
Enhancing Lexical Sentiment Analysis using LASSO Style Regularization

By
Jeremy Brett Blanchard

A THESIS

submitted to

Brock University

in partial fulfillment of
the requirements for the

degree of

Master of Science in Mathematics and Statistics

Presented 18 January, 2023
Commencement September 2020

AN ABSTRACT OF THE THESIS OF

Jeremy Brett Blanchard for the degree of Master of Science in
Mathematics and Statistics presented on 18 January, 2023. Title:
Enhancing Lexical Sentiment Analysis using LASSO Style Regularization

Abstract approved:

Dr. William Marshall

In the current information age where expressing one’s opinions online requires but
a few button presses, there is great interest in analyzing and predicting such emotional
expression. Sentiment analysis is described as the study of how to quantify and predict
such emotional expression by applying various analytical methods. This realm of study
can broadly be separated into two domains: those which quantify sentiment using sets of
features determined by humans, and approaches that utilize machine learning. An issue
with the later approaches being that the features which describe sentiment within text
are challenging to interpret. By combining VADER which is short for Valence Aware
Dictionary for sEntiment Reasoning; a lexicon model with machine learning tools (simu-
lated annealing) and k-fold cross validation we can improve the performance of VADER
within and across context. To validate this modified VADER algorithm we contribute
to the literature of sentiment analysis by sharing a dataset sourced from Steam; an on-
line video game platform. The benefits of using Steam for training purposes is that it
contains several unique properties from both social media and online web retailers such
as Amazon. The results obtained from applying this modified VADER algorithm indi-
cate that parameters need to be re-trained for each dataset/context. Furthermore that
using statistical learning tools to estimate these parameters improves the performance
of VADER within and across context. As an addendum we provide a general overview
of the current state of sentiment analysis and apply BERT a Transformer-based neural
network model to the collected Steam dataset. These results were then compared to
both base VADER and modified VADER.

Key Words: Machine Learning, Sentiment Analysis, VADER, LASSO, Simulated
Annealing

Corresponding e-mail address: jb13vo@brocku.ca

Contents

1 Introduction 1
1.1 What is sentiment analysis . 1
1.2 Introducing Steam . 1
1.3 Introduction of the VADER model and outline of thesis 2

2 Enhancing Lexical Sentiment Analysis using Statistical Learning Meth-
ods 3
2.1 Introduction . 3
2.2 Methods . 6
2.3 Pre-processing . 7
2.4 VADER . 8
2.5 Modified VADER algorithm . 11
2.6 Results . 17

3 Neural Network Sentiment Analysis 20
3.1 Neural networks . 20
3.2 Recurrent neural networks . 22
3.3 BERT applied to sentiment analysis . 25

4 Conclusions 28

1 Introduction

1.1 What is sentiment analysis

Sentiment analysis is the process of collecting and analyzing the thoughts and opinions
expressed by individuals. The exponential growth of sentiment analysis as a field of study
witnessed in recent years can be attributed to the global adoption of social media and
the development of one’s digital identity online. The growth of social networking sites
such as Facebook and Instagram have produced vast quantities of data [10]. This highly
opinionated data has allowed researchers to test and validate novel sentiment analysis
in record time. The definition of a digital identity is any demographic information an
individual posts or shares online, this can include posting a comment (either through
voice or by text), sharing an image of one’s self or even video on social media. The goal
of sentiment analysis is to apply various analytical methods to such demographic data
so that we can predict the opinion communicated [6]. Sentiment analysis can broadly be
categorized into grammar and machine learning based approaches: the former includes
the use of lexicon and grammatical rules to estimate the polarity associated with some
given body of text; the latter consists of supervised, semi-supervised and unsupervised
machine learning techniques. The current state of art focuses on the development of
deep learning sentiment analysis models.

1.2 Introducing Steam

Steam is the dominant platform for the purchase of video games on Windows, Linux
and Macintosh operating systems [5]. In addition to being an online retailer of video
games, this Steam service also has its own social network where users can interact with
each other through various means, such as private and public text based communication,
playing video games together and sharing modifications to video games on forums. This
newly available dataset from Steam is currently the only one from a hybrid-social media
and retail platform and is very unique in the body of sentiment analysis literature as
opposed to more standard data sources such as IMDB, Amazon and Twitter. Steam
allows its users to write reviews on games that they have purchased. In these reviews
users can recommend (positive) or not-recommend (negative) a game and are required
to publish some text alongside their rating. The allowed text in Steam reviews can be
any alpha numerical character or emojis and emoticons. One way that Steam validates
the credibility of each review is by allowing users to independently react to video game
review. Currently a user can label a review as either helpful, not-helpful or funny. For
example a review that discusses a video game’s game-play mechanics, visuals or sound
are more likely to be rated by other users as being helpful. We leverage this user rating
system to filter out sub-standard reviews that could impact the quality of the results.
In addition other pre-processing methods have been employed such as automated word
correction.

1

Steam contribution to literature We contribute to the literature by introducing a
novel dataset of text based reviews collected from the video game online store Steam.
This dataset provides an additional source of testing and validation for proposed meth-
ods. The reviews available are curated by Steam itself using a combination of both
manual and algorithmic methods. The resultant reviews are thus highly reliable and
consistent even at high volumes which is important for machine learning applications
that are sensitive to noise. In terms of unique properties the morphology of reviews on
the Steam platform has been heavily influenced by PC gaming. In regards to this paper
we have leveraged this “gamer slang” to compare how well VADER generalizes to other
datasets.

1.3 Introduction of the VADER model and outline of thesis

VADER is a sentiment analysis rule/lexicon based algorithm introduced by Huto et al.
In the original paper they describe a “gold” grammatical rule set that works favorably
when applied to social media. We apply VADER to a dataset of Steam reviews and find
that the methods used to estimate the parameters which control the grammatical rules
do not generalize favorably across context. Given that VADER does not generalize can
we leverage statistical learning techniques to make VADER robust across context. To
this aim we have employed simulated annealing and k-fold cross validation to improve
the estimation of these grammatical rules across context. We aim to submit this chapter
as a registered report. In chapter 3 we provide a review of neural network methods
commonly used for sentiment analysis. We discuss the current state of deep learning
based sentiment analysis and apply a fundamental model to the same Steam review data
as mentioned previously; the deep learning model applied was a Bidirectional Encoder
Representations from Transformers (BERT). The reason we used BERT was because
many other methods are derived from its architecture.

2

2 Enhancing Lexical Sentiment Analysis using Sta-

tistical Learning Methods

2.1 Introduction

Sentiment analysis is the application of natural language processing via algorithms. The
main purpose being to analyze text, spoken voice, or other methods of communication to
identify and quantify subjective data. One of the common uses for sentiment analysis is
to apply it to text reviews of products from websites such as Amazon [38] to understand
the degree of positivity and negativity within each review. However, language is not
typically so easy to classify and does heavily depend on the context [29] itself whether it
be Twitter posts [10], movie reviews [16] from IMDB or business reviews from Yelp [20].
The field of sentiment analysis has existed for several decades but major advances have
occurred only relatively recently in large part due to the advent of the internet in addition
to exponential improvements in computing performance. The internet gave researchers
a cost and time effective method of accessing massive amounts of opinionated text data.
Leveraging these new technological achievements, researchers were more easily able to
test, validate and improve natural language processing models.

Related works Methods of analyzing the sentiment within text can be broadly sepa-
rated into two groups; those based on grammatical rules and others that are data-driven
(e.g. machine learning). Typically, machine learning methods have a higher degree of
accuracy but come at the cost of reduced interpretability, which makes it akin to a
“black box” of knowledge. In lexical methods of analysis, the rules are defined and it is,
therefore, easier to apply towards the goal of gaining a clearer understanding of where
sentiment exists within text.

Turney defined a grammatical ruleset based on the semantic orientation of words [1].
Using these findings as a basis, Mellville et al developed a model that incorporated a
lexicon into the work done by Turney and applied it to the same dataset where they
found that including a lexicon into a grammar based sentiment model improved the
overall accuracy substantially [28]. Mckeown et al published a paper that discussed the
development of a dictionary of words using the 1987 Wall Street Journal and constructed
a list of positive and negative adjectives where they demonstrated that the emotional
expression using adjectives have some dependency on orientation. Various other ideas
for creating a dictionary of words have been proposed, these include both manual and
automatic. Islam et al proposed an approach to classify online news. In their paper,
sentiment analysis was done at the sentence level by using a dictionary of predefined
positive and negative words that were then added together to obtain an estimate of
sentiment within text. Reis and Olmo proposed a methodology to explore the relation-
ship between sentiment polarity and news articles [31]. An example of a lexicon-based
approach that involves a massive human sentiment labeling of words is described by
Dodds et al [30]. This sentiment dictionary contains approximately 5 million human

3

sentiment assessments of 10,000 common words, each in 10 languages and labeled 50
times. Another well-known sentiment lexicon is SentiWordNet [3], constructed by ap-
plying semi-supervised machine learning to a massive bank of words. The total number
of words in sentiWordNet is approximately 100,000 words, but is limited to English
only. VADER which stands for Valence Aware Dictionary and sEntiment Reasoner is a
lexical and grammar-based sentiment analysis algorithm that has been trained using a
dictionary of experimentally derived sentiment values using Amazon Mechanical Turk
(AMT). AMT is a micro labour website where workers perform minor tasks in exchange
for a small amount of money. Applying a wisdom of the crowd approach [34] along with
AMT. Leveraging these methods the publishers of VADER then surveyed each parame-
ter and lexical feature commonly used in social media and micro blogs. This method of
sampling from Tweets does explain why VADER performs better on social media data
like Twitter than product reviews such as Amazon and IMDB.

According to the literature, support vector machines were one of the first methods
to be used for sentiment analysis. The motivation being that it is easier to represent a
set of grammatical rules as vectors to capture more of the underlying semantic structure
of a language [28]. For a few years, support vector machines outperformed all previous
sentiment and classification models. At the time of writing there now exists several
other machine learning algorithms for sentiment analysis such as bag of words [35],
näıve bayes [19], maximum entropy and decision trees [15]. Pang et al has compared
various machine learning methods including the ones stated; they found that as the
amount of text in a training sample increases, there exists a tendency for over-fitting
to the context of the data [25]. Recurrent neural networks are an appropriate fit for
these types of problems since language is sequential in nature and thus have consistently
outperformed other machine learning and lexical approaches to sentiment analysis tasks.
One benefit of neural networks when applied to language processing tasks is that little
external linguistic knowledge is required to obtain optimal results. A critical step with
language analysis especially when in regards to neural networks is that text must be
transformed into some input (typically called encoding) either through by converting to
a numerical dictionary, mapping words to a vector space or as a parsed syntactic word
tree [25] and [32]. As conjectured by Li et al they suggest that sequence-based models are
sufficient to for capturing the sub-dimensional semantics for sentiment classification [21].
The introduction of BERT [7] and its immediate and widely adoption as a framework
has led current deep learning models to be, for the most part, iterations of BERT.
Examples of two models that leverage BERT’s framework and have achieved state of
the art performance on natural language benchmarks such as GLUE [37] and RACE [18]
are RoBERTa [22] and XL-Net [40]. Currently there are two deep learning models that
achieve state of the art performance on natural language tasks DeBERTa [13] (BERT)
and ERNIE [42] (GPT-3) and in regards to the GLUE benchmark have obtained identical
overall scores of 91.1. All of this to say that sequential based algorithms may indeed be
the future of natural language comprehension.

The VADER approach is a lexicographical method that reveals the grammatical rules

4

that underlie sentiment, while being able to classify Twitter data with high accuracy.
However, the method is not robust, and thus the grammatical rules may not apply in
other contexts. It is the hope that by combining a lexical method; in our case this
being the VADER algorithm [16] with some statistical learning tools we can obtain
a model that is more robust and that can hopefully be used to better estimate the
grammatical rules used and to learn about sentiment across context. To evaluate our
proposed method, we will compare the performance of the original VADER algorithm
to our modified approach on two datasets: a novel dataset of videogame reviews from
Steam, and an existing dataset from IMDB [2]. We will be testing two hypotheses:
(1) that the VADER modified algorithm outperforms the original VADER algorithm
at classifying video game reviews; and (2) that our modified algorithm will outperform
VADER on an independent dataset for which neither were trained. The remainder of
this paper is organized as follows. In section 2 we review VADER in detail and our
extension of the method using statistical learning. Initial experimental results of our
pilot Steam data are presented in section 3. Discussion and future work is presented in
section 4 and section 5 concludes the paper.

5

2.2 Methods

At the time of writing there does not exist any curated Steam dataset that can be used
for Steam game reviews, this is due to video gaming as a medium being a relatively
“new” source of data as opposed to movie or product reviews which have been the
standard since sentiment analysis’ development as a field of study. For this publication,
it was decided to use video game reviews since there exists a large online collection that
is openly available on the Steam store. Steam was launched in September of 2003 and
was initially used by Valve (the company that owns Steam) to automatically update
and distribute video games they have developed such as Portal, Counter-Strike and the
Half-Life series. Today, Steam is the dominant digital distribution platform for PC
gaming with a market share of 75% [33]. In general, the user base of Steam is relatively
young ranging between 10 to 30 and so has its own unique sub-culture with a predilection
towards the use of memes, emojis, and sarcasm to convey sentiment. The use of this data
for sentiment analysis is novel because it contains linguistic properties that exist in both
social media datasets (emojis and colloquialisms) and other more conventional sources
of review data such as IMDB (popular culture references) [39]. As with movie reviews,
there is no need to independently label the data since users summarize their overall
sentiment with a machine interpret-able rating indicator; for Steam reviews, the rating
indicator is a binary “thumbs-up” (positive) and “thumbs-down” (negative). Since the
distribution of movie reviews on a 5 point scale is not uniformly distributed; IMDB
like Steam is usually positioned as a binary classification problem (positive or negative)
without sacrificing granularity [24]. Another benefit is that the original VADER paper
has already applied the IMDB movie reviews (F1 score of 0.61) [16]. The IMDB dataset
was collected by Maas et al [24] that provides a set of 50000 movie reviews from IMDB.
The dataset itself contains an even number of both positive and negative reviews. Each
review within this dataset was annotated as either positive (when the review has a score
≥ 7 out of 10) and negative ≤ 4 out of 10, where neutral reviews were omitted.

As an exploration of our idea, we collected a pilot dataset of 50000 video game reviews
from the Steam web store. These reviews are randomly sampled between each video
game product. The distribution is equally distributed both with respect to video game
products and the ratio of positive (25’000) and negative reviews (25’000). As an initial
step we applied our pilot Steam dataset to the base VADER algorithm. To better
compare our results to the ones presented in the original VADER publication, we assessed
the performance of the model using binary class classification metrics of precision, recall
and F1 score. We define the performance metrics used to evaluate each model as follows:
precision is a measure of how many of the positive predictions made are true. Recall is
the number of positive cases the classifier correctly predicted vs all positive cases. The
F1 score being the harmonic mean of precision and recall.

6

Figure 1: Weighted score before and after pre-processing

2.3 Pre-processing

Natural language pre-processing is a critical aspect of sentiment analysis. User-generated
content is typically unstructured and certain steps must be followed to transform it into a
format that can be understood by a computer. The main steps performed in normalizing
our text are summarized in figure 2.

Spam filtering A standard but naive method of filtering spam reviews is by the
removal of reviews that contain less than a certain number of words (Less than 2).
A complication of this approach is that Steam shares many similarities with Twitter
when it comes to an emphasis on brevity of word length and so another method will
be included as well one built by Steam itself. As explained in the Steam section, each
review is accompanied with a usefulness (spam) score that ranges from 0 to 1 where the
closer this score approaches 0 the higher the odds a review is considered spam and vice
versa. In order to better normalize the distribution of our review data with respect to
spam scores we filtered out any reviews that had a review score of less than or equal to
0.05. As shown in figure 1 where we see the effect this step has on the distribution of
weighted vote scores in the Steam review data.

Colloquial and incorrectly spelled Words replacement In non-formal texts it
is common for Steam reviews to contain poorly spelled and exaggerated expressions
to emphasize sentiment, this type of miss-classification is a generally known issue with
lexical methods since the dictionary of words is static and does not adapt dynamically
to non standardized contexts. For example, the colloquial word “Happyy” would be
converted to the formal word “Happy”. One thing to note is that only characters within
a word are impacted and not their degree of capitalization since in the VADER algorithm
a critical step is the measure of capitalization within a word. To accomplish this task
a spelling corrector script was written that identifies incorrectly spelled word within a

7

Initial Sentence

Spam Filtering Colloquialism Replacement

Stemming Lemmatization Remove Special Characters

Cleaned Sentence

Figure 2: Pre-processing steps

Steam review by comparing them to a dictionary of correctly spelled words available in
the NLTK library [23]. This list of identified misspelled words is then looped through
and we calculate the Levenshtein distance. The Levenshtein distance is defined as the
minimum number of single character edits to change one word into another) [11]. This
distance measure is equivalent to the L1 norm but where word characters are represented
as a vector. The objective of taking the L1 norm is to select a new word vector from the
total word space where the computed distance is minimized.

Lemmatization Lemmatization is the process of simplifying language (reducing di-
mensionality) by grouping together the various inflected forms of a word (tenses) so
that they can be analyzed as a single term. This is accomplished by using a com-
bination of algorithms and lookup-tables. Our goal with including lemmatization in
our pre-processing methodology is to reduce the complexity of our dataset by trans-
forming related word forms (e.g. “performed” and “performing” are both inflections of
“perform”) to a common base. Lemmatization was performed on the Steam dataset by
applying the Word-Net-Lemmatizer function found in the NLTK library [23]. Lemma-
tization is similar to stemming but it brings context to the words by including other
subtle grammatical features such as parts of speech tagging. Lemmatization is preferred
over stemming since the former method provides a more precise approach to reducing
natural language dimensionality.

Remove Links and Special Characters Links and non-alphanumeric characters
are removed using regular expressions. If a string within the text matches the form
“http://” or “https://”, it is removed. Similarly, any non-alpha-numeric characters
including those found within a word were removed.

2.4 VADER

In this section, the intricacies of the VADER algorithm will be defined in the context of
grammar and will then be tied to how this algorithm calculates the sentiment score of
a provided text. VADER can be summarized as follows. A lexicon of known words will
assign an initial sentiment score to each word given some initial input of text and then

8

these initialized sentiments are modified using the following sequence of grammatical
rules.

Lexicon from TURK The VADER lexicon sentiment scores were obtained using
Amazon Mechanical Turk (AMT), a crowd-sourcing platform where workers perform
minor tasks in exchange for a small amount of money. The publishers of VADER [16]
constructed a list of both words and emoticons by compiling existing sentiment word
banks. (LIWC [17], ANEW [4] and HU-KDD [15]). Each of these textual features
were then rated from (-4) “Extremely Negative” to (4) “Extremely Positive” by 10
independent AMT workers. Each sentiment word was calculated by taking the mean
of these 10 reviews keeping only lexical features that had a non-zero mean rating, and
whose standard deviation was less than 2.5.

Idioms An idiom is a phrase or group of words with a metaphorical (sentimental)
meaning which is not equal to the sum of sentiment values of their individual words.
Idioms can be considered as the building blocks of languages and how the combination
of words can completely change the sentiment value of a sentence. Idioms themselves
are found more than just the English language but in the context of VADER we will
only examine a few idioms in the English language. A set of idioms was selected by
comparing the difference between the sum total of words versus the actual rating from
AMT keeping the later as the correct sentiment value. When an idiom is identified
the calculated sentiment of based on the component words that makeup an idiom are
replaced by the sentiment defined in the Idiom dictionary.

Emoji handling Provided some symbolic representation of each emoji found within a
dictionary VADER maps each of them to their literal equivalent. So, if the text fed into
VADER was presented with the emoji :D then it would be replaced by the text “happy
face”.

Grammatical rules In the original VADER publication [16] determined and vali-
dated a set of grammatical rules by selecting a sample of the most 400 positive and
400 negative social media tweets from an initial set of 10000 random public tweets.
Two human experts scrutinized these 800 tweets and independently scored their sen-
timent intensity on the same scale as used for the VADER lexicon. Using qualitative
analysis techniques such as grounded theory, they identified 4 grammatical rules (Punc-
tuation, Capitalization, Booster and Conjunctions). Following these qualitative results,
a controlled experiment was designed to evaluate the impact of grammatical rules on
sentiment intensity. This was accomplished by selecting 30 baseline tweets and testing
(using 30 independent AMT workers) how the insertion or deletion of grammatical fea-
tures impact sentiment. A summary of these four grammatical rules and their estimated
values are found in table 1.

9

Punctuation VADER only considers punctuation marks such as “!” and “?” as senti-
mentally significant, where these symbols increase or decrease the overall magnitude of
a phrase without modifying the overall meaning. For example, if the following sentences
are compared with respect to VADER. “VADER is good” and “VADER is good!”; the
algorithm would respond by increasing the total sentiment of the phrase. This amount
is estimated by taking the total number of exclamation (up to a maximum of 4) and
question marks (up to a maximum of 4) found within the sentence; multiplying each of
these totals by their associated constant (see figure 1) and then adding the summation
of these two punctuation groupings to the sentiment of the phrase.

Negation The following list of words “least, without, doubt, never, so, without, doubt
and never-so, never -this” are negation words. Similar to punctuation the VADER
algorithm searches for the existence of negation words and if one is detected then the
overall sentiment score of the sentence will be multiplied by the constant -1.25. In plain
English, the valence score of a sentence is flipped and increased by 25%. There exists a
separate method for the existence of “No” including “or and nor” where if it is found in
the three prior word locations then the overall sentiment of the phrase is multiplied by
the constant -0.74. However, we did find that VADER struggles with the identification
of complex negative expression such as in the case of a double negative.

Boosting and dampening words Boosting and dampening words are a list of special
adjectives and adverbs (e.g absolutely, uber, less and little) which impact the degree of
sentiment intensity by increasing the absolute sentiment score of the following three
words as VADER loops through each word in a sentence. One important detail to note
is that boosting words increase the absolute value of sentiment of the following word so
represented in table 1 as two separate parameters (+0.293 and -0.293) but this does not
imply that these two values were estimated separately as according to the original paper
this constant was calculated based on the average absolute effect a boosting word has
on sentiment in text. By applying this definition of a boosting word, the developers of
VADER were able to obtain a dictionary of Boosting words by applying the Pattern.en
module from the NLTK library [23] to the set of 800 most positive and negative tweets.

Conjunction A conjunction is a word that joins together other words or groups of
words. VADER applies these grammatical rules to the overall sentiment of a sentence if
and only if the word “but” is found. A critical aspect of this grammatical rule is that
it is location-dependent. As an example of how this works consider the set of modified
words after VADER has applied all other sentiment-based grammatical rules. Given this
set of modified words, VADER iterates through the list, and if “but” is found before the
current sentiment word then that word’s sentiment is multiplied by 0.5. Conversely, if
“but” is found after the current sentiment word then that word’s sentiment is multiplied
by 1.5.

10

VADER algorithm sentiment classification As represented in equation 1 we de-
fine y as a binary categorical variable with two possible values; +1 for positive sentiment
and -1 for negative sentiment. Following this definition we represent f(x)ϵ{−1, ..., 1} as
the output from the VADER algorithm 3 where the input x is some block of text.

y =

{
+1 if f(x) > 0,

−1 if f(x) < 0.
(1)

2.5 Modified VADER algorithm

We propose a modified VADER algorithm that leverages simulated annealing and k-fold
cross validation to estimate the grammatical results estimated in the original VADER
publication [16]. We re-framed each of these grammatical rules as a parameter to be
estimated via machine learning. Table 1 shows a quick summary of each parameter and
their associated grammatical rule within the VADER algorithm.

Furthermore, we state that the VADER algorithm can be re-framed in the context of
statistical learning. In the original implementation of VADER, several static parameters
control the weighting of each heuristic grammatical rule. Since these weights are con-
stant values they were not defined in the original VADER function. These parameters
were estimated using a wisdom of the crowd approach via the Amazon Turk framework.
Leveraging supervised machine learning techniques along with video game reviews from
Steam we hope to find estimates of the parameters that generalize favorably across con-
texts. The proposed modification to the original VADER algorithm f(x) is represented
below where we have re-framed these constant grammatical weights as an additional set
of parameters β to be estimated using simulated annealing.

ŷ =

{
+1 if f(X; β) > 0,

−1 if f(X; β) < 0.
(2)

Recasting VADER as a statistical learning problem we aim to estimate a set of
parameters β which have been trained on cleaned user review data from the Steam web-
store, rather than the approach used in the original Vader paper [16] which employed
crowd-sourcing techniques facilitated by Amazon Mechanical Turk. Once we have esti-
mated our set of parameters β and have determined the performance of our model on
some Steam training data we compute its performance using some loss function L(β).
To mitigate the risk of over-fitting we subtract a regularization term λ multiplied by the
sum of the estimated |β|s from the computed loss to obtain the penalized performance
metric L̂(β). Regularization wise if λ = 0 the method returns the unconstrained optimal
value for β and as λ −→ ∞ all β’s go to zero. This regularization step is applied at the
end of each iteration during simulated annealing.

11

Input : A sentence where each word contains some initial sentiment
Output: The output is the sum of the sentiment scores for each word in the list

1 for Each Wordi within a Sentence do
2 if Wordi in Sentiment Dictionary then
3 if is word no(Wordi) AND Not the end of Sentence then
4 sentiment = 0
5 end
6 if is No(Wordi−1) AND Wordi.sentiment > 0 then
7 Wordi.sentiment = B
8 end
9 if word is capitals(Wordi) AND sentence is not capitals then

10 if Wordi.sentiment > 0 then
11 Wordi.sentiment + = A
12 else
13 Wordi.sentiment − = A
14 end

15 end
16 if Is a Known Booster Word Wordi−1..i−3 then
17 scalari = H
18 if Wordi < 0 then
19 scalari *= -1
20 end
21 if word is capitals(Wordi) AND sentence is not capitals then
22 if Wordi.sentiment> 0 then
23 scalari += A
24 else
25 scalari -= A
26 end

27 end
28 Wordi.sentiment + = scalari−1 + scalari−2 * 0.95 + scalari−3 * 0.90

29 end
30 if negated word(Wordi−1..i−3) then
31 Wordi.sentiment + = scalar * B
32 end
33 if idiom sentiment(Wordi−1..i−3) then
34 Wordi.sentiment = Idiom Sentiment
35 end
36 if word is before But(Wordi) then
37 Wordi.sentiment ∗ = F
38 end
39 if word is after But(Wordi) then
40 Wordi.sentiment ∗ = G
41 else

42 end

43 else
44 Wordi.sentiment=0
45 end

46 end
47 Sentiment Score=

∑∞
n=1 Wordi.sentiment

48 return Sentiment Score

Figure 3: VADER algorithm

12

Parameter Grammar Rule Operation

Negation If Negation exists multiply current sentiment
Negation (Special Case) If Negation exists and is preceded by “never (so, this)” or (without doubt) multiply current sentiment
Capitalization If current word is capitalized then add a constant
Booster Word Increase If the following word is positive then increase
Booster Word Decrease If the following word is negative then decrease
Exclamation Punctuation If word contains exclamation point then add to current sentiment
Question Punctuation Low If word contains question mark then add to current sentiment
Question Punctuation High If word contains more than 3 question marks then add a different constant
Conjunction Decrease If the preceding word is a conjunction then multiply the current sentiment
Conjunction Increase If the following word is a conjunction then multiply the current sentiment

Table 1: Names of default parameters mapped to definitions

L̂(β) = L(β)− λ

10∑
j=1

|βj| (3)

Using a data-driven approach along with regularization techniques we define each of
the stated parameters as a set of parameters β to be estimated. To derive this newfound
set of parameters β we will perform simulated annealing (see section 2.5 for further
details) fit to the output of our VADER perceptron. Furthermore, to minimize the odds
of parameters being over-fit to the training data we will perform penalized regularization
methods similar to what is done in LASSO. The hyper-parameter λ will be estimated
using k-fold cross-validation where we split our training data into folds to determine the
λ value that maximizes the validation accuracy.

Simulated annealing Simulated annealing is a search optimization algorithm in-
spired from the mechanical process of annealing [12]. Annealing from physics is defined
as the process of heating a solid up to some temperature which is then cooled at an
extremely slow rate until it achieves its most stable (lowest energy) state. In effect what
annealing achieves from a physical perspective is the determination of the global op-
tima of some object. Taking this concept of annealing we can see that it can be modeled
mathematically. In this section we will discuss our understanding of simulated annealing
and what specific methods were used to search for optimal parameters for VADER.

Regardless of the type of simulated annealing algorithm applied the main concept is
as follows. At the start of each iteration the algorithm randomly generates a new set
of parameters. The performance of the current and the newly spawned solutions are
computed. If the new solution demonstrates improvement it is always accepted, while a
fraction of inferior solutions are accepted in the hope of escaping local optima in search
of global optima. The probability of accepting an inferior solution depends on a temper-
ature parameter, which is typically non-increasing with each iteration of the algorithm.
The main benefit of incorporating simulated annealing into some optimization problem
is that it provides a simple and effective method for an algorithm to escape the local

13

optima without resorting to brute force methods such as in the case of grid search.
We will now define the specific features of a simulated annealing algorithm and how

it relates to solving discrete optimization problems such as in the case of optimizing
parameters used in the VADER sentiment analysis algorithm.

Definition of simulated annealing algorithm The basic elements of a simulated
annealing algorithm are as follows.

1. A finite set S of possible parameters β

2. A real value cost function f(x) which is defined from the set of parameters S.

3. A non-increasing function T (k), where k is the number of iterations.

4. For every iteration k , there exists a unique collection of probabilities that describes
the likelihood of accepting a particular solution within the set S.

Let β be the current set of parameters from S we randomly generate a proposed set
new of parameters β̂. We will demonstrate how simulated annealing updates β into β̂
based on the probability of accepting a worse solution within this local neighborhood as
follows. To begin we will permute our initial set of βs to obtain β̂.

β̂ = β +R− 0.5 (4)

The set of estimated β̂ must be between -2.0 and 2.0 and R is a random number
that follows a uniform distribution R ∼ U(0, 1). Using our objective function f(x) we
compare the performance of both sets of parameters by taking the difference between the
two where if ∆f > 0 we return the probability of accepting the new worse performing
solution β̂. In the other two cases where β̂ performs either better or equivalently (∆f ≤
0) to the current set of β the probability of accepting the new solution is 100%.

P (accept a new solution) =

{
exp

(
f(β̂)−f(β)

T (k)

)
if ∆f > 0,

1 if ∆f ≤ 0.
(5)

We define T (k) as the remaining thermal energy within the system at iteration k.
Given that d is limited to being a positive constant we see that as the number of iterations
k increases the probability that a worse solution will be accepted decreases. Thus the
cooling schedule stated in equation 6 is the mechanism used to control how quickly the
SA algorithm converges.

T (k) =
d

ln k
(6)

14

By iterating these steps a multitude of times we aim to obtain a new set of parameters
β̂ which minimizes the loss L̂(β̂) of our modified VADER model on the training and
validation data from Steam reviews for a series of folds k = 5.

Statistical analysis We will then compare the performance of the modified algorithm
with the original VADER parameters on two datasets - the Steam dataset and the
IMDB dataset. The performance is primarily evaluated using accuracy. We also present
precision, recall, etc. To evaluate the performance of our modified VADER algorithm we
will use a 5X2 cross validation (CV) combined F test which is a procedure for comparing
the performance of two classification models. The 5X2 CV combined F test will be used
to evaluate our two classification models (Base Vader and our Modified VADER) is
positioned by the author Alpaydin [9] as a refinement of Dietterichs (5X2 CV student’s
t-test) [8] approach to estimating two classifiers. The main benefit of the former approach
as opposed to Dietterichs is that there is a lower risk of type one error and higher levels
of statistical power. The general method so defined by both authors are explained in
the following paragraph.

Consider two models A and B. Furthermore, we have a labelled dataset D and ad-
ditionally some performance metric p. In the case of VADER we used classification
accuracy. As with other hold-out methods such as k-fold CV and 10X10 CV we split
the dataset into two parts: a training and a validation set. Specifically for the 2 fold
cross validation repeated 5 times CV paired F test, we repeat the split (50% training
and 50% test data) 5 times with different random seeds. In each of these 5 iterations, we

fit both A and B to the training split and compare their performance (p
(1)
A versus p

(1)
B)

and (p
(2)
A versus p

(2)
B) on the test split by taking their difference. Then, the training and

validation sets are swapped, and we compute their performance again, which results in
us obtaining two performance measures p(1) and p(2) as defined below.

p(1) = p
(1)
A − p

(1)
B and p(2) = p

(2)
A − p

(2)
B (7)

Provided these two estimates we can now compute the mean p and variance s2.

p =
p(1) + p(2)

2
(8)

and

s2i = (p(1) − p)2 + (p(2) − p)2 (9)

Using the formula in 10 we compute our F statistic which follows an approximate F
distribution with 10 and 5 degrees of freedom where the mean and variance are calculated
for each fold i which are our 5 random seeds and j represents the 2 fold CV.

F =

∑5
i=1

∑2
j=1(p

j
i)

2

2
∑5

i=1 s
2
i

(10)

15

. Using this F statistic, a p value can be obtained and compared with a selected
significance level α = 0.05. Using a two sided test; if the p value is smaller than the
selected significance level, we reject the null hypothesis and find that there exists a
statistically significant difference between models A and B.

16

0 .02 .04 .06 .08 .1 .12 .14 .16 .18 .2
0.57

0.59

0.61

0.63

0.65

0.67

0.69

0.71

0.73

0.75

λ Penalty

F
1
S
co
re

Training F1 Score
Validation F1 Score

Figure 4: Plot of lambda vs F1 scores

2.6 Results

Modified VADER training The Modified VADER algorithm was fit to the pilot
Steam dataset using 5 fold cross validation. Taking a range of values we selected a
penalty term λ that best maximized the performance using the F1 score. It was deter-
mined that the penalty term that best maximizes the F1 score of the modified VADER
algorithm is λ = 0.02. The full range of values and accompanying F1 scores is repre-
sented in 4.

Using the identified training penalty λ = 0.02 the modified and Base VADER algo-
rithm were applied to the same validation set of Steam reviews, the calculated F1 scores
being 70% for the former and 68% for the later. Comparing the results shown in table
2 these outcome it is observed that there is a 2% increase in performance. Applying the
5X2 cross validation F test the determined F statistic to compare the performance of
these two models is found to be F = 4.7. From the F statistic the p = 0.049 value is
obtained. Comparing this p value to the criteria p < 0.05 meaning that the performance
improvement using the Modified VADER algorithm is statistically significant when ap-
plied to a testing Steam dataset but only barely. Given that modified VADER was
trained on a validation Steam dataset it is unsurprising that the performance difference
as compared to base VADER is at least comparable if not slightly improved.

Two datasets were sourced from Stanford (IMDB and Twitter) to compare the per-
formance of modified and Base VADER across context. Following the same design setup
for evaluating Steam dataset. The calculated F1 scores shown in table 2 for Modified
and Base VADER when for IMDB movie reviews are 74% and 73% respectively. The
F statistic being 2.7 (p = .14). Given the significance criteria p < 0.05 it is found that

17

Experiment Precision Recall F1 Score

VADER Steam 0.61 0.77 0.68
Modified VADER Steam 0.66 0.76 0.70
VADER Twitter 0.66 0.63 0.65
Modified VADER Twitter 0.67 0.63 0.67
VADER Movie 0.64 0.85 0.73
Modified VADER Movie 0.65 0.85 0.74

Table 2: Comparison of base vs modified VADER’s performance on some datasets

Modified VADER and Base VADER perform equally well. The same findings were also
obtained after Modified and BASE VADER were applied to the Twitter dataset. Same
order as before the F1 scores obtained for each algorithm were 0.65% and 0.67% with a
5X2 F statistic of 3.6 and p = .083. The findings provide evidence that the parameters
estimated by Modified VADER using the Steam dataset perform equivalently to Base
VADER across context. Furthermore, the obtained set of for each Algorithm are found
to be distinct as represented in table 3. The implication being that Both BASE VADER
and Modified VADER have estimated a unique set of parameters that have the same
degree of performance when applied IMDB and Twitter but neither are a global set of
parameters that generalize favourably across context.

Examining the differences in table 3 between the estimated parameters from simulated
annealing versus the base VADER algorithm a few key differences are observed. Compar-
ing both the positive and negative boosting word we see that the weighted contribution
towards the estimated sentiment has increased and is no longer symmetric. Given this
lack of symmetry, positive boosting words have a greater weighted effect on the calcu-
lated sentiment as opposed to negative boosting words. Similar changes have also been
seen in exclamation punctuation, question high punctuation, conjunction decrease and
especially in the case of negation with an estimated value of -2.0. In a similar way to
L1 regularization we see that the weights from the other parameters have been shrunk
to zero which is interesting since in the original BASE VADER parameters these values
were shown to contribute significantly to the estimated sentiment such as in the case of
conjunction decrease. A possible explanation for how these estimated parameters are so
different could be attributed to the unique properties of Steam reviews since the diction
used relies heavily on positive boosting words, conjunction and excessive punctuation to
express sentiment.

18

Parameter Modified VADER Base VADER

Booster Word Increase 1.922 0.293
Booster Word Decrease -0.963 -0.293
Capitalization 0.518 0.733
Exclamation Punctuation 1.45 0.292
Question Punctuation Low -0.022 0.18
Question Punctuation High 0.208 0.96
Negation -2.0 -0.74
Negation (Special Case) 0.027 1.25
Conjunction Decrease 0.914 0.5
Conjunction Increase -0.007 1.5

Table 3: Comparison of derived parameters between base and modified VADER

19

3 Neural Network Sentiment Analysis

In this section we will describe the current state of the art of neural networks for natural
language processing. Furthermore, we will describe an implementation of BERT trained
on the Steam data-set and then compare performance of BERT against our modified
VADER algorithm as a binary sentiment classifier.

3.1 Neural networks

Artificial neural network A neural network is a mathematical model that emulates
the decision-making and learning abilities of a mammalian brain. A neural network can
generally be described as a type of non linear model that is composed of a number of
activation functions (neurons) that forward, transform, filter and exchange information
between each other. Based heavily in graph theory, neural networks are generally cat-
egorized into feed forward neural networks and recurrent neural networks. In figure 5
we have included a basic three layer network (Input, Hidden and Output). The lines
connecting each circle represent a connection on how information flows through the net-
work. Each connection is associated with a weight, which is a value used to control the
strength of a signal between two neurons. The learning of a neural network is accom-
plished by adjusting these weights where the goal is to optimize for some measure of
loss. Recurrent neural networks will be discussed after we introduce the basic structure
of a feed forward neural network since they share many similarities.

Classification or regression using neural network Given some neural network
we describe the input layer fk(x) as being composed of M number of nodes. For each
node a randomly assigned weight w from a uniform distribution is assigned. These
weights impact how much the output of each node in a layer affects its contribution in
the following layer. Given that this network is fully connected between layers, the total
number of inputs forwarded to each node within a layer would be equal to the number
of nodes k of the preceding layer. The layer or layers hj composed of N number of nodes
that are in between the initial and final layer of a neural network are known as hidden
layers. A hidden layer behaves similarly to a filter where the weighted sum of the inputs
from the input layer is only passed along if it reaches some threshold based on the output
from some function. In addition each node in a hidden layer contains some constant αi

value that is individual to each neuron. This filter mechanism is accomplished by the
inclusion of some function σ that only activates if a specific value or condition is met.
Common examples of such functions are sigmoid, tanh and ReLU the details of which
will be discussed in the next paragraph. After the sum of the weighted inputs has been
filtered in the hidden layer it is then fed and summarized into the final layer g which is
composed of a single neuron and it is this neuron that computes the estimated output
based on the sum of the weighted outputs from the hidden layer hj added along with
some bias b0. The activation function used in g can be different than the one used in

20

fi

fM

g C

hj

hN

...
...

Input Layer Hidden Layer Output Layer

Figure 5: General feed forward network

the hidden layer.

fi = wi ∗ x, i ϵ {1, 2, ...,M}

hj = σ(bj +
M∑
i=1

fi), j ϵ {1, 2, ..., N}

g = λ(b0 +
N∑
j=1

wj ∗ hj), j ϵ{1, 2, ..., N}

(11)

Common choices for σ are the sigmoid function, hyperbolic tangent function (tanh),
or rectified linear function (ReLU). Their equations are as follows.

sigmoid(wtx) =
1

1 + exp(−wtx)

tanh(wtx) =
exp(wtx)− exp(−wtx)

exp(wtx) + exp(−wtx)

ReLU(wtx) = max(0, wtx)

(12)

The sigmoid function takes as input a real value number and transforms it to be
between 0 and 1. The use of the sigmoid function in neural networks has fallen out of
favour due to two majors problems. Firstly that the sigmoid function losses effectiveness
with large positive or negative values and secondly that the output of the sigmoid func-
tion is not zero centered which is a problem because it can introduce some unbalance
in how weights are updated in a neural network. [12] The first issue also applies to the
Tanh function. Compared with the sigmoid function and the tanh function, ReLU is
easy to compute, fast to converge in training and yields equal or better performance in
neural networks.

21

fi

fM

g C

hj

hN

...
...

∂hj

∂fj

∂hN

∂fj

∂g
∂hj

∂g
∂hN

∂C
∂g

Figure 6: Back propagation in a feed forward network

Training a neural network A neural network learns by taking the output of some
cost function whereby the weights and biases for each node in each layer are changed
where the objective is to minimize the cost of the network. In other words, maximize its
performance. The level of adjustment is determined by computing the gradient of the
cost function. The gradient in a neural network is the weighted direction of how much
each parameter (node) with respect to the cost function C needs to change to minimize
the cost of the network.

wt+1 = wt − α
δC

δwt

bt+1 = bt − α
δC

δbt

(13)

In equation 13 we show how by taking the partial derivative with respect to the
cost function C backwards through each layer it allows for the efficient estimation of
derivatives for each nodal connection within a network. Once we have obtained the
partial derivatives with respect to each weighted connection in a neural network. We
subtract the original weights and biases with the product of a constant hyper-parameter
α and the associated partial derivative with respect to the cost function C. The hyper-
parameter α controls the rate of change between each learning epoch so a higher value
shortens the rate of convergence for a neural network model. Similar to simulated
annealing this process is repeated multiple times until the desired minimum cost value
has been obtained or if there is no change between each learning cycle.

3.2 Recurrent neural networks

A recurrent neural network is a type of neural network that allows for the exchange of
information between nodes in the same layer. In graph theory this type of network would
be described as a cycle. Unlike in a feed-forward network, information can pass multiple
times through the same node. This introduction of a cycle into a neural network , allows
for the past ht−1 output from nodes to affect future inputs xt to the same nodes. The

22

fi

fM

g C

hj,t

hN,t

...
...

Input Layer Hidden Layer Output Layer

hj,t−1

hN,t−1

Figure 7: An example of a recurrent neural network

mathematical expression of a standard recurrent neuron is stated in equation 14.

ht = σ(whht−1 + wxxt + b)

yt = ht

(14)

The symbols xt, ht and yt denote the inputs which are fed in sequentially based on
some order t ϵ {0, ...∞}. All three of the inputs of a RNN are fed in sequentially where
t is the current time step of the fed in data. based on the information in the cycle, and
the output of the cell at time t respectively; wh and wxare the weights; and b is the
bias. RNNs have difficulties with long term dependencies in sequential data. Hochreiter
et al [14] analyzed fundamental reasons for the vanishing/exploding gradient problem
and found that during back-propagation the weighted cost gradient of Recurrent Neural
networks tend to either approach infinity or zero. This gradient issue is explained by how
during back-propagation the product of the estimated weights from prior and current
cycles are used in estimating the gradient for the current cycle. Given that the weights
per each cycle in a RNN are relatively similar these values can either decrease (if they
are small) or increase (if they are large) too quickly before the RNN can converge.

LSTM Aiming to solve the vanishing/exploding gradient problem which has impeded
Recurrent neural networks from being used in a broader set of sequential applications,
Hochreiter and Schmidhuber [14] proposed a modification to the standard recurrent cell
that improved the long term memorization capabilities of a standard recurrent neuron
by introducing the concept of memory gates. This is known as a Long Short Term
Memory (LSTM) neuron. A standard LSTM cell (represented in figure 8) is composed
of an input (left tanh function) and output (right tanh function) gate. Those gates
act on the inputs they receive, and similar to the neural network’s nodes, they block
or pass on information based on some minimum threshold which they filter with their
own sets of weights. Those weights, like the weights that modulate input and hidden
states, are adjusted via the recurrent networks learning process. The inclusion of these

23

σ Tanh σ

+

× ×

Tanh

c⟨t−1⟩

Cell

h⟨t−1⟩

Hidden

x⟨t⟩Input

c⟨t⟩

Label1

h⟨t⟩

Label2

h⟨t⟩Label3

Figure 8: A LSTM neuron with a Forget, Input and Output Gate

gates changes the dynamics of how weights are updated since now there is an additive
property in the estimation for each neuron. By increasing the number of elements within
each neuron it decreases the odds that the weights per each cycle will be in effect the
same.

Word vector representation A word vector is the representation of the meaning
of a word in a vector space. Each word is represented as a unique multi-dimensional
vector of real numbers where each point captures a dimension of the words meaning. For
example words such as car and train would be in the same geometric region since they
are both vectors of the word vehicle. The numbers in a word vector represent the word’s
distributed weight across dimensions where each dimension represents a meaning and
the word’s numerical weight on that dimension captures the closeness of its association.
Thus, the semantics of a word are embedded across the dimensions of a vector space.
An example of such a method is Global Vectors for word representations (GloVe) [26].
Glove is a type of unsupervised machine learning model that represents a word as a vector
by examining a large of corpus of text calculating it’s degree of semantic similarity. A
limitation of representing words in this manner is that it does not account for contextual
differences in text

Using neural networks to represent word vectors To improve the contextual
representation of word vectors pre-trained neural networks have been the default. An
example of such a model is ELMo [27] which is a set of two bi-directional LSTM language
models stacked on top of each other. In order to capture the inner structure of a word,
a character-level convolution neural network is used to represent each word as a vector
of characters. Given a sequence of N tokens (this could be a whole sentence, or at least

24

a part of a sentence) the bidirectional language model computes the forward and also
the backward probability. When fitting such a network the goal is to to maximize the
log likelihood of both the forward and backward probability.

3.3 BERT applied to sentiment analysis

A transformer is a deep learning model that adopts the mechanism of self-attention,
deferentially weighting the significance of each part of the input data. Transformers
originally introduced in the paper Attention is all you Need [36] were used for natural
language processing with the purpose of further optimizing the performance of word
vectors. Similar to recurrent neural networks, transformers are designed to process
sequential input data such as natural language. Dissimilar to RNNs and LSTMs, a
transformer processes the entire input of a collection of text at the same time. This
idea of a transformer processing unit in natural language processing is similar to how
the human brain learns and interprets a language. By reading the entire sequence the
attention mechanism can better calculate the relative context for any position in an
inputted sequence. BERT (Bidirectional Encoder Representations from Transformers)
is in essence a language model that consists of a set of bi-directional Transformers
stacked on top of each other. In the default form, a Transformer includes two separate
mechanisms - an encoder that reads the inputted text and a decoder that interprets the
inputted text and provides some predicted output on the meaning of the word. Before
feeding the sentence into BERT, 15 percent of the words in each sequence are hidden.
The model then predicts the original value of the masked words, based on the context
provided by the other, non-masked, words in the sequence. The BERT loss function takes
into consideration only the prediction of the masked values and ignores the prediction
of the non-masked words. This masking can be thought of as a way to prevent the
neural network from over-fitting to the training data. The second mechanism used in
BERT during the training process is as follows: the model receives a pair of sentences
as input and learns to predict if the second sentence in the pair is the following sentence
in a paragraph. The paired sentences are taken from two separate pools of sentences
where the second pool has been randomly sampled. Both of these methods (Masked
LM and Next Sentence prediction) are trained in the same instance where the goal is
to minimize the sum of the calculated loss function from both methods. A limitation
of BERT is that by randomly masking some percentage of words within a text the
relationship between each masked token has been assumed to be independent from one
another. This independence assumption prevents the estimation of the joint probability
for a given masked token and impedes how efficiently BERT can estimate long term
dependencies in text.

RoBERTa This deep learning model is a variants of BERT which was developed by
the Facebook AI research group. RoBERTa stands for Robustly Optimized BERT Pre-
training approach. As the name implies the differences between these two models arise

25

not from a change in architecture but in the methods used during training. Comparing
the two models BERT was trained for approximately 1 million steps with a batch size
of 256 sequences. In RoBERTa, the authors increased the size of each batch to 2000 se-
quences and halved the number of iterations. The larger batches improved the learning
rate on masked language modelling objective and as well as end-task accuracy. Going
beyond batching methodologies the authors of RoBERTa noticed that the masking pro-
cess used by BERT is statically defined during training. This was substituted with a
dynamic masking algorithm in which the location of words to be masked changes each
time data is passed into the model. This change is important during training of larger
data-sets and in addition is shown to perform comparably and in some cases marginally
better than static masking on Next Sentence Prediction (NSP) tasks [22].

XL-Net XL-Net is a state of the art deep learning method that solves the masking In-
dependence assumption in BERT. The general idea behind XL-net is that by re-framing
the training objective (prediction of these masked tokens) as a conditional probability
distribution sampled from all possible permutations given a masked token to predict.
Taking the average over all possible permutations in a sequence of text the XL-net model
can then calculate the join probability for a given masked token. This removes the inde-
pendence assumption found in BERT and allows XL-NET to more efficiently estimate
long term dependencies in text making it the current state of the art for deep learning
sentiment analysis applications.

BERT specific text pre-processing The BERT algorithm has its own specific set
of rules to encode text. The developers of BERT have engineered a set of 3 features
that allows BERT to perform better when learning the underlying structure of some
provided body of text. Position Embedding which encodes the position of each word
within the imputed text. This is included to overcome a limitation of Transformers since
unlike LSTM and RNN it does not have a built-in mechanism that learns sequential pat-
terns. Segment embedding, BERT labels each sentence pair as inputs for next sentence
prediction. This aids the model in learning the relationship between these two sen-
tences. Token Embedding: Using Word Piece a machine learning model that constructs
a dictionary of words interpret-able by neural networks such as BERT.

Tuning of BERT hyper-parameters When fine tuning a pre-trained a model there
exists a significant risk for information from the previously learned task to be abruptly
overridden as new information is incorporated. This phenomenon is commonly known
as catastrophic forgetting. Sentiment classification is conducted by adding a dense layer
after the last hidden state of the BERT transformer. As in the literature this is the
recommended practice when applying BERT with the goal of binary classification. This
modified network is trained on the labeled sentiment Steam review dataset. The same
hyper-parameter tuning strategies were used as recommended by Devlin et al [7]. we
fine tune uncased BERT (BASE) using a batch size of 32 and a maximum learning rate

26

Experiment Precision Recall F1 Score

VADER Steam Reviews 0.61 0.77 0.68
Modified VADER IMDB 0.66 0.76 0.70
BERT Steam Reviews 0.86 0.30 0.79
BERT Movie Reviews 0.80 0.45 0.80

Table 4: Comparing performance of BERT vs base and modified VADER

of 1e−4. To minimize the loss of our BERT model the learning rate is linearly increased
from 0 to 1e-4 and linearly decreased to 0 afterwards for the first 10% of iterations.
Dropout is applied with probability p = 0.1 and weight decay of λ = 0.01. BERT is
trained for 3 epochs with global gradient clipping active. As is recommended by Zhang
et al [41] the ADamW optimizer is used with bias compensation.

The results in table 4 indicate that BERT outperforms both modified and base
VADER when trained and validated on both the Steam and IMDB review datasets.
However, this does come at a cost with respect to the time taken since BERT requires
several hours of run time in order to attain performance metrics that defeat VADER.
We also see that when BERT is then applied a contextually independent dataset (IMDB
movie reviews) accuracy is decreased and recall (loss) increases.

BERT does outperform BASE and Modified VADER but unlike neural network meth-
ods the training requirements are lessened somewhat and the results are interpretative.
We find evidence that confirm the findings from Huto Et [16] al that these set of gram-
matical rules can be applied across context. However, the set of weights used within
the algorithm itself are dependent on the context itself and are not generalized. We find
that training the Modified VADER algorithm for each set of sentiment analysis word
data can improve the performance by at least a few percentage points.

27

4 Conclusions

In this thesis, we have explored statistical methods to further extend, improve and de-
velop lexicographical sentiment analysis methods within and across contexts. To this
aim we have described VADER, a lexical sentiment analysis algorithm as one that lacks
robustness and have proposed that by leveraging statistical learning methods improve-
ments can be made that are statistically significant when applied to a new context. As an
additional contribution to the field of sentiment analysis. A novel dataset from Steam, a
hybrid social media and video game retail platform. This Steam dataset was used to es-
timate the grammatical weights that control the estimation of sentiment of the modified
VADER algorithm. Taking a separate validation set of Steam reviews the performance
of Base and Modified VADER were compared where it was found that using statistical
learning methods such as simulated annealing does improve the performance but only
marginally. However, the same was not the case for Twitter and IMDB datasets where
the performance differences between the two models were found to not be statistically
significant.

A few outcomes are summarized. Firstly, that the estimated parameters do not per-
form favorably across context, we use the fact that neither Modified VADER nor BASE
VADER performed any better than the other across context as evidence of this obser-
vation. Based on this information we conclude that the grammatical rules that define
VADER are not robust and do not generalize across context. This does explain why the
parameters determined by Modified VADER are so vastly different as opposed to those
estimated by BASE VADER. It is suspected that the use of a larger more general set of
grammatical rules (such as using syntax trees) in addition to contextual features may
need to be used in order to properly estimate sentiment within text. Future work would
be in exploring a larger set of parameters and training the modified VADER algorithm
on a mixed data-set composed of Twitter comments, IMDB movie and Steam video
game reviews. Using the same design methodologies as presented in this thesis the aim
would be in confirming with greater certainty if there exists a global set of grammatical
rules that perform well regardless of context.

28

References

[1] Peter D. Turney Alpher. “Thumbs Up or Thumbs Down? Semantic Orientation
Applied to Unsupervised Classification of Reviews”. In: ACL 40.1 (2002), pp. 417–
427.

[2] Raymond E Daly Dan Huang Andrew L Maas and Andrew Y Ng. Learning Word
Vectors for Sentiment Analysis. 2011.

[3] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. “SentiWordNet 3.0:
An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining”. In:
LREC. Ed. by Nicoletta Calzolari et al. European Language Resources Associa-
tion, 2010. isbn: 2-9517408-6-7. url: http://nmis.isti.cnr.it/sebastiani/
Publications/LREC10.pdf.

[4] Margaret Bradley and Peter Lang. “Affective Norms for English Words”. In: NIMH
49.1 (2011), pp. 142–150.

[5] Tyler Clark. “Characteristics of Online Gaming Market Structures: Evidence from
Steam’s Online Gaming Marketplace”. In: NCUR (2019).

[6] Nhan Cach Dang, Maria N. Moreno Garcia, and Fernando de la Prieta. “Sentiment
Analysis Based on Deep Learning: A Comparative Study”. In: CoRR abs/2006.03541
(2020). eprint: 2006.03541.

[7] Jacob Devlin. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding”. In: Google AI Language (2018).

[8] T. G Dietterich. Approximate statistical tests for comparing supervised classifica-
tion learning algorithms. 1998.

[9] Alpaydin E. Combined 5 x 2 cv F test for comparing supervised classification learn-
ing algorithms. 1999. doi: 10.1162/089976699300016007.

[10] Theresa Wilson Efthymios Kouloumpis and Johanna Moore. “Twitter Sentiment
Analysis: The Good the Bad and the OMG!” In: AAAI (2011).

[11] Rishin Haldar and Debajyoti Mukhopadhyay. Levenshtein Distance Technique in
Dictionary Lookup Methods: An Improved Approach. 2011. doi: 10.48550/ARXIV.
1101.1232. url: https://arxiv.org/abs/1101.1232.

[12] Trevor Hastie. The Elements of Statistical Learning. 2009.

[13] Pengcheng He et al. DeBERTa: Decoding-enhanced BERT with Disentangled At-
tention. 2020. doi: 10.48550/ARXIV.2006.03654. url: https://arxiv.org/
abs/2006.03654.

[14] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In: Neural
computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.8.1735.

[15] Minqing Hu and Bing Liu. “Mining and summarizing customer reviews”. In: ACM
40.1 (2004), pp. 168–177.

29

http://nmis.isti.cnr.it/sebastiani/Publications/LREC10.pdf
http://nmis.isti.cnr.it/sebastiani/Publications/LREC10.pdf
2006.03541
https://doi.org/10.1162/089976699300016007
https://doi.org/10.48550/ARXIV.1101.1232
https://doi.org/10.48550/ARXIV.1101.1232
https://arxiv.org/abs/1101.1232
https://doi.org/10.48550/ARXIV.2006.03654
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://doi.org/10.1162/neco.1997.9.8.1735

[16] C.J. Hutto and Eric Gilbert. “VADER: A Parsimonious Rule-based Model for
Sentiment Analysis of Social Media Text”. In: 2014.

[17] James W. Pennebaker, Roger J. Booth, and Martha E. Francis. LIWC 2022. Ver-
sion 22. July 19, 2022. url: https://www.liwc.app/.

[18] Guokun Lai et al. “RACE: Large-scale ReAding Comprehension Dataset From
Examinations”. In: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing. Copenhagen, Denmark: Association for Computa-
tional Linguistics, Sept. 2017, pp. 785–794. doi: 10.18653/v1/D17-1082. url:
https://aclanthology.org/D17-1082.

[19] Kushal Dave Steve Lawrence and David M. Pennock. “Mining the peanut gallery:
opinion extraction and semantic classification of product reviews”. In: World Wide
Web 12.1 (2003), pp. 519–528.

[20] Na Li. “SENTIMENT FEATURES FOR YELP NO TURES FOR YELP NOT-
RECOMMENDED ONLINE -RECOMMENDED ONLINE REVIEWS STUDY”.
In: Open Access Digital Commons (2018).

[21] Jiwei Li1 and Eduard Hovy. “Reflections on Sentiment/Opinion Analysis”. In:
Language Technology Institute 40.1 (2015).

[22] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach.
2019. doi: 10.48550/ARXIV.1907.11692. url: https://arxiv.org/abs/1907.
11692.

[23] Edward Loper and Steven Bird. “NLTK: The Natural Language Toolkit”. In:
CoRR cs.CL/0205028 (2002). url: http://dblp.uni-trier.de/db/journals/
corr/corr0205.html#cs-CL-0205028.

[24] Andrew Maas Raymond Daly Peter Pham Dan Huang Andrew Ng and Christopher
Potts. “Learning Word Vectors for Sentiment Analysis”. In: ACL 49.1 (2011),
pp. 142–150.

[25] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. “Thumbs up? Sentiment
Classification using Machine Learning Techniques”. In: Proceedings of the 2002
Conference on Empirical Methods in Natural Language Processing (EMNLP 2002).
Association for Computational Linguistics, July 2002, pp. 79–86. doi: 10.3115/
1118693.1118704. url: https://aclanthology.org/W02-1011.

[26] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global
Vectors for Word Representation”. In: Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Associ-
ation for Computational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/
D14-1162. url: https://aclanthology.org/D14-1162.

[27] Matthew E. Peters et al. Deep contextualized word representations. 2018. doi:
10.48550/ARXIV.1802.05365. url: https://arxiv.org/abs/1802.05365.

30

https://www.liwc.app/
https://doi.org/10.18653/v1/D17-1082
https://aclanthology.org/D17-1082
https://doi.org/10.48550/ARXIV.1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://dblp.uni-trier.de/db/journals/corr/corr0205.html#cs-CL-0205028
http://dblp.uni-trier.de/db/journals/corr/corr0205.html#cs-CL-0205028
https://doi.org/10.3115/1118693.1118704
https://doi.org/10.3115/1118693.1118704
https://aclanthology.org/W02-1011
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.48550/ARXIV.1802.05365
https://arxiv.org/abs/1802.05365

[28] Wojciech Gryc Prem Melville and Richard D. Lawrence. “Sentiment Analysis
of Blogs by Combining Lexical Knowledge with Text Classification”. In: 2009,
pp. 234–778.

[29] Fernando Rada and Carlos A.Iglesias. “Social context in sentiment analysis: For-
mal definition, overview of current trends and framework for comparison”. In:
Information Fusion 52.1 (2019), pp. 344–356.

[30] Andrew J. Reagan et al. Benchmarking sentiment analysis methods for large-scale
texts: A case for using continuum-scored words and word shift graphs. 2015. doi:
10.48550/ARXIV.1512.00531. url: https://arxiv.org/abs/1512.00531.

[31] Julio Reis et al. Breaking the News: First Impressions Matter on Online News.
2015. doi: 10.48550/ARXIV.1503.07921. url: https://arxiv.org/abs/1503.
07921.

[32] Christopher D. Manning Andrew Y. Ng Richard Socher Alex Perelygin Jean Y. Wu
Jason Chuang and Christopher Potts. “Recursive Deep Models for Semantic Com-
positionality Over a Sentiment Treebank”. In: stanford (2013).

[33] Steam Web Store. May 2022. url: https://store.steampowered.com/games/.

[34] J Surowiecki. “The wisdom of crowds: Why the many are smarter than the few
and how collective wisdom shapes business, economies, societies, and nations”. In:
AAAI (2004).

[35] Janyce Wie Theresa Wilson and Paul Hoffmann. “Recognizing Contextual Polarity
in Phrase-Level Sentiment Analysis”. In: HLT 5.1 (2005), pp. 347–354.

[36] Ashish Vaswani et al. Attention Is All You Need. 2017. doi: 10.48550/ARXIV.
1706.03762. url: https://arxiv.org/abs/1706.03762.

[37] Alex Wang et al. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. 2018. doi: 10.48550/ARXIV.1804.07461. url:
https://arxiv.org/abs/1804.07461.

[38] Qizhe Xie et al. Unsupervised Data Augmentation. cite arxiv:1904.12848. 2019.
url: http://arxiv.org/abs/1904.12848.

[39] Zhilin Yang and Zihang Dai. “XLNet: Generalized Autoregressive Pretraining for
Language Understanding”. In: NeurIPS 33 (2019).

[40] Zhilin Yang et al. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. 2019. doi: 10.48550/ARXIV.1906.08237. url: https://arxiv.
org/abs/1906.08237.

[41] Chiyuan Zhang et al. Understanding deep learning requires rethinking generaliza-
tion. 2016. doi: 10.48550/ARXIV.1611.03530. url: https://arxiv.org/abs/
1611.03530.

31

https://doi.org/10.48550/ARXIV.1512.00531
https://arxiv.org/abs/1512.00531
https://doi.org/10.48550/ARXIV.1503.07921
https://arxiv.org/abs/1503.07921
https://arxiv.org/abs/1503.07921
https://store.steampowered.com/games/
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/ARXIV.1804.07461
https://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1904.12848
https://doi.org/10.48550/ARXIV.1906.08237
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1906.08237
https://doi.org/10.48550/ARXIV.1611.03530
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530

[42] Zhengyan Zhang et al. ERNIE: Enhanced Language Representation with Informa-
tive Entities. 2019. doi: 10.48550/ARXIV.1905.07129. url: https://arxiv.
org/abs/1905.07129.

32

https://doi.org/10.48550/ARXIV.1905.07129
https://arxiv.org/abs/1905.07129
https://arxiv.org/abs/1905.07129

	Introduction
	What is sentiment analysis
	Introducing Steam
	Introduction of the VADER model and outline of thesis

	Enhancing Lexical Sentiment Analysis using Statistical Learning Methods
	Introduction
	Methods
	Pre-processing
	VADER
	Modified VADER algorithm
	Results

	Neural Network Sentiment Analysis
	Neural networks
	Recurrent neural networks
	BERT applied to sentiment analysis

	Conclusions

