
Protein-Ligand Binding Affinity Directed
Multi-Objective Drug Design Based on

Fragment Representation Methods

Muhetaer Mukaidaisi

Submitted in partial fulfilment

of the requirements for the degree of

Master of Science

Department of Computer Science

Brock University
St. Catharines, Ontario

©Muhetaer Mukaidaisi, 2022

Abstract

Drug discovery is a challenging process with a vast molecular space to be explored and

numerous pharmacological properties to be appropriately considered. Among various

drug design protocols, fragment-based drug design is an effective way of constraining

the search space and better utilizing biologically active compounds. Motivated by

fragment-based drug search for a given protein target and the emergence of artificial

intelligence (AI) approaches in this field, this work advances the field of in silico

drug design by (1) integrating a graph fragmentation-based deep generative model

with a deep evolutionary learning process for large-scale multi-objective molecular

optimization, and (2) applying protein-ligand binding affinity scores together with

other desired physicochemical properties as objectives. Our experiments show that

the proposed method can generate novel molecules with improved property values

and binding affinities.

Acknowledgements

The COVID-19 pandemic has had a profound impact on all aspects of our lives,

including the pursuit of higher education. Having to shift to remote learning is espe-

cially challenging. The lack of in-person instruction and access to campus resources

has made it difficult to fully engage with our academic purposes.

As we move into the post-pandemic world, many of us are embracing the new

normal and are excited about the opportunities it presents. For me personally, I am

grateful to have been able to achieve my research goals, and even exceed my own

expectations. I am thrilled to be moving forward with my studies and am looking

forward to what the future holds.

I would like to express my deepest gratitude to my supervisor, Dr. Yifeng Li, for

his constant guidance, encouragement, and support throughout the entire program.

Dr. Li has always been the inspiration for this research. The enthusiasm and expertise

he brought to the field have benefited me tremendously in my academic and research

endeavors.

My sincere thanks go out to my co-supervisor Dr. Dividino for her consultation

and prompt review. Her insights and suggestions were invaluable in shaping the

final composition of my work. It would be remiss of me not to thank the committee

members, Dr. Sheridan Houghten and Dr. Naser Ezzati-Jivan, and the external

examiner, Dr. Ping Liang, for their participation in my research and for providing

valuable feedback that assisted me improve my research.

I would like to extend my appreciation to my family, especially my dad, mom, and

my sister, for their mental and financial support during this challenging time. The

love they have shown me has been my constant source of motivation and strength

throughout my life.

In closing, I’d like to thank my partner, Uchqun, for always being there for me,

and helping me through the difficult transition of moving to another country and

adjusting to a completely new environment. I am grateful for his unwavering support

and encouragement.

Contents

1 Introduction 1

1.1 Motivations . 2

1.2 Contributions . 3

1.3 Structure Overview . 4

2 Foundations 5

2.1 Generative Modeling . 5

2.1.1 Autoregressive Models . 6

2.1.2 Flow-based Models . 7

2.1.3 Variational Autoencoders . 9

2.1.4 Generative Adversarial Networks 10

2.2 Graph Neural Network . 12

2.2.1 Graph Theory . 12

2.2.2 Graph Embedding . 15

2.2.3 Graph Neural Network Models 16

2.3 Molecular Representation in Drug Design 17

2.3.1 Graph Representation . 18

2.3.2 Molecular Fingerprint . 19

2.3.3 SMILES Representation . 19

2.4 Evolutionary Algorithms . 20

2.4.1 Overview . 20

2.4.2 Multi-Objective Evolutionary Algorithm 22

3 Related Work 24

3.1 Deep Learning on Chemical Structures 24

3.1.1 SMILES-Based Method . 24

3.1.2 Graph-Based Method . 26

3.2 Evolutionary Molecular Optimization 28

3.3 Protein-Ligand Interaction . 28

4 Methods 30

4.1 Deep Evolutionary Learning Framework (DEL) 30

4.2 Multi-objective Optimization . 32

4.2.1 Non-dominated Ranking and Crowding Distance 32

4.2.2 Evolutionary Operators . 33

4.3 FragVAE-based DEL . 34

4.3.1 BRICS Fragmentation . 35

4.3.2 Modifications . 36

4.4 JTVAE-based DEL . 37

4.4.1 Junction Tree Fragmentation 37

4.4.2 Modifications . 38

4.5 Protein-Ligand Binding Affinity Score (BAS) Calculation 40

4.5.1 Docking on CA9 Protein Target 41

4.5.2 Docking on GPX4 Protein Target 42

4.6 1-Wasserstein Distance . 42

4.7 Hypervolume Measure . 43

5 Experiments 45

5.1 Data . 45

5.2 Hyperparameter Settings . 46

5.3 Implementation Requirements . 47

5.4 FragVAE versus JTVAE in DEL . 48

5.4.1 Single Target . 48

5.4.2 Double Targets . 51

5.5 Virtual Screening . 54

5.5.1 Single Protein Target . 54

5.5.2 Double Protein Targets . 58

6 Conclusion 66

6.1 Discussion . 66

6.2 Limitations . 67

6.3 Research Impact . 68

6.4 Future Work . 68

Bibliography 82

Appendices 83

A Additional Experimental Analysis 83

A.1 Single Protein Target . 83

A.2 Double Protein Targets . 88

List of Tables

5.1 Hyperparameter settings of the DEL process and DGMs respectively. 47

5.2 Performance metrics of the final (10th) population from DEL using

FragVAE and JTVAE, respectively, on two datasets. 49

5.3 Hypervolumes of DEL’s Pareto fronts (β = 0.1) targeting CA9 protein

with three objectives {SAS,LogP,CA9} in the evolutionary process.

The results are collected from the populations of Generations 1, 5, and

10, respectively. 51

5.4 Performance metrics of the final (10th) population from DEL using

FragVAE and JTVAE with double protein targets, respectively, on

two datasets. 52

5.5 Hypervolumes of DEL’s Pareto fronts (β = 0.1) involving CA9 and

GPX4 protein targets, optimizing on four objectives (SAS, LogP, CA9

and GPX4). The results are collected from the populations of Gener-

ations 1, 5, and 10, respectively. 53

List of Figures

2.1 An instance of a complete graph and its spanning trees. 14

2.2 The depiction of an undirected graph using adjacency matrix. 14

2.3 2D (A) and 3D (B) graph representation of ibuprofen molecule. . . . 18

4.1 Diagram showing the workflow of the DEL framework and its interac-

tion with VAE. 32

4.2 Cleavage example of an FDA-approved small-molecule durg Nafcillin (a

penicillin derivative antibiotic, DrugBank Access Number DB00607),

demonstrating the procedure of BRICS-based fragmentation by pro-

ducing fragments on breakable bonds. 35

4.3 Illustration of the graph fragmentation in JTVAE following the subgraph-

by-subgraph strategy, representing the process of tree decomposition

on an FDA-approved small molecule drug Chlorprothixene (a thioxan-

thene antipsychotic, DrugBank Access Number DB01239). Clusters in

the molecule (left) are identified as substructures and denoted as nodes

in the junction tree (right). 38

5.1 2D graph visualization of randomly chosen molecules from ZINC datasets.

RDKit was used for visualization. 45

5.2 2D graph visualization of randomly chosen molecules from DrugBank

dataset. RDKit was used for visualization. 46

5.3 Property distributions on SAS (A), LogP (B), and CA9 (C) with 1-

Wasserstein distances between the final population (10th) of DEL and

the original ZINC data. 50

5.4 Property distributions on SAS (A), LogP (B), CA9 (C) and GPX4

(D) with 1-Wasserstein distances between the final population (10th)

of DEL and the original ZINC data. 53

5.5 2D graph visualization of 8 unique CA9 ligands from PDB. 54

5.6 2D graph visualization of high-quality novel samples of the final (10th)

population of DEL with objectives {SAS,LogP,CA9} applying Frag-

VAE, trained on the ZINC+DrugBank data. To prioritize molecules

with advantageous BAS, the samples are sorted descendingly by the

CA9 binding score. Due to space limitations, only the top 16 molecules

are shown. A.1 displays the complete list of samples. 55

5.7 2D graph examples of high-quality novel samples of the final (10th)

population of DEL with objectives {SAS,LogP,CA9} in combination

with JTVAE, trained on the ZINC+DrugBank data. To prioritize

molecules with advantageous BAS, the samples are sorted descendingly

by the CA9 binding score. Due to space limitations, only the top 16

molecules are shown. The complete list of samples can be found in A.2. 56

5.8 Docking visualization of two novel molecules from FragVAE+DEL bind-

ing on CA9 protein surface, one trained on ZINC+DrugBank dataset

and one on original ZINC. Both molecules ranked top on BAS in the

high-quality samples of their final population. 57

5.9 Docking visualization of two novel molecules from JTVAE+DEL bind-

ing on CA9 protein surface, one trained on ZINC+DrugBank dataset

and one on original ZINC. Both molecules ranked top on BAS in the

high-quality samples of their final population. 58

5.10 2D graph visualization of 6 unique GPX4 ligands from PDB. 59

5.11 2D graph visualization of high-quality novel samples of the final (10th)

population of DEL with objectives {SAS,LogP,CA9, GPX4} in com-

bination with FragVAE, trained on the ZINC+DrugBank data. To

prioritize molecules with favorable BAS, the results are ranked based

on CA9 and GPX4 binding scores respectively, then sorted by the

summation of both ranks. Only the top 16 molecules are shown due

to space limitations. A.3 displays the complete list of samples. 60

5.12 2D graph visualization of high-quality novel samples of the final (10th)

population of DEL with objectives {SAS,LogP,CA9, GPX4} in com-

bination with JTVAE, trained on the ZINC+DrugBank data. The

results are ranked based on CA9 and GPX4 binding scores respec-

tively, then sorted by the summation of two ranks. Only the top 16

molecules are shown due to space limitations. The complete list of

samples can be found in A.4. 61

5.13 Docking visualization of the novel sample ranked top in FragVAE+DEL

with two protein targets, one showing docking on CA9 surface and one

on GPX4 protein surface. 62

5.14 Docking visualization of the novel sample ranked second in FragVAE+DEL

with two protein targets, one showing the docking on CA9 surface and

one on GPX4 protein surface. 63

5.15 Docking visualization of the novel sample ranked third in FragVAE+DEL

with two protein targets, one showing docking on CA9 surface and one

on GPX4 protein surface. 63

5.16 Docking visualization of the novel molecule ranked top in JTVAE+DEL

on double protein targets, with one figure illustrating docking on CA9

protein surface and one on GPX4 surface. 64

5.17 Docking visualization of the novel molecule ranked second in JTVAE+DEL

on double protein targets, with one figure illustrating docking on CA9

protein surface and one on GPX4 surface. 64

5.18 Docking visualization of the novel molecule ranked third in JTVAE+DEL

on double protein targets, with one figure illustrating docking on CA9

protein surface and one on GPX4 surface. 65

A.1 Full list of the 2D graph examples of high-quality novel samples of the

final (10th) population of DEL with objectives {SAS,LogP,CA9} in
combination with FragVAE, trained on the ZINC+DrugBank data.

To prioritize molecules with advantageous BAS, the samples are sorted

descendingly by the CA9 binding score. 85

A.2 Full list of the 2D graph examples of high-quality novel samples of the

final (10th) population of DEL with objectives {SAS,LogP,CA9} in
combination with JTVAE, trained on the ZINC+DrugBank data. To

prioritize molecules with advantageous BAS, the samples are sorted

descendingly by the CA9 binding score. 87

A.3 Full list of the 2D graph visualization of high-quality novel samples in

the final (10th) population of DEL with objectives {SAS,LogP,CA9, GPX4}
in combination with FragVAE, trained on the ZINC+DrugBank data.

To prioritize molecules with favorable BAS, the results are ranked

based on CA9 and GPX4 binding scores respectively, then sorted by

the summation of both ranks. 93

A.4 Full list of the 2D graph visualization of high-quality novel samples in

the final (10th) population of DEL with objectives {SAS,LogP,CA9, GPX4}
in combination with JTVAE, trained on the ZINC+DrugBank data.

The results are ranked based on CA9 and GPX4 binding scores respec-

tively, then sorted by the summation of two ranks. 98

Chapter 1

Introduction

Drugs are essentially molecules with a pharmacological profile that compromises nu-

merous relevant objectives such as potency, selectivity, pharmacokinetics, and toxicity

[68, 26, 25]. Drug discovery is the process of finding new therapeutically useful com-

pounds or repurposing existing ones, with desirable pharmacological properties. After

identification of a drug target (often a protein), the traditional wet-lab approach to

drug discovery involves preparing a set of molecules with specific properties, studying

their structure-property relationships, and optimizing the compound structure. This

trial-and-error approach is often costly and ineffective due to the significant num-

ber of potential compounds estimated at up to 1060 [123, 25]. Typically, developing

novel drugs requires billions of dollars in investment and takes decades to complete

[84]. In contrast to the traditional approaches that require iterative and collective

involvement of domain experts to identify, ennumerate, select possible compounds

molecules, and focus on deriving properties from their structures, modern AI-driven

drug discovery methods aim at efficiently searching through a vast space of molecules

for promising candidates, this can be viewed as either a molecular generation problem

or a molecular optimization problem.

Among many different types of machine learning approaches, generative methods

have been shown to be very successful in solving molecular generation problems. It

involves a generative model that can capture the regularities or patterns of the given

set of molecules using a probabilistic distribution, and then generates new plausible

molecules following a sampling mechanism. The recent application of distributed

representation methods (e.g., word or graph embedding) and deep generative models

(DGMs) in drug design [22, 41, 18] enables the modelling of molecular data via a

parameterized distribution pθ(x, z) where x corresponds to a molecule, z describes

the continuous latent representation, and θ is the set of neural network parameters.

1

CHAPTER 1. INTRODUCTION 2

However, difficulties in producing high-quality novel candidates by prior generative

methods arise because of the discrete nature of chemical space and the large number

of molecules therein.

While generative models generate molecules in consistence with the training data

distribution, molecular optimization on the other hand is the process of designing

new molecules with the desired properties, rather than naively enumerating the entire

molecular space. Molecular optimization problems can be grouped into conditional

and unconditional optimization tasks. A conditional optimization task relies on the

principle of local optimization given a molecule as a start point and aims at finding

structurally similar molecules with better properties, whereas an unconditional opti-

mization task employs global optimization/search techniques. Since drug candidate

needs to quantitatively fulfill multiple desiderata, molecular optimization problems

are essentially multi-objective optimization problems. This research advances the

field of drug design by integrating the deep generative modelling with the molecular

optimization methodology to improve future discoveries.

1.1 Motivations

In our previous work, we developed the deep evolutionary learning (DEL) framework

[40] for multi-objective molecular optimization, which proposes innovation in extend-

ing metaheuristic multi-objective global optimization methods (e.g., multi-objective

evolutionary computation [19, 24]) to their corresponding deep versions through the

latent representation space of DGMs. DEL achieves the co-evolution of both molecu-

lar data and molecular generative models across multiple generations guided by mul-

tiple properties concerned with drug design. To optimize the search of the chemical

space, DEL adopted the DGM FragVAE for sequential modeling of SMILES (Sim-

plified molecular input line entry specification) [122] string fragments for molecular

generation. Although it achieves interesting results in drug design, its fragmentation

strategy usually splits a molecule into only 2-4 fragments, which may pose problems in

language models due to this level of coarse granularity. While we continue looking for

SMILES fragmentation methods at finer granularity, we are interested in investigating

graph fragmentation methods for molecular representation in DGMs and DEL.

Molecular docking is the study of how two or more molecular structures (e.g.,

drug and enzyme or protein) fit together [29], which has been an imperative task

since the majority of drug compounds take effect by specifically binding to active

sites of the specified protein targets responsible for diseases (such as COVID-19,

CHAPTER 1. INTRODUCTION 3

AIDS, cancer, autism, Alzheimer’s, etc.). When the target protein structure becomes

accessible, molecular docking is more frequently involved in in silico drug design

to assess potential protein-ligand binding interactions [119, 86], where the ligand

is usually a molecule that forms a complex with its receptor to modify pathways

associated with diseases. Although molecular generation has gained extensive success

in constraining the search space, it still remains challenging to identify true ligands

among the candidates or generate molecules with high binding affinity to certain

targets. There are many computational tools available for analyzing ligand docking

on the given binding site and offering quantified evaluation of the docking solution,

such as AutoDock [80], AutoDock Vina [113, 23], QVina [5], GOLD [53] and FlexX

[93]. Considering the inherent advantages of the evolutionary feature in the DEL

framework, this thesis integrates protein-ligand docking evaluation into DEL and

evolves the affinity of protein-ligand binding to molecules as an objective in multi-

objective optimization.

1.2 Contributions

In this paper, encouraged by the past success of target-specific fragment-based drug

design methods and the recent development of AI techniques for drug design, we

present an improvement of DEL using the graph-fragment based method, JTVAE, as

the deep generative model for multi-objective molecular optimization. Specifically,

our work has three major contributions.

In our first contribution, we introduced the representation (i.e., embedding) and

generation of molecular graph fragments to DEL through incorporating the graph-

fragmentation deep generative model, JTVAE. The original DEL utilizing FragVAE

was implemented as a benchmark in order to compare this graph fragment-based

DEL with the SMILES fragment-based DEL. As a result, the JTVAE-based DEL

demonstrated superior performance in terms of molecular quality to the FragVAE-

based DEL.

As our second contribution, we apply the protein-ligand binding affinity score as

one of the molecular optimization objectives in DEL, while the original DEL in [40]

entails drug-likeness and synthesizability. Based on molecular mechanism simulation,

protein-ligand binding scores are calculated for molecules to estimate their binding

affinity toward a preeminent target protein surface area. Aiming at identifying active

drug candidates, the binding score is viewed as a desired property along with other

choices of objectives to be optimized in DEL.

CHAPTER 1. INTRODUCTION 4

Third, in recognition of the fact that some drugs are expected to bind to more

than one therapeutic target when treating human diseases such as several types of

tumors and cancer, we further experimented with the concurrent optimization of

protein-ligand binding affinity scores on two drug targets, CA9 [107, 30] and GPX4

[28, 45]. Optimization aims to achieve lower scores, which will lead to higher binding

affinity. In addition, we screened novel molecules that had druggable characteristics

and the potential to be active inhibitors of both protein targets.

1.3 Structure Overview

This thesis is outlined as follows. Chapter 2 explains the foundational concepts of

this work including generative modelling, graph theory and evolutionary algorithms.

Chapter 3 offers an extensive review of the related research in drug design, more

specifically in molecular generation and molecular optimization tasks. Chapter 4

presents the methodology for building JTVAE-based DEL and incorporating ligand

docking on different protein targets. Subsequently, Chapter 5 describes the experi-

ment settings, data preparation, results evaluation and virtual screening of the novel

samples. Chapter 6 deduces the conclusion, extends the research’s impacts on the

community and reflects the applicable future work.

Chapter 2

Foundations

2.1 Generative Modeling

In the field of machine learning, discriminative models is a method of decision mak-

ing by modeling the relation between unknown data y and known data x. It is an

approach based on probability theory, knowing the input variables, discriminative

models predict y by constructing a conditional probability distribution. A simple

example would be upon acquiring a trained discriminative model to classify im-

ages containing pixel-level information (x ∈ ZD) into classes of certain objectives

(y ∈ Y ,Y = {car, tree, house, dog}). To make decision, the model is formulated to

parameterize the conditional distribution p(y|x), which has later demonstrated draw-

back in [110] that adding noise to input images will drastically reduce classification

accuracy. This is because without knowledge of the full observed variables, the dis-

criminative model couldn’t understand the environment, in this case, the semantic

information of images.

As a resort, if we consider the joint distribution p(x, y) and apply the product

rule to factorize it as p(x, y) = p(y|x)p(x), it introduces a generative perspective

to estimate the distribution over objective p(x). Generative models can be used to

simulate (i.e., generate) the distribution of any variable in the model, thus are more

suitable for unsupervised tasks such as classification and clustering. With the help

of neural networks, deep generative modeling is used in a number of areas, including

text analysis, audio generation, and image generation. This thesis is most relevant

to drug design applications, where deep generative modeling has enabled more com-

putationally affordable exploration of the chemical space, as the probabilistic model

can learn from flexible representations of the input data (molecules) and construct

molecules with desired physiochemical properties.

5

CHAPTER 2. FOUNDATIONS 6

The content of the generative model is rich and colorful, and we can classify the

techniques according to the processing method of the probability density function:

autoregressive models, flow-based models, latent variable models and energy-based

models [112]. In this section, we will first introduce basic methods of maximum

likelihood estimation, and then present a detailed look at a few representative models

in more detail, such as variational autoencoders, generative adversarial networks, and

flow-based models.

2.1.1 Autoregressive Models

The autoregressive model (ARM) uses itself as a regression variable, that is, it is a

linear regression model that describes random variables at a certain time in the future

by using a linear combination of random variables at several previous moments, which

is a common concept in time series analysis. There are certain conditions that need

to be met in order for autoregressive models to model data with multiple dimensions

and features. First, the input space X requires a deterministic ordering of its features.

They can be used for images by defining, for example, that the pixels on the left come

before the pixels on the right, and the pixels on the top come before the pixels on

the bottom. Second, given the values of previous features autoregressive methods

treat p(x) as the product of conditional distributions in order to tractably model the

joint distribution of features in the data observations. For instance, the probability

that a pixel in an image has a particular intensity value depends on the values of

all previous pixels; whereas the probability for an image (the joint distribution of all

pixels) is the combination of all its pixels. ARMs use the chain rule to decompose the

likelihood of a data sample x into a product of one-dimensional distributions as shown

in Equation 2.1. The decomposition process transforms the joint modeling problem

into a sequence problem which requires the prediction of the next pixel based on the

previous pixels.

p(x) = p(x0)
D∏
i=1

p(xi|x1, x2, ..., xi−1). (2.1)

Now, the biggest challenge is to compute these conditional distributions p(xi|x1, x2, ..., xi−1).

Is it possible to represent these complex distributions in a tractable and scalable man-

ner? A solution would be to use deep neural networks, most commonly convolutional

neural networks (CNNs) which is a means of analyzing audio [114] and generating

images [115].

CHAPTER 2. FOUNDATIONS 7

Autoregressive models have many limitations:

1. Prediction is sequential thus slow sampling. ARMs perform forward propa-

gation in parallel while obtaining the probabilities of input xi (x ∈ X ,X =

x0, x1, ..., xi. However, given the probabilities, sampling new values means iter-

atively sample at every position until we generate the final objective.

2. Autoregressive model uses its own data to make predictions, hence only suitable

for predicting phenomena related to its own previous state.

3. Absence of latent representation of the data, resulting the lack of manipulation

over the internal data representation.

2.1.2 Flow-based Models

To directly model the likelihood function (i.e., the joint distribution of the high-

dimensional input variable p(x)), flow-based generative models employ the change of

variables formula. Assuming a random variable z has a known probability density

function z ∼ π(z), we would like to construct a new random variable using an injective

function x = f(z), which will result in an invertible function z = f−1(x) (a bijection).

Consequently, the question arises as to how to infer the unknown probability density

function of the new variable? Applying the change of variables formula, it could be

calculated using the known bijective transformation f :

p(x) = π(z = f−1(x))|∂f
−1(x)

∂x
|, (2.2)

where the change of volume |∂f
−1(x)
∂x
| is to normalize the known probability distribution

z ∼ π(z) after transformation f . Further, if objectives are high-dimensional variables

z,x ∈ RD, we can derive a similar form in Equation 2.2 [112]:

p(x) = π(z = f−1(x))|detJf−1(x)|, (2.3)

where detJf−1(x) is the Jacobian matrix of transformation f , which is defined as:

Jf−1(x) =


∂f−1

1

∂x1

∂f−1
1

∂x2
· · · ∂f−1

1

∂xD
...

...
. . .

...
∂f−1

D

∂x1

∂f−1
D

∂x2
· · · ∂f−1

D

∂xD

 . (2.4)

CHAPTER 2. FOUNDATIONS 8

Flow-based modeling involves applying a series of reversible transformation func-

tions to transform a simple distribution into a complex distribution, and updating

it repeatedly with new variables in accordance with the change of variables theorem

to obtain a complex multimodal distribution in the end. As we expand the equation

of the output step by step, we can invert back to the initial simple distribution us-

ing the relationship between each pair of continuous variables. Therefore, after K

transformations, the logarithm of p(x) will be:

log p(x) = log π0(z0 = f−1(x))−
K∑
i=1

|Jfi(zi − 1)|, (2.5)

where the path traversed by a random variable zi is a flow, and the full chain formed

by a continuous distribution πi is called a normalized flow.

Modeling invertible transformations with neural networks can be considered a

suitable solution. However, it must satisfy two properties as specified above. (1)

The neural network has to be invertible. (2) The calculation of
∑K

i=1 |Jfi(zi − 1)|
has to be tractable. An exemplary flow-based model is RealNVP (Real-valued Non-

Volume Preserving) [21] that implements normalizing flow by stacking a sequence

of reversible bijective transformation functions. With each bijective function, an

affine coupling layer divides the input dimension into two parts by dividing the input

high-dimensional variable x into x1:d and xd+1:D. After the first d dimensions remain

unchanged, RealNVP performs an affine transformation to the d+1 to D dimensions,

with the coefficients and intercept parameters being functions of the first d dimensions:

y1:d = x1:d, (2.6)

yd+1:D = xd+1:D · exp(s(x1:d)) + t(x1:d), (2.7)

where s(.) and s(.) are mapped scaling functions and transition functions, and · is
dot product.

RealNVP generalizes the coupling layer and introduces a convolutional layer, al-

lowing for a better handling of graph problems. Further, it also proposes the design

of multi-scale layers, which can reduce the amount of computation and improve the

generation quality by also providing a strong regularization effect. The general frame-

work of the flow model emerges at this point.

CHAPTER 2. FOUNDATIONS 9

2.1.3 Variational Autoencoders

The third family of generative models is latent variable models, which introduce latent

variables z as a solution to the factorized joint distribution p(x, z) = p(x|z)p(z). And
after marginalize out z, the likelihood function yields

p(x) =

∫
p(x|z)p(z)dz. (2.8)

Unlike autoregressive models and flow-based models that directly model the like-

lihood function, latent variable models approximate the likelihood function via varia-

tional inference, and one principled approach is the variantional autoencoder, or VAE

[54].

VAE is closely related to the auto-Encoder (AE) architecture [46] in terms of

structure. AE is a deterministic neural network that is designed to learn an identity

function unsupervised and reconstruct the original input while compressing the data.

This is done to discover an efficient and compressed representation of the original

input. AE can reconstruct the input x (to the encoder) using the decoder output

x̃. The hidden layer z between the encoder and decoder generates a set of codes

to represent the input. Thus, the network can be seen as a harmony of two parts:

an encoder represented by the function z = f(x) that converts the original high-

dimensional input to a low-dimensional latent variable encoding, and a decoder x̃ =

g(z) that generates reconstructions. The objective is to decode x̃ as close to x as

possible, so a common loss function for the autoencoder is L =∥ x − x̃ ∥2. After

training the model, the encoding should retain most of the information from the

input data to be able to directly represent the original data in reconstructions, as to

achieve the goal of dimensionality reduction.

An AE is not particularly useful if it simply learns to set g(f(x)) = x everywhere

since this imposes some constraints or regularizations on the AE so that it produces

approximately similar data. How come? Because we would not know which factors

are crucial when generating an object without explicitly modeling the distribution of

z. The training data is limited, thus g(z) may only respond to the limited set of z. If

we only randomly sample in this large space RD, we cannot expect to always sample

just enough to generate useful information.

Instead of mapping the input to a fixed vector, VAE maps it to a distribution,

which is defined as qϕ(z|x) parameterized by ϕ. If we consider a known Gaussian

distribution ϕ = {µ, σ2}. By multiplying 1 =
qϕ(z|x)
qϕ(z|x)

, the logarithm of Equation 2.8

CHAPTER 2. FOUNDATIONS 10

can be derived into:

log p(x) ≥ Ez∼qϕ(z|x)
[
log p(x|z)]− Ez∼qϕ(z|x)

[
log qϕ(z|x)− log p(z)], (2.9)

where qϕ(z|x) is the amortized variational posterior, and this lower bound of log-

likelihood function is called Evidence Lower Bound (ELBO).

VAEs use deep neural networks to parameterize the generative component and

inference component as a family of deep generative models. Even though the latent

vector (i.e., the bottleneck of the architecture) is stochastic, the reparameterization

trick enables gradient descent to be used for model learning [95]. Appropriately,

the encoder (inference) network can be defined as qϕ(z|x) parameterized by ϕ and

decoder (generative) network pθ(x|z) with learnable parameters θ. In the training

process, the encoder maps input x to the stochastic latent vector z which is then

passed to the decoder to generate the reconstruction x̃. Based on this, the following

negated variational loss is formulated from Equation 2.9 for minimization:

L(ϕ,θ) = −Ez∼qϕ(z|x)
[
log pθ(x|z)

]
+KL

(
qϕ(z|x)∥p(z)

)
. (2.10)

The first term above is referred to as reconstruction error, which measures the

difference between the original input and the reconstructed output generated by the

decoder. It reflects the loss in the process x ∼ z ∼ x̃, and can also be described as the

expected negated log-likelihood [55]. The second term is a regularization term using

Kullback-Leibler (KL) divergence [60] in order to measure the proximity between

posterior qϕ(z|x) and prior p(z) [59], which can be formulated as:

KL
(
qϕ(z|x)∥p(z)

)
=

∫
X
qϕ(z|x) log

qϕ(z|x)
p(z)

dx. (2.11)

The latent variable z at the bottleneck should approximate the standard Gaussian

distribution N (0, I) after model training. Thus, disparate data can be generated by

sampling from this distribution and passing them through the decoder.

2.1.4 Generative Adversarial Networks

Another relevant approach to latent variable models is what is known as generative

adversarial networks (GANs) by [37], which have a different structure that consists

of a generator G and a discriminator D. Generator is responsible for generating new

plausible examples from the problem domain, while discriminator works on classify-

CHAPTER 2. FOUNDATIONS 11

ing examples as real (from the domain) or fake (generated). The two networks are

trained as competitors. Generators produce sample data directly. Its adversary, the

discriminator, attempts to distinguish between samples drawn from the training data

and samples drawn from the generator. During training, this competitive process

continues until the discriminator model fails to judge true or false more than half of

the time, indicating the generator model is producing very realistic data. That is,

given the empirical distribution pdata(x), the objective is to learn G that generates

pg = pdata that D cannot correctly distinguish from.

In GAN architecture, the generator can be any neural network structure Gβ the

input is random noise z ∼ pz(z) (Gaussian distribution, uniform distribution, etc.),

and the training goal is to make the output Gβ(z) obtain a greater probability in the

subsequent discrimination stage. Similar to VAE, GAN is based on a latent space

that reflects the compressed representation of the data distribution. G will average

the selected points in the latent space. The new points extracted from the latent

space can be used as inputs to the generator model for generating new and varied

output examples. After training, a generator model is retained for generating new

samples.

The discriminator also is a neural network Dα but with two sources of data:

x ∼ pdata(x) and x ∼ pθ(x) =
∫
Gβ(z)p(z)dz, and the training goal is to accurately

distinguish between those two sources. It is a normal classification model that predicts

a binary label real or fake. The two networks are trained alternately, and their

capabilities are improved synchronously.

The training phase of GAN is a minmax two-player game [37], and the corre-

sponding objective function is as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)

[
logDα(x)] + Ez∼p(z)

[
log(1−Dα(Gβ(z))], (2.12)

where D targets to minimize the probability of assigning the correct label to both

training examples and samples from G, which is to maximize logDα(x) and log(1−
Dα(Gβ(z)). While the goal of G is to minimize the probability of generated sample

being correctly labeled by D, that is to minimize log(1−Dα(Gβ(z)).

There are still some existing problems of GAN, such as:

• Vanishing Gradient. The discriminator becoming too powerful may result in the

gradient vanishing of G. To address this problem, Wasserstein GAN (WGAN)

introduces Wasserstein distance as a solution [6].

• A tendency for mode collapse, leading to a lack of diversity in the generated

CHAPTER 2. FOUNDATIONS 12

samples. WGAN and unrolled GAN are two common resorts [73].

• High computational costs. Due to the model’s complex structure, it presents

high parameter complexity for resource-constrained real-world applications. GAN

compression is useful for reducing the cost, which often involves pruning (remov-

ing some parameters), quantization (reducing the bit width) and distillation.

2.2 Graph Neural Network

With the advancement of machine learning and deep learning, significant break-

throughs have been made in speech, image, and natural language processing. Despite

this, speech, images, and text are merely sequences or grids of information, and deep

learning approaches are adept at handling this type of quantified data. In the real

world, however, not everything can be represented as a sequence or a grid, for exam-

ple social networks, biological networks, molecules or complex file systems. Unlike

images, graphs have complex topology, are arbitrary in size, and are difficult to model

due to their lack of spatial locality. Can deep learning be extended to model this type

of data? These problems have prompted the emergence and development of graph

neural networks (GNNs). GNN refers to the use of neural networks to learn graph-

structured data, extract and explore features and patterns within graph-structured

data, and perform tasks such as clustering, classification, prediction, segmentation,

and generation.

2.2.1 Graph Theory

Definition of Graph

As a general definition, an undirected graph is an ordered pair G = (V,E) consisting

of a set of vertices or nodes vi ∈ V or a set of (vi, vj) ∈ E as edges or lines. E is

a subset of the 2-element V, in which an edge is associated with two vertices, and

its association consists of unordered pairs of the two vertices. A directed graph, on

the other hand, is an ordered pair G = (V,E) where the edge set (vi, vj) ∈ E are

ordered pairs of vertices vi ∈ V . When a simple undirected graph consists of exactly

one edge connecting each pair of distinct vertex points, it is considered a complete

graph. Whether it is an undirected graph or a directed graph, the sequence of all

vertices (including these two vertices) passing from one vertex to another is referred

to as a path. A path is called a loop (or cycles) if it joins a vertex to itself.

CHAPTER 2. FOUNDATIONS 13

In graph theory, weight refers to a numerical value assigned to each edge in a

graph. This value represents the cost, distance, or any other relevant metric that

describes the relationship between the two vertices connected by the edge. A weighted

graph is a graph in which the edges are marked with weights. Weights are used to

calculate various algorithms for graphs, such as shortest paths and minimum spanning

trees [38], in order to determine the most efficient solution. Graphs are considered

unweighted if their edges do not bear a specific weight or cost. An unweighted graph

serves primarily to describe relationships between objects without considering any

quantitative aspects of those relationships.

Graphs can be used to represent a variety of relationships, including those in the

fields of medicine [116], biology [72], social media [39], or information systems [2].

These real-world applications have led to the definition of network as a graph in

which attributes (e.g. names) are associated with vertices and edges.

Spanning Tree

Graph theory defines a spanning tree as a subset of a graph G with the fewest possible

edges connecting all vertices. This means that there are no cycles in the spanning tree

and it cannot be disconnected. Accordingly, every connected and undirected graph

G contains at least one spanning tree. Since a disconnected graph cannot span all

vertices, it does not have a spanning tree. Figure 2.1 illustrates that we can construct

three spanning trees from a complete graph with three nodes. A complete undirected

graph can have a maximum of n × n − 2 spanning trees, where n is the number of

nodes. In this example, n =3 forwarding exists three possible spanning trees.

In general, mathematical properties of spanning trees includes:

• A spanning tree has n− 1 edges, where n is the number of nodes (vertices).

• A spanning tree can be built by removing the largest e − n + 1 edges in the

corresponding complete graph.

• A complete graph can have up to n× n− 2 spanning trees.

Spanning trees are mainly used to find the shortest path between all nodes in

a graph. There are many applications of spanning trees, including civil network

planning, computer network routing protocols, and cluster analysis, etc.

In a weighted graph, a minimum spanning tree is a spanning tree whose sum of

edge weights is less than that of all other spanning trees in the graph [38]. There can

CHAPTER 2. FOUNDATIONS 14

A

B C

A

B C

A

B C

A

B C

Spanning Trees

Figure 2.1: An instance of a complete graph and its spanning trees.

be one or more minimum spanning trees in one graph, and the number of minimum

spanning tree edges equals the number of vertices minus one.

Adjacency Matrix

It is possible to represent the graph by storing the adjacency matrix in two arrays.

A one-dimensional array stores information about vertices in the graph, and a two-

dimensional array (called an adjacency matrix) stores information about edges in the

graph.

A

B

D

C

Adjacency

Matrix

A

B

C

D

A B C D

0

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

Figure 2.2: The depiction of an undirected graph using adjacency matrix.

When storing a undirected graph, as showing in Figure 2.2, we set up two arrays,

the vertex array is vertex[4] = {A,B,C,D}, and the edge array edge[4][4] is actually

a matrix. For the values of the main diagonal of the matrix, i.e. edge[0][0] , edge[1][1]

CHAPTER 2. FOUNDATIONS 15

, edge[2][2] , edge[3][3] are all 0s since there is no loop. This example states that the

adjacency matrix of an undirected graph is a symmetric matrix.

2.2.2 Graph Embedding

Graph/Network embedding and graph neural networks are two related areas of re-

search. Graph embedding represents the graph as a low-dimensional vector space,

while maintaining the topology and node information of the network, so that ma-

chine learning algorithms can be applied directly to graph analysis tasks in the future.

It should be noted that some deep learning-based graph embeddings also belong to

graph neural networks, such as graph autoencoders and graph convolutional neural

networks.

The network representation using the adjacency matrix has the problem of com-

putational efficiency. The adjacency matrix A uses the storage space of |V| × |V| to
represent a graph. As the number of nodes grows, the space required for this repre-

sentation grows exponentially. At the same time, the sparseness of the data makes it

difficult to apply fast and effective learning methods.

Real graphs (networks) are often high-dimensional and intractable. Graph em-

bedding is essentially a dimensionality reduction algorithm that maps the high-

dimensional features of each node to low-dimensional features. The graph embedding

process involves first constructing a RD space graph in accordance with the actual

problem, and then embedding the nodes of the graph into Rd(d ∈ D) space.

The idea of embedding is to keep connected nodes close to each other in a vector

space. Local linear embeddings and Laplacian feature maps are algorithms that are

based on this principle. However, the scalability of this approach is a significant

concern, and it has a time complexity of O(|V |).
The focus of recent graph embedding research has been on scalable embedding

techniques that address network sparsity. For example, graph factorization uses an

approximate factorization of the adjacency matrix as the embedding. LINE (large-

scale information network embedding) [111] extends this approach and attempts to

preserve first- and second-order approximations. In an effort to preserve high-order

proximity, HOPE (high order proximity preserved embedding) [85] applies general-

ized singular value decomposition (SVD) to decompose the similarity matrix, rather

than the adjacency matrix. SDNE (structural deep network embedding) [120] uses

autoencoders to embed graph nodes and capture highly nonlinear dependencies. The

time complexity of these novel scalable methods is O(|E|).

CHAPTER 2. FOUNDATIONS 16

2.2.3 Graph Neural Network Models

An adjacency matrix is employed in the graph neural network as opposed to the

fully connected layer (MLP), where the feature matrix is multiplied by the weight

matrix. The input to the more common application mode of a graph neural network

is a graph. After various operations such as multi-layer graph convolution and acti-

vation functions, the representation of each node can be obtained to facilitate node

classification, link prediction and the generation of graphs and subgraphs.

Graph Convolution Networks

Graph convolutional networks (named as CGNs) proposed by Kipf et al. [57] gen-

eralize convolution operations from traditional data (such as images) to graphs. Es-

sentially, the goal is to learn a function map f , through which node vi can aggregate

its own feature xv and its neighbors’ feature xu, u ∈ N(v) (N(v) denotes the set of

neighbor nodes v) to generate a new representation of node vi. Thus, GCN is about

the flow and dissemination of features and messages. GCNs form the basis of many

complex graph neural network models, such as autoencoder-based models, generative

models, and spatiotemporal networks.

GCN methods fall into two categories: spectral-based and spatial-based. From

a graph signal processing perspective, spectral-based approaches introduce filters to

define graph convolution, where graph convolution operations are interpreted as re-

moving noise from graph signals. Spatial-based methods represent graph convolutions

as aggregations of neighborhood features. When the algorithm of graph convolutional

networks operates at the node level, graph pooling modules can be interleaved with

graph convolutional layers to coarsen the graph into high-level substructures.

Bruna et al. [11] adapted convolutional neural networks to graph data for the

first time, proposing two parallel graph convolution models: spectrally decomposed

graph convolution and spatial graph convolution. Spatial graph convolution addresses

the spatial characteristics of graph structure data, as well as the representation of

neighbor nodes, so that neighbor nodes of each node are uniform and regular, which

is convenient for convolution operations. Several key problems exist with the spatial

graph convolution method, primarily (1) choosing the central node, (2) selecting the

size of the receptive field, that is, determining the number of neighbor nodes, and

(3) how to handle the characteristics of the neighbor nodes, i.e. how to construct a

suitable aggregation of neighbor node features.

CHAPTER 2. FOUNDATIONS 17

Graph Auto-encoders

GNN based on autoencoders is known as graph autoencoders (GAEs) [56], unsuper-

vised learning frameworks that encode nodes/graphs into latent vector spaces and

reconstruct graph data from that information. GAE is used for learning network

embeddings and graph generation distributions. For network embeddings, GAE nor-

mally learns latent node representations by reconstructing graph structural informa-

tion in the adjacency matrix [56, 120]. When it comes to graph generation, some

methods produce nodes and edges incrementally, while others generate the graph all

at once.

Graph Attention Networks

Attention mechanisms allow neural networks to focus only on the information required

for task learning, and they can select specific inputs. By incorporating an attention

mechanism into GNN, the neural network is able to focus on nodes and edges that are

most relevant to the task, improving the effectiveness of training and the accuracy of

testing, resulting in the formation of a graph attention network (GAT) [117]. There

are other GNN models built on attention mechanisms such as gated attention network

(GaAN) that employs a multi-head attention mechanism to update the hidden states

of nodes [133], and graph attention model (GAM) which processes graph information

by adaptively visiting a sequence of critical nodes containing target information [63].

2.3 Molecular Representation in Drug Design

Molecular generation tasks require input information in the form of molecules, and

with molecular structures to be learned, it raises a question: what molecular represen-

tation scheme should be employed to enable a better understanding of the chemical

structure? For machine learning algorithms, the numerical variable can be directly

used as input, whereas for categorical variables, the most common way is to repre-

sent it by one-hot encoding. Similarly, chemical structures can be represented by

their original graph features, or by a set of numbers, such as fingerprints or other

descriptors. They exhibit a variety of molecular properties, such as LogP, molecular

weight, hydrogen bond donors, acceptors, and rotatable bonds, among others. Dif-

ferent molecular representations have their own advantages and disadvantages. Most

often, one or more of them is selected based on the structure of the machine learning

model. In general, the higher the descriptor’s dimension, the greater its information

CHAPTER 2. FOUNDATIONS 18

content. It consists essentially of three categories: graphs, molecular fingerprints, and

SMILES notation.

2.3.1 Graph Representation

Molecules are essentially atoms and chemical bonds connecting atoms to each other,

so they can naturally be represented using the mathematical structure of graphs,

which exhibit rich structural and spatial information. Given a two-dimensional (2D)

graph G = (V,E), the typical procedure of molecular graph representation is to map

the atoms into nodes vi ∈ V and treat the bonds as edge (vi, vj) ∈ E. Graphs

typically have nodes defined as circles or junctions with letters indicating their atom

types. Figure 2.3 (A) depicts an example of 2D graph representation in terms of the

ibuprofen molecular structure [126].

A B

Figure 2.3: 2D (A) and 3D (B) graph representation of ibuprofen molecule.

As shown in Figure 2.3 (B), in three dimensions, molecules are viewed in space

with x, y, and z coordinates. Therefore, three-dimensional (3D) representation can

contain a high level of information that may be useful for modeling biological end-

points. It accounts for spatial and geometric configuration, shape-based information,

conformation-dependent distances, and surface properties (e.g. van der Waals force,

solvent-accessible surface area). There can, however, be some complications when it

comes to selecting the appropriate optimization method. In addition, generating 3D

conformations, evaluating and finalizing optimized conformations, and determining

3D descriptors can take a significant amount of time.

The graph G = (V,E), being a 2D object, can also embody 3D information about

molecules in order to access their quantum properties. The 3D graph representation

CHAPTER 2. FOUNDATIONS 19

of molecules is complementary to the 2D topology, and tends to include the geomet-

ric distribution of atoms, specifically their positions around stereocenters, axes, and

planes. A common solution is to encode the spatial relationships between the nodes

as node or edge attributes [17], such as atomic coordinates, bond angles and chirality.

2.3.2 Molecular Fingerprint

The most common form of fingerprint is the use of a series of binary digits (bits) that

encode the presence or absence of molecular neutron structures using sparse vectors.

Therefore, drugs (small compounds) are described as vectors (arrays) of 0s and 1s

that can represent molecules in machine learning models based on the substructure

present in a particular molecule. Drugs (small compounds) can therefore be viewed

as vectors (arrays) of 0s and 1s for the purpose of representing molecules in machine

learning models based on their substructure.

The molecular fingerprint has the advantages of simplicity and speed. Neverthe-

less, encoding molecules into binary vectors is not a reversible process, but rather a

lossy transformation. Namely, we can encode a molecular formula that can represent

structural information into a molecular fingerprint, but we cannot infer the structure

of the molecule from only the fingerprint.

2.3.3 SMILES Representation

An alternative means to represent molecules is to encode molecular structures by con-

verting graph-structured data into textual content and using text (encoded strings)

as input in a machine learning input pipeline. SMILES [122] is a popular specification

in the form of a line notation for describing the structure of chemical species using

short ASCII strings, thereby facilitating the use of corresponding algorithms in natu-

ral language processing (NLP) in processing molecules. To continue with the example

of ibuprofen, its chemical formula is C13H18O2 , which can be expressed in SMILES

string format as ”CC(C)CC1=CC=C(C=C1)C(C)C(=O)O” according to its graph

structure.

SMILES characterization is usually obtained by expanding molecular graphs us-

ing depth-first search. To describe a three-dimensional chemical structure, it must

convert the chemical structure into a spanning tree, and adopt the vertical priority

tree traversal algorithm. As part of the transformation, hydrogen must be removed

first, and the ring must be opened. It is recommended to denote the atoms at the

ends of the bonds to be removed by numbers, and the branches by parentheses. The

CHAPTER 2. FOUNDATIONS 20

majority of molecular editing software can import and convert SMILES strings into

2D graphics or 3D models of molecules. One molecule often appears in different forms

of SMILES notation as a result of the different starting points and directions in the

depth-first search.

2.4 Evolutionary Algorithms

2.4.1 Overview

From Lamarck’s theory of evolution to Darwin’s theory of evolution, to Mendel’s

genetics, human research on the phenomenon of life evolution has reached unprece-

dented levels of significance. Darwin’s theory of evolution states that organisms on

earth may undergo mutations during reproduction, leading to the development of

new species. Due to limited resources, when competition between different species

occurs, the fittest survive and the unfit are eliminated. This principle of survival of

the fittest constantly governs the evolution of nature. The idea of using evolution-

ary theory to solve problems was developed into different implementations including

genetic algorithms [47, 4], genetic programming [58], evolution strategies [94] and

evolution programming [31], later merged into a family of algorithms, evolutionary

algorithms (EAs). In comparison to other methods, genetic algorithms (GA) are rel-

atively mature and have been widely applied for a long time. And there is a growing

interest in using evolutionary strategies (ES) [125] and evolutionary programming

(EP) in scientific research and in solving practical problems.

Evolutionary algorithms are probabilistic search algorithms based on biological

evolution mechanisms, which generally involve basic operations such as reproduction,

mutation, recombination, and selection [118, 4]. Compared to traditional optimiza-

tion algorithms such as calculus-based methods and exhaustive methods, evolutionary

computing is a mature global optimization method with high robustness and wide

applicability, and it is self-organizing, self-adapting, and self-learning in nature. More-

over, EA is not constrained by the nature of the problem, so it can effectively deal

with problems that are difficult to solve with traditional optimization algorithms, in

particular NP-hard problems [129].

A comprehensive context for evolutionary algorithms based on genetic algorithms

often involves an optimization problem, with populations of its candidates (individ-

uals or phenotypes) evolving through generations towards superior solutions. An

individual’s fitness is estimated based on his or her properties (genotypes) that make

CHAPTER 2. FOUNDATIONS 21

maneuvering easier, and is expressed as the value of the objective function (fitness

function) of the original optimization problem. Individuals with higher fitness will be

selected and subjected to a series of evolutionary operators, and formulate the new

generation for the next iteration of the algorithm. The overall process contains the

following steps:

1. Population initialization: design an appropriate initialization operation accord-

ing to the characteristics of the optimization problem to initialize the individuals

in the population.

2. Individual evaluation: calculate the fitness value of individuals in the population

according to the optimized objective function.

3. Generation settings: configure the termination conditions and the current state

of the generation process.

4. Individual selection: design a suitable selection operator to select individuals in

the population, and the selected individuals will enter the mating pool to form

the parent population for evolutionary operators to generate new individuals

[8, 36]. Selection should be based on individual fitness values. When the opti-

mization problem is a minimization problem, an individual with a lower fitness

value should have a greater probability of being chosen. Among the most com-

monly used selection strategies are roulette selection, tournament selection [79],

etc.

5. Crossover operator: determine whether the parental individual needs to be

crossed using the crossover probability [75, 124]. The process mimics how two

parent individuals exchange chromosome segments to create new individuals.

The crossover operator should be designed with respect to the characteristics

of the problem to be optimized.

6. Mutation operator: determine whether the parental individual needs to be mu-

tated using the mutation probability [74, 9]. It refers to the process of forming

new chromosomes by changing some elements of the chromosomes. As mutation

operators are intended to maintain the diversity of the population and prevent

the population from falling into a local optimum, they are usually designed as

random transformations.

7. Termination. When the crossover and mutation operation is completed, the

parent population produces individuals (offsprings) of appropriate size for the

CHAPTER 2. FOUNDATIONS 22

population, and the generation process repeats (back to step 4) until a termi-

nation condition has been reached, which may be a maximum or fixed number

of generations, a minimum requirement for candidate solutions, or an allocated

budget of computation cost.

Selection, crossover and mutation are classic evolutionary operators. Many im-

proved evolutionary algorithms are built around them. While they may differ in

name, they are inseparable from their common origin.

2.4.2 Multi-Objective Evolutionary Algorithm

When several conflicting objectives need to be dealt with simultaneously in optimiza-

tion problems it is called multi-objective optimization problems (MOPs), which have

multiple objective functions [76, 33]:

min
x∈X

(f1(x), f2(x), f3(x), ..., fk(x)), (2.13)

where X ⊂ RD denotes the feasible solution set and there areK objectives to balance.

It is impossible for MOPs to attain optimality of all objectives simultaneously, and

only a set of equilibrium solutions can be obtained, which are called non-dominated

solutions or Pareto optimal solutions (Pareto is a concept from economics). Equi-

librium solution means that in multiple objective functions, none of the objective

value can be improved without degrading the value of other objectives. In particular,

x1 ∈ X is a non-dominated solution, x2 ∈ X is the dominant solution if they follows

the relation:

∀i ∈ {1, 2, ..., k}, fi(x1) ⩽ fi(x2) & ∃i ∈ {1, 2, ..., k}, fi(x1) < fi(x2) (2.14)

When the solution dominates x1 does not exist, x1 is called the Pareto optimal

solution [108, 76]. The set composed of all Pareto optimal solutions is called Pareto

optimal set (Pareto set, PS). The mapping of the Pareto optimal set in the target

space is the Pareto front (PF).

The complexity of multi-objective optimization makes traditional mathematical

methods incapable of providing optimum results, and evolutionary algorithms have

been widely used in multi-objective optimization, which has led to many classical

multi-objective evolutionary algorithms (MOEAs) [100, 32, 14]. Through continuous

evolution, multi-objective evolutionary algorithms can approximate Pareto sets [134].

The collected approximation set can be evaluated by two criteria: convergence to

CHAPTER 2. FOUNDATIONS 23

measure the degree of closeness between the approximation set and the true Pareto

set, and distribution to indicate how the approximation front is distributed in Pareto

front, including uniformity and diversity. Specifically, the two commonly used indi-

cators are IGD (inverted generational distance) and HV (hypervolume). IGD, for

example, requires the Pareto front. It measures how far the elements in the true

Pareto front are from those in the nearest approximation front. IGD is defined as

IGD =
∑

v∈P d(v,Q)

|p| . Q represents the approximation front, |P | is the number of indi-

viduals of the true Pareto front, and d(v,Q) corresponds to the Euclidean distance

between each of these individuals v and the nearest member of the approximation

front. IGD and HV can both measure the distribution and convergence of the solu-

tion.

NSGA-II (non-dominated sorting genetic algorithm II) [19] is the most representa-

tive application of MOEA. A main characteristic of this method is fast non-dominated

sorting, which merges the solution generated by each crossover mutation with the indi-

viduals from the previous generation. It then uses non-dominated sorting to stratify

the individuals. As layers of rank are accumulated until they exceed the popula-

tion size, crowding distance sorting is implemented to construct the new population.

NSGA-II uses fast non-dominated sorting to guarantee convergence and crowding

distance to guarantee distribution. At the end of the iteration, most of the solutions

are non-dominated, and most of the solutions are in the first layer.

Chapter 3

Related Work

3.1 Deep Learning on Chemical Structures

Substantially, computation methods for evaluating chemical structures rely heavily on

molecular representations, i.e., the form in which a molecule structure is seen by the al-

gorithm. Molecular representation typically uses one of two methods: SMILES-based

method, graph-based method, or three-dimensional method, which are discussed be-

low.

3.1.1 SMILES-Based Method

SMILES (Simplified Molecular Linear Input Specification) characterization of molecules

obtained by the graph-to-text mapping algorithm is a method of encoding the com-

positional and structural information of molecules that has been widely used to store

molecular structures in cheminformatics. Natural language processing (NLP) al-

gorithms can be naturally leveraged in the field of molecule modeling due to the

sequence-based embedded representations of SMILES. As part of the SMILES-based

approach, chemical species can be described as short ASCII strings in the form of line

notations, and a variational autoencoder (VAE) [54] is often used as a character-based

language generative model for SMILES strings in order to enable efficient molecular

generation and optimization based on the open-ended latent representation space (as

chemical spaces) [42].

As a prototypical approach, CVAE [41] converts a discrete SMILES representa-

tion of a molecule to a continuous multidimensional representation. This allows for

the efficient search and optimization of compounds in chemical space. A high level

of fidelity was observed (through the reconstruction of SMILES strings) as well as

24

CHAPTER 3. RELATED WORK 25

the ability to capture the features of the training set. It has been demonstrated

that a trained VAE is capable of predicting properties accurately and implementing

gradient-based optimization in the resulting smooth latent space. SD-VAE (Syntax-

directed VAE) [16] proposes stochastic lazy attributes that integrate the syntactic

and semantic checking of SMILES strings into VAE to constrain the decoder directly.

In comparison to CVAE, SD-VAE has been proved to produce a more discriminative

representation of latent space. [98] further introduced the Generative Topographic

Mapping (GTM) to the sequence-to-sequence VAE in order to shape the latent space

around the molecular properties of interest. GTM latent spaces contain a grid that

maps the latent vectors to the 2D coordinates of the nodes, thereby creating different

densities of actives and inactives. They also adopted Bidirectional Long Short-Term

Memory (BLTSM) networks in the encoder to process the SMILES sequence from

both directions while utilizing the future context.

Other generative models are used in SMILES-based molecular generation tasks,

such as Transformer (SMILES Transformer [48]), GAN (LatentGAN [92]), and RNN-

based pre-trained sequence-to-sequence models [109]. A statistical chemical language

model composed of LSTM networks was originally proposed by [102] to generate

focused molecule libraries for drug discovery. With the aid of a scoring function, the

pretrained model was fine-tuned to smaller sets of active drug molecules toward a

given biological target, producing novel molecules with desired properties for drug

development. This approach also incorporates molecular structure optimization in

the generation and enables the generation of high score novo molecules.

Synthesis-based methods for molecule generation are efficient in terms of train-

ing and sampling, yet have the drawback of producing a large number of chemically

invalid and repetitive molecules during generation. In recent years, fragment-based

drug design has gained attention as an alternative approach to the design of novel

compounds. Molecule fragments are available from commercial fragment libraries

[106] or can be produced through various fragmentation techniques. As a modifi-

cation of the SMILES fragment-based drug design approach originally presented in

[88], FragVAE [40] utilizes the Breaking of Retro-synthetically Interesting Chem-

ical Substructures algorithm (BRICS) [20] to collect sequences of fragments from

molecules. The BRICS methodology integrates more elaborate medicinal chemistry

rules and decomposes molecules by breaking strategic bonds that can be used to re-

combine chemical motifs. In analogy with NLP tasks, the sequences of fragments can

be viewed as “sentences”, each fragment representing a “word”, embedded within a

continuous latent space based on a vocabulary of unique words [78, 77]. FragVAE

CHAPTER 3. RELATED WORK 26

employs a gated recurrent unit (GRU) [13, 66] encoder to map embeddings into a

stochastic latent representation space. A latent vector (either generated by the en-

coder or sampled from the prior distribution) is used as the initial hidden state of a

GRU-based autoregressive decoder to calculate the probability of the next possible

fragments. As a result of a greedy selection strategy, the fragment sequence with the

highest probability is then reassembled into a molecule.

3.1.2 Graph-Based Method

Molecular graph generation is similar to SMILES string generation in that nodes

(atoms) and edges (bonds) are added sequentially to a graph. In addition to conven-

tional molecular generation models, graph-based methods [105, 97] leverage molecular

topology information explicitly in the generator to learn a molecular structure as a

natural two-dimensional or three-dimensional graph.

The VAE has been used as a base for generating molecule graphs directly from

latent vectors. First, the fundamental model for incorporating graph neural network

(GNN) into VAE is formulated in [67] by adding new structures in steps to account

for the sequential composition of molecular graphs. Specifically, new structure refers

to a new node or edge. CGVAE (Constrained Graph VAE) [70] further investigates

the VAE architecture with gated graph neural networks (GGNNs), in which gradient

ascent is used to optimize the graph properties locally. In order to better shape the

VAE for molecular generation, domain-specific constraints are imposed using binary

masks. When graph VAEs reconstruct molecular structures, solving the problem of

graph isomorphism is computationally expensive. As a result, graph reconstruction

is extremely ineffective and inaccurate without imposing constraints.

The maneuvering of other generative models in drug design persists such as GAN-

based models [18], flow-based models [103, 132], or RL (Reinforcement Learning)-

based models [131]. MolGAN established in [18] utilizes generative adversarial net-

works (GANs) to directly manipulate graph-structured molecule data. In the frame-

work, reinforcement learning objectives are integrated to promote the production of

molecules with specific chemical properties. Based on experiments with the QM9

chemical database, the model was able to generate nearly 100% valid compounds.

Shi et al. [103] proposed a state-of-the-art graph generation model, GraphAF, which

integrated graph normalizing flow and autoregressive approaches, where they pa-

rameterized an invertible autoregressive flow transformation of molecule structure

into Gaussian distribution. In comparison with graph convolutional policy network

CHAPTER 3. RELATED WORK 27

(GCPN) by [131], GraphAF exhibits twice the training speed while maintaining 68%

validation in molecules generated without chemical rules.

At present, the junction tree variational autoencoder (JTVAE) [51], which we

view as a graph-fragment based approach [89], is one of the most successful ap-

proaches for transforming molecular graphs into meaningful latent vectors. JTVAE

decomposes training molecules into a set of molecular substructures including rings,

functional groups, and atoms. As opposed to the conventional node-by-node genera-

tion of graphs, JTVAE generates these building blocks in two stages: (1) representing

the effective brackets and their arrangement as scaffolding trees, and (2) integrating

the entire tree into a graph by adding edges between intersecting components. In

order to optimize molecular properties, JTVAE was built on top of the junction

tree-based encoder-decoder neural network and refined with graph-to-graph transfor-

mation [15, 35] and autoregressive techniques [61, 81]. In later work, the authors of

JTVAE extended their graph VAE architecture by introducing larger graph motifs

instead of small substructures. The method is referred to as motif-based hierarchical

encoder-decoder (HierG2G) model [52], which allows for more flexible substructure

representation and more efficient molecular graph reconstruction.

Fragment-based approaches to molecular graphs are becoming increasingly popu-

lar. Chen et al. [12] developed a novel deep generative model named Modof (modifier

with one fragment) that predicts a single cleavage site in a molecule and removes

and/or adds fragments at that site to modify molecules. To modify different fragments

at multiple disconnection sets, they developed a pipeline of multiple Modof models

in Modof-pipe. It is evident that Modof-pipe can preserve major molecular scaf-

folds, allowing better control over intermediate optimization steps and constraining

molecular similarity. FAME [87] proposes an innovative generative model specifically

for phenotypic drug design that is capable of learning the conditional distribution

Pθ(molecule|phenotype) on gene expression profiles derived from molecular graphs.

Using an encoder-decoder scheme, it consists of a conditional graph encoder and a

fragment-based decoder which assembles fragments in an autoregressive manner.

Further developments in graph-based molecular modelling include 3D-graph and

geometric deep learning methods to exploit the geometric properties of molecular

structures [7, 71]. In the latest research, [91] explored the possibility of expanding

molecule fragments with specific physicochemical properties, especially docking on

target protein sites, by attaching them to growing seed molecules. Leveraging a 3D

atomic point cloud representation and E(3) equivariant neural networks, it was able

to produce chemically valid molecules with preferable binding affinity that are 100%

CHAPTER 3. RELATED WORK 28

chemically valid.

3.2 Evolutionary Molecular Optimization

The prominent pursuit of designing molecules with desirable properties has achieved

many goals in medicinal chemistry with efficient exploration of the molecular space.

Various works based on evolutionary algorithms [130, 50, 83] have shown that they

outperform traditional generative drug design frameworks.

CReM [90] is a fragment-based framework for the generation of structures that

facilitates the use of genetic operators, explicitly, mutations. There are three steps in

the workflow: GROW which replaces a hydrogen atom with another fragment in the

interchangeable fragment database, MUTATE which changes fragments of choice, and

LINK which connects two fragments after their hydrogen atoms have been removed.

In addition to the novelty and diversity advantages of fragment-based approaches,

CReM sampling also exhibits a higher potential for synthetic feasibility through evo-

lutionary optimization. Genetic expert-guided learning (GEGL) framework [3], which

was developed more recently, proposes integrating reinforcement learning and evolu-

tionary iteration in order to prioritize candidates with high reward. By employing

genetic operators like graph-based crossover and mutation on the graph structure of

the parent molecules, GEGL is able to produce a population of seed molecules for

enriching the generative model training.

3.3 Protein-Ligand Interaction

While a drug-like molecule needs to fulfill physicochemical and structural feature

requirements, such as Lipinski’s rule of five [69] as a rule of thumb for druggability,

it is imperative that the molecule specifically binds to the expected binding site

of a protein target. Using molecular mechanism simulation, protein-ligand docking

is the standard technique for virtual screening. Among many other efficient open-

source docking tools, Rosetta [64] and AutoDock Suite [23] are widely adopted by the

research community.

Machine learning approaches have been exploited to predict drug-target interac-

tion (DTI) or drug-target binding affinity (DTBA) through learning on heterogeneous

biological data of known interactions to understand the mechanism of drug actions.

For example, AutoDTI++ [96] uses a denoising autoencoder that reconstructs the

drug-target interaction matrix by adopting denoising empirical loss, which emphasizes

CHAPTER 3. RELATED WORK 29

interaction prediction while discarding the loss of missing values. The model input is

composed by multiplying the drug-target interaction matrix by the fingerprint-drug

matrix for additional information on drug fingerprints. [1] introduces the DeepCDA

model containing a training encoder and a test encoder for cross-domain binding

affinity prediction of novel drug-protein pairs. The adversarial discriminative do-

main adaptation (ADDA) technique is utilized in the test feature encoder to map

the marginal distribution from both training and test domains into one same feature

space. They also proposed a combination of convolutional neural network (CNN) and

long-short-term memory (LSTM) neural network with the aid of a two-sided atten-

tion mechanism for encoding the interactions between the compound substructures

and protein subsequences.

Chapter 4

Methods

The idea of our approach is to integrate the graph fragment-based deep genera-

tive model, JTVAE, into the DEL framework, whereby JTVAE provides a latent

representation space for the multi-objective evolutionary algorithm (MOEA) to ex-

plore, while meanwhile elite samples from each generation of MOEA continue to

learn JTVAE. The prior FragVAE-based DEL is implemented as a benchmark for

the SMILES fragment-based molecular design method. To identify active drug can-

didates, both approaches incorporate protein-ligand binding affinity scores (denoted

by BAS) [26, 68], synthetic accessibility scores (SAS), and water-octanol partition

coefficients (LogP).

The subsections below describe the methodology for preliminary works, including

the deep evolutionary learning framework (DEL) and multi-objective optimization.

We then discuss the integration of FragVAE and JTVAE within the DEL framework.

As well as the implementation of the docking module for BAS calculation, as well as

the measurement tools for evaluating the generation and optimization processes.

4.1 Deep Evolutionary Learning Framework (DEL)

Proposed in [40], the DEL framework incorporates multi-objective evolutionary com-

putation with the deep generative models for molecular optimization by establishing a

data-model co-evolution paradigm. In contrast to traditional evolutionary algorithms

that encode genotypes in the original problem space, DEL instead employs evolution-

ary operations in the latent representation space of molecules to feedback the evolved

data with desired properties, leading to the fine-tuning of the deep generative model

as well. The DEL framework comprises the following components.

30

CHAPTER 4. METHODS 31

1. For the first evolutionary generation, the DGM (usually a VAE) is parameter-

ized and pretrained on the training data, and the first population is sampled

from the original training data; whereas the population samples of the successive

generations are obtained from the DGM.

2. The samples are transformed into latent vectors with the help of an encoder.

Meanwhile, the samples are processed to assign molecular properties and are

subject to a multi-objective sorting method (e.g. non-dominated ranking) and

crowding distance computing.

3. Evolutionary operations are applied to the latent representations of popula-

tion samples considering their Pareto ranks and crowding distances. This is

a randomized and stochastic technique that simulates the evolutionary pro-

cess of selecting high-fit candidates and exerts evolutionary operators entailing

”crossover” and ”mutation” to evolve better molecules [82].

4. The evolved latent representations are decoded by the DGM to generate new

molecules, which are then evaluated on the basis of validity, novelty, and unique-

ness using RDKit [62]. Invalid and duplicate individuals are eliminated to form

new samples for new population construction.

5. The new population of each generation is constructed of the high-quality valid

samples from the previous population and newly generated data in Step (4),

and can also be used to fine-tune the DGM.

6. Steps (2-5) are repeated for multiple generations as needed to compose the final

population.

The specific interaction between the DEL framework and DGM is illustrated in

Figure 4.1.

The selection of high-quality samples for fine-tuning the VAE model is based

on the non-dominated ranking result, which underlines the molecules with the most

beneficial properties in terms of SAS, LogP, and BAS. It is worth noting that we also

take into account other properties along with the protein-ligand binding affinity score,

namely, molecules whose SAS, LogP, and BAS are smaller are prioritized in ranks and

exploited during evolutionary computations. SAS and LogP can be calculated using

RDKit; however, BAS is generated by the docking module utilizing QuickVina [5], as

explained in section 4.5.

CHAPTER 4. METHODS 32

Figure 4.1: Diagram showing the workflow of the DEL framework and its interaction
with VAE.

4.2 Multi-objective Optimization

4.2.1 Non-dominated Ranking and Crowding Distance

In preparation for evolutionary operations, DEL analyzes non-dominated rankings

and crowding distances of multi-objective solutions for the purpose of identifying ad-

vantageous parent solutions in selection for generating offspring, as well as producing

distinct populations with competitive and diverse molecules from the molecule pool

of previous populations in the subsequent step. Both methods were adapted from the

NSGA II algorithm outlined in section 2.4.2. As part of the non-dominated ranking,

with k molecular properties as potentially conflicting objectives and multiple objective

optimization problem in the latent space: minz(f1(z), f2(z), f3(z), ..., fk(z)), where

CHAPTER 4. METHODS 33

z represents the feasible solutions. z1 ≺ z2 denotes z1 dominates z2, and samples

from training data or DGMs can be sorted into Pareto fronts F = {F1,F2,F3, ...}.
For instance, the first front F1 dominates F2 but solutions in F1 do not dominate

each other.

NSGA-II introduced the concept of crowding [19], which is the density value of

individuals around a feasible solution within Pareto fronts. It may be intuitively

seen as a cuboid surrounding an individual and excluding others. An individual’s

crowding distance is calculated by summing the differences between the values of the

sub-objective functions of two individuals before and after this individual. In general,

the crowding distance of individual zi with K objective is given as:

d(zi) =
K∑
k=1

fk(zi+1)− fk(zi−1)

fmax
k − fmin

k

(4.1)

where zi+1 denotes the closest individual above zi and zi−1 is the closest individual

below zi. fmax
k and fmin

k are the the maximum and minimum value of the k-th

objective, respectively.

Combining non-dominated ranking and crowding distance calculation, the com-

parison between two feasible solutions can be further defined using partial order ≺n

[40]. Given two solutions, z1 ≺n z2 holds if z1 ≺ z2, or z1 do not dominate z2 but

d(z1) > d(z2). This procedure is performed to rank the top M samples for selection

with regard to evolutionary operations, or to form the new population for the next

generation.

4.2.2 Evolutionary Operators

To produce new samples of the next generation, latent representations of popula-

tions undergo evolutionary operations in accordance with classical genetic algorithms,

which include individual selection, crossover, and mutation. Individual selection uti-

lizes binary tournament selection to select one individual (parent) from every two

random samples by comparing their partial relation, until the drawn mating pool

size matches the population size M , namely, if z1 ≺n z2 then z1 will be selected

as the parent solution. Selected M parents are then paired up as zp1 and zp2 for

crossover operator to generate children ẑc1 and ẑc2. All experiments use blending

CHAPTER 4. METHODS 34

linear crossover (BLX) [121, 43], which formulates

ẑc1 = zp1 + r1(zp2 − zp1), (4.2)

ẑc2 = zp1 + r2(zp2 − zp1), (4.3)

where

r1 = −d+ (1 + 2d)α1, (4.4)

r2 = −d+ (1 + 2d)α2. (4.5)

The recommended value of d = 0.25 is used in this work and α1, α2 ∼ Uniform(0, 1).

Recombinant samples ẑm are carried on to the mutation operations over a prede-

fined mutation rate pm = 0.01, meaning for every sample, if a random value l from

Uniform(0, 1) is smaller pm, the l-th position of ẑm will be overwritten by value

drawn from standard Gaussian distribution N (0, I) [40].

4.3 FragVAE-based DEL

FragVAE has been implemented as a DGM in DEL for drug design that uses the

strategy of SMILES fragmentation. As an alternative to atom-and-bond methods,

fragment-based drug design (FBDD) [27, 104] has demonstrated constructive results.

The FBDD approach appropriates fragmentation of molecular structures as a screen-

ing method that breaks molecules into small-weighted components. In general, molec-

ular fragmentation offers three advantages.

• Small organic molecules, corresponding to the fragments, are efficiently synthe-

sizable, hence easier to manipulate chemically.

• Since drug-like molecules may share analogous fragments, fragmentation can

help identify components that are possibly responsible for biological activities.

• It can drastically reduce the search space for exploration and characterization.

By incorporating the protein-ligand binding affinity score as another objective,

FragVAE-based DEL may assist in discovering highly viable drug candidates. Thus,

in this work, FragVAE approach is examined and compared with the graph fragment-

based method, JTVAE.

CHAPTER 4. METHODS 35

4.3.1 BRICS Fragmentation

BRICS (breaking of retro-synthetically interesting chemical substructures) rules [20]

were employed in FragVAE to fragment molecular data, which has proven to out-

perform the former benchmark RECAP (retrosynthetic combinatorial analysis pro-

cedure) [65] in many ways, including the ability to cleave 10% more molecules and

produce fragments with more connecting points for enhanced reconstruction flexibil-

ity.

BRICS breaks molecules by identifying the 16 chemical environments in which

cleavage occurs. It takes into account not only the type of chemical bond but also

its surrounding substructures. There are 16 fragment prototypes characterized by a

variety of linked (dummy) atoms that correspond to the chemical environments, along

with the cleavage site labels from L1 to L16. To avoid redundant fragmentation, all

possible retrosynthetic bonds are cut simultaneously. The cleavage process discards

unwanted chemical substructures and leaves small terminal motifs intact [20].

Figure 4.2: Cleavage example of an FDA-approved small-molecule durg Naf-
cillin (a penicillin derivative antibiotic, DrugBank Access Number DB00607),
demonstrating the procedure of BRICS-based fragmentation by produc-
ing fragments on breakable bonds. In this example, the SMILES repre-
sentation is CCOc1ccc2ccccc2c1C(=O)NC1C(=O)N2C1SC(C)(C)C2C(=O)O,
and is broken into fragments *0CC, *NC(=O)c1c(*)ccc2ccccc12, and
*C1C(=O)N2C1SC(C)(C)C2C(=O)O.

In regards to the fragmentation procedure, atoms in the SMILES string are

scanned from left to right, and a fragment is extracted every time a breakable bond

CHAPTER 4. METHODS 36

is encountered in accordance with the BRICS rules. This process is repeated until

the remaining part cannot be split further. An example of how a SMILES string

is fragmented is shown in Figure 4.2. To reconstruct a molecule, fragments can be

reassembled starting from the leaves to the root, right to left. In Algorithm 1, a recur-

sive approach is used to perform BRICS-based molecular fragmentation in FragVAE

[88].

Algorithm 1 BRICS Fragmentation

Require: list of fragments: F molecule to be fragmented M
procedure BRICSFragmentation(F, M)

local variables
b, chemical bond
f , potential fragment
m, remaining molecule after fragmentation

end local variables
b← GetFirstBRICSBond(M)
if b is None then

return
else

f,m← BreakMolAtBond(M, b)
M ← m
F.append(f)
BRICSFragmentation(F,M)

end if
end procedure

4.3.2 Modifications

There are two features that impact FragVAE’s integration with DEL. First, in contrast

with the variational loss of the vanilla VAE in Equation (2.10), a trade-off weight β

[44, 127] is added between the KL-divergence and the reconstruction error to balance

their discrepancy in minimization. Second, a multi-layer perceptron neural network

(MLP) is added to the VAE structure as a property predictor [128]. It intends to

regularize the latent representation space by predicting the property values of encoded

samples. The variational loss of the VAE model is thus altered by adding a third term

for property regression error (see Equation (4.6)).

L(ϕ,θ) = −Ez∼qϕ(z|x)
[
log pθ(x|z)

]
+βKL

(
qϕ(z|x)∥p(z)

)
+αEz∼qϕ(z|x)

[
SE

(
fψ(z),y

)]
,

(4.6)

CHAPTER 4. METHODS 37

where fψ(z) denotes the predicted property value, ψ is the parameter set of the MLP

sub-network, y is the actual property value, and SE stands for squared error.

4.4 JTVAE-based DEL

Despite the proliferation of SMILES-based models in recent years for molecular mod-

elling, it still faces two critical limitations. (1) The SMILES syntax is not robust to

small changes or mistakes, which can result in the generation of invalid or drastically

divergent structures. (2) The unstructured nature of SMILES notation implies that

two structurally similar molecules can have completely different SMILES representa-

tions. As a result of these shortcomings, the molecules produced lack diversity and

effectiveness. This brings graph-based deep generative models to the fore as an alter-

native strategy, allowing the search for the topology of molecules and their fragments.

It involves a more intuitive way to represent a molecule as a graph built on its Lewis

structure. Numerous molecular graph models, such as graph neural network (GNN)

[99], graph convolutional network (GCN) [22, 57], message passing neural network

(MPNN) [35], and many other methods have been explored and shown outstand-

ing performance in molecular property prediction tasks, and consequently laid the

foundation for graph-based molecular generation.

4.4.1 Junction Tree Fragmentation

As one of the most representative VAE-based graph generative models, JTVAE [51]

employs a subgraph-by-subgraph manufacturing mode instead of an atom-by-atom

mode. This is to avoid revising chemically invalid intermediaries while constructing a

molecular graph sequentially atom-by-atom, allowing the model to consistently gen-

erate valid molecules since validity is checked at each step following a non-sequential

method.

In JTVAE, a cluster vocabulary is first constructed containing simple rings, bonds,

and atoms. To begin, the molecular graph G is scanned to pinpoint substructures

that appear in the vocabulary and edges that do not belong to any cycles. Two simple

rings are merged as bridged compounds if they have three or more overlapping atoms.

This step eliminates cycles in molecular structures by considering them as clusters. A

graph of clusters is constructed by adding edges between all intersecting clusters and

composited into a junction tree by mapping its maximum spanning tree. Tree nodes

in the junction tree associate the vertices in the cluster graph, and the connectivity

CHAPTER 4. METHODS 38

between nodes corresponds to the chemical bonds between clusters. Through tree

decomposition, Algorithm 2 is an implementation of junction tree-based molecular

fragmentation as used by JTVAE [51]. Figure 4.3 presents an example of the graph

fragmentation procedure using an FDA-approved drug.

Figure 4.3: Illustration of the graph fragmentation in JTVAE following the subgraph-
by-subgraph strategy, representing the process of tree decomposition on an FDA-
approved small molecule drug Chlorprothixene (a thioxanthene antipsychotic, Drug-
Bank Access Number DB01239). Clusters in the molecule (left) are identified as
substructures and denoted as nodes in the junction tree (right).

4.4.2 Modifications

As with FragVAE for DEL, the same modifications are applied to JTVAE when

integrated into the DEL framework. An MLP property predictor is added to the gen-

erative model and a SE loss term is appended to the model’s total loss. Furthermore,

we adopt the two-part latent representation z = [zT , zG] introduced in [51] for the

evolutionary operations, in which zT maps the junction tree structure of a molecule

at the cluster level and zG encodes the association within each cluster. The tree-

structured latent variable captures the hierarchical relationships between nodes in a

graph, while the graph-structured latent variable represents the local graph structures

and node attributes, resulting in a more comprehensive and accurate representation

of the data.

Considering the tree decomposition of a molecule, the architecture of the modified

JTVAE consists of the following five components: (a) a graph encoder q(zG|G) to

encode molecular graph G to its latent representation zG, (b) a tree encoder q(zT |T)
to encode the junction tree T decomposed from molecular graph to acquire the latent

CHAPTER 4. METHODS 39

Algorithm 2 Junction Tree Fragmentation

Require: molecule graph G = (V,E)
procedure TreeDecomposition(G)

local variables
L1, list of simple rings (vs, ..., ve)
L2, list bonds (vs, ve) that do not belong to any rings
V0, list of vertices that share bonds with three or more clusters
G′ = (V ′, E ′), cluster graph after fragmentation

end local variables
if length(V) ≤ 1 then

return empty graph
end if
L1 ← Chem.GetSymmSSSR(G) ▷ Get the simple rings in G
for each bond (vs, ve) ∈ E do

L1.Append((vs, ve)) if not (vs, ve).IsInRing
end for
for each ring (vs, ..., ve) ∈ L1 do

Merge rings that have three or more overlapping atoms
end for
V0 ← GetInstersectionAtom(L1 ∪ L2)
V ′ ← L1 ∪ L2 ∪ V0

E ′ ← (vs, ve) ∈ V ′ × V ′ if |vs ∩ ve| > 0 and (vs ∈ V0 or ve ∈ V0)
return GetMaximumSpanningTree(G = (V ′, E ′))

end procedure

CHAPTER 4. METHODS 40

vector zT , (c) a property predictor for the latent space regularization, (d) a tree

decoder p(T |zT) to decode the junction tree from zT , and (e) a graph decoder p(G|zG)
to eventually manifest the molecular graph. The tree message passing neural network

(TMPNN) [35] and the graph message passing neural network (GMPNN) [15] with

GRU units are used in the transformation of representations. The reconstruction

error in JTVAE becomes

R = Lc(T) + Lg(G) + Ls, (4.7)

where Lc(T), given junction tree T , is the entropy loss of the tree decoder, that is the

summed error of topological prediction (binary prediction of the existence probability

of child node) and label prediction (label of generated child node); Lg(G) and Ls are,

respectively, the negative expectations of log-likelihood of subgraph prediction based

on tree nodes, and stereoisomer prediction by comparing the cosine similarity of its

graph representation. In view of these factors, the overall loss function of the modified

JTVAE can be defined as:

L(ϕ,θ) = −Ez∼qϕ(z|x)[R + βKL
(
qϕ(z|x)∥p(z)

)
+ αEz∼qϕ(z|x)

[
SE(fψ(z,y)

]
, (4.8)

z = [zT , zG],

qϕ(z|x) = [qϕ(zT |T), qϕ(zG|G)].

4.5 Protein-Ligand Binding Affinity Score (BAS)

Calculation

Implementing a reliable and suitable docking score calculation module is essential to

integrate protein-ligand BAS within DEL for molecular optimization. We adopted

the efficient docking tool QuickVina (QVina) [5] which is an amended and acceler-

ated version of the well-known AutoDock Vina tool [113, 23]. AutoDock Vina is an

open-source molecular docking engine in the AutoDock suite, and shows dominant

performance in virtual screening by adopting the benchmark data Directory of Use-

ful Decoys (DUD). AutoDock Vina uses a scoring function to calculate the binding

affinity of a protein-ligand complex. The scoring function is based on the concept

of electrostatic complementarity, which aims to predict the stability of the complex

by assessing the attractive and repulsive interactions between the protein and ligand.

Based on a global search for the best possible ligand conformation, the program se-

lects the conformation with the lowest energy as the most stable and the one with the

greatest affinity for binding. While AutoDock Vina is accurate, it is time-consuming

CHAPTER 4. METHODS 41

due to the exhaustiveness of the search on the 3D target surface. QVina on the other

hand, has an improved search algorithm that performs faster and yet still accurate

BAS calculations. The scoring function of QVina is similar to that of AutoDock Vina

providing an equivalent scale of prediction of binding affinity, but enhanced with a

global search history. It is possible for adjacent search threads to communicate and

share docking information, which greatly accelerates the search. Therefore, QVina is

the more appropriate choice for our research.

Applying QVina, our system was first experimented on the single protein target

CA9 with three objectives {SAS,LogP,CA9} in the evolutionary process. Follow-

ing that, we also investigated the possibility for optimization on double protein targets

(CA9 and GPX4 protein) counting four objective functions {SAS,LogP,CA9, GPX4}.

4.5.1 Docking on CA9 Protein Target

The carbonic anhydrase IX protein (CA9/CAIX) [107, 30] has been identified as a

significant marker of tumour hypoxia and may be used as a diagnostic biomarker,

prognostic indicator, and therapeutic target for cancer. Solid tumours rely on the

blood supply to deliver oxygen and nutrients. As the tumour grows, these blood ves-

sels are unable to supply oxygen and nutrients to every part of the tumour, leading

to regional hypoxia. Over time, this hypoxic environment can result in an accumula-

tion of acid within the tumour cells. Cancer cells respond to this stress by releasing

enzymes that neutralize the acidic conditions in their environment, allowing them to

survive and eventually spread to other tissues. CA9, one of the major neutralizing

enzymes, plays a crucial role in the survival, invasion, and metastasis of cancer cells.

Due to the fact that CA9 possesses extracellular active docking sites, ligands with

desired affinity for docking to these sites may have the potential to become cancer

drugs that act by inhibiting the growth of cancer cells.

The binding site coordinate and constrained search box size in the docking score

calculation module are user-specified. For our experiments, generated molecules

from both methods are docked to a cubic box of size 20 centred at coordinate

[7.750,−14.556, 6.747] in the binding pocket. The current calculation of BAS using

QVina is based on molecular mechanism simulations, where the ligand is examined

on the protein surface in 3D space. This requires the configuration of target site co-

ordinates as well as the search grid size in order to constrain simulation time. When

sufficient experimental data for CA9 become available in the future, machine learning-

based approaches will be investigated for protein-ligand binding affinity prediction.

CHAPTER 4. METHODS 42

4.5.2 Docking on GPX4 Protein Target

GPX4 [28, 45], also known as phospholipid hydroperoxide glutathione peroxidase, is

the fourth member of the selenium-containing GPX family. A variety of signaling

pathways can cause cells, specifically with iron-dependent cell death (ferroptosis) in

cancer cells. Studies have demonstrated that direct targeting of GPX4 induces fer-

roptosis in cancer cells, making GPX4 inhibitors effective anticancer agents. Several

GPX4 inhibitors have been discovered, such as RSL3, ML162, DPI compounds, FIN56

and FINO2. Most of the available GPX4 inhibitors have, however, been limited in

their clinical application due to their inferior pharmacokinetic properties. Whether

targeting CA9 can generate drug-like molecules that inhibit cancer development and

invasion is unclear, but when used together with GPX4, collected samples with opti-

mal BAS on both CA9 and GPX4 targets may have promising clinical potential.

Proceeding with the BAS calculation module, the center coordinate for GPX4

docking is set to [−9.67, 7.043, 4.609] with grid box size 20. As GPX4 does not have

the same depth of pockets as most docking sites, it is an extremely difficult target to

dock with. The possibility exists in forming covalent bonds with small molecules or

peptidic drugs targeting another active site containing Selenium. Since QVina does

not support Selenium-specific parameters, we chose to investigate the docking site

[−9.67, 7.043, 4.609].

4.6 1-Wasserstein Distance

In the space R, there are many ways to describe the distance between two probability

distributions q(x) and p(x). One of the more popular ones is Kullback-Leibler (KL)

divergence as motioned in 2.11:

KL(p ∥ q) =
∫
Rn

p(x) log
p(x)

q(x)
dx. (4.9)

As defined above, KL does not measure the geometric properties of Rn, because

the comparison between q(x) and p(x) is made at the same points. This motivates us

to utilize Wasserstein distance (WD) as a distance metric for a pair of distributions.

For the probability distributions µ and υ defined on R, the p-th is given as:

Wp(µ, υ) := inf
γ∈Γ(µ,υ)

(∫
R×R

d(x, y)pdγ(x, y)
) 1

p
, (4.10)

CHAPTER 4. METHODS 43

where Γ(µ, υ) is the collection of joint probability measures γ on R×R with marginal

distributions µ and υ. A measure with marginals µ and υ is also called the coupling

of µ and υ. d can be any distance on R, such as Euclidean distance, l1 distance, etc.

In the case of p = 1 and d(x, y) = |x− y|, the one-dimensional Wasserstein distance

(1-Wasserstein distance) is explicitly formulates as:

W1(µ, υ) =

∫
R
|Fµ(x)− Fυ(x)|dx, (4.11)

where F is a cumulative distribution function.

4.7 Hypervolume Measure

The condition of algorithm convergence is an extremely critical aspect of multi-

objective evolutionary algorithms. DEL retains the elite solution set of the previ-

ous generation and adds it to the evolutionary process of the new generation. The

solution set of the evolutionary population continues to converge to the real Pareto

frontier, and reaches a satisfactory optimization solution. Usually, when analyzing

the performance of a multi-objective optimization algorithm, we hope that the algo-

rithm can advance in three aspects. (1) The distance between the real Pareto front

surface and the one obtained by the algorithm should be as small as possible. (2) Al-

though the obtained individual solution points are only partial solutions, they should

be distributed on the Pareto front as uniformly as possible. And, (3) a sufficient

number of solution points should be able to cover the entire front, that is each region

on the front should be represented by solution points unless this region is missing on

the actual optimal Pareto front.

The hypervolume (HV) index measures the volume of the dimensional region in the

target space bounded by the non-dominated solution set obtained by a multi-objective

optimization algorithm and a pre-specified reference point. The mathematical repre-

sentation of the HV calculation is given in Equation (4.12):

HV = δ(∪|S|i=1vi), (4.12)

where δ represents the Lebesgue measure, which is used to compute volume, |S|
represents the number of non-dominated solutions, and vi represents the hypercube

formed by the reference point and the i-th solution in the solution set. HV is an

effective quantitative scalar metric, which is strictly monotonic in terms of Pareto

CHAPTER 4. METHODS 44

dominance. The larger the value of HV, the the better the set of solutions covers the

objective space and trade-offs between objectives. Especially, the calculation of the

HV index does not require the ideal Pareto front of the test problem, which greatly

facilitates the use of HV in practical applications.

Chapter 5

Experiments

5.1 Data

The experiments were conducted on the ZINC dataset [49] and a variant of ZINC

by appending authentic drug molecules from the DrugBank database [126] (named

ZINC+DrugBank hereafter). The ZINC dataset is a popular benchmark set for gener-

ative tasks that comprises approximately 250K molecules in SMILES notation. Drug-

Bank is a web-based database hosting detailed information on medicines including

identification, pharmacology, interactions, properties, and clinical trials. We formed

a subset by extracting 1932 small-molecule drugs from DrugBank and fusing them

into the original ZINC dataset. Molecular samples drawn from the original ZINC and

DrugBank data are visualized in Figure 5.1 and 5.2.

Figure 5.1: 2D graph visualization of randomly chosen molecules from ZINC datasets.
RDKit was used for visualization.

45

CHAPTER 5. EXPERIMENTS 46

Figure 5.2: 2D graph visualization of randomly chosen molecules from DrugBank
dataset. RDKit was used for visualization.

The ZINC and DrugBank datasets were both subjected to a three-fold prepro-

cessing step.

1. For FragVAE, molecules are cleaved into SMILES fragments following the BRICS

algorithm, whereas in JTVAE, subgraph enumeration and tree decomposition

are performed.

2. Calculation of the molecular properties (including objectives SAS, LogP, and

BAS) using RDKit and the protein-ligand binding score calculation module.

3. Removal of duplicated molecules as well as molecules with fewer than 2 frag-

ments for FragVAE.

5.2 Hyperparameter Settings

During the experiments, we used the same evolutionary learning hyperparameters for

evaluating the DEL framework. However, for FragVAE and JTVAE, we tuned the

hyperparameters differently to optimize their performance. Table 5.1 lists our key

hyperparameter settings.

CHAPTER 5. EXPERIMENTS 47

Hyperparameter DEL Hyperparameter
DGM

FragVAE JTVAE

Number of generations 10 Embedding size 128 128

Polulation size 20000 Recurrent layers 2 1

Initial epochs 20 Hidden state dimension 128 450

Subsequent epochs 10 Latent space dimension 64 64

Scheduler annealing rate 0.8 Learning rate 0.0001 0.0001

Tournament selection

probability
0.95 Batch size 128 32

Mutation rate 0.01 KL divergence weight β 0.1 0.1

Table 5.1: Hyperparameter settings of the DEL process and DGMs respectively.

5.3 Implementation Requirements

The successful execution of this work depends on the proper installation and con-

figuration of various software and hardware components. This section outlines the

key requirements, including necessary software libraries and tools, hardware spec-

ifications, and dependencies. It is crucial to adhere to the guidelines for a stable

and consistent project environment. To specify, this work uses Python 3.7 as the

programming language.

• Boost 1.74.0

• Gensim 3.4.0

• PyTorch 1.7.1

• GpyTorch 1.5.1

• Matplotlib 3.2.2

• Joblib 1.1.0

• QVina 2.1.0

CHAPTER 5. EXPERIMENTS 48

• Scikit-learn 1.0.1

• Scipy 1.6.2

• Openbabel 3.1.1

• Numpy 1.19.2

• Pandas 1.3.4

• RDkit 2021.09.2

5.4 FragVAE versus JTVAE in DEL

5.4.1 Single Target

While performing the optimization on objectives {SAS,LogP,CA9}, the two base

DGMs in DEL and two datasets lead to a set of four experiments: (1) FragVAE

in DEL framework trained on the original ZINC data, (2) FragVAE in DEL on

ZINC+DrugBank data, (3) JTVAE in DEL on ZINC data, and (4) JTVAE in DEL

on ZINC+DrugBank data. Whenever DEL was trained on the ZINC+DrugBank

data, the actual drug molecules from DrugBank were added to the initial population

composing the training data of the subsequent generation.

Due to JTVAE’s graph-based nature, training and fine-tuning it for multiple gen-

erations is a lengthy process. In addition, docking simulation of the populations is

time-consuming, so it would take roughly fourteen days to run the JTVAE+DEL pro-

gram on the ZINC dataset. Hence, we conducted one JTVAE+DEL experiment (set

(3) and (4) above), one FragVAE+DEL trained on the original ZINC data, and five

FragVAE+DEL trained on the ZINC+DrugBank dataset for the purpose of gathering

more novel samples for use in future drug discovery pipelines based on this particular

dataset.

Firstly, the performances of FragVAE-based and JTVAE-based DEL were mea-

sured using three metrics:

• Validity: the ratio of chemically valid generated molecules in the population.

• Novelty: the ratio of validly unique generated samples that are not originated

from the training dataset.

CHAPTER 5. EXPERIMENTS 49

• Uniqueness: the ratio of generated molecules that are not duplicated in the

population.

All of these metrics were scored based on SMILES strings and chemical validity

checking was performed by RDKit. A comparison of DEL based on these two DGMs

is shown in Table 5.2, which conveys that JTVAE produces all valid molecules, and

the vast majority of the samples in the last populations generated in reliance on Frag-

VAE and JTVAE, respectively, are novel. Furthermore, both methods are capable of

maintaining a highly diverse population of DEL.

Model Dataset Validity Novelty Uniqueness

FragVAE ZINC 0.973 0.999 0.968

JTVAE ZINC 1 0.987 0.933

FragVAE ZINC+DrugBank 0.994 0.999 0.960

JTVAE ZINC+DrugBank 1 0.988 0.940

Table 5.2: Performance metrics of the final (10th) population from DEL using Frag-
VAE and JTVAE, respectively, on two datasets.

Secondly, the methods were evaluated according to the property-wise distributions

of samples in their last populations (See Figure 5.3). Given the goal of expressing

an intuitive and quantitative comparison, the 1-Wasserstein distances (WD) from

the final population of FragVAE-based and JTVAE-based DEL, respectively, to the

original ZINC data were calculated and indicated in the legends. It shows that both

methods succeed in improving the properties through generations. While there is a

slight difference between the two methods on BAS, JTVAE exhibits superior perfor-

mance on SAS whereas FragVAE improves LogP the most.

CHAPTER 5. EXPERIMENTS 50

B

A

C

Figure 5.3: Property distributions on SAS (A), LogP (B), and CA9 (C) with 1-
Wasserstein distances between the final population (10th) of DEL and the original
ZINC data.

CHAPTER 5. EXPERIMENTS 51

Thirdly, while the property-wise distributions presented above can only offer a

partial comparison, the Pareto-fronts obtained by DEL using different base DGMs

are compared in terms of HV (calculated using 4.12) to reflect the overall quality of

solutions. As reference points, we selected [−7.2893,−8.2521, 0] (SAS, LogP, CA9) for
the ZINC dataset and [−7.2893,−12.6058, 0] for the ZINC+DrugBank dataset. Both

points represent the property values of the worst possible samples in each training

dataset. The number of generations was set to 10 and the trade-off hyperparameter

β was set to 0.1. The obtained HVs in the initial generation, the middle generation,

and the final generation are listed in Table 5.3 which demonstrates the following key

features. (1) HV increases along with evolutionary generations, showing that DEL

can gradually improve the quality of Pareto fronts, and, (2) the JTVAE in the DEL

framework results in a significantly higher HV value compared to FragVAE, revealing

a better comprehensive performance of the graph fragmentation algorithm in DEL.

Model Dataset
Hypervolume

Generation 1 Generation 5 Generation 10

FragVAE ZINC 430.93 432.98 433.13

JTVAE ZINC 496.59 498.18 493.31

FragVAE ZINC+DrugBank 655.03 656.79 658.30

JTVAE ZINC+DrugBank 655.50 661.02 671.62

Table 5.3: Hypervolumes of DEL’s Pareto fronts (β = 0.1) targeting CA9 protein
with three objectives {SAS,LogP,CA9} in the evolutionary process. The results are
collected from the populations of Generations 1, 5, and 10, respectively.

5.4.2 Double Targets

The evaluation scheme was extended to DEL targeting both CA9 and GPX4 proteins

with four objectives: {SAS,LogP,CA9, GPX4}. Given the obvious advantages of

training on ZINC+DrugBank dataset, and docking simulation of two protein targets

over multiple generations being extremely time-consuming, this section focuses on: (1)

FragVAE in double-target DEL trained on ZINC+DrugBank data, and (2) JTVAE

in double-target DEL trained on ZINC+DrugBank data. Over the course of the

experiments, we completed one run of JTVAE+DEL and Frag+VAE on two targets,

as it could take approximately one month to fully run JTVAE+DEL and twelve days

for Frag+VAE.

CHAPTER 5. EXPERIMENTS 52

Implementing the performance metrics scheme that comprise validity, novelty and

uniqueness, Table 5.4 displays the comparison between FragVAE and JTVAE in the

DEL framework. In line with the analysis in the single target section, both models

presented satisfactory performance in population novelty, where the samples demon-

strated distinct structures from those in the training molecules. JTVAE maintained

a validity score of 100% without exception, which aligns with results from the single-

target approach as evidenced by the advantages of valid reconstruction.

Model Dataset Validity Novelty Uniqueness

FragVAE ZINC+DrugBank 0.995 0.999 0.953

JTVAE ZINC+DrugBank 1 0.988 0.940

Table 5.4: Performance metrics of the final (10th) population from DEL using Frag-
VAE and JTVAE with double protein targets, respectively, on two datasets.

Property-wise distributions of objectives {SAS,LogP,CA9, GPX4} across the fi-
nal populations are illustrated in Figure 5.4. The curves reveal that both models are

capable of capturing the dataset sample space and generating samples that fit the

distribution of the training data. In conjunction with the WD measuring the quan-

titative differences between the population distribution and the original ZINC data,

we can see that both JTVAE+DEL and FragVAE+DEL have successfully optimized

toward the multi-objective goal. With WD results of 0.529 against 0.464 and 0.496

against 0.385, molecular structures produced by JTVAE have favorable binding affin-

ity for both CA9 and GPX4 proteins, whereas FragVAE samples perform better in

LogP.

Finally, we calculated the hypervolume of the collected final populations using

reference point of [−7.2893,−12.6058, 0, 0] (SAS, LogP, CA9, GPX4) to evaluate the

solutions to the target multi-objective problem in a scalar manner, and our goal to

obtain higher hypervolume scores. In Table 5.5, if compared horizontally, we can see

that DEL framework is able to consistently evolve towards better solutions even con-

sidering more objectives. By factoring in the information pertaining to the topology

of the molecules, graph based model JTVAE achieved a higher overall hypervolume

value in DEL throughout the generations as opposed to SMILES-based models.

CHAPTER 5. EXPERIMENTS 53

A B

C D

Figure 5.4: Property distributions on SAS (A), LogP (B), CA9 (C) and GPX4 (D)
with 1-Wasserstein distances between the final population (10th) of DEL and the
original ZINC data.

Model Dataset
Hypervolume

Generation 1 Generation 5 Generation 10

FragVAE ZINC+DrugBank 5294.69 5294.18 5305.49

JTVAE ZINC+DrugBank 5351.80 5351.86 5439.90

Table 5.5: Hypervolumes of DEL’s Pareto fronts (β = 0.1) involving CA9 and GPX4
protein targets, optimizing on four objectives (SAS, LogP, CA9 and GPX4). The
results are collected from the populations of Generations 1, 5, and 10, respectively.

CHAPTER 5. EXPERIMENTS 54

5.5 Virtual Screening

Generated samples on the first Pareto front of the final population are viewed as

high-rank molecules. As we set the population size M to 20,000 in our experiments,

DEL has typically resulted in up to 30 Pareto ranks. This section examines only the

first fronts.

5.5.1 Single Protein Target

For DEL with single CA9 protein target, the following threefold criteria were applied

to identify high-quality novel samples in the the first front:

• SAS ≤ 3

• −0.4 ≤ LogP ≤ 5.6

• CA9 ≤ −5.9

Figure 5.5: 2D graph visualization of 8 unique CA9 ligands from PDB.

Regarding the qualitative characterization of LogP, the Ghose filter rules [34]

were considered to benefit the prediction of drug-likeness. We then identified the

BAS threshold by assessing 8 unique real ligands of the target protein CA9. These

ligands were collected from Protein Data Bank (PDB) [10] and processed using the

scoring module as our framework to isolate the impact of docking configurations.

In Figure 5.5, we observe a maximum BAS of -5.9 and a minimum of -7.1, thus

CHAPTER 5. EXPERIMENTS 55

setting the upper bound for filtering the high-quality novel molecules from the first

fronts as one of our objectives is to minimize BAS. Respectively, 78 molecules and

109 molecules (after merging five runs, average 72 molecules per run) were retrieved

from FragVAE+DEL trained on the ZINC and ZINC+DrugBank data; 81 and 92

molecules from JTVAE+DEL were trained on the ZINC and ZINC+DrugBank data.

Figure 5.6 and 5.7 illustrate the results obtained from the ZINC+DrugBank dataset

when sorted by CA9 binding affinity scores.

Figure 5.6: 2D graph visualization of high-quality novel samples of the final (10th)
population of DEL with objectives {SAS,LogP,CA9} applying FragVAE, trained
on the ZINC+DrugBank data. To prioritize molecules with advantageous BAS, the
samples are sorted descendingly by the CA9 binding score. Due to space limitations,
only the top 16 molecules are shown. A.1 displays the complete list of samples.

CHAPTER 5. EXPERIMENTS 56

Figure 5.7: 2D graph examples of high-quality novel samples of the final (10th)
population of DEL with objectives {SAS,LogP,CA9} in combination with JTVAE,
trained on the ZINC+DrugBank data. To prioritize molecules with advantageous
BAS, the samples are sorted descendingly by the CA9 binding score. Due to space
limitations, only the top 16 molecules are shown. The complete list of samples can
be found in A.2.

Different from the traditional procedure in virtual screening which investigates

the binding affinity scores of given molecules in a fixed library, our approach inte-

grates virtual screening in the generation and optimization process through the use

of binding affinity score along with other concerned objectives. The benefit of our ap-

proach is that it can find novel molecules which potentially satisfy all applied criteria.

As a case study to demonstrate, we ranked the high-quality molecules descendingly

CHAPTER 5. EXPERIMENTS 57

by BAS and selected four novel molecules from the top, two were obtained using

FragVAE+DEL and two from JTVAE+DEL. Figure 5.8 and 5.9 display, thanks to

PyMOL [101], the corresponding protein-ligand complexes. As compared to the exist-

ing ligands in Figure 5.5, both molecules have no violation of the criteria and excel in

all three objectives. For further validations, all novel molecules from the DEL result

in preferred ranges of properties and binding scores can be promoted.

A B

Figure 5.8: Docking visualization of two novel molecules binding on
CA9 protein surface. Both molecules ranked top on BAS in the high-
quality samples of their final population. (A) shows the molecule
CN(C(=O)COc1c(F)c(F)c(F)c(F)c1F)C(=O)c1cc(=O)[nH]c2ccc(S(=O)(=O)N3C-
CCCCC3)cc12 binding to the binding site of CA9 protein. It was generated
by FragVAE+DEL trained on ZINC+DrugBank dataset and has a binding
affinity score of -9.2 (SAS: 2.979, LogP: 3.466). (B) shows the molecule
Cc1cccc(C(=O)Nc2cccc3nonc23)c1Nc1cccc2ccccc12 binding to the binding site
of CA9. It was discovered by FragVAE+DEL on ZINC data and has a binding
affinity score of -9.0 (SAS: 2.668, LogP: 2.979).

CHAPTER 5. EXPERIMENTS 58

A B

Figure 5.9: Docking visualization of two novel molecules binding on
CA9 protein surface. Both molecules ranked top on BAS in the high-
quality samples of their final population. (A) shows the molecule
Cc1ccc(C2C3=C(Nc4[nH]c(N)nc(=O)c42)c2ccccc2C3=O)cc1 binding to the binding
site of CA9 protein. It was generated by JTVAE+DEL trained on ZINC+DrugBank
dataset and has a binding affinity score of -9.1 (SAS: 2.971, LogP: 2.826). (B) shows
the molecule O=C1Nc2cc(C(=O)NCCc3nnc(-c4ccccc4)o3)ccc2C1=O binding to the
binding site of CA9. It was discovered by JTVAE+DEL on ZINC data and has a
binding affinity score of -9.0 (SAS: 2.245, LogP: 5.580).

5.5.2 Double Protein Targets

We established the following screening criteria to the four corresponding objectives

in DEL for both protein targets:

• SAS ≤ 3

• −0.4 ≤ LogP ≤ 5.6

• CA9 ≤ −5.9

• GPX4 ≤ −6.3

In addition to the threshold for SAS, LogP, and CA9 in Section 5.4.1, we deter-

mined the upper bound of the GPX4 binding affinity score using the same methodol-

ogy as for CA9. By screening the GPX4 ligands available in PDB and analyzing their

docking ability under our experiment setting, we pinpointed six real ligands with a

considerable degree of complexity in their structure and docking affinity score (Figure

5.10). It shows that the BAS of the real ligands ranges between -3.4 and -6.3. Unlike

CHAPTER 5. EXPERIMENTS 59

CA9, GPX4 is a challenging target to dock, and potential drug molecules are prone to

benefit from a relatively high BAS. To that end, we strictly adhered to the minimum

BAS -6.3 threshold for the GPX4 score. After applying the screening criteria to the

first fronts of FragVAE+DEL and JTVAE+DEL trained on ZINC+DrugBank data,

we obtained 240 and 196 high-quality novel molecules, respectively. Graph structures

of the high-quality samples are visualized in Figure 5.11 and 5.12. We ranked the

molecules descendingly via the sum of ranks method to present an intuitive compari-

son of their docking affinities towards both targets. Binding affinity scores of CA9 and

GPX4 are ranked individually, yielding the final rank of each molecule by summing

its CA9 and GPX4 ranks.

Figure 5.10: 2D graph visualization of 6 unique GPX4 ligands from PDB.

CHAPTER 5. EXPERIMENTS 60

Figure 5.11: 2D graph visualization of high-quality novel samples of the final (10th)
population of DEL with objectives {SAS,LogP,CA9, GPX4} in combination with
FragVAE, trained on the ZINC+DrugBank data. To prioritize molecules with favor-
able BAS, the results are ranked based on CA9 and GPX4 binding scores respectively,
then sorted by the summation of both ranks. Only the top 16 molecules are shown
due to space limitations. A.3 displays the complete list of samples.

CHAPTER 5. EXPERIMENTS 61

Figure 5.12: 2D graph visualization of high-quality novel samples of the final (10th)
population of DEL with objectives {SAS,LogP,CA9, GPX4} in combination with
JTVAE, trained on the ZINC+DrugBank data. The results are ranked based on
CA9 and GPX4 binding scores respectively, then sorted by the summation of two
ranks. Only the top 16 molecules are shown due to space limitations. The complete
list of samples can be found in A.4.

Among these sorted novel samples, the top three molecules generated by each

method (FragVAE+DEL and JTVAE+DEL) have been subjected to virtual screening

to assess their performance on the target 3D surfaces of CA9 and GPX4 proteins. Fig-

ure 5.13 displays the protein-ligand complex of molecule Cc1ccc(NC(=O)C2(c3ccc4c-

(c3)OC(F)(F)O4)CC2)nc1-c1cccc(C(=O)O)c1 with the most favorable BAS (CA9:

-8.7, GPX4: -8.4) generated by FragVAE+DEL, while Figure 5.14 and 5.15 shows

CHAPTER 5. EXPERIMENTS 62

the other two promising samples actively docking on CA9 and GPX4 surface respec-

tively. Figure 5.16, Figure 5.17 and Figure 5.18 demonstrate the binding interaction of

top three samples from JTVAE+DEL associated with both protein targets, in partic-

ular the molecule Cn1nc(NC(=O)Cc2-cccc3ccccc23)c2c1NC(=O)CC2c1ccccc1 has an

optimal binding affinity for both CA9 (-9.0) and GPX4 (-8.6). The novel samples ex-

amined are capable of adhering tightly to the docking sites and forming non-covalent

bonds with the available resources. Our research suggests that these compounds

could have the potential to be converted into potent drug molecules through wet-lab

validation and synthesis.

A B

Figure 5.13: Docking visualization of novel molecule Cc1ccc(NC(=O)C2(c3ccc4c(c3)-
OC(F)(F)O4)CC2)nc1-c1cccc(C(=O)O)c1 docking to both CA9 protein and GPX4
protein surface, which achieved highest rank amongst the novel samples generated by
FragVAE+DEL trained on ZINC+DrugBank data. This molecule has a CA9 binding
affinity score of -8.7 and GPX4 score of -8.4 (SAS: 2.756, LogP: 4.747). (A) shows
the molecule binding to the target binding site of CA9 protein, while (B) shows the
molecule docking to the target site of GPX4.

CHAPTER 5. EXPERIMENTS 63

A B

Figure 5.14: Docking visualization of novel molecule
CC1=CC2=NC(=O)C(=Cc3cn(Cc4ccc5c(c4)OCO5)c4ccccc34)C(=N)N2O1 (CA9:
-8.5, GPX4: -7.9, SAS: 2.958, 3.868) docking to CA9 protein (A) and GPX4 protein
(B) surface.

A B

Figure 5.15: Docking visualization of novel molecule Cc1c(-
c2ccccc2)oc2c(C(=O)Nc3cccc(-c4nnco4)c3)cccc2c1=O (CA9: -8.4, GPX4: -8.0,
SAS: 2.442, GPX4: 5.071) docking to both CA9 protein (A) and GPX4 protein (B)
surface.

CHAPTER 5. EXPERIMENTS 64

A B

Figure 5.16: Docking visualization of novel molecule
Cn1nc(NC(=O)Cc2cccc3ccccc23)c2c1NC(=O)CC2c1ccccc1 docking to both CA9
protein and GPX4 protein surface, which achieved highest rank amongst the novel
samples generated by JTVAE+DEL trained on ZINC+DrugBank data. This
molecule has a CA9 binding affinity score of -9.0 and GPX4 score of -8.6 (SAS:
2.997, LogP: 4.229). (A) shows the molecule binding to the target binding site of
CA9 protein, while (B) shows the molecule docking to the target site of GPX4.

BA

Figure 5.17: Docking visualization of novel molecule
Cc1cc2ccccc2c2cc(C(=O)NCc3cccc4c3OCO4)cnc12 (CA9: -8.2, GPX4: -8.2,
SAS: 2.310, LogP: 4.355) docking to both CA9 protein (A) and GPX4 protein (B)
surface.

CHAPTER 5. EXPERIMENTS 65

BA

Figure 5.18: Docking visualization of novel molecule
Cn1nc(NC(=O)Cc2cccc3ccccc23)c2c1NC(=O)CC2c1ccccc1 (CA9: -8.2, GPX4:
-8.0, SAS: 2.774, LogP: 4.300) docking to both CA9 protein (A) and GPX4 protein
(B) surface.

Chapter 6

Conclusion

6.1 Discussion

Drug discovery can be modelled as a multi-objective optimization problem over a vast

search space. The advantages of target-aimed fragment-based drug design, as well as

the powerful representation and modelling capacity of deep learning methods were

the driving forces behind our research.

We propose using graph fragment-based deep generative models in the deep evo-

lutionary learning process and incorporating the protein-ligand binding affinity score

as one of the optimization objectives. This approach involves generating molecu-

lar structures via a graph-based model, evolving those structures with evolutionary

techniques, and using the protein-ligand binding affinity score as a metric to guide

the evolution towards generating molecules with desirable properties. By combining

these processes, we aim to optimize the generation of molecules with specific docking

properties to proteins of interest.

As part of the graph fragment-based approach, the junction tree-based deep gen-

erative model JTVAE was implemented in DEL to enhance its ability to extract

structural information from molecules during training. SMILES fragment-based DEL

was compared with graph fragment-based DEL using FragVAE as a benchmark. In a

series of experiments, it has been demonstrated that our graph-based approach is ca-

pable of generating novel molecules possessing better quality in terms of Pareto front

hypervolume and the number of novel samples satisfying the screening criteria when

compared to a SMILES fragment-based deep generative model previously employed in

the deep evolutionary learning framework. Since both approaches use VAE and DEL,

it is likely that junction-tree-based graph fragmentation contributes to the improve-

ment in performance. Unfortunately, due to the inability of the graph fragment-based

66

CHAPTER 6. CONCLUSION 67

framework to accelerate training, fewer than optimal data were available for analysis.

Protein-ligand binding affinity score (BAS) is used as an optimization objective

in DEL, along with solubility (LogP) and synthesizability (SAS). This enables us to

identify and prioritize novel molecules that have specific binding affinity for a protein

target, while also optimizing other pharmacological properties. Molecular mechanism

simulations are used to calculate BAS values, which estimate a molecule’s binding

affinity towards a target protein surface area. Our BAS calculation module allows us

to customize target information. Two protein targets, CA9 and GPX4, were studied

separately and simultaneously. Through the ensuing screening process, we were able

to acquire high-quality samples that had the potential to inhibit both cancer targets

and to promote synthesis for cancer treatment.

6.2 Limitations

Despite the promising results achieved by our proposed approach, there are several

limitations that must be considered when interpreting and extending the findings of

this work.

1. Computational expense of molecular graph generative model JTVAE. In com-

parison to other methods such as SMILES-based generation, molecule graph

generation is more computationally intensive because it involves more complex

data structures and operations. In a molecular graph, atoms and bonds are

represented as nodes and edges, respectively. This graph-based representations

can incorporate more detailed information about molecules, such as stereochem-

istry and hydrogens, which increases computational complexity. Additionally,

the current implementation of JTVAE is not amenable to multi-thread training.

This limitation may hinder the scalability of the proposed approach and limit

its applicability to large datasets.

2. High cost of protein-ligand binding score calculation. Protein-ligand binding

score calculations require 3D docking simulations for all generated molecules,

which is a computationally intensive process. As the simulation must be per-

formed for both targets, this is especially challenging when two protein targets

are considered. As a result, the overall optimization process incurs a substantial

computational cost.

3. Overhead of evolutionary optimization process. As part of the evolutionary op-

timization process, non-dominated sorting and crowding distance calculations

CHAPTER 6. CONCLUSION 68

for populations are performed, which can pose a computational challenge for

the DEL framework. The non-dominated sorting algorithm is particularly de-

manding since it involves sorting a large number of solutions based on multiple

criteria. As well as requiring significant computational resources, the crowding

distance calculation can also increase the overhead of the evolutionary optimiza-

tion process.

It is worth noting that these limitations are not unique to the proposed approach,

but are common to many computational drug design methods using deep generative

models and evolutionary optimization. To overcome these limitations, we intend to

use alternative methods such as distributed computing, reducing the complexity of

the generative model, or devising more efficient optimization algorithms.

6.3 Research Impact

This research was supported by the Artificial Intelligence for Design Challenge Pro-

gram at the National Research Council Canada (NRC). Further, we have gained

considerable attention in the field of drug design, and have been able to forge col-

laborations with the Digital Technologies Research Centre at NRC, as well as Dr.

Michael Organ’s Synthetic Chemistry Lab at University of Ottawa, and Dr. Shoukat

Dehar’s Group at BC Cancer Research Centre. In the context of our collaboration,

we are facilitating the wet-lab validation and synthesis of the discovered novel com-

pounds.

6.4 Future Work

As we move forward with our work, we will look for opportunities to improve our

framework. One of the main priorities will be to address the computational expense

of the JTVAE molecular graph generation component. One possible solution to this

could be to explore more efficient architectures for the JTVAE network. Additionally,

we will investigate the use of parallel computing techniques and distributed training

methods to speed up the model training process. Another promising approach could

be to use more powerful computational resources such as GPUs, which have been

shown to be highly effective for deep learning tasks.

To address the computational bottleneck in protein-ligand binding simulation, one

potential approach is to utilize more powerful computational resources. AutoDock

CHAPTER 6. CONCLUSION 69

GPU is a highly efficient and optimized implementation of the popular AutoDock

protein-ligand docking algorithm that utilizes the parallel processing capabilities of

GPUs. This implementation has been shown to significantly speed up the docking

process compared to traditional CPU-based implementations, such as QVina. By in-

corporating AutoDock GPU into our protein-ligand binding score calculation module,

we can potentially reduce the computational cost of this step and increase the overall

scalability of our framework.

Another area of future research will be to improve the efficiency and effectiveness

of the molecular fragmentation methods used in our framework. We will explore dif-

ferent fragmentation strategies and evaluate their performance in terms of molecular

quality and computational cost. Additionally, we will investigate the use of more

advanced graph-based representations for molecular structures, such as those based

on topological fingerprints or other descriptors.

In order to evaluate the performance of the framework, we will also investigate

the use of statistical metrics to assess the statistical significance of the differences

between the probability distributions of the generated molecules. This will allow

us to better understand the performance of the framework and identify areas for

improvement. Examples of such metrics could be t-test, standardized mean difference,

Mann–Whitney U test. Furthermore, we plan to extend the evaluation scheme by

incorporating more diverse objectives. And we are interested in applying our approach

to other multi-objective design problems.

Bibliography

[1] K. Abbasi, P. Razzaghi, A. Poso, M. Amanlou, J. B. Ghasemi, and A. Masoudi-

Nejad. DeepCDA: deep cross-domain compound-protein affinity predic-

tion through LSTM and convolutional neural networks. Bioinformatics,

36(17):4633–4642, 2020.

[2] T. Adali and A. Ortega. Applications of graph theory [scanning the issue].

Proceedings of the IEEE, 106(5):784–786, 2018.

[3] S. Ahn, J. Kim, H. Lee, and J. Shin. Guiding deep molecular optimization with

genetic exploration. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and

H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,

pages 12008–12021. Curran Associates, Inc., 2020.

[4] N. M. AL-Salami. Evolutionary algorithm definition. American Journal of

Engineering and Applied Sciences, 2(4):789–795, 2009.

[5] A. Alhossary, S. D. Handoko, Y. Mu, and C.-K. Kwoh. Fast, accurate, and

reliable molecular docking with QuickVina 2. Bioinformatics, 31(13):2214–

2216, 2015.

[6] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial

networks. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th Inter-

national Conference on Machine Learning, volume 70 of Proceedings of Machine

Learning Research, pages 214–223. PMLR, 2017.

[7] K. Atz, F. Grisoni, and G. Schneider. Geometric deep learning on molecular

representations. Nature Machine Intelligence, 3:1023–1032, 2021.

[8] T. Back. Selective pressure in evolutionary algorithms: a characterization of

selection mechanisms. In Proceedings of the First IEEE Conference on Evo-

lutionary Computation. IEEE World Congress on Computational Intelligence.

IEEE, 1994.

70

BIBLIOGRAPHY 71

[9] T. Baeck, D. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computa-

tion. CRC Press, Jan. 1997.

[10] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,

I. N. Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic Acids

Research, 28(1):235–242, 01 2000.

[11] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally

connected networks on graphs, 2013.

[12] Z. Chen, M. R. Min, S. Parthasarathy, and X. Ning. A deep generative model

for molecule optimization via one fragment modification. Nature Machine In-

telligence, 3(12):1040–1049, Dec. 2021.

[13] J. Chung, Çaglar Gülçehre, K. Cho, and Y. Bengio. Empirical evaluation of

gated recurrent neural networks on sequence modeling. ArXiv, abs/1412.3555,

2014.

[14] C. A. Coello. An updated survey of ga-based multiobjective optimization tech-

niques. ACM Computing Surveys (CSUR), 32(2):109–143, 2000.

[15] H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent variable

models for structured data. In International Conference on Machine Learning,

2016.

[16] H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song. Syntax-directed variational

autoencoder for structured data. In International Conference on Learning Rep-

resentations, 2018.

[17] L. David, A. Thakkar, R. Mercado, and O. Engkvist. Molecular representa-

tions in AI-driven drug discovery: a review and practical guide. Journal of

Cheminformatics, 12(1), Sept. 2020.

[18] N. De Cao and T. Kipf. MolGAN: An implicit generative model for small

molecular graphs. ArXiv, abs/1805.11973, 2018.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist mul-

tiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6(2):182–197, 2002.

BIBLIOGRAPHY 72

[20] J. Degen, C. Wegscheid-Gerlach, A. Zaliani, and M. Rarey. On the art of compil-

ing and using ’drug-like’ chemical fragment spaces. ChemMedChem, 3(10):1503–

1507, 2008.

[21] L. Dinh, J. N. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp.

ArXiv, abs/1605.08803, 2017.

[22] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli,

T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Convolutional networks on

graphs for learning molecular fingerprints. In International Conference on Neu-

ral Information Processing Systems, 2015.

[23] J. Eberhardt, D. Santos-Martins, A. F. Tillack, and S. Forli. Autodock vina

1.2.0: New docking methods, expanded force field, and python bindings. Journal

of Chemical Information and Modeling, 61(8):3891–3898, 2021.

[24] A. Eiben and J. Smith. From evolutionary computation to the evolution of

things. Nature, 521(2014):476–482, 2015.

[25] T. Engel and J. Gasteiger. Chemoinformatics: Achievements and Future Op-

portunities. Wiley-VCH, 2018.

[26] T. Engel and J. Gasteiger. Chemoinformatics: Basic Concepts and Methods.

Wiley-VCH, 2018.

[27] D. Erlanson. Introduction to fragment-based drug discovery. Topics in Current

Chemistry, 317:1–32, 2011.

[28] R. Esworthy, K. Doan, J. H. Doroshow, and F.-F. Chu. Cloning and sequencing

of the cDNA encoding a human testis phospholipid hydroperoxide glutathione

peroxidase∗. Gene, 144(2):317–318, 1994.

[29] T. J. A. Ewing and I. D. Kuntz. Critical evaluation of search algorithms for au-

tomated molecular docking and database screening. Journal of Computational

Chemistry, 18(9):1175–1189, 1997.

[30] Z. Fisher and K. Koruza. X-ray crystal structure of h/d exchanged (h/d) small

monoclinic unit cell CA IX SV., 2019.

[31] L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence Through Simulated

Evolution. Wiley, Chichester, WS, UK, 1966.

BIBLIOGRAPHY 73

[32] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in

multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

[33] T. Gal. Multiple objective decision making - methods and applications: A state-

of-the art survey: Ching-lai hwang and abu syed md. masud springer, berlin,

1979, xii + 351 pages, dfl. 46.90. soft cover. European Journal of Operational

Research, 4:287–288, 1980.

[34] A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski. A knowledge-based

approach in designing combinatorial or medicinal chemistry libraries for drug

discovery. 1. a qualitative and quantitative characterization of known drug

databases. Journal of Combinatorial Chemistry, 1(1):55–68, Jan 1999.

[35] J. Gilmer, S. Schoenholz, P. Riley, O. Vinyals, and G. Dahl. Neural message

passing for quantum chemistry. In International Conference on Machine Learn-

ing, 2017.

[36] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used

in genetic algorithms. In Foundations of Genetic Algorithms, pages 69–93.

Elsevier, 1991.

[37] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial networks. arxiv e-prints.

ArXiv:1406.2661, 1406, 2014.

[38] R. Graham and P. Hell. On the history of the minimum spanning tree problem.

IEEE Annals of the History of Computing, 7(1):43–57, 1985.

[39] M. Grandjean. A social network analysis of twitter: Mapping the digital hu-

manities community. Cogent Arts & Humanities, 3(1):1171458, 2016.

[40] K. Grantham, M. Mukaidaisi, H. K. Ooi, M. S. Ghaemi, A. Tchagang, and

Y. Li. Deep evolutionary learning for molecular design. IEEE Computational

Intelligence Magazine, 17(2):14–28, 2022.

[41] R. Gómez-Bombarelli, D. Duvenaud, J. Hernández-Lobato, J. Aguilera-

Iparraguirre, T. Hirzel, R. Adams, and A. Aspuru-Guzik. Automatic chemical

design using a data-driven continuous representation of molecules. ACS Central

Science, 4(2):268–276, 2018.

[42] D. Hebb. The Organization of Behavior. John Wiley & Sons, New York, 1949.

BIBLIOGRAPHY 74

[43] F. Herrera, M. Lozano, and A. Sanchez. A taxonomy for the crossover operator

for real-coded genetic algorithms: An experimental study. International Journal

of Intelligent Systems, 18:309–338, 2003.

[44] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mo-

hamed, and A. Lerchner. beta-VAE: Learning basic visual concepts with a

constrained variational framework. In International Conference on Learning

Representations, 2017.

[45] R. Hillig, D. Moosmayer, A. Hilpmann, J. Hoffmann, L. Schnirch, J. Eaton,

V. Badock, and S. Gradl. Wildtype form (apo) of human GPX4 with se-cys46,

2020.

[46] G. E. Hinton and R. S. Zemel. Autoencoders, minimum description length and

Helmholtz free energy. In Proceedings of the 6th International Conference on

Neural Information Processing Systems, NIPS’93, pages 3–10. Morgan Kauf-

mann Publishers Inc., 1993.

[47] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence. MIT

Press, Cambridge, MA, USA, 1992.

[48] S. Honda, S. Shi, and H. R. Ueda. Smiles transformer: Pre-trained molecular

fingerprint for low data drug discovery, 2019.

[49] J. Irwin and B. Shoichet. ZINC - A free database of commercially available com-

pounds for virtual screening. Journal of Chemical Information and Modeling,

45(1):177–182, 2005.

[50] J. H. Jensen. A graph-based genetic algorithm and generative model/monte

carlo tree search for the exploration of chemical space. Chemical Science,

10(12):3567–3572, 2019.

[51] W. Jin, R. Barzilay, and T. Jaakkola. Junction tree variational autoencoder for

molecular graph generation. In International Conference on Machine Learning,

pages 2323–2332, 2018.

[52] W. Jin, R. Barzilay, and T. Jaakkola. Hierarchical generation of molecular

graphs using structural motifs. In ICML, 2020.

BIBLIOGRAPHY 75

[53] G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor. Development

and validation of a genetic algorithm for flexible docking. Journal of Molecular

Biology, 267(3):727–748, 1997.

[54] D. Kingma and M. Welling. Auto-encoding variational Bayes. In International

Conference on Learning Representations, 2014.

[55] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2013.

[56] T. N. Kipf and M. Welling. Variational graph auto-encoders, 2016.

[57] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-

tional networks. In Proceedings of the 5th International Conference on Learning

Representations, 2017.

[58] J. Koza and R. Poli. Genetic Programming. MIT Press, Cambridge, MA, USA,

1992.

[59] S. Kullback. Letters to the editor. The American Statistician, 41(4):338–341,

1987.

[60] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of

Mathematical Statistics, 22(1):79–86, 1951.

[61] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational

autoencoder. In International Conference on Machine Learning, pages 1945–

954, 2017.

[62] G. Landrum. RDKit: Open-source cheminformatics. 2006.

[63] J. B. Lee, R. Rossi, and X. Kong. Deep graph attention model. 2017.

[64] J. K. Leman, B. D. Weitzner, S. M. Lewis, J. Adolf-Bryfogle, N. Alam, R. F.

Alford, M. Aprahamian, D. Baker, K. A. Barlow, P. Barth, B. Basanta, B. J.

Bender, K. Blacklock, J. Bonet, S. E. Boyken, P. Bradley, C. Bystroff, P. Con-

way, S. Cooper, B. E. Correia, B. Coventry, R. Das, R. M. De Jong, F. DiMaio,

L. Dsilva, R. Dunbrack, A. S. Ford, B. Frenz, D. Y. Fu, C. Geniesse, L. Gold-

schmidt, R. Gowthaman, J. J. Gray, D. Gront, S. Guffy, S. Horowitz, P.-S.

Huang, T. Huber, T. M. Jacobs, J. R. Jeliazkov, D. K. Johnson, K. Kappel,

J. Karanicolas, H. Khakzad, K. R. Khar, S. D. Khare, F. Khatib, A. Khra-

mushin, I. C. King, R. Kleffner, B. Koepnick, T. Kortemme, G. Kuenze,

BIBLIOGRAPHY 76

B. Kuhlman, D. Kuroda, J. W. Labonte, J. K. Lai, G. Lapidoth, A. Leaver-Fay,

S. Lindert, T. Linsky, N. London, J. H. Lubin, S. Lyskov, J. Maguire, L. Malm-

ström, E. Marcos, O. Marcu, N. A. Marze, J. Meiler, R. Moretti, V. K. Mulligan,

S. Nerli, C. Norn, S. Ó’Conchúir, N. Ollikainen, S. Ovchinnikov, M. S. Pacella,

X. Pan, H. Park, R. E. Pavlovicz, M. Pethe, B. G. Pierce, K. B. Pilla, B. Raveh,

P. D. Renfrew, S. S. R. Burman, A. Rubenstein, M. F. Sauer, A. Scheck,

W. Schief, O. Schueler-Furman, Y. Sedan, A. M. Sevy, N. G. Sgourakis, L. Shi,

J. B. Siegel, D.-A. Silva, S. Smith, Y. Song, A. Stein, M. Szegedy, F. D. Teets,

S. B. Thyme, R. Y.-R. Wang, A. Watkins, L. Zimmerman, and R. Bonneau.

Macromolecular modeling and design in rosetta: recent methods and frame-

works. Nature Methods, 17(7):665–680, Jul 2020.

[65] X. Q. Lewell, D. B. Judd, S. P. Watson, and M. M. Hann. RECAPRetrosyn-

thetic combinatorial analysis procedure: a powerful new technique for identi-

fying privileged molecular fragments with useful applications in combinatorial

chemistry. Journal of Chemical Information and Computer Sciences, 38(3):511–

522, 1998.

[66] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural

networks. In International Conference on Learning Representations, 2016.

[67] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia. Learning deep gen-

erative models of graphs. 2018.

[68] C. Lipinski, F. Lombardo, B. Dominy, and P. Feeney. Experimental and com-

putational approaches to estimate solubility and permeability in drug discovery

and development settings. Advanced Drug Delivery Reviews, 46(1-4):3–26, 2001.

[69] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental

and computational approaches to estimate solubility and permeability in drug

discovery and development settings. Advanced Drug Delivery Reviews, 23(1):3–

25, 1997.

[70] Q. Liu, M. Allamanis, M. Brockschmidt, and A. L. Gaunt. Constrained graph

variational autoencoders for molecule design. In Proceedings of the 32nd Inter-

national Conference on Neural Information Processing Systems, NIPS’18, pages

7806–7815, 2018.

[71] S. Luo, J. Guan, J. Ma, and J. Peng. A 3D generative model for structure-based

drug design. In Conference on Neural Information Processing Systems, 2021.

BIBLIOGRAPHY 77

[72] A. R. Mashaghi, A. Ramezanpour, and V. Karimipour. Investigation of a pro-

tein complex network. The European Physical Journal B, 41(1):113–121, 2004.

[73] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adver-

sarial networks. 2016.

[74] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer Berlin Heidelberg, 1992.

[75] Z. Michalewicz, R. Hinterding, and M. Michalewicz. Evolutionary algorithms.

In Fuzzy Evolutionary Computation. Springer US, 1997.

[76] K. Miettinen. Nonlinear multiobjective optimization. Springer Science & Busi-

ness Media, 1999.

[77] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. In International Conference on Learning Rep-

resentations, 2013.

[78] T. Mikolov, M. Karafiát, L. Burget, J. H. Cernocký, and S. Khudanpur. Re-

current neural network based language model. In INTERSPEECH, 2010.

[79] B. L. Miller and D. E. Goldberg. Genetic algorithms, tournament selection,

and the effects of noise. Complex Syst., 1995.

[80] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew,

and A. J. Olson. Automated docking using a lamarckian genetic algorithm and

an empirical binding free energy function. Journal of Computational Chemistry,

19(14):1639–1662, 1998.

[81] J. Mueller, D. Gifford, and T. Jaakkola. Sequence to better sequence: Continu-

ous revision of combinatorial structures. In Proceedings of the 34th International

Conference on Machine Learning, 2017.

[82] C. A. Nicolaou, J. Apostolakis, and C. S. Pattichis. De novo drug design us-

ing multiobjective evolutionary graphs. Journal of Chemical Information and

Modeling, 49(2):295–307, 2009.

[83] A. Nigam, P. Friederich, M. Krenn, and A. Aspuru-Guzik. Augmenting genetic

algorithms with deep neural networks for exploring the chemical space. ArXiv,

2019.

BIBLIOGRAPHY 78

[84] A. Oduguwa, A. Tiwari, R. Roy, and C. Bessant. An overview of soft comput-

ing techniques used in the drug discovery process. In Applied Soft Computing

Technologies: The Challenge of Complexity. Springer Berlin Heidelberg, 2006.

[85] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. Asymmetric transitivity pre-

serving graph embedding. In Proceedings of the 22nd ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, KDD ’16, page

1105–1114, 2016.

[86] N. Pagadala, K. Syed, and J. Tuszynski. Software for molecular docking: A

review. Biophysical Reviews, 9(2):91–102, 12 2016.

[87] T.-H. Pham, L. Xie, and P. Zhang. FAME: Fragment-based conditional molec-

ular generation for phenotypic drug discovery. In Proceedings of the 2022 SIAM

International Conference on Data Mining (SDM), pages 720–728. Society for

Industrial and Applied Mathematics, 2022.

[88] M. Podda, D. Bacciu, and A. Micheli. A deep generative model for fragment-

based molecule generation. In International Conference on Artificial Intelligence

and Statistics, pages 2240–2250, 2020.

[89] P. Pogány, N. Arad, S. Genway, and S. D. Pickett. De novo molecule design by

translating from reduced graphs to SMILES. Journal of Chemical Information

and Modeling, 59(3):1136–1146, 2019.

[90] P. Polishchuk. CReM: chemically reasonable mutations framework for structure

generation. Journal of Cheminformatics, 12(1), 2020.

[91] A. S. Powers, H. H. Yu, P. Suriana, and R. O. Dror. Fragment-based ligand gen-

eration guided by geometric deep learning on protein-ligand structure. BioRxiv,

2022.

[92] O. Prykhodko, S. V. Johansson, P.-C. Kotsias, J. Arús-Pous, E. J. Bjerrum,

O. Engkvist, and H. Chen. A de novo molecular generation method using

latent vector based generative adversarial network. Journal of Cheminformatics,

11(1), 2019.

[93] M. Rarey, B. Kramer, T. Lengauer, and G. Klebe. A fast flexible docking

method using an incremental construction algorithm. Journal of Molecular

Biology, 261(3):470–489, 1996.

BIBLIOGRAPHY 79

[94] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

[95] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and

approximate inference in deep generative models. In ICML, 2014.

[96] S. Z. Sajadi, M. A. Zare Chahooki, S. Gharaghani, and K. Abbasi. AutoDTI++:

deep unsupervised learning for DTI prediction by autoencoders. BMC Bioin-

formatics, 22(1):204, Apr. 2021.

[97] B. Samanta, A. De, G. Jana, P. K. Chattaraj, N. Ganguly, and M. Gomez-

Rodriguez. NeVAE: A deep generative model for molecular graphs. Journal of

Machine Learning Research, 21, 2020.

[98] B. Sattarov, I. I. Baskin, D. Horvath, G. Marcou, E. J. Bjerrum, and A. Varnek.

De novo molecular design by combining deep autoencoder recurrent neural net-

works with generative topographic mapping. Journal of Chemical Information

and Modeling, 59 3:1182–1196, 2019.

[99] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The

graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–

80, 2009.

[100] J. D. Schaffer. Multiple objective optimization with vector evaluated genetic

algorithms. In Proceedings of the First International Conference on Genetic

Algorithms and Their Applications, pages 93–100. Psychology Press, 2014.

[101] L. Schrödinger. The PyMOL molecular graphics system, version 1.8. 2015.

[102] M. H. S. Segler, T. Kogej, C. Tyrchan, and M. P. Waller. Generating focused

molecule libraries for drug discovery with recurrent neural networks. ACS Cen-

tral Science, 4(1):120–131, 2017.

[103] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, and J. Tang. Graphaf: a flow-

based autoregressive model for molecular graph generation. In International

Conference on Learning Representations, 2020.

[104] S. Shuker, P. Hajduk, R. Meadows, and S. Fesik. Discovering high-affinity

ligands for proteins: SAR by NMR. Science, 274(5292):11531–1534, 1996.

BIBLIOGRAPHY 80

[105] M. Simonovsky and N. Komodakis. GraphVAE: Towards generation of small

graphs using variational autoencoders. In International Conference on Artificial

Neural Networks, pages 412–422, 2018.

[106] M. Singh, B. Tam, and B. Akabayov. Nmr-fragment based virtual screening: A

brief overview. Molecules, 23(2), 2018.

[107] P. Span, J. Bussink, P. Manders, L. Beex, and C. Sweep. Carbonic anhydrase-

9 expression levels and prognosis in human breast cancer: association with

treatment outcome. British Journal of Cancer, 89(2):271–276, 2003.

[108] W. Stadler. A survey of multicriteria optimization or the vector maximum

problem. Journal of Optimization Theory and Applications, 29(1):1–52, 1979.

[109] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with

neural networks. In NIPS, 2014.

[110] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and

R. Fergus. Intriguing properties of neural networks. ArXiv, 2013.

[111] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-

scale information network embedding. In Proceedings of the 24th International

Conference on World Wide Web, WWW ’15, page 1067–1077, 2015.

[112] J. M. Tomczak. Deep Generative Modeling. Springer International Publishing,

2022.

[113] O. Trott and A. Olson. AutoDock Vina: Improving the speed and accuracy of

docking with a new scoring function, efficient optimization, and multithreading.

Journal of Computational Chemistry, 31(2):455–461, 2010.

[114] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu. Wavenet: A generative

model for raw audio. CoRR, abs/1609.03499, 2016.

[115] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and

K. Kavukcuoglu. Conditional image generation with pixelcnn decoders. CoRR,

abs/1606.05328, 2016.

BIBLIOGRAPHY 81

[116] F. Vecchio, F. Miraglia, F. Piludu, G. Granata, R. Romanello, M. Caulo,

V. Onofrj, P. Bramanti, C. Colosimo, and P. M. Rossini. “small world” ar-

chitecture in brain connectivity and hippocampal volume in alzheimer’s dis-

ease: a study via graph theory from EEG data. Brain Imaging and Behavior,

11(2):473–485, 2016.

[117] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio.

Graph Attention Networks. International Conference on Learning Representa-

tions, 2018.

[118] P. A. Vikhar. Evolutionary algorithms: A critical review and its future

prospects. In 2016 International Conference on Global Trends in Signal Process-

ing, Information Computing and Communication (ICGTSPICC), pages 261–

265, 2016.

[119] W. Walters, M. T. Stahl, and M. A. Murcko. Virtual screening - an overview.

Drug Discovery Today, 3(4):160–178, 1998.

[120] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM, 2016.

[121] X. Wang and L. Cao. Genetic Algorithms - Theory, Applications, and Software

Implementations. Xi’an Jiaotong University Press, 2002.

[122] D. Weininger. SMILES, a chemical language and information system. 1. intro-

duction to methodology and encoding rules. Journal of Chemical Information

and Computer Sciences, 28(1):31–36, 1988.

[123] C. G. Wermuth. The practice of medicinal chemistry. Academic Press, 2011.

[124] D. Whitley. An overview of evolutionary algorithms: practical issues and com-

mon pitfalls. Information and Software Technology, 43(14):817–831, 2001.

[125] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmid-

huber. Natural evolution strategies. Journal of Machine Learning Research,

15(2014):949–980, 2014.

[126] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant,

T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu,

A. Maciejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon,

BIBLIOGRAPHY 82

C. Knox, and M. Wilson. DrugBank 5.0: A major update to the DrugBank

database for 2018. Nucleic Acids Research, 46:D1074–D1082, 2018.

[127] C. Yan, S. Wang, J. Yang, T. Xu, and J. Huang. Re-balancing variational

autoencoder loss for molecule sequence generation. In ACM International Con-

ference on Bioinformatics, Computational Biology and Health Informatics, page

Article Number 54, 2020.

[128] K. Yang, K. Swanson, W. Jin, C. Coley, P. Eiden, H. Gao, A. Guzman-Perez,

T. Hopper, B. Kelley, M. Mathea, A. Palmer, V. Settels, T. Jaakkola, K. Jensen,

and R. Barzilay. Analyzing learned molecular representations for property pre-

diction. Journal of Chemical Information and Modeling, 59(8):3370–3388, 2019.

[129] X. Yao. Global optimisation by evolutionary algorithms. In Proceedings of

IEEE International Symposium on Parallel Algorithms Architecture Synthesis,

pages 282–291, 1997.

[130] N. Yoshikawa, K. Terayama, M. Sumita, T. Homma, K. Oono, and K. Tsuda.

Population-based de novo molecule generation, using grammatical evolution.

Chemistry Letters, 47(11):1431–1434, 2018.

[131] J. You, B. Liu, R. Ying, V. Pande, and J. Leskovec. Graph convolutional policy

network for goal-directed molecular graph generation. In Conference on Neural

Information Processing Systems, 2018.

[132] C. Zang and F. Wang. Moflow: An invertible flow model for generating molecu-

lar graphs. In Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, KDD ’20, page 617–626, 2020.

[133] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung. Gaan: Gated

attention networks for learning on large and spatiotemporal graphs. ArXiv,

abs/1803.07294, 2018.

[134] E. Zitzler, M. Laumanns, and S. Bleuler. A tutorial on evolutionary multiobjec-

tive optimization. Metaheuristics for Multiobjective Optimisation, 535(535):21–

40, 2004.

Appendix A

Additional Experimental Analysis

A.1 Single Protein Target

83

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 84

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 85

Figure A.1: Full list of the 2D graph examples of high-quality novel samples of the
final (10th) population of DEL with objectives {SAS,LogP,CA9} in combination
with FragVAE, trained on the ZINC+DrugBank data. To prioritize molecules with
advantageous BAS, the samples are sorted descendingly by the CA9 binding score.

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 86

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 87

Figure A.2: Full list of the 2D graph examples of high-quality novel samples of the
final (10th) population of DEL with objectives {SAS,LogP,CA9} in combination
with JTVAE, trained on the ZINC+DrugBank data. To prioritize molecules with
advantageous BAS, the samples are sorted descendingly by the CA9 binding score.

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 88

A.2 Double Protein Targets

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 89

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 90

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 91

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 92

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 93

Figure A.3: Full list of the 2D graph visualization of high-quality novel samples
in the final (10th) population of DEL with objectives {SAS,LogP,CA9, GPX4}
in combination with FragVAE, trained on the ZINC+DrugBank data. To prioritize
molecules with favorable BAS, the results are ranked based on CA9 and GPX4 binding
scores respectively, then sorted by the summation of both ranks.

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 94

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 95

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 96

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 97

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 98

Figure A.4: Full list of the 2D graph visualization of high-quality novel samples
in the final (10th) population of DEL with objectives {SAS,LogP,CA9, GPX4} in
combination with JTVAE, trained on the ZINC+DrugBank data. The results are
ranked based on CA9 and GPX4 binding scores respectively, then sorted by the
summation of two ranks.

