1	Child-Adult differences in antagonist muscle coactivation: A systematic review
2	Stacey Woods ¹ , Caragh O'Mahoney ¹ , Andrew McKiel ¹ , Laurel Natale ¹ , Bareket Falk ^{1,2}
3 4 5	¹ Department of Kinesiology, Brock University, St. Catharines, ON, Canada ² Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
6	
7	Corresponding Author:
8	Bareket Falk, Ph.D.
9	Department of Kinesiology
10	Brock University
11	St. Catharines ON L2S 3A1
12	Tel: 905-688-5550 x4979
13	Email: bfalk@brocku.ca
14	
15	The authors have no conflict of interest to declare.
16	This work was supported by the Natural Sciences and Engineering Research Council of
17	Canada (RGPIN-2020-05952-NSERC grant to B. Falk).

18 Abstract

- 19 Antagonist coactivation is the simultaneous activation of agonist and antagonist muscles during a
- 20 motor task. Age-related changes in coactivation may contribute to observed differences in
- 21 muscle performance between children and adults. Our aim was to systematically summarize age-
- 22 related differences in antagonist muscle coactivation during multi-joint dynamic and single-joint
- 23 isometric and isokinetic contractions. Electronic databases were searched for peer-reviewed
- studies comparing coactivation in upper or lower extremity muscles between healthy children
- and adolescents/young adults. Of the 1083 studies initially identified, 25 met eligibility criteria.
- 26 Thirteen studies examined multi-joint dynamic movements, 10 single-joint isometric
- 27 contractions, and 2 single-joint isokinetic contractions. Of the studies investigating multi-joint
- 28 dynamic contractions, 83% (11/13 studies) reported at least one significant age-related
- difference: In 84% (9/11 studies) coactivation was higher in children, whereas 16% (2/11
- 30 studies) reported higher coactivation in adults. Among single-joint contractions, only 25% (3/12
- studies) reported significantly higher coactivation in children. Sixty percent of studies examined
- 32 females, with no clear sex-related differences. Child-adult differences in coactivation appear to

be more prevalent during multi-joint dynamic contractions, where generally, coactivation is

higher in children. When examining child-adult differences in muscle function, it is important to

- consider potential age-related differences in coactivation, specifically during multi-joint dynamic
- 36 contractions.
- 37
- 38 Key words: Antagonist muscle, Contraction, Co-contraction, EMG, Maturation

39 Introduction

Muscle performance is lower in children compared with adults even after accounting for 40 differences in body size (Armatas et al., 2010; De Ste Croix et al., 1999; Falk et al., 2009b). For 41 example, children have lower size-corrected maximal and explosive strength compared with 42 adults (Falk et al., 2009a, 2009b). One factor suggested to contribute to these growth-related 43 44 changes in performance is greater antagonist muscle coactivation in children compared with adults (Grosset et al., 2008; O'Brien et al., 2009). Coactivation is the simultaneous activation of 45 an antagonist muscle during an agonist muscle action. There are several studies which have 46 investigated antagonist coactivation in children and adults, during isometric, (Falk et al., 2009a, 47 2009b; Grosset et al., 2008; Hassani et al., 2009; Jensen et al., 2013; Kochanowiz et al., 2018; 48 Kotzamanidou et al., 2005; Lambertz et al., 2003; Morse et al., 2008; O'Brien et al., 2009, 2010) 49 isokinetic (Bassa et al., 2005; Kellis and Unnithan, 1999) or multi-joint dynamic movements of 50 the upper or lower extremities (Croce et al., 2004; Deffeyes et al., 2012; Frost et al., 2002, 1997; 51 Lazaridis et al., 2010, 2013; Thompson-Kolesar et al., 2018), with inconsistent results. Some 52 studies report greater coactivation in children (Frost et al., 2002; Grosset et al., 2008; Lazaridis et 53 al., 2010), some report greater coactivation in adults (Kochanowiz et al., 2018; Oliver and Smith, 54 55 2010; Quinzi et al., 2015), while others report no age-related differences (Deffeyes et al., 2012; Falk et al., 2009b; Jensen et al., 2013; O'Brien et al., 2010; Raffalt et al., 2017). Further, some 56 57 studies report age-related differences in antagonist coactivation in some but not all movements 58 (Kochanowiz et al., 2018; Lazaridis et al., 2013; Thompson-Kolesar et al., 2018). Thus, while it is commonly accepted that antagonist coactivation, in general, is greater in children and 59 60 decreases with age, the inconsistent findings reported in the above studies, where different types 61 of movements or contractions were examined, bring this certainty into question.

All movements involve some level of coactivation. It has been suggested that the main 62 purpose of antagonist muscle coactivation is to provide stability to the joints on which strain is 63 applied (Baratta et al., 1988; DeLuca and Mambrito, 1987; Solomonow et al., 1987). The extent 64 of antagonist coactivation is influenced by factors such as the contraction type and intensity 65 (Pincivero et al., 2019), velocity (Frost et al., 1997), muscle group and joint(s) being assessed 66 67 (Kochanowiz et al., 2018), as well as the training status of the participant (Carolan and Cafarelli, 1992). Generally, antagonist coactivation is lower during isometric contractions than dynamic 68 contractions (O'Brien et al., 2010; Quinzi et al., 2015). Therefore, child-adult differences in 69 70 antagonist coactivation may depend on the type of task being performed. While providing stability is beneficial, coactivation may be detrimental to force production or efficiency of 71 movement. For example, during single-joint isometric contractions, relatively high coactivation 72 of the antagonist will detract from the force produced by the agonist (Kellis and Baltzopoulos, 73 1997). Thus, it is possible that children's lower maximal force production, or greater muscle 74 75 activation during submaximal contractions may be partly explained by greater antagonist coactivation (Miller et al., 2019). During multi-joint dynamic contractions (e.g., gait), high levels 76 of antagonist coactivation cause inefficient movement (Frost et al., 1997). Thus, it is possible 77 78 that previously reported greater metabolic cost of locomotion in children is at least partly explained by greater levels of antagonist coactivation (Allor et al., 2000). 79

The purpose of this study was to systematically gather and compile studies examining child-adult differences in coactivation during various muscular tasks, to examine whether coactivation differs between children and adults. Secondly, to examine whether age-related differences in coactivation are influenced by contraction type (i.e., multi-joint dynamic vs. single-joint isometric and isokinetic).

85 Methods

86 Literature search

A search of MEDLINE (OVID), MBASE (OVID), SPORTDiscus (EBSCO), Web of 87 Science (Core Collection), and BIOSIS (Web of Science) databases was performed on February 88 26, 2021 to identify pertinent studies. The combination of keywords and/or phrases (mp) and 89 MeSH terms (/) relevant to "children" (Child/ child*mp, boy*mp, girl*mp, adolescen*mp, 90 youth*mp, juvenile*mp, minor*mp, paediatric*mp, paediatric*mp, pediatric*mp, puber*mp, 91 pubescen*mp, underage*mp, under-age*mp, teen*mp, or prepubert*mp, and school child [in 92 EMBASE (OVID) only]), "adults" (Adult/ adult*mp, men*mp, man*mp, women*mp, 93 woman*mp, female*mp, or male*mp, and middle aged or young adult [in EMBASE (OVID) 94 only]), "coactivation" (coactivation*mp, co-activation*mp, cocontraction*mp or co-95 contraction*mp), and "muscle" (muscle*mp, agonist*mp or antagonist*mp) were used to search 96 for relevant articles. 97 When the search was complete, all publications identified in the search were uploaded 98 into software for citation management (Zotero) and screening (Covidence). Following the 99 removal of duplicates, two reviewers (SW, CO) independently screened the titles and abstracts 100 for relevant articles, and conflicts were resolved by an additional reviewer (BF). Two reviewers 101 (SW, CO) then screened the full text of the remaining articles to assess eligibility. At this time 102 103 the reference lists were also screened to identify any relevant articles that were missed in the

search. Conflicts among reviewers were resolved by an additional reviewer (BF).

105 Inclusion criteria

106 Studies were included in the review if they assessed coactivation or co-contraction of 107 lower or upper extremity muscles in healthy children and adolescents/adults. In studies which 108 included an intervention, only baseline values were extracted. In cases where data were 109 presented in figures only, group means and standard deviations were estimated using Web Plot 110 Digitizer (Drevon et al., 2017). No limits were placed on the year of publication and only full 111 text articles published in English were identified.

112 Quality assessment: Risk of Bias

113 Risk of bias was assessed using the Appraisal tool for Cross-Sectional Studies (AXIS tool) (Downes et al., 2016) and Quality Assessment Tool for Quantitative Studies (Thomas et al., 114 2004). Some items were removed, as they were not relevant for cross-sectional studies with no 115 116 intervention. The assessment tools were used to evaluate the following qualities: [1] Sampling/target population, [2] design, [3] procedures, [4] statistical analysis, [5] reporting of 117 findings, [6] reporting withdrawals/non-responders, [7] possible bias from funding sources. For 118 the Thomas et al., (2004) assessment, studies were ranked 'strong', 'moderate', or 'weak'. For 119 the Downes et al., (2016) assessment, studies were classified as either "meeting" the criteria 120 ('yes') or "not meeting" the criteria ('no'). The risk of bias assessment was completed for all 121 studies by two researchers independently (AM, SW), and disagreements were resolved by 122 consensus. 123

124 Data extraction and analysis

From the included studies, sample size, participant characteristics (sex, age, and pubertal stage or maturational status for the children), muscle group examined, task or contraction type, calculation method, and coactivation values (group means and SD or SE) were extracted by two

authors independently (SW, CO). Conflicts were resolved by consensus. All the extracted data
were compiled into 3 tables and organized based on contraction type (Tables 1-3), where each
comparison was listed separately. Studies investigating isometric and isokinetic contractions
were categorized as 'single-joint' contractions, whereas studies examining dynamic movements
such as jumping, balancing, or gait were categorized as 'multi-joint'.

133 Results

From the initial search, 1083 articles were identified. Following the removal of duplicates, 602 titles and abstracts were screened for relevance. Of these articles, 33 were fully assessed for eligibility. During this process, 3 additional studies were identified in the reference lists. From the 36 articles, 11 full-text articles were excluded for one of the following reasons: [a] study did not examine or report antagonist coactivation for both child and adult groups, [b] study did not report original data and data were not able to be obtained from the corresponding author. Thus, of the studies assessed, 25 were included in the review.

141

[Figure 1. PRISMA flowchart]

The studies included comprised 427 children (7-13 year) and 337 adolescents/adults (15-142 40 years). Of the 25 studies included, 12 examined both males and females, 11 examined males 143 only, and 2 examined females only. Ten studies investigated isometric contractions, 2 studies 144 examined isokinetic contractions and 13 studies examined dynamic tasks such as jumping, 145 hopping, walking, running, standing and change of direction movements (i.e., sports cuts). The 146 25 studies included 158 age-related comparisons. Among these 158 comparisons, most (82%, 147 129/158 comparisons) suggested greater antagonist coactivation in children, although only 45% 148 (58/129 comparisons) of these reached statistical significance. Twenty-nine comparisons (18%, 149

29/158 comparisons) suggested greater antagonist coactivation in adults, although only 24%
(7/29 comparisons) of these reached statistical significance.

Of the ten studies examining isometric contractions, 2 studies examined elbow flexors and extensors, 1 study examined elbow and shoulder flexors and extensors, 4 studies examined knee extensors and flexors, and 3 studies examined the plantar- and dorsi-flexors. Within the 10 studies, there were 30 comparisons of antagonist coactivation between children and adults. In 30% (3/10) of studies (43% or 13/30 of comparisons) antagonist coactivation was statistically greater in children compared with adults. In one study (2 comparisons), antagonist coactivation was higher in adults (Table 1)(Kochanowiz et al., 2018).

Two studies examined antagonist coactivation of the knee extensors and flexors during isokinetic contractions in children and adults, reporting 14 comparisons in total. In all comparisons, there were no significant differences in antagonist coactivation between children and adults.

163

[Table 1]

Thirteen studies investigated antagonist coactivation of the lower limb muscles during 164 multi-joint dynamic contractions, resulting in 114 comparisons between children and adults. All 165 but two studies reported significant age-related differences in antagonist coactivation in at least 166 some of the comparisons (Lloyd et al., 2012; Oliver and Smith, 2010). In 35% (40/114) of 167 comparisons coactivation was significantly higher in children, while in 4.4% (5/114) of 168 comparisons, antagonist coactivation was significantly higher in adults. That is, in most cases in 169 which a significant age-related difference was reported, antagonist coactivation was higher in 170 children (Tables 2 and 3). 171

Risk of bias

174	Based on the Thomas et al., (2004) risk of bias assessment, 21 studies rated moderate and
175	4 studies rated weak in terms of selection bias. Two studies rated strong, 18 moderate and 5
176	weak in terms of controlling of confounding variables. Only one study was rated as moderate in
177	terms of using blinding procedures during the data analysis. All studies rated strong in terms of
178	using valid and reliable data collection methods. Lastly, all studies rated weak in terms of
179	reporting withdrawals and/or dropouts from the study.
180	When using the Downes et al., (2016) risk of bias assessment, all studies had clear
181	aims/objectives, appropriate study design, and valid measures and instrumentation. Similarly, in
182	all studies, procedures were cleared by an ethics board, outcome variables were adequately
183	described in the methods and results, findings were internally consistent, and conclusions were
184	justified by the results. There were no studies where the response rate raised concerns about non-
185	response bias and no studies reported funding sources or conflicts which may affect the authors
186	interpretation of the results. Only one study justified its sample size. All but one study provided
187	clear and sufficient description of the experimental and statistical procedures. Twenty-two
188	studies clearly defined their target population, and 4 studies recruited from a wider population
189	than was defined. Moreover, in 4 studies it was unclear where participants were recruited. Only 2
190	studies disclosed information about non-responders or cases where coactivation could not be
191	calculated. Lastly, only 13 studies discussed limitations.

Discussion

This is the first study to systematically examine child-adult differences in antagonist 193 muscle coactivation during various muscle contractions. We identified 25 studies, comprising 194 158 comparisons. Overall, there was no clear pattern of greater (or lower) antagonist muscle 195 coactivation in children. However, a clearer pattern was apparent when age-related differences in 196 coactivation were examined by contraction type (multi-joint dynamic vs. single-joint isometric or 197 198 isokinetic). There was greater prevalence of age-related differences in antagonist muscle coactivation in multi-joint dynamic tasks (83%; 9/13 studies), and less in single-joint, isometric 199 or isokinetic tasks (25%, 3/12 studies). With few exceptions, coactivation was higher in children. 200 201 Overall, theses findings suggest that child-adult differences in antagonist muscle coactivation are task-specific and may be greater during multi-joint dynamic tasks, compared with single-joint 202 isometric and isokinetic tasks. Such age-related differences may contribute to children's lower 203 204 efficiency of movement and muscle performance.

205 Role of coactivation in multi-joint dynamic tasks

Antagonist muscle coactivation plays an important role in the stabilization of joints, 206 particularly during uncontrolled dynamic movements (Baratta et al., 1988; Solomonow et al., 207 1987). In all but two studies examining multi-joint dynamic contractions, higher antagonist 208 coactivation was reported in children during at least one of the experimental conditions (Frost et 209 al., 2002, 1997; Kurz et al., 2018), or movement phases (e.g., breaking phase of a jump landing; 210 211 Lazaridis et al., 2013). In such conditions, children's greater antagonist muscle coactivation may explain, at least partly, their lower movement efficiency (e.g., in gait, hopping; Allor et al., 212 2000). For example, Frost et al., (2002, 1997) examined age-related differences in lower- and 213 214 upper-leg antagonist coactivation during gait at various speeds in children and adolescents, reporting higher coactivation index in younger children compared with older adolescents, 215

specifically at higher speeds. The authors suggested that greater antagonist coactivation 216 contributes to children's higher cost of locomotion, as demonstrated in several studies (Allor et 217 al., 2000; Frost et al., 2002; Krahenbuhl and Williams, 1992; Rowland et al., 1987). Children's 218 higher antagonist coactivation may also partially explain their lower performance during multi-219 joint dynamic tasks (e.g., countermovement jump height). For example, Lazaridis et al., (2010) 220 221 reported higher lower-leg antagonist coactivation during a drop jump, along with lower jump height and ground reaction forces in boys compared with men. The authors argued that 222 children's higher coactivation reflects "less stiffness regulation" (i.e., greater musculotendinous 223 224 compliance and lower muscle activation) and immature jumping technique (Lazaridis et al., 2010, 2013). 225

226 Coactivation is regulated by a complex interaction of activation from central (i.e., motor 227 cortex – pre-synaptic inhibition) and peripheral (i.e., reciprocal and recurrent inhibition) origins. Specifically, during dynamic movements such as jumping, stretch reflexes can decrease 228 antagonist coactivation by reciprocal inhibition (Day et al., 1984; Mizuno et al., 1971). Grosset 229 et al., (2007) demonstrated lower triceps surae stretch reflex response in children compared with 230 adults, attributing it to children's immature sensitivity of the muscle spindles and γ -motor 231 232 neurons and greater musculotendinous compliance. It is possible that children's higher coactivation reflects a lower reflex response and less reciprocal inhibition. Indeed, most age-233 related differences in antagonist coactivation were observed during multi-joint jumping tasks 234 235 (e.g., counter movement jump and drop jump), where implications of the stretch reflex would be greatest. More research examining the age-related changes in the stretch reflex are needed to 236 237 elucidate the role that the stretch-reflex plays in modulating antagonist coactivation in children.

While most of the age-related differences in antagonist coactivation were observed 238 during dynamic, multi-joint tasks, it should be noted that in many movements no such 239 differences were reported. One possibility is that age-related differences in coactivation are more 240 apparent during tasks of higher difficulty (requiring technical skill; Gebel et al., 2019; Paschaleri 241 et al., 2021). Classic motor-learning theory suggests that with increased experience or skill level 242 243 (i.e., age), antagonist coactivation decreases (Ford et al., 2008). Along these lines, most of the studies reporting greater coactivation in children examined younger children and involved more 244 complex tasks, such as drop jumps, (Croce et al., 2004; Lazaridis et al., 2010, 2013) or running at 245 high velocities (Frost et al., 2002, 1997). 246

247 Role of coactivation during controlled, isometric and isokinetic tasks

248 Antagonist coactivation is also observed during controlled isometric or isokinetic contractions, during which it may attenuate muscle performance (e.g., maximal force, power; 249 250 Kellis and Baltzopoulos, 1997). Along these lines, when trying to maintain a submaximal force level, Grosset et al., (2008) reported lower neuromuscular efficacy (inverse of EMG-force slope), 251 and higher antagonist coactivation in children compared with adults. Miller et al., (2019) also 252 suggested that children's greater antagonist coactivation during low-intensity submaximal 253 contractions may explain their 'over activation' (i.e., higher motor-unit firing rates) of the 254 agonist muscle. Nevertheless, most studies examining single-joint isometric/isokinetic 255 256 contractions reported low antagonist coactivation and no difference between children and adults (Falk et al., 2009b, 2009a; Lambertz et al., 2003; O'Brien et al., 2010, 2009). Indeed, during 257 isometric and isokinetic contractions, only 3 of 12 studies reported greater antagonist 258 259 coactivation in children compared with adults (Grosset et al., 2008; Hassani et al., 2009; Kochanowiz et al., 2018). These inconsistent findings may be related to an unfamiliar movement 260

[e.g., dorsi-flexion (Grosset et al., 2008)] or body position [prone (Hassani et al., 2009)], or
muscle length – [long vs. short (Hassani et al., 2009)]. Further research is needed to examine
other factors which may influence chid-adult differences in coactivation during relatively simple,
single-joint isometric/isokinetic contractions.

265 The case for greater antagonist coactivation in adults

In some cases, coactivation may play an important role in joint stabilization, thereby 266 minimizing the risk of injury. Kochanowiz et al., (2018) demonstrated that during shoulder 267 268 flexion, antagonist coactivation is significantly greater in adults compared with children. This pattern was observed among gymnasts, as well as non-athletes. In view of the structural 269 instability of the shoulder joint, such coactivation may be instrumental for reducing the risk of 270 271 injury. Indeed, this was the only study examining isometric contractions in which children's coactivation was significantly lower than adults'. During multi-joint, dynamic contractions, only 272 273 three studies reported statistically higher antagonist coactivation in adults compared with 274 children at some (but not all) phases of the movement (Croce et al., 2004; Quinzi et al., 2015; Russell et al., 2007). Quinzi et al., (2015) reported greater coactivation in adult compared with 275 adolescent karateka during the extension phase of a roundhouse kick. Notably, such a kick 276 requires high angular velocity, which was greater in the adults, and results in high impact force 277 (not measured but presumed higher in the adults). Thus, the authors argued that the adults' 278 279 higher antagonist coactivation may be related to the presumed greater impact force and consequent stress imposed on the knee joint. This is in line with Russell et al., (2007) and Croce 280 281 et al., (2004), who reported higher antagonist coactivation in adults compared with children 282 immediately before landing from a drop jump. Thus, while in most cases antagonist coactivation is greater (or similar) in children compared with adults, in cases of joint structural instability, 283

(Kochanowiz et al., 2018) or when impact is anticipated (Croce et al., 2004; Quinzi et al., 2015;
Russell et al., 2007) greater coactivation may be observed in adults.

286 Sex differences in antagonist coactivation

In adults, several studies have demonstrated greater antagonist coactivation in women 287 compared with men during single-joint concentric and eccentric contractions, as well as during 288 jumping tasks (De Ste Croix et al., 2017; Krishnan et al., 2015; Marquez et al., 2017; Smith et 289 al., 2021). Sex-differences in antagonist coactivation during the pubescent years are of particular 290 291 interest, due the high prevalence of anterior cruciate ligament injuries among adolescent females (Hewett et al., 2006, 2004; Montalvo et al., 2019; Tursz and Crost, 1986). Five of the studies 292 included in the present review specifically examined sex-related differences in antagonist 293 294 coactivation in children and adults (Croce et al., 2004; Kellis and Unnithan, 1999; O'Brien et al., 2010, 2009; Russell et al., 2007). While sex-related differences in antagonist coactivation were 295 not statistically significant, a pattern of higher antagonist coactivation among women compared 296 with men was observed, with no such pattern in the children (Jensen et al., 2013; Kellis and 297 Unnithan, 1999; O'Brien et al., 2010, 2009). This suggests that sex-related differences in 298 coactivation likely develop during puberty. Future research should examine whether sex-related 299 differences in antagonist muscle coactivation is related to maturity and potentially, the associated 300 hormonal changes. 301

302 Methodological issues

303 One of the striking findings illustrated by this review is the tremendous variability 304 amongst studies in the strategies used to quantify coactivation (Tables 1-3). Despite this 305 variability, two main quantification strategies can be identified, associated with the type of

contraction examined. In isometric contractions, coactivation is commonly calculated as the 306 proportion of antagonist activation relative to its activation as an agonist (Bassa et al., 2005; Falk 307 et al., 2009b; Kellis and Unnithan, 1999). In multi-joint dynamic tasks such as gait, jumping or 308 hopping, coactivation is primarily derived from the ratio of activation (reflected in EMG 309 amplitude) of the antagonist muscles to the agonist muscles over specific durations or phases of 310 311 the task (Croce et al., 2004; Frost et al., 1997; Lazaridis et al., 2013; Russell et al., 2007). The different quantification approaches make it difficult to compare coactivation values between 312 313 studies or between muscles. However, the strategy used to quantify coactivation should not 314 influence the age-related comparison within each study, as an identical strategy is used for each age group. Nevertheless, it may be argued that the quantification approach could affect the 315 magnitude of child-adult difference in coactivation. Kellis et al., (2003) examined the effect of 4 316 different calculation methods on coactivation during phases of drop jumps in adults. They found 317 that the magnitude of coactivation and differences between drop heights and jump phases 318 319 changed, depending on the calculation method used. However, the pattern of differences between drop heights or jump phases remained the same, regardless of the calculation method used. 320 Ultimately, the authors recommend that researchers use the method which best reflects the 321 322 examined tasks and research question. Of note, the above calculation approaches are based on EMG amplitudes from two muscles (i.e., one agonist and one antagonist) in the upper or lower 323 324 limbs, acting on the same joint. Recently, the time-varying multi-muscle approach and vector 325 coding technique have been developed to allow for the monitoring of more than two muscles, antagonists or synergists, throughout a movement task (Rinaldi et al., 2018)). These approaches 326 327 have been used to examine coactivation among muscles of the trunk and lower extremities 328 during dynamic movement tasks (Ranavolo et al., 2015; Rinaldi et al., 2020; Tatarelli et al.,

2020). Moreover, they seem to provide a more sensitive estimate of antagonist coactivation
(Rinaldi et al., 2018) during dynamic tasks, better differentiating between varying loads
(Ranavolo et al., 2015), and may be useful in better detecting age-related differences in
antagonist coactivation. The Vector Coding Technique was recently used to demonstrate
increasing antagonist coactivation during gait in children with muscular dystrophy (Rinaldi et al.,
2020), but to our knowledge, has not been applied in healthy children.

Another factor contributing to the variability in the coactivation values between studies is 335 336 related to the normalization of the EMG signal. Normalization is often used to reduce the large 337 inter-subject variability (Winter and Yang, 1984). This approach was adopted in many of the studies reviewed in this study, particularly in dynamic contractions, although the reference value 338 used for normalization varied between studies (Croce et al., 2004; Frost et al., 2002, 1997; 339 Lazaridis et al., 2010, 2013; Oliver and Smith, 2010; Russell et al., 2007; Thompson-Kolesar et 340 al., 2018). For example, Thompson-Kolesar et al., (2018) used maximal EMG root mean squared 341 (RMS) achieved during specific movements (e.g., running, squat jumps, resisted knee flexion 342 and extension) to normalize EMG RMS obtained during the studied jumping and sports cutting 343 tasks. Oliver and Smith, (2010) on the other hand, used total activation during the ground contact 344 345 period to normalize the integrated EMG measured during various hopping phases. These different normalization procedures influence the magnitude of the calculated coactivation, and 346 347 may also affect between-group differences (Katsavelis and Joseph Threlkeld, 2014). In adults, 348 Katsavelis and Joseph Threlkeld, (2014) compared seven different normalization approaches, using the peak EMG RMS, the average EMG RMS during discrete phases, or the average EMG 349 350 RMS during the entire maximal isometric knee extension. They found that normalizing EMG RMS to the RMS during the 500ms interval around peak torque resulted in the lowest variability 351

and highest reliability within and between testing sessions. It is well documented that sizenormalized peak torque is lower in children compared with adults (De Ste Croix et al., 1999;
Falk et al., 2009a) and the associated EMG RMS is also lower. Therefore, it is possible that the
approach recommended by Katsavelis and Joseph Threlkeld (2014) (i.e. normalizing to EMG
RMS during peak torque production) may differentially affect the resultant calculated antagonist
coactivation in children and adults.

Finally, technical issues in EMG recording (e.g., signal-to-noise ratios) and processing 358 359 (e.g., filter cut-off frequencies) may also affect the variability and sensitivity of antagonist 360 coactivation estimation, as elegantly demonstrated by Rinaldi et al., (2018). Traditional approaches to quantifying antagonist coactivation can be influenced by such technical issues, 361 while more recent approaches using time-varying multi-muscle estimations or Vector coding 362 appear to be more sensitive and robust. The sensitivity of these approaches has been 363 demonstrated in adults, using different lifting loads (Ranavolo et al., 2015) or simulations 364 365 (Rinaldi et al., 2018). In children, overall signal amplitude is generally lower and signal-to-noise ratios are often lower than in adults. Thus, future studies investigating age-related changes in 366 antagonist coactivation and potential mechanisms would benefit from the use newer approaches 367 368 to estimate coactivation.

369 Conclusions

The present review systematically compiled 25 studies examining child-adult differences in antagonist coactivation during single-joint isometric and isokinetic tasks and multi-joint dynamic tasks of the upper and lower extremities. In most cases, coactivation was higher in children than in adults, although statistical significance was reached in only 45% of comparisons. Most studies of dynamic multi-joint contraction tasks reported significantly higher antagonist

375 coactivation in children. Overall, these findings suggest that higher antagonist coactivation in children may affect muscle performance (maximal force, efficiency), primarily in dynamic 376 contractions and less so in single-joint isometric and isokinetic contractions. It is unclear whether 377 378 age-related differences in coactivation differ between males and females, but if so, they are more likely among post-pubescents and adults. Future studies need to use robust algorithms to 379 examine potential mechanisms underlying age-related changes in coactivation, which may 380 involve children's greater musculotendinous compliance, lower neuromuscular activation, and 381 developing skill level. 382

References

384	Allor, K.M., Pivarnik, J.M., Sam, L.J., Perkins, C.D., 2000. Treadmill economy in girls and
385	women matched for height and weight. J. Appl. Physiol. 89, 512-516.
386	https://doi.org/10.1152/jappl.2000.89.2.512
387	Armatas, V., Bassa, E., Patikas, D., Kitsas, I., Zangelidis, G., Kotzamanidis, C., 2010.
388	Neuromuscular differences between men and prepubescent boys during a peak isometric
389	knee extension intermittent fatigue test. Pediatr. Exerc. Sci. 22, 205–217.
390	https://doi.org/10.1123/pes.22.2.205
391	Baratta, R., Solomonow, M., Zhou, B.H., Letson, D., Chuinard, R., 1988. Muscular coactivation
392	The role of the antagonist musculature in maintaining knee stability*. Am. J. Sports Med.
393	16, 113–122.
394	Bassa, E., Patikas, D., Kotzamanidis, C., 2005. Activation of Antagonist Knee Muscles During
395	Isokinetic Efforts in Prepubertal and Adult Males. Pediatr. Exerc. Sci. 17, 171–181.
396	Carolan, B., Cafarelli, E., 1992. Adaptations in coactivation after isometric resistance training. J.
397	Appl. Physiol. 73, 911–917. https://doi.org/10.1152/jappl.1992.73.3.911
398	Croce, R.V., Russel, P.J., Swartz, E.E., Decoster, L.C., 2004. Knee muscular response strategies
399	differ by developmental level but not gender during jump landing. Electromyogr. Clin.
400	Neurophysiol. 44, 339–348.
401	Day, B.Y.B.L., Marsden, C.D., Obesot, J.A., Rothwell, J.C., 1984. Reciprocal inhibition between
402	the muscles of the human forearm. J. Physiol. 349, 519–534.
403	De Ste Croix, M., ElNagar, Y.O., Iga, J., Ayala, F., James, D., 2017. The impact of joint angle

404	and movement velocity on sex differences in the functional hamstring/quadriceps ratio.
405	Knee 24, 745–750. https://doi.org/10.1016/j.knee.2017.03.012
406	De Ste Croix, M.B.A., Armstrong, N., Welsman, J., 1999. Concentric isokinetic leg strength in
407	pre-teen, teenage and adult males and females. Artic. Biol. Sport 16, 75-86.
408	Deffeyes, J.E., Karst, G.M., Stuberg, W.A., Kurz, M.J., 2012. Coactivation of lower leg muscles
409	during body weight-supported treadmill walking decreases with age in adolescents. Percept.
410	Mot. Skills 115, 241-260. https://doi.org/10.2466/26.06.25.PMS.115.4.241-260
411	DeLuca, C., Mambrito, B., 1987. Voluntary control of motor units in human antagonist
412	muscles : coactivation and reciprocal activation. J. Neurophysiol. 58, 525–542.
413	Downes, M.J., Brennan, M.L., Williams, H.C., Dean, R.S., 2016. Development of a critical
414	appraisal tool to assess the quality of cross-sectional studies (AXIS). Br. Med. J. Open 6,
415	e011458. https://doi.org/10.1136/bmjopen-2016-011458
416	Drevon, D., Fursa, S.R., Malcolm, A.L., 2017. Intercoder reliability and validity of
417	webplotdigitizer in extracting graphed data. Behav. Modif. 41, 323-339.
418	https://doi.org/10.1177/0145445516673998
419	Falk, B., Brunton, L., Dotan, R., Usselman, C., Klentrou, P., Gabriel, D., 2009a. Muscle strength
420	and contractile kinetics of isometric elbow flexion in girls and women. Pediatr. Exerc. Sci.
421	21, 354–364.
422	Falk, B., Usselman, C., Dotan, R., Brunton, L., Klentrou, P., Shaw, J., Gabriel, D., 2009b. Child-
423	adult differences in muscle strength and activation pattern during isometric elbow flexion
424	and extension. Appl. Physiol. Nutr. Metab. 34, 609-615. https://doi.org/10.1139/H09-020

425	Ford, K., van den Bogert, J., Myer, G., Shapiro, R., Hewett, T., 2008. The effects of age and skill
426	level on knee musculature co-contraction during function activities: a systematic review. Br
427	J. Sports Med. 42, 561–566. https://doi.org/10.1136/bjsm.2007.044883.The
428	Frost, G., Bar-Or, O.O., Dowling, J., Dyson, K., 2002. Explaining differences in the metabolic
429	cost and efficiency of treadmill locomotion in children. J. Sports Sci. 20, 451-461.
430	https://doi.org/10.1080/02640410252925125
431	Frost, G., Dowling, J., Dyson, K., Bar-Or, O., 1997. Cocontraction in three age groups of
432	children during treadmill locomotion. J. Electromyogr. Kinesiol. 7, 179–186.
433	Gebel, A., Lüder, B., Granacher, U., 2019. Effects of Increasing Balance Task Difficulty on
434	Postural Sway and Muscle Activity in Healthy Adolescents. Front. Physiol. 10, 1–13.
435	https://doi.org/10.3389/fphys.2019.01135
436	Grosset, J., Mora, I., Lambertz, D., Perot, C., 2007. Changes in stretch reflexes and muscle
437	stiffness with age in prepubescent children. J. Appl. Physiol. 102, 2352–2360.
438	https://doi.org/10.1152/japplphysiol.01045.2006.
439	Grosset, J.F., Mora, I., Lambertz, D., Pérot, C., 2008. Voluntary activation of the triceps surae in
440	prepubertal children. J. Electromyogr. Kinesiol. 18, 455–465.
441	https://doi.org/10.1016/j.jelekin.2006.11.002
442	Hassani, A., Gourgioti, K., Paraschos, I., Bassa, E.I., Madic, D., Kotzamanidis, C.M., Baquet,
443	G., Berthoin, S., 2009. The effect of knee joint angle on the coactivation of prepubertal boys
444	and adult males. Act Kinesiol. Univ. Tartu. 14, 17–33.
445	Hewett, T.E., Myer, G.D., Ford, K.R., 2006. Anterior cruciate ligament injuries in female

- 446 athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med. 34, 299–311.
- 447 https://doi.org/10.1177/0363546505284183
- Hewett, T.E., Myer, G.D., Ford, K.R., 2004. Decrease in neuromuscular control about the knee
 with maturation in female athletes. J. Bone Jt. Surg. 86, 1601–1608.
- 450 Jensen, B.R., Olesen, A.T., Pedersen, M.T., Kristensen, J.H., Remvig, L., Simonsen, E.B., Juul-
- 451 Kristensen, B., 2013. Effect of generalized joint hypermobility on knee function and muscle
- 452 activation in children and adults. Muscle and Nerve 48, 762–769.
- 453 https://doi.org/10.1002/mus.23802
- 454 Katsavelis, D., Joseph Threlkeld, A., 2014. Quantifying thigh muscle co-activation during
- 455 isometric knee extension contractions: Within- and between-session reliability. J.
- 456 Electromyogr. Kinesiol. 24, 502–507. https://doi.org/10.1016/J.JELEKIN.2014.04.004
- 457 Kellis, E., Arabatzi, F., Papadopoulos, C., 2003. Muscle co-activation around the knee in drop
- 458 jumping using the co-contraction index. J. Electromyogr. Kinesiol. 13, 229–238.
- 459 https://doi.org/10.1016/S1050-6411(03)00020-8
- Kellis, E., Baltzopoulos, V., 1997. The effects of antagonist moment on the resultant knee joint
 moment during isokinetic testing of the knee extensors. Eur. Appl. J. Physiol. 76, 253–259.
- 462 Kellis, E., Unnithan, V.B., 1999. Co-activation of vastus lateralis and biceps femoris muscles in
- 463 pubertal children and adults. Eur. J. Appl. Physiol. Occup. Physiol. 79, 504–511.
- 464 https://doi.org/10.1007/s004210050545
- 465 Kochanowiz, A., Niespondzinski, B., Mieszkowski, J., Kochanowicz, K., Sawczyn, S., 2018.
- 466 The effect of gymnastic training on muscle strength and co-activation during isometric

elbow and glenohumeral flexion/extension. J. Sports Med. Phys. Fitness 58, 966–973.

468	Kotzamanidou, M., Michailidis, I., Hatzikotoulas, K., Hasani, A., Bassa, E., Kotzamanidis, C.,
469	2005. Differences in recovery process between adult and prepubertal males after a maximal
470	isokinetic fatigue task. Isokinet. Exerc. Sci. 13, 261–266. https://doi.org/10.3233/ies-2005-
471	0212
472	Krahenbuhl, G.S., Williams, T.J., 1992. Running economy changes with age during childhood
473	and adolescence.pdf. Med. Sci. Sport. Exerc. 24, 462–466.
474	Krishnan, C., Williams, G.N., Science, R., City, I., City, I., 2015. Sex differences in quadriceps
475	& hamistring EMG-moment relationships. Med. Sci. Sport Exerc. 41, 1652–1660.
476	https://doi.org/10.1249/MSS.0b013e31819e8e5d.Sex
477	Kurz, E., Faude, O., Roth, R., Zahner, L., Donath, L., 2018. Ankle muscle activity modulation
478	during single-leg stance differs between children, young adults and seniors. Eur. J. Appl.
479	Physiol. 118, 239-247. https://doi.org/10.1007/s00421-017-3764-0
480	Lambertz, D., Mora, I., Grosset, JF., Perot, C., 2003. Evaluation of musculotendinous stiffness
481	in prepubertal children and adults, taking into account muscle activity. J. Appl. Physiol. 95,
482	64-72. https://doi.org/10.1152/japplphysiol.00885.2002
483	Lazaridis, S., Bassa, E., Patikas, D., Giakas, G., Gollhofer, A., Kotzamanidis, C., 2010.
484	Neuromuscular differences between prepubescents boys and adult men during drop jump.
485	Eur. J. Appl. Physiol. 110, 67–74. https://doi.org/10.1007/s00421-010-1452-4
486	Lazaridis, S.N., Bassa, E.I., Patikas, D., Hatzikotoulas, K., Lazaridis, F.K., Kotzamanidis, C.M.,
487	2013. Biomechanical comparison in different jumping tasks between untrained boys and

488

men. Pediatr. Exerc. Sci. 25, 101-113. https://doi.org/10.1123/pes.25.1.101

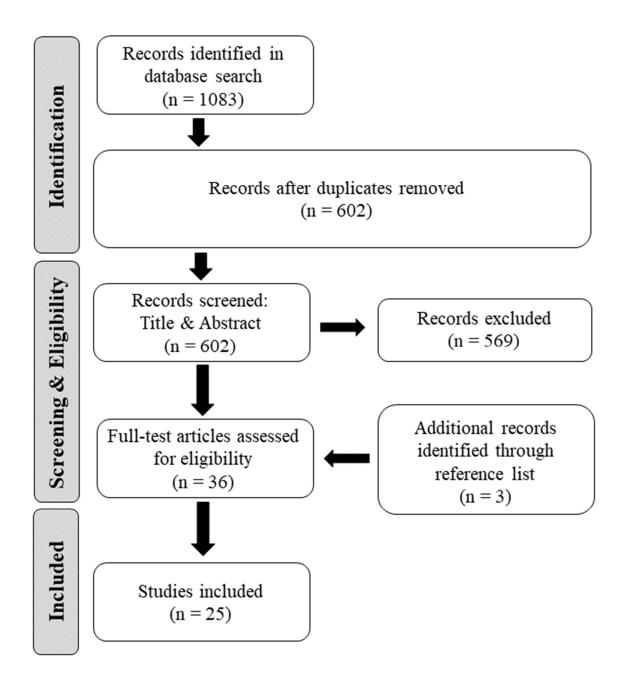
489	Lloyd, R.S., Oliver, J.L., Hughes, M.G., Williams, C.A., 2012. Age-related differences in the
490	neural regulation of stretch-shortening cycle activities in male youths during maximal and
491	sub-maximal hopping. J. Electromyogr. Kinesiol. 22, 37–43.
492	https://doi.org/10.1016/j.jelekin.2011.09.008
493	Marquez, G., Alegre, L., Jaen, D., Martin-Casado, L., Aguado, X., 2017. Sex differences in
494	kinetic and neuromuscular control during jumping and landing. J. Musculoskelet. Neuronal
495	Interact. 17, 409–416.
496	Miller, J.D., Sterczala, A.J., Trevino, M.A., Wray, M.E., Dimmick, H.L., Herda, T.J., 2019.
497	Motor unit action potential amplitudes and firing rates during repetitive muscle actions of
498	the first dorsal interosseous in children and adults. Eur. J. Appl. Physiol. 119, 1007–1018.
499	https://doi.org/10.1007/s00421-019-04090-0
500	Mizuno, Y., Tanaka, R., Yanagisawa, N., 1971. Reciprocal group I inhibition on triceps surae
501	motoneurons in man. J. Neurophysiol. 34, 1010–1017.
502	https://doi.org/10.1152/jn.1971.34.6.1010
503	Montalvo, A.M., Schneider, D.K., Yut, L., Webster, K.E., Beynnon, B., Kocher, M.S., Myer,
504	G.D., 2019. "What's my risk of sustaining an ACL injury while playing sports ?" A
505	systematic review with meta- analysis. Br. J. Sports Med. 53, 1003-1012.
506	https://doi.org/10.1136/bjsports-2016-096274
507	Morse, C.I., Tolfrey, K., Thom, J.M., Vassilopoulos, V., Maganaris, C.N., Narici, M. V., 2008.

- 508 Gastrocnemius muscle specific force in boys and men. J. Appl. Physiol. 104, 469–474.
- 509 https://doi.org/10.1152/japplphysiol.00697.2007

510	O'Brien, T.D., Reeves, N.D., Baltzopoulos, V., Jones, D.A., Maganaris, C.N., 2010. In vivo
511	measurements of muscle specific tension in adults and children. Exp. Physiol. 95, 202–210.
512	https://doi.org/10.1113/expphysiol.2009.048967
513	O'Brien, T.D., Reeves, N.D., Baltzopoulos, V., Jones, D.A., Maganaris, C.N., 2009. The effects
514	of agonist and antagonist muscle activation on the knee extension moment-angle
515	relationship in adults and children. Eur. J. Appl. Physiol. 106, 849–856.
516	https://doi.org/10.1007/s00421-009-1088-4
517	Oliver, J.L., Smith, P.M., 2010. Neural control of leg stiffness during hopping in boys and men.
518	J. Electromyogr. Kinesiol. 20, 973–979. https://doi.org/10.1016/j.jelekin.2010.03.011
519	Paschaleri, Z., Arabatzi, F., Christou, E.A., 2021. Postural control in adolescent boys and girls
520	before the age of peak height velocity: Effects of task difficulty. Gait 92, 461–466.
521	https://doi.org/10.1016/j.gaitpost.2021.12.018
522	Pincivero, D.M., Polen, R.R., Byrd, B.N., 2019. Contraction mode and intensity effects on elbow
523	antagonist muscle co-activation. J. Electromyogr. Kinesiol. 44, 101–107.
524	https://doi.org/10.1016/j.jelekin.2018.12.002
525	Quinzi, F., Camomilla, V., Felici, F., Di Mario, A., Sbriccoli, P., 2015. Agonist and antagonist
526	muscle activation in elite athletes: influence of age. Eur. J. Appl. Physiol. 115, 47–56.
527	https://doi.org/10.1007/s00421-014-2990-y
528	Raffalt, P.C., Alkjær, T., Simonsen, E.B., 2017. Intra-subject variability in muscle activity and
529	co-contraction during jumps and landings in children and adults. Scand. J. Med. Sci. Sport.

530 27, 820–831. https://doi.org/10.1111/sms.12686

531	Ranavolo, A., Mari, S., Conte, C., Serrao, M., Silvetti, A., Iavicoli, S., Draicchio, F., 2015. A
532	new muscle co-activation index for biomechanical load evaluation in work activities.
533	Ergonomics 58, 966–979. https://doi.org/10.1080/00140139.2014.991764
534	Rinaldi, M., D'Anna, C., Schmid, M., Conforto, S., 2018. Assessing the influence of SNR and
535	pre-processing filter bandwidth on the extraction of different muscle co-activation indexes
536	from surface EMG data. J. Electromyogr. Kinesiol. 43, 184–192.
537	https://doi.org/10.1016/j.jelekin.2018.10.007
538	Rinaldi, M., Petrarca, M., Romano, A., Vasco, G., D'Anna, C., Bibbo, D., Schmid, M., Castelli,
539	E., Conforto, S., 2020. Progression of muscular co-activation and gait variability in children
540	with Duchenne muscular dystrophy: A 2-year follow-up study. Clin. Biomech. 78, 105101.
541	https://doi.org/10.1016/j.clinbiomech.2020.105101
542	Rowland, T.W., Auchinachie, J.A., Keenan, T.J., Green, G.M., 1987. Physiologic responses to
543	treadmill running in adult and prepubertal males. Int. J. Sports Med. 8, 292–297.
544	https://doi.org/10.1055/s-2008-1025672
545	Russell, P.J., Croce, R. V., Swartz, E.E., Decoster, L.C., 2007. Knee-muscle activation during
546	landings: Developmental and gender comparisons. Med. Sci. Sports Exerc. 39, 159–169.
547	https://doi.org/10.1249/01.mss.0000241646.05596.8a
548	Smith, S., Rush, J., Glaviano, N.R., Murray, A., Bazett-Jones, D., Bouillon, L., Blackburn, T.,
549	Norte, G., 2021. Sex influences the relationship between hamstrings-to-quadriceps strength
550	imbalance and co-activation during walking gait. Gait Posture 88, 138–145.
551	https://doi.org/10.1016/j.gaitpost.2021.05.019


552 Solomonow, M., Baratta, R., Zhou, B.H., Shoji, H., Bose, W., Beck, C., D'ambrosia, R., 1987.

- The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining
 joint stability. Am. J. Sport. Med. 15, 207–213.
- 555 Tatarelli, A., Serrao, M., Varrecchia, T., Fiori, L., Draicchio, F., Silvetti, A., Conforto, S.,
- 556 Marchis De, C., Ranavolo, A., 2020. Global muscle coactivation of the sound limb in gait of
- people with transfermoral and transibilial amputation. Sensors 20, 2543.
- 558 https://doi.org/10.3390/s20092543
- 559 Thomas, B.H., Ciliska, D., Dobbins, M., Micucci, S., 2004. A process for systematically
- reviewing the literature: Providing the research evidence for public health nursing
- 561 interventions. Worldviews Evidence-Based Nurs. 1, 176–184.
- 562 https://doi.org/10.1111/j.1524-475X.2004.04006.x
- 563 Thompson-Kolesar, J.A., Gatewood, C.T., Tran, A.A., Silder, A., Shultz, R., Delp, S.L., Dragoo,
- J.L., 2018. Age influences biomechanical changes after participation in an anterior cruciate
- ligament injury prevention program. Am. J. Sports Med. 46, 598–606.
- 566 https://doi.org/10.1177/0363546517744313
- 567 Tursz, A., Crost, M., 1986. Sports-related injuries in children: A study of their characteristics,
- frequency, and severity, with comparison to other types of accidental injuries. Am. J. Sports
 Med. 14, 294–299.
- 570 Winter, D.A., Yang, J.F., 1984. Electromyographic amplitude normalization methods: Improving
- 571 their sensitivity as diagnostic tools in gait analysis. Arch. Phys. Med. Rehabil. 65, 517–521.

573	Acknowledgements
-----	------------------

574	We would like to thank Brock University Librarian Evelyn Feldman for providing
575	invaluable assistance with the systematic data search.
576	
577	
578	Figure legends
579	Figure 1. PRISMA flow chart of study inclusion.
580	

Study	Sex	Sex Participants n (age, year)		Muscle Contraction task studied	Calculation method	Coactivation (%)		Statistically significant	
		Children	Adults	stuarta			Children	Adults	Jighintant
Bassa et al., (2005)†	М	18(10.9±0.6)δ	13(18.1±0.1)δ	BF	CON - 45°/s Extension	Ant/Ag	0.14±0.02δ	0.16±0.028	No
Bassa et al., (2005)†	М	18(10.9±0.6)δ	13(18.1±0.1)δ	BF	CON - 90°/s Extension	Ant/Ag	0.16±0.028	$0.18{\pm}0.04\delta$	No
Bassa et al., (2005)†	М	18(10.9±0.6)δ	13(18.1±0.1)δ	BF	CON - 180°/s Extension	Ant/Ag	0.23±0.038	$0.19{\pm}0.03\delta$	No
Bassa et al., (2005)†	М	18(10.9±0.6)δ	13(18.1±0.1)δ	BF	ECC - 45°/s Extension	Ant/Ag	0.13±0.0158	0.13±0.028	No
Bassa et al., (2005)†	М	18(10.9±0.6)δ	13(18.1±0.1)δ	BF	ECC - 90°/s Extension	Ant/Ag	0.13	0.13	No
Bassa et al., (2005)†	М	18(10.9±0.6)δ	13(18.1±0.1)δ	BF	ECC - 180°/s Extension	Ant/Ag	0.125	0.13	No
Falk Usselman et al., (2009)	М	9(9.6±1.6)	9(22.1±2.8)	TB	Maximal Iso Flexion	Ant/Ag	$0.59{\pm}0.44$	0.44 ± 0.27	No
Falk Usselman et al., (2009)	М	9(9.6±1.6)	9(22.1±2.8)	BB	Maximal Iso Extension	Ant/Ag	$0.09{\pm}0.06$	0.12 ± 0.07	No
Falk Brunton et al., (2009)	F	10(9.1±1.4)	15(21.5±0.6)	TB	Maximal Iso Flexion	Ant/Ag	0.3±0.12	0.3±0.2	No
Jensen et al., (2013)†	M/F	20 (10.2±0.4)	18 (40.3±4.1)	BF	25% MVC Flexion	Ant/Ag	11.04	7.64	No
Jensen et al., (2013)†	M/F	20 (10.2±0.4)	18 (40.3±4.1)	BF	25% MVC Extension	Ant/Ag	18.63	18.12	No
Kellis et al., (1999)†	М	9(12.6±0.5)	9(23.1±2.1)	VL	CON - 30°/s Flexion	Ant/Ag	12.2±2.2	16.5±7.0	No [#]
Kellis et al., (1999)†	М	9(12.6±0.5)	9(23.1±2.1)	VL	ECC - 30°/s Flexion	Ant/Ag	12.2±4.0	12.2±7.2	No
Kellis et al., (1999)†	М	9(12.6±0.5)	9(23.1±2.1)	BF	CON - 30°/s Extension	Ant/Ag	20.0±12.0	19.1±12.0	No
Kellis et al., $(1999)^{\dagger}$	M	9(12.6±0.5)	$9(23.1\pm2.1)$	BF	ECC - 30°/s Extension	Ant/Ag	14.5 ± 4.0	13.5±9.0	No
Kellis et al., (1999)†	F	9(12.7±0.5)	$9(23.7\pm3.1)$	VL	CON - 30°/s Flexion	Ant/Ag	15.1±7.0	17.6±7.5	No [#]
Kellis et al., $(1999)^{\dagger}$	F	$9(12.7\pm0.5)$	9(23.7±3.1)	VL	ECC - 30°/s Flexion	Ant/Ag	14.0±15.5	15.5±5.0	No [#]
Kellis et al., (1999)†	F	$9(12.7\pm0.5)$	9(23.7±3.1)	BF	CON - 30°/s Extension	Ant/Ag	12.3±5.5	19.5±7.5	No [#]
Kellis et al., (1999)†	F	9(12.7±0.5) 9(12.7±0.5)	$9(23.7\pm3.1)$ $9(23.7\pm3.1)$	BF	ECC - 30°/s Extension	Ant/Ag	10.5 ± 3.0	16.2 ± 6.5	No [#]
Kochanowicz et al., (2018) – gymnasts†	M	20(8.5)	12(21.5)	AD	Maximal Iso Extension	Ant/Ag	4.37±1.72	5.56±3.94	No [#]
Kochanowicz et al., (2018)†	М	20(8.5)	15(21.5)	BB	Maximal Iso Extension	Ant/Ag	15.46±7.03	12.17±8.16	No
Kochanowicz et al., (2018)†	М	20(8.5)	15(21.5)	AD	Maximal Iso Extension	Ant/Ag	4.57±2.62	3.19±0.87	No
Lambertz et al., (2003)†	M/F	5(7)	6(20.8±1.6)δ	TA	25 and 75% MVC PF	Sum of TA/TS at 25% and TA/TS at 75%	2.3±0.58	1.18±0.28	No
Lambertz et al., (2003)†	M/F	7(8)	6(20.8±1.6)δ	TA	25 and 75% MVC PF	Sum of TA/TS at 25% and TA/TS at 75%	1.9±0.38	1.18±0.28	No
Lambertz et al., (2003)†	M/F	5(9)	6(20.8±1.6)δ	TA	25 and 75% MVC PF	Sum of TA/TS at 25% and TA/TS at 75%	1.6±0.28	1.18±0.28	No
Lambertz et al., (2003)†	M/F	11(10)	6(20.8±1.6)δ	TA	25 and 75% MVC PF	Sum of TA/TS at 25% and TA/TS at 75%	1.6±0.38	1.18±0.28	No
Morse et al., (2008)	М	11(10.9±0.3)	12(25.3±4.4)	TA	Maximal Iso PF	Ant/Ag	11.8 ± 6.7	13.5±5.9	No [#]
O'Brien et al., (2009)	М	10(8.9±0.7)	10(28.2±3.6)	BF	Maximal Iso Flexion	Ant/Ag	8.4±5.5	6.6±3.1	No
O'Brien et al., (2009)	F	10 (9.3±0.8)	10(27.4±4.2)	BF	Maximal Iso Flexion	Ant/Ag	7.6±4.3	8.3±4.8	No [#]
O'Brien et al., (2010)	М	10(8.9±0.7)	10(28.2±3.6)	BF	Maximal Iso Flexion	Ant/Ag	7.78	5.93	No

Table 1. Single-Joint – Isometric and Isokinetic Comparisons. Values are mean±SD, unless otherwise indicated

O'Brien et al., (2010)	F	10(9.3±0.8)	10(27.4±4.2)	BF	Maximal Iso Flexion	Ant/Ag	8.53	12.97	No [#]
Grosset et al.,(2008)†	M/F	6(7)	9(21)	TA	25%MVC	TA/TA at 25%÷TA/TS at	2.25±0.258	1.05±0.158	Yes
Crosset at $a1$ (2009)+	M/F	7(9)	0(21)	Τ 4	25%MVC	MVC TA/TA at	17025	1.05+0.158	Vaa
Grosset et al.,(2008)†	IVI/F	7(8)	9(21)	TA	25%IVI V C	25%÷TA/TS at	1.7±0.28	1.05±0.158	Yes
						MVC			
Grosset et al.,(2008)†	M/F	8(9)	9(21)	TA	25%MVC	TA/TA at 25%÷TA/TS at	1.5±0.158	$1.05\pm0.15\delta$	Yes
						MVC			
Grosset et al.,(2008)†	M/F	11(10)	9(21)	TA	25%MVC	TA/TA at 25%÷TA/TS at	1.53±0.28	$1.05\pm0.15\delta$	Yes
						25%÷1A/1S at MVC			
Grosset et al.,(2008)†	M/F	5(11)	9(21)	TA	25%MVC	TA/TA at	1.4±0.28	$1.05\pm0.15\delta$	Yes
						25%÷TA/TS at MVC			
Hassani et al., (2009)	М	25(9.8±1.1)	25(29.6±0.5)	BF	Maximal Iso Extension at 5° ROM	Ant/Ag	32.8±11	23.6±13.4	Yes
Hassani et al., (2009)	М	25(9.8±1.1)	25(29.6±0.5)	BF	Maximal Iso Extension at 50° ROM	Ant/Ag	27.6±11	20.6±9.1	Yes
Hassani et al., (2009)	М	25(9.8±1.1)	25(29.6±0.5)	BF	Maximal Iso Extension at 95° ROM	Ant/Ag	38.1±12.5	35.3±10.8	Yes
Kochanowicz et al., (2018) – gymnasts†	М	20(8.5)	12(21.5)	TB	Maximal Iso Flexion	Ant/Ag	11.78±4.56	6.29±2.6	Yes
Kochanowicz et al., (2018) –	М	20(8.5)	12(21.5)	BB	Maximal Iso Extension	Ant/Ag	14.42 ± 7.03	$3.59{\pm}1.51$	Yes
gymnasts†			10(01.5)	LD		•	4.05.1.50	15.04.0.55	T <i>T</i> #
Kochanowicz et al., (2018) – gymnasts†	М	20(8.5)	12(21.5)	LD	Maximal Iso Flexion	Ant/Ag	4.37±1.72	17.84±9.55	Yes [#]
Kochanowicz et al., (2018)†	М	20(8.5)	15(21.5)	TB	Maximal Iso Flexion	Ant/Ag	17.68±6.91	12.68±4.63	Yes
Kochanowicz et al., (2018)†	М	20(8.5)	15(21.5)	LD	Maximal Iso Flexion	Ant/Ag	14.61±10.67	29.63±15.03	Yes#

AD – Anterior Deltoid

Ant/Ag – Antagonist activation over muscles activation as an agonist

BB – Biceps Brachii

BF – Biceps Femoris

CON – Concentric muscle contraction

ECC – Eccentric muscle contraction

F- Female

Iso – Isometric contraction

LD – Latissimus Dorsi

M - Male

VL – Vastus Lateralis

TA – Tibialis Anterior

TB – Triceps Brachii

ROM – Range of motion
PF – Plantar Flexion
† - Data extracted from figure
[#]- Indicates greater coactivation in adults compared with children δ - indicates standard error

Study	Sex	Part	ticipants n (age,	vear)	Muscles	Contraction task	Calculation method		Coactivation (%)	Statistically
Study	SCA	1 41 0	incipants in (age,	year)	studied	Contraction task	Calculation include		coactivation (/0)	significant
		Children 1	Children 2	Adults				Children 1	Children 2	Adults	
Lazardis et al., (2013)†	М	12(9.8±0.6)		12(25.5±2.7)	BF/VL	Squat Jump – Propulsive Phase	BF/VL	1.4±0.3		1.2±0.2	No
Lazardis et al., (2013)†	М	12(9.8±0.6)		12(25.5±2.7)	BF/VL	CMJ - Breaking Phase	BF/VL	1.2±0.4		0.9±0.3	No
Lazardis et al., (2013)†	М	12(9.8±0.6)		12(25.5±2.7)	BF/VL	DJ - 20cm - Pre- activation	BF/VL	1.3±0.5		1.1 ± 0.4	No
Lazardis et al., (2013)†	М	12(9.8±0.6)		12(25.5±2.7)	BF/VL	DJ - 40cm - Propulsive Phase	BF/VL	1.25±0.2		1.0±0.35	No
Lloyd et al., (2012)	М	11(9.4±0.3)	11(12.7±0.3)	10(15.9±.3)	BF/VL	Maximal Bilateral Hop – 0-30ms post- contact	BF/VL	0.48 ± 0.49	0.43±0.43	0.28±0.25	No
Lloyd et al., (2012)	М	11(9.4±0.3)	11(12.7±0.3)	10(15.9±.3)	BF/VL	Maximal Bilateral Hop – 31-60ms post- contact	BF/VL	0.72±0.47	1.01±1.23	0.74±0.72	No
Lloyd et al., (2012)	М	11(9.4±0.3)	11(12.7±0.3)	10(15.9±.3)	BF/VL	Maximal Bilateral Hop – 61-90ms post- contact	BF/VL	0.56±0.47	0.57±0.58	0.38±0.33	No
Lloyd et al., (2012)	М	11(9.4±0.3)	11(12.7±0.3)	10(15.9±.3)	BF/VL	Maximal Bilateral Hop – 91-120ms post-contact	BF/VL	0.67±0.45	0.58±0.53	0.44±0.39	No
Lloyd et al., (2012)	М	11(9.4±0.3)	11(12.7±0.3)	10(15.9±.3)	TA/SO L	Maximal Bilateral Hop – 0-30ms post- contact	TA/SOL	0.62±0.8	0.31±0.07	0.28±0.07	No
Lloyd et al., (2012)	М	11(9.4±0.3)	11(12.7±0.3)	10(15.9±.3)	TA/SO L	Maximal Bilateral Hop – 31-60ms post- contact	TA/SOL	0.69±0.87	0.39±0.14	0.29±0.08	No
Lloyd et al., (2012)	М	11(9.4±0.3)	11(12.7±0.3)	10(15.9±.3)	TA/SO L	Maximal Bilateral Hop – 61-90ms post- contact	TA/SOL	0.65±0.83	0.33±0.09	0.28±0.06	No
Lloyd et al., (2012)	М	11(9.4±0.3)	11(12.7±0.3)	10(15.9±.3)	TA/SO L	Maximal Bilateral Hop – 91-120ms post-contact	TA/SOL	1.22±2.40	0.47±0.16	0.36±0.13	No
Oliver et al., (2010)†	М	11(11.5)		10(24.5)	BF/VL	Hopping Task – 1.5 Hz	BF/VL	0.34±0.39		0.21±0.12	No
Oliver et al., (2010)†	М	11(11.5)		10(24.5)	BF/VL	Hopping Task – 30 Hz	BF/VL	0.31±0.29		0.19±0.12	No
Oliver et al., (2010)†	М	11(11.5)		10(24.5)	BF/VL	Hopping Task - Preferred	BF/VL	0.36±0.28		0.56±0.33	No [#]
Oliver et al., (2010)†	М	11(11.5)		10(24.5)	TA/SO L	Hopping Task – 1.5 Hz	TA/SOL	1.55±0.83		1.27±0.8	No

Table 2. Multi-Joint – Dynamic Jump Comparisons. Values are mean±SD, unless otherwise indicated

Oliver et al., (2010)†	М	11(11.5)	10(24.5)	TA/SO	Hopping Task – 30	TA/SOL	1.15±0.87	0.78±0.71	No
0 11 01 00 uni, (2010)		11(110)	10(2110)	L	Hz	112202	1110-0107	0110-0111	110
Oliver et al., (2010)†	М	11(11.5)	10(24.5)	TA/SO L	Hopping Task - Preferred	TA/SOL	0.43±0.19	0.56±0.58	No [#]
Raffalt et al., (2017)†	Μ	10(11.5±1.8)	10(26.3±5.0)	VL/BF	CMJ - ECC	$LesserEMG \times (LesserEMG)$	4.64	4.95	No [#]
						LesserEMG Greater EMG + Greater EMG			
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	VL/BF	CMJ - CON	LossorFMG	10.26	10.57	No [#]
		× ,				$\frac{1}{Greater EMG} \times (LesserEMG)$			
D (C1/ / 1 (2017))	N	10(11.5+1.0)	10/26 2 5 0		DI 20 20	+ Greater EMG	1.20	1 10	NT
Raffalt et al., (2017)†	Μ	$10(11.5\pm1.8)$	10(26.3±5.0)	VL/BF	DJ-30cm -30pre	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG)$	1.29	1.12	No
						Greater EMG + Greater EMG			
Raffalt et al., (2017)†	М	$10(11.5\pm1.8)$	10(26.3±5.0)	VL/ BF	DJ-30cm - 30con	LagamEMC	8.76	8.03	No
						$\frac{LesserEMG}{Greater EMG} \times (LesserEMG)$			
						+ Greater EMG			
Raffalt et al., (2017)†	М	$10(11.5\pm1.8)$	10(26.3±5.0)	VL/BF	DJLand – Pre-landing	$\underline{LesserEMG}$ × (LesserEMG	1.51	1.05	No
					30cm children/	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG)$			
Deffeit et al. (2017)+	м	$10(11.5 \pm 1.9)$	10(26.2+5.0)	VL/BF	60cm adults DJland – CON	+ Greater EMG LesserEMG	4.86	2.3	No
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	VL/DF	30cm children/	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG)$	4.80	2.3	INO
					60cm adults	+ Greater EMG			
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	VL/BF	DJland- Pre-landing		1.93	1.05	No
		· · · · ·			60cm children/	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG$			
					90cm adults	+ Greater EMG			
Raffalt et al., (2017)†	М	$10(11.5\pm1.8)$	10(26.3±5.0)	VL/BF	DJland – CON	LesserEMG × (LesserEMG	5.45	1.59	No
					30cm children/	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG) + Greater EMG$			
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	VM/	90cm adults CMJ - ECC	LagamEMC	1.59	1.77	No [#]
[Xallall Ct al., (2017)]	111	10(11.3±1.8)	$10(20.3\pm3.0)$	SEM	CIVIJ - LCC	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG)$	1.39	1.77	INU
				5200		+ Greater EMG			
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	VM/	CMJ - CON	LesserEMG	2.56	2.73	No [#]
				SEM		$\frac{1}{Greater EMG} \times (LesserEMG)$			
					51.00	+ Greater EMG	0	<u>.</u>	
Raffalt et al., (2017)†	Μ	$10(11.5\pm1.8)$	10(26.3±5.0)	VM/ SEM	DJ-30cm -30pre	$\frac{\text{LesserEMG}}{\text{Greater EMG}} \times (\text{LesserEMG})$.9	.84	No
				SEM		Greater EMG + Greater EMG			
Raffalt et al., (2017)†	М	$10(11.5\pm1.8)$	10(26.3±5.0)	VM/	DJ-30cm - 30con	LossorFMG	3.24	3.12	No
	101	10(11.0=1.0)	10(20.0=0.0)	SEM		$\frac{1}{Greater EMG} \times (LesserEMG)$	5.21	5.12	110
						+ Greater EMG			
Raffalt et al., (2017)†	Μ	10(11.5±1.8)	10(26.3±5.0)	VM/	DJLand – Pre-landing	$\frac{LesserEMG}{C} \times (LesserEMG)$.92	.58	No
				SEM	30cm children/	Greater EMG			
					60cm adults	+ Greater EMG			

Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	VM/ SEM	DJland- Pre-landing 60cm children/ 90cm adults	LesserEMG Greater EMG + Greater EMG	1.17	1.25	No [#]
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	TA/SO L	CMJ - ECC	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG) + Greater EMG$	3.08	2.26	No
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	TA/SO L	CMJ - CON	+ Greater EMG $\frac{LesserEMG}{Greater EMG} \times (LesserEMG)$ + Greater EMG	4.53	2.21	No
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	TA/SO L	DJ-30cm -30pre	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG) + Greater EMG$	1.37	0.64	No
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	TA/SO L	DJ-30cm - 30con	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG) + Greater EMG$	4.35	1.88	No
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	TA/SO L	DJLand – Pre-landing 30cm children/60cm adults	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG + Greater EMG)$	1.33	0.7	No
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	TA/SO L	DJland – CON 30cm children/ 60cm adults	LesserEMG Greater EMG + Greater EMG	2.57	2.32	No
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	TA/SO L	DJland- Pre-landing 60cm children/ 90cm adults	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG) + Greater EMG$	2.16	0.91	No
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	TA/SO L	DJland –CON 30cm children/ 90cm adults	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG) + Greater EMG$	3.85	2.61	No
Russell et al., (2007)	M/F	M 14(9.6±1.0) F	M 13(23.6±3.4) F	VM/SE M	CMJ - 100ms after contact	Flexors/Extensors	100.99±2.56 δ	86.06±2.618	No
Russell et al., (2007)	M/F	14(9.3±0.9) M 14(9.6±1.0) F	14(24.2±2.3) M 13(23.6±3.4) F	VM/SE M	CMJ-100ms after contact to maximum knee flexion	Flexors/Extensors	124.17±8.28 δ	118.85±5.91 δ	No
Thompson-Kolesar et al., (2018)†	F	14(9.3±0.9) 23(11.2±0.6)	14(24.2±2.3) 21(15.7±1.1)	VL/VM /BF/Me d Gas	Double leg jump - Pre Contact	LesserEMG Greater EMG + Greater EMG)	0.14±08	0.11±0.038	No
Croce et al., (2004)	М	15(9.6±1.0)	14(23.6±3.2)	VM/BF	Double leg jump at 50% of max jump height – Pre- activation	VM/BF	288.2±111.3	652.6±538.8	Yes#
Croce et al., (2004)	М	15(9.6±1.0)	14(23.6±3.2)	VM/BF	Double leg jump at 50% of max jump	VM/BF	106.0±21.7	81.1±17.7	Yes

Croce et al., (2004)	М	15(9.6±1.0)	14(23.6±3.2)	VM/BF	height – Post activation (reflexive) Double leg jump at 50% of max jump height – Max knee	VM/BF	108.7±23.3	95.2±35.0	Yes
Croce et al., (2004)	F	15(9.19±1.0)	14(24.2±2.3)	VM/BF	flexion Double leg jump at 50% of max jump height – Pre- activation	VM/BF	313.4±122.4	625.1±353.8	Yes#
Croce et al., (2004)	F	15(9.19±1.0)	14(24.2±2.3)	VM/BF	Double leg jump at 50% of max jump height – Post	VM/BF	103.5±18.8	80.3±15.4	Yes
Croce et al., (2004)	F	15(9.19±1.0)	14(24.2±2.3)	VM/BF	activation (reflexive) Double leg jump at 50% of max jump height – Max knee flexion	VM/BF	101.5±15.4	89.1±17.7	Yes
Lazardis et al., (2010)	М	12(9.8±0.6)	12(25.5±2.7)	Med GAS/ SOL/T A	Drop jump – 20cm – Breaking Phase	TA/SM+SOL	0.82±0.36	0.46±0.2	Yes
Lazardis et al., (2010)	М	12(9.8±0.6)	12(25.5±2.7)	Med GAS/ SOL/T A	Drop jump – 20cm – Propulsion Phase	TA/SM+SOL	0.3±0.13	0.2±0.07	Yes
Lazardis et al., (2013)†	М	12(9.8±0.6)	12(25.5±2.7)	BF/VL	CMJ – Propulsive Phase	BF/VL	1.3±0.3	1.1±0.2	Yes
Lazardis et al., (2013)†	М	12(9.8±0.6)	12(25.5±2.7)	BF/VL	DJ- 20cm – Propulsive Phase	BF/VL	1.2±0.1	1±0.1	Yes
Lazardis et al., (2013)†	М	12(9.8±0.6)	12(25.5±2.7)	BF/VL	DJ- 20cm – Breaking Phase	BF/VL	1.1±0.2	0.9	Yes
Lazardis et al., (2013)†	М	12(9.8±0.6)	12(25.5±2.7)	BF/VL	DJ- 40cm – Pre- Activation Phase	BF/VL	1.4±0.2	1.1±0.3	Yes
Lazardis et al., (2013)†	М	12(9.8±0.6)	12(25.5±2.7)	BF/VL	DJ- 40cm – Breaking Phase	BF/VL	1.3±0.5	0.9±0.2	Yes
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	RF/VL/ SEM	DJland – CON phase 30cm children/60cm adults	LesserEMG Greater EMG + Greater EMG	2.16	1.46	Yes
Raffalt et al., (2017)†	М	10(11.5±1.8)	10(26.3±5.0)	RF/VL/ SEM	DJland – CON phase 30cm children/90cm adults	$\frac{LesserEMG}{Greater EMG} \times (LesserEMG) + Greater EMG$	2.92	1.46	Yes

Russell et al., (2007)	M/F	M 14(9.6±1.0) F 14(9.3±0.9)	M 13(23.6±3.4) F 14(24.2±2.3)	VM/SE M/BF	50% of max jump height- 100ms before contact	Flexors/Extensors	308.3±51.0	619.0±52.0	Yes [#]
Russell et al., (2007)	M/F	M 14(9.6±1.0) F	M 13(23.6±3.4) F	VM/SE M/BF	Pooled coactivation ratio from all jump phases	Flexors/Extensors	177.8±126.4	272.9±333.8	Yes [#]
Thompson-Kolesar et al., (2018)†	F	14(9.3±0.9) 23(11.2±0.6)	14(24.2±2.3) 21(15.7±1.1)	VL/VM /BF/Me d Gas	Double Leg Jump Weight Acceptance	LesserEMG Greater EMG + Greater EMG)	0.53±0.04δ	0.31±0.038	Yes
Thompson-Kolesar et al., (2018)†	F	23(11.2±0.6)	21(15.7±1.1)	VL/VM /BF/Me d Gas	Single-Leg Jump Pre- Contact	LesserEMG Greater EMG × (LesserEMG + Greater EMG)	0.35±0.028	0.27±0.038	Yes
Thompson-Kolesar et al., (2018)†	F	23(11.2±0.6)	21(15.7±1.1)	VL/VM /BF/Me d Gas	Single – Leg Jump Weight Acceptance	LesserEMG Greater EMG + Greater EMG)	0.74±0.038	0.51±0.048	Yes

BF – Biceps Femoris

CMJ – Countermovement jump

CON – Concentric muscle contraction

DJ – Drop jump

ECC – Eccentric muscle contraction

F – Female

GAS – Gastrocnemius

M-Male

 \tilde{X} – Median of the data was extracted

Med- Medial

VL - Vastus Lateralis

VM – Vastus Medialis

SEM-Semitendinosus

SOL-Soleus

TA – Tibialis Anterior

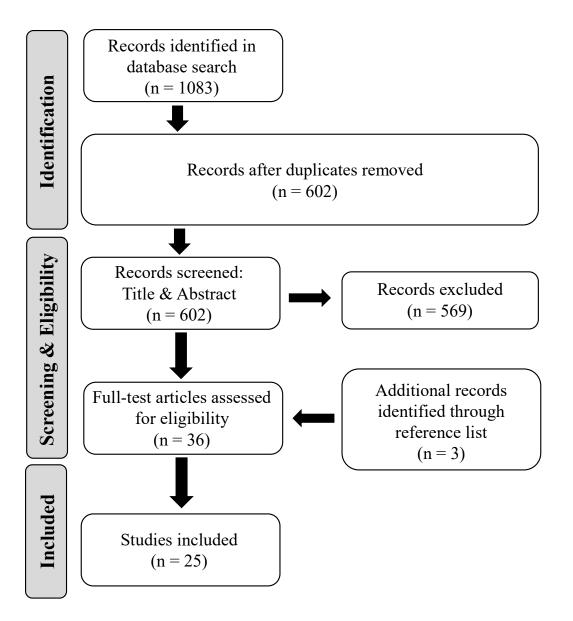
PF – Plantar Flexion

† - Data extracted from figure

[#] - Indicates greater coactivation in adults compared with children

 δ - indicates standard error

Study	Sex	Partic	cipants n (ag	e, year)	Muscle studied	Contraction task	Calculation method	(Coactivation (%	(0)	Statistically significant
		Children 1	Children 2	Adults/ Adolescences				Children 1	Children 2	Adults/ Adolescenc	5
D. CC (1 (2012)	M/E	0(12.2+2.2)		10/25 2 4 2	VI /DE	D C 1 C 1	2 V anontan AD	544160		<u>es</u>	N
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	VL/BF	Preferred Speed - Unweighted	$100 x \frac{2 \times overlapAB}{Total A + Total}$	54.4±6.0		50.7±9.0	No
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	VL/BF	Preferred Speed - 20%BW	$100 x \frac{2 \times overlapAB}{Total A + Total}$	48.7±4.0		44.8±8.9	No
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	VL/BF	Preferred Speed - 40%BW	$\frac{100 \text{ al } A + 100 \text{ al } 100 \text{ al } 2 \times \text{overlapAB}}{700 \text{ al } A + 700 \text{ al } 4 + 7000 \text{ al }$	47.4±4.0		48.6±7.6	No*
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	VL/BF	Preferred Speed - 60%BW	$100 x \frac{2 \times overlapAB}{Total A + Total}$	37.6±9.8		47.0±7.7	No
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	VL/BF	Preferred Speed - 80%BW	$100 x \frac{2 \times overlapAB}{Total A + Total}$	38.1±13.0		39.7±12.2	No*
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	VL/BF	Gait Froude Number Speed – Unweighted	$\frac{2 \times overlapAB}{Total A + Total}$	52.1±5.1		49.5±8.9	No
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	VL/BF	Gait Froude Number Speed – 20%BW	$100 x \frac{2 \times over taphb}{Total A + Total}$	47.J±10.1		48.9±9.5	No*
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	VL/BF	Gait Froude Number Speed – 40%BW	$100 x \frac{2 \times 6767 tapAB}{Total A + Total}$	38.0±12.2		39.4±11.7	No*
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	VL/BF	Gait Froude Number Speed – 60%BW	$100 x \frac{2 \times 60001 \text{ tapAB}}{\text{Total } A + \text{Total}}$	38.8±10.8		29.4±15.2	No
Deffeyes et al., (2012)	M/F	9(13.2±2.2)	10/11	10(25.2±4.3)	VL/BF	Gait Froude Number Speed – 80%BW	$100 x \frac{2 \times 60001 \text{ tupAB}}{\text{Total } A + \text{Total}}$	50.8±12.1		27.6±12.1	No
Frost et al., (1997)†	M/F	10(7.5)	10(11)	10(15.5)	VL/HAM	Walking 25- 29%VO2max	and HAM	0.34±1.10	6.24±1.65	4.53±1.35	No
Frost et al., (1997)†	M/F	10(7.5)	10(11)	10(15.5)	VL/HAM	Walking 31- 38%VO2max	Area of overlap of VL and HAM	7.27±1.16	9.60±3.67	6.85±1.71	No
Frost et al., (1997) ⁺	M/F	10(7.5)	10(11)	10(15.5)	VL/HAM	Running 59- 62%VO2max	Area of overlap of VL and HAM		9.17±1.71	10.40±2.20	No
Frost et al., (1997)†	M/F	10(7.5)	10(11)	10(15.5)	TA/SOL	Walking 25- 29%VO2max Walking 21	Area of overlap of TA and SOL	9.86±1.30	10.17±2.14	10.09±1.53	No
Frost et al., (1997) ⁺	M/F	10(7.5)	10(11)	10(15.5)	TA/SOL	Walking 31- 38%VO2max	Area of overlap of TA and SOL		13.38±3.82	11.31±1.45	No
Frost et al., (1997) ⁺	M/F	10(7.5)	10(11)	10(15.5)	TA/SOL	Running 59- 62%VO2max	Area of overlap of TA and SOL	18.04±1.91	12.38±1.45	14.52±1.99	No
Frost et al., (2002)	M/F	10(7.5)	10(11)		VL/HAM	Walking 1.34 m/s	Area of overlap of VL and HAM	7.32	5.64		No
Frost et al., (2002)	M/F	10(7.5)	10(11)	10(15.5)	VL/HAM	Running 2.19 m/s	Area of overlap of VL and HAM	13.59	11.35		No
Frost et al., (2002)	M/F		10(11)	10(15.5)	VL/HAM	Walking 1.56 m/s	Area of overlap of VL and HAM	7.04	4.56		No
Frost et al., (2002)	M/F		10(11)	10(15.5)	VL/HAM	Running 2.32 m/s	Area of overlap of VL and HAM	14.28	10.46		No


Table 3. Multi-Joint – Dynamic Gait/Other Comparisons. Values are mean±SD, unless otherwise indicated

Frost et al., (2002)	M/F		10(11)	10(15.5)	TA/SOL	Walking 1.56 m/s	Area of overlap of TA	10.53	10.00		No
Frost et al., (2002)	M/F		10(11)	10(15.5)	TA/SOL	Running 2.32 m/s	and SOL Area of overlap of TA and SOL	13.62	14.52		No*
Frost et al., (2002)	M/F		10(11)	10(15.5)	TA/SOL	Running 2.46 m/s	Area of overlap of TA and SOL	13.97	13.51		No
Thompson-Kolesar et al., (2018)†	F	23(11.2±0.6)		21(15.7±1.1)	VL/VM/B F/Med Gas	Pre-Planned Cut Pre- Contact	LesserEMG Greater EMG × (LesserEMG + Greater EMG)	0.21±0.038		0.22±0.018	No
Thompson-Kolesar et al., (2018)†	F	23(11.2±0.6)		21(15.7±1.1)	VL/VM/B F/Med Gas	Unanticipated Cut Pre-Contact	LesserEMG Greater EMG × (LesserEMG + Greater EMG)	0.17±08		0.19±0.018	No*
Quinzi et al., (2015)†	М	6(15.5±1.0)		6(27.7±2.6)	VL/BF	Roundhouse Kick – Maximal Speed - Flexion	Ant/Ag	50.24±25.2 7		46.25±14.55	No
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	TA/Lat GAS	Preferred Speed - Unweighted	$100 x \frac{2 \times overlapAB}{Total A + Total}$	38.6±8.9		25.6±5.0	Yes
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	TA/Lat GAS	Preferred Speed - 20%BW	$100 x \frac{2 \times overlapAB}{Total A + Total}$	35.4±7.0		25.2±4.6	Yes
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	TA/Lat GAS	Preferred Speed - 40%BW	$\frac{10tal A + 10tal}{2 \times overlapAB}$ $100 x \frac{2 \times overlapAB}{\pi + 10tal}$	35.8±6.7		24.9±6.1	Yes
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	TA/Lat	Preferred Speed -	$100 x \frac{2 \times overlapAB}{Total A + Total}$ $100 x \frac{2 \times overlapAB}{2 \times overlapAB}$	36.5±5.9		24.0±3.7	Yes
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	GAS TA/Lat GAS	60%BW Preferred Speed - 80%BW	$100 x \frac{2 \times overlapAB}{Total A + Total}$ $100 x \frac{2 \times overlapAB}{Total A + Total}$	35.5±6.4		26.9±8.6	Yes
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	TA/Lat	Gait Froude Number	$100 x \frac{2 \times overlapAB}{Total A + Total}$ $100 x \frac{2 \times overlapAB}{2 \times overlapAB}$	34.3±4.8		26.1±5.2	Yes
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	GAS TA/Lat	Speed – Unweighted Gait Froude Number	$100 x \frac{2 \times overlapAB}{Total A + Total}$ $100 x \frac{2 \times overlapAB}{2 \times overlapAB}$	37.8±7.3		27.1±9.6	Yes
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	GAS TA/Lat	Speed – 20%BW Gait Froude Number	$\frac{100 x}{Total A + Total}$ $\frac{2 \times overlapAB}{100 x}$	35.9±7.4		23.1±4.7	Yes
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	GAS TA/Lat	Speed – 40%BW Gait Froude Number	$\frac{100 x}{Total A + Total}$ $\frac{2 \times overlapAB}{2 \times overlapAB}$	38.9±6.9		24.6±7.7	Yes
Deffeyes et al., (2012)	M/F	9(13.2±2.2)		10(25.2±4.3)	GAS TA/Lat	Speed – 60%BW Gait Froude Number	$\frac{100 x}{Total A + Total}$ $\frac{2 \times overlapAB}{2 \times overlapAB}$	35.9±4.7		21.8±4.5	Yes
Kurz et al., (2018)	M/F	19(9.7±0.5)		30(23.3±1.5)	GAS TA/SOL	Speed – 80%BW Quiet Standing	$100 x \frac{2 \times overlapAB}{Total A + Total}$ Degree of	0.78±0.15		0.55±0.15	Yes
Quinzi et al., (2015)†	М	6(15.5±1.0)		6(27.7±2.6)	VL/BF	Roundhouse Kick – Maximal Speed -	simultaneous activity Ant/Ag	30.48±21.7 5		61.01±14.01	Yes*
Frost et al., (1997)†	M/F	10(7.5)	10(11)	10(15.5)	VL/HAM	Extension Running 56- 64%VO2max	Area of overlap of VL and HAM	13.70±1.35	11.19±1.22	8.07±1.34	Yes – children 1 & adolescence

Frost et al., (1997)†	M/F	10(7.5)	10(11)	10(15.5)	VL/HAM	Running 65- 68%VO2max	Area of overlap of VL and HAM	14.43±1.77	14.07±1.90	7.65±1.83	Yes – children 1/2 & adolescence
Frost et al., (1997)†	M/F	10(7.5)	10(11)	10(15.5)	VL/HAM	Running 68- 72%VO2max	Area of overlap of VL and HAM	13.82±1.83	14.25±1.77	7.83±1.53	Yes – children 1/2 & adolescence
Frost et al., (1997)†	M/F	10(7.5)	10(11)	10(15.5)	TA/SOL	Running 56- 64%VO2max	Area of overlap of TA and SOL	21.10±2.75	13.76±1.45	13.45±2.52	Yes – children 1 & children 2/adolescence
Frost et al., (1997)†	M/F	10(7.5)	10(11)	10(15.5)	TA/SOL	Running 65- 68%VO2max	Area of overlap of TA and SOL	19.34±1.83	13.61±1.30	12.16±1.83	Yes – children 1/2 & adolescence
Frost et al., (1997)†	M/F	10(7.5)	10(11)	10(15.5)	TA/SOL	Running 68- 72%VO2max	Area of overlap of TA and SOL	19.34±1.83	13.69±1.68	13.76±1.99	Yes – children 1 & children 2/adolescence
Frost et al., (2002)	M/F	10(7.5)	10(11)		VL/HAM	Running 2.06 m/s	Area of overlap of VL and HAM	14.45	9.37		Yes
Frost et al., (2002)	M/F		10(11)	10(15.5)	VL/HAM	Running 2.46 m/s	Area of overlap of VL and HAM	14.81	8.18		Yes
Frost et al., (2002)	M/F	10(7.5)	10(11)		TA/SOL	Walking 1.34 m/s	Area of overlap of TA and SOL	13.87	8.94		Yes
Frost et al., (2002)	M/F	10(7.5)	10(11)		TA/SOL	Running 2.06 m/s	Area of overlap of TA and SOL	19.40	12.56		Yes
Frost et al., (2002)	M/F	10(7.5)	10(11)		TA/SOL	Running 2.19 m/s	Area of overlap of TA and SOL	19.66	13.78		Yes
Thompson-Kolesar et al., (2018)†	F	23(11.2±0.6)		21(15.7±1.1)	VL/VM/B F/Med Gas	Pre-Planned Cut Weight Acceptance	LesserEMG Greater EMG × (LesserEMG + Greater EMG)	0.65±0.058		0.50±0.058	Yes
Thompson-Kolesar et al., (2018)†	F	23(11.2±0.6)		21(15.7±1.1)	VL/VM/B F/Med Gas	Unanticipated Cut Weight Acceptance	LesserEMG Greater EMG × (LesserEMG + Greater EMG)	0.65±0.048		0.47±0.048	Yes
BF – Biceps Femoris BW – Body Weight Children1 – Younger Children1 – Older gr F – Female	r group										

HAM – Hamstring muscle group GAS – Gastrocnemius M – Male Med – Medial VL – Vastus Lateralis SEM – Semitendinosus SOL – Soleus TA – Tibialis Anterior PF – Plantar Flexion † - Data extracted from figure * Indicates greater coactivation in adults compared with children

 δ - indicates standard error

