base and second as the power

Log10(x)
Taking the protected

logarithm base 10 of an input

Eph_1
Ephemeral value between 0

and 1

Eph_10
Ephemeral value between 0

and 10

Eph_100
Ephemeral value between 0

and 100

Pos_X
The X texture coordinate

of the image

Pos_Y
The Y texture coordinate

of the image
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Table 3.5: Procedural Texture Variables

Variable Description

Minimum X Minimum X texture coordinate

Maximum X Maximum X texture coordinate

Minimum Y Minimum Y texture coordinate

Maximum Y Maximum Y texture coordinate

Texture X Current X texture coordinate

Texture Y Current Y texture coordinate

X Increment
How much to increment the X

texture coordinate by

Y Increment
How much to increment the Y

texture coordinate by

Table 3.5 consists of the speci�c variables used within the algorithm. As previ-

ously stated the minimum and maximum texture coordinates will be -1 and 1. The

increment is derived from these maximum and minimum values. Equations 3.1 and

3.2 are the formulas for generating the increments:

xIncrement = (MaximumX −MinimumX)/ImageWidth (3.1)

yIncrement = (MaximumY −MinimumY )/ImageHeight (3.2)

The image width and height pertain to the output image. In this case, all output

images will be of size 128x128 which is the same as the input or target images.
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[1] Set current X and Y texture coordinate to the minimums;

for y < Image Height do

[1] Reset texture coordinate X to the minimum;

for x < Image Width do

[1] Store texture coordinates to be used in tree evaluation;

[2] Evaluate trees for RGB values [3] Fit the value obtained into a

[0..255] range;

[4] Translate the value(s) into a single RGB value;

[5] Store the RGB value at coordinate (x, y) for the resulting image;

[6] Increment texture coordinate X;

end

[2] Increment texture coordinate Y;

end

Algorithm 3: Procedural Texture Algorithm

The implementation of the procedural texture generation language is from [18].

This language is a very simple but e�cient language. There are other languages used

like fractals and perlin noise, however, those are not used for e�ciency reasons. The

�rst steps in algorithm 3 are setting up the coordinate system to traverse. The trees

will generate colours through evaluating the tree expression at a speci�c texture co-

ordinate. The translation of the values into a single RGB value is speci�c to Java's

Bu�eredImage function setRGB() which takes the x and y coordinates followed by

this RGB value. There are two options for trees: there only being one tree to gen-

erate a grayscale value; or three trees respectively generate the red, green, and blue

values. The usage will be dependent on the �tness function that will be evaluating

the individuals as some require colour processing, and others do not.
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3.5 Direct Match

Direct match is a strict and simple algorithm used to compare two images[57].

Direct match compares the RGB channels at every pixel coordinate of the images.

The summed di�erence of the RGB distance values will result in the �tness for the

solution.

TotalDistance = Total distance between the RGB values ;

for Every pixel coordinate do

[1] TotalDistance += | (Target Red - Solution Red) + (Target Green -

Solution Green) + (Target Blue - Solution Blue) | / 3 ;

end

Algorithm 4: Direct Match Algorithm

3.6 Wavelet Analysis

Wavelet analysis produces wavelets derived from sound or image decomposition

[52]. These wavelets describe a particular region of the sound or image. The most

popular usage of analyzing wavelets is in compression. In this research, wavelet

analysis will be applied to images. Wavelet analysis involves the process of continually

taking away the �nest details identi�ed until a very general concept of the image

remains. This process is called a wavelet transform.

3.6.1 Haar Wavelets

Haar wavelets are the simplest and are foundational to subsequent wavelet imple-

mentations [52]. The transformation operation for Haar wavelets, Haar transform,

serves as the prototype for all other wavelet transforms. The Haar transform pro-

duces two subsignals which are half of the length of the signal that is provided. A

running average, or trend; and a running di�erence, or �uctuation. Each time the
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Haar transform is performed, it is known as a level. A �rst level Haar transform will

only produce the trend and di�erence. However, subsequent levels use the previous

trend as the discrete signal. For more information regarding the calculation of the

subsignals, see [52].

A key property of Haar transforms is its ability to conserve the energy of signals,

or the sum of squares of its values. Haar transforms redistribute energy in a signal

through compression into a trend subsignal. The trend subsignal generated is half

the length of the original signal thus being called a compaction of energy.

sample = Array of pixel gray values;

coe�cients = Array of wavelet coe�cients;

length = Length of sample;

sample = sample/
√
Length;

while Length > 1 do

[1] Length = Length/2;

for index < Length do

[2] valueOne = sample[2 * index] ;

[3] valueTwo = sample[2 * index + 1] ;

[4] coe�cients[index] = (valueOne + valueTwo)/
√
2;

[5] coe�cients[index] = (valueOne - valueTwo)/
√
2;

end

[4] sample = coe�cients;

end

Algorithm 5: Haar Wavelet Decomposition

Algorithm 5 is the wavelet transformation for a 1 dimensional matrix. If the input

data for an image is a 2 dimensional matrix instead of a transposed 1 dimensional

matrix then this operation would have to be done over every row and column of the

2 dimensional matrix.
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Each transformation will turn half the data into the subsignal values. After a

complete Haar transformation there will be a single matrix with two pieces of data.

The very �rst index of the matrix will be the average of all the values. In the case of

an image, it will be the average value of the colour channels. All other indices within

the matrix will be the coe�cients of the image.

3.6.2 Fitness Function

Wavelet analysis is a method for �tness calculation of shape matching between

images. A set of coe�cients which determine each pixel's relative importance and

average colour of the entire image are generated through this wavelet decomposition.

The coe�cients would help identify the structure of an image and should perform

much better than that of directly matching a pixel's average value. An example of

this is Gentropy [57]. Gentropy has proven that wavelet analysis works well with

procedural texture evolution.

The implementation of wavelet decompositions is from [57]. The decomposition

results in a 2d matrix of coe�cients along with a singular value which denotes the

average colour of the entire image. Many of these coe�cients may be deemed as

too detailed and not necessary towards the general structure of the image. With

this comes the idea of truncation. Jacobs et. al [24] utilized coe�cient truncation

and wavelets to speed up the process of image querying in databases to great success.

These 40-60 coe�cients would be the largest valued, positive and negative, within the

entire image. The number of coe�cients they truncated to depended on the types

of images which ranged from 40-60 coe�cients for thumbnail images of 50x50 pixels.

Using a similar ratio of 10%, the top 1600 coe�cients will be looked at for 128x128

sized images.
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Coe�cientComparisonValue = Total di�erence in coe�cient ranks ;

SolutionAverageColour = Average colour value of the entire solution image ;

TargetAverageColour = Average colour value of the entire target image ;

WaveletFitness = Final �tness value for 1600 largest coe�cients do

if Solution coe�cient position exists in Target's coe�cient set then

[1] Coe�cientComparisonValue += | Target coe�cient rank - Solution

coe�cient rank |

end

else

[2] Coe�cientComparisonValue += 2

end

end

[3] WaveletFitness = | TargetAverageColour - SolutionAverageColour | +

Coe�cientComparisonValue
Algorithm 6: Haar Wavelet Truncated Fitness Function

Algorithm 6 loops through the 1600 largest coe�cients while checking if the po-

sitions of the coe�cients in the solution exist within the target. If there exist a

coe�cient in both the target and solution then an absolute di�erence of their ranks is

computed. The coe�cient rank values range from 1/1600 to 1600/1600. The absolute

di�erence of the two ranks are taken and added onto a comparison variable. If the

solution has a coe�cient in a position where the target doesn't then a penalty of 2

�tness points is added to the comparison value. The �nal �tness formula is derived

from [24].
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Figure 3.2: Test Images

Table 3.6: Wavelet Value Comparisons

Target Image Comparison Image Value

Forest 1 Forest 1 0.0

Forest 1 Forest 2 770.0000167616018

Forest 1 Forest 3 2268.0020492060603

Forest 2 Forest 3 1752.0020324444588

Water 1 Water 1 0.0

Water 1 Water 2 1158.0000383814959

Water 1 Water 3 2486.0020826205996

Water 2 Water 3 1550.0020442391035

Figure 3.2 are mock images to test the Haar wavelet functions to ensure that

they work correctly. When comparing the image against itself, the value should be 0

because the highest coe�cients and the average colour of the image will be the same.
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When adding a slight change to the image, a smiling face in images forest 2 and

water 2, the value produced should be slightly worse. This is seen in Table 3.6 when

comparing forest 2 to forest 1 and water 2 to water 1. When comparing to the third

image, both comparisons should be worse than that of 1 and 2 but the comparison

between 2 and 3 should be better than 1 and 3. The face in the third image does not

exist within the �rst, and the third image is only the face which is what gives the

expectation for these values. This is observed in the table as well con�rming that the

�tness function works as expected.

3.7 SSIM

Structural Similarity (SSIM) is a popular measure that utilizes pattern comparison

of pixel intensities normalized for luminance and contrast[53]. It is a way to measure

image quality that focuses on structural information. This framework works o� of the

assumption that the human's visual system is highly adapted to extract structural

information. Even if an image is slightly blurry, ruined, or noisy, it is still possible

to understand what the object or essence of the image is. This new perspective aims

to evaluate the structural changes of two signals rather than directly compare things

like pixel data.

There are three aspects of an image that are utilized for this assessment: lumi-

nance, contrast, and structural information. Luminance refers to the brightness or

intensity of the signal, for example, a high luminance image would be extremely bright

close to white and low luminance would be very dark. Contrast is the di�erence in

luminance or colour. A high contrast image would have a lot of depth to the image

where the colours, or greys, are distinct, and on the other hand, a low contrast image

would be quite uniform, almost the same colour. Structural information is de�ned

as attributes which represent the structure of objects in the scene independent of
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average luminance and contrast. The local luminance and contrast of a subsection of

the image is used because it can change vastly throughout the image.

They created three formulae utilizing two signals for the luminance, contrast, and

structural information. These two signals would be manipulated and compared to

one another, when combined, would produce the SSIM value which ranges between

-1 and 1. It was also found that this value could be normalized into a range of 0 to
√
2 for optimization problems.

SSIM is an alternative to wavelet analysis, as it also observing the structure(shape)

within images. The process of SSIM produces a single value for every window cal-

culated. The cumulation of these values will provide a total error for the totality

of the windows. There exists a more complex form of SSIM known as Multiscale

SSIM or MS-SSIM. This has been proven to be used within GP. Bakurov et. al [4]

utilizes MS-SSIM as a baseline to prove that their system outperforms this popular

image quality assessment measure. However, for simplicity sake, only Single Scale

SSIM is utilized. Within SSIM there was an addition made which tailored it towards

optimization problems through the inherent properties of SSIM [6].

A sliding window strategy is proposed in [53]. 8x8 sized windows will be utilized

across the entirety of the image with no intersection. This requires target images to

be divisible by 8 or to have a windows that are not of size 8x8. Each normalized

window value will be summed together before being averaged. This average will be

the �tness value that determines the performance of a solution.

Table 3.7: SSIM Variables

Variable Description

Window Size The width and length of the square window

Windows The collection of all windows

ssimValue The running value of the SSIM windows
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Table 3.7 refers to the variables necessary to perform SSIM. The window size

denotes the width and lengths of the windows which have been previously identi�ed

to be 8. All the windows need to be stored or preprocessed in order to perform actions

on them later. Each window will hold the pixel values and the mean grey value. The

running value of SSIM will be the �tness score for the solution which needs to add

all the normalized window SSIM results.

while Window Size * Index < Total Pixels do

[1] Store the window data;

end

for window in Windows do

[2] Calculate SSIM for the window;

[3] Normalize SSIM value;

[4] Add normalized SSIM value to ssimValue;

end

[5] Divide ssimValue by the total number of windows;

Algorithm 7: SSIM Fitness Calculation

The implementation of the SSIM calculations is from [47]. A window is a small

image sliced out of the original target image. Following Wang et. al [53], the sliding

window method will be utilized as previously mentioned. Each window will contain

the average grey value and the grey pixel values. Each of these windows will then

be used to calculate a SSIM value. Afterwards the normalized SSIM value will be

added to the running SSIM total. The average SSIM value over the total number of

windows will then be used as the comparison to the target image.
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Table 3.8: SSIM Value Comparisons

Target Image Comparison Image Value

Forest 1 Forest 1 0.0

Forest 1 Forest 2 0.04070310959592466

Forest 1 Forest 3 0.5788680278255285

Forest 2 Forest 3 0.5620242315977924

Water 1 Water 1 0.0

Water 1 Water 2 0.05789772653466361

Water 1 Water 3 0.6423053112590693

Water 2 Water 3 0.6163984995047127

Table 3.8 utilizes the image set from Figure 3.2 to test the SSIM calculations.

The pattern in the comparisons are expected to be the same as that within Table 3.6.

The di�erence between the two is the way they go about structure comparisons. The

value from SSIM is the overall di�erence of the windows within the image whereas

haar wavelets truncate the most important pixels. The expected patterns in the

comparison come out within the tests which con�rm that this SSIM implementation

is valid for use.

3.8 CHISTQ

Colour histograms discretize image colours through counting the occurrences of

the quantized discrete colours within the image [50]. The colours are quantized into

a �xed number of colours which act as histogram bins in order to count the frequency

for each colour. This technique is known for image comparisons in image querying

databases when dealing with colour. Its �exibility due to the binning is superior

to the strictness that direct pixel matching, and has found use in GP-based texture
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synthesis[57, 18].

A typical matching of colour histograms would take the di�erence between each

bins occurrence which would be the distance for that respective bin. The total dis-

tance would be identi�ed by summing each bins distance. Colour histogram quadratic

matching, or CHISTQ, utilizes quadratic distance on top of the aforementioned colour

histogram [50].

d(i, j) =|targetHistogrami − solutionHistogrami|

· colourSimilarity(i, j)

· |targetHistogramj − solutionHistogramj|

(3.3)

Equation 3.3 shows the distance at indices i and j for CHISTQ matching. The

colour similarity refers to the similarity between the two quantized colours through

indices i and j. The product of this with the histogram distances at each index

completes the quadratic distance. This is an expensive computation since all combi-

nations of i and j are considered, although the �exibility through colour similarity is

considered enough of an advantage to outweigh the computational complexity.

CHISTQ is a �tness function for colour matching of images that works with the GP

language[18, 57]. CHISTQ utilizes a distance formula which will provide the �tness.

The target image and solution images are quantized into 512 discrete colour bins

which will be used when calculating the quadratic distance between the two. After

quantization, the two bin datasets will be used against each other in this quadratic

distance formula, equation 3.3. The formula consists of a similarity calculation which

is what makes CHISTQ more �exible than the direct bin di�erence. This formula is

used for every bin and the summation is the �nal output of CHISTQ.
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Table 3.9: CHISTQ Variables

Variable Description

Bins Colour frequency

Target Histogram Histogram of the target image

Colour Distance CHISTQ output value

The variables in Table 3.9 are necessary for the process of performing CHISTQ.

The bins are stored in a 1-d matrix of the discrete colours which hold the frequency of

each colour from an image. The target histogram is the bins or histogram generated

from the target image. Colour distance is the output of the summation of all the

quadratic distances.

for pixel in Image do

[1] Increment according colour bin based o� of pixel value;

end

for index in Bins length do

for index2 in Bins length do

[2] Add quadratic distance of the histogram indices to colourDistance;

end

end

Algorithm 8: CHISTQ �tness calculation

The implementation of CHISQ is from [18]. During quantization, a colour value

is derived from every pixel and the respective bin is incremented to calculate the

frequency in order to generate the histogram of an image. After the histogram is

generated for the target and the comparison the distance formula is used. As previ-

ously mentioned, equation 3.3 is performed on every bin. Each bin in the comparison

is checked against every bin in the target for the similarity. This makes the call

expensive, however, the �exibility of the algorithm is gained.
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Table 3.10: CHISTQ Value Comparisons

Target Image Comparison Image Value

Forest 1 Forest 1 0.0

Forest 1 Forest 2 7.542183739613777E-4

Forest 1 Forest 3 1.838177538034131

Forest 2 Forest 3 1.7880744659557657

Water 1 Water 1 0.0

Water 1 Water 2 0.002575007836032119

Water 1 Water 3 1.7887742074748882

Water 2 Water 3 1.7032111615537806

As with SSIM and Haar wavelets, the patterns of images 1 and 2 being smaller, 1

and 3 being larger, and 2 and 3 being slightly less than the comparison between 1 and

3 remains the same. With the focus this time being on the colours and the similarity

in a colour respective to the whole image the patterns should still emerge. In �gure

3.2, the colours between the �rst two images of forest and water should be vastly

more similar than with the third image. Whereas the face provides some semblance

of similarity when compared to the second image.



Chapter 4

Procedural Texture Experiments

4.1 Direct Match Experiment

This experiment will be utilizing a direct match �tness function in accordance

with behaviours relating to the colour channels. The experiment will be comparing

vanilla GP, island model distributed evolution, high-dimensional MAP-Elites, and

distributed MAP-Elites. A target image will be provided to each of these tests where

they will produce procedural textures. In the case of this experiment, all tests will

be utilizing the target image will be the image in Figure 4.1.

Figure 4.1: Target Image

44
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Fitness Function
Direct Match Luminosity/

Grayscale

RGB distance:

channel distance

between Target and

GP Image (pixels).

Behaviour 1 Average Red Channel

Averaged the green

channel over all

the pixels.

Behaviour 2 Average Green Channel

Averaged the green

channel over all

the pixels.

Behaviour 3 Average Blue Channel

Averaged the blue

channel over all

the pixels.

Table 4.1: Fitness Function and Behaviours

Direct Match �tness as described in Table 4.1 is a very strict and basic �tness

function which calculates the error between each pixel's red, green, and blue distance

between the target and GP image. This direct match �tness will be used in all islands

and sub-maps for the distributed algorithms. Although the distributions are capable

of housing di�erent �tness functions, they will share the same �tness here.
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4.1.1 Vanilla GP Results

Table 4.2: GP Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.2: Best Solution
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(a) Red and Green Channel Heat Map (b) Red and Blue Channel Heat Map

(c) Green and Blue Channel Heat Map

Figure 4.3: Colour Channel Heat Maps

The best solutions evolved from 30 runs show similar tendencies to one another

with slight variances. The runs generally chose a single gradient between a few colours

and have a darker shaded design on top of it. For example some of the purple-blue

solutions and orange-green have a pattern of some kind of hill-like structure in the

bottom left. There are multiple designs generated, however, none resemble anything

close to the target image.

Figure 4.2, the best solution out of the 30 runs, has the most interesting pattern

out of all the runs. It chose a more green palate and has something resembling an

H-like shape that is darker than the rest of the image. When comparing to the Van

Gogh target image, there is nothing similar about it. Looking at it from a di�erent
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angle, the behaviours of the mean red, green, and blue channels will be compared.

For reference, the Van Gogh image resides in the behaviour intervals for red 108-144,

a green of 144-180, and blue of 108-144. This solution has intervals of red 144-180,

green 216-255, and blue 0-36. The only behaviour close to the target image in this

case is the red channel while green is slightly more distant and blue is a far cry away.

Figures 4.3b, 4.3a, 4.3c which represent the diversity of solutions throughout the

30 runs of this experiment. The heat map axes are the same behaviours used within

the ME and DME experiments, however, formatted in the DME representation. This

formatting is to represent the correlation between each colour channel. The Red-Blue

and Green-Blue heat maps have the most overlap in solutions in comparison to the

Red-Green indicating that solutions have the most diversity between red and green.

Regardless of the red and green values, the blue channel does not change much.

Figure 4.4: Best GP Fitness Graph
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The plot in Figure 4.4 shows the best and average �tness of the best solution

over 30 runs. The average �tness values improve greatly over the �rst 20 generations

before slowly improving over the next 80 generations. After generation 100 it begins

to very gradually improve before seemingly begin to plateau on the last generations.

The best �tness at each generation makes the most improvement within the �rst

42 generations before slowly improving. After generation 90 the plateaus are more

noticeably longer.
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4.1.2 Island-Model Results

Table 4.3: IM Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.5: Best Solution
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(a) Red and Green Channel Heat Map (b) Red and Blue Channel Heat Map

(c) Green and Blue Channel Heat Map

Figure 4.6: Island-Model Colour Channel Heat Maps

Table 4.3 show the best solutions for each run. Since there are three subpopula-

tions the image shown is one with the best �tness out of their respective subpopula-

tions. The best solutions generated generally follow the same pattern as the results

found within the vanilla GP experiment. There are some interesting di�erences like

the seemingly random pixels across some of the runs as well as some di�ering patterns.

The best solution in Figure 4.5 is the most visibly interesting in comparison to all

the others. The deeper purple has interesting geometry as well as the lighter stripes

coming down at a diagonal from the middle. This image comes from the second

subpopulation. When comparing behaviours to the target image with behaviour

intervals of red 108-144, a green of 144-180, and blue of 108-144, this solution resides
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Figure 4.7: Best Fitness

in a red of 180-216, a green of 0-36, and a blue of 216-255. The average red and blue

of the image are close to that of the target image where the green is very far from it.

Figure 4.6 is the heat map representation of the island-model evolution under

the same �tness function of the vanilla GP experiment. The heat maps dataset here

utilizes every best individual from each subpopulation resulting in 90 individuals to

be evaluated. There is much more diversity between blue and green here than with

red. The Red-Green and Red-Blue heat maps are very concentrated whereas Blue-

Green is much more spaced. The relationship showing that there are more varied

results with average blue and green values and fewer red.

The �tness graph in Figure 4.7 shows a relatively smooth evolution until a conver-

gence around generation 190 for the average �tness of the subpopulations as well as

all the generations. The jaggedness of each subpopulation is the result of immigration
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and emigration of individuals where the best individual of a subpopulation would be

emigrated out. Depending on the next best individual the increase in �tness may be

quite sharp if a individual of similar �tness to the previous best is not immigrated in.

The best �tness �tness values also evolve the most in the �rst 50 generations like the

average.

4.1.3 MAP-Elites Results

Table 4.4: Behaviour Intervals

Behaviour

Name

Total

Intervals
#1 #2 #3 #4 #5 #6 #7

Mean Red 7
0

35.9

36

71.9

72

107.9

108

143.9

144

179.9

180

215.9

216

255

Mean Green 7
0

35.9

36

71.9

72

107.9

108

143.9

144

179.9

180

215.9

216

255

Mean Blue 7
0

35.9

36

71.9

72

107.9

108

143.9

144

179.9

180

215.9

216

255

This algorithm utilizes a cube(hypercube) format where a visualization would

result in a 3-dimensional cube. The behaviours which are calculated for these indi-

viduals within the algorithm are highlighted in Table 4.1. These behaviours all will

have 7 intervals which will result in a maximum of 343 possible individuals within

the cube. The intervals for each behaviour are in table 4.4. Within each respective

interval the value higher up in the cell is the lower limit and the one at the bottom

of the cell is the upper limit, for example, interval 1 would range from values 0-35.9
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Table 4.5: ME Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.8: Best Solution
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Figure 4.9: Average Fitness

Table 4.5 is the compilation of the best results from each run. The runs tend

to perform a diagonal or vertical gradient. There are some exceptions, but overall

the solutions do not have any semblance of shapes and mix colours together. There

are some interesting ways the colours curve into one another but they do not have a

cohesive shape to them.

Figure 4.8 is the best solution from the set of runs. It seems like a mostly light

green image with a slight gradient at the sides. Van Gogh has behaviour intervals

of red 108-144, green 144-180, and blue 108-144. This solution has a red of 144-180,

a green of 216-255, and a blue of 0-36. The lack of blue is apparent in the image,

however, the red is quite close to the target image.

Figure 4.9 is the �tness graph averaged over 30 runs for 200 generations. Both

the average and best quickly improve within the �rst 10 generations, or a 22500
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evaluation equivalent. The average �tness of the MAP is observed to have a much

smoother descent after the rapid improvement while there are signi�cant jumps within

the best individuals observed. There is a large di�erence in the �tness values between

the mean and best due to the nature of MAP-Elites. Previously empty cells may be

�lled with poor solutions which may never be replaced. If these individuals do get

replaced they are not necessarily vastly better than their predecessor which results in

a higher average MAP �tness. The best �tness at each generation is primarily

4.1.4 DME Results

Table 4.6: Direct Match DME Sub-MAPs

Sub-MAP 1 Sub-MAP 2 Sub-MAP 3

Behaviour 1 Mean Red Value Mean Red Value Mean Green Value

Behaviour 2 Mean Green Value Mean Blue Value Mean Blue Value

DME utilizes multiple 2-dimensional MAPs with each behaviour pairing in order

to encapsulate x dimensions. In this case there are 3 pairings of behaviours. These

behaviours utilize the same interval count and intervals as those in the MAP-Elites

algorithm (Table 4.4). Each sub-map will have a maximum individual count of 72 =

49. This con�guration of 3 sub-maps will result in a total count of (72) ∗ 3 = 147

individuals. Table 4.6 shows the con�guration of each island's MAP behaviours.
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Table 4.7: DME Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.10: Best Solution
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(a) Red and Blue Island MAP (b) Red and Green Island MAP

(c) Green and Blue Island MAP

Figure 4.11: Direct Match DME Visualization

The best solutions produced from the 30 runs in Figure 4.7 depict a common

evolutionary trait among all the runs. They all have some sort of colour gradient

throughout the entire image with some of the solutions having patterns over top of

these colour gradients. There are exceptions to these observations like runs 5, 8, 13,

19, and 27. These runs have speci�c geometry or patterns as their best solutions.

The best solution in Figure 4.10 is a gradient of blue to purple from bottom to top

with some interesting spikes in the top right and bottom right protruding towards

the middle. The Van Gogh target image having a red interval of 108-144, green of

144-180, and a blue of 108-144. This best solution has a red of 108-144, green of 0-36,
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Figure 4.12: Best Fitness

and a blue of 216-255. It successfully occupies the same red interval but strays quite

far from the green and blue.

Figure 4.11 shows a visualization of the MAP con�guration holding the best so-

lution of Figure 4.10. The red X's with a white background indicate that there were

no solutions found with the according behaviours of that cell. There are some inter-

esting solutions between all three MAPs with distinct geometry or patterns evolved

but nothing visually similar to the target.

The average �tness in Figure 4.12 is very jagged and inconsistent due to the immi-

gration and emigration of individuals between MAPs. Around 10% of the maximum

MAP population being immigrated and emigrated frequently cause consistent spikes

between the sub-maps in the average �tness graph. There are sub-maps which have
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much more drastic increases and decreases due to the nature of these immigrations

and emigrations since the best individual may be pulled out. As a result of this, the

new island for this individual may have much more comparable �tness values and not

be the best. The �rst and third sub-maps start at o� with worse individuals than

the second but quickly get competitive. All three sub-maps improve at a fast rate

until generation 20 before slightly slowing down until generation 135 which they then

proceed to bounce around. The best �tness sees a few points of improvement, around

generation 20 and 190.

4.1.5 Discussion

Figure 4.13: Best Fitness Comparison

Figure 4.13 is a comparison of each algorithm used within the experiment utilizing

the direct match �tness function. Island model evolution and vanilla GP have similar
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�nal �tness values and curves because of the similar evolutionary basis. Island-model

introduces some variance through immigration and emigration which may attribute

to the slightly worse �tness in comparison to vanilla GP. This immigration and emi-

gration also results in a rocky �tness graph since the possible emigration of the best

individuals accompanied by the proceeding reproduction in these subpopulations.

Island-model's values are still competitive with vanilla GP, however, �ne tuning the

parameters may result in better performance due to the diversity but the �ne tuning

does not guarantee the super linear speed up found in other research. MAP-Elites con-

verges very quickly and slowly improves afterwards. The maximum size of the MAP

introduces space for individuals with lesser �tness values to populate. This may result

in the poor initial generational �tness values, but quickly result in a convergence. The

DME con�guration introduces a lot less space for individuals to populate in compar-

ison to MAP-Elites which results in a faster convergence. The early individuals also

seem to outperform vanilla evolution but the convergence does not di�er much from

the initial �tness values. Vanilla GP by far performs the best in comparison to all

others. DME performs the worst out of all of the algorithms, however, the di�erence

in �tness values is not egregious. ME is comparable to vanilla GP and island model

and could possibly perform better given more generations observing the small sharp

descents over time.
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Figure 4.14: Behaviour plot using the best solutions from each algorithm

Figure 4.14 is a box and whisker plot excluding outlier points for the four algo-

rithms used within this experiment on each of the behaviours. Outliers are de�ned as

values beyond 1.5 times the interquartile range (25th and 75th percentile). The three

behaviours observed are the red, green, and blue colour channels. All of the algo-

rithms have best solutions which span the full colour range of red and green values.

The blaring di�erence is the observed blue channel of these best solutions. DME and

MAP-Elites have large interquartile boxes as well as whiskers for the blue channel

showing more diversity in best solutions when compared vanilla GP and island-model

evolution.

Figure 4.15 illustrates the tree depths of the best solutions obtained from the 30

runs, because of this, island-model and DME will have more data points to work

with due to the nature of said algorithms. Vanilla GP and island-model produce best
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Figure 4.15: Tree Depth Box Plot

solutions with a median around depth 12 with interquartile ranges from 6-16 and

8-16 respectively. Larger trees are not inherently bad but cause longer evaluation

times and possibly have sub-trees that do not do anything due to the sheer size. ME

roughly produces best solutions around depth 3 and DME at depth 4 with respective

interquartile ranges of 2-4 and 3-5. ME and DME produce best solutions which may

perform worse than GP and island-model at a small margin but with trees that are

much smaller and require much less to compute.
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Figure 4.16: Critical Di�erence Diagram using best solutions from each algorithm

All following statistics have been formulated within R utilizing the Friedman test

and Sha�er correction with a threshold of p < 0.05, with the null hypothesis:

H0 : θGP = θIM = θME = θDME

The Friedman test and Sha�er correction were chosen in part of the in�uence of

[12]. The Friedman test ranks algorithms for problems separately before averaging

the ranks to give a �nal rank to an algorithm. Figure ?? shows that IM and GP

are not statistically signi�cant to each other, and the same is said for ME and DME.

However, the ME and vanilla variants are statistically signi�cant to one another.

In summary, vanilla GP and IM performed better in terms of pure �tness, however,

the 30 runs produced very similar looking solutions overall. ME produced solutions

with more variance in the 30 runs but performed much worse than GP and IM.

DME produced the most diverse set of individuals while performing closer in terms

of �tness. The quality of all the solutions is very poor. This can be mainly attributed

to the GP language which is far too simple for this target image. The �tness function

being strict does not help with this either.
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4.2 Wavelet Experiment

The experiment within this section will focus on exploring Haar wavelet transfor-

mations as the �tness function using a di�erent set of behaviours. As with the Direct

Match experiment, this experiment will also utilize all four algorithms. However, all

of the image data will be processed as grey values. The Sha�er procedure was found

more to be more bene�cial in comparison to the Holm procedure. The di�erence is

that instead of high-dimensional MAP-Elites only 2 dimensions will be con�gured.

There will be two target images for this experiment. Figure 4.17 is intended to be a

simpler target image for the �tness function to ful�ll whereas Figure 4.18 is a more

di�cult target to solve.

Figure 4.17: First Target Figure 4.18: Second Target

Fitness Function Haar Wavelet Coe�cient Comparison

Ranking x highest value

coe�cients and comparing

the respective indice's rank.

Behaviour 1 Entropy
Calculating entropy over

the image's pixels.

Behaviour 2 Average Luminosity
Averaging all the colours

within the image.

Table 4.8: Fitness Function and Behaviours
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Table 4.8 describes a more �exible �tness function in wavelet comparisons due to

wavelets identifying coe�cients which show importance rather than calculating an

error over every pixel as in direct match. The �tness function will remain consistent

for all island con�guration algorithms in this experiment as well.

Figure 4.19: Barcode Coe�cients Figure 4.20: Smile Coe�cients

Figures 4.19 and 4.20 are the pixels identi�ed as having the highest value coe�-

cients in each of the target images.
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4.2.1 Vanilla GP Results: Barcode

Table 4.9: GP Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.21: Best Solution Figure 4.22: Best Solution Coe�cients
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Figure 4.23: Entropy Luminosity Heat Map

The best solutions from the 30 runs in Table 4.9 show a very poor performance

with the vast majority of solutions being a �at image with some sparse amounts of

red littered throughout the top or bottom of the image. Some runs choose to do a

blue or green variation of this.

The best solution furthers this with the behaviour evaluation used on it. It pro-

duces an entropy value that would be between 0-1.14 and a luminosity between 72-108.

In comparison, the target image of a barcode has an entropy of 3.42-4.56 and a lu-

minosity of 180-216. The coe�cients which it identi�ed as the most important show

a slightly di�erent story than the visual performance. Visually it seems to be similar

to those of the coe�cients identi�ed by the target image.

The heat map, Figure 4.23, of the individual being placed into the MAP further

the poor diversity performance by the vast majority of runs being in a single cell with



CHAPTER 4. PROCEDURAL TEXTURE EXPERIMENTS 69

Figure 4.24: Best Fitness

the others split into two other cells.

Vanilla GP seems to evolve the quickest within the �rst 5 generations. It slows

down into a gradual evolution of �tness until generation 110 where it slows greatly.

Generation 190 is seen to be the start of the plateau of �tness. The best �tness makes

bursts of improvement within the �rst 10 generations and between generations 50 and

70, otherwise improving slightly or plateauing.
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4.2.2 Vanilla GP Results: Cartoon Smiling Face

Table 4.10: GP Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.25: Best Solution Figure 4.26: Best Solution Coe�cients
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Figure 4.27: Entropy Luminosity Heat Map

Vanilla GP produces some interesting images while trying to evolve for a cartoon

smiling face in Table 4.10. The best solutions from each run do not evolve well on a

simple language and have many runs producing very visually poor results.

The best solution out of these are diagonal stripes in Figure 4.25. The coe�cient

derived from this solution also di�ers wildly in comparison to the target's coe�cients.

This best solution would �t into the cell with entropy 2.28-3.42 and luminosity of

0-36. The cartoon smiling face �ts into the cell of entropy 2.28-3.42 and luminosity

180-216. It successfully matched the entropy, however, the luminosity falls very short.

In the heat map, Figure 4.27, it is observed that GP diversity falls quite short over

30 runs. There are no solutions in the heat map which occupy the same cell as the

target image with the vast amount of runs producing solutions which would occupy

entropy 0-1.14 and luminosity 0-36. It does successfully produce solutions with the
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Figure 4.28: Best Fitness

same entropy with low frequency cells.

The best �tness in Figure 4.28 shows the �tness improving drastically from gen-

eration 0 to 15 before slowing down. It proceeds to slowly evolve until generation

135 where it begins to plateau. At generation 190 there is another spurt of evolu-

tion before stopping. The majority of improvement in the best �tness are within the

�rst 20 generations, afterwards, it goes on long strides of plateaus before incremental

improvements.
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4.2.3 Island-Model Results: Barcode

Table 4.11: IM Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.29: Best Solution Figure 4.30: Best Solution Coe�cients
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Figure 4.31: Entropy Luminosity Heat Map

Over the 30 runs using island-model evolution and Haar wavelet transformations

the solutions are all visually very poor. Vast amounts of �at images either being black

or blue with some solutions having sparse amounts of red on the top or bottom of

the image.

Interestingly, the best solution's coe�cients in Figure 4.30 is quite visually similar

to the coe�cients used in the target image. However, the behaviours evaluated for

this best solution provide the opposite story where it would slot into a cell with an

entropy of 0-1.14 and a luminosity of 0-36.

The heat map in Figure 4.31 indicates very poor diversity which corroborates the

visual observation of Table 4.11.



CHAPTER 4. PROCEDURAL TEXTURE EXPERIMENTS 75

Figure 4.32: Best Fitness

The �tness plot in Figure 4.32 shows all subpopulations being very close to one

another throughout all 200 generations of the runs. The �rst 10 generations seem to

evolve the fastest before slowly evolving until generation 140 where it slows further

before starting to plateau at generation 190.
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4.2.4 Island-Model Results: Cartoon Smiling Face

Table 4.12: IM Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.33: Best Solution Figure 4.34: Best Solution Coe�cients
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Figure 4.35: Entropy Luminosity Heat Map

Island-model evolution produces few but very interesting images from 30 runs in

Table 4.12. There are three solutions of stripes with interesting curvatures. Runs 9

and 20 are also very interesting with patterns that focus on the corners of the image.

The rest of the runs produced gradients or speckles across a black image.

The best solution from these runs is a gradient image in Figure 4.33. The coef-

�cients used by this image have a general pattern similar to that of the coe�cient

placement to the target, however, it still falls very short when looking at the details.

This solution �ts into the entropy interval of 1.14-2.28 and luminosity of 36-72. Both

entropy and luminosity of this best image falls short of the best solution with an

entropy interval of 2.28-3.42 and luminosity 180-216.

The heat map concentrates on the same spot as the GP experiment with sparse

runs producing solutions with the same entropy interval.
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Figure 4.36: Best Fitness

The average �tness in Figure 4.36 is equivalent to that of the third subpopulation.

Similar with all other island-model experiments, the spikes in �tness are due to fre-

quent immigration and emigration. There is the most evolution happening within the

�rst 10 generations before slowly evolving until generation 75 where the third sub-

population immigrates worse solutions and most likely emigrated its best solutions.

It grabs its bearings at generation 105 before slowly evolving until generation 190.

The best �tness quickly improves within the �rst 20 generations before plateauing

until roughly generation 90. Afterwards it makes improvements with some stalls un-

til generation 120 before plateauing with small increases until generation 195 before

improving one last time.
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4.2.5 MAP-Elites Results: Barcode

Table 4.13: Behaviour Intervals

Behaviour

Name

Total

Intervals
#1 #2 #3 #4 #5 #6 #7

Entropy 7
0

1.139

1.14

2.279

2.28

3.419

3.42

4.559

4.56

5.699

5.70

6.839

6.84

8

Mean Luminosity 7
0

35.9

36

71.9

72

107.9

108

143.9

144

179.9

180

215.9

216

255

This experiment does not involve the large dimension hypercube and opts in to a

2-dimensional layout. In Table 4.13 the entropy is calculated using the grey values of

the entire image through the use of bit shifting the colour channels and luminosity is

the average colour between the three channels. Since there are only two behaviours

this will result in 49 total possible individuals within the MAP.
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Table 4.14: ME Image Results using Target Figure 4.17

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.37: Best Solution Figure 4.38: Best Solution Coe�cients
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Figure 4.39: Best MAP using Target Figure 4.17

The best solutions in Table 4.14 typically have some stripe pattern within the

image, however, very few resemble the barcode. Solutions 3 and 12 are the closest

where solution 12 is very similar to a barcode and solution 3 is horizontal, but still

resembles a barcode. The best solution found in Figure 4.37 is the best in �tness,

however visibly, it would be argued as being worse than solutions 12 and 21. The

coe�cient image does show a similarity in the pattern of pixels for the highest valued

coe�cients in comparison to Figure 4.19.

Figure 4.39 resembles the MAP con�guration which houses the best solution in

Figure 4.37. It is observed that images with extremely high entropy in colour are not

evolved which supports the evolution for a barcode target image. Visibly, there is a

very close solution to the target image in the cell with a entropy of 3.42 and a colour
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Figure 4.40: ME Fitness using Target Figure 4.17

average, or luminosity, of 144.

The plot in Figure 4.40 averages the �tnesses of the entire MAP and the best

individuals in the runs at each generation. The bulk of the evolution is roughly

done from generations 0 to generation 25 before slowly evolving until a perceived

convergence at generation 165. The best �tness improves the most within the �rst 15

generations before going on long plateaus with incremental improvements.
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4.2.6 ME Results: Cartoon Smiling Face

This experiment utilizes the behaviour and interval set as Table 4.13.

Table 4.15: ME Image Results using Target Figure 4.17

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30
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Figure 4.41: Best Solution Figure 4.42: Best Solution Coe�cients

Figure 4.43: Best MAP using Target Figure 4.18

The best evolved solutions don't seem to have much in common with one another,

some images seem to try and evolve the circle of the emoticon face while few others

seem to try and evolve the smile. The rest of the evolved images are not seen as

having evolved anything close otherwise. The best image in Figure 4.41 seems to be

attempting to evolve the smile and the bottom of the face. The coe�cients seem to

be a little more expansive in comparison to the target which tends to be a little more
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Figure 4.44: ME Fitness using Target Figure 4.18

compact in the positions of the pixels.

The �tness plot in Figure 4.44 depicts the average �tness of the MAP over the

30 runs as well as the best �tness. The �tness improves greatly until generation 5

for both the average and the best. The best �tness improves slightly in the �rst 5

generations before �nding nothing better until generation 135 where it then improves

very sharply before plateauing until the end of the run.
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4.2.7 DME Results: Barcode

Table 4.16: Wavelet DME Sub-MAPs

Sub-MAP 1 Sub-MAP 2 Sub-MAP 3

Behaviour 1 Entropy Entropy Entropy

Behaviour 2 Luminosity Luminosity Luminosity

The DME con�guration for this experiment utilizes the same behaviours for each

island. This is intended to be equivalent to the ME algorithm in this experiment

utilizing two behaviours as well. The total individuals remains the same, 147, since the

number of intervals are the same. Utilizing the same behaviours, in this experiment

DME produces 3 times as many individuals as ME since there are 3 islands.
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Table 4.17: DME Image Results using Target Figure 4.17

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.45: Best Solution Figure 4.46: Best Solution Coe�cient
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(a) Entropy and Luminosity Island MAP 1 (b) Entropy and Luminosity Island MAP 2

(c) Entropy and Luminosity Island MAP 3

Figure 4.47: Wavelet DME Visualization

The best solutions from the runs have all evolved solutions which are visibly seen

as very poor in Table 4.17. Bar solution 13 which does resemble a barcode the other

solutions are mostly �at coloured images with slightly di�erent pixel colours at the

top, gradients, or two shaded images. The best solution in Figure 4.45 is an image

that is a �at colour with di�erent colours at the top of the image.

Figure 4.47 is the con�guration from run 30 which houses the best solution in

Figure 4.45. The �rst and third submaps do have solutions evolved which resemble

barcodes or things which are close to barcodes. In the �rst con�guration solutions in

the cells of entropy 3.42 and colour average 72 and entropy 3.42 and colour average
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Figure 4.48: DME Fitness

255 closely resemble barcodes. In the third con�guration the cell with entropy 5.7

and colour average 144 and entropy 3.42 and colour average 255 resemble it as well.

Although the former solution in the third con�guration is very signi�cantly di�erent

and loosely resembling the target in comparison to the latter.

Figure 4.48 includes the average �tness, the best of the sub-maps as well as the

best �tness on each generation averaged over 30 runs. The average �tness continues

to be very jagged with a slight downward trajectory. The submaps all have a similar

growth curve and �tness values exchanging positions with one another. The best

�tness improves rapidly within the �rst 10 generations and in generations 110-115

while the rest are fairly �at.
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4.2.8 DME Results: Cartoon Smiling Face

This experiment utilizes the same con�guration and behaviour set as Table 4.16.

Table 4.18: DME Image Results using Target Figure 4.18

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30
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Figure 4.49: Best Solution Figure 4.50: Best Solution Coe�cient

(a) Entropy and Luminosity Island MAP 1 (b) Entropy and Luminosity Island MAP 2

(c) Entropy and Luminosity Island MAP 3

Figure 4.51: Wavelet DME Visualization

Some of the best solutions evolved do evolve some aspects of the di�cult target

image of the cartoon smiling face. In multiple solutions the circle being as the outline

of the face. However, there are still many runs which produce nonsensical solutions

which don't seem to have aspects similar to the target image. There are some very
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Figure 4.52: DME Fitness

interesting solutions that have been evolved like in run 8 and 19. The best solution

evolves a circle within an outlined circle which is similar to that of the target image.

Each sub-map con�guration has solutions which resemble the circles of the target

image. Most of the solutions evolved within the MAP are still quite poor visually in

comparison to the target.

Figure 4.52 shows very fast evolution for the submaps in the �rst 5 generations

before slowly improving its �tness until a perceived convergence at generation 180.

The average �tness maintains the same as the with the barcode target image, a higher

�tness while being very jagged. The best �tness improves slightly within the �rst 15

generations before improving greatly in generations 30-35. Afterwards it stays �at

�nding no better values.
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4.2.9 Discussion

Figure 4.53: Barcode Fitness Comparison

GP and island-model evolution outperform both ME and DME. Around gener-

ation 150 GP and island-model appear to come to roughly the same �tness value.

DME outperforms ME by a much wider margin than the previous two competitors

despite ME being slightly ahead during initialization. The margin between the vanilla

variants in comparison to the MAP variants is not widely signi�cant but still quite

wide which is opposite to the visual deductions made in each of the algorithms results.

ME seems to improve in short bursts while DME improves in very large chunks.

Figure 4.54 is the behaviour box plot for the luminosity, or colour average. Figure

4.55 is the behaviour box plot for entropy. These behaviours were calculated from the

best solutions from the 30 runs for all the algorithms. Vanilla GP and island-model

optimized the same types of solutions for the majority of runs since outliers are not
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Figure 4.54: Barcode Luminosity Box Plot Figure 4.55: Barcode Entropy Box Plot

shown in these box plots. Whereas ME and DME had very di�erent entropies and

luminosities.

Figure 4.56: Barcode Tree Depth Box Plot

Figure 4.56 shows a box plot with the depths of the best �nal solutions obtained

from each of the algorithms using the 30 runs. The median of vanilla GP and island-

model �nal solution depths hover around 12-14 where ME and DME hover around 4-6.
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Figure 4.57: Barcode Critical Di�erence

Vanilla GP has quite a wide range from the �rst to third quartile going from roughly

5-16, island-model approximately 8-15, ME 1-9, and DME 4-7. On average, ME and

DME are producing much smaller trees in comparison to GP and island-model.

All following statistics have been formulated within R utilizing the Friedman test

and Sha�er correction using a threshold of p < 0.05, with the null hypothesis:

H0 : θGP = θIM = θME = θDME

The algorithms ran on the experiment using the barcode as a target image in Figure

4.57 are statistically signi�cant due to the lack of a bar bisecting multiple algorithms.

Therefore, the null hypothesis is rejected and the medians of the algorithms are

not equal to one another. The same deductions made through the �tness plot are

equivalent here due to the usage of the �tness values where GP ranks �rst, followed

by island-model then DME and ME. One interesting observation is that GP and IM

are ranked quite close to each other whereas DME is closer to IM than it is to ME.
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Figure 4.58: Cartoon Smiling Face Fitness Comparison

The �tness comparison in Figure 4.58 compares the best �tness from each al-

gorithm run using the cartoon smiling face target image. With this speci�c basic

language and implementation of utilizing haar wavelet transformations the ME vari-

ants outperform the vanilla variants with DME performing the best then ME, island-

model, and �nally GP. From the start the ME variants have better �tness values in

comparison to the vanilla variants. IM and GP remain fairly close throughout all the

generations while DME and ME have an interesting relationship. ME quickly �nds a

good �tness which persists until the end of the run while DME takes more than half

of the generations before slightly outperforming ME. IM outperforms GP for almost

two thirds of the runtime before having very close �tness to it swapping back and

forth.

Figures 4.59 and 4.60 are the behaviour box plots for entropy and luminosity using
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Figure 4.59: Luminosity Box Plot Figure 4.60: Entropy Box Plot

the cartoon smiling face target image. The same pattern occurs where vanilla GP

and island-model evolve to the same small range of behaviours where ME and DME

are much more diverse just using the best solutions. Using this target image, ME

produced more solutions with a more varied luminosity than DME where the barcode

was the opposite.

Figure 4.61: Cartoon Smiling Face Tree Depth Box Plot



CHAPTER 4. PROCEDURAL TEXTURE EXPERIMENTS 98

Figure 4.62: Cartoon Smiling Face Critical Di�erence

Figure 4.61 is the box plot of the algorithm's best solution's tree depth using

the cartoon smiling face target image. Vanilla GP and island-model have medians

hovering around 10-11 where ME and DME are roughly between 4 and 5. Vanilla GP

continues to have the larger range having the �rst quartile minimum be around 3 and

it's third quartile max at 16. Island-model has a higher minimum �rst quartile around

5 and a lower maximum third quartile around 14. ME and DME are very similar here

both having maximum third quartiles around 9 and minimum �rst quartiles around

2.

All following statistics have been formulated within R utilizing the Friedman test

and Sha�er correction using a threshold of p < 0.05, with the null hypothesis:

H0 : θGP = θIM = θME = θDME

The algorithms ran on the experiment utilizing the cartoon smiling face target image

are statistically signi�cant due to the lack of a bar bisecting multiple algorithms.

Therefore, the null hypothesis is rejected and the medians of the algorithms are not

equal to one another. The rankings on the critical di�erence diagram are equivalent

to that of the �tness comparison graph where DME comes out on top, ME in second,

GP in third, and IM trailing behind in the fourth rank. Each of these ranks are fairly
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cut and dry given the locations of the algorithms relative to the rank positions. DME

and ME are slightly closer as observed in comparison to GP and island-model.

When using this speci�c �tness function and GP con�guration, a more complicated

target image seems to produce more valuable results than a simple target image on

vanilla GP and island-model algorithms. ME and DME both provided very interesting

and much more potentially similar solutions for both sets of target images. The MAP

visualizations add more on top of the best solutions from the runs being visually more

valuable.

4.3 Wavelet SSIM Experiment

This experiment is a comparison between two similar �tness functions, wavelet

transformations and SSIM. These two functions aim to identify main aspects of the

image rather than speci�c details. Wavelet focusing on coe�cients for each pixel, and

SSIM calculating aspects of each window across an entire image to come up with the

score. The behaviours in the MAP-Elite variant algorithms will be the same as the

wavelet experiment. Figure 4.63 will be the target image for this experiment. The ME

algorithm will be utilizing the same behaviours, behaviour interval total, and interval

values as Table 4.8. The DME algorithm will also be following the previous wavelet

experiment with a con�guration of Table 4.16 This rough drawing of a sunset will

serve as a somewhat di�cult target to evolve for in order to compare the two �tness

functions. Figure 4.64 is what the �tness function derived as the most important

pixel locations for the coe�cients of this sunset target image.

Figure 4.63: Target Image Figure 4.64: Sunset Coe�cients



CHAPTER 4. PROCEDURAL TEXTURE EXPERIMENTS 100

Fitness Function 1 Haar Wavelet Coe�cient Comparison

Ranking x highest value

coe�cients and comparing

the respective indice's rank.

Fitness Function 2 SSIM
Calculating the SSIM over

every window in the image.

Table 4.19: Fitness Function and Behaviours

Table 4.19 highlights both �tness functions that are being utilized in this exper-

iment. As previously mentioned, SSIM will be utilizing 8x8 pixel windows over the

entire image of size 128x128 pixels in a sliding fashion. Once every window's SSIM

value has been calculated an average of this index will be made which will result in

the �tness value.
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4.3.1 Vanilla GP Results: Wavelet

Table 4.20: GP Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.65: Best Solution Figure 4.66: Best Solution Coe�cient



CHAPTER 4. PROCEDURAL TEXTURE EXPERIMENTS 102

Figure 4.67: Entropy Luminosity Heat Map

Table 4.20 represents the best solutions from the 30 runs using the wavelet �tness

on the sunset target image. The majority of solutions evolved a solid coloured image

with some speckles of pixels or lines lightly scattered throughout. There are some so-

lutions where there are interesting patterns instead of a �at background or interesting

geometry or patterns made instead of seemingly random pixels placed throughout.

The best solution in Figure 4.65 shows a very interesting pattern on the bottom

right half of the image. A line bisecting the middle of the image is also seen which

can be interpreted as a horizon line except in the y dimension. When comparing

behaviours, the target image occupies the cell with entropy 2.28-3.42 and luminosity

108-144. This solution occupies entropy 1.14-2.28 and luminosity 0-36. In terms of

entropy it is quite close, however falls �at in entropy showing it values the luminosity

much less with wavelet �tness. The coe�cients it chose as the most important are
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also quite similar in pattern with the sectioning however the target's coe�cients are

much more sparse than this solution.

The diversity of the best solutions generated in Figure 4.67 show a majority of

evolution in the 0-1.14 entropy and 0-36 luminosity without much exploration from

there. Marginal amounts of solutions are found 1 entropy interval above with a

luminosity of 0-36 and 2 luminosity intervals further at the 0-1.14 entropy.

Figure 4.68: GP Fitness

The average �tness in Figure 4.68 shows a very smooth evolution throughout the

generations. Most of the evolution is done in the �rst 30 generations before slowing

down until generation 170. Past generation 170 it is seen that the �tness only makes

extremely marginal improvements, almost if not already at convergence. The best

�tness has a tumultuous improvement from generations 10 to 70 before being mostly

�at until generation 150 before it makes another signi�cant improvement.
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4.3.2 Vanilla GP Results: SSIM

Table 4.21: GP Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.69: Best Solution
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Figure 4.70: Entropy Luminosity Heat Map

The best solutions from 30 runs utilizing SSIM as the �tness function in Table

4.21 all evolve to one general type of solution. This is the horizon line separating the

sun and sky of the target image. Some of these results got closer having orange and

red colours, and others had gradients, but overall, none close to the target image.

The best solution in Figure 4.69 has a solid split of colours as the sky and sea

with a slight blur on the horizon line. When comparing behaviours, the target image

has an entropy interval of 2.28-3.42 and a luminosity of 108-144. This best solution

has an entropy of 0-1.14 and a luminosity of 144-180. It is relatively close in terms

of luminosity but fairly far from entropy.

Figure 4.70 is the diversity heat map for GP using SSIM. There is a decent amount

of diversity in the cells shown. GP has found low entropy and mid-values of luminosity

to be the best over the 30 runs as seen from the cluster of cells.
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Figure 4.71: GP Fitness

The �tness plot in Figure 4.71 shows the majority of evolution in the average

being done in the �rst 20 generations of the runs. After these 20 generations it slowly

evolves with some plateaus until generation 185 where a convergence seems to happen.

The best �tness is found within the �rst 15 generations.
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4.3.3 Island-Model Results: Wavelet

Table 4.22: IM Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.72: Best Solution Figure 4.73: Best Solution Coe�cient
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Figure 4.74: Entropy Luminosity Heat Map

The majority of best solutions presented in Table 4.22 consist of a pure black

image with some arbitrary red pixels, or some red pixels attempting to create a line,

or a combination of the two. There are 5 solutions which are notably di�erent than

the aforementioned pattern, runs 9, 15, 16, 19, and 30. Runs 9, 15, and 30 seem to

try and evolve patterns which can be interpreted as an attempt at the clouds and

their re�ections. Run 16 has some blue protruding from the side of the image and 19

opts for a blue background.

The best run in Figure 4.72 is one of the more interesting solutions which has the

diagonal stripes from run 15 as well as the interesting patterns from run 9. On the

behaviour interval side, it has an entropy of 0-1.14 and a luminosity of 36-72 which

is a far cry from the target with an entropy of 2.28-3.42 and luminosity of 108-144.

The coe�cients used for this solution are much more organized and clumped in a
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systematic manner in comparison to the target.

The diversity heat map in Figure 4.74 shows a lack of diversity in the exact same

format as with vanilla GP in Figure 4.67.

Figure 4.75: IM Fitness

The average �tness and subpopulation's best �tness in Figure 4.75 are very close

to each other improving at a similar rate. It is seen that subpop 3 performs better

in the �rst 40 generations before being very similar in �tness to the rest. The best

�tness improves in chunks from generations 0-10, 25-45, 130-135 and 190-200. The

greatest improvement being at the beginning 10 generations.
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4.3.4 Island-Model Results: SSIM

Table 4.23: IM Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.76: Best Solution
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Figure 4.77: Entropy Luminosity Heat Map

The best solutions in Table 4.23 mostly evolve to a blurred horizon line with a

slight gradient or some �at images. There are some interesting variations on this with

sparse pixels around the horizon area making the gradient less clean.

The best solution from the 30 runs in Figure 4.76 opts in favour of the blurred

horizon line with a slight gradient on it upwards as well as on the bottom.

The behaviour heat map in Figure 4.77 re�ects the same general �ndings as the

behaviour heat map in Figure 4.70 by having low entropy, however, the luminosity

ranges much more which may be in part due to the increase of solutions generated

by island-model.

The third subpopulation identi�ed in the �tness plot in Figure 4.78 outperforms

the other subpopulations. The scale is not by much, but visually it is quite apparent.

Subpopulation 1 and 2 seem to improve in a similar way with the second subpopula-
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Figure 4.78: IM Fitness

tion doing better. Subpopulation 3 quickly evolves quicker until generation 60 before

slowing down onward for the rest of the generations. All subpopulations are seen

with some jaggedness due to the immigration and emigration, the most intense being

the third subpopulation due to the di�erence in �tness. The average �tness lies on

the lower end due to the intense margin between the third subpopulation and the

rest. The best �tness improves very sharply in two spots, the �rst 5 generations and

around the 50th generation. Otherwise, it makes marginal improvements while being

mostly �at.

4.3.5 MAP-Elite Results: Wavelet

The MAP con�gurations remain the same as the previous two experiments in

Table 4.13.
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Table 4.24: ME Image Results using Target Figure 4.63

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.79: Best Solution Figure 4.80: Best Solution Coe�cient
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Figure 4.81: MAP Visualization

The compilation of best solutions from the 30 runs in Table 4.24 shows a wide

variety of solutions. There are a few solutions that have identi�ed that there is a line

down the middle representing horizon line. Some of these runs correctly identi�ed it

as being horizontal while others opted for a vertical line instead. On top of this there

is interesting geometry and patterns among the majority of solutions, although, none

being very accurate visually.

Figure 4.79 illustrates the �ttest solution out of the 30 runs. There is a semblance

of a horizon line which then begins to gradient and dissolve into a curve. In terms

of the behaviour comparison, the �ttest solution sits in entropy 2.28-3.42 while the

target is also in 2.28-3.42 and the luminosity is in 0-36 while the target is in 108-144.

The entropy has successfully been reached to the same interval while the luminosity

continues to be far from the target. The coe�cient is much more condensed in
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Figure 4.82: GP Fitness

comparison to the target's coe�cients but hints at similar patterns.

The MAP generated from this run in Figure 4.81 illustrates a visualization of

the said MAP. There are very interesting traits between the luminosity and entropy

cells. There are four general types of solution in each corner of the MAP with low

luminosity and entropy, low luminosity but higher entropy, high luminosity and lower

entropy, and high luminosity and entropy. Each of these categories contain certain

geometries which slowly change as the cell values change.

The average �tness in Figure 4.82 shows a short but quick evolution. Both the

average and best �tness improve quickly over 5 generations before slowly improving

until generation 90 where it then improves very slightly for the rest of the generations

almost converging. The best �tness converges very early, around the 30th generation.

It improves sharply in the �rst 5 generations and slightly around generation 25-30.
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4.3.6 MAP-Elite Results: SSIM

The MAP con�gurations remain the same as the previous two experiments in

Table 4.13.

Table 4.25: ME Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30
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Figure 4.83: Best Solution

Figure 4.84: SSIM ME Visualization

The 30 runs from ME provide quite a diverse set of best solutions in Table 4.25.

There are quite a few solutions opting in for the horizon line, however, with many

more variations on it. For example, run 2, 7, 13, 17, and 18 modify the horizon line

itself, have an interesting cone gradient on them, or have curious geometry on the

image. Other images have taken a creative liberty on their own providing completely

di�erent designs like run 9, 14, and 27.

The best solution from the 30 runs in Figure 4.83 evolves a blurred horizon line. It

has the behaviour intervals of entropy 1.14-2.28 and luminosity 108-144. The target
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Figure 4.85: ME Fitness

image resides in entropy 2.28-3.42 and luminosity 108-44. It successfully matched the

luminosity interval but was o� on the entropy. The resulting MAP is in Figure 4.84

where the majority of solutions follow the variations on the horizon line. There is one

very interesting solution in the cell with colour average 144 and entropy 5.7 where it

looks like the blue down the middle is an attempt at the sun.

The �tness quickly improves over the �rst 5 generation in Figure 4.85, however,

from initialization it is drastic. Afterwards it continues to slowly improve for the

next 100 generations before slowing down further. The best �tness slightly improves

around generation 5, 40, and 110 before converging.

4.3.7 DME Results: Wavelet

This experiment utilizes the same con�guration and behaviour set as Table 4.16.
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Table 4.26: DME Image Results using Target Figure 4.63

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30

Figure 4.86: Best Solution Figure 4.87: Best Solution Coe�cient
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(a) Entropy and Luminosity Island MAP 1 (b) Entropy and Luminosity Island MAP 2

(c) Entropy and Luminosity Island MAP 3

Figure 4.88: Wavelet DME Visualization

The best solutions in Table 4.26 produces a wide range of solutions. Some of them

produce horizon lines, others opt for a vertical line, and some interesting geometry and

patterns. Runs 22 and 29 standing out the most having horizon lines with geometry

overlaying or protruding from the middle similar to that of a sun albeit stretch the

description by quite a margin.

The best solution in Figure 4.86 showing a horizon line with some various gra-

dients and stripes throughout. The behaviours giving an entropy of 3.42-4.56 and a

luminosity of 72-108 overshooting the entropy by one interval and undershooting the

luminosity by one as well. The coe�cients are much more condensed than that of the
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Figure 4.89: DME Fitness

target image although being in similar places along the top and left.

The sub-map con�guration in Figure 4.88 shows other solutions which seem to

be closer to the target than the best solution. There are numerous solutions spread

throughout the con�guration which show a horizon and an oval-like shape coming

through it on both sides which indicates similarity to the sun and its shadow.

Figure 4.89 shows an improvement in submap �tness very quickly from generations

0 to 15 before slowing down slightly until generation 70. From generation 70 onward

the �tness improvement is very slight before seemingly coming to a halt at generation

195. The best �tness only having marginal improvements until, roughly, the 40th

generation before converging.
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4.3.8 DME Results: SSIM

This experiment utilizes the same con�guration and behaviour set as Table 4.16.

Table 4.27: DME Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30
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Figure 4.90: Best Solution

(a) Entropy and Luminosity Island MAP 1 (b) Entropy and Luminosity Island MAP 2

(c) Entropy and Luminosity Island MAP 3

Figure 4.91: SSIM DME Visualization

The 30 runs in Table 4.27 also show the majority of horizon lines with slight

variations, however, a good number of runs seemed to favour the orange and green

colours for the top and bottomm. There are interesting details on the solutions for

runs 15, 23, and 24.
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Figure 4.92: DME Fitness

The best solution of the 30 runs in Figure 4.90 does not opt in to the common

green and orange split, but for a blue and purple with a �at horizon line. When

comparing behaviours, the target has entropy 2.28-3.42 and luminosity 108-144 where

this solution has entropy 0-1.14 and luminosity 108-144. The entropy was quite o�

while the luminosity interval is the same. The resulting MAP con�guration from

this run shows the common green orange solution split with a few other interesting

outcomes which seem to occupy the higher entropy slots.

The �tness plot in Figure 4.92 highlights the three sub-maps evolving in a similar

pattern with sub-map 3 performing the best out of all of them. Most of the evolution

was done by generation 50 before slowing down. Sub-maps 1 and 2 had more �tness

improvement until generation 175 meanwhile sub-map 3 meandered until the end.

The average �tness in this case is a very smooth curve, unlike the others, making
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large improvements in the �rst 30 generations before slowly improving until the end.

The best �tness improves in two areas, the �rst 30 generations and from generations

50-65 before converging.

4.3.9 Discussion: Wavelet

Figure 4.93: Wavelet Fitness Comparison

The �tness comparison in Figure 4.93 shows a large improvement for all the algo-

rithms in the beginning. ME and DME coming to convergence the quickest, around

generations 30 and 45 respectively. On the other hand, GP and IM slow down, but

don't seemingly converge until much later. IM slows down around generation 50, and

GP around generation 70. Both of them are mostly �at afterwards bar two areas for

IM and one for GP. IM makes more improvements around generations 130 and 195.

As for GP, it makes one last large improvement around 160, and another small one
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Figure 4.94: Luminosity Box Plot Figure 4.95: Entropy Box Plot

around generation 180.

The behaviour box plots in Figures 4.95 and 4.94 have very low medians for all

algorithms in both entropy and luminosity. Vanilla GP and island-model do not

have any runs within the 75th percentile which go further than the lowest values.

Meanwhile ME and DME have very expansive interquartile ranges as well as very

large whiskers.
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Figure 4.96: Tree Depth Plot

The tree plot in Figure 4.96 shows vanilla GP and island-model having close

median depth of trees for the best solutions and the same for DME and ME. The

single population variants have larger interquartile ranges as well as the whiskers

going further than their multi-population counterparts.
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Figure 4.97: Critical Di�erence Diagram using best solutions from each algorithm

All following statistics have been formulated within R utilizing the Friedman test

and Sha�er correction using a threshold of p < 0.05, with the null hypothesis:

H0 : θGP = θIM = θME = θDME

The four algorithms in Figure ?? are statistically signi�cant due to the lack of black

bar intersecting them. Therefore, there is enough evidence to state that the medians

between the four algorithms are not the same. GP, DME, and ME are ranked higher

than IM with GP ranked the highest, however, quite low and close to DME.



CHAPTER 4. PROCEDURAL TEXTURE EXPERIMENTS 129

4.3.10 Discussion: SSIM

Figure 4.98: Wavelet Fitness Comparison

Figure 4.98 shows DME performing the best with GP and ME somewhat overlap-

ping each other with IM lagging behind. GP quickly evolves and �nds its best �tness

within 15 generations. DME has a staircase like improvement for its best �tness until

generation 60. ME improves in 3 spurts, around generation 6, 40, and 110 before

being very close to GP. As for IM, it improves with great strides near generations 10

and 55 before sparsely making incremental improvements.
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Figure 4.99: Luminosity Box Plot Figure 4.100: Entropy Box Plot

The behaviour box plots in Figures 4.99 and 4.100 are quite competitive overall.

Figure 4.99 being the more competitive one with island-model having the highest me-

dian luminance which is closer to the target than that of vanilla GP and DME which

have quite close medians. ME having the lowest median out of them all. The whiskers

showing ME and DME having the highest maximums in the 75th percentile. The en-

tropy behaviour plot in Figure 4.99 shows vanilla GP, ME, and DME with very low

median entropies while island-model once again having the highest median. Vanilla

GP and island-model's whisker lagging more than with luminosity in comparison to

ME and DME who, once again, have the largest whiskers.
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Figure 4.101: Tree Depth Plot

The tree depth plot in Figure 4.101 shows the median tree depths being quite

close to one another. ME and DME producing the smallest trees having the smallest

interquartile range and whisker, however, island-model is also creating generally small

trees especially in comparison to vanilla GP.
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Figure 4.102: Critical Di�erence Diagram using best solutions from each algorithm

All following statistics have been formulated within R utilizing the Friedman test

and Sha�er correction, with the null hypothesis:

H0 : θGP = θIM = θME = θDME

Due to the lack of a line intersecting the algorithms they are statistically signi�cant.

This means that the hypothesis is rejected and the medians of the algorithms are

di�erent from one another. A similar pattern to the wavelet CD in Figure ??, is seen

except DME and GP have swapped places. On top of this, it is seen that DME is

ranked higher than GP and closer to the 1 rank where GP is slightly lower than the

2 rank.

4.4 Wavelet SSIM CHISTQ Experiment

This experiment is di�erent in comparison to the previous experiments since it

will focus on combining the di�erent �tness functions into an island con�guration.

This will result in the usage of only island-model evolution and DME since multiple
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�tness functions are required. The behaviours used in this experiment will be the

same once again as in Table 4.8.

Fitness Function 1
Haar Wavelet

Coe�cient Comparison.

Ranking x highest value

coe�cients and comparing

the respective indice's rank.

Fitness Function 2 SSIM
Calculating the SSIM over

every window in the image.

Fitness Function 3 CHISTQ
Quantize the colours

and calculate distance and similarity.

Table 4.28: Fitness Function and Behaviours

4.4.1 Island-Model Results

In Appendix A Section A.1 there are the best solutions from each subpopulation in

Tables A.1, A.2, and A.3. Since each of the islands utilize a di�erent �tness function

with their own scales as well as calculating �tness in completely di�erent ways they

will not be put into a direct table comparing one another.

(a) CHISTQ Best (b) SSIM Best (c) Wavelet Best

Figure 4.103: Best Subpopulation Solutions
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Figure 4.104: Entropy Luminosity Heat Map

Figure 4.103 shows the best solution using each �tness out of the 30 runs. The

�rst subpopulation utilized the CHISTQ �tness, the second using SSIM, and the

third using wavelet. SSIM and CHISTQ seem to both have evolved gradients in their

respective runs while wavelet came up with a triangle protruding from the middle.

The two gradients also have pixels littered throughout the image, CHISTQ more

densely so than SSIM. When comparing behaviour intervals, Van Gogh resides in

entropy 4.56-5.70 and luminosity 108-144. In comparison, the best from CHISTQ is

in 2.28-3.42 and 36-72, SSIM's best is in 1.14-2.28 and 108-144, and wavelet's best

in 1.14-2.28 and 108-144. Out of the three, CHISTQ's best entropy interval is the

closest to the target image, however, wavelet and SSIM's best produce a matching

luminosity interval.

The diversity heat map in Figure 4.104 shows the lack of diversity throughout by
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having the solutions all with an entropy below 1.14 and a luminosity below 36.

Figure 4.105: IM Fitness

The �tness plot in Figure 4.105 is log scaled due to the multiple �tness values

being on very di�erent scales. CHISTQ and SSIM are on much smaller scales where

wavelet can easily go into the hundreds or even thousands. The subpopulations are

seen improving slightly in the beginning before coming to a seeming convergence.

4.4.2 DME Results

This experiment utilizes the same con�guration and behaviour set as Table 4.16.
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(a) CHISTQ Sub-MAP (b) SSIM Sub-MAP

(c) Wavelet Sub-MAP

Figure 4.107: Best Overall Sub-MAP con�guration

(a) CHISTQ Best (b) SSIM Best (c) Wavelet Best

Figure 4.106: Best Subpopulation Solutions

In the best solutions from each sub-map in Figure 4.106 it seems they all have the
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same general archetype of multiple colour gradients. SSIM takes a slight change of

direction by also splitting the image into 4 squares. Van Gogh's behaviour intervals

are entropy 4.56-5.70 and luminosity 108-144. When comparing DME's best to it

CHISTQ has an entropy of 4.56-5.70 and luminosity 144-180, SSIM with an entropy

of 3.42-4.56 and luminosity 108-144, and wavelet with an entropy of 3.42-4.56 and

luminosity of 144-180. CHISTQ manages to �nd a solution that matches the entropy

interval of the target, while SSIM and wavelet are close. SSIM manages to match the

interval for luminosity where CHISTQ and wavelet are also one interval o�.

Figure 4.107 represents the MAP con�guration when calculating the average �t-

ness over the 3 sub-MAPs. There are many solutions throughout with lines down

the middle which can be attributed to the frequent immigration and emigration of

individuals. Otherwise, CHISTQ's sub-MAP has the most interesting geometry with

wavelet then producing the next most visually intriguing solutions while SSIM's so-

lutions tend to look quite plain.
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Figure 4.108: DME Fitness

The �tness plot in Figure 4.108 is log scaled like in IM in for the same scaling

reasons. shows a very quick improvement within 5 generations in the wavelet submap.

The CHISTQ submap also makes a large improvement within the �rst 10 generations.

4.5 Discussion

The �tness comparison in Figure 4.109 averages the three di�erent �tness values

for comparison to provide a more encompassing view on the data. This is because each

subpopulation/submap uses its own �tness functions which work di�erently. DME

far outperforms IM due to the di�erence that in wavelet �tness.

The behaviour plots in Figure 4.110 indicate a similar luminosity throughout the

runs. Island-model tended to evolve with a higher luminosity than DME with the
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Figure 4.109: Fitness Comparison

median line hovering closer to 75 and DME around 50. Entropy paints a slightly

di�erent story with the interquartile range of DME being much larger than that of

island-model. However the maximum of the third quartiles are quite close to one

another as well as the medians.
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(a) Luminosity Box Plot (b) Entropy Box Plot

Figure 4.110: Entropy and Luminosity Behaviour Box Plots

Figure 4.111: Tree Depth Box Plot

Figure 4.111 illustrates the di�erence in tree depth between island-model and

DME. The maximum of the third quartile is equivalent to the upper quartile of the
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interquartile range with the median being equivalent to the lower quartile of the

interquartile range. The median of DME is very close to that of the lowest value of

the �rst quartile of island-model where island-model's median is close to double of

DME.

4.6 Comments

The primary focus of algorithm assessment is the quality and diversity. Quality

is strictly in terms of the �tness comparison. Diversity is in terms of the number of

solutions produced at the end of the run.

IM had the best end-of-run �tness in the direct match experiment, GP performed

the best in the barcode wavelet experiment and the sunset wavelet experiment, ME

outperformed in the wavelet cartoon face, and DME outperformed in SSIM and

CHISTQ SSIM wavelet experiment.

Generally speaking, the �tness values are quite competitive, disregarding the

CHISTQ SSIM wavelet experiment. Albeit, the di�erences are statistically signi�-

cant from one another, bar the direct match experiment where the ME variants are

only signi�cantly di�erent than GP and IM.

Diversity is more clear cut than the quality of solutions. GP produces one solution

at the end of the run. IM produces as many solutions as there are islands, in the

case of this research, 3 solutions. ME produces at most 343 solutions in the direct

match experiment, and at most 49 in all other experiments. DME produces at most

147 individuals at the end of the run.

GP being far behind the rest when it comes to diversity. IM can provide some

diversity but cannot be compared to the ME variants. ME depends on the number

of behaviours used, however, still a large amount of individuals. DME produces less

individuals than ME when the behaviours scale, however, when comparing equivalent
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behaviours DME is more diverse than ME.

When comparing ME to DME the visualization capability is proved to be very

nice in comparison to an image dump into a folder for high dimensional ME. Having

the MAPs be generated through post-processing saves time and provides an easily

distributable and understandable format when dealing with the results of a run. When

DME and ME are both 2 dimensions resulting in two cases of visualization, DME is

to ME what is island-model is to vanilla GP.

The textures evolved are very poor when observed visually in comparison to the

target images. This can be attributed to the extremely basic GP language which only

utilizes simple mathematic functions. Complex math functions as well as geometric

functions would be very bene�cial but at a high computational cost.

DME's visualization and islands were helpful when observing solutions. On top of

this, when using a basic 2 behaviour setup the amount of solutions at an arms reach

provided many more interesting solutions in comparison to the same 2 behaviour

setup for ME.

DME, on average, produced the smallest trees bar the �rst experiment. Even

when it didn't produce the smallest trees, it was very close behind ME, the opposite

is true for ME when DME would produce smaller trees than it. Smaller trees result

in faster run time due to the need to evaluate less than a larger tree. There is also

the argument that a larger tree may not produce better solutions due to bloating and

sub-trees not producing anything useful.

DME still su�ers from the same problems that island-model su�ers which is pa-

rameter optimization. ME already has many speci�c parameters to itself, and on top

of that DME requires the same island parameters which are in island-model. This

results in numerous parameters which can be optimized for. For the sake of time con-

straints, parameter optimization was not considered, and a simple GP language was

used due to the amount of time it would take to run a complex language. Similarly
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to island-model there is only a possibility of super linear speed-up due to the nature

of being problem speci�c.
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Conclusion

The goals of this thesis are: to use multiple behaviours without exponential in-

crease in the total potential individuals; to compare the diversity and quality of

solutions of MAP-Elites to the baseline runs; discover a practical strategy to exam-

ine multiple solutions; and to test DME on an evolutionary design problem. The

proposed DME system successfully used sets of 2 and 3 behaviours with only linear

growth in total potential solutions when used on procedural texture problems. While

MAP-Elites provides an exponential growth of total potential solutions, this linear

growth of DME greater reduction of potential solutions compared to the MAP-Elites

hypercube representation of total potential solutions. MAP-Elites was compared to

the baselines of vanilla GP and island-model in every experiment, showing a much

more diverse solutions with competitive, and in some cases, better �tness than the

baseline runs. As seen in the results of the experiments, the DME MAP visualization

was successful in all cases.

The �rst experiment shows the concept of using high-dimensional MAP-Elites and

a comparison between the four algorithms to highlight the usage of DME as proposed.

The second and third experiments test simple and di�cult target images to see how

useful ME and DME are when both can be visualized into a plot. The second uses the

same �tness function for both target images, and the third experiment tries a more

modern �tness function. The fourth experiment expands on this, utilizing di�erent

�tness functions for each island and drawing a comparison between the island-model

evolution and DME algorithm. Throughout all experiments, it is seen that the most

�t individual produced is not necessarily the most visually accurate solution which

has been produced. The solution diversity of ME and DME algorithms is greater than

vanilla GP and island-model evaluation. Since Experiment 1 could not be visualized

only DME was proven useful in �nding interesting solutions or solutions attempting

144
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to be close to the target given the �tness function being very strict. In the second and

third experiment this was proven the most given simpler target images than the �rst

and fourth experiment. DME and ME found solutions which were very close to being

visually spot on or �nding key aspects that were seen in the target. The �rst and

fourth experiment use the same target image and struggle to evolve good solutions

through visual observation.

5.1 Issues

5.1.1 High Level Issues

� GP parameter optimization

� Island parameter optimization

� ME parameter optimization

5.1.2 Low Level Issues

� GP language

� Wavelet algorithm

� SSIM algorithm

� CHISTQ algorithm

� Java heap space

� Java speed and threading

� MAP functions implementation

GP inherently has many parameters to work with, and thus, a notable amount of

parameters to select for e�cient performance. Island-model evolution introduces more

parameters to the already existing GP parameters through migration and the islands

each being their own instance of typical GP evolution. MAP-Elites is a di�erent kind

of evolution and replaces some of GP's parameters, but at the same time introduces

more MAP-Elite speci�c parameters. Therefore, DME combining MAP-Elites and

island-model evolution has a slurry of parameters to work with, making it even more
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di�cult to choose from. Note that, there is research exploring parameter performance

prediction which would help with these problems [35].

The GP language used for this research is considered a basic procedural texture

language. There are many geometric functions and noise generators which can be

added to the language and have shown to provide better results, �tness-wise and

visually. This basic language resulted in visually unimpressive solutions, but they

were e�cient to compute.

As mentioned earlier, the wavelet �tness uses a customized truncation for the high-

est magnitudes. This implementation was not thoroughly investigated or explored,

which introduces some questions with the performance of this �tness. SSIM was

proven to perform better with a di�erent window technique rather than the sliding

one used in this thesis [53]. The other window technique would have provided di�er-

ent, possibly better, solutions than the one used in this research. As for CHISTQ, this

is a decades old image comparison algorithm. Newer algorithms should be explored

rather than CHISTQ.

The implementation of the system in Java introduced some heap space issues

when implementing the individuals. The speed and threading of Java could be further

explored and improved.

Although island-model evolution, and by in part, Distributed MAP-Elites, have

properties of linear separability, this research does not con�rm a general applicability

of the system to such problems that are not linearly separable. The evolutionary

design application was chosen without respect to problems being linearly separable.

With respect to �tness and optimization, if the problem is not linearly separable

then the diversity produced by DME will provide no aid to the optimization through

reproduction. However, the islands migrating individuals and exploring the search

space may have some e�ect on the evolution, though this would need to be thoroughly

researched. Although, it is to be noted that GP is capable of solving non-linearly

separable problems [27].

The system introduces a diverse set of solutions which each take up a spot within

the search space as well as the capability to visualize these solutions if possible. If

the problem is not capable of producing solutions that can be visualized, it still cuts

down on the total candidate solutions, and maintains the unique relationship pairs of

any number of behaviours being measured. The end-of-run analysis of solutions will

still be easier than MAP-Elites, due to the cut in total candidate solutions, on top of

the capability of exploring the relationships between behaviours and the behaviours

to the �tness.
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5.2 Future Work

On an implementation level the system can be improved on in terms of its memory

and speed. With procedural textures on this system, GPU acceleration can be looked

into for a many-times speed-up or general speed-up for evolutionary design problems.

Within the �rst experiment, an arbitrary usage of luminosity direct match was

used in conjunction with behaviours of mean red, green, and blue values which do not

have a meaningful correlation with one another. Alternatively geometric behaviours

while evolving the solutions with a colour based �tness would be much more valuable.

The second experiment uses a custom evaluation on the Haar wavelet transfor-

mations to provide a �tness value. Since it utilizes the number of highest-ranked

coe�cients within the image the number of coe�cients used is a completely separate

problem to optimize for. The penalty involvement for the lack of �nding a high ranked

coe�cient in the same pixel position also provides another layer of problems. The

GP language utilized was a very simple language which a�ects the quality of solu-

tions where the usage of a more complex language would produce better procedural

textures.

The third experiment involves the usage of a third party program to evaluate

SSIM �tness. It utilizes the 8x8 sliding window implementation which is the most

basic. It has been identi�ed that there are alternative window con�gurations which

produce better results and are less rigid. However, like with the second experiment

the simpli�ed language is another area of contention where complexity may prove

useful. The same things about the Haar wavelet transformation �tness can be said

within this experiment.

The fourth experiment involved problems of the second and third experiment along

CHISTQ. CHISTQ is an extremely outdated evaluation of colour distance through

quantization utilizing similarity. Being decades old there are other newer approaches

which are improvements. The GP language, and parameter optimization of the island-

model parameters are things that can be optimized as well.

All these experiments utilized the same set of behaviours and interval counts, these

can be explored to varying degrees to explore the relationships of di�erent aspects of

procedural textures which can further spur on more research.

Furthermore, the experiments conducted to test the DME system have been lim-

ited due to time. Many di�erent aspects of evolutionary design can be explored using

this system than just procedural textures which brings a plethora of new applications

to consider. Applications speci�cally dealing with being able to visualize the solutions
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like 3-D models, blueprints, design, etc. would bene�t greatly from DME because of

the capability of visualizing many solutions at the same time. Engineering problems

where someone must consider the relationship between many di�erent phenotypes or

behaviours would bene�t much more from ME where a single solution can show the

relationship of many behaviours at a certain interval for each dimension.

More ambitious projects can also be branched o� from this system like a interactive

DME system where the users could choose elites to reproduce with one another. There

is also the use of deep learning within the �tness function, or using DME as the input

to a deep learning network.
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Appendix A

Additional Experimental Analysis

A.1 Wavelet CHISTQ SSIM Experiment Run Re-

sults

Table A.1: IM Subpopulation 1 Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30
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Table A.2: IM Subpopulation 2 Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30
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Table A.3: IM Subpopulation 3 Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30
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Table A.4: DME Sub-MAP 1 Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30
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Table A.5: DME Sub-MAP 2 Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30



APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 161

Table A.6: DME Sub-MAP 3 Image Results

Runs 1-6 Runs 7-12 Runs 13-18 Runs 19-24 Runs 25-30
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